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8.4: Applications of the Bose-Einstein Distribution
We shall now consider some simple applications of quantum statistics, focusing in this section on the Bose-Einstein distribution.

8.3.1: The Planck Distribution for Black Body Radiation
Any material body at a finite nonzero temperature emits electromagnetic radiation, or photons in the language of the quantum
theory. The detailed features of this radiation will depend on the nature of the source, its atomic composition, emissivity, etc.
However, if the source has a sufficiently complex structure, the spectrum of radiation is essentially universal. We want to derive
this universal distribution, which is also known as the Planck distribution.

Since a black body absorbs all radiation falling on it, treating all wavelengths the same, a black body may be taken as a perfect
absorber. (Black bodies in reality do this only for a small part of the spectrum, but here we are considering the idealized case.) By
the same token, black bodies are also perfect emitters and hence the formula for the universal thermal radiation is called the black
body radiation formula.

The black body radiation formula was obtained by Max Planck by fitting to the observed spectrum. He also spelled out some of the
theoretical assumptions needed to derive such a result and this was, as is well known, the beginning of the quantum theory.
Planck’s derivation of this formula is fairly simple once certain assumptions, radical for his time, are made; from the modern point
of view it is even simpler. Photons are particles of zero rest mass, the energy and momentum of a photon are given as

where the frequency of the radiation  and the wave number  are related to each other in the usual way, . Further
photons are spin-1 particles, so we know that they are bosons. Because they are massless, they have only two polarization states,
even though they have spin equal to 1. (For a massive particle we should expect  polarization states for a spin-1
particle.) We can apply the Bose-Einstein distribution Equation 8.1.10 directly, with one caveat. The number of photons is not a
well-defined concept. Since long-wavelength photons carry very little energy, the number of photons for a state of given energy
could have an ambiguity of a large number of soft or long-wavelength photons. This is also seen more theoretically; there is no
conservation law in electromagnetic theory beyond the usual ones of energy and momentum. This means that we should not have a
chemical potential which is used to fix the number of photons. Thus the Bose-Einstein distribution simplifies to

We now consider a box of volume  in which we have photons in thermal equilibrium with material particles such as atoms and
molecules. The distribution of the internal energy as a function of momentum is given by

where the factor of  is from the two polarization states. Using Equation , for the energy density, we find

This is Planck’s radiation formula. If we use  and carry out the integration over angular directions of , it reduces to

This distribution function vanishes at  and as . It peaks at a certain value which is a function of the temperature. In
Fig. 8.3.1, we show the distribution for some sample values of temperature. Note that the value of  at the maximum increases with
temperature; in addition, the total amount of radiation (corresponding to the area under the curve) also increases with temperature.

ϵ = ħω, = ħp ⃗  k⃗  (8.4.1)

ω k⃗  ω = c | |k⃗ 

(2s+1) = 3

n =
1

−1eβϵ
(8.4.2)

V

dU = 2
x pd3 d3

(2πħ)3

ϵ

−1eβϵ
(8.4.3)

2 8.4.1

d u = 2
kd3

(2π)3

ħω

−1e
ħω

kT

(8.4.4)

ω = c | |k⃗  k⃗ 

d u =
ħ

π2c3

dω ω3

−1e
ħω

kT

(8.4.5)

ω = 0 ω → ∞

ω

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/32045?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Thermodynamics_and_Statistical_Mechanics_%28Nair%29/08%3A_Quantum_Statistical_Mechanics/8.04%3A_Applications_of_the_Bose-Einstein_Distribution


8.4.2 https://phys.libretexts.org/@go/page/32045

Figure : The Planck distribution as a function of frequency for three sample values of temperature, with ; units
are arbitrary

If we integrate  over all frequencies, the total energy density comes out to be

where we have used the result

Rate of Radiation from a Black Body

We can convert the formula for the energy density to the intensity of the radiation by considering the conservation of energy in
electrodynamics. The energy density of the electromagnetic field is given by

Using the Maxwell equations in free space, we find

Integrating over a volume , we find

Thus the energy flux per unit area or the intensity is given by the Poynting vector . For electromagnetic waves, 
,  and  are orthogonal to each other and both are orthogonal to , the wave vector which gives the direction of

propagation, i.e., the direction of propagation of the photon. In this case we find

Using the Planck formula , the magnitude of the intensity of blackbody radiation is given by

We have considered radiation in a box of volume  in equilibrium. To get the rate of radiation per unit area of a blackbody, note
that, because of equilibrium, the radiation rate from the body must equal the energy flux falling on area under consideration (which
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is all taken to be absorbed since it is a blackbody); thus emission rate equals absorption rate as expected for equilibrium. The flux is
given by

where  is the normal to the surface and  is the angle between  and . Further, in the equilibrium situation, there are photons
going to and away from the surface under consideration, so we must only consider positive values of , or .
Thus the radiation rate over all wavelengths per unit area of the emitter is given by

This result is known as the Stefan-Boltzmann law.

Radiation Pressure

Another interesting result concerning thermal radiation is the pressure of radiation. For this, it is convenient to use one of the
relations in Equation 6.2.21, namely,

From Equation , we have

Equations  and  immediately lead to

Radiation pressure is significant and important in astrophysics. Stars can be viewed as a gas or fluid held together by gravity. The
gas has pressure and the pressure gradient between the interior of the star and the exterior region tends to create a radial outflow of
the material. This is counteracted by gravity which tends to contract or collapse the material. The hydrostatic balance in the star is
thus between gravity and pressure gradients. The normal fluid pressure is not adequate to prevent collapse. The radiation produced
by nuclear fusion in the interior creates an outward pressure and this is a significant component in the hydrostatic equilibrium of
the star. Without this pressure a normal star would rapidly collapse.

Maximum of Planck Distribution

We have seen that the Planck distribution has a maximum at a certain value of . It is interesting to consider the wavelength  at
which the distribution has a maximum. This can be done in terms of frequency or wavelength, but we will use the wavelength here
as this is more appropriate for the application we consider later. (The peak for frequency and wavelength occur at different places
since these variables are not linearly related, but rather are reciprocally related.) Using , we can write down the
Planck distribution (Equation ) in terms of the wavelength  as
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(The minus sign in  only serves to show that when the intensity increases with frequency, it should decrease with  and vice
versa. So we have dropped the minus sign.  is the solid angle for the angular directions.) Extremization with respect to  gives
the condition

where . The solution of this transcendental equation is

This relation is extremely useful in determining the temperature of the outer layer of stars, called the photosphere, from which we
receive radiation. By spectroscopically resolving the radiation and working out the distribution as a function of wavelength, we can
see where the maximum is, and this gives, via Equation , the temperature of the photosphere. Notice that higher temperatures
correspond to smaller wavelengths; thus blue stars are hotter than red stars. For the Sun, the temperature of the photosphere is
about , corresponding to a wavelength . Thus the maximum for radiation from the Sun is in the visible region,
around the color green.

Another case of the importance in which the radiation pressure and the  we calculated are important is in the early history of the
universe. Shortly after the Big Bang, the universe was in a very hot phase with all particles having an average energy so high that
their masses could be neglected. The radiation pressure from all these particles, including the photon, is an important ingredient in
solving the Einstein equations for gravity to work out how the universe was expanding. As the universe cooled by expansion, the
unstable massive particles decayed away, since there was not enough average energy in collisions to sustain the reverse process.
Photons continued to dominate the evolution of the universe. This phase of the universe is referred to as the radiation-dominated
era.

Later, the universe cooled enough for electrons and nuclei to combine to form neutral atoms, a phase known as the recombination
era. Once this happened, since neutral particles couple only weakly (through dipole and higher multipole moments) to radiation, the
existing radiation decoupled and continued to cool down independently of matter. This is the matter dominated era in which we
now live. The radiation obeyed the Planck spectrum at the time of recombination, and apart from cooling would continue to do so
in the expanding universe. Thus the existence of this background relic radiation is evidence for the Big Bang theory. This cosmic
microwave background radiation was predicted to be a consequence of the Big Bang theory, by Gamow, Dicke and others in the
1940s. The temperature was estimated in calculations by Alpher and Herman and by Gamow in the 1940s and 1950s. The radiation
was observed by Penzias and Wilson in 1964. The temperature of this background can be measured in the same way as for stars, by
comparing the maximum of the distribution with the formula . It is found to be approximately . (Actually this has been
measured with great accuracy by now, the latest value being . The corresponding  is in the microwave
region, which is why this is called the cosmic microwave background.

8.3.2: Bose-Einstein Condensation

We will now work out some features of an ideal gas of bosons with a conserved particle number; in this case, we do have a
chemical potential. There are many atoms which are bosons and, if we can neglect the interatomic forces as a first approximation,
this discussion can apply to gases made of such atoms. The partition function Z for gas of bosons was given in Equation 8.1.15.
Since log Z is related to pressure as in Equation 7.4.19, this gives immediately
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where  is the fugacity and  denotes the polylogarithm defined by

The total number of particles  is given by the normalization condition (Equation 8.1.12) and works out to

We have defined the thermal wavelength  by

Apart from some numerical factors of order 1, this is the de Broglie wavelength for a particle of energy .

If we eliminate  in favor of  from this equation and use it in Equation , we get the equation of state for the ideal gas of
bosons. For high temperatures, this can be done by keeping the terms up to order  in the polylogarithms. This gives

This equation shows that even the perfect gas of bosons does not follow the classical ideal gas law. In fact, we may read off the
second virial coefficient as

The thermal wavelength is small for large , so this correction is small at high temperatures, which is why the ideal gas was a good
approximation for many of the early experiments in thermal physics. If we compare this with the second virial coefficient of a
classical gas with interatomic potential  as given in Equation 7.5.11, namely,

we see that we can mimic Equation ref{8.3.26} by an attractive  interatomic potential. Thus bosons exhibit a tendency
to cluster together.

We can now consider what happens when we lower the temperature. It is useful to calculate a typical value of . Putting in the
constants,

(  is the mass of the proton  the mass of the hydrogen atom.) Thus for hydrogen at room temperature,  is of atomic size. Since
 is approximately the free volume available to a molecule, we find from Equation  that  must be very small under normal

conditions. The function  starts from zero at  and rises to about 2.61238 at , see Fig. 8.3.2. Beyond that, even

though the function can be defined by analytic continuation, it is imaginary. In fact, there is a branch cut from  to . Thus for
, we can solve Equation  for in terms of . As the temperature is lowered,  decreases and eventually we get to the

point where . This happens at a temperature
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If we lower the temperature further, it becomes impossible to satisfy Equation . We can see the problem at  more
clearly by considering the partition function, where we separate the contribution due to the zero energy state,

We see that the partition function has a singularity at . This is indicative of a phase transition. The system avoids the
singularity by having a large number of particles making a transition to the state of zero energy and momentum. Recall that the
factor  may be viewed as , as a sum over different possible occupation numbers for the ground state. The idea here is

that, instead of various possible occupation numbers for the ground state, what happens below  is that there is a certain
occupation number for the ground state, say, , so that the partition function should read

Thus, rather than having different probabilities for the occupation numbers for the ground state, with correspondingly different
probabilities as given by the Boltzmann factor, we have a single multiparticle quantum state, with occupation number , for the
ground state. The normalization condition Equation  is then changed to

Below , this equation is satisfied, with , and with  compensating for the second term on the right hand side as 
increases. This means that a macroscopically large number of particles have to be in the ground state. This is known as Bose-
Einstein condensation. In terms of , we can rewrite Equation  as

which gives the fraction of particles which are in the ground state.

Since  for temperatures below , we have . This is then reminiscent of the case of photons where we do not have a
conserved particle number. The proper treatment of this condensation effect requires quantum field theory, using the concept of
spontaneous symmetry breaking. In such a description, it will be seen that the particle number is still a conserved operator but that
the condensed state cannot be an eigenstate of the particle number.

Figure : The polylogarithm \text{Li}_{\frac{3}{2}} (z)
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Figure : Qualitative behavior of the specific heat of a gas of bosons

There are many other properties of the condensation phenomenon we can calculate. Here we will focus on just the specific heat.
The internal energy for the gas is given by

At high temperatures,  is small and  and Equation  gives . Thus  in agreement with the

classical ideal gas. This gives .

For low temperatures below ,  and we can set . The specific heat becomes

We see that the specific heat goes to zero at absolute zero, in agreement with the third law of thermodynamics. It rises to a value
which is somewhat above  at . Above , we must solve for  in terms of  and substitute back into the formula for .
But qualitatively, we can see that the specific heat has to decrease for  reaching the ideal gas value of  at very high
temperatures. A plot of the specific heat is shown in Fig. 8.3.3.

There are many examples of Bose-Einstein condensation by now. The formula for the thermal wavelength in Equation 
shows that smaller atomic masses will have larger  and one may expect them to undergo condensation at higher temperatures.
While molecular hydrogen (which is a boson) may seem to be the best candidate, it turns to a solid at around . The best
candidate is thus liquid Helium. The atoms of the isotope  are bosons. Helium becomes a liquid below  and it has a
density of about  (under normal atmospheric pressure) and if this value is used in the formula , we find  to be about 

. What is remarkable is that liquid Helium undergoes a phase change at . Below this temperature, it becomes a
superfluid, exhibiting essentially zero viscosity. (He3 atoms are fermions, there is superfluidity here too, at a much lower
temperature, and the mechanism is very different.) This transition can be considered as an example of Bose-Einstein condensation.
Helium is not an ideal gas of bosons, interatomic forces (particularly a short-range repulsion) are important and this may explain
the discrepancy in the value of . The specific heat of liquid  is shown in Fig. 8.3.4. There is a clear transition point, with the
specific heat showing a discontinuity in addition to the peaking at this point. Because of the similarity of the graph to the Greek
letter , this is often referred to as the -transition. The graph is very similar, in a broad qualitative sense, to the behavior we found
for Bose-Einstein condensation in Fig. 8.3.3; however, the Bose-Einstein condensation in the noninteracting gas is a first-order
transition, while the -transition is a second-order transition, so there are differences with the Bose-Einstein condensation of
perfect gas of bosons.
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Figure : Specific heat of liquid Helium near the -transition

The treatment of superfluid Helium along the lines we have used for a perfect gas is very inadequate. A more sophisticated
treatment has to take account of interatomic forces and incorporate the idea of spontaneous symmetry breaking. By now, there is a
fairly comprehensive theory of liquid Helium.

Recently, Bose-Einstein condensation has been achieved in many other atomic systems such as a gas of  atoms,  atoms,
and a number of others, mostly alkaline and alkaline earth elements.

8.3.3: Specific Heats of Solids
We now turn to the specific heats of solids, along the lines of work done by Einstein and Debye. In a solid, atoms are not free to
move around and hence we do not have the usual translational degrees of freedom. Hence the natural question which arises is:
When a solid is heated, what are the degrees of freedom in which the energy which is supplied can be stored? As a first
approximation, atoms in a solid may be taken to be at the sites of a regular lattice. Interatomic forces keep each atom at its site, but
some oscillation around the lattice site is possible. This is the dynamics behind the elasticity of the material. These oscillations,
called lattice vibrations, constitute the degrees of freedom which can be excited by the supplied energy and are thus the primary
agents for the specific heat capacity of solids. In a conductor, translational motion of electrons is also possible. There is thus an
electronic contribution to the specific heat as well. This will be taken up later; here we concentrate on the contribution from the
lattice vibrations. In an amorphous solid, a regular lattice structure is not obtained throughout the solid, but domains with regular
structure exist, and so, the elastic modes of interest are still present.

Figure : Typical phonon dispersion curves

Turning to the details of the lattice vibrations, for  atoms on a lattice, we expect  modes, since each atom can oscillate along
any of the three dimensions. Since the atoms are like beads on an elastic string, the oscillations can be transferred from one atom to
the next and so we get traveling waves. We may characterize these by a frequency ω and a wave number . The dispersion relation
between  and  can be obtained by solving the equations of motion for  coupled particles. There are distinct modes
corresponding to different  relations; the typical qualitative behavior is shown in Fig. 8.3.5. There are three acoustic modes
for which , for low , being the speed of sound in the material. The three polarizations correspond to oscillations in
the three possible directions. The long-wavelength part of these modes can also be obtained by solving for elastic waves (in terms
of the elastic moduli) in the continuum approximation to the lattice. They are basically sound waves, hence the name acoustic
modes. The highest value for  is limited by the fact that we do not really have a continuum; the shortest wavelength is of the
order of the lattice spacing.

There are also the so-called optical modes for which  for any . The minimal energy needed to excite these is typically in the
range of 30-60 meV or so; in terms of photon energy, this corresponds to the infrared and visible optical frequencies, hence the
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name. Since , the optical modes are not important for the specific heat at low temperatures.

Just as electromagnetic waves, upon quantization, can be viewed as particles, the photons, the elastic waves in the solid can be
described as particles in the quantum theory. These particles are called phonons and obey the expected energy and momentum
relations

The relation between  and  may be approximated for the two cases rather well by

where  is a constant independent of . If there are several optical modes, the corresponding ’s may be different. Here we
consider just one for simplicity. The polarizations correspond to the three Cartesian axes and hence they transform as vectors under
rotations; i.e., they have spin = 1 and hence are bosons. The thermodynamics of these can now be worked out easily.

First, consider the acoustic modes. The total internal energy due to these modes is

The factor of 3 is for the three polarizations. For most of the region of integration which contributes significantly, we are
considering modes of wavelengths long compared to the lattice spacing and so we can assume isotropy and carry out the angular
integration. For high , the specific crystal structure and anisotropy will matter, but the corresponding ’s are high and the 
factor will diminish their contributions to the integral. Thus

Here  is the Debye frequency which is the highest frequency possible for the acoustic modes. The value of this frequency will
depend on the solid under consideration. We also define a Debye temperature  by  = . We then find

For low temperatures,  is so large that one can effectively replace it by  in a first approximation to the integral. For high 
, we can expand the integrand in powers of u to carry out the integration. This way we find

The internal energy for  is thus

The specific heat at low temperatures is thus given by

We can relate this to the total number of atoms in the material as follows. Recall that the total number of vibrational modes for 
atoms is . Thus

If we ignore the optical modes, we get

1eV ≈ K104

E = ħω, = ħp ⃗  k⃗  (8.4.36)
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w ≈{ | |cs k⃗ 

ω0
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(2π)3
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−1eβħω
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This formula will hold even with optical modes if  is interpreted as the number of unit cells rather than the number of atoms. In
terms of , we get, for ,

The expression for  in Equation  and  is the famous  law for specific heats of solids at low temperatures derived
by Debye in 1912. There is a universality to it. The derivation relies only on having modes with  at low . There are always
three such modes for any elastic solid. These are the sound waves in the solid. (The existence of these modes can also be
understood from the point of view of spontaneous symmetry breaking, but that is another matter.) The power 3 is of course related
to the fact that we have three spatial dimensions. So any elastic solid will exhibit this behavior for the contribution from the lattice
vibrations. As we shall see shortly, the optical modes will not alter this result. Some sample values of the Debye temperature are
given in Table 8.3.1. This will give an idea of when the low temperature approximation is applicable.

Table 8.3.1: Some Sample Debye Temperatures

Solid  in Solid  in 

Gold 170 Aluminum 428

Silver 215 Iron 470

Platinum 240 Silicon 645

Copper 343.5 Carbon 2230

For , we find

The specific heat is then given by

Turning to the optical modes, we note that the frequency  is almost independent of , for the whole range of . So it is a good
approximation to consider just one frequency , for each optical mode. Let  be the total number of degrees of freedom in the
optical mode of frequency . Then the corresponding internal energy is given by

The specific heat contribution is given by

( ) =
V

2π2c3
s

3N

ω3
D

(8.4.45)
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This page titled 8.4: Applications of the Bose-Einstein Distribution is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
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