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7.4: The Gibbsian Ensembles
The distribution which was obtained in Equation 7.17 gives the most probable number of particles with momentum  as 

. This was obtained by considering the number of ways in which free particles can be distributed among
possible momentum values subject to the constraints of fixed total number of particles and total energy. We want to consider some
generalizations of this now. First of all, one can ask whether a similar formula holds if we have an external potential. The
barometric formula (2.13) has a similar form since  is the potential energy of a molecule or atom in that context. So, for
external potentials, one can make a similar argument.

Interatomic or intermolecular forces are not so straightforward. In principle, if we have intermolecular forces, single particle energy
values are not easily identified. Further, in some cases, one may even have new molecules formed by combinations or bound states
of old ones. Should they be counted as one particle or two or more? So, one needs to understand the distribution from a more
general perspective. The idea is to consider the physical system of interest as part of a larger system, with exchange of energy with
the larger system. This certainly is closer to what is really obtained in most situations. When we study or do experiments with a gas
at some given temperature, it is maintained at this temperature by being part of a larger system with which it can exchange energy.
Likewise, one could also consider a case where exchange of particles is possible. The important point is that, if equilibrium is being
maintained, the exchange of energy or particles with a larger system will not change the distribution in the system under study
significantly. Imagine high energy particles get scattered into the volume of gas under study from the environment. This can raise
the temperature slightly. But there will be roughly equal number of particles of similar energy being scattered out of the volume
under study as well. Thus while we will have fluctuations in energy and particle number, these will be very small compared to the
average values, in the limit of large numbers of particles. So this approach should be a good way to analyze systems statistically.

Arguing along these lines one can define three standard ensembles for statistical mechanics: the micro-canonical, the canonical and
the grand canonical ensembles. The canonical ensemble is the case where we consider the system under study (of fixed volume )
as one of a large number of similar systems which are all in equilibrium with larger systems with free exchange of energy possible.
For the grand canonical ensemble, we also allow free exchange of particles, so that only the average value of the number of
particles in the system under study is fixed. The micro-canonical ensemble is the case where we consider a system with fixed
energy and fixed number of particles. (One could also consider fixing the values of other conserved quantities, either at the average
level (for grand canonical case) or as rigidly fixed values (for the micro-canonical case)).

We still need a formula for the probability for a given distribution of particles in various states. In accordance with the assumption
of equal a priori probabilities, we expect the probability to be proportional to the number of states  available to the system
subject to the constraints on the conserved quantities. In classical mechanics, the set of possible trajectories for a system of particles
is given by the phase space since the latter constitutes the set of possible initial data. Thus the number of states for a system of 
particles would be proportional to the volume of the subspace of the phase space defined by the conserved quantities. In quantum
mechanics, the number of states would be given in terms of the dimension of the Hilbert space. The semiclassical formula for the
counting of states is then

In other words, a cell of volume  in phase space corresponds to a state in the quantum theory. (This holds for large
numbers of states; in other words, it is semiclassical.) This gives a more precise meaning to the counting of states via the phase
volume. In the microcanonical ensemble, the total number of states with total energy between  and  would be

where  is the Hamiltonian of the -particle system. The entropy is then defined by Boltzmann’s formula as 

. For a Hamiltonian , this can be explicitly calculated and leads to the formulae we have already
obtained. However, as explained earlier, this is not easy to do explicitly when the particles are interacting. Nevertheless, the key
idea is that the required phase volume is proportional to the exponential of the entropy,
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This idea can be carried over to the canonical and grand canonical ensembles.

In the canonical ensemble, we consider the system of interest as part of a much larger system, with, say,  particles. The
total number of available states is then

The idea is then to consider integrating over the  particles to obtain the phase volume for the remaining, viewed as a subsystem.
We refer to this subsystem of interest as system 1 while the  particles which are integrated out will be called system 2. If the total
energy is , we take the system 1 to have energy , with system 2 having energy . Of course,  is not fixed, but can
vary as there can be some amount of exchange of energy between the two systems. Integrating out the system 2 leads to

We then expand  as

where have used the thermodynamic formula for the temperature. The temperature is the same for system 1 and the larger system
(system 1 + system 2) of which it is a part.  is the Hamiltonian of the  particles in system 1. This shows that, as far as the
system under study is concerned, we can take the probability as

Here C is a proportionality factor which can be set by the normalization requirement that the total probability (after integration over

all remaining variables) is 1. (The factor  from Equation  can be absorbed into the normalization as it is a constant
independent of the phase space variables for the particles in system 1. Also, the subscript 1 referring to the system under study is
now redundant and has been removed.)

There are higher powers in the Taylor expansion in Equation  which have been neglected. The idea is that these are very small
as  is small compared to the energy of the total system. In doing the integration over the remaining phase space variables, in
principle, one could have regions with  comparable to , and the neglect of terms of order  may not seem justified.
However, the formula  in terms of the energy is sharply peaked around a certain average value with fluctuations being very
small, so that the regions with  comparable to  will have exponentially vanishing probability. This is the ultimate justification
for neglecting the higher terms in the expansion from Equation . We can a posteriori verify this by calculating the mean
square fluctuation in the energy value which is given by the probability distribution in Equation . This will be taken up
shortly.

Turning to the grand canonical case, when we allow exchange of particles as well, we get
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By a similar reasoning as in the case of the canonical ensemble, we find, for the grand canonical ensemble,

More generally, let us denote by  an additively conserved quantum number or observable other than energy. The general
formula for the probability distribution is then

Even though we write the expression for  particles, it should be kept in mind that averages involve a summation over  as well.
Thus the average of some observable  is given by

Since the normalization factor  is fixed by the requirement that the total probability is 1, it is convenient to define the “partition
function". In the canonical case, it is given by

We have introduced an extra factor of . This is the Gibbs factor needed for resolving the Gibbs paradox; it is natural in the
quantum counting of states. Effectively, because the particles are identical, permutation of particles should not be counted as a new
configuration, so the phase volume must be divided by  to get the “correct" counting of states. We will see that even this is not
entirely adequate when full quantum effects are taken into account. In the grand canonical case, the partition function is defined by

Using the partition functions in place of , and including the Gibbs factor, we find the probability of a given configuration as

while for the grand canonical case we have

The partition function contains information about the thermodynamic quantities. Notice that, in particular,

We can also define the average value of the entropy (not the entropy of the configuration corresponding to particular way of
distributing particles among states, but the average over the distribution) as

While the averages  and  do not depend on the factors of  and , the entropy does. This is why we chose
the normalization factors in Equation  to be what they are.
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Consider the case when we have only one conserved quantity, the particle number, in addition to the energy. In this case, Equation 
 can be written as

Comparing this with the definition of the Gibbs free energy in Equation 5.6 and its expression in terms of  in Equation 5.16, we
find that we can identify

This gives the equation of state in terms of the partition function.

These equations ( ), (  - ) are very powerful. Almost all of the thermodynamics we have discussed before is
contained in them. Further, they can be used to calculate various quantities, including corrections due to interactions among
particles, etc. As an example, we can consider the calculation of corrections to the equation of state in terms of the intermolecular
potential.
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µN = U −TS+kT logZ (7.4.18)
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