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8.3: Kinematics

In contrast to the stress tensor, which is useful and simple - see Eq. (2), the strain tensor is not a very useful notion in fluid
mechanics. Indeed, besides a very few situations, ' typical problems of this field involve fluid flow, i.e. a state when the velocity
of fluid particles has some nonzero time average. This means that the trajectory of each particle is a long line, and the notion of its
displacement g becomes impracticable. However, particle’s velocity v = dq/dt remains a very useful notion, especially if it is
considered as a function of the observation point r and (generally) time ¢. In an important class of fluid dynamics problem, the so-
called stationary (or "steady", or "static") flow, the velocity defined in this way does not depend on time, v = v(r) .

There is, however, a price to pay for the convenience of this notion: namely, due to the difference between the vectors q and r,
particle’s acceleration a = d2q/dt? (that participates, in particular, in the 224 Newton law) cannot be calculated just as the time
derivative of the velocity v(r, ¢). This fact is evident, for example, for the static flow case, in which the acceleration of individual
fluid particles may be very significant even if v(r) does not depend on time - just think about the acceleration of a drop of water
flowing over the Niagara Falls’ rim, first accelerating fast and then virtually stopping below, while the water velocity v at every
particular point, as measured from a bank-based reference frame, is nearly constant. Thus the main task of fluid kinematics is to
express a via v(r, t); let us do this.

Since each Cartesian component v; of the velocity v has to be considered as a function of four independent scalar variables: three
Cartesian components r; of the vector r and time ¢, its full time derivative may be represented as
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(8.3.1)

Let us apply this general relation to a specific set of infinitesimal changes {dr, drs, drs} that follows a small displacement dq of
a certain particular particle of the fluid, dr = dq = vdt , i.e.

drj = ’Ujdt. (832)

In this case, dv;/dt is the 4t component a; of the particle’s acceleration a, so that Eq. (17) yields the following key relation of
fluid kinematics:
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Using the del operator V, this result may be rewritten in the following compact vector form: 13
ov
a= E+(V-V)v. (8.3.4)

This relation already signals the main technical problem of the fluid dynamics: many equations involving particle’s acceleration are
nonlinear in velocity, excluding such a powerful tool as the linear superposition principle (which was used so frequently in the
previous chapters of this course) from the applicable mathematical arsenal.

One more basic relation of the fluid kinematics is the so-called continuity equation, which is essentially just the differential version
of the mass conservation law. Let us mark, inside a fluid flow, an arbitrary volume V' limited by a stationary (time-independent)
surface S. The total mass of the fluid inside the volume may change only due to its flow through the boundary:
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where the elementary area vector dA is defined just as in Sec. 7.2— see Figure 7. Now using the same divergence theorem that has
been used several times in this course !4 the surface integral in Eq. (20a) may be transformed into the integral of V(pv) over the
volume V, so that this relation may be rewritten as

/V(% +V-j> d*r=0 (8.3.6)

where the vector j = pv is called either the mass flux density (or the "mass current"). Since Eq. (20b) is valid for an arbitrary
stationary volume V/, the function under the integral has to vanish at any point:
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(8.3.7)

Fig. 8.7. Deriving the continuity equation.

Note that this continuity equation is valid not only for mass, but also for other conserved physics quantities (e.g., the electric
charge, probability, etc.), with the proper re-definition of p and j. 1°

12 One of them is sound propagation, where the particle displacements q are typically small, so that results of Sec. 7.7 are
applicable. As a reminder, they show that in fluids, with © =0, the transverse sound cannot propagate, while the longitudinal
sound can - see Eq. (7.114).

13 Note that the operator relation d/dt = 8/8t + (v- V) is applicable to an arbitrary (scalar or vector) function; it is frequently
called the convective derivative. (Alternative adjectives, such as "Lagrangian", "substantial", or "Stokes", are sometimes used for
this derivative as well.) The relation has numerous applications well beyond the fluid dynamics - see, e.g., EM Chapter 9 and QM

Chapter 1 .
14 1f the reader still needs a reminder, see MA Eq. (12.1).
15 See, e.g., EM Sec. 4.1, QM Sec. 1.4, and SM Sec. 5.6.
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