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6.1: Electromagnetic Induction
As Eqs. (5.36) show, in static situations  the Maxwell equations describing the electric and magnetic fields are
independent – coupled only implicitly, via the continuity equation (4.5) relating their right-hand sides  and . In dynamics, when
the fields change in time, the situation in different.

Historically, the first discovered explicit coupling between the electric and magnetic fields was the effect of electromagnetic
induction. Although the induction effect was discovered independently by Joseph Henry, it was a brilliant series of experiments by
Michael Faraday, carried out mostly in 1831, that resulted in the first general formulation of the induction law. The summary of
Faraday’s numerous experiments has turned out to be very simple: if the magnetic flux, defined by Eq. (5.65),

through the surface S limited by a closed contour C, changes in time by whatever reason (e.g., either due to a change of the
magnetic field  (as in Fig.1), or the contour’s motion, or its deformation, or any combination of the above), it induces an
additional, vortex-like electric field  directed along the 
contour – see Fig. 1.

Fig. 6.1. Two simplest ways to observe the Faraday electromagnetic induction.

The exact distribution of  in space depends on the system’s details, but its integral along the contour , called the inductive
electromotive force (e.m.f.), obeys a very simple Faraday induction law:

(In the Gaussian units, the right-hand side of this formula has an additional coefficient .)

It is straightforward (and hence left for the reader’s exercise) to show that this e.m.f. may be measured, for example, either
inserting a voltmeter into a conducting loop following the contour , or by measuring the small current  it induces in
a thin wire with a sufficiently large Ohmic resistance ,  whose shape follows that contour – see Fig. 1. (Actually, these methods
are not entirely different, because a typical voltmeter measures voltage by the small Ohmic current it drives through a known high
internal resistance of the device.) In the context of the latter approach, the minus sign in Eq. (2) may be described by the following
Lenz rule: the magnetic field of the induced current  provides a partial compensation of the change of the original flux  with
time.

In order to recast Eq. (2) in a differential form, more convenient in many cases, let us apply to the contour integral in it the same
Stokes theorem that was repeatedly used in Chapter 5. The result is

Now combining Eqs. (1)-(3), for a contour  whose shape does not change in time (so that the integration along it is
interchangeable with the time derivative), we get

Since the induced electric field is an addition to the gradient field (1.33) created by electric charges, for the net field we may write 
. However, since the curl of any gradient field is zero,  , Eq. (4) remains valid even for the net

field . Since this equation should be correct for any closed area , we may conclude that
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at any point. This is the final (time-dependent) form of this Maxwell equation. Superficially, it may look that Eq. (5) is less general
than Eq. (2); for example, it does not describe any electric field, and hence any e.m.f. in a moving loop, if the field  is constant in
time, even if the magnetic flux (1) through the loop does change in time. However, this is not true; in Chapter 9 we will see that in
the reference frame moving with the loop such e.m.f. does appear.

Now let us reformulate Eq. (5) in terms of the vector potential . Since the induction effect does not alter the fundamental relation
, we still may represent the magnetic field as prescribed by Eq. (5.27), i.e. as . Plugging this expression

into Eq. (5), and changing the order of the temporal and spatial differentiation, we get

Hence we can use the same argumentation as in Sec. 1.3 (there applied to the vector  alone) to represent the expression in the
parentheses as , so that we get

It is very tempting to interpret the first term of the right-hand side of the expression for  as the one describing the
electromagnetic induction alone, and the second term as representing a purely electrostatic field induced by electric charges.
However, the separation of these two terms is, to a certain extent, conditional. Indeed, let us consider the gauge transformation
already mentioned in Sec. 5.2,

that, as we already know, does not change the magnetic field. According to Eq. (7), to keep the full electric field intact (gauge-
invariant) as well, the scalar electric potential has to be transformed simultaneously, as

leaving the choice of an addition to  restricted only by the Laplace equation – since the full  should satisfy the Poisson equation
(1.41) with a gauge-invariant right-hand side. We will return to the discussion of the gauge invariance in Sec. 4.

Reference

 Such induced current is sometimes called the eddy current, though most often this term is reserved for the distributed currents
induced by changing magnetic fields in bulk conductors – see Sec. 3 below.

 Let me also hope that the reader is familiar with the paradox arising at attempts to measure  with a voltmeter without its
insertion into the wire loop; if not, I would highly recommend them to solve Problem 2.

 See, e.g., MA Eq. (11.1).

I have to admit that from the beginning of the course, I was carefully sweeping under the rug a very important question: in what
exactly reference frame(s) all the equations of electrodynamics are valid? I promise to discuss this issue in detail later in the course
(in Chapter 9), and for now would like to get away with a very short answer: all the formulas discussed so far are valid in any
inertial reference frame, as defined in classical mechanics – see, e.g., CM Sec. 1.3; however, the fields  and  have to be
measured in the same reference frame.
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