
3.4.1 https://phys.libretexts.org/@go/page/31970

3.4: The Pauli Algebra

3.4.1 Introduction

Let us consider the set of all  matrices with complex elements. The usual definitions of matrix addition and scalar
multiplication by complex numbers establish this set as a four-dimensional vector space over the field of complex numbers 
With ordinary matrix multiplication, the vector space becomes, what is called an algebra, in the technical sense explained at the end
of Section 2.3. The nature of matrix multiplication ensures that this algebra, to be denoted  is associative and noncommutative,
properties which are in line with the group-theoretical applications we have in mind.

The name “Pauli algebra” stems, of course, from the fact that  was first introduced into physics by Pauli, to fit the electron spin
into the formalism of quantum mechanics. Since that time the application of this technique has spread into most branches of
physics.

From the point of view of mathematics,  is merely a special case of the algebra  matrices, whereby the latter are
interpreted as transformations over a vector space . Their reduction to canonical forms is a beautiful part of modern linear
algebra.

Whereas the mathematicians do not give special attention to the case  the physicists, dealing with four-dimensional space-
time, have every reason to do so, and it turns out to be most rewarding to develop procedures and proofs for the special case rather
than refer to the general mathematical theorems. The technique for such a program has been developed some years ago.

The resulting formalism is closely related to the algebra of complex quaternions, and has been called accordingly a system of
hypercomplex numbers. The study of the latter goes back to Hamilton, but the idea has been considerably developed in recent
years. The suggestion that the matrices (1) are to be considered symbolically as generalizations of complex numbers which still
retain “number-like” properties, is appealing, and we shall make occasional use of it. Yet it seems confining to make this into the
central guiding principle. The use of matrices harmonizes better with the usual practice of physics and mathematics.

In the forthcoming systematic development of this program we shall evidently cover much ground that is well known, although
some of the proofs and concepts of Whitney and Tisza do not seem to be used elsewhere. However, the main distinctive feature of
the present approach is that we do not apply the formalism to physical theories assumed to be given, but develop the geometrical,
kinematic and dynamic applications in close parallel with the building up of the formalism.

Since our discussion is meant to be self-contained and economical, we use references only sparingly. However, at a later stage we
shall state whatever is necessary to ease the reading of the literature.

3.4.2 Basic Definitions and Procedures

We consider the set  complex matrices

Although one can generate  from the basis

in which case the matrix elements are the expansion coefficients, it is often more convenient to generate it from a basis formed by
the Pauli matrices augmented by the unit matrix.

Accordingly  is called the Pauli algebra. The basis matrices are
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The three Pauli matrices satisfy the well known multiplication rules

All of the basis matrices are Hermitian, or self-adjoint:

(By convention, Roman and Greek indices will run from one to three and from zero to three, respectively.)

We shall represent the matrix A of Equation  as a linear combination of the basis matrices with the coefficient of  denoted
by . We shall refer to the numbers  as the components of the matrix A. As can be inferred from the multiplication rules,
Equation  , matrix components are obtained from matrix elements by means of the relation

where Tr stands for trace. In detail,

In practical applications we shall often see that a matrix is best represented in one context by its components, but in another by its
elements. It is convenient to have full flexibility to choose at will between the two. A set of four components , denoted by ,
will often be broken into a complex scalar  and a complex “vector” . Similarly, the basis matrices of  will be
denoted by . With this notation,

We associate with .each matrix the half trace and the determinant

The extent to which these numbers specify the properties of the matrix A, will be apparent from the discussion of their invariance
properties in the next two subsections. The positive square root of the determinant is in a way the norm of the matrix. Its
nonvanishing:  is the criterion for A to be invertible.
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|A| = −a2
0 a⃗ 2 (3.4.21)
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Such matrices can be normalized to become unimodular:

The case of singular matrices

calls for comment. We call matrices for which , null-matrices. Because of their occurrence,  is not a
division algebra. This is in contrast, say, with the set of real quaternions which is a division algebra, since the norm vanishes only
for the vanishing quaternion.

The fact that null-matrices are important,stems partly from the indefinite Minkowski metric. However, entirely different
applications will be considered later.

We list now some practical rules for operations in , presenting them in terms of matrix components rather than the more familiar
matrix elements.

To perform matrix multiplications we shall make use of a formula implied by the multiplication rules, Equation :

where  are complex vectors.

Evidently, for any two matrices A and B

The matrices A and B commute, if and only if

that is, if the vector parts  are “parallel” or at least one of them vanishes.

In addition to the internal operations of addition and multiplication, there are external operations on  as a whole, which are
analogous to complex conjugation. The latter operation is an involution, which means that . Of the three involutions any
two can be considered independent.

In  we have two independent involutions which can be applied jointly to yield a third:

The matrix  is the Hermitian adjoint of A. Unfortunately, there is neither an agreed symbol, nor a term for  Whitney called it
Pauli conjugate, other terms are quaternionic conjugate or hyper-conjugate  (see Edwards, l.c.). Finally  is called complex
reflection.

It is easy to verify the rules

According to Equation  the operation of complex reflection maintains the product relation in  it is an automorphism. In
contrast, the Hermitian and Pauli conjugations are anti-automorphic.

It is noteworthy that the three operations , together with the identity operator, form a group (the four-group,
“Vierergruppe”). This is a mark of closure: we presumably left out no important operator on the algebra.

A → |A A|−1/2 (3.4.22)

|A| = − = 0a2
0 a⃗ 2 (3.4.23)

|A| = 0,  but A ≠ 0 A2

A2
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 and a⃗  b ⃗ 

[A,B] = AB−BA = 2i( × ) ⋅a⃗  b ⃗  σ⃗  (3.4.25)

× = 0a⃗  b ⃗  (3.4.26)
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A → A = I + ⋅a0 a⃗  σ⃗  (3.4.27)

A → = I + ⋅A† a∗
0
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A → = I − ⋅A
~

a0 a⃗  σ⃗  (3.4.29)

A → = = I − ⋅A
~†

Ā a∗
0 a⃗ ∗ σ⃗  (3.4.30)

A† A
~

A† Ā

(AB =)† B†A† (3.4.31)

( ) =AB
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B
~
A
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In various contexts any of the three conjugations appears as a generalization of ordinary complex conjugation.

Here are a few applications of the conjugation rules.

For invertible matrices

For unimodular matrices we have the useful rule:

A Hermitian marrix  has real components . We define a matrix to be positive if it is Hermitian and has a positive trace
and determinant:

If H is positive and unimodular, it can be parametrized as

The matrix exponential is defined by a power series that reduces to the trigonometric expression. The factor 1/2 appears only for
convenience in the next subsection.

In the Pauli algebra, the usual definition  for a unitary matrix takes the form

If U is also unimodular, then

and

A unitary unimodular matrix can be represented also in terms of elements

with

where  are the so-called Cayley-Klein parameters. We shall see that both this form, and the axis-angle representation,
Equation , are useful in the proper context.

We turn now to the category of normal matrices  defined by the condition that they commute with their Hermitian adjoint: 
 Invoking the condition, Equation  , we have

implying that  is proportional to n, that is all the components of  must have the same phase. Normal matrices are thus of the
form

A = ( − ) 1 = |A|1A
~

a2
0 a⃗ 2 (3.4.34)

=A−1 A
~

|A|
(3.4.35)

=A−1 A
~

(3.4.36)

A = A† ,h0 h⃗ 

> 0, |H| = ( − ) > 0h0 h2
0 h⃗ 2 (3.4.37)

H = cosh(μ/2)1 +sinh(μ/2) ⋅ = exp{(μ/2) ⋅ }ĥ σ⃗  ĥ σ⃗  (3.4.38)

=U † U−1

1 + ⋅ = |U ( 1 − ⋅ )u∗
0 u⃗ ∗ σ⃗  |−1 u0 u⃗  σ⃗  (3.4.39)

= =  real u∗
0 u0 (3.4.40)

= =  imaginary u⃗ ∗ u⃗  (3.4.41)

− ⋅ = + ⋅ = 1u2
0

u⃗  u⃗  u2
0

u⃗  u⃗ ∗ (3.4.42)

U = cos(ϕ/2)1 − i sin(ϕ/2) ⋅ = exp(−i(ϕ/2) ⋅ )û σ⃗  û σ⃗  (3.4.43)

U =( )
ξ0

ξ1

−ξ∗
1

ξ∗
0

(3.4.44)

+ = 1| |ξ0
2 | |ξ1

2 (3.4.45)

,ξ0 ξ1

3.4.43

N

N = NN † N † 3.4.26

× = 0n⃗  n⃗ ∗ (3.4.46)

n∗ n⃗ 

N = 1 +n ⋅n0 n̂ σ⃗  (3.4.47)
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where  n are complex constants and  is a real unit vector, which we call the axis of N. In particular, any unimodular
normal matrix can be expressed as

where , and  is a real unit vector. If  direction, we have

Thus the matrix exponentials, Equations ,  and , are generalizations of a diagonal matrix and the latter is
distinguished by the requirement that the axis points in the z direction.

Clearly the normal matrix, Equation , is a commuting product of a positive matrix like Equation  with  and a
unitary matrix like Equation , with 

The expressions in Equation  are called the polar forms of , the name being chosen to suggest that the representation of 
by  and  is analogous to the representation of a complex number  by a positive number  and a phase factor:

We shall show that, more generally, any invertible matrix has two unique polar forms

but only the polar forms of normal matrices display the following equivalent special features:

1.  and  commute

2. 

3. 

We see from the polar decomposition theorem that our emphasis on positive and unitary matrices is justified, since all matrices of 
 can be produced from such factors. We proceed now to prove the theorem expressed in Equation  by means of an explicit

construction.

First we form the matrix , which is positive by the criteria :

Let  be expressed in terms of an axis  and the hyperbolic angle :

where b is a positive constant. We claim that the Hermitian component of A is the positive square root of 

with

That U is indeed unitary is easily verified:

and these expressions are equal by Equation .

From Equation  we get

 and nn0 hatn

N = cosh(κ/2)1 +sinh(κ/2) ⋅ = exp((κ/2) ⋅ )n̂ σ⃗  n̂ σ⃗  (3.4.48)

κ = μ− iϕ, −∞ < μ < ∞, 0 ≤ ϕ < 4π n̂  points in the  " 3 "n̂

= exp[( ) ]=( )N0
κ

2
σ3

exp( )κ
2

0

0

exp(− )κ
2

(3.4.49)

3.4.38 3.4.43 3.4.49

3.4.49 3.4.38 =ĥ n̂

3.4.43 =û n̂

N = HU = UH (3.4.50)

3.4.50 N N

H U z r

z = r exp(−iϕ/2) (3.4.51)

A = HU = UH ′ (3.4.52)

H U

= =ĥ û n̂

= HH ′

A2 3.4.52

AA† 3.4.36

+ ⋅ > 0a0a
∗
0 a⃗  a⃗ ∗ (3.4.53)

|A| > 0∣∣A
†∣∣ (3.4.54)

AA† ĥ μ

AA† = b(coshμ1 +sinhμ ⋅ )ĥ σ̂

= b exp(μ ⋅ )ĥ σ̂

???

H = = exp( ⋅ )(A )A† 1/2
b1/2 μ

2
ĥ σ̂ (3.4.55)

U = A, A = HUH−1 (3.4.56)

= , = HU † A†H−1 U−1 A−1 (3.4.57)

3.4.55

3.4.56
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and

It remains to be shown that the polar forms  are unique. Suppose indeed, that for a particular A we have two factorizations

then

But, since  has a unique positive square root, , and

Polar forms are well known to exist for any  matrix, although proofs of uniqueness are generally formulated for abstract
transformations rather than for matrices, and require that the transformations be invertable.

3.4.3 The restricted Lorentz group
Having completed the classification of the matrices of , we are ready to interpret them as operators and establish a connection
with the Lorentz group. The straightforward procedure would be to introduce a 2-dimensional complex vector space . By
using the familiar bra-ket formalism we write

The two-component complex vectors are commonly called spinors. We shall study their properties in detail in Section 5. The
reason for this delay is that the physical interpretation of spinors is a

subtle problem with many ramifications. One is well advised to consider at first situations in which the object to be operated upon
can be represented by a 2 × 2 matrix.

The obvious choice is to consider Hermitian matrices, the components of which are interpreted as relativistic four-vectors. The
connection between four-vectors and matrices is so close that it is often convenient to use the same symbol for both:

We have

or more generally

A Lorentz transformation is defined as a linear transformation

that leaves the expression  and hence also  invariant. We require moreover that the sign of the “time component”  be
invariant (orthochronic Lorentz transformation  and that the determinant of the  matrix  be positive (proper Lorentz
transformation . If both conditions are satisfied, we speak of the restricted Lorentz group . This is the only one to be of
current interest for us, and until further notice “Lorentz group” is to be interpreted in this restricted sense.

Note that A can be interpreted as any of the four-vectors discussed in Section 3.2: 

A = U ( HU)U−1 (3.4.58)

A = U  with  = HUH ′ H ′ U−1 (3.4.59)

3.4.56

A = HU = H1U1 (3.4.60)

A = =A† H 2 H 2
1 (3.4.61)

AA† = HH1

U = A = A = U  q.e.d. H−1
1 H−1 (3.4.62)

n×n

A2

V(∈, C)

A|ξ⟩ = | ⟩ξ′ (3.4.63)

⟨ξ| = ⟨ |A† ξ′ (3.4.64)

A = 1 + ⋅a0 a⃗  σ⃗  (3.4.65)

A = { , }a0 a⃗  (3.4.66)

− = |A| = Tr(A )a2
0 a⃗ 2

1

2
Ā (3.4.67)

− ⋅ = Tr(A )a0b0 a⃗  b ⃗  1

2
B̄ (3.4.68)

{ , } =L{ , }a0 a⃗  a′
0 a⃗ ′ (3.4.69)

3.4.68 3.4.67 a0

)L↑ 4x4 L

)L+ L
↑
+

R = {r, }r ⃗ 

K ={ , } , P = { , }k0 k⃗  p0 p ⃗  (3.4.70)
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Although these vectors and their matrix equivalents have identical transformation properties, they differ in the possible range of
their determinants. A negative  can arise only for an unphysical imaginary rest mass. By contrast, a positive R corresponds to a
time-like displacement pointing toward the future, an R with a negative  to a space-like displacement and  is associated
with the light cone. For the wave vector we have by definition .

To describe a Lorentz transformation in the Pauli algebra we try the “ansatz”

with  in order to preserve . Reality of the vector, i.e., hermiticity of the matrix A is preserved if the additional
condition  is satisfied. Thus the transformation

leaves expression  invariant. It is easy to show that  is invariant as well.

The complex reflection  transforms as

and the product of two four-vectors:

This is a so-called similarity transformation. By taking the trace of Equation  we confirm that the inner product  is
invariant under . We have to remember that a cyclic permutation does not affect the trace of a product of matrices. Thus
Equation  indeed induces a Lorentz transformation in the four-vector space of A.

It is well known that the converse statement is also true: to every transformation of the restricted Lorentz group  there are
associated two matrices differing-only by sign (their parameters  differ by ) in such a fashion as to constitute a two-to-one
homomorphism between the group of unimodular matrices  and the group . It is said also that  provides a
two-valued representation of . We shall prove this statement by demonstrating explicitly the connection between the matrices V
and the induced, or associated group operations.

We note first that  correspond in the tensor language to the contravariant and the covariant representation of a vector. We
illustrate the use of the formalism by giving an explicit form for the inverse of 

We invoke the polar decomposition theorem Equation  of Section  and note that it is sufficient to establish this
connection for unitary and positive matrices respectively.

Consider at first

with

The set of all unitary unimodular matrices described by Equation  form a group that is commonly called .

Let us decompose 

It is easy to see that Equation  leaves  invariant and induces a rotation around  by an angle .

Conversely, to every rotation  there correspond two matrices:

|P |
|R| |R| = 0

|K| = 0

= V AWA′ (3.4.71)

|V | = |W | = 1 |A|
W = V †

= V AA′ V † (3.4.72)

3.4.67 3.4.68

Ā

=A′¯ ¯¯̄¯
V̄ ĀV

~
(3.4.73)

(AB̄)′ = V AV †V̄ B̄V
~

= V (A )B̄ V −1

??? 3.4.68
3.4.73

3.4.73

L↑
+

ϕ 2π)

SL(2,C) L↑
+ SL(2,C)

L
↑
+

A and Ā
3.4.73

A = ≡V −1A′V †−1 V
~
A′V̄ (3.4.74)

3.4.50 3.4.2

= UA ≡ UAA′ U † U−1 (3.4.75)

U ( , )û
ϕ

2

+ + = 1,u2
1 u2

2 u2
3

≡ exp(− ⋅ )
iϕ

2
û σ⃗ 

0 ≤ ϕ < 4π

??? SU(2)

:a⃗ 

= +a⃗  a⃗ ∥ a⃗ ⊥ (3.4.76)

= ( ⋅ ) , = − = ×( × )a⃗ ∥ a⃗  û û a⃗ ⊥ a⃗  a⃗ ∥ û a⃗  û (3.4.77)

3.4.75  and a0 a∥ û ϕ : R{ ,ϕ}û

R{ ,ϕ}û

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/31970?pdf


3.4.8 https://phys.libretexts.org/@go/page/31970

We have  homomorphism between , the latter is said to be a two-valued representation of the former. By
establishing this correspondence we have solved the problem of parametrization formulated on page 13. The nine parameters of the

orthogonal  matrices are reduced to the three independent ones of . Moreover we have the simple result

which reduces to the de Moivre theorem if 

Some comment is in order concerning the two-valuedness of the  representation. This comes about because of the use of half
angles in the algebraic formalism which is deeply rooted in the geometrical structure of the rotation group. (See the Rodrigues-
Hamilton theorem in Section 2.2.)

Whereas the two-valuedness of the  representation does not affect the transformation of the A vector based on the bilateral
expression , the situation will be seen to be different in the spinorial theory based on Equation , since under certain
conditions the sign of the spinor  is physically meaningful.

The above discussion of the rotation group is incomplete even within the classical theory. The rotation  leaves vectors
along  unaffected. A more appropriate object to be rotated is the Cartesian triad, to be discussed in Section 5.

We consider now the case of a positive matrix 

with

We decompose  as

and using the fact that  and anticommute for , we obtain

Hence

This is to be compared with Table 3.1, but remember that we have shifted from the passive to the active interpretation, from alias to
alibi.

Positive matrices with a common axis form a group (Wigner’s “little group”), but in general the product of Hermitian matrices with
different axes are not Hermitian. There arises a unitary factor, which is the mathematical basis for the famous Thomas precession.

Let us consider now a normal matrix

U ( , )  and  U ( , ) = −U ( , )û
ϕ

2
û

ϕ+2π

2
û

ϕ

2
(3.4.78)

1 → 2 SO(3) and SU(2)

3 ×3 U ( , )û
ϕ

2

= exp(− ⋅ )U n inϕ

2
û σ⃗  (3.4.79)

⋅ =n̂ σ⃗  σ3

SU(2)

SU(2)
3.4.75 3.4.63

|ξ⟩

R{ ,ϕ}û

û

V = H

= HAHA′ (3.4.80)

H = exp( ⋅ σ)
μ

2
ĥ (3.4.81)

+ + = 1, −∞ < μ < ∞h2
1 h2

2 h2
3 (3.4.82)

a⃗ 

= a +a⃗  ĥ a⃗ ⊥ (3.4.83)

( ⋅ ) and ( ⋅ ) commute for  ∥a⃗  σ⃗  b ⃗  σ⃗  a⃗  b ⃗  ⊥a⃗  b ⃗ 

= exp( ⋅ σ)( 1 +a ⋅ σ+ ⋅ σ) exp( ⋅ σ)A′ μ

2
ĥ a0 ĥ a⃗ ⊥

μ

2
ĥ (3.4.84)

= exp(μ ⋅ σ)( 1 + ⋅ σ)+ ⋅ σĥ a0 a⃗ ĥ a⃗ ⊥ (3.4.85)

= coshμ +sinhμaa′
0 a0 (3.4.86)

= sinhμ +coshμa′ a0 a0 (3.4.87)

=a⃗ ′⊥ a⃗ ⊥ (3.4.88)

V = N = H ( , )U ( , ) = exp( ⋅ σ)k̂
μ

2
k̂

ϕ

2

μ− iϕ

2
n̂ (3.4.89)
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where we have the commuting product of a rotation and a Lorentz transformation with the same axis . Such a constellation is
called a Lorentz 4-screw

An arbitrary sequence of pure Lorentz transformations and pure rotations is associated with a pair of matrices  and , which in
the general case is of the form

According to Equation  of Section ,  are connected by a similarity transformation, which does not affect the
angle  but only the axis of the transformation. (See the next section.)

This matrix depends on the 6 parameters,  and thus we have solved the general problem of parametrization mentioned
above.

For a normal matrix  and the number of parameters is reduced to 4.

Our formalism enables us to give a closed form for two arbitrary normal matrices and the corresponding 4-screws.

where 

In the literature the commutation relations are usually given in terms of infinitesimal operators which are defined as follows:

The commutation relations are

and cyclic permutations.

It is a well known result of the Lie-Cartan theory of continuous group that these infinitesimalgenerators determine the entire group.
Since we have represented these generators in , we have completed the demonstration that the entire group  is
accounted for in our formalism.

3.4.4 Similarity classes and canonical forms of active transformations

It is evident that a Lorentz transformation induced by a matrix  assumes a particularly simple form if the z-axis of the

coordinate system is placed in the direction of . The diagonal matrix  is said to be the canonical form of the
transformation. This statement is a special case of the problem of canonical forms of linear transformations, an important chapter in
linear algebra.

Let us consider a linear mapping in a vector space. A particular choice of basis leads to a matrix representation of the mapping, and
representations associated with different frames are connected by similarity transformations. Let  be an arbitrary and  an
invertible matrix. A similarity transformation is effected on A, by

n̂

V −V

H ( , )U ( , ) = U ( , ) ( , )ĥ
μ

2
û

ϕ

2
û

ϕ

2
H ′ ĥ

′ μ

2
(3.4.90)

3.4.59 3.4.2 H and H ′

μ

,μ, ,ϕĥ û

= =ĥ û n̂

[N , ] = 2i sinh sinh ( × ) ⋅N ′ κ

2

κ

2
n̂ n̂′ σ⃗  (3.4.91)

κ = μ− iϕ, = − iκ′ μ′ ϕ′

U ( , ) = 1 − dϕ = 1 +dϕûk
dϕ

2

i

2
σk Ik (3.4.92)

= −Ik
i

2
σk (3.4.93)

H( , ) = 1 + = 1 +dμĥk
dμ

2

dμ

2
σk Lk (3.4.94)

=Lk

1

2
σk (3.4.95)

[ , ] =I1 I2 I3 (3.4.96)

[ , ] = −L1 L2 I3 (3.4.97)

[ , ] =L1 I2 L3 (3.4.98)

SL(2,C) L↑
+

H ( , )ĥ
μ

2

ĥ H ( , )ẑ
μ

2

A1 S

= SA2 A1S
−1 (3.4.99)
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Matrices related by similarity transformation are called similar, and matrices similar to each other constitute a similarity class.

In usual practice the mapping-refers to a vector space as in Equation  of Section 3.4.3:

The subscript refers to the basis “1.” A change of basis  is expressed as

Inserting into Equation  we obtain

and hence

where  is indeed given by Equation .

The procedure we have followed thus far to represent Lorentz transformations in  does not quite follow this standard pattern.

We have been considering mappings of the space of fourvectors which in turn were represented as 2 × 2 complex matrices. Thus
both operators and operands are matrices of . In spite of this difference in interpretation, the matrix representations in different
frames are still related according to Equation \label{100}.

This can be shown as follows. Consider a unimodular matrix A, that induces a Lorentz transformation in P-space, whereby the
matrices refer to the basis :

We interpret Equation  in the active sense as a linear mapping of P-space on itself that corresponds physically to some
dynamic process that alters P in a linear way.

We shall see in Section 4 that the Lorentz force acting on a charged particle during the time dt can be indeed considered as an
active Lorentz transformation. (See also page 26.)

The process has a physical meaning independent of the frame of the observer, but the matrix representations of  and of A
depend on the frame. The four-momenta in the two frames are connected by a Lorentz transformation interpreted in the passive
sense:

with . Solving for  and inserting into Equation , we obtain

or

where  and  are again connected by the similarity transformation .

We may apply the polar decomposition theorem to the matrix S. In the special case that S is unitary, we speak of a unitary
similarity transformation corresponding to the rotation of the coordinate system discussed at the onset of this section. However, the
general case will lead us to less obvious physical applications.

The above considerations provide sufficient motivation to examine the similarity classes of . We shall see that all of them have
physical applications, although the interpretation of singular mappings will be discussed only later

The similarity classes can be characterized in several convenient ways. For example, one may use two independent similarity
invariants shared by all the matrices  in the class. We shall find it convenient to choose

1. the determinant |A|, and

3.4.63

|ξ =A1 ⟩1 | ⟩ξ′
1 (3.4.100)

→Σ1 Σ2

|ξ = S|ξ , = S⟩2 ⟩1 | ⟩ξ′
2 | ⟩ξ′

1 (3.4.101)

3.4.100

|ξ = |ξA1S
−1 ⟩2 S−1 ⟩2 (3.4.102)

|ξ = |ξA2 ⟩2 ⟩2 (3.4.103)

A2 3.4.99

A2

A2

Σ1

=P ′
1 A1P1A

†
1 (3.4.104)

3.4.104

P ,P ′

= SP2 P1S
† (3.4.105)

= SP2 P ′
1S

† (3.4.106)

|S| = 1 P ,P ′ 3.4.104

= SS−1P ′
2S

~†
A1S

−1P2S
~†
A

†
1 (3.4.107)

=P ′
2 A2P2A

†
1 (3.4.108)

A2 A1 3.4.99

A2

A = l+ ⋅a0 a⃗  σ⃗ 
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2. the quantity 

The trace is also a similarity invariant, but it is not independent: 

Alternatively, one can characterize the whole class by one representative member of it, some matrix  called the canonical form
for the class (See Table 3.2).

We proceed at first to characterize the similarity classes in terms of the invariants 1 and 2. We recall that a matrix A is invertible if 
 and singular if . Without significant loss of generality, we can normalize the invertible matrices of  to be

unimodular, so that we need discuss only classes of singular and of unimodular matrices. As a second invariant to characterize a
class, we choose  and we say that a matrix A is axial if . In this case, there exists a unit vector  (possibly complex)
such that  where a is a complex constant. The unit vector  is called the axis of A. Conversely, the matrix A is non-axial if

, the vector  is called isotropic or a null-vector, it cannot be expressed in terms of an axis.

The concept of axis as here defined is the generalization of the real axis introduced in connection with normal matrices on page 33.
The usefulness of this concept is apparent from the following theorem:

Theorem 1. For any two unit vectors , real or complex, there exists a matrix S such that

Proof. We construct one such matrix S from the following considerations. If  are real, then let S be the unitary matrix
that rotates every vector by an angle  about an axis which bisects the angle between 

where

Even if  are not real, it is easily verified that S as given formally by Equations  and , does indeed send 
. Naturally S is not unique; for instance, any matrix of the form

will send 

This construction fails only if

that is for the transformation . In this trivial case we choose

Since in the Pauli algebra diagonal matrices are characterized by the fact that their axis is , we have proved the following
theorem:

Theorem 2. All axial matrices are diagonizable, but normal matrices and only normal matrices are diagonizable by a unitary
similarity transformation.

The diagonal forms are easily ascertained both for singular and the unimodular cases. (See Table 3.2.) Because of their simplicity
they are called also canonical forms. Note that they can be multiplied by any complex number in order to get all of the axial
matrices of 

The situation is now entirely clear: the canonical forms show the nature of the mapping; a unitary similarity transformation merely
changes the geometrical orientation of the axis. The angle of circular and hyperbolic rotation specified by  is invariant. A general
transformation complexifies the axis. This situation comes about if in the polar form of the matrix , the factors have
distinct real axes, and hence do not commute.

There remains to deal with the case of nonaxial matrices. Consider . Let us decompose the isotropic vector 
 into real and imaginary parts:

a⃗ 2

= |A| +a2
0 a⃗ 2

A0

|A| ≠ 0 |A| = 0 A2

⋅a⃗  a⃗  ⋅ ≠ 0a⃗  a⃗  â

= a ⋅a⃗  â â

⋅ = 0a⃗  a⃗  a⃗ 

,  and v̂1 v̂2

⋅ = S ⋅v̂2 σ⃗  v̂1 σ⃗ S1 (3.4.109)

,  and v̂1 v̂2

π ,  and  :v̂1 v̂2

S = −i ⋅ŝ σ⃗  (3.4.110)

=ŝ
+v̂1 v̂2

2 ⋅ +2v̂1 v̂2
− −−−−−−−−

√
(3.4.111)

,  and v̂1 v̂2 3.4.110 3.4.111
 to v̂1 v̂2

S = exp{( − i ) ⋅ }(−i ⋅ ) exp{( − i ) ⋅ }
μ2

2

ϕ2

2
v ⃗ 2 σ⃗  ŝ σ⃗ 

μ1

2

ϕ1

2
v ⃗ 1 σ⃗  (3.4.112)

 to v̂1 v̂2

⋅ +1 = 0v̂1 v̂2 (3.4.113)

→ −v̂1 v̂2

S = −i ⋅ ,  where  ⊥ŝ σ⃗  ŝ v ⃗ 1 (3.4.114)

x̂3

A2

a0

A = HU

A = ⋅  with  = 0a⃗  σ⃗  a⃗ 2

a⃗ 
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Hence . Since the real and the imaginary parts of a are perpendicular, we can rotate these directions by
a unitary similarity transformation into the x- and y-directions respectively. The transformed matrix is

with a positive. A further similarity transformation with

transforms Equation  into the canonical form given in Table 3.2.

As we have seen in Section 3.4.3 all unimodular matrices induce Lorentz transformations in Minkowski, or four-momentum space.
According to the results summarized in Table 3.2, the mappings induced by axial matrices can be brought by similarity
transformations into so-called Lorentz four-screws consisting of a circular and hyperbolic rotation around the same axis, or in other
words: a rotation around an axis, and a boost along the same axis.

What about the Lorentz transformation induced by a nonaxial matrix? The nature of these transformations is very different from the
common case, and constitutes an unusual limiting situation. It is justified to call it an exceptional Lorentz transformation. The
special status of these transformations was recognized by Wigner in his fundamental paper on the representations of the Lorentz
group.

The present approach is much more elementary than Wigner’s, both from the point of view of mathematical technique, and also the
purpose in mind. Wigner uses the standard algebraic technique of elementary divisors to establish the canonical Jordan form of
matrices. We use, instead a specialized technique adapted to the very simple situation in the Pauli algebra. More important, Wigner
was concerned with the problem of representations of the inhomogeneous Lorentz group, whereas we consider the much simpler
problem of the group structure itself, mainly in view of application to the electromagnetic theory.

The intuitive meaning of the exceptional transformations is best recognized from the polar form of the generating matrix. This can
be carried out by direct application of the method discussed at the end of the last section. It is more instructive, however, to express
the solution in terms of (circular and hyperbolic) trigonometry.

We ask for the conditions the polar factors have to satisfy in order that the relation

should hold with . Since all matrices are unimodular, it is sufficient to consider the equality of the traces:

This condition is satisfied if and only if

and

The axes of circular and hyperbolic rotation are thus perpendicular, to each other and the angles of these rotations are related in a
unique fashion: half of the circular angle is the so-called Gudermannian function of half of the hyperbolic angle

However, if  are infinitesimal, we get

= + ia⃗  α⃗  β ⃗  (3.4.115)

− = 0 and α ⋅ β = 0α⃗ 2 β ⃗ 2

( + i ) =( )
α

2
σ1 σ2

0

0

α

0
(3.4.116)

S =( )
α−1/2

0

0

α1/2
(3.4.117)

3.4.116

1 + ⋅ = H ( , )U ( , )â σ⃗  ĥ
μ

2
û

ϕ

2
(3.4.118)

μ ≠ 0,ϕ ≠ 0

TrA = cosh( ) cos( )− i sinh( ) sin( ) ⋅ = 1
1

2

μ

2

ϕ

2

μ

2

ϕ

2
ĥ û (3.4.119)

⋅ = 0ĥ û (3.4.120)

cosh( ) cos( ) = 1
μ

2

ϕ

2
(3.4.121)

= gd( )
ϕ

2

μ

2
(3.4.122)

μ and ϕ
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We note finally that products of exceptional matrices need not be exceptional, hence exceptional Lorentz transformations do not
form a group.

In spite of their special character, the exceptional matrices have interesting physical applications, both in connection with the
electromagnetic field as discussed in Section 4, and also for the construction of representations of the inhomogeous Lorentz group
[Pae69, Wig39].

We conclude by noting that the canonical forms of Table 3.2 lend themselves to express the powers  in simple form.

For the axial singular matrix we have

These projection matrices are called idempotent. The nonaxial singular matrices are nilpotent:

The exceptional matrices (unimodular nonaxial) are raised to any power k (even non-real) by the formula

For integer k, the factor  becomes unity. The axial unimodular case is handled by formulas that are generalizations of the well
known de Moivre formulas:

where  is an integer. For integer , Equation  reduces to

In connection with these formulae, we note that for positive  and a real, there is a unique positive  root of A:

The foregoing results are summarized in Table 3.2.

(1 + +…)(1 + +…) = 1,  i.e. 
μ2

2

ϕ2

2
(3.4.123)

− = 0μ2 ϕ2 (3.4.124)

Ak
0

= AA2
0 (3.4.125)

= 0A2
0 (3.4.126)

= (1 +k ⋅ )Ak 1k a⃗  σ⃗  (3.4.127)

= exp(k ⋅ )1k a⃗  σ⃗  (3.4.128)

1k

= exp(k +kl2πi)Ak 1k
κ

2
(3.4.129)

l k 3.4.129

= exp(k( ) ⋅ )Ak κ

2
a⃗  σ⃗  (3.4.130)

A(ϕ = 0 mth

A = exp{( ) ⋅ }
μ

2
â σ⃗  (3.4.131)

= exp{( ) ⋅ }A1/m μ

2m
â σ⃗  (3.4.132)
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Table 3.2: Canonical Forms for the Simlarity classes of 
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