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9.1: Mathematical Preliminaries
We will start with a theorem on differential forms which is needed to formulate Carathéodory’s version of the second law.

Before proving Carathéodory’s theorem, we will need the following result.

Let  denote a differential one-form. If , then at least locally, one can find an integrating factor for ; i.e.,
there exist functions  and  such that .

The proof of this result is most easily done inductively in the dimension of the space. First, we consider the two-dimensional case, so that
. In this case, the condition  is vacuous. Write . We make a coordinate transformation to , 

where

where  is an arbitrary function which can be chosen in any convenient way. This equation shows that

Equations  define a set of nonintersecting trajectories, λ being the parameter along the trajectory. We choose  as the coordinate on
transverse sections of the flow generated by ( ). Making the coordinate transformation from ,  to , , we can now write the
one-form  as

This proves the theorem for two dimensions. In three dimensions, we have

The strategy is to start by determining ,  for the ,  subsystem. We choose the new coordinates as , ,  and impose Equation 
. Solving these, we will find  and  as functions of  and . The trajectories will also depend on the staring points which may

be taken as points on the transverse section and hence labeled by . Thus we get

The one-form  in Equation  now becomes

We now consider imposing the equations ,
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Ã3

=( + ) dλ+( + ) dϕ+ d +( + ) dA1
∂x1

∂λ
A2

∂x2

∂λ
A1

∂x1

∂ϕ
A2

∂x2

∂ϕ
A3 x3 A1

∂x1

∂x3
A2

∂x2

∂x3
x3

= τ dϕ+ dÃ3 x3
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Since  and  from Equation , this equation becomes

Writing , this becomes

Since  is not identically zero for us, we get  and, going back to Equation , we can write

The quantity in the square brackets is a one-form on the two-dimensional space defined by , . For this we can use the two-
dimensional result and write it as , so that

 This proves the theorem for the three-dimensional case.

The extension to four dimensions follows a similar pattern. The solutions to Equation  become

so that we can bring  to the form

We now turn to imposing the condition . In local coordinates this becomes

There are four independent conditions here corresponding to . Using  and 
, these four equations become

Again, we introduce  and  by \widetilde{A}_3 = τ h\), . Then, equations ( ) and ( ) become

Equation  is then identically satisfied. The last equation, namely, , simplifies to

Using these results, Equation  becomes

The quantity in the square brackets is a one-form on the three-dimensional space of  and we can use the previous result for an
integrating factor for this. The condition for the existence of an integrating factor for  is precisely . Thus if we
have Equation , we can write  as  for some functions  and , so that finally  takes the form .
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= 0τ2 ∂h

∂λ
(9.1.9)

τ = 0∂h
∂λ

9.1.6

A = τ [dϕ+h(ϕ, )d ]x3 x3 (9.1.10)

ϕ x3

dτ̃ ϕ̃

A = ττ[dϕ+h(ϕ, )d ] = τ d ≡ Tdx3 x3 τ̃ ϕ̃ ϕ̃ (9.1.11)

T = ττ̃

9.1.1

= (λ,ϕ, , ), = (λ,ϕ, , )x1 x1 x3 x4 x2 x2 x3 x4 (9.1.12)

A

A =( + ) dϕ+( + + ) d +( + + ) dA1
∂x1

∂ϕ
A2

∂x2

∂ϕ
A3 A1

∂x1

∂x3
A2

∂x2

∂x3
x3 A4 A1

∂x1

∂x4
A2

∂x2

∂x4
x4

= τ dϕ+ d + dÃ3 x3 Ã4 x4
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Thus the theorem is proved for four dimensions. The procedure can be extended to higher dimensions recursively, establishing the
theorem for all dimensions.

Now we turn to the basic theorem needed for the Carathéodory formulation. Consider an n-dimensional manifold  with a one-form 
on it. A solution curve to  is defined by  along the curve. Explicitly, the curve may be taken as given by a set of function 

 where  is the parameter along the curve and

In other words, the tangent vector to the curve is orthogonal to A_i. The curve therefore lies on an -dimensional surface. Two
points, say,  and  on  are said to be  accessible if there is a solution curve which contains  and . Carathéodory’s theorem is
the following:

If in the neighborhood of a point  there are -inaccessible points, then  admits an integrating factor; i.e.,  where  and 
 are well defined functions in the neighborhood.

The proof of the theorem involves a reductio ad absurdum argument which constructs paths connecting  to any other point in the
neighborhood. (This proof is due to H.A. Buchdahl, Proc. Camb. Phil. Soc. 76, 529 (1979).) For this, define

Now consider a point  near  We have a displacement vector  for the coordinates of  (from ).  can in general have a
component along  and some components orthogonal to . The idea is to solve for these from the equation . Let  be a path
which begins and ends at , i.e., , , and which is orthogonal to . Thus it is a solution curve. Any closed
curve starting at  and lying in the -dimensional space orthogonal to  can be chosen. Consider now a nearby path given by 

. This will also be a solution curve if . Expanding to first order in , this is equivalent to

where we also used . We may choose  to be of the form  where  is antisymmetric, to be consistent with 

. We can find quantities  such that this is true; in any case, it is sufficient to show one path which makes  accessible. So

we may consider ’s of this form. Thus Equation  becomes

This is one equation for the  components of the displacement . We can choose the  components of  which are orthogonal to 
 as we like and view this equation as determining the remaining component, the one along . So we rewrite this equation as an

equation for  as follows.
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where . The important point is that we can choose , along with a coordinate transformation if needed, such
that  has no component along . For this, notice that

where . There are  components for , for which we have one equation if we set  to zero. We
can always find a solution; in fact, there are many solutions. Making this choice,  has no component along , so the
components of  on the right hand side of Equation  are orthogonal to . As mentioned earlier, there is a lot of freedom in how
these components of  are chosen. Once they are chosen, we can integrate Equation  to get , the component along .
Integrating Equation , we get

We have chosen . It is important that the right-hand side of Equation  does not involve  for us to be able to
integrate like this. We choose all components of  orthogonal to  to be such that

We then choose , if needed by scaling it, such that  in Equation  gives . We have thus shown that we
can always access  along a solution curve. The only case where the argument would fail is when . In this case,  as
calculated is zero and we have no guarantee of matching the component of the displacement of  along the direction of . Thus if
there are inaccessible points in the neighborhood of , then we must have . In this case, by the previous theorem,  admits an
integrating factor and we can write  for some functions  and  in the neighborhood of . This completes the proof of the
Carathéodory theorem.
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