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9.2: Carathéodory Statement of the Second Law
The statement of the second law due to Carathéodory is:

In the neighborhood of any equilibrium state of a physical system with any number of thermodynamic coordinates, there exist
states which are inaccessible by adiabatic processes.

The adiabatic processes can be quite general, not necessarily quasi-static. It is easy to see that this leads immediately to the notion
of absolute temperature and entropy. This has been discussed in a concise and elegant manner in Chandrasekhar’s book on stellar
structure. We briefly repeat his argument for completeness. For simplicity, consider a gas characterized by pressure  and volume 

, and (empirical) temperature , only two of which are adequate to specify the thermodynamic state, the third being given by an
equation of state. Since these are the only variables,  has an integrating factor and we may write

where  and  will be functions of the variables . The power of Carathéodory’s formulation becomes clear when we consider
two such systems brought into thermal contact and come to equilibrium. We then have a common temperature t and the
thermodynamic variables can now be taken as  (or  and one variable from each of . We also have 

. The number of variables is now three; nevertheless, the Carathéodory principle tells us that we can write

We now choose  as the independent variables. Equation  then leads to

The last of these equations tells us that  is only a function of  and , . Further, since σ is a well-defined function
of the various variables, derivatives on  commute and so

with a similar relation for derivatives with respect to  as well. Thus we have the result

Equivalently, we can write

This shows that the combination  is independent of the system and is a universal function of the common variable .

Taking this function as  and integrating, we get

The ’s are determined up to a function of the ’s; we take this arbitrariness as , where  is a constant and  is a function of
the ’s involved. We can now define the absolute temperature as
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Notice that, in the case under consideration,  as expected for equilibrium. This gives , etc. The
relation  now reduces to

In the two-dimensional space with coordinates , , the vector  has vanishing curl, i.e., , since 
only depends on  and similarly for . Thus Equation  shows that  is a perfect differential. This means that there exists
a function  such that ; this also means that  can depend on  and  only through the combination . Thus
finally we have

In this way, the Carathéodory principle leads to the definition of entropy .

Figure : Illustrating the Carathéodory principle and increase of entropy

One can also see how this leads to the principle of increase of entropy. For this, consider a system with  thermodynamic variables.
The entropy will be a function of these. We can alternatively choose  of the given variables and the entropy  to characterize
states of the system. Now we ask the question: Given a state , can we find a path which takes us via adiabatic processes to
another state ? It is useful to visualize this in a diagram, with  as one of the axes, as in Fig. 9.2.1. We show one of the other
axes, but there could be many. To get to , we can start from  and go along a quasi-static reversible adiabatic to  and then, via
some nonquasi-static process such as stirring, mixing, etc., get to , keeping the system in adiabatic isolation. This second process
can be irreversible. The idea is that the first part does not change the entropy, but brings the other variables to their desired final
value. Then we move to the required value of  by some irreversible process. As shown . Suppose the second
process can also decrease the entropy in some cases so that we can go from  to  by some similar process. Then we see that all
states close to  are accessible. Starting from any point, we can move along the surface of constant  to get to the desired value of
the variables, except for  and then jump to the required value of  by the second process. This contradicts the Carathéodory
principle. Thus, if we postulate this principle, then we have to conclude that in all irreversible processes in adiabatic isolation the
entropy has to either decrease or increase; we cannot have it increase in some processes and decrease in some other processes. So 
should be either a nondecreasing quantity or a nonincreasing quantity. The choice of the sign of the absolute temperature, via the
choice of the sign of the constant  in Equation , is related to which case we choose for entropy. The conventional choice, of
course, is to take  and entropy to be nondecreasing. In other words

Thus effectively, we have obtained the version of the second law as given in Proposition 4 in Chapter 3.

This page titled 9.2: Carathéodory Statement of the Second Law is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by V. Parameswaran Nair via source content that was edited to the style and standards of the LibreTexts platform.

T ≡ C  exp( dt g(t))∫
t

t0

(9.2.8)

= = TT1 T2 d = T dQ1 Σ1 σ1

dQ = d +dQ1 Q2

Σdσ = d + dΣ1 σ1 Σ2 σ2 (9.2.9)

σ1 σ2 ( , )Σ1 Σ2 − = 0∂1Σ2 ∂2Σ1 Σ1

σ1 Σ2 9.2.9 Σdσ
S Σ = dSdσ Σ σ1 σ2 σ( , )σ1 σ2

dQ = T dS (9.2.10)

S

9.2.1

n

n−1 S

A

C S

C A B

C

S SC > SB = SA

B D

B S

S S

S

C 9.2.8

T ≥ 0

ΔS ≥ 0 (9.2.11)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/32049?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Thermodynamics_and_Statistical_Mechanics_(Nair)/09%3A_The_Caratheodory_Principle/9.02%3A_Caratheodory_Statement_of_the_Second_Law
https://creativecommons.org/licenses/by-nc-sa/4.0
https://nair.ccny.cuny.edu/
https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=1052&context=cc_oers

