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6.2: N Coupled Oscillators
The calculations of the previous section may be readily generalized to the case of an arbitrary number (say,  ) coupled harmonic
oscillators, with an arbitrary type of coupling. It is evident that in this case Eq. (4) should be replaced with

Moreover, we can generalize the above expression for the mixed terms , taking into account their possible dependence not only
on the generalized coordinates but also on the generalized velocities, in a bilinear form similar to Eq. (4). The resulting Lagrangian
may be represented in a compact form,

where the off-diagonal terms are index-symmetric: , and the factors  compensate the double counting of
each term with  ’, taking place at the summation over two independently running indices. One may argue that Eq. (16) is quite
general if we still want to keep the equations of motion linear - as they always are if the oscillations are small enough.

Plugging Eq. (16) into the general form (2.19) of the Lagrange equation, we get  equations of motion of the system, one for each
value of the index 

Just as in the previous section, let us look for a particular solution to this system in the form

As a result, we are getting a system of  linear, homogeneous algebraic equations,

for the set of  distribution coefficients . The condition that this system is self-consistent is that the determinant of its matrix
equals zero:

This characteristic equation is an algebraic equation of degree  for , and so has  roots . For any Hamiltonian system
with stable equilibrium, the matrices  ’ and  ’ ensure that all these roots are real and negative. As a result, the general
solution to Eq. (17) is the sum of  terms proportional to exp , where all  eigenfrequencies  are
real.

Plugging each of these  values of  back into a particular set of linear equations (17), one can find the corresponding
set of distribution coefficients . Generally, the coefficients are complex, but to keep  real, the coefficients 
corresponding to , and  - corresponding to   have to be complex-conjugate of each other. Since the sets of the
distribution coefficients may be different for each , they should be marked with two indices,  and . Thus, at general initial
conditions, the time evolution of the  coordinate may be represented as

This formula shows very clearly again the physical sense of the distribution coefficients  : a set of these coefficients, with
different values of index  but the same , gives the complex amplitudes of oscillations of the coordinates for the special initial
conditions that ensure purely sinusoidal motion of all the system, with frequency .
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The calculation of the eigenfrequencies and distribution coefficients of a particular coupled system with many degrees of freedom
from Eqs. (19)-(20) is a task that frequently may be only done numerically.  Let us discuss just two particular but very important
cases. First, let all the coupling coefficients be small in the following sense:  and , for all 

, and all partial frequencies  be not too close to each other:

(Such situation frequently happens if parameters of the system are "random" in the sense that they do not follow any special, simple
rule - for example, resulting from some simple symmetry of the system.) Results of the previous section imply that in this case, the
coupling does not produce a noticeable change of oscillation frequencies: . In this situation, oscillations at each
eigenfrequency are heavily concentrated in one degree of freedom, i.e. in each set of the distribution coefficients  (for a given 
), one coefficient’s magnitude is much larger than all others.

Now let the conditions (22) be valid for all but one pair of partial frequencies, say  and , while these two frequencies are so
close that coupling of the corresponding partial oscillators becomes essential. In this case, the approximation  is still
valid for all other degrees of freedom, and the corresponding terms may be neglected in Eqs. (19) for  and 2 . As a result, we
return to Eqs. (7) (perhaps generalized for velocity coupling) and hence to the anticrossing diagram (Figure 2) discussed in the
previous section. As a result, an extended change of only one partial frequency (say,  ) of a weakly coupled system produces a
sequence of eigenfrequency anticrossings - see Figure 3 .

Figure 6.3. The level anticrossing in a system of  weakly coupled oscillators - schematically.

 Fortunately, very effective algorithms have been developed for this matrix diagonalization task - see, e.g., references in MA Sec.
16(iii)-(iv). For example, the popular MATLAB software package was initially created exactly for this purpose. ("MAT" in its
name stands for "matrix" rather than "mathematics".)
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