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7.9: Energy Loss Effects
The inevitable energy losses (“dissipation”) in passive media lead, in two different situations, to two different effects. In a long
transmission line fed by a constant wave source, the losses lead to a gradual attenuation of the wave, i.e. to a decrease of its
amplitude, and hence its power , with the distance  from the source. In linear materials, the power losses  are
proportional to the time-averaged power  carried by the wave, so that the energy balance on a small segment  takes the form

The coefficient  participating in the last form of Eq. (213), and hence defined as

is called the attenuation constant.  Comparing the solution of Eq. (213),

with Eq. (29), where  is replaced with , we see that  may be expressed as

where  is the component of the wave vector along the transmission line. In the most important limit when the losses are low in
the sense , its effects on the field distribution along the line’s cross-section are negligible, making the
calculation of  rather straightforward. In particular, in this limit the contributions to attenuation from two major sources, the
energy losses in the filling dielectric, and the skin effect-losses in conducting walls, are independent and additive.

The dielectric losses are especially simple to describe. Indeed, a review of our calculations in Secs. 5-7 shows that all of them
remain valid if either , or , or both, and hence , have small imaginary parts:

For dielectric waveguides, in particular optical fibers, these losses are the main attenuation mechanism. As was discussed in Sec. 7,
in practical optical fibers , i.e. most of the field propagates (as an evanescent wave) in the cladding, with a field
distribution very close to the TEM wave. This is why Eq. (218) is approximately valid if it is applied to the cladding material alone.
In waveguides with non-TEM waves, we can use the relations between  and , derived in the previous sections, to re-calculate 

 into Im . (Note that at this recalculation, the values of  have to be kept real, because they are just the eigenvalues of the
Helmholtz equation (101), which does not include the filling media parameters.).

In transmission lines and waveguides and with metallic walls, higher energy losses may come from the skin effect. If the
wavelength  is much larger than , as it usually is,  the losses may be readily evaluated using Eq. (6.36):

where  is the real amplitude of the tangential component of the magnetic field at the wall’s surface. The total power loss 
 per unit length of a waveguide, i.e. the right-hand side of Eq. (213), now may be calculated by the integration of this 

 along the contour(s) limiting the cross-section of all conducting walls. Since our calculation is only valid for low
losses, we may ignore their effect on the field distribution, so that the unperturbed distributions may be used both in Eq. (219), i.e.
in the numerator of Eq. (214), and also for the calculation of the average propagating power, i.e. the denominator of Eq. (214) – as
the integral of the Poynting vector over the cross-section of the waveguide.

Let us see how this approach works for the TEM mode in one of the simplest transmission lines, the coaxial cable (Fig. 20). As we
already know from Sec. 5, in the coarse-grain approximation, implying negligible power loss, the TEM mode field distribution
between the two conductors are the same as in statics, namely:

where  is the field’s amplitude on the surface of the inner conductor, and
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Neglecting the power losses for now, we may plug these expressions into Eq. (42) to calculate the time-averaged Poynting vector:

and from it, the total wave power flow through the cross-section:

Next, for the particular case of the coaxial cable (Fig. 20), the contours limiting the wall cross-section are circles of radii 
(where the surface field amplitude  equals, in our notation, ), and  (where, according to Eq. (214), the field is a
factor of  lower). As a result, for the power loss per unit length, Eq. (219) yields

Note that at , the losses in the inner conductor dominate, despite its smaller surface, because of the higher surface field.

Now we may plug Eqs. (223) and (224) into the definition (214) of , to calculate the skin-effect contribution to the attenuation
constant:

This result shows that the relative (dimensionless) attenuation, , scales approximately as the ratio , in a semi-
quantitative agreement with Eq. (78).

Let us use this result to evaluate  for the standard TV cable RG-6/U, with copper conductors of diameters , 
, and  and . According to Eq. (6.33), for  (i.e. ) the skin depth

of pure copper at room temperature (with ) is close to , while 
. As a result, the attenuation is rather low: , so that the

attenuation length scale  is about 60 m. Hence the attenuation in a cable connecting a roof TV antenna to a TV set in the
same house is not a big problem, though using a worse conductor, e.g., steel, would make the losses rather noticeable. (Hence the
current worldwide shortage of copper.) However, the use of such cable in the X-band  is more problematic. Indeed,
though the skin depth  decreases with frequency, the wavelength drops, i.e.  increases, even faster ( ), so that
the attenuation  becomes close to , i.e.  to ~6 m. This is why at such frequencies, it may be necessary to
use rectangular waveguides, with their larger internal dimensions , , and hence lower attenuation. Let me leave the
calculation of this attenuation, using Eq. (219) and the results derived in Sec. 7, for the reader’s exercise.

The effect of dissipation on free oscillations in resonators is different: here it leads to a gradual decay of the oscillating fields’
energy  in time. A useful dimensionless measure of this decay, called the Q factor, is commonly defined by writing the following
temporal analog of Eq. (213):

where  in the eigenfrequency in the loss-free limit, and

The solution of Eq. (226),
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which is the temporal analog of Eq. (215), shows the physical meaning of the Q-factor: the characteristic time  of the oscillation
energy’s decay is  times longer than the oscillation period . (Another useful interpretation of  comes from
the universal relation

where  is the so-called FWHM  bandwidth of the resonance, namely the difference between the two values of the external
signal frequency, one above and one below , at which the energy of the oscillations induced in the resonator by an input signal is
twice lower than its resonance value.)

In the important particular case of resonators formed by the insertion of metallic walls into a TEM transmission line of small cross-
section (with the linear size scale  much less than the wavelength ), there is no need to calculate the -factor directly,
provided that the line attenuation coefficient  is already known. In fact, as was discussed in Sec. 8 above, the standing waves in
such a resonator, of the length given by Eq. (196):  with , may be understood as an overlap of two TEM
waves running in opposite directions, or in other words, a traveling wave plus its reflection from one of the ends, the whole
roundtrip taking time . According to Eq. (215), at this distance, the wave’s power drops by a
factor of . On the other hand, the same decay may be viewed as taking place in time, and according to
Eq. (228), results in the drop by a factor of . Comparing these two
exponents, we get

This simple relation neglects the losses at the wave reflection from the walls limiting the resonator length. Such approximation is
indeed legitimate at ; if this relation is violated, or if we are dealing with more complex resonator modes (such as those
based on the reflection of  or  waves), the -factor may be different from that given by Eq. (230), and needs to be calculated
directly from Eq. (227). A substantial relief for such a direct calculation is that, just at the calculation of small attenuation in
waveguides, in the low-loss limit , both the numerator and denominator of the right-hand side of that formula may be
calculated neglecting the effects of the power loss on the field distribution in the resonator. I am leaving such a calculation, for the
simplest (rectangular and circular) resonators, for the reader’s exercise.

To conclude this chapter, the last remark: in some resonators (including certain dielectric resonators and metallic resonators with
holes in their walls), additional losses due to the wave radiation into the environment are also possible. In some simple cases (say,
the Fabry-Pérot interferometer shown in Fig. 31) the calculation of these radiative losses is straightforward, but sometimes it
requires more elaborated approaches that will be discussed in the next chapter.

Reference
 In engineering, attenuation is frequently measured in decibels per meter, abbreviated as db/m (the term not to be confused with

dBm standing for decibel-milliwatt):

 As follows from Eq. (78), which may be used for crude estimates even in cases of arbitrary wave incidence, this condition is
necessary for low attenuation:  only if .

 As losses grow, the oscillation waveform deviates from the sinusoidal one, and the very notion of “oscillation frequency”
becomes vague. As a result, the parameter Q is well defined only if it is much higher than 1.

 See, e.g., CM Sec. 5.1.

 This is the acronym for “Full Width at Half-Maximum”.
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