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5.1: From Triads and Euler Angles to Spinors - A Heuristic Introduction
As mentioned already in Section 3.4.3, it is an obvious idea to enrich the Pauli algebra formalism by introducing the complex
vector space V(2, C) on which the matrices operate. The two-component complex vectors are traditionally called spinors. We wish
to show that they give rise to a wide range of applications. In fact we shall introduce the spinor concept as a natural answer to a
problem that arises in the context of rotational motion.

In Section 3 we have considered rotations as operations performed on a vector space. Whereas this approach enabled us to give a
group-theoretical definition of the magnetic field, a vector is not an appropriate construct to account for the rotation of an
orientable object. The simplest mathematical model suitable for this purpose is a Cartesian (orthogonal) three-frame, briefly, a
triad. The problem is to consider two triads with coinciding origins, and the rotation of the object frame is described with respect to
the space frame. The triads are represented in terms of their respective unit vectors: the space frame as  and the
object frame as  Here c stands for “corpus,” since o for “object” seems ambiguous. We choose the frames to be
right-handed.

These orientable objects are not pointlike, and their parametrization offers novel problems. In this sense we may refer to triads as
“higher objects,” by contrast to points which are “lower objects.” The thought that comes most easily to mind is to consider the
nine direction cosines  but this is impractical, because of the six relations connecting these parameters. This difficulty is
removed by the three independent Eulerian angles, a most ingenious set of constructs, which leave us nevertheless with another
problem: these parameters do not have good algebraic properties; their connection with the ordinary Euclidean vector space is
provided by rather cumbersome relations. This final difficulty is solved by the spinor concept.

The theory of the rotation of triads has been usually considered in the context of rigid body mechanics According to the traditional
definition a rigid body is “a collection of point particles keeping rigid distances.” Such a system does not lend itself to useful
relativistic generalization. Nor is this definition easily reconciled with the Heisenberg principle of uncertainty.

Since the present discussion aims at applications to relativity and quantum mechanics, we hasten to point out that we consider a
triad as a precise mathematical model to deal with objects that are orientable in space. Although we shall briefly consider the rigid
body rotation in Section 5.2, the concept of rigidity in the sense defined above is not essential in our argument. We turn now to a
heuristic argument that leads us in a natural fashion from triad rotation to the spinor concept. According to Euler’s theorem any
displacement of a rigid body fixed at a point  is equivalent to a rotation around an axis through . (See [Whi64], page 2.)

This theorem provides the justification to describe the orientational configuration of  in terms of the unitary matrix in  that
produces the configuration in question from the standard position in which the two frames coincide. Denoting the unitary
unimodular matrices corresponding to two configuration by  a transition between them is conveyed by an operator U

Let

Here  are the so-called quaternion components, since the  obey the commutation rules of the quaternion units 
. We have

The Equations  -  can be given an elegant geometrical interpretation:  are considered as the coordinates of a point on
the three-dimensional unit hypersphere in four-dimensional space  Thus the rotation of the triad is mapped on the rotation
of this hypersphere. The operation leaves  invariant.

The formalism is that of elliptic geometry, a counterpart to the hyperbolic geometry in Minkowski space.

This geometry implies a “metric”: the “distance” of two displacements  is defined as
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where φ is the angle of rotation carrying , into . Note the analogy with the hyperbolic formula 3.4.67 in Section 3.4.3.

We have here an example for an interesting principle of geometry: a “higher object” in a lower space can be often represented as a
“lower object,” i.e., a point in a higher space. The “higher object” is a triad in ordinary space . It is represented as a point in
the higher space .

We shall see that this principle is instrumental in the intuitive interpretation of quantum mechanics. The points in the abstract
spaces of this theory are to be associated with complex objects in ordinary space.

Although the representation of the rotation operator  and the rotating object V in terms of the same kind of parametrization can
be considered a source of mathematical elegance, it also has a shortcoming. Rotating objects may exhibit a preferred intrinsic
orientation, such as a figure axis, or the electron spin, for which there is no counterpart in Equations  and .

This situation is remedied by the following artifice. Let the figure axis point along the unit vector  that coincides in the standard
position with  Instead of generating the object matrix V in terms of single rotation, we consider the following standard sequence
to be read from right to left, (see Figure 5.1):

Here  are the well known Euler angles, and the sequence of rotations is one of the variants traditionally used for their
definition.

The notation calls for explanation. We shall continue to use, as we did in Section 3,  for the 2 × 2 unitary matrix
parametrized in terms of axis angle variables. We shall call this also a uniaxial parametrization, to be distinguished from the biaxial
parametrization of the unitary V matrices in which both the spatial direction  play a preferred role.

In Equation  the rotations are defined along axes specified in the space frame . However, in the course of each operation
the axis is fixed in both frames. Thus it is merely a matter of another name (an alias I) to describe the operation (4) in . We have
then for the same unitary matrix

Note the inversion of the sequence of operations involving the rotations a and y. This relation is to be interpreted in the kinematic
sense: the body frame moves from the initial orientation of coincidence with  into the final position.

The equivalence of  and  can be recognized by geometrical intuition, or also by explicit transformations between 
 (See [Got66], p 268).

In the literature one often considers the sequence

where  are axis positions after the first and the second step respectively. This procedure seems to have the awkward
property that the different rotations are performed in different spaces. On closer inspection, however, one notices that Equation 

 differs only in notation from Equation . In the usual static interpretation  is used only for the final
configuration, and  are introduced as auxiliary axes. If, in contrast, one looks at the object frame kinematically, one realizes
that at the instant of the particular rotations the following axes coincide:

We now write Equation  explicitly as
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with

The four matrix elements appearing in this relation are the so-called Cayley-Klein parameters. (See Equation 3.4.43 in Section
3.4.2.)

It is a general property of the matrices of the algebra , that they can be represented either in terms of components or in terms of
matrix elements. We have arrived at the conclusion that the representation of a unitary matrix in terms of elements is suitable for
the parametrization of orientational configuration, while the rotation operator is represented in terms of components (axisangle
variables).

There is one more step left to express this result most efficiently. We introduce the two-component complex vectors (spinors) of 
 already mentioned at the beginning of the chapter. In particular, we define two conjugate column vectors, or ket spinors:

and write the unitary V matrix symbolically as

We define the corresponding bra vectors by splitting the Hermitian conjugate V horizontally into row vectors:

or

The condition of unitarity of V can be expressed as

yielding at once the conditions of orthonormality

These can be, of course, verified by direct calculation. The orthogonal spinors are also called conjugate spinors. We see from these
relations that our definition of spin conjugation is, indeed, a sensible one. However, the meaning of this concept is richer than the
analogy with the ortho-normality relation in the real domain might suggest.

First of all we express spin conjugation in terms of a matrix operation. The relation is nonlinear, as it involves the operation of
complex conjugation .
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We have

and

We obtain from here

The bar notation for spin conjugation suggests a connection with the complex reflection of the Pauli algebra. We shall see that such
a connection indeed exists. However, we have to remember that, in contrast to Equation , complex reflection is involutive,

i.e., its iteration is the identit .

The emergence of the negative sign in Equation  is a well known property of the spin function, however we have to defer the
discussion of this intriguing fact for later.

We shall occasionally refer to spinors normalized according to Equation  as unitary spinors, in order to distinguish them from
relativistic spinors normalized as  where  is the 0-th component of a four-vector.

Let us take a closer look at the connection between spinors and triads. In our heuristic procedure we started with an object triad
specified by three orthonormal unit vectors  and arrived at an equivalent specification in terms of an associated spinor .
Our task is now to start from the spinor and establish the corresponding triad in terms of its unit vectors. This is achieved by means
of quadratic expressions.

We consider the so-called outer products

and

which can be considered as products of a  and  matrix.

In order to establish the connection with the unit vectors , we consider first the unit configuration in which the triads coincide: 
 i.e.

with

Denoting these spinors briefly as  respectively, we obtain from  and 
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Let V be the unitary matrix that carries the object frame from the unit position into  Since ,
we have

By operating on  and  from left and right by  respectively, we obtain

and hence, by using Equation 3.4.13 of Section 3.4.2,

We have used here the rule:

Equations  and  constitute a most compact expression for the relation between a spinor and its associated triad. One
can extract from here the values of the direction cosines

By using Equation  we obtain these quantities in terms of Euler angles

The relation between vectors and spinors displayed in Equations  can be established also by means of a stereographic
projection. This method yields quicker results than the present lengthy build-up which in turn has a wider scope. Instead of rotating
vector spaces, we operate on triads and thus obtain also Equation . To my knowledge, this relation has not appeared in the
literature.

The Equations  and  solve the parametrization problem stated at the beginning of this chapter. The nine interrelated
direction cosines  are expressed by the three independent spinor parameters.

This is the counterpart of the parametrization problem concerning the nine parameters of the  matrices (see page 13), a
problem that has been solved by the  representation  with the unitary matrices .
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https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/31973?pdf


5.1.6 https://phys.libretexts.org/@go/page/31973

It is noteworthy that the decisive step was taken in both cases by Euler who introduced the “Euler angles”  and also the axis-
angle parameters  for the rotation operators.

Euler’s results come to fruition in the version of spinor calculus in which spinors representing orientational states are parametrized
in terms of Euler angles and the unitary operators in terms of .

We propose to demonstrate the ease by which this formalism lends itself to algebraic operations. This stems particularly from the
constructs  and  in which we recognize the singular matrices of Table 3.2 (page 46).

We define more fully

Here  are idempotent projection operators and  nilpotent step operators. Since , we have

with

Also

We see from Equations  that the transition  corresponds to an inversion of the figure axis with a simultaneous
inversion of the figure axis with a simultaneous inversion of the -rotation around the axis. Therefore the transformation
corresponds to a transition from a right to a left frame with a simultaneous change from counterclockwise to clockwise as the
positive sense of rotation. Thus we should look at the transition from  as  or

All this is apparent also if we represent the transition  in terms of Euler angles as

We note also the following relations for later use:

In addition to the short symbols  for spinors and their conjugates, we shall use also more explicit notations depending on the
context:
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,E3 Ē3 , EE+ +bar = 1E3 E3

|η⟩ = |ξ⟩⟨ξ ∣ η⟩+| ⟩⟨ ∣ η⟩ξ̄ ξ̄ (5.1.41)

= |ξ⟩ +| ⟩a0 ξ̄ a1 (5.1.42)

= ⟨ξ ∣ η⟩, = ⟨ ∣ η⟩a0 a1 ξ̄ (5.1.43)

| ⟩ = |ξ⟩ |ξ⟩ = | ⟩E+ ξ̄ E− ξ̄ (5.1.44)

|ξ⟩ = 0 | ⟩ = 0E+ E− ξ̄ (5.1.45)

5.1.40 |ξ⟩ → | ⟩ξ̄

γ

5.1.40 →E+ Ē+
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Here  is the unit vector denoted by  in Equation . Its association with the spinor is evident from the following eigenvalue
problem.

By using Equations  and  we obtain

Hence

Thus  are eigenvectors of the Hermitian operator  with the eigenvalues +1 and −1 respectively. This is a well
known result, although usually obtained by a somewhat longer computation.

By using the explicit expression for  we obtain from  and 

There is also the unitary diagonal matrix

the effect of which is easily described:

These relations bring out the “biaxial” character of spinors: both  play a distinguished role. The same is true of a unitary
matrix parametrized in terms of Euler angles:  Cayley-Klein parameters. This is to be contrasted with the uniaxial form 

.

Our discussion in this chapter has been thus far purely geometrical although active transformations of geometrical objects can be
given a kinematic interpretation. We go now one step further and introduce the conept of time. By setting  with a constant 
in the unitary rotation operator we obtain the description of rotation processes:

These rotations are stationary, because U operates on its eigenspinors. There are various ways to represent the evolution of arbitrary
spinors as well. We have

Or, in differential form
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= ⟨η| exp(i ⋅ )
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2
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−i⟨ |η̇

= ⋅ |η⟩
ω

2
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ω
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The state functions solving these differential equations are obtained explicitly by using Equations , , , and 
:

and similarly for 

By introducing the symbol H for the Hermitian operator  in  we obtain

These equations are reminiscent of the Schrödinger ¨ equation. Also it would be easy to derive from here a Heisenberg type
operator equation.

It must be apparent to those familiar with quantum mechanics, that our entire spinor formalism has a markedly quantum
mechanical flavor. What all this means is that the orientability of objects is of prime importance in quantum mechanics and the
concept of the triad provides us with a more direct path to quantization, or to some aspects of it, than the traditional point mass
approach.

In order to make use of this opportunity, we have to apply our spinor formalism to physical systems.

Our use of the concept of time in Equations –  is quite formal. We merely selected a one-parameter subgroup of the
rotation group to describe possible types of stationary rotation.

We have to turn to experiment, or to an experimentally established dynamical theory, to decide whether such motions actually
occur in nature. We shall examine this question in connection with the rigid body rotation in the next section.

However, our main objective is the discussion of polarized light. Here the connection between classical and quantum theories is
very close and the quantization procedure is particularly clear in terms of the spinor formalism.

The fact that the same formalism can be adjusted both to rigid body motion and to a wave phenomenon is interesting by itself. We
know that the particle-wave duality is among the central themes in quantum mechanics. The contrast between these objects is very
pronounced if we confine ourselves to point particles and to scalar waves. It is remarkable how this contrast is toned down within
the context of rotational problems.

5.1.42 5.1.43 5.1.62

5.1.63

|η(t)⟩ = U ( , ) |η(0)⟩ = exp(−iωt/2)| ⟩ +exp(iωt/2)| ⟩k̂
ωt

2
k̂ a0 k̂

¯̄̄
a1 (5.1.65)

⟨η(t)|

H = (ωt/2) ⋅k̂ σ⃗  5.1.64

i| ⟩ = H|η⟩η̇ (5.1.66)

−i⟨ | = ⟨η|Hη̇ (5.1.67)
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Figure 5.1: Euler Angles: (a) Static Picture. (b) Kinematics Display.
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