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5.7: Exercise Problems
5.1. A circular wire loop, carrying a fixed dc current, has been placed inside a similar but larger loop, carrying a fixed current in the
same direction – see the figure on the right. Use semi-quantitative arguments to analyze the mechanical stability of the coaxial,
coplanar position of the inner loop with respect to its possible angular, axial, and lateral displacements relative to the outer loop.

5.2. Two straight, plane, parallel, long, thin conducting strips of width , separated by distance , carry equal but oppositely
directed currents  – see the figure on the right. Calculate the magnetic field in the plane located in the middle between the strips,
assuming that the flowing currents are uniformly distributed across the strip widths.

5.3. For the system studied in the previous problem, but now only in the limit , calculate:

(i) the distribution of the magnetic field in space,

(ii) the vector potential of the field,

(iii) the magnetic force (per unit length) exerted on each strip, and

(iv) the magnetic energy and self-inductance of the loop formed by the strips (per unit length).

5.4. Calculate the magnetic field distribution near the center of the system of two similar, plane, round, coaxial wire coils, carrying
equal but oppositely directed currents – see the figure on the right.

5.5. The two-coil-system considered in the previous problem, now carries equal and similarly directed currents – see the figure on
the right.  Calculate what should be the ratio  for the second derivative  at  to vanish.
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5.6. Calculate the magnetic field’s distribution along the axis of a straight solenoid (see Fig. 6a, partly reproduced on the right) with
a finite length , and round cross-section of radius . Assume that the solenoid has many  wire turns, uniformly
distributed along its length.

5.7. A thin round disk of radius , carrying electric charge of a constant areal density , is being rotated around its axis with a
constant angular velocity . Calculate:

(i) the induced magnetic field on the disk’s axis,

(ii) the magnetic moment of the disk, and relate these results.

5.8. A thin spherical shell of radius , with charge  uniformly distributed over its surface, rotates about its axis with angular
velocity . Calculate the distribution of the magnetic field everywhere in space.

5.9. A sphere of radius , made of an insulating material with a uniform electric charge density , rotates about its diameter with
angular velocity . Calculate the magnetic field distribution inside the sphere and outside it.

5.10. The reader is (hopefully :-) familiar with the classical Hall effect when it takes place in the usual rectangular Hall bar
geometry – see the left panel of the figure below. However, the effect takes a different form in the so-called Corbino disk – see the
right panel of the figure below. (Dark shading shows electrodes, with no appreciable resistance.) Analyze the effect in both
geometries, assuming that in both cases the conductors are thin, planar, have a constant Ohmic conductivity  and charge carrier
density , and that the applied magnetic field  is uniform and normal to conductors’ planes.

5.11.* The simplest model of the famous homopolar motor  is a thin, round conducting disk, placed into a uniform magnetic field
normal to its plane, and fed by a dc current flowing from the disk’s center to a sliding electrode (“brush”) on its rim – see the figure
on the right.

(i) Express the torque rotating the disk, via its radius , the magnetic field , and the current .

(ii) If the disk is allowed to rotate about its axis, and the motor is driven by a battery with e.m.f. , calculate its stationary angular
velocity , neglecting friction and the electric circuit’s resistance.

(iii) Now assuming that the current circuit (battery + wires + contacts + disk itself) has a non-zero resistance , derive and solve
the equation for the time evolution of , and analyze the solution.

5.12. Current  flows in a thin wire bent into a plane round loop of radius . Calculate the net magnetic flux through the plane in
which the loop is located.

5.13. Prove that:

(i) the self-inductance  of a current loop cannot be negative, and

(ii) any inductance coefficient , defined by Eq. (60), cannot be larger than .

5.14.  Estimate the values of magnetic susceptibility due to

 l  R  (N >> 1, l/R)

 R  σ

 Ω

 R  Q

 ω

 R  ρ

 ω

 σ

 n  B

66

 R  B  I

 V

 ω

 R

 ω

 I  R

 L

 Lkk′  ( )LkkLk′k′
1/2

*

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/57001?pdf


5.7.3 https://phys.libretexts.org/@go/page/57001

(i) orbital diamagnetism, and

(ii) spin paramagnetism, for a medium with negligible interaction between the induced molecular dipoles. Compare the results.

Hints: For Task (i), you may use the classical model described by Eq. (114) – see Fig. 13. For Task (ii), assume the mechanism of
ordering of spontaneous magnetic dipoles , with a magnitude  of the order of the Bohr magneton , similar to the one
sketched for electric dipoles in Fig. 3.7a.

5.15. Use the classical picture of the orbital (“Larmor”) diamagnetism, discussed in Sec. 5, to calculate its (small) contribution 
 to the magnetic field  felt by an atomic nucleus, modeling the electrons of the atom by a spherically-symmetric cloud

with an electric charge density . Express the result via the value  of the electrostatic potential of electrons’ cloud, and use
this expression for a crude numerical estimate of the ratio  for the hydrogen atom.

5.16. Calculate the (self-) inductance of a toroidal solenoid (see Fig. 6b) with the round cross-section of radius  (see the
figure on the right), with many  wire turns uniformly distributed along the perimeter, and filled with a linear
magnetic material of a magnetic permeability . Check your results by analyzing the limit .

5.17. A long straight, thin wire, carrying current , passes parallel to the plane boundary between two uniform, linear magnetics –
see the figure on the right. Calculate the magnetic field everywhere in the system, and the force (per unit length) exerted on the
wire.

5.18. Solve the magnetic shielding problem similar to that discussed in Sec. 5.6 of the lecture notes, but for a spherical rather than
cylindrical shell, with the same central cross section as shown in Fig. 16. Compare the efficiency of those two shields, for the same
shell’s permeability , and the same  ratio.

5.19. Calculate the magnetic field distribution around a spherical permanent magnet with a uniform magnetization .

5.20. A limited volume  is filled with a magnetic material with a fixed (field-independent) magnetization . Write explicit
expressions for the magnetic field induced by the magnetization, and its potential, and recast these expressions into the forms more
convenient when  inside the volume .

5.21. Use the results of the previous problem to calculate the distribution of the magnetic field  along the axis of a straight
permanent magnet of length , with a round cross-section of radius , and a uniform magnetization  parallel to the axis –
see the figure on the right.

5.22. A very broad film of thickness  is permanently magnetized normally to its plane, with a periodic checkerboard pattern,
with the square of area :
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Calculate the magnetic field’s distribution in space.

5.23.  Based on the discussion of the quadrupole electrostatic lens in Sec. 2.4, suggest the permanent-magnet systems that may
similarly focus particles moving close to the system’s axis, and carrying:

(i) an electric charge,

(ii) no net electric charge, but a spontaneous magnetic dipole moment .

Reference

 It was invented by Michael Faraday in 1821, i.e. well before his celebrated work on electromagnetic induction. The adjective
“homopolar” refers to the constant “polarity” (sign) of the current; the alternative term is “unipolar”.

 This problem is of evident relevance for the perpendicular magnetic recording (PMR) technology, which presently dominates the
high-density digital magnetic recording.

This page titled 5.7: Exercise Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Konstantin K.
Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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