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4.5: Torque-induced Precession

The dynamics of rotation becomes even more complex in the presence of external forces. Let us consider the most important and
counter-intuitive effect of torque-induced precession, for the simplest case of an axially-symmetric body (which is a particular case
of the symmetric top, Iy = Is # I3 ), supported at some point A of its symmetry axis, that does not coincide with the center of
mass 0 - see Figure 9.

(a) (b)

Figure 4.9. Symmetric top in the gravity field: (a) a side view at the system and (b) the top view at the evolution of the horizontal
component of the angular momentum vector.

The uniform gravity field g creates bulk-distributed forces that, as we know from the analysis of the physical pendulum in Sec. 3,
are equivalent to a single force Mg applied in the center of mass - in Figure 9 , point 0 . The torque of this force relative to the
support point A is

T=ro|,» X Mg =Mins xg. (4.5.1)

Hence the general equation (33) of the angular momentum evolution (valid in any inertial frame, for example the one with an origin
in point A) becomes

L = Min; x g. (4.5.2)

Despite the apparent simplicity of this (exact!) equation, its analysis is straightforward only in the limit when the top is launched
spinning about its symmetry axis ng with a very high angular velocity w,t. . In this case, we may neglect the contribution to L due
to a relatively small precession velocity wpe (still to be calculated), and use Eq. (26) to write

L=I3w :I3wr0tn3. (453)

Then Eq. (70) shows that the vector L is perpendicular to both ng (and hence L ) and g, i.e. lies within the horizontal plane and is
perpendicular to the horizontal component Ly, of the vector L— see Figure 9 b. Since, according to Eq. (70), the magnitude of this
vector is constant, |L| = mglsin@, the vector L (and hence the body’s main axis) rotates about the vertical axis with the following
angular velocity:
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Thus, very counter-intuitively, the fast-rotating top does not follow the external, vertical force and, in addition to fast spinning
about the symmetry axis ng, performs a revolution, called the torqueinduced precession, about the vertical axis. Note that, similarly
to the free-precession frequency (59), the torque-induced precession frequency (72) does not depend on the initial (and sustained)
angle . However, the torque-induced precession frequency is inversely (rather than directly) proportional to wy.t . This fact makes
the above simple theory valid in many practical cases. Indeed, Eq. (71) is quantitatively valid if the contribution of the precession
into L is relatively small: Jwye << I3wrot , where I is a certain effective moment of inertia for the precession - to be calculated
below. Using Eq. (72), this condition may be rewritten as
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According to Eq. (16), for a body of not too extreme proportions, i.e. with all linear dimensions of the order of the same length
scale [, all inertia moments are of the order of MI?, so that the right-hand side of Eq. (73) is of the order of (g/I)'/?, i.e.
comparable with the frequency of small oscillations of the same body as the physical pendulum, i.e. at the absence of its fast
rotation.

To develop a qualitative theory that would be valid beyond such approximate treatment, the Euler equations (66) may be used, but
are not very convenient. A better approach, suggested by the same L. Euler, is to introduce a set of three independent angles
between the principal axes {n;, ny,n3} bound to the rigid body, and the axes {n,, n,, n} of an inertial reference frame (Figure
10), and then express the basic equation (33) of rotation, via these angles. There are several possible options for the definition of
such angles; Figure 10 shows the set of Euler angles, most convenient for analyses of fast rotation. '® As one can see, the first Euler
angle, 0, is the usual polar angle measured from the n,-axis to the ng-axis. The second one is the azimuthal angle ¢, measured
from the n,-axis to the so-called line of nodes formed by the intersection of planes [n,,n,| and [n;,n,]. The last Euler angle, 1,
is measured Euler within the plane [nj, ns], from the line of nodes to axis nj -axis. For example, in the simple picture of slow
force-induced precession of a symmetric top, that was discussed above, the angle 6 is constant, the angle ¢ changes rapidly, with
the rotation velocity wr(, while the angle ¢ evolves with the precession frequency wp;e (72).
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Fig. 4.10. Definition of the Euler angles.

Now we can express the principal-axes components of the instantaneous angular velocity vector, w1, ws, and ws, as measured in
the lab reference frame, in terms of the Euler angles. This may be readily done by calculating, from Figure 10, the contributions of
the Euler angles’ evolution to the rotation about each principal axis, and then adding them up:

w1 = sinfsiny + 6 cos

wy = @sinfcostp — 0 sin

w3 = @ cosO+1p
These relations enable the expression of the kinetic energy of rotation (25) and the angular momentum components (26) via the
generalized coordinates 6, , and v and their time derivatives (i.e. the corresponding generalized velocities), and then using the

powerful Lagrangian formalism to derive their equations of motion. This is especially simple to do in the case of symmetric tops
(with I; = I, ), because plugging Egs. (74) into Eqg. (25) we get an expression,

Tt = %(924—92)2 sin? 0) +%(¢cos@+¢)2, (4.5.5)

which does not include explicitly either ¢ or . (This reflects the fact that for a symmetric top we can always select the n; -axis to
coincide with the line of nodes, and hence take ¢ = 0 at the considered moment of time. Note that this trick does not mean we can
take 7,b =0, because the n;-axis, as observed from an inertial reference frame, moves!) Now we should not forget that at the
torque-induced precession, the center of mass moves as well (see, e.g., Figure 9), so that according to Eq. (14), the total kinetic
energy of the body is the sum of two terms,

M M -2
T =Tt +Tirans Tiran = TVZ = 7l2 (0 +¢2 sin? 6) s (456)
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while its potential energy is just
U = Mglcosf+ const . (4.5.7)

Now we could readily write the Lagrange equations of motion for the Euler angles, but it is simpler to immediately notice that
according to Egs. (75)-(77), the Lagrangian function, 7' — U, does not depend explicitly on the "cyclic" coordinates ¢ and 1, so
that the corresponding generalized momenta (2.31) are conserved:

orT .
Py = % = Ippsin? @+ I3(¢ cos 0+ 1) cos = const,

Dy = g =I3(¢ cos@—l—z/.z) = const,
o
where I, = I; + MI? . (According to Eq. (29), I is just the body’s moment of inertia for rotation about a horizontal axis passing
through the support point A.) According to the last of Eqgs. (74), py is just L3, i.e. the angular momentum’s component along the
precessing axis n3. On the other hand, by its very definition (78), p,, is L., i.e. the same vector L ’s component along the static
axis z. (Actually, we could foresee in advance the conservation of both these components of L for our system, because the vector
(69) of the external torque is perpendicular to both n3 and n,.) Using this notation, and solving the simple system of linear
equations (78)-(79) for the angle derivatives, we get

. L,—L3cosf ﬁ,Lz—I@COSGC

, Y= 0s . 4.5.8
4 I, sin’ 6 v I3 I, sin’ 6 ( )
One more conserved quantity in this problem is the full mechanical energy
Iy ¢/ I .
E=T+U= 7A (02 + ¢? sin? 0) + 73(¢cost9+¢)2 + Mgl cos#. (4.5.9)

Plugging Egs. (80) into Eq. (81), we get a first-order differential equation for the angle #, which may be represented in the
following physically transparent form:

Ip :2 (L, —Lscosf)® L2
—0 +Us(0)=FE, Ug(l)= ——-——"—+—+ Mglcosf+ const 4.5.10
2 «(6) «(6) 21, sin® 2f; Y ( )

Thus, similarly to the planetary problems considered in Sec. 3.4, the torque-induced precession of a symmetric top has been
reduced (without any approximations!) to a 1D problem of the motion of one of its degrees of freedom, the polar angle 6, in the
effective potential U (6). According to Eq. (82), very similar to Eq. (3.44) for the planetary problem, this potential is the sum of
the actual potential energy U given by Eq. (77), and a contribution from the kinetic energy of motion along two other angles. In the
absence of rotation about the axes n, and n3 (i.e., L, = L3 =0 ), Eq. (82) is reduced to the first integral of the equation (40) of
motion of a physical pendulum, with I’ = I . If the rotation is present, then (besides the case of very special initial conditions
when §(0) =0 and L, = L3),2° the first contribution to Ut (f) diverges at @ — 0 and m, so that the effective potential energy has
a minimum at some non-zero value 6 of the polar angle 6 - see Figure 11 .
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Figure 4.11. The effective potential energy Ues of the symmetric top, given by Eq. (82), as a function of the polar angle 6, for a
particular value (0.95) of the ratio r = L,/ Ls (so that at wyot >> wp, 0y = cos ' ra 0.10117r), and several values of the ratio

wrot/wth-

If the initial angle 6(0) is equal to this value 6y, i.e. if the initial effective energy is equal to its minimum value Uss (6p), the polar
angle remains constant through the motion: 6(¢) =6, . This corresponds to the pure torque-induced precession whose angular
velocity is given by the first of Egs. (80):

L, — Lscosb

4.5.11
IASiIl2 90 ( )

Wpre = 90 =
The condition for finding 6y, dUe/df = 0, is a transcendental algebraic equation that cannot be solved analytically for arbitrary
parameters. However, in the high spinning speed limit (73), this is possible. Indeed, in this limit the M gl-proportional contribution
to Ugs is small, and we may analyze its effect by successive approximations. In the oth approximation, i.e. at Mgl =0, the
minimum of U is evidently achieved at cosfy = L,/Ls, turning the precession frequency (83) to zero. In the next, 1%
approximation, we may require that at § =6, the derivative of the first term of Eq. (82) for Uy over cosf, equal to
L, (L, Lscosf) /Ipsin®6*' is canceled with that of the gravity-induced term, equal to Mgl. This immediately yields
Wpre = (L, — L3 cosby) /Ia sin? 6y = Mgl/Ls , so that identifying wyo; with ws = L3 /I3 (see Figure 8), we recover the simple
expression (72).

The second important result that may be readily obtained from Eq. (82) is the exact expression for the threshold value of the
spinning speed for a vertically rotating top (§ =0, L, = L3) . Indeed, in the limit @ — O this expression may be readily simplified:

L Mgl
Ue (0) ~ const + (ﬁ - Tg 6. (4.5.12)
This formula shows that if wyot = L3 /I3 is higher than the following threshold value,
Mgll, 12
Threshold rotation speed wip =2 ( Ig2 A ) , (4.5.13)
3

then the coefficient at 62 in Eq. (84) is positive, so that U, has a stable minimum at §y = 0. On the other hand, if w3 is decreased
below wyy, the fixed point becomes unstable, so that the top falls. As the plots in Figure 11 show, Eq. (85) for the threshold
frequency works very well even for non-zero but small values of the precession angle 6y. Note that if we take I =1, in the
condition (73) of the approximate treatment, it acquires a very simple sense: wyot >> wip -

Finally, Eqs. (82) give a natural description of one more phenomenon. If the initial energy is larger than Uy (6p), the angle
oscillates between two classical turning points on both sides of the fixed point 6y-see also Figure 11. The law and frequency of
these oscillations may be found exactly as in Sec. 3.3 - see Eqgs. (3.27) and (3.28). At w3 >> wy,, this motion is a fast rotation of the
symmetry axis ng of the body about its average position performing the slow torque-induced precession. Historically, these
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oscillations are called nutations, but their physics is similar to that of the free precession that was analyzed in the previous section,
and the order of magnitude of their frequency is given by Eq. (59).

It may be proved that small friction (not taken into account in the above analysis) leads first to decay of these nutations, then to a
slower drift of the precession angle 6y to zero and, finally, to a gradual decay of the spinning speed w;.; until it reaches the
threshold (85) and the top falls.

19 Of the several choices more convenient in the absence of fast rotation, the most common is the set of so-called Tait-Brian angles
(called the yaw, pitch, and roll), which are broadly used for aircraft and maritime navigation.

20 Indeed, since the Lagrangian does not depend on time explicitly, H = const, and since the full kinetic energy T' (75)-(76) is a
quadratic-homogeneous function of the generalized velocities, £ = H .

2L In that simple case, the body continues to rotate about the vertical symmetry axis: 6(t) = 0 . Note, however, that such motion is
stable only if the spinning speed is sufficiently high - see Eq. (85) below.

22 Indeed, the derivative of the fraction 1 /21y sin’ 0, taken at the point cos@ = L,/Ls, is multiplied by the numerator,
(L. — L3 cos @) ?, which turns to zero at this point.
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