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5.1: Free and Forced Oscillations
In Sec.  we briefly discussed oscillations in a keystone Hamiltonian system - a 1D harmonic oscillator described by a very
simple Lagrangian 

whose Lagrange equation of motion, 

 i.e.  with ,

is a linear homogeneous differential equation. Its general solution is given by (3.16), which is frequently recast into another,
amplitude-phase form:

where  is the amplitude and  the phase of the oscillations, which are determined by the initial conditions. Mathematically, it is
frequently easier to work with sinusoidal functions as complex exponents, by rewriting the last form of Eq. (3a) in one more form: 

For an autonomous, Hamiltonian oscillator, Eq. (3) gives the full classical description of its dynamics. However, it is important to
understand that this free-oscillation solution, with a constant amplitude , is due to the conservation of the energy 

 of the oscillator. If its energy changes for any reason, the description needs to be generalized.

First of all, if the energy leaks out of the oscillator to its environment (the effect usually called the energy dissipation), the free
oscillations decay with time. The simplest model of this effect is represented by an additional linear drag (or "kinematic friction")
force, proportional to the generalized velocity and directed opposite to it:

where constant  is called the drag coefficient.  The inclusion of this force modifies the equation of motion (2) to become

This equation is frequently rewritten in the form

where the parameter  is called the damping coefficient (or just "damping"). Note that Eq. (6) is still a linear homogeneous second-
order differential equation, and its general solution still has the form of the sum (3.13) of two exponents of the type , with
arbitrary pre-exponential coefficients. Plugging such an exponent into Eq. (6), we get the following algebraic characteristic
equation for  :

Solving this quadratic equation, we get

so that for not very high damping  we get the following generalization of Eq. (3):

The result shows that, besides a certain correction to the free oscillation frequency (which is very small in the most interesting low
damping limit,  ), the energy dissipation leads to an exponential decay of oscillation amplitude with the time constant 

:
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A very popular dimensionless measure of damping is the so-called quality factor  (or just the -factor ) that is defined as ,
and may be rewritten in several other useful forms:

where  is the oscillation period in the absence of damping - see Eq. (3.29). Since the oscillation energy  is
proportional to , i.e. decays as , with the time constant , the last form of Eq. (11) may be used to rewrite the -
factor in one more form:

where  is the dissipation power. (Two other practical ways to measure  will be discussed below.) The range of -factors of
important oscillators is very broad, all the way from  for a human leg (with relaxed muscles), to  of the quartz
crystals used in electronic clocks and watches, all the way up to  for carefully designed microwave cavities with
superconducting walls.

In contrast to the decaying free oscillations, the forced oscillations, induced by an external force , may maintain their
amplitude (and hence energy) infinitely, even at non-zero damping. This process may be described using a still linear but now
inhomogeneous differential equation

or, more conveniently for analysis, the following generalization of Eq. (6b):

 where 

For a mechanical linear, dissipative  oscillator , under the effect of an additional external force , Eq. (13a) is just an
expression of the  Newton law. However, according to Eq. (1.41), Eq. (13) is valid for any dissipative, linear 6 1D system
whose Gibbs potential energy  has the form  .

The forced-oscillation solutions may be analyzed by two mathematically equivalent methods whose relative convenience depends
on the character of function .

(i) Frequency domain. Representing the function  as a Fourier sum of sinusoidal harmonics: 

and using the linearity of Eq. (13), we may represent its general solution as a sum of the decaying free oscillations (9) with the
frequency , independent of the function , and forced oscillations due to each of the Fourier components of the force: 

Plugging Eq. (15) into Eq. (13), and requiring the factors before each  on both sides to be equal, we get

where the complex function , in our particular case equal to

is called either the response function or (especially for non-mechanical oscillators) the generalized susceptibility. From here, and
Eq. (4), the amplitude of the oscillations under the effect of a sinusoidal force is
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This formula describes, in particular, an increase of the oscillation amplitude  at  see the left panel in Figure 1. In
particular, at the exact equality of these two frequencies,

so that, according to Eq. (11), the ratio of the response magnitudes at  and   ) is exactly equal to
the -factor of the oscillator. Thus, the response increase is especially strong in the low damping limit , i.e. ;
moreover at  and  the response diverges. (This fact is very useful for the methods to be discussed later in this
section.) This is the classical description of the famous phenomenon of resonance, so ubiquitous in physics.

Figure 5.1. Resonance in the linear oscillator, for several values of .

Due to the increase of the resonance peak height, its width is inversely proportional to . Quantitatively, in the most interesting
low-damping limit, i.e. at , the reciprocal -factor gives the normalized value of the so-called full-width at half-maximum
(FWHM) of the resonance curve: 

Indeed, this  is defined as the difference between the two values of  at that the square of the oscillator response
function,  (which is proportional to the oscillation energy), equals a half of its resonance value (19). In the low damping
limit, both these points are very close to , so that in the linear approximation in , we may write 

, where

is a very convenient parameter called detuning, which will be repeatedly used later in this chapter. In this approximation, the
second of Eqs. (18) is reduced to 

As a result, the points correspond to , i.e. , so that  , thus
proving Eq. (20).

(ii) Time domain. Returning to arbitrary external force , one may argue that Eqs. (9), (15)-(17) provide a full solution of the
forced oscillation problem even in this general case. This is formally correct, but this solution may be very inconvenient if the
external force is far from a sinusoidal function of time, especially if it is not periodic at all. In this case, we should first calculate the
complex amplitudes  participating in the Fourier sum (14). In the general case of a non-periodic , this is actually the Fourier
integral, 
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so that  should be calculated using the reciprocal Fourier transform,

Now we may use Eq. (16) for each Fourier component of the resulting forced oscillations, and rewrite the last of Eqs. (15) as

with the response function  given, in our case, by Eq. (17). Besides requiring two integrations, Eq. (25) is conceptually
uncomforting: it seems to indicate that the oscillator’s coordinate at time  depends not only on the external force exerted at earlier
times  ’ , but also at future times. This would contradict one of the most fundamental principles of physics (and indeed, science
as a whole), the causality: no effect may precede its cause.

Fortunately, a straightforward calculation (left for the reader’s exercise) shows that the response function (17) satisfies the
following rule: 

This fact allows the last form of Eq. (25) to be rewritten in either of the following equivalent forms:

where , defined as the Fourier transform of the response function,

is called the (temporal) Green’s function of the system. According to Eq. (26),  for all .

While the second form of Eq. (27) is frequently more convenient for calculations, its first form is more suitable for physical
interpretation of the Green’s function. Indeed, let us consider the particular case when the force is a delta function

representing an ultimately short pulse at the moment  ’, with unit "area" . Substituting Eq. (29a) into Eq. (27),  we get

Thus the Green’s function  is just the oscillator’s response, as measured at time , to a short force pulse of unit "area",
exerted at time  ’. Hence Eq. (27) expresses the linear superposition principle in the time domain: the full effect of the force 
on a linear system is a sum of effects of short pulses of duration  ’ and magnitude , each with its own "weight"  -
see Figure 2 .
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Figure 5.2. A schematic, finite-interval representation of a force  as a sum of short pulses at all times , and their
contributions to the linear system’s response , as given by Eq. (27).

This picture may be used for the calculation of Green’s function for our particular system. Indeed, Eqs. (29)-(30) mean that  is
just the solution of the differential equation of motion of the system, in our case, Eq. (13), with the replacement , and a -
functional right-hand side:

Since Eqs. (27) describes only the second term in Eq. (15), i.e. only the forced, rather than free oscillations, we have to exclude the
latter by solving Eq. (31) with zero initial conditions:

where  means the instant immediately preceding .

This calculation may be simplified even further. Let us integrate both sides of Eq. (31) over an infinitesimal interval including the
origin, e.g. [- , and then follow the limit . Since the Green’s function has to be continuous because of its
physical sense as the (generalized) coordinate, all terms on the left-hand side but the first one vanish, while the first term yields 

. Due to the second of Eqs. (32), the last of these two derivatives equals zero, while the right-hand side of
Eq. (31) yields 1 upon the integration. Thus, the function  may be calculated for  (i.e. for all times when it is different
from zero) by solving the homogeneous version of the system’s equation of motion for , with the following special initial
conditions:

This approach gives us a convenient way for the calculation of Green’s functions of linear systems. In particular for the oscillator
with not very high damping , i.e. , imposing the boundary conditions  on the homogeneous equation’s
solution , we immediately get

(The same result may be obtained directly from Eq. (28) with the response function  given by Eq. (19). This way is, however,
a little bit more cumbersome, and is left for the reader’s exercise.)

Relations (27) and (34) provide a very convenient recipe for solving many forced oscillations problems. As a very simple example,
let us calculate the transient process in an oscillator under the effect of a constant force being turned on at , i.e. proportional to
the theta-function of time:

provided that at  the oscillator was at rest, so that in Eq. (15), . Then the second form of Eq. (27), and Eq. (34),
yield

f(t) < tt′

q(t)

G(τ)
t → τ δ

+2δ + G(τ) = δ(τ).
G(τ)d2

dτ 2

dG(τ)

dτ
ω2

0 (5.1.31)

G(−0) = (−0) = 0,
dG

dτ
(5.1.32)

τ = −0 τ = 0

dτ/2, +dτ/2] dτ → 0

dG/ −dG/dτ |+0 dτ |−0

G(τ) τ > 0
τ > 0

G(0) = 0, (0) = 1.
dG

dτ
(5.1.33)

(δ < ω0 Q > 1/2) (33)
(9)

G(τ) = sin τ
1

ω0
′
e−δτ ω0

′ (5.1.34)

χ(ω)

t = 0

f(t) = θ(t) ≡{f0
0,

,f0

 for t < 0,
 for t > 0,

(5.1.35)

t < 0 (t) ≡ 0qfree 

q(t) = f(t−τ)G(τ)dτ = sin τdτ .∫
∞

0
f0 ∫

t

0

1

ω0
′
e−δτ ω0

′ (5.1.36)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34770?pdf


5.1.6 https://phys.libretexts.org/@go/page/34770

The simplest way to work out such integrals is to represent the sine function under it as the imaginary part of , and
merge the two exponents, getting

This result, plotted in Figure 3, is rather natural: it describes nothing more than the transient from the initial position  to the
new equilibrium position , accompanied by decaying oscillations. For this particular simple function ,
the same result might be also obtained by introducing a new variable  and solving the resulting homogeneous
equation for  (with appropriate initial condition . However, for more complicated functions  the
Green’s function approach is irreplaceable.

Figure 5.3. The transient process in a linear oscillator, induced by a step-like force , for the particular case  (i.e., 
 ).

Note that for any particular linear system, its Green’s function should be calculated only once, and then may be repeatedly used in
Eq. (27) to calculate the system response to various external forces either analytically or numerically. This property makes the
Green’s function approach very popular in many other fields of physics  with the corresponding generalization or re-definition of
the function. 

 For the notation brevity, in this chapter I will drop indices "ef" in the energy components  and , and parameters like , etc.
However, the reader should still remember that  and  do not necessarily coincide with the actual kinetic and potential energies
(even if those energies may be uniquely identified) - see Sec. 3.1.

 is usually called the own frequency of the oscillator. In quantum mechanics, the Germanized version of the same term,
eigenfrequency, is used more. In this series, I will use either of the terms, depending on the context.

 Note that this is the so-called physics convention. Most engineering texts use the opposite sign in the imaginary exponent, 
, with the corresponding sign implications for intermediate formulas, but (of course) similar final results

for real variables.

 Here Eq. (5) is treated as a phenomenological model, but in statistical mechanics, such dissipative term may be derived as an
average force exerted upon a system by its environment, at very general assumptions. As discussed in detail elsewhere in this series
(SM Chapter 5 and QM Chapter 7), due to the numerous degrees of freedom of a typical environment (think about the molecules of
air surrounding the usual mechanical pendulum), its force also has a random component; as a result, the dissipation is
fundamentally related to fluctuations. The latter effects may be neglected (as they are in this course) only if  is much higher than
the energy scale of the random fluctuations of the oscillator - in the thermal equilibrium at temperature , the larger of  and 

.

 Systems with high damping  can hardly be called oscillators, and though they are used in engineering and physics
experiment (e.g., for the shock, vibration, and sound isolation), for their detailed discussion I have to refer the interested reader to
special literature - see, e.g., C. Harris and A. Piersol, Shock and Vibration Handbook,  ed., McGraw Hill, 2002. Let me only
note that dynamics of systems with very high damping   ) has two very different time scales: a relatively short
"momentum relaxation time" , and a much longer "coordinate relaxation time" .

 This is a very unfortunate, but common jargon, meaning "the system described by linear equations of motion".
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 Here, in contrast to Eq. (3b), we may drop the operator Re, assuming that , so that the imaginary components of the
sum compensate each other.

 In physics, this mathematical property of linear equations is frequently called the linear superposition principle.

 Note that the phase shift  between the oscillations and the external force (see the right panel in Figure 1) makes its
steepest change, by , within the same frequency interval .

 Such function of frequency is met in many branches of science, frequently under special names, including the "Cauchy
distribution", "the Lorentz function" (or "Lorentzian line", or "Lorentzian distribution"), "the BreitWigner function" (or "the Breit-
Wigner distribution"), etc.

 Let me hope that the reader knows that Eq. (23) may be used for periodic functions as well; in such a case,  is a set of
equidistant delta functions. (A reminder of the basic properties of the Dirac -function may be found, for example, in MA Sec. 14.)

 Eq. (26) remains true for any linear physical systems in which  represents a cause, and  its effect. Following tradition, I
discuss the frequency-domain expression of this causality relation (called the KramersKronig relations) in the Classical
Electrodynamics part of this lecture series - see EM Sec. 7.2.

 Technically, for this integration,  ’ in Eq. (27) should be temporarily replaced with another letter, say  ".

 See, e.g., EM Sec. 2.7, and QM Sec. 

This page titled 5.1: Free and Forced Oscillations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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