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6.1: Two Coupled Oscillators
Let us discuss oscillations in systems with several degrees of freedom, starting from the simplest case of two linear (harmonic),
dissipation-free, 1D oscillators. If the oscillators are independent of each other, the Lagrangian function of their system may be
represented as a sum of two independent terms of the type (5.1):

Correspondingly, Eqs. (2.19) for  yields two independent equations of motion of the oscillators, each one being similar to
Eq. (5.2):

(In the context of what follows,  are sometimes called the partial frequencies.) This means that in this simplest case, an
arbitrary motion of the system is just a sum of independent sinusoidal oscillations at two frequencies equal to the partial
frequencies (2).

However, as soon as the oscillators are coupled (i.e. interact), the full Lagrangian  contains an additional mixed term 
depending on both generalized coordinates  and  and/or generalized velocities. As a simple example, consider the system
shown in Figure 1, there two small masses  are constrained to move in only one direction (shown horizontal), and are kept
between two stiff walls with three springs.

Fig. 6.1. A simple system of two coupled linear oscillators.

In this case, the kinetic energy is still separable, , but the total potential energy, consisting of the elastic energies of
three springs, is not:

where  are the horizontal displacements of the particles from their equilibrium positions. It is convenient to rewrite this
expression as

showing that the Lagrangian function  of this system contains, besides the partial terms (1), a bilinear interaction term:

The resulting Lagrange equations of motion are

Thus the interaction leads to an effective generalized force  exerted on subsystem 1 by subsystem 2 , and the reciprocal
effective force .

Please note two important aspects of this (otherwise rather simple) system of equations. First, in contrast to the actual physical
interaction forces (such as  for our system  ) the effective forces on the right-hand sides of Eqs. (5)
do not obey the  Newton law. Second, the forces are proportional to the same coefficient , this feature is a result of the general
bilinear structure (4) of the interaction energy, rather than of any special symmetry.

From our prior discussions, we already know how to solve Eqs. (5), because it is still a system of linear and homogeneous
differential equations, so that its general solution is a sum of particular solutions of the form similar to Eqs. (5.88),
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with all possible values of . These values may be found by plugging Eq. (6) into Eqs. (5), and requiring the resulting system of
two linear, homogeneous algebraic equations for the distribution coefficients ,

to be self-consistent. In our particular case, we get a characteristic equation,

that is quadratic in , and thus allows a simple analytical solution:

According to Eqs. (2) and (3b), for any positive values of spring constants, the product  
 is always larger than , so that the square root in Eq. (9) is

always smaller than . As a result, both values of  are negative, i.e. the general solution to Eq. (5) is a sum of four
terms, each proportional to , where both own frequencies ("eigenfrequencies") are real:

A plot of these eigenfrequencies as a function of one of the partial frequencies (say,  ), with the other partial frequency fixed,
gives us the famous anticrossing (also called the "avoided crossing" or "non-crossing") diagram - see Figure 2. One can see that at
weak coupling, frequencies are close to the partial frequencies  everywhere besides a narrow range near the anticrossing
point . Most remarkably, at passing through this region, smoothly "switches" from following  to following  and
vice versa.

Figure 6.2. The anticrossing diagram for two values of the normalized coupling strength  (red lines) and 
(blue lines). In this plot,  is assumed to be changed by varying  rather than , but in the opposite case, the diagram is
qualitatively similar.

The reason for this counterintuitive behavior may be found by examining the distribution coefficients  corresponding to each
branch of the diagram, which may be obtained by plugging the corresponding value of back into Eqs. (7). For
example, at the anticrossing point , Eq. (10) is reduced to
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Plugging this expression back into any of Eqs. (7), we see that for the two branches of the anticrossing diagram, the distribution
coefficient ratio is the same by magnitude but opposite by sign:

In particular, if the system is symmetric , then at the upper branch, corresponding to , we get 
. This means that in this so-called hard mode,  masses oscillate in anti-phase: . The resulting substantial

extension/compression of the middle spring (see Figure 1 again) yields additional returning force which increases the oscillation
frequency. On the contrary, at the lower branch, corresponding to , i.e. , so
that the middle spring is neither stretched nor compressed at all. As a result, in this soft mode, the oscillation frequency is lower
than , and does not depend on  :

Note that for both modes, the oscillations equally engage both particles.

Far from the anticrossing point, the situation is completely different. Indeed, a similar calculation of  shows that on each branch
of the diagram, the magnitude of one of the distribution coefficients is much larger than that of its counterpart. Hence, in this limit,
any particular mode of oscillations involves virtually only one particle. A slow change of system parameters, bringing it through
the anticrossing, results, first, in a maximal delocalization of each mode at , and then in the restoration of the localization,
but in a different partial degree of freedom.

We could readily carry out similar calculations for the case when the systems are coupled via their velocities, ,
where  is a coupling coefficient  not necessarily a certain physical mass.  The results are generally similar to those discussed
above, again with the maximum level splitting at  :

the last relation being valid for weak coupling. The generalization to the case of both coordinate and velocity coupling is also
straightforward - see the next section.

Note that the anticrossing diagram, shown in Figure 2, is even more ubiquitous in quantum mechanics, because, due to the time-
oscillatory character of the Schrödinger equation solutions, a weak coupling of any two quantum states leads to qualitatively
similar behavior of the eigenfrequencies of the system, and hence of its eigenenergies ("energy levels") of the
system.

One more property of weakly coupled oscillators, a periodic slow transfer of energy from one oscillator to the other and back,
especially well pronounced at or near the anticrossing point , is also more important for quantum than for classical
mechanics. This is why I refer the reader to the QM part of this series for a detailed discussion of this phenomenon.

 Using these expressions, Eqs. (5) may be readily obtained from the Newton laws, but the Lagrangian approach used above will
make their generalization, in the next section, more straightforward.

 In physics, the term "mode" is typically used to describe the distribution of a variable in space, at its oscillations with a single
frequency. In our current case, when the notion of space is reduced to two oscillator numbers, the "mode" means just a set of two
distribution coefficients  for a particular eigenfrequency.

 In mechanics, with  standing for the actual linear displacements of particles, such coupling is not very natural, but there are
many dynamic systems of non-mechanical nature in which such coupling is the most natural one. The simplest example is the
system of two  ("tank") circuits, with either capacitive or inductive coupling. Indeed, as was discussed in Sec. 2.2, for such a
system, the very notions of the potential and kinetic energies are conditional and interchangeable.
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