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7.8: Examples

7.8.1: Osmotic Pressure

Figure : Illustrating the set-up for calculating osmotic pressure

An example of the use of the idea of the partition function in a very simple way is provided by the osmotic pressure. Here one
considers a vessel partitioned into two regions, say, I and II, with a solvent (labeled A) on one side and a solution of the solvent
plus a solute (labeled B) on the other side. The separation is via a semipermeable membrane which allows the solvent molecules to
pass through either way, but does not allow the solute molecules to pass through. Thus the solute molecules stay in region II, as the
Fig. 7.8.1. When such a situation is set up, the solvent molecules pass back and forth and eventually achieve equilibrium with the
average number of solvent molecules on each side not changing any further. What is observed is that the pressure in the solution pII
is higher than the pressure pI in the solvent in region I. Once equilibrium is achieved, there is no further change of volume or
temperature either, so we can write the equilibrium condition for the solvent as

Correspondingly, we have , for the fugacities. The partition function has the form

Here  is the partition function for just the solvent. For simplicity, let us take the volumes of the two regions to be the same. Then
we may write

even though this occurs in the formula for the full partition function in region II, since  is the same for regions I and II. Going
back to , we expand log in powers of , keeping only the lowest order term, which is adequate for dilute solutions. Thus

The derivative of the partition function with respect to  is related to , as in Equation 7.4.16, so that

Further,  is given by . Using these results, Equation  gives
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where  is the number density of the solute. The pressure difference  is called the osmotic pressure.

7.8.2: Equilibrium of a Chemical Reaction
Here we consider a general chemical reaction of the form

If the substances , , ,  can be approximated as ideal gases, the partition function is given by

For the individual chemical potentials, we can use the general formula in 7.5.10 but with the correction due to the  factor as
in Equation 7.7.5, since we have different species of particles here. Thus

The condition of equilibrium of the reaction is given as . Using Equation , this becomes

The total pressure of the mixture of the substances is given from  as

So if we define the concentrations,

then we can rewrite Equation  as

With our interpretation of the masses as rest energy, we see that  is the heat of reaction, i.e., the total energy released by the
reaction.  is positive for an exothermic reaction and negative for an endothermic reaction. , in Equation , is known as the
reaction constant and is a function only of the temperature (and the masses of the molecules involved, but these are fixed once a
reaction is chosen). The condition in Equation  on the concentrations of the reactants is called the law of mass action.

7.8.3 Ionization Equilibrium
Another interesting example is provided by ionization equilibrium, which is of interest in plasmas and in astrophysical contexts.
Consider the ionization reaction of an atom 

There is a certain amount of energy  needed to ionize the atom . Treating the particles involved as different species with
possible internal states, we can use Equation 7.7.7 to write

By differentiation with respect to , we find, for each species,
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The condition for equilibrium  is the same as . Using Equation , this becomes

The mass of the atom  is almost equal to the mass of  and the electron; the difference is the binding energy of the electron in 
. This is the ionization energy , . Using this, Equation  can be rewritten as

This is known as Saha’s equation for ionization equilibrium. It relates the number density of the ionized atom to that of the neutral
atom. (While the mass difference is important for the exponent, it is generally a good approximation to take  in the

factor . So it is often omitted.) The degeneracy for the electron states, namely , is due to the spin degrees of freedom, so

. The degeneracies  and  will depend on the atom and the energy levels involved.

The number densities can be related to the pressure by the equation of state; they are also important in determining the intensities of
spectral lines. Thus by observation of spectral lines from the photospheres of stars, one can estimate the pressures involved.
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