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6.2: Other Relations

The TdS Equations
The entropy  is a function of the state of the system. We can take it to be a function of any two of the three variables ( , , ).
Taking  to be a function of  and , we write

For the first term on the right hand side, we can use

where  is the specific heat at constant pressure. Further, using the last of the Maxwell relations, we can now write Equation 
as

The coefficient of volumetric expansion (due to heating) is defined by

Equation  can thus be rewritten as

If we take  to be a function of  and ,

Again the first term on the right hand side can be expressed in terms of Cv, the specific heat at constant volume, using

Further using the Maxwell relations, we get

Equations  (or  and ) are known as the  equations.

Equations for Specific Heats
Equating the two expressions for , we get

By the equation of state, we can write  as a function of  and , so that

Using this in Equation , we find
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However, using Equation 6.1.9, taking ,  and , we have

Thus the coefficient of  in Equation  vanishes and we can simplify it as

where we have used Equation  again. We have already defined the coefficient of volumetric expansion . The isothermal
compressibility  is defined by

In terms of these we can express  as

This equation is very useful in calculating  from measurements of  and  and . Further, for all substances, . Thus,
we see from this equation that . (The result  can be proved in statistical mechanics.)

In the  equations, if ,  and  are related adiabatically,  and we get

This gives

We have the following relations among the terms involved in this expression,

Using these we find

Going back to the Maxwell relations and using the expressions for , we find

these immediately yield the relations
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Gibbs-Helmholtz Relation
Since the Helmholtz free energy is defined as ,

This gives immediately

Using this equation for entropy, we find

This is known as the Gibbs-Helmholtz relation. If  is known as a function of  and , we can use these to obtain ,  and .
Thus, all thermodynamic variables can be obtained from  as a function of  and .
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