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5.1: Magnetic Interaction of Currents
DC currents in conductors usually leave them electroneutral, , with very good precision, because even a minute
unbalance of positive and negative charge density results in extremely strong Coulomb forces that restore their balance by an
additional shift of free charge carriers. This is why let us start the discussion of magnetism from the simplest case of two spatially-
separated, dc-current-carrying, electroneutral conductors (Fig. 1).

Fig. 5.1. Magnetic interaction of two currents.

According to the Coulomb law, there is no electrostatic force between them. However, several experiments carried out in 1820
proved that there is a different, magnetic interaction between the currents. In the present-day notation, the results of all such
experiments may be summarized with just one formula, in SI units expressed as:

Here the coefficient  (where  is called either the magnetic constant or the free space permeability) equals to almost
exactly  SI units, with the product  equal to exactly .

Note a close similarity of this expression to the Coulomb law (1.1), written for continuous charge distributions, with the account of
the linear superposition principle (1.4):

Besides the different coefficient and a different sign, the “only” difference of Eq. (1) from Eq. (2) is the scalar product of current
densities, evidently necessary because of their vector character. We will see that this difference brings certain complications in
applying the approaches discussed in the previous chapters, to magnetostatics.

Before going to their discussion, let us have one more glance at the coefficients in Eqs. (1) and (2). To compare them, let us
consider two objects with uncompensated charge distributions  and , each moving parallel to each other as a whole, with
certain velocities  and , as measured in the same inertial (“laboratory”) reference frame. In this case, , so that 

, and the integrals in Eqs. (1) and (2) become functionally similar, differing only by the factor

(The last expression is valid in any consistent system of units.) We immediately see that the magnetism is an essentially relativistic
phenomenon, very weak in comparison with the electrostatic interaction at the human scale velocities, , and may dominate
only if the latter interaction vanishes – as it does in electroneutral systems.  The discovery and initial studies  of such a subtle,
relativistic phenomenon as magnetism were much facilitated by the relative abundance of natural ferromagnets, materials with a
spontaneous magnetic polarization, whose strong magnetic field is due to relativistic effects (such as spin) inside the constituent
atoms – see Sec. 5 below.

Also, Eq. (3) points to an interesting paradox. Consider two electron beams moving parallel to each other, with the same velocity v
with respect to a lab reference frame. Then, according to Eq. (3), the net force of their total (electric plus magnetic) interaction is
proportional to , tending to zero in the limit . However, in the reference frame moving together with the
electrons, they are not moving at all, i.e. . Hence, from the point of view of such a moving observer, the electron beams
should interact only electrostatically, with a repulsive force independent of the velocity . Historically, this had been one of several
paradoxes that led to the development of special relativity; its resolution will be discussed in Chapter 9 devoted to this theory.
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Returning to Eq. (1), in some simple cases the double integration in it may be carried out analytically. First of all, let us simplify
this expression for the case of two thin, long conductors (“wires”) separated by a distance much larger than their thickness. In this
case, we may integrate the products  and  over the wires’ cross-sections first, neglecting the corresponding change of
the factor . Since the integrals of the current density over the cross-sections of the wires are just the currents  and 
flowing in the wires, and cannot change along their lengths (say,  and , respectively), they may be taken out of the remaining
integrals, reducing Eq. (1) to

As the simplest example, consider two straight, parallel wires (Fig. 2) separated by distance , both with length .

Fig. 5.2. The magnetic force between two straight parallel currents.

In this case, due to symmetry, the vector of the magnetic interaction force has to:

(i) lie in the same plane as the currents, and

(ii) be normal to the wires – see Fig. 2.

Hence we may limit our calculations to just one component of the force – normal to the wires. Using the fact that with the
coordinate choice shown in Fig. 2, the scalar product

 is just , we get

Now introducing, instead of , a new, dimensionless variable , we may reduce the internal integral to a table one,
which we have already encountered in this course:

The integral over  formally diverges, but it gives a finite interaction force per unit length of the wires:

Note that the force drops rather slowly (only as ) as the distance  between the wires is increased, and is attractive (rather than
repulsive as in the Coulomb law) if the currents are of the same sign.

This is an important result,  but again, the problems so simply solvable are few and far between, and it is intuitively clear that we
would strongly benefit from the same approach as in electrostatics, i.e., from breaking Eq. (1) into a product of two factors via the
introduction of a suitable field. Such decomposition may be done as follows:

where the vector  is called the magnetic field.  In the case when it is induced by the current :
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The last relation is called the Biot-Savart law,  while the force  expressed by Eq. (8) is sometimes called the Lorentz force.
However, more frequently the latter term is reserved for the full force,

exerted by electric and magnetic fields field on a point charge , moving with velocity .

Now we have to prove that the new formulation, given by Eqs. (8)-(9), is equivalent to Eq. (1). At the first glance, this seems
unlikely. Indeed, first of all, Eqs. (8) and (9) involve vector products, while Eq. (1) is based on a scalar product. More profoundly,
in contrast to Eq. (1), Eqs. (8) and (9) do not satisfy the 3  Newton’s law applied to elementary current components  and 

, if these vectors are not parallel to each other. Indeed, consider the situation shown in Fig. 3.

Fig. 5.3. The apparent violation of the 3
Newton law in magnetism.

Here the vector  is perpendicular to the vector , and hence, according to Eq. (9), produces a non-zero contribution 
to the magnetic field, directed (in Fig. 3) normally to the plane of the drawing, i.e. is perpendicular to the vector . Hence,
according to Eq. (8), this field provides a non-zero contribution to . On the other hand, if we calculate the reciprocal force  by
swapping the prime indices in Eqs. (8) and (9), the latter equation immediately shows that , because
the two operand vectors are parallel – see Fig. 3 again. Hence, the current component  does exert a force on its counterpart,
while  does not.

Despite this apparent problem, let us still go ahead and plug Eq. (9) into Eq. (8):

This double vector product may be transformed into two scalar products, using the vector algebraic identity called the bac minus
cab rule, .  Applying this relation, with , , and , to Eq. (11), we
get

The second term on the right-hand side of this equality coincides with the right-hand side of Eq. (1), while the first term equals zero
because its internal integral vanishes. Indeed, we may break the volumes  and  into narrow current tubes – the stretched
elementary volumes whose walls are not crossed by 
current lines (so that on their walls, . As a result, the elementary current in each tube, , is the same along
its length, and, just as in a thin wire,  may be replaced with , with the vector  directed along . Because of this, each
tube’s contribution to the internal integral in the first term of Eq. (12) may be represented as

where the operator  acts in the -space, and the integral is taken along the tube’s length . Due to the current continuity
expressed by Eq. (4.6), each loop should follow a closed contour, and an integral of a full differential of some scalar function (in
our case, 1/R) along such contour equals zero.

So we have recovered Eq. (1). Returning for a minute to the paradox illustrated with Fig. 3, we may conclude that the apparent
violation of the 3  Newton law was the artifact of our interpretation of Eqs. (8) and (9) as the sums of independent elementary
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components. In reality, due to the dc current continuity, these components are not independent. For the whole currents, Eqs. (8)-(9)
do obey the  law – as follows from their already proved equivalence to Eq. (1).

Thus we have been able to break the magnetic interaction into two effects: the induction of the magnetic field  by one current (in
our notation, ), and the effect of this field on the other current ( ). Now comes an additional experimental fact: other elementary
components  of the current  also contribute to the magnetic field (9) acting on the component .  This fact allows us
to drop the prime sign after  in Eq. (9), and rewrite Eqs. (8) and (9) as

Again, the field observation point r and the field source point  have to be clearly distinguished. We immediately see that these
expressions are close to, but still different from the corresponding relations of the electrostatics, namely Eq. (1.9) and the
distributed-charge version of Eq. (1.6):

(Note that the sign difference has disappeared, at the cost of the replacement of scalar-by-vector multiplications in electrostatics
with cross-products of vectors in magnetostatics.)

For the frequent case of a field of a thin wire of length , Eq. (14) may be re-written as

Let us see how does this formula work for the simplest case of a straight wire (Fig. 4a). The magnetic field contributions  due
to all small fragments  of the wire’s length are directed along the same line (perpendicular to both the wire and the normal 
dropped from the observation point to the wire’s line), and its magnitude is

Summing up all such elementary contributions, we get

Fig. 5.4. Calculating magnetic fields: (a) of a straight current, and (b) of a current loop.

This is a simple but important result. (Note that it is only valid for very long , straight wires.) It is especially crucial to
note the “vortex” character of the field: its lines go around the wire, forming rings with the centers on the current line. This is in
sharp contrast to the electrostatic field lines, which can only begin and end on electric charges and never form closed loops
(otherwise the Coulomb force  would not be conservative). In the magnetic case, the vortex structure of the field may be
reconciled with the potential character of the magnetic forces, which is evident from Eq. (1), due to the vector products in Eqs.
(14)-(15).
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Now we may readily use Eq. (15), or rather its thin-wire version

to apply Eq. (20) to the two-wire problem (Fig. 2). Since for the second wire vectors  and  are perpendicular to each other, we
immediately arrive at our previous result (7), which was obtained directly from Eq. (1).

The next important example of the application of the Biot-Savart law (14) is the magnetic field at the axis of a circular current loop
(Fig. 4b). Due to the problem’s symmetry, the net field  has to be directed along the axis, but each of its elementary components 

 is tilted by the angle  to this axis, so that its axial component is

Since the denominator of this expression remains the same for all wire components , the integration over  is easy 
, giving finally

Note that the magnetic field in the loop’s center (i.e., for ),

is  times higher than that due to a similar current in a straight wire, at distance  from it. This difference is readily
understandable, since all elementary components of the loop are at the same distance  from the observation point, while in the
case of a straight wire, all its points but one are separated from the observation point by distances larger than .

Another notable fact is that at large distances , the field (23) is proportional to :

where  is the loop area. Comparing this expression with Eq. (3.13), for the particular case , we see that such field
is similar to that of an electric dipole (at least along its direction), with the replacement of the electric dipole moment magnitude 
with the m so defined – besides the front factor. Indeed, such a plane current loop is the simplest example of a system whose field,
at distances much larger than , is that of a magnetic dipole, with a dipole moment  – the notions to be discussed in more detail
in Sec. 4 below.

Reference

 Most notably, by Hans Christian Ørsted who discovered the effect of electric currents on magnetic needles, and André-Marie
Ampère who has extended this work by finding the magnetic interaction between two currents.

 For details, see appendix CA: Selected Physical Constants. In the Gaussian units, the coefficient  is replaced with .

 An important case when the electroneutrality may not hold is the motion of electrons in vacuum. (However, in this case the
electron speed is often comparable with the speed of light, so that the magnetic forces may be comparable in strength with
electrostatic forces, and hence important.) In some semiconductor devices, local violations of electroneutrality also play an
important role – see, e.g., SM Chapter 6.

 The first detailed book on this subject, De Magnete by William Gilbert (a.k.a. Gilberd), was published as early as 1600.

 In particular, until very recently (2018), Eq. (7) was used for the legal definition of the SI unit of current, one ampere (A), via the
SI unit of force (the newton, N), with the coefficient  considered exactly fixed.

 The SI unit of the magnetic field is called tesla (T) – after Nikola Tesla, a pioneer of electrical engineering. In the Gaussian units,
the already discussed constant  in Eq. (1) is equally divided between Eqs. (8) and (9), so that in them both, the constant before
the integral is . The resulting Gaussian unit of the field  is called gauss (G); taking into account the difference of units of
electric charge and length, and hence of the current density, 1 G equals exactly . Note also that in some textbooks,
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especially old ones,  is called either the magnetic induction or the magnetic flux density, while the term “magnetic field” is
reserved for the field  that will be introduced in Sec. 5 below.

 Named after Jean-Baptiste Biot and Félix Savart who made several key contributions to the theory of magnetic interactions – in
the same notorious 1820.

 Named after Hendrik Antoon Lorentz, famous mostly for his numerous contributions to the development of special relativity –
see Chapter 9 below. To be fair, the magnetic part of the Lorentz force was implicitly described in a much earlier (1865) paper by J.
C. Maxwell, and then spelled out by Oliver Heaviside (another genius of electrical engineering – and mathematics!) in 1889, i.e.
also before the 1895 work by H. Lorentz.

 From the magnetic part of Eq. (10), Eq. (8) may be derived by the elementary summation of all forces acting on 
particles in a unit volume, with  – see the footnote on Eq. (4.13a). On the other hand, the reciprocal derivation of Eq. (10)
from Eq. (8) with , where  is the current particle’s position (so that ), requires care and will be
performed in Chapter 9.

 See, e.g., MA Eq. (7.5).

 Just as in electrostatics, one needs to exercise due caution transforming these expressions for the limit of discrete classical
particles, and extended wavefunctions in quantum mechanics, to avoid the (non-existing) magnetic interaction of a charged particle
with itself.
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