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7.2: Stress
Now let us discuss the forces that cause the strain - or, from an alternative point of view, are caused by the strain. Internal forces
acting inside (i.e. between arbitrarily defined parts of) a continuum may be also characterized by a tensor. This stress tensor,  with
elements , relates the Cartesian components of the vector  of the force acting on an elementary area  of an (in most cases,
imagined) interface between two parts of a continuum, with the components of the elementary vector   normal to the
area  see Figure 3:

The usual sign convention here is to take the outer normal , i.e. to direct  out of "our" part of the continuum, i.e. the part on
which the calculated force  is exerted - by the complementary part.

Figure 7.3. The definition of vectors  and .

In some cases, the stress tensor’s structure is very simple. For example, as will be discussed in detail in the next chapter, static and
ideal fluids (i.e. liquids and gases) may only provide forces normal to any interface, and usually directed toward "our" part of the
body, so that

where the scalar  (in most cases positive) is called pressure, and generally may depend on both the spatial position and time. This
type of stress, with , is frequently called hydrostatic compressioneven if it takes place in solids, as it may.

However, in the general case, the stress tensor also has off-diagonal terms, which characterize the shear stress. For example, if the
shear strain, shown in Figure 2, is caused by a pair of forces , they create internal forces , with  if we speak about
the force acting upon a part of the sample below the imaginary horizontal interface we are discussing. To avoid a horizontal
acceleration of each horizontal slice of the sample, the forces should not depend on , i.e.  const . Superficially, it may
look that in this case, the only nonzero component of the stress tensor is  const, so that tensor is asymmetric,
in contrast to the strain tensor (15) of the same system. Note, however, that the pair of forces  creates not only the shear stress
but also a nonzero rotating torque  , where  is sample’s
volume. So, if we want to perform a static stress experiment, i.e. avoid sample’s rotation, we need to apply some other forces, e.g.,
a pair of vertical forces creating an equal and opposite torque , implying that  

. As a result, the stress tensor becomes symmetric, and similar in structure to the symmetrized strain tensor (15):

In many situations, the body may be stressed not only by forces applied to their surfaces but also by some volume-distributed
(bulk) forces , whose certain effective bulk density . (The most evident example of such forces is gravity. If its field is
uniform as described by Eq. (1.16), then , where  is the mass density.) Let us derive the key formula describing the
summation of the interface and bulk forces. For that, consider again an elementary cuboid with sides  parallel to the
corresponding coordinate axes (Figure 4) - now not necessarily the principal axes of the stress tensor.
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Figure 7.4. Deriving Eq. (23).

If elements  of the tensor do not depend on position, the force  acting on the  ’-th face of the cuboid is exactly balanced
by the equal and opposite force acting on its opposite face, because the vectors  at these faces are equal and opposite.

However, if  is a function of , then the net force  does not vanish. (In this expression, the first differential sign refers

to the elementary shift , while the second one, to the elementary area .) Using the expression , for to the , th

contribution to the sum (18), in the first order in  the  components of the vector  is

where the cuboid’s volume  ’ evidently does not depend on the index  ’. The addition of these force components
for all three pairs of cuboid faces, i.e. the summation of Eqs. (21) over all three values of the upper index  ’, yields the following
relation for the  Cartesian component of the net force exerted on the cuboid:

Since any volume may be broken into such infinitesimal cuboids, Eq. (22) shows that the space-varying stress is equivalent to a
volume-distributed force , whose effective (not real!) bulk density  has the following Cartesian components

so that in the presence of genuinely bulk forces , densities  and  just add up. This the socalled Euler-Cauchy stress
principle.

Let us use this addition rule to spell out the  Newton law for a unit volume of a continuum:

Using Eq. (23), the  Cartesian component of Eq. (24) may be represented as

This is the key equation of the continuum’s dynamics (and statics), which will be repeatedly used below.

For the solution of some problems, it is also convenient to have a general expression for the work  of the stress forces at a
virtual deformation  - understood in the same variational sense as the virtual displacements  in Sec. 2.1. Using the Euler-
Cauchy principle (23), for any volume  of a medium not affected by volume-distributed forces, we may write 

Let us work out this integral by parts for a volume so large that the deformations  on its surface are negligible. Then, swapping
the operations of the variation and the spatial differentiation (just like it was done with the time derivative in Sec. 2.1), we get
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Assuming that the tensor , is symmetric, we may rewrite this expression as

Now, swapping indices  and  ’ in the second expression, we finally get

where  ’ are the components of the strain tensor (9b). It is natural to rewrite this important formula as

and interpret the locally-defined scalar function  as the work of the stress forces per unit volume, at a small variation of the
deformation.

As a sanity check, for the pure pressure (19), Eq. (30) is reduced to the evidently correct result , where  is the
volume of "our" part of the continuum.

 It is frequently called the Cauchy stress tensor, partly to honor Augustin-Louis Cauchy who introduced this notion (and is
responsible for the development, mostly in the 1820s, much of the theory described in this chapter), and partly to distinguish it
from and other possible definitions of the stress tensor, including the  and  PiolaKirchhoff tensors. For the small
deformations discussed in this course, all these notions coincide.

 Here the sign corresponds to the work of the "external" stress force , exerted on "our" part of the continuum by its counterpart
- see Figure 3. Note that some texts consider the opposite definition of , leading to its opposite sign.
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