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5.3: Magnetic Flux, Energy, and Inductance
Considering the currents flowing in a system as generalized coordinates, the magnetic forces (1) between them are their unique
functions, and in this sense, the energy  of their magnetic interaction may be considered the potential energy of the system. The
apparent (but somewhat deceptive) way to derive an expression for this energy is to use the analogy between Eq. (1) and its
electrostatic analog, Eq. (2). Indeed, Eq. (2) may be transformed into Eq. (1) with just three replacements:

(i)  should be replaced with ,

(ii)  should be replaced with , and

(iii) the sign before the double integral has to be replaced with the opposite one.

Hence we may avoid repeating the calculation made in Chapter 1, by making these replacements in Eq. (1.59), which gives the
electrostatic potential energy of the system with  and  describing the same charge distribution, i.e. with , to
get the following expression for the magnetic potential energy in the system with, similarly, :

However, this is not the unique, and even not the most convenient answer. Actually, Eq. (53) describes the proper energy of the system
(whose minimum corresponds to its stable equilibrium), only in the case when the interacting currents are fixed – just as Eq. (1.59) is
adequate when the interacting charges are fixed. Here comes a substantial difference between the electrostatics and the magnetostatics:
due to the fundamental fact of charge conservation (already discussed in Secs. 1.1 and 4.1), keeping electric charges fixed does not
require external work, while the maintenance of currents generally does. As a result, Eq. (53) describes the energy of the magnetic
interaction plus of the system keeping the currents constant – or rather of its part depending on the system under our consideration.

Now to exclude from  the contribution due to the interaction with the current-supporting system(s), i.e. calculate the potential
energy  of our system as such, we need to know this contribution. The simplest way to do this is to use the Faraday induction law,
which describes this interaction. This is why let me postpone the derivation until the beginning of the next chapter, and for now ask
the reader to believe me that its account leads to an addition to  a term of a twice larger magnitude, so that the result is given by an
expression similar to Eq. (53), but with the opposite sign:

I promise to prove this fact in Sec. 6.2 below, but actually, this sign dichotomy should not be quite surprising to the attentive reader, in
the context of a similar duality of Eqs. (3.73) and (3.81) for the electrostatic energy.

Due to the importance of Eq. (54), let us rewrite it in several other forms, convenient for different applications. First of all, just as in
electrostatics, it may be recast into a potential-based form. Indeed, with the definition (28) of the vector potential , Eq. (54)
becomes

This formula, which is a clear magnetic analog of Eq. (1.60) of electrostatics, is very popular among field theorists, because it is very
handy for their manipulations. However, for many calculations, it is more convenient to have a direct expression for energy via the
magnetic field. Again, this may be done very similarly to what had been done for electrostatics in Sec. 1.3, i.e. by plugging into Eq.
(55) the current density expressed from Eq. (35), and then transforming it as

Now using the divergence theorem, the second integral may be transformed into a surface integral of . According to Eqs.
(27)-(28) if the current distribution  is localized, this vector product drops, at large distances, faster than , so that if the
integration volume is large enough, the surface integral is negligible. In the remaining first integral in Eq. (56), we may use Eq. (27) to
rewrite  as . As a result, we get a very simple and fundamental formula.

Just as with the electric field, this expression may be interpreted as a volume integral of the magnetic energy density :
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clearly similar to Eq. (1.65).  Again, the conceptual choice between the spatial localization of magnetic energy – either at the location
of electric currents only, as implied by Eqs. (54) and (55), or in all regions where the magnetic field exists, as apparent from Eq. (57b),
cannot be done within the framework of magnetostatics, and only the electrodynamics gives a decisive preference for the latter choice.

For the practically important case of currents flowing in several thin wires, Eq. (54) may be first integrated over the cross-section of
each wire, just as was done at the derivation of Eq. (4). Again, since the integral of the current density over the  wire's cross-
section is just the current  in the wire, and cannot change along its length, it may be taken from the remaining integrals, giving

where  is the full length of the  wire loop. Note that Eq. (58) is valid if all currents  are independent of each other, because
the double sum counts each current pair twice, compensating the coefficient 1⁄2 in front of the sum. It is useful to decompose this
relation as

The coefficient  with , is called the mutual inductance between current the  and  loops, while the diagonal
coefficient  is called the self-inductance (or just inductance) of the  loop.  From the symmetry of Eq. (60) with respect
to the index swap, , it evident that the matrix of coefficients  is symmetric:

so that for the practically most important case of two interacting currents  and , Eq. (59) reads

where  is the mutual inductance coefficient.

These formulas clearly show the importance of the self- and mutual inductances, so I will demonstrate their calculation for at least a
few basic geometries. Before doing that, however, let me recast Eq. (58) into one more form that may facilitate such calculations.
Namely, let us notice that for the magnetic field induced by current  in a thin wire, Eq. (28) is reduced to

so that Eq. (58) may be rewritten as

But according to the same Stokes theorem that was used earlier in this chapter to derive the Ampère law, and Eq. (27), the integral in
Eq. (64) is nothing else than the magnetic field’s flux  (more frequently called just the magnetic flux) through a surface S limited by
the contour :

- in that particular case, the flux  of the field induced by the  current through the loop of the  current.  As a result, Eq.
(64) may be rewritten as

Comparing this expression with Eq. (59), we see that
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This expression not only gives us one more means for calculating the coefficients , but also shows their physical sense: the
mutual inductance characterizes what part of the magnetic field (colloquially, “what fraction of field lines”) induced by the current 

, pierces the  loop’s area  – see Fig. 7.

Fig. 5.7. The physical sense of the mutual inductance coefficient  – schematically.

Due to the linear superposition principle, the total flux piercing the  loop may be represented as

For example, for the system of two currents, this expression is reduced to a clear analog of Eqs. (2.19):

For the even simpler case of a single current,

so that the magnetic energy of the current may be represented in several equivalent forms:

These relations, similar to Eqs. (2.14)-(2.15) of electrostatics, show that the self-inductance  of a current loop may be considered as
a measure of the system’s magnetic energy. However, as we will see in Sec. 6.1, this measure is adequate only if the flux , rather
than the current I, is fixed.

Now we are well equipped for the calculation of inductance coefficients for particular systems, having three options. The first one is to
use Eq. (60) directly.  The second one is to calculate the magnetic field energy from Eq. (57) as the function of all currents  in the
system, and then use Eq. (59) to find all coefficients . For example, for a system with just one current, Eq. (71) yields

Finally, if the system consists of thin wires, so that the loop areas Sk and hence fluxes  are well defined, we may calculate them
from Eq. (65), and then use Eq. (67) to find the inductances.

Actually, the first two options may have technical advantages over the third one even for some thin-wire systems, in which the notion
of magnetic flux is not quite apparent. As an important example, let us find the self-inductance of a long solenoid – see Fig. 6a again.
We have already calculated the magnetic field inside it – see Eq. (40) – so that, due to the field uniformity, the magnetic flux piercing
each wire turn is just

where  is the area of the solenoid’s cross-section – for example  for a round solenoid, though Eq. (40), and hence Eq. (73) are
valid for cross-sections of any shape. Comparing Eqs. (73) with Eq. (70), one might wrongly conclude that 
(WRONG!), i.e. that the solenoid’s inductance is independent of its length. Actually, the magnetic flux  pierces each wire turn, so
that the total flux through the whole current loop, consisting of  turns, is

 Lkk′

 Ik′  kth   Sk

  ≡ /Lkk
′ Φ′

kk
′ Ik′

 kth 

 Magnetic flux from currents ≡ =Φk ∑
k′

Φkk′ ∑
k′

Lkk′Ik′ (5.68)

 
= +M ,Φ1 L1I1 I2

= M + .Φ2 I1 L2I2

(5.69)

 Φ of a single current Φ = LI, (5.70)

 U = = IΦ = . U of a single current
L

2
I 2 1

2

1

2L
Φ2 (5.71)

 L

 I

35  Ik
 Lkk′

 L = .
U

/2I 2
(5.72)

 Φkk′

  = BA = nIA,Φ1 μ0 (5.73)

 A  πR2

 L = /I = nAΦ1 μ0

 Φ1

 N

 Φ = N = lAI,Φ1 μ0n
2 (5.74)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/56997?pdf


5.3.4 https://phys.libretexts.org/@go/page/56997

and the correct expression for the long solenoid’s self-inductance is

i.e. the inductance scales as , not as .

Since this reasoning may seem not quite evident, it is prudent to verify this result by using Eq. (72), with the full magnetic energy
inside the solenoid (neglecting minor fringe field contributions), given by Eq. (57) with  within the internal volume 

, and zero outside of it:

Plugging this relation into Eq. (72) immediately confirms the result (75).

This approach becomes virtually inevitable for continuously distributed currents. As an example, let us calculate the self-inductance 
 of a long coaxial cable with the cross section shown in Fig. 8,  with the full current in the outer conductor equal and opposite to

that ( ) in the inner conductor.

Fig. 5.8. The cross-section of a coaxial cable.

Let us assume that the current is uniformly distributed over the cross-sections of both conductors. (As we know from the previous
chapter, this is indeed the case if both the internal and external conductors are made of a uniform resistive material.) First, we should
calculate the radial distribution of the magnetic field – which has only one, azimuthal component, because of the axial symmetry of
the problem. This distribution may be immediately found applying the Ampère law (37) to the circular contours of radii  within four
different ranges:

Now, an easy integration yields the magnetic energy per unit length of the cable:

From here, and Eq. (72), we get the final answer:

Note that for the particular case of a thin outer conductor, , this expression reduces to

where the first term in the parentheses is due to the contribution of the magnetic field energy in the free space between the conductors.
This distinction is important for some applications because in superconductor cables, as well as the normal-metal cables as high
frequencies (to be discussed in the next chapter), the field does not penetrate the conductor’s bulk, so that Eq. (80) is valid without the
last term, 1/4, in the parentheses – for any .
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As the last example, let us calculate the mutual inductance between a long straight wire and a round wire loop adjacent to it (Fig. 9),
neglecting the thickness of both wires.

Fig. 5.9. An example of the mutual inductance calculation.

Here there is no problem with using the last of the approaches discussed above, based on the direct calculation of the magnetic flux.
Indeed, as was discussed in Sec. 1, the field  induced by the current  at any point of the round loop is normal to its plane – e.g.,
to the plane of drawing of Fig. 9. In the Cartesian coordinates shown in that figure, Eq. (20) reads , giving the
following magnetic flux through the loop:

This is a table integral equal to ,  so that , and the final answer for the mutual inductance 
 is finite (and very simple):

despite the magnetic field's divergence at the lowest point of the loop .

Note that in contrast with the finite mutual inductance of this system, the self-inductances of both wires are formally infinite in the
thin-wire limit – see, e.g., Eq. (80), which in the limit  describes a thin straight wire. However, since this divergence is very
weak (logarithmic), it is quenched by any deviation from this perfectly axial geometry. For example, a good estimate of the inductance
of a wire of a large but finite length  may be obtained from Eq. (80) via the replacement of  with :

(Note, however, that the exact result depends on where from/to the current flows beyond that segment.) A close estimate, with 
replaced with  in the front factor, and with  under the logarithm, is valid for the self-inductance of the round loop. A more
exact calculation of this inductance, which would be 
asymptotically correct in the limit , is a very useful exercise, highly recommended to the reader.

Reference

 Just as in electrostatics, for the interaction of two independent current distributions  and , the factor 1⁄2 should be
dropped.

 In the terminology already used in Sec. 3.5 (see also a general discussion in CM Sec. 1.4.),  may be called the Gibbs potential
energy of our magnetic system.

 This relation remains the same in the Gaussian units because in those units, both Eq. (28) and Eq. (54) should be stripped of their 
 coefficients.

 For that, we may use MA Eq. (11.7) with  and , giving .

 The transfer to the Gaussian units in Eqs. (77)-(78) may be accomplished by the usual replacement , thus giving, in
particular, .

 As evident from Eq. (60), these coefficients depend only on the geometry of the system. Moreover, in the Gaussian units, in which
Eq. (60) is valid without the factor , the inductance coefficients have the dimension of length (centimeters). The SI unit of
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inductance is called the henry, abbreviated H – after Joseph Henry, who in particular discovered the effect of electromagnetic
induction (see Sec. 6.1) independently of Michael Faraday.

 Note that the matrix of the mutual inductances  is very much similar to the matrix of reciprocal capacitance coefficients  –
for example, compare Eq. (62) with Eq. (2.21).

 The SI unit of magnetic flux is called weber, abbreviated Wb – after Wilhelm Edward Weber (1804-1891), who in particular co-
invented (with Carl Gauss) the electromagnetic telegraph. More importantly for this course, in 1856 he was the first (together with
Rudolf Kohlrausch) to notice that the value of (in modern terms) , derived from electrostatic and magnetostatic
measurements, coincides with the independently measured speed of light . This observation gave an important motivation for
Maxwell’s theory.

 Numerous applications of this Neumann formula to electrical engineering problems may be found, for example, in the classical text
by F. Grover, Inductance Calculations, Dover, 1946.

 As a reminder, the mutual capacitance C between the conductors of such a system was calculated in Sec. 2.3.

 See, e.g., MA Eq. (6.13), with .

 It may be found, for example, just after Sec. 34 of L. Landau et al., Electrodynamics of Continuous Media, 2  ed., Butterwort
Heinemann, 1984.
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