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4.5: Torque-induced Precession
The dynamics of rotation becomes even more complex in the presence of external forces. Let us consider the most important and
counter-intuitive effect of torque-induced precession, for the simplest case of an axially-symmetric body (which is a particular case
of the symmetric top,  ), supported at some point A of its symmetry axis, that does not coincide with the center of
mass 0 - see Figure 

Figure 4.9. Symmetric top in the gravity field: (a) a side view at the system and (b) the top view at the evolution of the horizontal
component of the angular momentum vector.

The uniform gravity field  creates bulk-distributed forces that, as we know from the analysis of the physical pendulum in Sec. 3,
are equivalent to a single force  applied in the center of mass - in Figure 9 , point 0 . The torque of this force relative to the
support point  is

Hence the general equation (33) of the angular momentum evolution (valid in any inertial frame, for example the one with an origin
in point A) becomes

Despite the apparent simplicity of this (exact!) equation, its analysis is straightforward only in the limit when the top is launched
spinning about its symmetry axis  with a very high angular velocity . In this case, we may neglect the contribution to  due
to a relatively small precession velocity  (still to be calculated), and use Eq. (26) to write

Then Eq. (70) shows that the vector  is perpendicular to both  (and hence  ) and , i.e. lies within the horizontal plane and is
perpendicular to the horizontal component  of the vector  see Figure . Since, according to Eq. (70), the magnitude of this
vector is constant, , the vector  (and hence the body’s main axis) rotates about the vertical axis with the following
angular velocity:

Thus, very counter-intuitively, the fast-rotating top does not follow the external, vertical force and, in addition to fast spinning
about the symmetry axis , performs a revolution, called the torqueinduced precession, about the vertical axis. Note that, similarly
to the free-precession frequency (59), the torque-induced precession frequency  does not depend on the initial (and sustained)
angle . However, the torque-induced precession frequency is inversely (rather than directly) proportional to . This fact makes
the above simple theory valid in many practical cases. Indeed, Eq. (71) is quantitatively valid if the contribution of the precession
into  is relatively small: , where  is a certain effective moment of inertia for the precession - to be calculated
below. Using Eq. (72), this condition may be rewritten as
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According to Eq. (16), for a body of not too extreme proportions, i.e. with all linear dimensions of the order of the same length
scale , all inertia moments are of the order of , so that the right-hand side of Eq.  is of the order of , i.e.
comparable with the frequency of small oscillations of the same body as the physical pendulum, i.e. at the absence of its fast
rotation.

To develop a qualitative theory that would be valid beyond such approximate treatment, the Euler equations (66) may be used, but
are not very convenient. A better approach, suggested by the same L. Euler, is to introduce a set of three independent angles
between the principal axes  bound to the rigid body, and the axes  of an inertial reference frame (Figure
10), and then express the basic equation (33) of rotation, via these angles. There are several possible options for the definition of
such angles; Figure 10 shows the set of Euler angles, most convenient for analyses of fast rotation.  As one can see, the first Euler
angle, , is the usual polar angle measured from the -axis to the -axis. The second one is the azimuthal angle , measured
from the -axis to the so-called line of nodes formed by the intersection of planes  and . The last Euler angle, ,
is measured Euler within the plane , from the line of nodes to axis -axis. For example, in the simple picture of slow
force-induced precession of a symmetric top, that was discussed above, the angle  is constant, the angle  changes rapidly, with
the rotation velocity , while the angle  evolves with the precession frequency .

Fig. 4.10. Definition of the Euler angles.

Now we can express the principal-axes components of the instantaneous angular velocity vector, , and , as measured in
the lab reference frame, in terms of the Euler angles. This may be readily done by calculating, from Figure 10, the contributions of
the Euler angles’ evolution to the rotation about each principal axis, and then adding them up:

These relations enable the expression of the kinetic energy of rotation  and the angular momentum components (26) via the
generalized coordinates , and  and their time derivatives (i.e. the corresponding generalized velocities), and then using the
powerful Lagrangian formalism to derive their equations of motion. This is especially simple to do in the case of symmetric tops
(with  ), because plugging Eqs. (74) into Eq. (25) we get an expression,

which does not include explicitly either  or . (This reflects the fact that for a symmetric top we can always select the -axis to
coincide with the line of nodes, and hence take  at the considered moment of time. Note that this trick does not mean we can
take , because the -axis, as observed from an inertial reference frame, moves!) Now we should not forget that at the
torque-induced precession, the center of mass moves as well (see, e.g., Figure 9), so that according to Eq. (14), the total kinetic
energy of the body is the sum of two terms,
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while its potential energy is just

Now we could readily write the Lagrange equations of motion for the Euler angles, but it is simpler to immediately notice that
according to Eqs. (75)-(77), the Lagrangian function, , does not depend explicitly on the "cyclic" coordinates  and , so
that the corresponding generalized momenta (2.31) are conserved:

where . (According to Eq. (29),  is just the body’s moment of inertia for rotation about a horizontal axis passing
through the support point A.) According to the last of Eqs. (74),  is just , i.e. the angular momentum’s component along the
precessing axis . On the other hand, by its very definition (78),  is , i.e. the same vector  ’s component along the static
axis . (Actually, we could foresee in advance the conservation of both these components of  for our system, because the vector
(69) of the external torque is perpendicular to both  and .) Using this notation, and solving the simple system of linear
equations (78)-(79) for the angle derivatives, we get

One more conserved quantity in this problem is the full mechanical energy 

Plugging Eqs. (80) into Eq. (81), we get a first-order differential equation for the angle , which may be represented in the
following physically transparent form:

Thus, similarly to the planetary problems considered in Sec. 3.4, the torque-induced precession of a symmetric top has been
reduced (without any approximations!) to a 1D problem of the motion of one of its degrees of freedom, the polar angle , in the
effective potential . According to Eq. (82), very similar to Eq. (3.44) for the planetary problem, this potential is the sum of
the actual potential energy  given by Eq. (77), and a contribution from the kinetic energy of motion along two other angles. In the
absence of rotation about the axes  and  (i.e.,  ), Eq. (82) is reduced to the first integral of the equation (40) of
motion of a physical pendulum, with . If the rotation is present, then (besides the case of very special initial conditions
when  and  the first contribution to  diverges at  and , so that the effective potential energy has
a minimum at some non-zero value  of the polar angle  - see Figure 11 .
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Figure 4.11. The effective potential energy  of the symmetric top, given by Eq. (82), as a function of the polar angle , for a
particular value (0.95) of the ratio  (so that at  , and several values of the ratio 

.

If the initial angle  is equal to this value , i.e. if the initial effective energy is equal to its minimum value , the polar
angle remains constant through the motion: . This corresponds to the pure torque-induced precession whose angular
velocity is given by the first of Eqs. (80):

The condition for finding , is a transcendental algebraic equation that cannot be solved analytically for arbitrary
parameters. However, in the high spinning speed limit (73), this is possible. Indeed, in this limit the -proportional contribution
to  is small, and we may analyze its effect by successive approximations. In the  approximation, i.e. at , the
minimum of  is evidently achieved at , turning the precession frequency (83) to zero. In the next, 
approximation, we may require that at , the derivative of the first term of Eq. (82) for  over , equal to 

 is canceled with that of the gravity-induced term, equal to . This immediately yields 
, so that identifying  with  (see Figure 8), we recover the simple

expression (72).

The second important result that may be readily obtained from Eq. (82) is the exact expression for the threshold value of the
spinning speed for a vertically rotating top . Indeed, in the limit  this expression may be readily simplified:

This formula shows that if  is higher than the following threshold value,

then the coefficient at  in Eq. (84) is positive, so that  has a stable minimum at . On the other hand, if  is decreased
below , the fixed point becomes unstable, so that the top falls. As the plots in Figure 11 show, Eq. (85) for the threshold
frequency works very well even for non-zero but small values of the precession angle . Note that if we take  in the
condition  of the approximate treatment, it acquires a very simple sense: .

Finally, Eqs. (82) give a natural description of one more phenomenon. If the initial energy is larger than , the angle 
oscillates between two classical turning points on both sides of the fixed point -see also Figure 11. The law and frequency of
these oscillations may be found exactly as in Sec.  - see Eqs. (3.27) and (3.28). At , this motion is a fast rotation of the
symmetry axis  of the body about its average position performing the slow torque-induced precession. Historically, these
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oscillations are called nutations, but their physics is similar to that of the free precession that was analyzed in the previous section,
and the order of magnitude of their frequency is given by Eq. (59).

It may be proved that small friction (not taken into account in the above analysis) leads first to decay of these nutations, then to a
slower drift of the precession angle  to zero and, finally, to a gradual decay of the spinning speed  until it reaches the
threshold (85) and the top falls.

 Of the several choices more convenient in the absence of fast rotation, the most common is the set of so-called Tait-Brian angles
(called the yaw, pitch, and roll), which are broadly used for aircraft and maritime navigation.

 Indeed, since the Lagrangian does not depend on time explicitly,  const, and since the full kinetic energy  (75)-(76) is a
quadratic-homogeneous function of the generalized velocities, .

 In that simple case, the body continues to rotate about the vertical symmetry axis: . Note, however, that such motion is
stable only if the spinning speed is sufficiently high - see Eq. (85) below.

 Indeed, the derivative of the fraction , taken at the point , is multiplied by the numerator, 
, which turns to zero at this point.
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