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7.2: Attenuation and Dispersion
Let me start the discussion of the dispersion and attenuation effects by considering a particular case of time evolution of the electric
polarization  of a dilute, non-polar medium, with negligible interaction between its elementary dipoles . As was
discussed in Sec. 3.3, in this case, the local electric field acting on each elementary dipole, is equal to the macroscopic field .
Then, the dipole moment  may be caused not only by the values of the field E at the same moment of time , but also those
at the earlier moments, . Due to the linear superposition principle, the macroscopic polarization  should be a
sum (or rather an integral) of the values of  at all moments , weighed by some function of  and :

The condition , which is implied by this relation, expresses a keystone principle of physics, the causal relation between a
cause (in our case, the electric field applied to each dipole) and its effect (the polarization it creates). The function  is
called the temporal Green’s function for the electric 
polarization.  To reveal its physical sense, let us consider the case when the applied field  is a very short pulse at the moment 

, which may be well approximated with the Dirac’s delta function:

Then Eq. (21) yields just , so that the Green’s function  is just the polarization at moment , created by a
unit  pulse of the applied field at moment  (Fig. 4).

Fig. 7.4. An example of the temporal Green’s function for the electric polarization (schematically).

What are the general properties of the temporal Green’s function? First, the function is real, since the dipole moment  and hence
the polarization  are real – see Eq. (3.6). Next, for systems without infinite internal “memory”,  should tend to zero at 

, although the type of this approach (e.g., whether the function G oscillates approaching zero, as in Fig. 4, or not)
depends on the medium’s properties. Finally, if parameters of the medium do not change in time, the polarization response to an
electric field pulse should be dependent not on its absolute timing, but only on the time difference  between the pulse
and observation instants, i.e. Eq. (21) is reduced to

For a sinusoidal waveform, , this equation yields

The expression in the last parentheses is of course nothing else than the complex amplitude  of the polarization. This means that
though even if the static linear relation (3.43), , is invalid for an arbitrary time-dependent process, we may still keep
its Fourier analog,

for each sinusoidal component of the process, using it as the definition of the frequency-dependent electric susceptibility .
Similarly, the frequency-dependent electric permittivity may be defined using the Fourier analog of Eq. (3.46):
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Then, according to the definition (3.33), the permittivity is related to the temporal Green’s function by the usual Fourier transform:

This relation shows that  may be complex,

and that its real part  is always an even function of frequency, while the imaginary part  is an 
odd function of . Note that though the particular causal relationship (21) between  and  is conditioned by the
elementary dipole independence, the frequency-dependent complex electric permittivity  may be introduced, in a similar way,
if any two linear combinations of these variables are related by a similar formula. Absolutely similar arguments show that magnetic
properties of a linear, isotropic medium may be characterized with a frequency-dependent, complex permeability .

Now rewriting Eqs. (1) for the complex amplitudes of the fields at a particular frequency, we may repeat all calculations of Sec. 1,
and verify that all its results are valid for monochromatic waves even for a dispersive (but necessarily linear!) medium. In
particular, Eqs. (7) and (13) now become

so that the wave impedance and the wave number may be both complex functions of frequency.

This fact has important consequences for electromagnetic wave propagation. First, plugging the representation of the complex
wave number as the sum of its real and imaginary parts, , into Eq. (11):

we see that  describes the rate of wave attenuation in the medium at frequency .  Second, if the waveform is not
sinusoidal (and hence should be represented as a sum of several/many sinusoidal components), the frequency dependence of 
provides for wave dispersion, i.e. the waveform deformation at the propagation, because the propagation velocity (4) of component
waves is now different.

As an example of such a dispersive medium, let us consider a simple but very representative Lorentz oscillator model.  In dilute
atomic or molecular systems (e.g., gases), electrons respond to the external electric field especially strongly when frequency  is
close to certain frequencies  corresponding to the spectrum of quantum interstate transitions of a single atom/molecule. An
approximate, phenomenological description of this behavior may be obtained from a classical model of several externally-driven
harmonic oscillators, generally with non-zero damping. For a single oscillator, driven by the electric field’s force ,
we can write the  Newton law as

where  is the own frequency of the oscillator, and  its damping coefficient. For the electric field of a monochromatic wave, 
, we may look for a particular, forced-oscillation solution of this equation in a similar form 

.  Plugging this solution into Eq. (30), we readily find the complex amplitude of these oscillations:

Using this result to calculate the complex amplitude of the dipole moment as , and then the electric polarization 
 of a dilute medium with  independent oscillators for unit volume, for its frequency-dependent permittivity (26) we

get

This result may be readily generalized to the case when the system has several types of oscillators with different masses and
frequencies:

 ε(ω) ≡ + = + G(θ) dθ.ε0
Pω

Eω

ε0 ∫
∞

0

eiωθ (7.26b)

 ε(ω)

 ε(ω) = (ω) + i (ω),  with  (ω) = + G(θ) cosωθdθ, (ω) = G(θ) sinωθdθ,ε′ ε′′ ε′ ε0 ∫
∞

0

ε′′ ∫
∞

0

(7.27)

  (ω)ε′   (ω)ε′′

 ω  P (t)  E(t)

 ε(ω)

 μ(ω)

 Z(ω) = , k(ω) = ω[ε(ω)μ(ω) , Complex Z and k( )
μ(ω)

ε(ω)

1/2

]1/2 (7.28)

10

 k(ω) ≡ (ω) + i (ω)k′ k′′

 f = Re{ } = Re{ },fωe
i[k(ω)z−ωt] e− (ω)zk′′

fωe
i[ (ω)z−ωt]k′

(7.29)

  (ω)k′′  ω 11

  (ω)k′

12

13

 ω

 ωj

 F (t) = qE(t)

 2nd 

 m ( +2 + x) = qE(t),ẍ δ0ẋ ω2
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where  is the fraction of oscillators with frequency , so that the sum of all  equals 1. Figure 5 shows a typical
behavior of the real and imaginary parts of the complex dielectric constant, described by Eq. (33), as functions of frequency. The
oscillator resonances’ effect is clearly visible, and dominates the media response at , especially in the case of low damping,

. Note that in the low-damping limit, the imaginary part of the dielectric constant , and hence the wave attenuation 
, are negligibly small at all frequencies besides small vicinities of frequencies , where the derivative  is

negative.  Thus, for a system of for weakly-damped oscillators, Eq. (33) may be well approximated by a sum of singularities
(“poles”):

Fig. 7.5. Typical frequency dependence of the real and imaginary parts of the complex electric permittivity, according to the
generalized Lorentz oscillator model.

This result is especially important because, according to quantum mechanics,  Eq. (34) (with all  equal) is also valid for a set
of non-interacting, similar quantum systems (whose dynamics may be completely different from that of a harmonic oscillator!),
provided that  are replaced with frequencies 
of possible quantum interstate transitions, and coefficients  are replaced with the so-called oscillator strengths of the transitions –
which obey the same sum rule, .

At , the imaginary part of the permittivity (33) also vanishes (for any ), while its real part approaches its electrostatic
(“dc”) value

Note that according to Eq. (30), the denominator in Eq. (35) is just the effective spring constant  of the  oscillator,
so that the oscillator masses  as such are actually (and quite naturally) not involved in the static dielectric response.

In the opposite limit of very high frequencies, , the permittivity also becomes real and may be represented as

This result is very important, because it is also valid at all frequencies if all  and  vanish, for example for gases of free
charged particles, in particular for plasmas – ionized atomic gases, provided that the ion collision effects are negligible. (This is
why the parameter  defined by Eq. (36) is called the plasma frequency.) Typically, the plasma as a whole is neutral, i.e. the
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density  of positive atomic ions is equal to that of the free electrons. Since the ratio  for electrons is much higher than that
for ions, the general formula (36) for the plasma frequency is usually well approximated by the following simple expression:

This expression has a simple physical sense: the effective spring constant  describes the Coulomb force
that appears when the electron subsystem of the plasma is shifted, as a whole, from its positive-ion subsystem, thus violating the
electroneutrality. (Indeed, let us consider such a small shift, , perpendicular to the plane surface of a broad, plane slab filled
with plasma. The uncompensated ion charges, with equal and opposite surface densities , that appear at the slab
surfaces, create inside it, according to Eq. (2.3), a uniform electric field with . This field exerts force 

 on each electron, pulling it back to its equilibrium position.) Hence, there is no surprise that
the function  given by Eq. (36) vanishes at : at this resonance frequency, the polarization electric field E may
oscillate, i.e. have a non-zero amplitude , even in the absence of external forces induced by external (stand-alone)
charges, i.e. in the absence of the field D these charges induce – see Eq. (3.32).

The behavior of electromagnetic waves in a medium that obeys Eq. (36), is very remarkable. If the wave frequency  is above ,
the dielectric constant , and hence the wave number (28) are positive and real, and waves propagate without attenuation,
following the dispersion relation,

which is shown in Fig. 6.

Fig. 7.6. The plasma dispersion law (solid line) in comparison with the linear dispersion in the free space (dashed line).

At  the wave number  tends to zero. Beyond that point (i.e. at ), we still can use 
Eq. (38), but it is instrumental to rewrite it in the mathematically equivalent form

Since  the so-defined parameter  is real, Eq. (29) shows that the electromagnetic field exponentially decreases with
distance:

Does this mean that the wave is being absorbed in the plasma? Answering this question is a good pretext to calculate the time
average of the Poynting vector  of a monochromatic electromagnetic wave in an arbitrary dispersive (but still linear
and isotropic) medium. First, let us spell out the real fields’ time dependences:
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Now, a straightforward calculation yields

Let us apply this important general formula to our simple model of plasma at . In this case, the magnetic permeability
equals , i.e.  is positive and real, while  is real and negative, so that  is purely
imaginary, and the average Poynting vector (42) vanishes. This means that the energy, on average, does not flow along the z-axis.
So, the waves with  are not absorbed in plasma. (Indeed, the Lorentz model with  does not describe any energy
dissipation mechanism.) Instead, as we will see in the next section, the waves are rather reflected from plasma’s boundary.

Note also that in the limit , Eq. (39) yields

But this is just a particular case (for , , and ) of the expression (6.44), which was derived in Sec. 6.4 for the
depth of the magnetic field’s penetration into a lossless (collision-free) conductor in the quasistatic approximation. This fact shows
again that, as was already discussed in Sec. 6.7, this approximation (in which the displacement currents are neglected) gives an
adequate description of the time-dependent phenomena at , i.e. at .

There are two most important examples of natural plasmas. For the Earth’s ionosphere, i.e. the upper part of its atmosphere, that is
almost completely ionized by the ultra violet and X-ray components of the Sun’s radiation, the maximum value of , reached
about 300 km over the Earth surface, is between  and  (depending on the time of the day and the Sun’s activity
phase), so that that the maximum plasma frequency (37) is between 1 and 10 MHz. This is much higher than the particles’ typical
reciprocal collision time  so that Eq. (38) gives a good description of wave dispersion in this plasma. The effect of reflection
of waves with  from the ionosphere enables the long-range (over-the-globe) radio communications and broadcasting at the
so called short waves, with cyclic frequencies of the order of 10 MHz:  they may propagate in the flat channel formed by the
Earth’s surface and the ionosphere, being reflected repeatedly by these parallel “walls”. Unfortunately, due to the random variations
of Sun’s activity, and hence of , this natural radio communication channel is not too reliable, and in our age of transworld
optical-fiber cables (see Sec. 7 below), its practical importance has diminished.

Another important example of plasmas is free electrons in metals and other conductors. For a typical metal,  is of the order of 
, so that Eq. (37) yields . Such value of  is somewhat higher than the mid-optical

frequencies . This explains why planar, clean metallic surfaces, such as the aluminum and silver films used in
mirrors, are so shiny: at these frequencies their complex permittivity  is almost exactly real and negative, leading to light
reflection, with very little absorption.

The simple model (36), which neglects electron scattering, becomes inadequate at lower frequencies, . A good
phenomenological way of extending the model to the account of scattering is to take, in Eq. (33), the lowest frequency  to be
equal zero (to describe the free electrons), while keeping the damping coefficient  of this mode larger than zero, to account for
their energy dissipation due to scattering. Then Eq. (33) is reduced to

where the response  at high (in practice, optical) frequencies is still given by Eq. (33), but now with . The result (44)
allows for a simple interpretation. To show that, let us incorporate into our calculations the Ohmic conduction of the medium,
generalizing Eq. (4.7) as  to account for the possible frequency dependence of the Ohmic conductivity. Plugging this
relation into the Fourier image of the relevant macroscopic Maxwell equation, , we get

This relation shows that for a monochromatic wave, the addition of the Ohmic current density  to the displacement current
density is equivalent to the addition of  to , i.e. to the following change of the ac electric permittivity:
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Now the comparison of Eqs. (44) and (46) shows that they coincide if we take

where the dc conductivity  is described by the Drude formula (4.13), and the phenomenologically introduced coefficient  is
associated with . Eq. (47), which is frequently called the generalized (or “ac”, or “rf”) Drude formula,  gives a very
reasonable (semi-quantitative) description of the ac conductivity of many metals almost up to optical frequencies.

Now returning to our discussion of the generalized Lorentz model (33), we see that the frequency dependences of the real  and
imaginary  parts of the complex permittivity it yields are not quite independent. For example, let us have one more look at the
resonance peaks in Fig. 5. Each time the real part drops with frequency, , its imaginary part  has a positive peak.
Ralph Kronig (in 1926) and Hendrik (“Hans”) Kramers (in 1927) independently showed that this is not an occasional coincidence
pertinent only to this particular model. Moreover, the full knowledge of the function  enables the calculation of the function 

, and vice versa. The mathematical reason for this fact is that both these functions are always related to a single real function 
 by Eqs. (27).

To derive the Kramers-Kronig relations, let us consider Eq. (26b) on the complex frequency plane, :

For all stable physical systems,  has to be finite for all important values of the real integration variable , and tend to
zero at  and . (Indeed, according to Eq. (23), a non-zero  would mean an instantaneous response of the
medium to the external force, while  would mean that it has an infinitely long memory.) Because of that, and thanks to
the factor , the expression 
under the integral in Eq. (48) tends to zero at  in all upper half-plane . As a result, we 
may claim that the complex function  given by this relation, is analytical in that half-plane. This fact allows us to apply to it
the general Cauchy integral formula

where  is also a complex variable. Let us take the integration contour  of the form shown in Fig. 7, with the
radius  of the larger semicircle tending to infinity, and the radius  of the smaller semicircle (around the singular point )
tending to zero. Due to the exponential decay of  at , the contribution to the right-hand side of Eq. (49) from the
larger semicircle vanishes,  while the contribution from the small semicircle, where , with , is

Fig. 7.7. Deriving the Kramers-Kronig dispersion relations.

As a result, for our contour , Eq. (49) yields
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where  on the real axis (where ). Such an integral, excluding a symmetric infinitesimal vicinity of a pole
singularity, is called the principal value of the (formally, diverging) integral from  to , and is denoted by the letter P
before it.  Using this notation, subtracting  from both parts of Eq. (51), and multiplying them by 2, we get

Now plugging into this complex equality the polarization-related difference  in the form 
, and requiring both real and imaginary components of the two sides of Eq. (52) to be equal separately, we

get the famous Kramers-Kronig dispersion relations

We may use the already mentioned fact that  is always an even function, while  an odd 
function of frequency, to rewrite these relations in the following equivalent form,

which is more convenient for most applications, because it involves only physical (positive) frequencies.

Though the Kramers-Kronig relations are “global” in frequency, in certain cases they allow an approximate calculation of
dispersion from experimental data for absorption, collected even within a limited (“local”) frequency range. Most importantly, if a
medium has a sharp absorption peak at some frequency , we may describe it as

and the first of Eqs. (54) immediately gives

thus predicting the anomalous dispersion near such a point. This calculation shows that such behavior observed in the Lorentz
oscillator model (see Fig. 5) is by no means occasional or model-specific.

Let me emphasize again that the Kramers-Kronig relations (53)-(54) are much more general than the Lorentz model (33), and
require only a causal, linear relation (21) between the polarization  with the electric field .  Hence, these relations are
also valid for the complex functions relating Fourier images of any cause/effect-related pair of variables. In particular, at a
measurement of any linear response  of any experimental sample to any external field , whatever the nature of this
response and physics behind it, we may be confident that there is a causal relationship between the variables  and , so that the
corresponding complex function  does obey the Kramers-Kronig relations. However, it is still important to
remember that a linear relationship between the Fourier amplitudes of two variables does not necessarily imply a causal
relationship between them.

Reference
 In an isotropic media, the vectors E, P, and hence , are all parallel, and for the notation simplicity, I 

will drop the vector sign in the following formulas. I am also assuming that P at any point r is only dependent on the electric field
at the same point, and hence drop the factor , the same for all variables. This last assumption is valid if the wavelength 

 is much larger than the elementary media dipole’s size . In most systems of interest, the scale of  is atomic ,
so that the approximation is valid up to very high frequencies, , corresponding to hard X-rays.

 The idea of these functions is very similar to that of the spatial Green’s functions (see Sec. 2.10), but with the new twist, due to
the causality principle. A discussion of the temporal Green’s functions in application to classical mechanics (which to some extent
overlaps with our current discussion) may be found in CM Sec. 5.1.

 Ω ≡ Ω′   = 0Ω′′

  −∞   +∞
24  f(ω)/2

 f(ω) = P f(Ω) .
1

πi
∫

+∞

−∞

dΩ

Ω −ω
(7.52)

 f(ω) ≡ ε(ω) −ε0

  [ (ω) − ] + i [ (ω)]ε′ ε0 ε′′

 Kramers-Kronig dispersion relations (ω) = + P (Ω) ,ε′ ε0
1

π
∫

+∞

−∞
ε′′ dΩ

Ω −ω

(ω) = − P [ (Ω) − ] .ε′′ 1

π
∫

+∞

−∞

ε′ ε0
dΩ

Ω −ω

(7.53)

  (ω)ε′   (ω)ε′′

  (ω) = + P (Ω) , (ω) = − P [ (Ω) − ] ,ε′ ε0
2

π
∫

+∞

0

ε′′ ΩdΩ

−Ω2 ω2
ε′′ 2ω

π
∫

+∞

0

ε′ ε0
dΩ

−Ω2 ω2
(7.54)

 ωj

  (ω) ≈ cδ (ω− ) + a more smooth function of ω,ε′′ ωj (7.55)

  (ω) ≈ + + another smooth function of ω Dispersion near an absorption lineε′ ε0
2c

π

ωj

−ω2
j ω2

(7.56)

 P (t)  E ( )t′ 25

 r(t)  f ( )t′

 r  f

 χ(ω) ≡ /rω fω

26

8  D = E +Pε0

  exp{ikz}

 λ  a  a  (∼  m)10−10

 ω ∼ c/a ∼ 1018 s−1
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 The first unambiguous observations of dispersion (for the case of light refraction) were described by Sir Isaac Newton in his
Optics (1704) – even though this genius has never recognized the wave nature of light!

 It may be tempting to attribute this effect to wave absorption, i.e. the dissipation of the wave’s energy, but we will see very soon
that wave attenuation may be due to different effects as well.

 The reader is probably familiar with the most noticeable effect of the dispersion: the difference between that group velocity 
, giving the speed of the envelope of a wave packet with a narrow frequency spectrum, and the phase velocity 

 of the component waves. The second-order dispersion effect, proportional to , leads to the deformation
(gradual broadening) of the envelope itself. Following tradition, these effects are discussed in more detail in the quantum-
mechanics part of this series (QM Sec. 2.2), because they are the crucial factor of Schrödinger’s wave mechanics. (See also a brief
discussion in CM Sec. 6.3.)

 This example is focused on the frequency dependence of  rather than , because electromagnetic waves interact
with “usual” media via their electric field much more than via the magnetic field. Indeed, according to Eq. (7), the magnetic field of
the wave is of the order of , so that the magnetic component of the Lorentz force (5.10), acting on a non-relativistic particle, 

, is much smaller than that of its electric component, , and may be neglected. However, as will be
discussed in Sec. 6, forgetting about the possible dispersion of  may result in missing some remarkable opportunities for
manipulating the waves.

If this point is not absolutely clear, please see CM Sec. 5.1 for a more detailed discussion.

 In optics, such behavior is called anomalous dispersion.

 See, e.g., QM Chapters 5-6.

 For an arbitrary plane wave, the total average power flow may be calculated as an integral of Eq. (42) over all frequencies. By
the way, combining this integral and the Poynting theorem (6.111), is it straightforward to prove the following interesting
expression for the average electromagnetic energy density of a narrow  wave packet propagating in an arbitrary
dispersive (but linear and isotropic) medium:

 One more convenience of the simple model of a collision-free plasma, which has led us to Eq. (36), is that it may be readily
generalized to the case of an additional strong dc magnetic field  (much higher than that of the wave) applied in the direction n
of wave propagation. It is straightforward (and hence left for the reader) to show that such plasma exhibits the Faraday effect of the
polarization plane’s rotation, and hence gives an example of an anisotropic media that violates the Lorentz reciprocity relation
(6.121).

 These frequencies are an order of magnitude lower than those used for TV and FM-radio broadcasting.

 Alternatively, according to Eq. (45), it is possible (and in the field of infrared spectroscopy, conventional) to attribute the ac
response of a medium at all frequencies to its effective complex conductivity: .

 It may be also derived from the Boltzmann kinetic equation in the so-called relaxation-time approximation (RTA) – see, e.g., SM
Sec. 6.2.

 See, e.g., MA Eq. (15.2).

Strictly speaking, this also requires  to decrease faster than  at the real axis (at ), but due to the 
inertia of charged particles, this requirement is fulfilled for all realistic models of dispersion – see, e.g., Eq. (36).

 I am typesetting this symbol in a Roman (upright) font, to avoid any possibility of its confusion with the medium’s polarization.

 Actually, in mathematics, the relations even somewhat more general than Eqs. (53), valid for an arbitrary analytic function of
complex argument, are known at least from 1868 (the Sokhotski-Plemelj theorem).

 For example, the function , in the Lorentz oscillator model, does not obey the Kramers-Kronig relations. This is
evident not only physically, from the fact that  is not a causal function of , but even mathematically. Indeed, Green’s
function describing a causal relationship has to tend to zero at small time delays , so that its Fourier image has to tend to
zero at . This is certainly true for the function  given by Eq. (32), but not for the reciprocal function 

, which diverges at large frequencies.

10

11

12

  ≡ dω/dνgr k′

  ≡ ω/νph k′   ω/d2 d2k′

13  varepsilon  μ

 E/c

  ∼ quB ∼ (u/c)qEFm   = qEFe

 μ(ω)

14 

15

16

17

 (Δω << ω)

  = { + } dω.ū 1
2
∫

packet 

d[ω (ω)]ε′

dω
EωE∗

ω
d[ω (ω)]μ′

dω
HωH ∗

ω

18

 B0

19

20

  (ω) ≡ σ(ω) − iωε(ω) ≡ −iω (ω)σef εef

21

22

23  |f(Ω)|  Ω−1   = 0Ω′′

24

25

26  φ(ω) ≡ /Eω Pω

 E(t)  P (t)

 θ ≡ t− t′

 ω → ±∞  f(ω)

 φ(ω) ≡ 1/f(ω) ∝ ( − )−2iδωω2 ω2
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