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6.6: Wave Decay and Attenuation
Now let us discuss the effects of dissipation on the 1D waves, on the example of the same uniform system shown in Figure 4. The
effects are simplest for a linear drag that may be described, as it was done for a single oscillator in , by adding the term 

, to Eq. (24) for each particle:

(In a uniform system, the drag coefficient  should be similar for all particles, though it may be different for the longitudinal and
transverse oscillations.)

To analyze the dissipation effect on the standing waves, we may again use the variable separation method, i.e. look for the solution
of Eq. (76) in the form similar to Eq. (67), naturally readjusting it for our current discrete case:

After dividing all terms by , and separating the time-dependent and space-dependent terms, we get

As we know from the previous section, the resulting equation for the function  is satisfied if the variable separation constant
is equal to , where  obeys the dispersion relation (30) for the wave number , properly calculated for the dissipation-free
system, with the account of the given boundary conditions - see, e.g. Eqs. (62) and (72). Hence for the function  we are
getting the ordinary differential equation

which is absolutely similar to Eq. (5.6b) for a single linear oscillator, which was studied in Sec. 5.1. As we already know, it has the
solution (5.9), describing the free oscillation decay with the relaxation time given by , and hence similar for all
modes. 

Hence, the above analysis of the dissipation effect on the free standing waves has not brought any surprises, but it gives us a hint of
how their forced oscillations, induced by some external forces  exerted on the particles, may be analyzed. Indeed,
representing the force as a sum of spatial harmonics proportional to the system’s modes,

and using the variable separation (77), we arrive at the equation

similar to Eq. (5.13b) for a single oscillator. This fact enables using all the methods discussed in Sec.  for the forced oscillation
analysis, besides that the temporal Green’s function, defined by either of the equivalent equations (5.27) and (5.28), now acquires
the index , i.e. becomes mode-dependent:  . Performing the weighed summation similar to Eq. (80),

we get the spatial-temporal Green’s function of the system - in this case, for a discrete, 1D set of spatial points . As in the
single-oscillator case, it has a simple physical sense of the oscillations induced by a delta-functional force (i.e. a very short pulse),
exerted on the  particle. We will meet (and use) such spatial-temporal Green’s functions in other parts of this series as well.

Now let us discuss the dissipation effects on the traveling waves, where they may take a completely different form of attenuation.
Let us discuss it on a simple example when one end (located at  of a very long chain  is externally-forced to
perform sinusoidal oscillations of a certain frequency  and a fixed amplitude . In this case, it is natural to look for the particular
solution of Eq. (76) in a form very different from Eq. (77):
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with time-independent but generally complex amplitudes . As our discussion of a single oscillator in Sec.  implies, this is not
the general, but rather a partial solution, which describes forced oscillations in the system, to which it settles after some initial
transient process. (At non-zero damping, we may be sure that this process fades after a finite time, and thus may be ignored for
most purposes.)

Plugging Eq. (83) into Eq. (76), we reduce it to an equation for the amplitudes ,

which is a natural generalization of Eq. (25). As a result, partial solutions of the set of these equations (for  ) may be
looked for in the form (26) again, but now, because of the new, imaginary term in Eq. (84), we should be ready to get a complex
phase shift , and hence a complex wave number  Indeed, the resulting characteristic equation for ,

(where  is defined by Eq. (30), and the damping coefficient is defined just as in a single oscillator,  , does not have
a real solution even at . Using the well-known expressions for the sine function of a complex argument  Eq. (85) may
be readily solved in the most important low-damping limit . In the linear approximation in , it does not affect the real part
of , but makes its imaginary part different from zero:

with a periodic extension to other periods - see Figure 5. Just as was done in Eq. (28), due to two values of the wave number,
generally we have to take  in the form of not a single wave (26), but of a linear superposition of two partial solutions:

where the constants should be found from the boundary conditions. In our particular case,  and , so that only
one of these two waves, namely the wave exponentially decaying at its penetration into the system, is different from zero: 

. Hence our solution describes a single wave, with the real amplitude and the oscillation energy decreasing as

i.e. with a frequency-independent attenuation constant  so that the spatial scale of wave penetration into a dissipative
system is given by . Certainly, our simple solution (88) is only valid for a system of length ; otherwise, we would
need the second term in the sum (87) to describe the wave reflected from its opposite end.

 Even an elementary experience with acoustic guitars shows that for their strings this particular conclusion of our theory is not
valid: higher modes ("overtones") decay substantially faster, leaving the fundamental mode oscillations for a slower decay. This is a
result of another important energy loss (i.e. the wave decay) mechanism, not taken into account in Eq. (76) - the radiation of the
sound into the guitar’s body through the string supports, mostly through the bridge. Such radiation may be described by a proper
modification of the boundary conditions (62), in terms of the ratio of the wave impedance (47) of the string and those of the
supports.

 As a reminder, we have already met such a situation in the absence of damping, but at  see Eq. (38).

 See, e.g., MA Eq. (3.5).

 I am sorry to use for the attenuation the same letter  as for the phase shift in Eq. (26) and a few of its corollaries, but both
notations are traditional.
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