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4.1: Continuity Equation and the Kirchhoff Laws

Until this point, our discussion of conductors has been limited to the cases when they are separated with insulators (meaning either
the free space or some dielectric media), preventing any continuous motion of charges from one conductor to another, even if there
is a non-zero voltage (and hence electric field) between them — see Fig. 1a.
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Fig. 4.1. Two oppositely charged conductors: (a) in the electrostatic situation, (b) at the charge relaxation through an additional
narrow conductor (“wire”), and (c) in a system sustaining a dc current I.
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Now let us connect the two conductors with a wire — a thin, elongated conductor (Fig. 1b). Then the electric field causes the motion
of charge carriers in the wire — from the conductor with a higher electrostatic potential toward that with lower potential, until the
potentials equilibrate. Such a process is called charge relaxation. The main equation governing this process may be obtained from
the fundamental experimental fact (already mentioned in Sec. 1.1) that electric charges cannot appear or disappear — though
opposite charges may recombine with the conservation of the net charge. As a result, the charge @ in a conductor may change only
due to the electric current I through the wire:
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the relation that may be understood as the definition of the current.’

Let us express Eq. (1) in a differential form, introducing the notion of the current density j(r). This vector may be defined via the
following relation for the elementary current dI crossing an elementary area dA (Fig. 2):

dI = jdAcosf = (jcosH)dA = j,dA, (4.2)

where 6 is the angle between the direction normal to the surface and the carrier motion direction, that is taken for the direction of

the vector j.
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Fig. 4.2. The current density vector
j

With that definition, Eq. (1) may be rewritten as
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where V is an arbitrary stationary volume limited by the closed surface .S. Applying to this volume the same divergence theorem
as was repeatedly used in previous chapters, we get

/V[% +V-j] d*r=0. (4.4)

Since the volume V is arbitrary, this equation may be true only if
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B +V-j=0. Continuity equation (4.5)

This is the fundamental continuity equation — which is true even for time-dependent phenomena.’

The charge relaxation, illustrated by Fig. 1b, is of course a dynamic, time-dependent process. However, electric currents may also
exist in stationary situations, when a certain current source, for example a battery, drives the current against the electric field, and
thus replenishes the conductor charges and sustains currents at a certain time independent level — see Fig. 1c. (This process requires
a persistent replenishment of the electrostatic energy of the system from either a source or a large storage of energy of a different
kind — say, the chemical energy of the battery.) Let us discuss the laws governing the distribution of such dc currents. In this case
(8/0t =0), Eq. (5) reduces to a very simple equation

V-j=0. (4.6)

This relation acquires an even simpler form in the particular but important case of dc electric circuits (Fig. 3) — the systems that
may be fairly represented as direct (“galvanic”) connections of components of two types:

(i) small-size (lumped) circuit elements, meaning a passive resistor, a current source, etc. — generally, any “black box” with two or
more terminals, and

(ii) perfectly conducting wires, with a negligible drop of the electrostatic potential along them, that are galvanically connected at
certain points called nodes (or “junctions”).

“circuit
element’ node”

Fig. 4.3. A typical system obeying Kirchhoff laws.

In the standard circuit theory, the electric charges of the nodes are considered negligible,” and we may integrate Eq. (6) over the
closed surface drawn around any node to get a simple equality

Y 1 =0, (4.7a)
7

where the summation is over all the wires (numbered with index j) connected in the node. On the other hand, according to its
definition (2.25), the voltage V}, across each circuit element may be represented as the difference of the electrostatic potentials of
the adjacent nodes, Vj, = ¢, — ¢r—1 . Summing such differences around any closed loop of the circuit (Fig. 3), we get all terms
canceled, so that

Y Vi =o0. (4.7D)
k

These relations are called, respectively, the 1% and 2* Kirchhoff laws’ — or sometimes the node rule (7a) and the loop rule (7b).
They may seem elementary, and their genuine power is in the mathematical fact that any set of Egs. (7), covering every node and
every circuit element of the system at least once, gives a system of equations sufficient for the calculation of all currents and
voltages in it — provided that the relation between the current and voltage is known for each circuit element.

It is almost evident that in the absence of current sources, the system of equations (7) has only the trivial solution: I; =0,V;, =0
— with the exotic exception of superconductivity, to be discussed in Sec. 6.3. The current sources, that allow non-zero current flows,
may be described by their electromotive forces (e.m.f.) %%, having the dimensionality of voltage, which have to be taken into
account in the corresponding terms V} of the sum (7b). Let me hope that the reader has some experience of using Egs. (7) for
analyses of simple circuits — say consisting of several resistors and batteries, so that I can save time by skipping their discussion.
Still, due to their practical importance, I would recommend the reader to carry out a self-test by solving a couple of problems
offered at the beginning of Sec. 6.
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1 Just as a (hopefully, unnecessary :-) reminder, in the SI units the current is measured in amperes (A). In legal metrology, the
ampere (rather than the coulomb, which is defined as 1C = 1A x 1s) is a primary unit. (Its formal definition will be discussed in the
next chapter.) In the Gaussian units, Eq. (1) remains the same, so that the current’s unit is the statcoulomb per second — the so-
called statampere.

2 Similar differential relations are valid for the density of any conserved quantity, for example for mass in the classical fluid
dynamics (see, e.g., CM Sec. 8.3), and for probability in statistical physics (SM Sec. 5.6) and quantum mechanics (QM Sec. 1.4).

3 In many cases, the charge accumulation/relaxation may be described without an explicit violation of Eq. (7a), just by adding other
circuit elements, lumped capacitors (see Fig. 2.5 and its discussion), to the circuit under analysis. The resulting circuit may be used
to describe not only the transient processes but also periodic ac currents. However, it is convenient for me to postpone the
discussion of such ac circuits until Chapter 6, where one more circuit element type, lumped inductances, will be introduced.

4 Named after Gustav Kirchhoff (1824-1887) — who also suggested the differential form (8) of the Ohm law.
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