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6.3: Quasistatic Approximation, and the Skin Effect
Perhaps the most surprising experimental fact concerning the time-dependent electromagnetic phenomena is that unless they are so
fast that one more new effect of the displacement currents (to be discussed in Sec. 7 below) becomes noticeable, all formulas of
electrostatics and magnetostatics remain valid, with the only exception: the generalization of Eq. (3.36) to Eq. (5), describing the
Faraday induction. As a result, the system of macroscopic Maxwell equations (5.109) is generalized to

(As it follows from the discussions in chapters 3 and 5, the corresponding system of microscopic Maxwell equations for the
genuine, “microscopic” fields  and  may be obtained from Eq. (21) by the formal substitutions  and ,
and the replacement of the stand-alone charge and current densities  and  with their full densities. ) These equations, whose
range of validity will be quantified in Sec. 7, define the so-called quasistatic approximation of electromagnetism and are sufficient
for an adequate description of a broad range of physical effects.

In order to form a complete system of equations, Eqs. (21) should be augmented by constituent equations describing the medium
under consideration. For an Ohmic conductor, they may be taken in the simplest (and simultaneously, most common) linear and
isotropic forms already discussed in Chapters 4 and 5:

If the conductor is uniform, i.e. the coefficients  and  are constant inside it, the whole system of Eqs. (21)-(22) may be reduced
to just one equation. Indeed, a sequential substitution of these equations into each other, using a well-known vector-algebra
identity  in the middle, yields:

Thus we have arrived, without any further assumptions, at a rather simple partial differential equation. Let us use it for an analysis
of the so-called skin effect, the phenomenon of self-shielding of the alternating  magnetic field by the eddy currents induced
by the field in an Ohmic conductor. In its simplest geometry (Fig. 2a), an external source (which, at this point, does not need to be
specified) produces, near a plane surface of a bulk conductor, a spatially-uniform ac magnetic field  parallel to the
surface.

Fig. 6.2. (a) The skin effect in the simplest, planar geometry, and (b) two Ampère contours,  and , for deriving the
“macroscopic”  and the “coarse-grain”  boundary conditions for .

Selecting the coordinate system as shown in Fig. 2a, we may express this condition as

The translational symmetry of our simple problem within the surface plane [y, z] implies that inside the conductor 
 as well, and  even at , so that Eq. (23) for the conductor’s interior is reduced to a

differential equation for just one scalar function :
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This equation may be further simplified by noticing that due to its linearity, we may use the linear superposition principle for the
time dependence of the field,  via expanding it, as well as the external field (24), into the Fourier series:

and arguing that if we know the solution for each frequency component of the series, the whole field may be found through the
straightforward summation (26) of these solutions.

For each single-frequency component, Eq. (25) is immediately reduced to an ordinary differential equation for the complex
amplitude :

From the theory of linear ordinary differential equations, we know that Eq. (27) has the following general solution:

where the constants  are the roots of the characteristic equation that may be obtained by substitution of any of these two
exponents into the initial differential equation. For our particular case, the characteristic equation, following from Eq. (27), is

and its roots are complex constants

For our problem, the field cannot grow exponentially at , so that only one of the coefficients, namely  corresponding
to the decaying exponent, with Re  (i.e. ), may be different from zero, i.e. . To find the
constant factor , we can integrate the macroscopic Maxwell equation  along a pre-surface contour – say, the
contour  shown in Fig. 2b. The right-hand side’s integral is negligible because the stand-alone current density  does not
include the “genuinely-surface” currents responsible for the magnetic permeability  – see Fig. 5.12. As a result, we get the
boundary condition similar to Eq. (5.117) for the stationary magnetic field:  at , i.e.

so that the final solution of our problem may be represented as

where the constant , with the dimension of length, is called the skin depth:

This solution describes the skin effect: the penetration of the ac magnetic field, and the eddy currents , into a conductor only to a
finite depth of the order of .  Let me give a few numerical examples of this depth: for copper at room temperature,  cm
at the ac power distribution frequency of 60 Hz, and is of the order of just 1  at a few GHz, i.e. at typical frequencies of cell
phone signals and kitchen microwave magnetrons. On the other hand, for lightly salted water,  is close to 250 m at just 1 Hz
(with significant implications for radio communications with submarines), and of the order of 1 cm at a few GHz (explaining, in
particular, nonuniform heating of a soup bowl in a microwave oven).

In order to complete the skin effect discussion, let us consider what happens with the induced eddy currents  and the electric field
at this effect. When deriving our basic equation (23), we have used, in particular, relations , and 
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. Since a spatial differentiation of an exponent yields a similar exponent, the electric field and current density have the
same spatial dependence as the magnetic field, i.e. penetrate inside the conductor only by distances of the order of , but their
vectors are directed perpendicularly to , while still being parallel to the conductor’s surface:

We may use these expressions to calculate the time-averaged power density (4.39) of the energy dissipation, for the important case
of a sinusoidal (“monochromatic”) field , and hence sinusoidal eddy currents: 

:

Now the (elementary) integration of this expression along the x-axis (through all the skin depth), using the exponential law (6.32),
gives us the following average power of the energy loss per unit area:

We will extensively use this expression in the next chapter to calculate the energy losses in microwave waveguides and resonators
with conducting (practically, metallic) walls, and for now let us note only that according to Eqs. (33) and (36), for a fixed magnetic
field amplitude, the losses grow with frequency as .

One more important remark concerning Eqs. (34): integrating the first of them over , with the help of Eq. (32), we may see that
the linear density  of the surface currents (measured in A/m), is simply and fundamentally related to the applied magnetic field:

Since this relation does not have any frequency-dependent factors, we may sum it up for all frequency components, and get a
universal relation

(where  is the outer normal to the surface – see Fig. 2b) or, in a different form,

where  is the full change of the field through the skin layer. This simple coarse-grain relation (independent of the choice of
coordinate axes), is independent of the used constituent relations (22), and is by no means occasional. Indeed, it may be readily
obtained from the macroscopic Ampère law (5.116), applied to a contour drawn around a fragment of the surface, extending under
it substantially deeper than the skin depth – see the contour  in Fig. 2b, and is valid regardless of the exact law of the field
penetration.

For the skin effect, this fundamental relationship between the linear current density and the external magnetic field implies that the
skin effect’s implementation does not necessarily require a dedicated ac magnetic field source. For example, the effect takes place
in any wire that carries an ac current, leading to a current’s concentration in a surface sheet of thickness . (Of course, the
quantitative analysis of this problem in a wire with an arbitrary cross-section may be technically complicated, because it requires
solving Eq. (23) for a 2D geometry; even for the round cross-section, the solution involves the Bessel functions – see Problem 9.)
In this case, the ac magnetic field outside the conductor, which still obeys Eq. (38), may be better interpreted as the effect, rather
than the reason, of the ac current flow.

Finally, please mind the limited validity of all the above results. First, for the quasistatic approximation to be valid, the field
frequency  should not be too high, so that the displacement current effects are negligible. (Again, this condition will be quantified
in Sec. 7 below; it will show that for metals, the condition is violated only at extremely high frequencies above .) A
more practical upper limit on  is that the skin depth  should stay much larger than the mean free path  of charge carriers,
because beyond this point, the relation between the vectors  and  becomes essentially non-local. Both theory and
experiment show that at  below , the skin effect persists, but acquires a frequency dependence slightly different from Eq. (33): 
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Ī

1

2 σδs

∣
∣H

(0)
ω

∣
∣
2 μωδs

4
∣
∣H

(0)
ω

∣
∣
2

(6.36)

 ω1/2

 x
 J

  ≡ (x)dx = .Jω ∫
∞

0
jω H

(0)
ω nz (6.37)

 J(t) = (t) ≡ (t) (− × ) = (t) ×(− ) = (t) ×n,H (0)
nz H (0)

ny nx H
(0)

nx H
(0) (6.38a)

 n = −nx

 ΔH(t) = n ×J(t), Coarse-grain boundary relation (6.38b)

 ΔH

 C2

  ∼ δs

 ω
  ∼ 1018 s−1

 ω  δs  l 18

 j(r)  E(r)
 δs  l

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/57005?pdf


6.3.4 https://phys.libretexts.org/@go/page/57005

 rather than . This so-called anomalous skin effect has useful applications, for example, for experimental
measurements of the Fermi surface of metals.

Reference
 Obviously, in free space the last replacement is unnecessary, because all charges and currents may be treated as “stand-alone”

ones.

 See, e.g., MA Eq. (11.3).

 Due to the simple linear relation  between the fields  and , it does not matter too much which of
them is used for the solution of this problem, with a slight preference for , due to the simplicity of Eq. (5.117) – the only
boundary condition relevant for this simple geometry.

 Another important way to exploit the linearity of Eq. (6.25) is to use the spatial-temporal Green’s function approach to explore
the dependence of its solutions on various initial conditions. Unfortunately, because of lack of time, I have to leave an analysis of
this opportunity for the reader’s exercise.

 Let me hope that the reader is not intimidated by the (very convenient) use of such complex variables for describing real fields;
their imaginary parts always disappear at the final summation (26). For example, if the external field is purely sinusoidal, with the
actual (positive) frequency , each sum in Eq. (26) has just two terms, with complex amplitudes  and , so that
their sum is always real. (For a more detailed discussion of this issue, see, e.g., CM Sec. 5.1.)

 Let me hope that the physical intuition of the reader makes it evident that the ac field penetrates into a sample of any shape by a
similar distance.

 The loop (vortex) character of the induced current lines, responsible for the term “eddy”, is not very apparent in the 1D geometry
explored above, with the near-surface currents (Fig. 2b) looping only implicitly, at .

 A brief discussion of the mean free path may be found, for example, in SM Chapter 6. In very clean metals at very low
temperatures,  may approach  at frequencies as low as ~1 GHz, but at room temperature, the crossover from the normal to the
anomalous skin effect takes place only at ~ 100 GHz.

 See, e.g., A. Abrikosov, Introduction to the Theory of Normal Metals, Academic Press, 1972.
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