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7.3: Reflection
The most important new effect arising in nonuniform media is wave reflection. Let us start its discussion from the simplest case of a
plane electromagnetic wave that is normally incident on a sharp interface between two uniform, linear, isotropic media.

Let us start with the simplest case when one of the two media (say, that located at , see Fig. 8) cannot sustain any electric
field at all – as implied, in particular, by the macroscopic model of a good conductor – see Eq. (2.1):

This condition is evidently incompatible with the single traveling wave (5). However, this solution may be readily corrected using
the fact that the dispersion-free 1D wave equation,

supports waves propagating, with the same speed, in opposite directions. As a result, the following linear superposition of two such
waves,

satisfies both the equation and the boundary condition (57), for an arbitrary function . The second term in Eq. (59) may be
interpreted as a result of total reflection of the incident wave (described by its first term) – in this particular case, with the change of
the electric field’s sign. This means, in particular, that within the macroscopic model, a conductor acts as a perfect mirror. By the
way, since the vector n of the reflected wave is opposite to that incident one (see the arrows in Fig. 8), Eq. (6) shows that the
magnetic field of the wave does not change its sign at the reflection:

Fig. 7.8. A snapshot of the electric field at the reflection of a sinusoidal wave from a perfect conductor: a realistic pattern (red lines)
and its macroscopic, ideal-mirror approximation (blue lines). Dashed lines show the snapshots after a half-period time delay 

.

The blue lines in Fig. 8 show the resulting pattern (59) for the simplest, monochromatic wave:

Depending on convenience in a particular context, this pattern may be legitimately represented and interpreted either as the linear
superposition (61a) of two traveling waves or as a single standing wave:

in which the electric and magnetic field oscillate with the phase shifts by  both in time and space:

As a result of this shift, the time average of the Poynting vector’s magnitude,
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equals zero, showing that at the total reflection there is no average power flow. (This is natural because the perfect mirror can
neither transmit the wave nor absorb it.) However, Eq. (63) shows that the standing wave provides local oscillations of energy,
transferring it periodically between the concentrations of the electric and magnetic fields, separated by the distance 

.

In the case of the sinusoidal waves, the reflection effects may be readily explored even for the more general case of dispersive
and/or lossy (but still linear) media in which  and , and hence the wave vector  and the wave impedance ,
defined by Eqs. (28), are certain complex functions of frequency. The “only” new factors we have to account for is that in this case,
the reflection may not be total, and that inside the second media we have to use the traveling-wave solution as well. Both these
factors may be taken care of by looking for the solution to our boundary problem in the form

and hence, according to Eq. (6),

(The indices + and – correspond to the media located at  and , respectively.) Please note the following important
features of these solutions:

(i) Due to the problem’s linearity, we could (and did :-) take the complex amplitudes of the reflected and transmitted wave
proportional to that  of the incident wave, while scaling them with dimensionless, generally complex coefficients  and .
As the comparison of Eqs. (64)-(65) with Eqs. (61)-(62) shows, the total reflection from an ideal mirror that was discussed above,
corresponds to the particular case  and .

(ii) Since the incident wave that we are considering, arrives from one side only (from ), there is no need to include a term
proportional to  into Eqs. (64)-(65) – in our current problem. However, we would need such a term if the medium at 

 had been nonuniform (e.g., had at least one more interface or any other inhomogeneity), because the wave reflected from
that additional inhomogeneity would be incident on our interface (located at ) from the right.

(iii) The solution (64)-(65) is sufficient even for the description of the cases when waves cannot propagate to , for example a
conductor or a plasma with . Indeed, the exponential drop of the field amplitude at  in such cases is automatically
described by the imaginary part of the wave 
number  – see Eq. (29).

In order to calculate the coefficients  and , we need to use boundary conditions at . Since the reflection does not change
the transverse character of the partial waves, in our current case of the normal incidence, both vectors E and H remain tangential to
the interface plane (in our notation, ).

Reviewing the arguments that have led us, in statics, to the boundary conditions (3.37) and (5.117) for these components, we see
that they remain valid for the time dependent situation as well,  so that for our current case of normal incidence we may write:

Plugging Eqs. (64)-(65) into these conditions, we readily get two equations for the coefficients  and :

Solving this simple system of linear equations, we get

These formulas are very important, and much more general than one might think because they are applicable for virtually any 1D
waves – electromagnetic or not, provided that the impedance  is defined properly.  Since in the general case the wave
impedances  defined by Eq. (28) with the corresponding indices, are complex functions of frequency, Eqs. (68) show that 
and  may have imaginary parts as well. This fact has important consequences at , where the reflected wave, 
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proportional to , combines (“interferes”) with the incident wave. Indeed, with  (where  arg  is a real phase
shift), the expression in the parentheses in the first of Eqs. (64) becomes

This means that the field may be represented as a sum of a traveling wave and a standing wave, with an amplitude proportional to 
, shifted by the distance  toward the interface, relatively to the ideal-mirror pattern (61b) – see Fig. 8. This effect is

frequently used for the experimental measurements of an unknown impedance  of some medium, provided than  is known –
most often, the free space, where . For that, a small antenna (the probe), not disturbing the fields’ distribution too much,
is placed into the wave field, and the amplitude of the ac voltage induced in it by the wave in the probe is measured with a detector
(e.g., a semiconductor diode with a nearly-quadratic I-V curve), as a function of  (Fig. 9). From the results of such a
measurement, it is straightforward to find both  and , and hence restore the complex , and then use Eq. (67) to calculate
both the modulus and the argument of . (Before computers became ubiquitous, a specially lined paper called the Smith chart,
had been frequently used for performing this recalculation graphically; it is still used for result presentation.)

Fig. 7.9. Measurement of the complex impedance of a medium (schematically).

Now let us discuss what do these results give for waves incident from the free space , )
onto the surfaces of two particular, important media.

(i) For a collision-free plasma (with negligible magnetization) we may use Eq. (36) with , to represent the impedance
(28) in either of two equivalent forms:

The first of these forms is more convenient in the case , when the wave vector  and the wave impedance  of plasma
are real, so that a part of the incident wave does propagate into the plasma. Plugging this expression into the latter of Eqs. (68), we
see that  is real as well:

Note that according to this formula, and somewhat counter-intuitively,  for any frequency (above ), inviting the question:
how can the transmitted wave be more intensive than the incident one that has induced it? For answering this question, we need to
compare the powers (rather than the electric field amplitudes) of these two waves, i.e. their average Poynting vectors (42):

The ratio of these two values  is always below 1 (and tends to zero at ), so that only a fraction of the incident wave power
may be transmitted. Hence the result  may be interpreted as follows: an interface between two media may be an impedance
transformer: it can never transmit more power than the incident wave provides, i.e. can only decrease the product , but
since the ratio  changes at the interface, the amplitude of one of the fields may increase at the transmission.
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Now let us proceed to case , when the waves cannot propagate in the plasma. In this case, the second of the expressions
(70) is more convenient, because it immediately shows that  is purely imaginary, while  is purely real. This means
that , i.e. according to the first of Eqs. (68), , so that the reflection is total, i.e. no incident
power (on average) is transferred into 
the plasma – as was already discussed in Sec. 2. However, the complex  has a finite argument,

and hence provides a finite spatial shift (69) of the standing wave toward the plasma surface:

On the other hand, we already know from Eq. (40) that the solution at  is exponential, with the decay length  that is
described by Eq. (39). Calculating, from the coefficient , the exact coefficient before this exponent, it is straightforward to verify
that the electric and magnetic fields are indeed continuous at the interface, completing the pattern shown with red lines in Fig. 8.
This wave penetration into a fully reflecting material may be experimentally observed, for example, by thinning its sample. Even
without solving this problem exactly, it is evident that if the sample thickness d becomes comparable to , a part of the exponential
“tail” of the field reaches the second interface, and induces a propagating wave. This is a classical electromagnetic analog of the
quantum-mechanical tunneling through a potential barrier.

Note that at low frequencies, both  and  tend to the same frequency-independent value,

which is just the field penetration depth (6.44) calculated for a perfect conductor model (assuming  and ) in the
quasistatic limit. This is natural, because the condition  may be recast as , i.e. as the
quasistatic approximation’s validity condition.

(ii) Now let us consider electromagnetic wave reflection from an Ohmic, non-magnetic conductor. In the simplest low-frequency
limit, when , is much less than 1, the conductor may be described by a frequency-independent conductivity .  According to
Eq. (46), in this case we can take

With this substitution, Eqs. (68) immediately give us all the results of interest. In particular, in the most important quasistatic limit
(when , i.e. , the conductor’ impedance is low:

This impedance is complex, and hence some fraction  of the incident wave is absorbed by the conductor. The fraction may be
found as the ratio of the dissipated power (either calculated, as was done above, from Eqs. (68), or just taken from Eq. (6.36), with
the magnetic field amplitude  - see Eq. (62)) to the incident wave’s power given by the first of Eqs. (72). The
result,

is widely used for crude estimates of the energy dissipation in metallic-wall waveguides and resonators. It shows that to keep the
energy losses low, the characteristic size of such systems (which gives a scale of the free-space wavelengths  at which they are
used) should be much larger than . A more detailed theory of these structures, and the effects of energy loss in them, will be
discussed later in this chapter.
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Reference
 For example, the first of conditions (66) may be obtained by integrating the full (time-dependent) Maxwell equation 

 over a narrow and long rectangular contour with dimensions  and  stretched along the
interface. At the application of the Stokes theorem to this integral, the first term gives , while the contribution of the second
term is proportional to the product , so that its contribution at  is negligible. The proof of the second boundary condition
is similar – as was already discussed in Sec. 6.2.

 Please note that only the media impedances (rather than wave velocities) are important for the reflection in this case!
Unfortunately, this fact is not clearly emphasized in some textbooks that discuss only the case , when  and

 are proportional to each other.

 See, e.g., the discussion of elastic waves of mechanical deformation in CM Secs. 6.3, 6.4, 7.7, and 7.8.

 This ratio is sometimes also called the “transmission coefficient”, but to avoid its confusion with the T defined by Eq. (64), it is
better to call it the power transmission coefficient.

 See, e.g., QM Sec. 2.3.

In a typical metal, , so that this approximation works well up to , i.e. up to the far-infrared
frequencies.
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