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5.8: Harmonic and Subharmonic Oscillations
Figure 13 shows the numerically calculated  transient process and stationary oscillations in a linear oscillator and a very
representative nonlinear system, the pendulum described by Eq. (42), both with the same . Both systems are driven by a
sinusoidal external force of the same amplitude and frequency - in this illustration, equal to the small-oscillation own frequency 
of both systems. The plots show that despite a very substantial amplitude of the pendulum oscillations (the angle amplitude of
about one radian), their waveform remains almost exactly sinusoidal.  On the other hand, the nonlinearity affects the oscillation
amplitude very substantially. These results imply that the corresponding reduced equations (60), which are based on the assumption
(41), may work very well far beyond its formal restriction .

Still, the waveform of oscillations in a nonlinear system always differs from that of the applied force  in our case, from the sine
function of frequency . This fact is frequently formulated as the generation, by the system, of higher harmonics. Indeed, the
Fourier theorem tells us that any nonsinusoidal periodic function of time may be represented as a sum of its basic harmonic of
frequency  and higher harmonics with frequencies , with integer .

Note that an effective generation of higher harmonics is only possible with adequate nonlinearity of the system. For example,
consider the nonlinear term  used in the equations explored in Secs. 2 and 3. If the waveform  is sinusoidal, such term will
have only the basic  and the  harmonics see, e.g., Eq. (50). As another example, the "pendulum nonlinearity"  cannot
produce, without a time-independent component ("bias") in , any even harmonic, including the  one. The most efficient
generation of harmonics may be achieved using systems with the sharpest nonlinearities - e.g., semiconductor diodes whose current
may follow an exponential dependence on the applied voltage through several orders of magnitude. 

Figure 5.13. The oscillations induced by a similar sinusoidal external force (turned on at  ) in two systems with the same
small-oscillation frequency  and low damping: a linear oscillator (two top panels) and a pendulum (two bottom panels). In all
cases, , and .

Another way to increase the contents of an  higher harmonic in a nonlinear oscillator is to reduce the excitation frequency  to 
, so that the oscillator resonated at the frequency  of the desired harmonic. For example, Figure 14a shows the

oscillations in a pendulum described by the same Eq. (42), but driven at frequency . One can see that the  harmonic
amplitude may be comparable with that of the basic harmonic, especially if the external frequency is additionally lowered (Figure
14b) to accommodate for the deviation of the effective frequency  of own oscillations from its small-oscillation value 
see Eq. (49), Figure 4, and their discussion in Sec. 2 above.

However, numerical modeling of nonlinear oscillators, as well as experiments with their physical implementations, bring more
surprises. For example, the bottom panel of Figure 15 shows oscillations in a pendulum under the effect of a strong sinusoidal force
with a frequency  close to . One can see that at some parameter values and initial conditions, the system’s oscillation spectrum
is heavily contributed (almost dominated) by the  subharmonic, i.e. the Fourier component of frequency .

This counter-intuitive phenomenon of such subharmonic generation may be explained as follows. Let us assume that subharmonic
oscillations of frequency  have somehow appeared, and coexist with the forced oscillations of frequency :
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Then the leading nonlinear term, , of the Taylor expansion of the pendulum’s nonlinearity , is proportional to

Figure 5.14. The oscillations induced in a pendulum, with damping , by a sinusoidal external force of amplitude 
, and frequencies  (top panel) and  (bottom panel).

Fig. 5.15. The oscillations of a pendulum with , driven by a sinusoidal external force of amplitude  and
frequency , at initial conditions  (the top row) and  (the bottom row), with  in both
cases.

While the first and the last terms of the last expression depend only of the amplitudes of the individual components of oscillations,
the two middle terms are more interesting, because they produce so-called combinational frequencies of the two components. For
our case, the third term,

is of special importance, because it produces, besides other combinational frequencies, the subharmonic component with the total
phase

q(t) ≈ A cos Ψ+ cos ,  where Ψ ≡ ωt−φ, ≡ − .Asub  Ψsub  Ψsub 
ωt

3
φsub  (5.8.1)

αq3 sinq

q3 = (A cos Ψ+ cos )Asub  Ψsub 
3

≡ Ψ+3 Ψcos +3A cos Ψ +A3 cos3 A2Asub  cos2 Ψsub  A2
sub  cos2 Ψsub  A3

sub  cos3 Ψsub 

δ/ = 0.03ω0

= 0.75f0 /3ω0 0.8 × /3ω0

 δ/ = 0.03ω0   = 3f0

 0.8 ×3ω0  q(0) = 0  q(0) = 1  dq/dt(0) = 0

3A cos Ψ = A cos(Ψ−2 ) +… ,A2
sub  cos2 Ψsub 

3

4
A2

sub  Ψsub  (5.8.2)

Ψ−2 = −φ+2Ψsub 
ωt

3
φsub  (5.8.3)

https://libretexts.org/
https://phys.libretexts.org/@go/page/58631?pdf


5.8.3 https://phys.libretexts.org/@go/page/58631

Thus, within a certain range of the mutual phase shift between the Fourier components, this nonlinear contribution is synchronous
with the subharmonic oscillations, and describes the interaction that can deliver to it the energy from the external force, so that the
oscillations may be sustained. Note, however, that the amplitude of the term describing this energy exchange is proportional to the
square of , and vanishes at the linearization of the equations of motion near the trivial fixed point. This means that the point is
always stable, i.e., the  subharmonic cannot be self-excited and always needs an initial "kickoff" - compare the two panels of
Figure 15. The same is true for higher-order subharmonics.

Only the second subharmonic is a special case. Indeed, let us make a calculation similar to Eq. (102), by replacing Eq. (101) with

for a nonlinear term proportional to  :

Here the combinational-frequency term capable of supporting the  subharmonic,

is linear in the subharmonic’s amplitude, i.e. survives the linearization near the trivial fixed point. This means that the second
subharmonic may arise spontaneously, from infinitesimal fluctuations.

Moreover, such excitation of the second subharmonic is very similar to the parametric excitation that was discussed in detail in Sec.
5, and this similarity is not coincidental. Indeed, let us redo the expansion (106) making a somewhat different assumption - that the
oscillations are a sum of the forced oscillations at the external force’s frequency  and an arbitrary but weak perturbation:

Then, neglecting the small term proportional to , we get

Besides the inconsequential phase , the second term in the last formula is exactly similar to the term describing the parametric
effects in Eq. (75). This fact means that for a weak perturbation, a system with a quadratic nonlinearity in the presence of a strong
"pumping" signal of frequency  is equivalent to a system with parameters changing in time with frequency . This fact is broadly
used for the parametric excitation at high (e.g., optical) frequencies, where the mechanical means of parameter modulation (see,
e.g., Figure 5) are not practicable. The necessary quadratic nonlinearity at optical frequencies may be provided by a non-
centrosymmetric nonlinear crystal, e.g., the -phase barium borate .

Before finishing this chapter, let me elaborate a bit on a general topic: the relation between the numerical and analytical approaches
to problems of dynamics - and physics as a whole. We have just seen that sometimes numerical solutions, like those shown in
Figure 15b, may give vital clues for previously unanticipated phenomena such as the excitation of subharmonics. (The
phenomenon of deterministic chaos, which will be discussed in Chapter 9 below, presents another example of such "numerical
discoveries".) One might also argue that in the absence of exact analytical solutions, numerical simulations may be the main
theoretical tool for the study of such phenomena. These hopes are, however, muted by the general problem that is frequently called
the curse of dimensionality  in which the last word refers to the number of parameters of the problem to be solved. 

Indeed, let us have another look at Figure 15. OK, we have been lucky to find a new phenomenon, the  subharmonic generation,
for a particular set of parameters  in that case, five of them:  , and .
Could we tell anything about how common this effect is? Are subharmonics with different  possible in this system? The only way
to address these questions computationally is to carry out similar numerical simulations in many points of the  dimensional (in
this case,  ) space of parameters. Say, we have decided that breaking the reasonable range of each parameter to 
points is sufficient. (For many problems, even more points are necessary - see, e.g., Sec. 9.1.) Then the total number of numerical
experiments to carry out is   - not a simple task even for the powerful modern computing facilities. (Besides
the pure number of required CPU cycles, consider the storage and analysis of the results.) For many important problems of
nonlinear dynamics, e.g., turbulence, the parameter dimensionality  is substantially larger, and the computer resources necessary
even for one numerical experiment, are much greater.
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In the view of the curse of dimensionality, approximate analytical considerations, like those outlined above for the subharmonic
excitation, are invaluable. More generally, physics used to stand on two legs: experiment and analytical theory. The enormous
progress of computer performance during a few last decades has provided it with one more point of support (a tail? :-) - numerical
simulation. This does not mean we can afford to discard any of the legs we are standing on.

 All numerical results shown in this section have been obtained by the -order Runge-Kutta method with the automatic step
adjustment that guarantees the relative error of the order of  much smaller than the pixel size in the shown plots.

 In this particular case, the higher harmonic content is about , dominated by the  harmonic, whose amplitude and phase
are in a very good agreement with Eq. (50).

 This method is used in practice, for example, for the generation of electromagnetic waves with frequencies in the terahertz range
, which still lacks efficient electronic self-oscillators that could be used as practical generators.

 This term had been coined in 1957 by Richard Bellman in the context of the optimal control theory (where the dimensionality
means the number of parameters affecting the system under control), but gradually has spread all over quantitative sciences using
numerical methods.

 In EM Sec. 1.2, I discuss implications of the curse implications for a different case, when both analytical and numerical solutions
to the same problem are possible.
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