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8.6: Fresnel and Fraunhofer Diffraction Patterns
Now let us use the Huygens principle to analyze a (slightly) more complex problem: plane wave’s diffraction on a long, straight slit
of a constant width  (Fig. 12). According to Eq. (83), to use the Huygens principle for the problem’s analysis we need to have 

. Moreover, the simple version (91) of the principle is only valid for small observation angles, . Note,
however, that the relation between two dimensionless parameters of the problem,  and , both much less than 1, is so far
arbitrary; as we will see in a minute, this relation determines the type of the observed diffraction pattern.

Fig. 8.12. Diffraction on a slit.

Let us apply Eq. (91) to our current problem (Fig. 12), for the sake of simplicity assuming the normal wave incidence, and taking 
 at the screen plane:

where  is the incident wave’s amplitude. This is the same integral as in Eq. (85), except for the finite
limits for the integration variable , and may be simplified similarly, using the small-angle condition :

The integral over  is the same as in the last section:

but the integral over  is more general, because of its finite limits:

It may be simplified in the following two (opposite) limits.

(i) Fraunhofer diffraction takes place when  – the relation which may be rewritten either as , or as 
. In this limit, the ratio  is negligibly small for all values of  under the integral, and we can approximate it as

so that Eq. (105) yields
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and hence the relative wave intensity is

where  is the intensity of the incident wave, and  is the observation angle. Comparing this expression with Eq.
(69), we see that this diffraction pattern is exactly the same as that of a similar (uniform, 1D) object in the Born approximation – see
the red line in Fig. 8. Note again that the angular width  of the Fraunhofer pattern is of the order of , so that its linear width 

 is of the order of .  Hence the condition of the Fraunhofer approximation’s validity may be also
represented as .

(ii) Fresnel diffraction. In the opposite limit of a relatively wide slit, with , the
diffraction patterns at two edges of the slit are well separated. Hence, near each edge (for example, near ) we may
simplify Eq. (107) as

and express it via the special functions called the Fresnel integrals:

whose plots are shown in Fig. 13a. As was mentioned above, at large values of their argument , both functions tend to 1⁄2.

Fig. 8. 13. (a) The Fresnel integrals and (b) their parametric representation.

Plugging this expression into Eqs. (105) and (111), for the diffracted wave intensity, in the Fresnel limit (i.e. at ),
we get

A plot of this function (Fig. 14) shows that the diffraction pattern is very peculiar: while in the “shade” region  the wave
intensity fades monotonically, the transition to the “light” region within the gap  is accompanied by intensity
oscillations, just as at the Fraunhofer diffraction – cf. Fig. 8.
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Fig. 8.14. The Fresnel diffraction pattern.

This behavior, which is described by the following asymptotes,

is essentially an artifact of “observing” just the wave intensity (i.e. its real amplitude) rather than its phase as well. Indeed, as may be
seen even more clearly from the parametric presentation of the Fresnel integrals, shown in Fig. 13b, these functions oscillate
similarly at large positive and negative values of their argument. (This famous pattern is called either the Euler spiral or the Cornu
spiral.) Physically, this means that the wave diffraction at the slit edge leads to similar oscillations of its phase at  and 

; however, in the latter region (i.e. inside the slit) the diffracted wave overlaps the incident wave passing through the slit
directly, and their interference reveals the phase oscillations, making them visible in the measured intensity as well.

Note that according to Eq. (113), the linear scale  of the Fresnel diffraction pattern is of the order of , i.e. is complies
with the estimate given by Eq. (90). If the slit is gradually narrowed so that its width a becomes comparable to ,  the Fresnel
diffraction patterns from both edges start to “collide” (interfere). The resulting wave, fully described by Eq. (107), is just a sum of
two contributions of the type (111) from both edges of the slit. The resulting interference pattern is somewhat complicated, and only
when a becomes substantially less than , it is reduced to the simple Fraunhofer pattern (110).

Of course, this crossover from the Fresnel to Fraunhofer diffraction may be also observed, at fixed wavelength  and slit width ,
by increasing , i.e. by measuring the diffraction pattern farther and 
farther away from the slit.

Note also that the Fraunhofer limit is always valid if the diffraction is measured as a function of the diffraction angle  alone. This
may be done, for example, by collecting the diffracted wave with a “positive” (converging) lens and observing the diffraction pattern
in its focal plane.

Reference
 Note also that since in this limit , Eq. (97) shows that even the maximum value  of the diffracted wave’s

intensity is much lower than that  of the incident wave. This is natural because the incident power  per unit length of the
slit is now distributed over a much larger width , so that .

 Slightly different definitions of these functions, affecting the constant factors, may also be met in literature.

 Note that this condition may be also rewritten as , i.e. .
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