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4.1: Lorentz transformation and Lorentz force
The main importance of the Pauli algebra is to provide us with a stepping stone for the theory of spinor spaces to which we turn in
Section 5. Yet it is useful to stop at this point to show that the formalism already developed provides us with an efficient framework
for limited, yet important aspects of classical electrodyanmics (CED).

We have seen on page 26 that the effect on electric field on a test charge, a “boost,” can be considered as an active Lorentz
transformation, whereby the field is proportional to the “hyperbolic angular velocity .

This is in close analogy with the well known relation between the magnetic field and the cyclotron frequency, i.e., a “circular
angular velocity” . These results had been obtained under very special conditions. The Pauli algebra is well suited to state them in
much greater generality.

The close connection between the algebra of the Lorentz group and that of the electromagnetic field, is well known. However,
instead of developing the two algebras separately and noting the isomorphism of the results, we utilize the mathematical properties
of the Lorentz group developed in Section 3 and translate them into the language of electrodynamics. The definition of the
electromagnetic field implied by this procedure is, of course, hypothetical, and we turn to experience to ascertain its scope and
limits. The proper understanding of the limitation of this conception is particularly important, as it serves to identify the direction
for the deepening of the theory. The standard operational definition of the electromagnetic field involves the use of a test charge.
Accordingly we assume the existence of particles that can act in such a capacity. The particle is to carry a charge , a constant rest
mass , and the effect of the field acting during the time  is to manifest itself in a change of the 4-momentum only, without
involving any change in internal structure.

This means that the field has a sufficiently low frequency in the rest frame of the particle so as not to affect its internal structure.
This is in harmony with the temporary exclusion of radiative interaction stated already.

Let the test charge be exposed to an electromagnetic field during a small time . We propose to describe the resulting change of
the four-momentum  as an infinitesimal Lorentz transformation. In this preliminary form the statement would
seem to be trivial, since it is valid for any force that does not affect the intrinsic structure, say a combination of gravitational and
frictional forces. In order to characterize specifically the Lorentz force, we have to add that the characterization of the field is
independent of the fourmomentum of the test charge, moreover it is independent of the frame of reference of the observer. These
conditions can be expressed formally in the following.

The effect of the Lorentz force on a particle (test charge) is represented as the transformation of the four-momentum space of
the particle unto itself, and the transformations are elements of the active Lorentz group. Moreover, matrix representations in
different Lorentz frames are connected by similarity transformations. (See Section 3.4.4.)

We now proceed to show that this postulate implies the known properties of the Lorentz force.

First, we show that an infinitesimal Lorentz transformation indeed reduces to the Lorentz force provided we establish a
“dictionary” between the parameters of the transformation and the electromagnetic field (see below Equation ). Consider a
pure Lorentz transformation along .
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By making use of

we obtain

Turning to rotation we have from Equation A.3.8 of Appendix A (See note on page 51 ).

For an infinitesimal rotation , and by using Equation  we obtain, since  and 

or

With the definitions of 3.3.28 and 3.3.29 of page 26 written vectorially:

Equations  and  reduce to the Lorentz force equations.

Let us consider now an infinitesimal Lorentz transformation generated by

with

It is apparent from Equations  and  that the transformation properties of V and F are identical. Since the transformation
of V has been obtained already in Section 3.4.4, we can write down at once that of the field 

Let us express the passive Lorentz transformation of the four-momentum P from the inertial frame 

where S is unimodular. The field matrix transforms by a similarity transformation:

with the complex reflections (contragradient entities) transforming as

For

= mc sinhμ = γmp ⃗  v ⃗  (4.1.7)
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ĥμ̇

= cosϕ+ × sinϕp ⃗ ⊥ p ⃗ ⊥ û p ⃗ ⊥ (4.1.9)
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= + i , F = ⋅f ⃗  E ⃗  B⃗  f ⃗  σ⃗  (4.1.16)

4.1.15 4.1.16
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we obtain the passive Lorentz transformation for a frame , with-the velocity

We extract from here the standard expressions by using the familiar decomposition

we get

Hence

where we used Equation . Inserting from Equation  we get

It is interesting to compare the two compact forms  and . Whereas the latter may be the most convenient for solving
specific problems, the former will be the best stepping stone for the deepening of the theory. The only Lorentz invariant of the field
is the determinant, which we write for convenience with the negative sign:

Hence we obtain the well know invariants

We distinguish two cases

1. 

2. 

These cases can be associated with the similarity classes of Table 3.2. In the case (i)  is unimodular axial, for (ii) it is nonaxial
singular. (Since F is traceless, the two other entries in the table do not apply.) We first dispose of case (ii). A field having this
Lorentz invariant property is called a null-field. The F matrix generates an exceptional Lorentz transformation (Section 3.4.4). In

S = H = exp(− ⋅ )
μ

2
ĥ σ⃗  (4.1.21)

 moving with respect to Σ2 Σ1
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= HFF ′ H−1 (4.1.23)
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4.1.22 4.1.16
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⊥
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∥ B⃗ ′
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4.1.18 4.1.31

−|F | = Tr = = − +2i ⋅ = Ψ
1

2
F 2 f ⃗ 2 E ⃗ 2 B⃗ 2 E ⃗  B⃗  g2e2 (4.1.32)

= − = cos 2ψI1 E ⃗ 2 B⃗ 2 g2 (4.1.33)
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this field configuration  are perpendicular and are of equal size. This is a relativistically invariant property that is
characteriestic of plane waves to be discussed in Section 4.2.

In the “normal” case (i) it is possible to find a canonical Lorentz frame, in which the electric and the magnetic fields are along the
same line, they are parallel, or antiparallel. The Lorentz screw corresponds to a Maxwell wrench. It is specified by a unit vector 
and the values of the fields in the canonical frame . The wrench may degenerate can can with , or 

. The canonical frame is not unique, since a Lorentz transformation along  leaves the canonical fields invariant.

We can evaluate the invariant eqn:iii-8-18ab in the canonical frame and obtain

One obtains from here

The invariant character of the field is determined by the ratio

that has been called its pitch by Synge (op. cit. p. 333) who discussed the problem of canonical frames of the electromagnetic field
with the standard tensorial method.

The definition of pitch in problem #8 is the reciprocal to the one here given and should be changed to agree with Eq. ( )

This page titled 4.1: Lorentz transformation and Lorentz force is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
by László Tisza (MIT OpenCourseWare) .
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nŝ
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