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4.3: Fixed-axis Rotation
Now we are well equipped for a discussion of rigid body’s rotational dynamics. The general equation of this dynamics is given by
Eq. (1.38), which is valid for dynamics of any system of particles - either rigidly connected or not:

where  is the net torque of external forces. Let us start exploring this equation from the simplest case when the axis of rotation, i.e.
the direction of vector , is fixed by some external constraints. Directing the -axis along this vector, we have .
According to Eq. (22), in this case, the -component of the angular momentum,

where , though not necessarily one of the principal moments of inertia, still may be calculated using Eq. (24):

with  being the distance of each particle from the rotation axis . According to Eq. (15), in this case the rotational kinetic energy
is just

Moreover, it is straightforward to show that if the rotation axis is fixed, Eqs. (34)-(36) are valid even if the axis does not pass
through the center of mass - provided that the distances  are now measured from that axis. (The proof is left for the reader’s
exercise.)

As a result, we may not care about other components of the vector  and use just one component of Eq. (33),

because it, when combined with Eq. (34), completely determines the dynamics of rotation:

where  is the angle of rotation about the axis, so that . The scalar relations (34), (36) and (38), describing rotation about a
fixed axis, are completely similar to the corresponding formulas of 1D motion of a single particle, with  corresponding to the
usual ("linear") velocity, the angular momentum component  - to the linear momentum, and -to particle’s mass.

The resulting motion about the axis is also frequently similar to that of a single particle. As a simple example, let us consider what
is called the physical pendulum (Figure 5) - a rigid body free to rotate about a fixed horizontal axis that does not pass through the
center of mass 0 , in a uniform gravity field .

Figure 4.5. Physical pendulum: a body with a fixed (horizontal) rotation axis 0' that does not pass through the center of mass 0 .
(The plane of drawing is normal to the axis.)

Let us drop the perpendicular from point 0 to the rotation axis, and call the oppositely directed vector  - see the dashed arrow in
Figure 5. Then the torque (relative to the rotation axis 0 ’) of the forces keeping the axis fixed is zero, and the only contribution to
the net torque is due to gravity alone:
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(The last step used the facts that point 0 is the center of mass, so that the second term in the right-hand side equals zero, and that the
vectors  and  are the same for all particles of the body.)

This result shows that the torque is directed along the rotation axis, and its (only) component  is equal to , where  is
the angle between the vectors  and , i.e. the angular deviation of the pendulum from the position of equilibrium - see Figure 5
again. As a result, Eq. (38) takes the form,

where  is the moment of inertia for rotation about the axis 0 ’ rather than about the center of mass. This equation is identical to
Eq. (1.18) for the point-mass (sometimes called "mathematical") pendulum, with the small-oscillation frequency

As a sanity check, in the simplest case when the linear size of the body is much smaller than the suspension length , Eq. (35) yields
, and Eq. (41) reduces to the well-familiar formula   for the point-mass pendulum.

Now let us discuss the situations when a rigid body not only rotates but also moves as a whole. As we already know from our
introductory chapter, the total linear momentum of the body,

satisfies the  Newton law in the form (1.30). Using the definition (13) of the center of mass, the momentum may be represented
as

where  is the vector sum of all external forces. This equation shows that the center of mass of the body moves exactly like a point
particle of mass , under the effect of the net force . In many cases, this fact makes the translational dynamics of a rigid body
absolutely similar to that of a point particle.

The situation becomes more complex if some of the forces contributing to the vector sum  depend on the rotation of the same
body, i.e. if its rotational and translational motions are coupled. Analysis of such coupled motion is rather straightforward if the
direction of the rotation axis does not change in time, and hence Eqs. (35)-(36) are still valid. Possibly the simplest example is a
round cylinder (say, a wheel) rolling on a surface without slippage (Figure 6). Here the no-slippage condition may be represented as
the requirement of the net velocity of the particular wheel’s point A that touches the surface to equal zero - in the reference frame
connected to the surface. For the simplest case of plane surface (Figure 6a), this condition may be spelled out using Eq. (10), giving
the following relation between the angular velocity  of the wheel and the linear velocity  of its center:

Figure 4.6. Round cylinder rolling over (a) a plane surface and (b) a concave surface.

Such kinematic relations are essentially holonomic constraints, which reduce the number of degrees of freedom of the system. For
example, without the no-slippage condition (45), the wheel on a plane surface has to be considered as a system with two degrees of
freedom, making its total kinetic energy (14) a function of two independent generalized velocities, say  and  :
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Using Eq. (45) we may eliminate, for example, the linear velocity and reduce Eq. (46) to

This result may be interpreted as the kinetic energy of pure rotation of the wheel about the instantaneous rotation axis A, with 
being the moment of inertia about that axis, satisfying Eq. (29).

Kinematic relations are not always as simple as Eq. (45). For example, if a wheel is rolling on a concave surface (Figure 6b), we
need to relate the angular velocities of the wheel’s rotation about its axis 0 ’ (say,  ) and that (say,  ) of its axis’ rotation about
the center 0 of curvature of the surface. A popular error here is to write  [WRONG!]. A prudent way to derive the
correct relation is to note that Eq. (45) holds for this situation as well, and on the other hand, the same linear velocity of the wheel’s
center may be expressed as . Combining these formulas, we get the correct relation

Another famous example of the relation between the translational and rotational motion is given by the "sliding ladder" problem
(Figure 7). Let us analyze it for the simplest case of negligible friction, and the ladder’s thickness small in comparison with its
length .

Figure 4.7. The sliding ladder problem.

To use the Lagrangian formalism, we may write the kinetic energy of the ladder as the sum (14) of its translational and rotational
parts:

where  and  are the Cartesian coordinates of its center of mass in an inertial reference frame, and  is the moment of inertia for
rotation about the -axis passing through the center of mass. (For the uniformly distributed mass, an elementary integration of Eq.
(35) yields  ). In the reference frame with the center in the corner 0 , both  and  may be simply expressed via the
angle  :

(The easiest way to obtain these relations is to notice that the dashed line in Figure 7 has length , and the same slope  as the
ladder.) Plugging these expressions into Eq. (49), we get

Since the potential energy of the ladder in the gravity field may be also expressed via the same angle,
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 may be conveniently used as the (only) generalized coordinate of the system. Even without writing the Lagrange equation of
motion for that coordinate, we may notice that since the Lagrangian function   does not depend on time explicitly, and
the kinetic energy (51) is a quadratic-homogeneous function of the generalized velocity , the full mechanical energy,

is conserved, giving us the first integral of motion. Moreover, Eq. (53) shows that the system’s energy (and hence dynamics) is
identical to that of a physical pendulum with an unstable fixed point , a stable fixed point at , and frequency

of small oscillations near the latter point. (Of course, this fixed point cannot be reached in the simple geometry shown in Figure 7,
where the ladder’s fall on the floor would change its equations of motion. Moreover, even before that, the left end of the ladder may
detach from the wall. The analysis of this issue is left for the reader’s exercise.)

 Note that according to Eq. (22), other Cartesian components of the angular momentum,  and , may be different from zero,
and may even evolve in time. The corresponding torques  and , which obey Eq. (33), are automatically provided by the
external forces that keep the rotation axis fixed.

This page titled 4.3: Fixed-axis Rotation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Konstantin K.
Likharev via source content that was edited to the style and standards of the LibreTexts platform.

α

L ≡ T −U

α̇

E ≡ T +U = +Mg sinα = ( +sinα) ,
Ief

2
α̇2 l

2

Mgl

2

lα̇2

3g
(4.3.18)

= π/2α1 = −π/2α2

Ω =( )
3g

2l

1/2

(4.3.19)

8 Lx Ly

τx τy

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34762?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Essential_Graduate_Physics_-_Classical_Mechanics_(Likharev)/04%3A_Rigid_Body_Motion/4.03%3A_Fixed-axis_Rotation
https://creativecommons.org/licenses/by-nc-sa/4.0
https://www.linkedin.com/in/konstantin-likharev-2389805/
https://sites.google.com/site/likharevegp/

