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2.1: Lagrange Equation
In many cases, the constraints imposed on the 3D motion of a system of  particles may be described by  vector (i.e.  scalar)
algebraic equations

where  are certain generalized coordinates that (together with constraints) completely define the system position. Their number 
 is called the number of the actual degrees of freedom of the system. The constraints that allow such description are called

holonomic. 

For example, for the problem discussed briefly in Section 1.5, namely the bead sliding along a rotating ring (Figure 1), ,
because with the constraints imposed by the ring, the bead’s position is uniquely determined by just one generalized coordinate -
for example, its polar angle .

Figure 2.1. A bead on a rotating ring as an example of a system with just one degree of freedom .

Indeed, selecting the reference frame as shown in Figure 1 and using the well-known formulas for the spherical coordinates,  we
see that in this case, Eq. (1) has the form

with the last constant depending on the exact selection of the axes  and  and the time origin. Since the angle , in this case, is a
fixed function of time, and  is a fixed constant, the particle’s position in space at any instant  is completely determined by the
value of its only generalized coordinate . (Note that its dimensionality is different from that of Cartesian coordinates!)

Now returning to the general case of  degrees of freedom, let us consider a set of small variations (alternatively called "virtual
displacements")  allowed by the constraints. Virtual displacements differ from the actual small displacements (described by
differentials  proportional to time variation  ) in that  describes not the system’s motion as such, but rather its possible
variation see Figure 1 .

Figure 2.2. Actual displacement  vs. the virtual one (i.e. variation) .

Generally, operations with variations are the subject of a special field of mathematics, the calculus of variations.  However, the
only math background necessary for our current purposes is the understanding that operations with variations are similar to those
with the usual differentials, though we need to watch carefully what each variable is a function of. For example, if we consider the
variation of the radius vectors (1), at a fixed time , as a function of independent variations , we may use the usual formula for
the differentiation of a function of several arguments: 
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Now let us break the force acting upon the  particle into two parts: the frictionless, constraining part  of the reaction force
and the remaining part  - including the forces from other sources and possibly the friction part of the reaction force. Then the 

 Newton law for the  particle of the system may be rewritten as

Since any variation of the motion has to be allowed by the constraints, its -dimensional vector with  -vector components 
 has to be perpendicular to the -dimensional vector of the constraining forces, also with  3D-vector components . (For

example, for the problem shown in Figure 2.1, the virtual displacement vector  may be directed only along the ring, while the
constraining force , exerted by the ring, has to be perpendicular to that direction.) This condition may be expressed as

where the scalar product of -dimensional vectors is defined exactly like that of  vectors, i.e. as the sum of the products of the
corresponding components of the operands. The substitution of Eq. (4) into Eq. (5) results in the so-called  ’Alembert principle: 

Now we may plug Eq. (3) into Eq. (6) to get

where the scalars , called the generalized forces, are defined as follows: 

Generalized force

Now we may use the standard argument of the calculus of variations: for the left-hand side of Eq. (7) to be zero for an arbitrary
selection of independent variations , the expressions in the curly brackets, for every , should equal zero. This gives us the
desired set of  equations

what remains is just to recast them in a more convenient form.

First, using the differentiation by parts to calculate the following time derivative:

we may notice that the first term on the right-hand side is exactly the scalar product in the first term of Eq. (9).

Second, let us use another key fact of the calculus of variations (which is, essentially, evident from Figure 3): the differentiation of
a variable over time and over the generalized coordinate variation (at a fixed time) are interchangeable operations. As a result, in
the second term on the right-hand side of Eq. (10) we may write
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Figure 2.3. The variation of the differential (of any smooth function  ) is equal to the differential of its variation.

Finally, let us differentiate Eq. (1) over time:

This equation shows that particle velocities  may be considered to be linear functions of the generalized velocities  considered
as independent variables, with proportionality coefficients

With the account of Eqs. (10), (11), and (13), Eq. (9) turns into

This result may be further simplified by making, for the total kinetic energy of the system,

the same commitment as for , i.e. considering  a function of not only the generalized coordinates  and time  but also of the
generalized velocities  as variables independent of  and . Then we may calculate the partial derivatives of  as

and notice that they are exactly the two sums participating in Eq. (14). As a result, we get a system of  Lagrange equations, 

Their big advantage over the initial Newton law equations (4) is that the Lagrange equations do not include the constraining forces 
, and thus there are only  of them - typically much fewer than .

This is as far as we can go for arbitrary forces. However, if all the forces may be expressed in the form similar to, but somewhat
more general than Eq. (1.22), , where  is the effective potential energy of the system,  and 
denotes the spatial differentiation over coordinates of the  particle, we may recast Eq. (8) into a simpler form:

Since we assume that  depends only on particle coordinates (and possibly time), but not velocities: , with the
substitution of Eq. (18), the Lagrange equation (17) may be represented in the socalled canonical form:

where  is the Lagrangian function (sometimes called just the "Lagrangian"), defined as
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(It is crucial to distinguish this function from the mechanical energy .)

Note also that according to Eq. (2.18), for a system under the effect of an additional generalized external force  we have to
use, in all these relations, not the internal potential energy  of the system, but its Gibbs potential energy 

 see the discussion in Sec. 1.4.

Using the Lagrangian approach in practice, the reader should always remember that, first, each system has only one Lagrange
function (19b), but is described by  Lagrange equations (19a), with  taking values , and second, that
differentiating the function , we have to consider the generalized velocities as its independent arguments, ignoring the fact they
are actually the time derivatives of the generalized coordinates.

 Possibly, the simplest counter-example of a non-holonomic constraint is a set of inequalities describing the hard walls confining
the motion of particles in a closed volume. Non-holonomic constraints are better dealt with other methods, e.g., by imposing proper
boundary conditions on the (otherwise unconstrained) motion.

 See, e.g., MA Eq. (10.7).

 For a concise introduction to the field see, e.g., either I. Gelfand and S. Fomin, Calculus of Variations, Dover, 2000 , or L.
Elsgolc, Calculus of Variations, Dover, 2007. An even shorter review may be found in Chapter 17 of Arfken and Weber - see MA
Sec. 16. For a more detailed discussion, using many examples from physics, see R. Weinstock, Calculus of Variations, Dover, 

 See, e.g., MA Eq. (4.2). In all formulas of this section, all summations over  are from 1 to , while those over the particle
number  are from 1 to , so that for the sake of brevity, these limits are not explicitly specified.

 It was spelled out in a 1743 work by Jean le Rond d’Alembert, though the core of this result has been traced to an earlier work by
Jacob (Jean) Bernoulli (1667 - 1748) - not to be confused with his son Daniel Bernoulli (17001782) who is credited, in particular,
for the Bernoulli equation for ideal fluids, to be discussed in Sec.  below.

 Note that since the dimensionality of generalized coordinates may be arbitrary, that of generalized forces may also differ from the
newton.

 They were derived in 1788 by Joseph-Louis Lagrange, who pioneered the whole field of analytical mechanics not to mention his
key contributions to the number theory and celestial mechanics.

 Note that due to the possible time dependence of , Eq. (17) does not mean that the forces  have to be conservative - see the
next section for more discussion. With this understanding, I will still use for function  the convenient name of "potential energy".

This page titled 2.1: Lagrange Equation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Konstantin K.
Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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