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7.7: Dielectric Waveguides, Optical Fibers, and Paraxial Beams
Now let us discuss electromagnetic wave propagation in dielectric waveguides. The simplest, step-index waveguide (see Figs. 23b
and 25) consists of an inner core and an outer shell (in the optical fiber technology lingo, called cladding) with a higher wave
propagation speed, i.e. a lower index of refraction:

at the same frequency. (In most cases the difference is achieved due to that in the electric permittivity, , while magnetically
both materials are virtually passive: , so that their refraction indices , defined by Eq. (84), are very close to 

; I will limit my discussion to this approximation.)

The basic idea of waveguide’s operation may be readily understood in the limit when the wavelength  is much smaller than the
characteristic size  of the core’s cross-section. In this “geometric optics” limit, at the distances of the order of  from the core-to-
cladding interface, which determines the wave reflection, we can neglect the interface’s curvature and approximate its geometry with
a plane. As we know from Sec. 4, if the angle  of the wave’s incidence on such an interface is larger than the critical value 
specified by Eq. (85), the wave is totally reflected. As a result, the waves launched into the fiber core at such “grazing” angles,
propagate inside the core, being repeatedly reflected from the cladding – see Fig. 25.

Fig. 7.25. Wave propagation in a thick optical fiber at .

The most important type of dielectric waveguides is optical fibers.  Due to a heroic technological effort during three decades
starting from the mid-1960s, the attenuation of such fibers has been decreased from the values of the order of 20 db/km (typical for a
window glass) to the fantastically low values about 0.2 db/km (meaning virtually perfect transparency of 10-km-long fiber
segments!), combined with the extremely low plane-wave (“chromatic”) dispersion below .  In conjunction with the
development of inexpensive erbium-based quantum amplifiers, this breakthrough has enabled inter-city and inter-continental
(undersea), broadband  optical cables, which are the backbone of all the modern telecommunication infrastructure.

The only bad news is that these breakthroughs were achieved for just one kind of materials (silica-based glasses)  within a very
narrow range of their chemical composition. As a result, the dielectric constants  of the cladding and core of practical
optical fibers are both close to 2.2  and hence very close to each other, so that the relative difference of the refraction
indices,

is typically below 0.5%. This factor limits the fiber bandwidth. Indeed, let us use the geometric-optics picture to calculate the
number of quasi-plane-wave modes that may propagate in the fiber. For the complementary angle (Fig. 25)

Eq. (85) gives the following propagation condition:

In the limit , when the incidence angles  of all propagating waves are very close to , and hence the
complementary angles are small, we can keep only two first terms in the Taylor expansion of the left-hand side of Eq. (151) and get

(Even for the higher-end value , this critical angle is only ~0.1 radian, i.e. close to .) Due to this smallness, we may
approximate the maximum transverse component of the wave vector as
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and use Eq. (147) to calculate the number  of propagating modes:

For typical values  (corresponding to the free-space wavelength ), ,
and , this formula gives .

Now we can calculate the geometric dispersion of such a fiber, i.e. the difference of the mode propagation speed, which is commonly
characterized in terms of the difference between the wave delay times (traditionally measured in picoseconds per kilometer) of the
fastest and slowest modes. Within the geometric optics approximation, the difference of time delays of the fastest mode (with 

) and the slowest mode (with ) at distance  is

For the example considered above, the TEM wave’s speed in the glass, , and the geometric dispersion 
 is close to , i.e. 25,000 ps/km. (This means, for example, that a 1-ns pulse, being distributed between the modes,

would spread to a ~25-ns pulse after passing a just 1-km fiber segment.) This result should be compared with the chromatic
dispersion mentioned above, below , which gives  is of the order of only 1,000 ps/km in the whole
communication band . Due to this high geometric dispersion, such relatively thick  multi-mode fibers
are used for the transfer of signals power over only short distances below ~ 100 m. (As compensation, they may carry relatively
large power, beyond 10 mW.)

Long-range telecommunications are based on single-mode fibers, with thin cores (typically with diameters , i. e. of the
order of ). For such structures, Eq. (154) yields , but in this case the geometric optics approximation is not
quantitatively valid, and for the fiber analysis, we should get back to the Maxwell equations. In particular, this analysis should take
into explicit account the evanescent wave in the cladding, because its penetration depth may be comparable with .

Since the cross-section of an optical fiber lacks metallic walls, the Maxwell equations describing them cannot be exactly satisfied
with either TEM-wave, or -mode, or -mode solutions. Instead, the fibers can carry the so-called  and  modes, with
both vectors H and E having longitudinal components simultaneously. In such modes, both  and  inside the core 
have a form similar to Eq. (141):

where the constant angles  may be different for each field. On the other hand, for the evanescent wave in the cladding, we may
rewrite Eqs. (101) as

Figure 26 illustrates these relations between , and ; note that the following sum,

is fixed (at a given frequency) and, for typical fibers, is very small . In particular, Fig. 26 shows that neither  nor 
can be larger than . This means that the depth  of the wave penetration into the cladding
is at least . This is why the cladding layers in practical optical fibers are made as thick as 

, so that only a negligibly small tail of this evanescent wave field reaches their outer surfaces.

Fig. 7.26. The relation between the transverse exponents  and  for waves in optical fibers.
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In the polar coordinates, Eq. (157) becomes

- the equation to be compared with Eq. (139) for the circular metallic-wall waveguide. From Sec. 2.7 we know that the
eigenfunctions of Eq. (159) are the products of the sine and cosine functions of  by a linear combination of the modified Bessel
functions  and  shown in Fig. 2.22, now of the argument . The fields have to vanish at , so that only the latter
functions (of the second kind) can participate in the solution:

Now we have to reconcile Eqs. (156) and (160), using the boundary conditions at  for both longitudinal and transverse
components of both fields, with the latter components first calculated using Eqs. (121). Such a conceptually simple, but a bit bulky
calculation (which I am leaving for the reader’s exercise), yields a system of two linear, homogeneous equations for the complex
amplitudes  and , which are compatible if

where the prime signs (as a rare exception in this series) denote the derivatives of each function over its full argument:  for ,
and  for .

For any given frequency , the system of equations (158) and (161) determines the values of  and , and hence . Actually,
for any , this system provides two different solutions: one corresponding to the so-called  wave, with a larger ratio 

, and the  wave, with a smaller value of that ratio. For angular-symmetric modes with  (for whom we might
naively expect the lowest cutoff frequency), the equations may be satisfied by the fields having just one non-zero longitudinal
component (either  or ), so that the  modes are the usual  waves, while the  modes are the  waves. For the 
modes, the characteristic equation is reduced to the requirement that the expression in the second parentheses on the left-hand side of
Eq. (161) is equal to zero. Using the Bessel function identities  and , this equation may be rewritten in a
simpler form:

Using the universal relation between  and  given by Eq. (158), we may plot both sides of Eq. (162) as functions of the same
argument, say,  – see Fig. 27.

Fig. 7.27. Two sides of the characteristic equation (162), plotted as functions of , for two values of its dimensionless parameter: 
 (blue line) and  (red line). Note that according to Eq. (158), the argument of the functions  and  is 

.

The right-hand side of Eq. (162) depends not only on , but also on the dimensionless parameter  defined as the normalized right-
hand side of Eq. (158):
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(According to Eq. (154), if , it gives twice the number  of the fiber modes – the conclusion confirmed by Fig. 27, taking
into account that it describes only the  modes.) Since the ratio  is positive for all values of the functions’ argument (see,
e.g., the right panel of Fig. 2.22), the right-hand side of Eq. (162) is always negative, so that the equation may have solutions only in
the intervals where the ratio  is negative, i.e. at

where  is the -th zero of the function  – see Table 2.1. The right-hand side of the characteristic equation (162) diverges
at , i.e. at , so that no solutions are possible if  is below the critical value . At this cutoff
point, Eq. (163) yields . Hence, the cutoff frequency of the lowest  mode corresponds to the TEM
wavelength

For typical parameters  and , this result yields , corresponding to the free-space
wavelength . A similar analysis of the first parentheses on the left-hand side of Eq. (161) shows that at , the
cutoff frequency for the  modes is similar.

This situation may look exactly like that in metallic-wall waveguides, with no waves possible at frequencies below , but this is
not so. The basic reason for the difference is that in the metallic waveguides, the approach to  results in the divergence of the
longitudinal wavelength . On the other hand, in dielectric waveguides, the approach leaves  finite . Due
to this difference, a certain linear superposition of  and  modes with  can propagate at frequencies well below the
cutoff frequency for , which we have just calculated.  This mode, in the limit  (i.e. ) allows a very
interesting and simple description using the Cartesian (rather than polar) components of the fields, but still expressed as functions of
the polar coordinates  and . The reason is that this mode is very close to a linearly polarized TEM wave. (Due to this reason, this
mode is referred to as .)

Let us select the x-axis parallel to the transverse component of the magnetic field vector at , so that , but 
, and , but . The only suitable solutions of the 2D Helmholtz equation (that should be obeyed

not only by the z-components of the field, but also their x- and y-components) are proportional to , with zero coefficients
for  and .

Now we can use the last two equations of Eqs. (100) to calculate the longitudinal components of the fields:

where I have used the following mathematical identities: , and . As a
sanity check, we see that the longitudinal component or each field is a (legitimate!) eigenfunction of the type (141), with .
Note also that if  (this relation is always true if  – see either Eq. (158) or Fig. 26), the longitudinal components of
the fields are much smaller than their transverse counterparts, so that the wave is indeed very close to the TEM one. Because of that,
the ratio of the electric and magnetic field amplitudes is also close to that in the TEM wave: .

Now to satisfy the boundary conditions at the core-to-cladding interface ( ), we need to have a similar angular dependence of
these components at . The longitudinal components of the fields are tangential to the interface and thus should be continuous.
Using the solutions similar to Eq. (160) with , we get

For the transverse components, we should require the continuity of the normal magnetic field , for our simple field structure
equal to just , of the tangential electric field , and of the normal component of .
Assuming that , and .  we can satisfy these conditions with the following solutions:

From here, we can calculate components from  and , using the same approach as for :
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These relations provide the same functional dependence of the fields as Eqs. (167), i.e. the internal and external fields are
compatible, but their amplitudes at the interface coincide only if

This characteristic equation (which may be also derived from Eq. (161) with  in the limit ) looks close to Eq. (162),
but functionally is much different from it – see Fig. 28. Indeed, its right-hand side is always positive, and the left-hand side tends to
zero at . As a result, Eq. (171) may have a solution for arbitrary small values of the parameter  defined by Eq. (163), i.e.
for arbitrary low frequencies (large wavelengths). This is why this mode is used in practical single-mode fibers: there are no other
modes with wavelength larger than  given by Eq. (165), so that they cannot be unintentionally excited on small
inhomogeneities of the fiber.

Fig. 7.28. Two sides of the characteristic equation (171) for the  mode, plotted as a function of , for two values of the
dimensionless parameter:  (blue line) and  (red line).

It is easy to use the Bessel function approximations by the first terms of the Taylor expansions (2.132) and (2.157) to show that in
the limit ,  tends to zero much faster than . This means that the scale 

 of the radial distribution of the  wave’s fields in the cladding becomes very large. In this limit, this mode may be
interpreted as a virtually TEM wave propagating in the cladding, just slightly deformed (and guided) by the fiber’s core. The
drawback of this feature is that it requires very thick cladding, to avoid energy losses in its outer (“buffer” and “jacket”) layers that
defend the silica layers from the elements, but lack their low optical absorption. Due to this reason, the core radius is usually selected
so that the parameter  is just slightly less than the critical value  for higher modes, thus ensuring the single-mode
operation.

In order to reduce the field spread into the cladding, the step-index fibers discussed above may be replaced with graded-index fibers
whose dielectric constant  is gradually and slowly decreased from the center to the periphery.  Keeping only the main two terms
in the Taylor expansion of the function  at , we may approximate such reduction as

where  is a positive constant characterizing the fiber composition gradient.  Moreover, if this constant
is sufficiently small , the field distribution across the fiber’s cross-section may be described by the same 2D Helmholtz
equation (101), but with a space-dependent transverse wave vector:
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Surprisingly for such an axially-symmetric problem, because of its special dependence on the radius, this equation may be most
readily solved in the Cartesian coordinates. Indeed, rewriting it as

and separating the variables as , we get

so that the functions  and  obey similar differential equations, for example

with the separation constants satisfying the following condition:

The ordinary differential equation (176) is well known from elementary quantum mechanics, because the stationary Schrödinger
equation for one of the most important basic quantum systems, a 1D harmonic oscillator, may be rewritten in this form. Its
eigenvalues are very simple:

but the corresponding eigenfunctions  and  are expressed via not quite elementary functions – the Hermite
polynomials.  For most practical purposes, however, the lowest eigenfunctions  and  are sufficient, because they
correspond to the lowest , and hence the lowest

and the lowest cutoff frequency. As may be readily verified by substitution to Eq. (176), the eigenfunctions corresponding to this
fundamental mode are also simple:

and similarly for , so that the field distribution follows the Gaussian function

where  has the sense of the effective width of the field’s extension in the radial direction, normal to the wave
propagation axis . This is the so-called Gaussian beam, very convenient for some applications.

The Gaussian beam (181) is just one example of the so-called paraxial beams, which may be represented as a result of modulation of
a plane wave with a wave number , by an axially-symmetric envelope function , where , with a relatively large
effective radius .  Such beams give me a convenient opportunity to deliver on the promise made in Sec. 1: calculate the
angular momentum L of a circularly polarized wave, propagating in free space, and prove its fundamental relation to the wave’s
energy . Let us start from the calculation of  for a paraxial beam (with an arbitrary, but spatially-localized envelope ) of the
circularly polarized waves, with the transverse electric field components given by Eq. (19):

where  is the real amplitude of the wave’s electric field at the propagation axis,  is its total phase, and the two
signs correspond to two possible directions of the circular polarization.  According to Eq. (6), the corresponding transverse
components of the magnetic field are

 [ + + (0) − (0)ζ ( + )] f = 0,
∂2

∂x2

∂2

∂y2
k2
t k2 x2 y2 (7.174)

 f = X(x)Y (y)

  + + (0) − (0)ζ ( + ) = 0,
1

X

Xd2

dx2

1

Y

Yd2

dy2
k2
t k2 x2 y2 (7.175)

 X  Y

  +[ − (0)ζ ]X = 0,
Xd2

dx2
k2
x k2 x2 (7.176)

  + = (0) ≡ (0) − .k2
x k2

y k2
t k2 k2

z (7.177)

  = k(0) (2n+1), = k(0) (2m+1),  with n,m = 0, 1, 2, … ,( )k2
x n

ζ1/2 ( )k2
y m

ζ1/2 (7.178)

  (x)Xn   (y)Ym
69   (x)X0   (y)Y0

 kx,y

  = + = 2k(0) ,[ (0)]k2
t min

( )k2
x 0

( )k2
y 0

ζ1/2 (7.179)

  (x) =  const  ×exp{− },X0
k(0)ζ1/2x2

2
(7.180)

  (y)Y0

  (ρ) = (0) exp{− } ≡ (0) exp{− },  with a ≡ 1/ (0) ,f0 f0
k(0)ζ1/2ρ2

2
f0

ρ2

2a2
k1/2 ζ1/4 (7.181)

 a >> 1/k(0)
 z

 k  f(ρ)  ρ ≡ {x, y}
 a >> 1/k 70

 U  U  f

  = f(ρ) cosψ, = ∓ f(ρ) sinψ,Ex E0 Ey E0 (7.182a)

 E0  ψ ≡ kz−ωt+φ
71

  = ± f(ρ) sinψ, = f(ρ) cosψ.Hx

E0

Z0
Hy

E0

Z0
(7.182b)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/57019?pdf


7.7.7 https://phys.libretexts.org/@go/page/57019

These expressions are sufficient to calculate the energy density (6.113) of the wave,

and hence the full energy (per unit length in the direction  of the wave’s propagation) of the beam:

However, the transverse fields (182) are insufficient to calculate a non-zero average of L. Indeed, following the angular moment’s
definition in mechanics,  , where p is a particle’s (linear) momentum, we may use Eq. (6.115) for the electromagnetic
field momentum’s density g in free 
space, to define the field’s angular momentum’s density as

Let us use the familiar bac minus cab rule of the vector algebra  to transform this expression to

If the field is purely transverse , as it is in a strictly plane wave, the first square brackets in the last expression
vanish, while the second bracket gives an azimuthal component of l, which oscillates in time, and vanishes at its time averaging.
(This is exactly the reason why I have not tried to calculate L at our first discussion of the circularly polarized waves in Sec. 1.)

Fortunately, our discussion of optical fibers, in particular, the derivation of Eqs. (167), (168), and (170), gives us a clear clue on how
to resolve this paradox. If the envelope function  differs from a constant, the transverse wave components (182) alone do not
satisfy the Maxwell equations (2b), which necessitate longitudinal components  and  of the fields, with

However, as these expressions show, if the envelope function  changes very slowly in the sense , the
longitudinal components are very small and do not have a back effect on the transverse components. Hence, the above calculation of 

 is still valid (asymptotically, at ), and we may still use Eqs. (182) on the right-hand side of Eqs. (187),

and integrate them over  as

Here the integration constant is taken for zero, because no wave field component may have a time-independent part. Integrating,
absolutely similarly, the second of Eqs. (188), we get

With the same approximation, we may calculate the longitudinal  component of l, given by the first term of Eq. (186), keeping
only the dominating, transverse fields (182) in the scalar products:

Plugging in Eqs. (182) and (189), and taking into account that in free space, , and hence , we get:

72

 u = + = + ≡ ,
( + )ε0 E2

x E2
y

2

( + )μ0 H 2
x H 2

y

2

ε0E2
0 f

2

2

μ0E2
0 f

2

2Z2
0

ε0E
2
0 f

2 (7.183)

 z

 U = ∫ u r ≡ 2π uρdρ = 2π ρdρ.d2 ∫
∞

0
ε0E2

0 ∫
∞

0
f 2 (7.184)

73  L ≡ r ×p
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Hence the total angular momentum of the beam (per unit length), is

Taking this integral by parts, with the assumption that  at  and  (at it is true for the Gaussian beam (181) and
all realistic paraxial beams), we finally get

Now comparing this expression with Eq, (184), we see that remarkably, the ratio  does not depend on the shape and the width
of the beam (and of course on the wave’s amplitude ), so these parameters are very simply and universally related:

Since this relation is valid in the plane-wave limit , it may be attributed to plane waves as well, with the understanding that
in real life they always have some width (“aperture”) restriction.

As the reader certainly knows, in quantum mechanics the energy excitations of any harmonic oscillator of frequency  are
quantized in the units of , while the internal angular momentum of a particle is quantized in the units of , where  is its spin.
In this context, the classical relation (194) is used in quantum electrodynamics as the basis for treating the electromagnetic field
excitation quanta (photons) as some sort of quantum particles with spin . (Such integer spin also fits the Bose-Einstein
statistics of the electromagnetic radiation.)

Unfortunately, I do not have time for a further discussion of the (very interesting) physics of paraxial beams, but cannot help
noticing, at least in passing, the very curious effect of helical waves – the beams carrying not only the “spin” momentum (194), but
also an additional “orbital” angular momentum. The distribution of their energy in space is not monotonic, as it is in the Gaussian
beam (181), but reminds several threads twisted around the propagation axis – hence the term “helical”.  Mathematically, their field
structure is described by the associate Laguerre polynomials – the same special functions that are used for the quantum-mechanical
description of hydrogen-like atoms.  Presently there are efforts to use such beams for the so-called orbital angular momentum
(OAM) multiplexing for high-rate information transmission.

Reference
 For a comprehensive discussion of this vital technology see, e.g., A. Yariv and P. Yeh, Photonics, 6  ed., Oxford U. Press, 2007.

 Both these parameters have the best values not in the visible light range (with wavelengths from 380 to 740 nm), but in the near-
infrared, with the attenuation lowest between approximately 1,500 and 1,630 nm. As a result, most modern communication systems
use two spectral windows – the so-called C-band (1,530-1,565 nm) and L- band (1,570-1,610 nm).

 Each of the spectral bands mentioned above, at a typical signal-to-noise ratio , corresponds to the Shannon
bandwidth  exceeding 10  bits per second, some five orders of magnitude (!) higher than that of a modern Ethernet
cable. The practically usable bandwidth of each fiber is somewhat lower, but a typical optical cable, with many fibers in parallel, has
a proportionately higher aggregate bandwidth. A recent (circa 2017) example is the C-band transatlantic (6,600-km-long) cable
Marea, with eight fiber pairs and an aggregate useable bandwidth of 160 terabits per second.

 The silica-based fibers were developed in 1966 by an industrial research group led by Charles Kao (who shared the 2009 Nobel
Prize in physics), but the very idea of using optical fibers for long-range communications may be traced back at least to the 1963
work by Jun-ichi Nishizawa – who also invented semiconductor lasers.

 The following quantitative analysis of the single-mode fibers is very valuable – both for practice and as a very good example of
Maxwell equations’ solution. However, its results will not be used in the following parts of the course, so that if the reader is not
interested in this topic, they may safely jump to the text following Eq. (181). (I believe that the discussion of the angular momentum
of electromagnetic radiation, starting at that point, is compulsory for every professional physicist.)

 This fact becomes less surprising if we recall that in the circular metallic waveguide, discussed in Sec. 6, the fundamental mode (
, see Fig. 23) also corresponded to  rather than .
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 It is the core assumption of this approximate theory, which accounts only for the most important effect of the small difference of
dielectric constants  and : the opposite signs of the differences  and . For more
discussion of the accuracy of this approximation and some exact results, let me refer the interested reader either to the monograph by
A. Snyder and D. Love, Optical Waveguide Theory, Chapman and Hill, 1983, or to Chapter 3 and Appendix B in the monograph by
Yariv and Yeh, which was cited above.

 Due to the difficulty of fabrication of graded-index fibers with wave attenuation below a few dm/km, they are not used as broadly
as the step-index ones.

 For an axially-symmetric smooth function , the first derivative  always vanishes at , so that Eq. (172) does not
have a term linear in .

 This approach is invalid at arbitrary (large)  because in the macroscopic Maxwell equations,  is under the differentiation
sign, and the exact Helmholtz-type equations for fields have additional terms containing .

 See, e.g., QM Sec. 2.9.

 Note that propagating in a uniform medium, i.e. outside of grade-index fibers or other focusing systems, such beams gradually
increase their width a due to diffraction – the effect to be analyzed in the next chapter.

 For our task of calculation of two quadratic forms of the fields (L and ), their real representation (182) is more convenient than
the complex-exponent one. However, for linear manipulations, the latter representation of the circularly-polarized waves, 

, , is usually more convenient, and is
broadly used.

 Note that, in contrast to a linearly-polarized wave (16), the energy density of a circularly-polarized wave does not depend on the
full phase  – in particular, on  at fixed , or vice versa. This is natural because its field vectors rotate (keeping their magnitude)
rather than oscillate – see Fig. 3b.

 See, e.g., CM Eq. (1.31).

 See, e.g., MA Eq. (7.5).

 The complex-exponential versions of these equalities are given by the bottom line of Eq. (100).

 Noticing such solutions of the Maxwell equations may be traced back to at least a 1943 theoretical work by J. Humblet; however,
this issue had not been discussed in literature too much until experiments carried out in 1992 – see, e.g. L. Allen et al., Optical
Angular Momentum; IOP, 2003.

 See, e.g., QM Sec. 3.7.

 See, e.g., J. Wang et al., Nature Photonics 6, 488 (2012).

This page titled 7.7: Dielectric Waveguides, Optical Fibers, and Paraxial Beams is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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