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10.1: Information
We want to give a quantification of the idea of information. This is originally due to C. Shannon.

Consider a random variable  with probability distribution with . For simplicity, initially, we take  to be a discrete random
variable, with  possible values , with  being the probability for . We may think of an experiment for
which the outcomes are the , and the probability for  being  in a trial run of the experiment. We want to define a concept of
information  associated with . The key idea is to note that if an outcome has probability 1, the occurrence of that outcome
carries no information since it was clear that it would definitely happen. If an outcome has a probability less than 1, then its
occurrence can carry information. If the probability is very small, and the outcome occurs, it is unlikely to be a random event and
so it makes sense to consider it as carrying information. Based on this intuitive idea, we expect information to be a function of the
probability. By convention, we choose ) to be positive. Further from what we said, . Now consider two completely
independent events, with probabilities  and . The probability for both to occur is , and will carry information . Since
the occurrence of each event separately carries information  and , we expect

Finally, if the probability of some event is changed by a small amount, we expect the information for the event to be changed by a
small amount as well. This means that we would like  to be a continuous and differentiable function of . Thus we need a
continuous and differentiable function  obeying the requirements ,  and . The only
function which obeys these conditions is given by

This is basically Shannon’s definition of information. The base used for this logarithm is not specified by what has been said so far;
it is a matter of choosing a unit for information. Conventionally, for systems using binary codes, we use , while for most
statistical systems we use the natural logarithms.

Consider now the outcome xi which has a probability . The amount of information for  is . Suppose now that we do 
trials of the experiment, where  is very large. Then the number of times xi will be realized is . Thus it makes sense to define
an average or expectation value for information as

This expected value for information is Shannon’s definition of entropy.

This definition of entropy requires some clarification. It stands for the amount of information which can be coded using the
available outcomes. This can be made clearer by considering an example, say, of  tosses of a coin, or equivalently a stream of 0s
and 1s,  units long. Each outcome is then a string of 0s and 1s; we will refer to this as a word, since we may think of it as the
binary coding of a word. We take these to be ordered so that permutations of 0s and 1s in a given word will be counted as distinct.
The total number of possibilities for this is , and each occurs with equal probability. Thus the amount of information in realizing
a particular outcome is , or  bits if we use logarithm to base 2. The entropy of the distribution is

Now consider a situation where we specify or fix some of the words. For example, let us say that all words start with 0, Then the
probability of any word among this restricted set is now , and entropy becomes . Thus entropy has
decreased because we have made a choice; we have used some information. Thus entropy is the amount of information which can
be potentially coded using a probability distribution.

This definition of entropy is essentially the same as Boltzmann’s definition or what we have used in arriving at various distribution
functions for particles. For this consider the formula for entropy which we used in chapter 7, Equation 7.2.5,
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Here the  is the occupation number for the state . In limit of large ,  may be interpreted as the probability for the state .
Using the symbol  for this, we can rewrite Equation  as

showing that the entropy as defined by Boltzmann in statistical physics is the same as Shannon’s information-theoretic definition.
(In thermodynamics, we measure  in ; we can regard Boltzmann’s constant  as a unit conversion factor. Thus  from
thermodynamics is the quantity to be compared to the Shannon definition.) The states in thermodynamics are specified by the
values of positions and momenta for the particles, so the outcomes are continuous. A continuum generalization of Equation 
is then

where  is an appropriate measure, like the phase space measure in Equation 7.4.1.

Normally, we maximize entropy subject to certain averages such as the average energy and average number of particles being
specified. This means that the observer has, by observations, determined these values, and hence the number of available states is
restricted. Only those states which are compatible with the given average energy and number of particles are allowed. This
constrains the probability distribution which maximizes the entropy. If we specify more averages, then the maximal entropy is
lower. The argument is similar to what was given after Equation , but we can see this more directly as well. Let 

 be a set of observables. The maximization of entropy subject to specifying the average values of these is given
by maximizing

Here  are the average values which have been specified and  are Lagrange multipliers. Variation with respect to the s give
the required constraint

The distribution  which extremizes Equation  is given by

The corresponding entropy is given by

Now let us consider specifying  averages. In this case, we have

This distribution reverts to , and likewise , if we set  to zero.

If we calculate  using the distribution  and the answer comes out to be the specified value, then there is no information in
going to . Thus it is only if the distribution which realizes the specified value  differs from  that there is additional
information in the choice of . This happens if . It is therefore useful to consider how  changes with . We find,
directly from Equation ,
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The change of the maximal entropy with the s is given by a set of correlation functions designated as . We can easily see that
this matrix is positive semi-definite. For this, we use the Schwarz inequality

For any set of complex numbers , we take  and . We then see from (10.14) that . (The integrals
in Equation  should be finite for the inequality to make sense. We will assume that at least one of the λs, say corresponding
to the Hamiltonian. is always included so that the averages are finite.) Equation  then tells us that  decreases as more and
more s pick up nonzero values. Thus we must interpret entropy as a measure of the information in the states which are still freely
available for coding after the constraints imposed by the averages of the observables already measured. This also means that the
increase of entropy in a system left to itself means that the system tends towards the probability distribution which is completely
random except for specified values of the conserved quantities. The averages of all other observables tend towards the values given
by such a random distribution. In such a state, the observer has minimum knowledge about observables other than the conserved
quantities.
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