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3.3: On Circular and Hyperbolic Rotations
We propose to develop a unified formalism for dealing with the Lorentz group  and its subgroup . This program
can be divided into two stages. First, consider a Lorentz transformation as a hyperbolic rotation, and exploit the analogies between
circular and hyperbolic trigonometric functions, and also of the corresponding exponentials. This simple idea is developed in this
section in terms of the subgroups . The rest of this chapter is devoted to the generalization of these results to
three spatial dimensions in terms of a matrix formalism.

Let us consider a two-component vector in the Euclidean plane:

We are interested in the transformations that leave  invariant. Let us write

and set

where the star means conjugate complex. For invariance we have

or

From these formulas we easily recover the elementary trigonometric expressions. Table 3.1 summarizes the presentations of
rotational transformations in terms of exponentials, trigonometric functions and algebraic irrationalities involving the slope of the
axes. There is little to recommend the use of the latter, however it completes the parallel with Lorentz transformations where this
parametrization is favored by tradition.

We emphasize the advantages of the exponential function, mainly because it lends itself to iteration, which is apparent from the
well known formula of de Moivre:

The same Table contains also the parametrization of the Lorentz group in one spatial variable. The analogy between  and 
 is far reaching and the Table is selfexplanatory. Yet there are a number of additional points which are worth making.

The invariance of

is ensured by

for an arbitrary a. By setting  in the Table we tacitly exclude negative values. Admitting a negative value for this
parameter would imply the interchange of future and past. The Lorentz transformations which leave the direction of time invariant,
are called orthochronic. Until further notice these are the only ones we shall consider.

The meaning of the parameter  is apparent from the well known relation

where  is the velocity of the primed system . Being a (non-Euclidean) measure of a velocity,  is sometimes
called rapidity, or velocity parameter.
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Table 3.1: Summary of the rotational transformations. (The signs of the angles correspond to the passive interpretation.)

Figure 3.1: Area in  -plane.

We shall refer to  also as hyperbolic angle. The formal analogy with the circular angle  is evident from the Table. We deepen this
parallel by means of the observation that  can be interpreted as an area in the  plane (see Figure 3.1).

Consider a hyperbola with the equation

The shaded triangular area (shown in Figure 3.1) is according to Equation 2.6.2 of Section 2.6:

We could proceed similarly for the circular angle  and define it in terms of the area of a circular sector, rather than an arc.
However, only the area can be generalized for the hyperbola.

Although the formulas in Table 3.1 apply also to the wave vector and the four momentum.and can be used in each case also
according to the active interpretation, the various situations have their individual features, some of which will now be surveyed.
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Consider at first a plane wave the direction of propagation of which makes an angle  with the direction  of the Lorentz
transformation. We write the phase, Equation  of Section 3.2, as

This expression is invariant if  transforms by the same factor .

Thus we have

Since  is a null-vector, i.e., k has vanishing length, we set

and we obtain for the aberration and the Doppler effect:

and

For  we have

Thus the hyperbolic angle is directly connected with the frequency scaling in the Doppler effect.

Next, we turn to the transformation of the four-momentum of a massive particle. The new feature is that such a particle can be
brought to rest. Let us say the particle is at rest in the frame  (rest frame), that moves with the velocity  in the
frame  (lab frame). Thus  can be identified as the particle velocity along .

Solving for the momentum in :

with , we have

Thus we have solved the problem posed at the end of Section 3.2.

The point in the preceding argument is that we achieve the transition from a state of rest of a particle to a state of motion, by the
kinematic means of inertial transformation. Evidently, the same effect can be achieved by means of acceleration due to a force, and
consider this “boost” as an active Lorentz transformation. Let us assume that the particle carries the charge  and is exposed to a
constant electric intensity E. We get from Equantion  for small velocities:
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and this agrees with the classical equation of motion if

Thus the electric intensity is proportional to the hyperbolic angular velocity.

In close analogy, a circular motion can be produced by a magnetic field:

This is the well known cyclotron relation.

The foregoing results are noteworthy for a number of reasons. They suggest a close connection between electrodynamics and the
Lorentz group and indicate how the group theoretical method provides us with results usually obtained by equations of motion.

All this brings us a step closer to our program of establishing much of physics within a group theoretical framework, starting in
particular with the Lorentz group. However, in order to carry out this program we have to generalize our technique to three spatial
dimensions. For this we have the choice between two methods.

The first is to represent a four-vector as a  column matrix and operate on it by  matrices involving 16 real parameters
among which there are ten relations (see Section 2.5).

The second approach is to map four-vectors on Hermitian  matrices

and represent Lorentz transformations as

where  are Hermitian adjoint unimodular matrices depending .just on the needed six parameters.

We choose the second alternative and we shall show that the mathematical parameters have the desired simple physical
interpretations. In particular we shall arrive at generalizations of the de Moivre relation, Equation .

The balance of this chapter is devoted to the mathematical theory of the  matrices with physical applications to
electrodynamics following in Section 4.

This page titled 3.3: On Circular and Hyperbolic Rotations is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
László Tisza (MIT OpenCourseWare) .
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