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4.4: Free Rotation

Now let us proceed to the more complex case when the rotation axis is not fixed. A good illustration of the complexity arising in
this case comes from the case of a rigid body left alone, i.e. not subjected to external forces and hence with its potential energy U
constant. Since in this case, according to Eq. (44), the center of mass moves (as measured from any inertial reference frame) with a
constant velocity, we can always use a convenient inertial reference frame with the origin at that point. From the point of view of
such a frame, the body’s motion is a pure rotation, and 7i;,n = 0. Hence, the system’s Lagrangian equals just the rotational energy
(15), which is, first, a quadratic-homogeneous function of the components w; (which may be taken for generalized velocities), and,
second, does not depend on time explicitly. As we know from Chapter 2, in this case the mechanical energy, here equal to T}
alone, is conserved. According to Eq. (15), for the principal-axes components of the vector w, this means
I

3
Tiot = Z Ew? = const (4.4.1)

Next, as Eq. (33) shows, in the absence of external forces, the angular momentum L of the body is conserved as well. However,
though we can certainly use Eq. (26) to represent this fact as

3
L= Z Ijwjn; = const, (4.4.2)

j=1

where n; are the principal axes, this does not mean that all components w; are constant, because the principal axes are fixed
relative to the rigid body, and hence may rotate with it.

Before exploring these complications, let us briefly mention two conceptually trivial, but practically very important, particular
cases. The first is a spherical top (I; =I, = I3 =1) . In this case, Eqgs. (55) and (56) imply that all components of the vector
w=L/I, i.e. both the magnitude and the direction of the angular velocity are conserved, for any initial spin. In other words, the
body conserves its rotation speed and axis direction, as measured in an inertial frame. The most obvious example is a spherical
planet. For example, our Mother Earth, rotating about its axis with angular velocity w = 27/ (1 day )~ 7.3 x 107° s™1, keeps its
axis at a nearly constant angle of 23°27 ’ to the ecliptic pole, i.e. the axis normal to the plane of its motion around the Sun. (In Sec.
6 below, we will discuss some very slow motions of this axis, due to gravity effects.)

Spherical tops are also used in the most accurate gyroscopes, usually with gas-jet or magnetic suspension in vacuum. If done
carefully, such systems may have spectacular stability. For example, the gyroscope system of the Gravity Probe B satellite
experiment, flown in 2004-5, was based on quartz spheres - round with precision of about 10 nm and covered with
superconducting thin films (which enabled their magnetic suspension and monitoring). The whole system was stable enough to
measure that the so-called geodetic effect in general relativity (essentially, the space curving by Earth’s mass), resulting in the axis’
precession by only 6.6 arc seconds per year, i.e. with a precession frequency of just ~ 10 s, agrees with theory with a record
~ 0.3% accuracy. ?

The second simple case is that of the symmetric top (I3 = I # I3) , with the initial vector L aligned with the main principal axis.
In this case, w = L/I3 = const, so that the rotation axis is conserved. 1* Such tops, typically in the shape of a flywheel (heavy, flat
rotor), and supported by a three-ring gimbal system (also called the “Cardan suspensions”) that allow for torque-free rotation about
three mutually perpendicular axes,'! are broadly used in more common gyroscopes. Invented by Léon Foucault in the 1850s and
made practical by H. Anschiitz-Kaempfe, such gyroscopes have become core parts of automatic guidance systems, for example, in
ships, airplanes, missiles, etc. Even if its support wobbles and/or drifts, the suspended gyroscope sustains its direction relative to an
inertial reference frame.!?

However, in the general case with no such special initial alignment, the dynamics of symmetric tops is more complicated. In this
case, the vector L is still conserved, including its direction, but the vector w is not. Indeed, let us direct the ny axis normally to the
common plane of vectors L and the current instantaneous direction ng of the main principal axis (in Figure 8 below, the plane of
the drawing); then, in that particular instant, Ly, = 0. Now let us recall that in a symmetric top, the axis ns is a principal one.
According to Eq. (26) with j = 2, the corresponding component ws has to be equal to Ly /I, so it is equal to zero. This means that
the vector w lies in this plane (the common plane of vectors L and n3 ) as well - see Figure 8a.
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Figure 4.8. Free rotation of a symmetric top: (a) the general configuration of vectors, and (b) calculating the free precession
frequency.

Now consider any point located on the main principal axis nz, and hence on the plane [ng, L]. Since w is the instantaneous axis of
rotation, according to Eq. (9), the instantaneous velocity v =w X r of the point is directed normally to that plane. Since this is true
for each point of the main axis (besides only one, with r =0, i.e. the center of mass, which does not move), this axis as a whole
has to move perpendicular to the common plane of the vectors L, w, and n3. Since this conclusion is valid for any moment of time,
it means that the vectors w and n3 rotate about the space-fixed vector L together, with some angular velocity wy,e , at each moment
staying within one plane. This effect is usually called the free precession (or "torque-free", or "regular") precession, and has to be
clearly distinguished it from the completely different effect of the torque-induced precession, which will be discussed in the next
section.To calculate wy,. , let us represent the instant vector w as a sum of not its Cartesian components (as in Figure 8a), but rather
of two non-orthogonal vectors directed along n3 and L (Figure 8b):
L
W = WrotN3 +WpreNL, NI = T (4.4.3)
Figure 8b shows that w;o; has the meaning of the angular velocity of rotation of the body about its main principal axis, while wy;.
is the angular velocity of rotation of that axis about the constant direction of the vector L, i.e. the frequency of precession, i.e.
exactly what we are trying to find. Now wy,e may be readily calculated from the comparison of two panels of Figure 8, by noticing
that the same angle 6 between the vectors L and n3 participates in two relations:

L, wi

sinf = I = e (4.4.4)

Since the n; -axis is a principal one, we may use Eq. (26) for j=1, i.e. L1 = 1w, to eliminate w; from Eq. (58), and get a very
simple formula
L

Wpre = I (4.4.5)
This result shows that the precession frequency is constant and independent of the alignment of the vector L with the main
principal axis n3, while the amplitude of this motion (characterized by the angle 6 ) does depend on the alignment, and vanishes if
L is parallel to n3 - 3 Note also that if all principal moments of inertia are of the same order, wyy is of the same order as the total
angular speed w = |w| of rotation.

Now let us briefly discuss the free precession in the general case of an "asymmetric top", i.e. a body with arbitrary Iy # Is #£ I3 .
In this case, the effect is more complex because here not only the direction but also the magnitude of the instantaneous angular
velocity w may evolve in time. If we are only interested in the relation between the instantaneous values of w; and L;, i.e. the
"trajectories” of the vectors w and L as observed from the reference frame {n;,ny,ns} of the principal axes of the body (rather
than the explicit law of their time evolution), they may be found directly from the conservation laws. (Let me emphasize again that
the vector L, being constant in an inertial reference frame, generally evolves in the frame rotating with the body.) Indeed, Eq. (55)
may be understood as the equation of an ellipsoid in Cartesian coordinates {wy, w2, w3 }, so that for a free body, the vector w has to
stay on the surface of that ellipsoid. * On the other hand, since the reference frame rotation preserves the length of any vector, the
magnitude (but not the direction!) of the vector L is also an integral of motion in the moving frame, and we can write
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3
= ZI]2w§ = const (446)
=1

3
LZEZL2

j=1
Hence the trajectory of the vector w follows the closed curve formed by the intersection of two ellipsoids, (55) and (60). It is

evident that this trajectory is generally "taco-edge-shaped", i.e. more complex than a planar circle, but never very complex either.
15

The same argument may be repeated for the vector L, for whom the first form of Eq. (60) descries a sphere, and Eq. (55), another
ellipsoid:
3

1
2
Trot = E 1 o7, L]. = const. (4.4.7)
=

On the other hand, if we are interested in the trajectory of the vector w as observed from an inertial frame (in which the vector L
stays still), we may note that the general relation (15) for the same rotational energy 7;,; may also be rewritten as

rot— ZWJZI ’w’ (448)

But according to the Eq. (22), the second sum on the right-hand side is nothing more than L, so that

23: L. (4.4.9)

This equation shows that for a free body (T;ot = const, L = const), even if the vector w changes in time, its endpoint should stay
within a plane perpendicular to the angular momentum L. (Earlier, we have seen that for the particular case of the symmetric top -
see Figure 8b, but for an asymmetric top, the trajectory of the endpoint may not be circular.)

rot -

l\DI»—l

If we are interested not only in the trajectory of the vector w, but also the law of its evolution in time, it may be calculated using the
general Eq. (33) expressed in the principal components w;. For that, we have to recall that Eq. (33) is only valid in an inertial
reference frame, while the frame {n;, ny, n3} may rotate with the body and hence is generally not inertial. We may handle this
problem by applying, to the vector L, the general kinematic relation (8):

dL dL
— = — +w x L. (4.4.10)
dt inlab dt inmov
Combining it with Eq. (33), in the moving frame we get
L
d—+w><L T, (4.4.11)

dt
where 7 is the external torque. In particular, for the principal-axis components L, related to the components w; by Eq. (26), the

vector equation (65) is reduced to a set of three scalar Euler equations

Liwi+ (I — Iy) wywy =T, (4.4.12)

where the set of indices {7, 5/, j " } has to follow the usual "right" order - e.g., {1, 2, 3}, etc. 1

In order to get a feeling how do the Euler equations work, let us return to the particular case of a free symmetric top
(m=m=73=0,I =1, #I3) .In this case, I — I, =0, so that Eq. (66) with j =3 yields w3 = const, while the equations
for j=1 and j =2 take the following simple form:

dJl = _Qpre w3, wZ = Qpre wi, (4413)
where (), is a constant determined by both the system parameters and the initial conditions:

I; -1
I

Qpre = w3 (4.4.14)

The system of two equations (67) has a sinusoidal solution with frequency {2y, , and describes a uniform rotation of the vector w,
with that frequency, about the main axis ng. This is just another representation of the torque-free precession analyzed above, this
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time as observed from the rotating body. Evidently, Qe is substantially different from the frequency wy (59) of the precession
as observed from the lab frame; for example, ;e vanishes for the spherical top (with I; = I = I3 ), while w. , in this case, is
equal to the rotation frequency.

Unfortunately, for the rotation of an asymmetric top (i.e., an arbitrary rigid body), when no component w; is conserved, the Euler
equations (66) are strongly nonlinear even in the absence of any external torque, and a discussion of their solutions would take
more time than I can afford. 17

9 Still, the main goal of this rather expensive ( $750M) project, an accurate measurement of a more subtle relativistic effect, the so-
called frame-dragging drift (also called "the Schiff precession"), predicted to be about 0.04 arc seconds per year, has not been
achieved.

10 This is also true for an asymmetric top, i.e. an arbitrary body (with, say, I; < I < I3 ), but in this case the alignment of the
vector L with the axis ny corresponding to the intermediate moment of inertia, is unstable: an infinitesimal initial misalignment of
these vectors may lead to their large misalignment during the motion.

11 See, for example, a very nice animation available online at http://en. Wikipedia.org/wiki/Gimbal.

12 Much more compact (and much less accurate) gyroscopes used, for example, in smartphones and tablet computers, are based on
a more subtle effect of rotation on mechanical oscillator’s frequency, and are implemented as micro-electromechanical systems
(MEMS) on silicon chip surfaces - see, e.g., Chapter 22 in V. Kaajakari, Practical MEMS, Small Gear Publishing, 2009.

13 For our Earth, the free precession amplitude is so small (corresponding to sub-10-m linear displacements of the Earth surface)
that this effect is of the same order as other, more irregular motions of the rotation axis, resulting from the turbulent fluid flow
effects in planet’s interior and its atmosphere.

14 It is frequently called the Poinsot’s ellipsoid, named after Louis Poinsot (1777-1859) who has made several important
contributions to rigid body mechanics.

15 Curiously, the "wobbling" motion along such trajectories was observed not only for macroscopic rigid bodies, but also for heavy
atomic nuclei - see, e.g., N. Sensharma et al., Phys. Rev. Lett. 124, 052501 (2020).

16 These equations are of course valid in the simplest case of the fixed rotation axis as well. For example, if w = n,w, i.e.
wz = wy, =0, Eq. (66) is reduced to Eq. (38).

17 For our Earth with its equatorial bulge (see Sec. 6 below), the ratio (I3 —1I) /I is ~1/300, so that 27/, is about 10
months. However, due to the fluid flow effects mentioned above, the observed precession is not very regular.

18 guch discussion may be found, for example, in Sec. 37 of L. Landau and E. Lifshitz, Mechanics, 34 ed., Butterworth-
Heinemann, 1976.
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