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9.8: Analytical Mechanics of Electromagnetic Field
We have just seen that the analytical mechanics of a particle in an electromagnetic field may be used to get some important results. The
same is true for the analytical mechanics of the field as such, and the field-particle system as a whole. For such a space-distributed
system as the field, governed by local dynamics laws (Maxwell equations), we need to apply analytical mechanics to the local densities 

 and  of the Lagrangian and Hamiltonian functions, defined by relations

Let us start, as usual, from the Lagrange formalism. Some clues on the possible structure of the Lagrangian function density  may be
obtained from that of the particle-field interaction in this formalism, discussed in the last section. As we have seen, for the case of a
single particle, the interaction is described by the last two terms of Eq. (183):

It is virtually obvious that if the charge q is continuously distributed over some volume, we may represent this  as a volume
integral of the following Lagrangian function density:

Notice that this density (in contrast to  itself!) is Lorentz-invariant. (This is due to the contraction of the longitudinal coordinate,
and hence volume, at the Lorentz transform.) Hence we may expect the density of the field’s part of the Lagrangian to be Lorentz-
invariant as well. Moreover, in the view of the simple, local structure of the Maxwell equations (containing only the first spatial and
temporal derivatives of the fields),  should be a simple function of the potential’s 4-vector and its 4-derivative:

Also, the density should be selected in such a way that the 4-vector analog of the Lagrangian equation of motion,

gave us the correct inhomogeneous Maxwell equations (127).  It is clear that the field part  of the total Lagrangian density 
should be a scalar, and a quadratic form of the field strength, i.e. of , so that the natural choice is

with the implied summation over both indices. Indeed, adding to this expression the interaction Lagrangian (212),

and performing the differentiation (214), we see that the relations (214)-(215) indeed yield Eqs. (127), provided that the constant factor
equals .  So, the field’s Lagrangian density is

where  is the electric field energy density (1.65), and  is the magnetic field energy density (5.57). Let me hope the reader agrees
that Eq. (217) is a wonderful result because the Lagrangian function has a structure absolutely similar to the well-known expression 

 of the classical mechanics. So, for the field alone, the “potential” and “kinetic” energies are separable again.

Now let us explore whether we can calculate the 4-form of the field’s Hamiltonian function . In the generic analytical mechanics,

However, just as for the Lagrangian function, for a field we should find the spatial density  of the Hamiltonian, defined by the second
of Eqs. (210), for which the natural 4-form of Eq. (218) is

Calculated for the field alone, i.e. using Eq. (217) for , this definition yields
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where the tensor

is gauge-invariant, while the remaining term,

is not, so that it cannot correspond to any measurable variables. Fortunately, it is straightforward to verify that the last tensor may be
represented in the form

and as a result, obeys the following relations:

so it does not interfere with the conservation properties of the gauge-invariant, symmetric energy-momentum tensor (also called the
symmetric stress tensor) , to be discussed below.

Let us use Eqs. (125) to express the components of the latter tensor via the electric and magnetic fields. For , we get

i.e. the expression for the total energy density  – see Eq. (6.113). The other 3 components of the same row/column turn out to be just
the Cartesian components of the Poynting vector (6.114), divided by :

The remaining 9 components  of the tensor, with , , are usually represented as

where  is the so-called Maxwell stress tensor:

so that the whole symmetric energy-momentum tensor (221) may be conveniently represented in the following symbolic way:

The physical meaning of this tensor may be revealed in the following way. Considering Eq. (221) as the definition of the tensor ,
and using the 4-vector form of Maxwell equations given by Eqs. (127) and (129), it is straightforward to verify an extremely simple
result for the 4-derivative of the symmetric tensor:

This expression is valid in the presence of electromagnetic field sources, e.g., for any system of charged particles and the fields they
have created. Of these four equations (for four values of the index ), the temporal one (with ) may be simply expressed via the
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energy density (225) and the Poynting vector (226):

while three spatial equations (with ) may be represented in the form

Integrated this expression over a volume  limited by surface , with the account of the divergence theorem, Eq. (231) returns us to
the Poynting theorem (6.111):

while Eq. (232) yields

where  is the  component of the elementary area vector  that is normal to volume’s
surface, and directed out of the volume – see Fig. 17.

Fig. 9.17. The force  exerted on a boundary element  of the volume  occupied by the field.

Since, according to Eq. (5.10), the vector f in Eq. (234) is nothing other than the density of volume-distributed Lorentz forces exerted by
the field on the charged particles, we can use the  Newton law, in its relativistic form (144), to rewrite Eq. (234), for a stationary
volume , as

where  is the total mechanical (relativistic) momentum of all particles in the volume , and the vector F is defined by its
Cartesian components:

Relations (235)-(236) are our main new results. The first of them shows that the vector

already discussed in Sec. 6.8 without derivation, may be indeed interpreted as the density of momentum of the electromagnetic field
(per unit volume). This classical relation is consistent with the quantum-mechanical picture of photons as ultra-relativistic particles,
with the momentum’s magnitude , because then the total flux of the momentum carried by photons through a unit normal area per
unit time may be represented either as  or as . It also allows us to revisit the Poynting vector paradox that was discussed in
Sec. 6.8 – see Fig. 611 and its discussion. As was emphasized in this discussion, the vector  in this case does not
correspond to any measurable energy flow. However, the corresponding momentum of the field, equal to the integral of the density
(237) over a volume of interest,  is not only real but may be measured by the recoil impulse it gives to the field sources – say, to a
magnetic coil inducing the field H, or to the capacitor plates creating the field E.
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Now let us turn to our second result, Eq. (236). It tells us that the -element Maxwell stress tensor complies with the general
definition of the stress tensor  characterizing the force F exerted on the boundary of a volume, in our current case occupied by the
electromagnetic field (Fig. 17). Let us use this important result to analyze two simple examples of static fields.

(i) Electrostatic field’s effect on a perfect conductor. Since Eq. (235) has been derived for a free space region, we have to select volume 
 outside the conductor, but we may align one of its faces with the conductor’s surface (Fig. 18).

Fig. 9.18. The electrostatic field near a conductor’s surface.

From Chapter 2, we know that the electrostatic field has to be perpendicular to the conductor’s surface. Selecting the z-axis in this
direction, we have , so that only diagonal components of the tensor (228) are not equal to zero:

Since the elementary surface area vector has just one non-zero component, , according to Eq. (236), only the last component (that
is positive regardless of the sign of ) gives a contribution to the surface force F. We see that the force exerted by the conductor (and
eventually by external forces that hold the conductor in its equilibrium position) on the field is normal to the conductor and directed out
of the field volume: . Hence, by the 3  Newton law, the force exerted by the field on the conductor’s surface is directed
toward the field-filled space:

This important result could be obtained by simpler means as well. (Actually, this was the task of one of the problems given in Chapter
2.) For example, one could argue, quite convincingly, that the local relation between the force and the field should not depend on the
global configuration creating the field, and thus consider the simplest configuration, a planar capacitor (see, e.g. Fig. 2.3) with surfaces
of both plates charged by equal and opposite charges of density . According to the Coulomb law, the charges should attract
each other, pulling each plate toward the field region, so that the Maxwell-tensor result gives the correct direction of the force. The
force’s magnitude given by Eq. (239) may be verified either by the direct integration of the Coulomb law or by the following simple
reasoning. In the plane capacitor, the field  is equally contributed by two surface charges; hence the field created by the
negative charge of the counterpart plate (not shown in Fig. 18) is , and the force it exerts of the elementary surface
charge  of the positively charged plate is , in accordance with Eq. (239).

Quantitatively, even for such a high electric field as  MV/m (close to electric breakdown threshold in the air), the “negative
pressure”  given by Eq. (239) is of the order of 500 Pa , i.e. below one-thousandth of the ambient atmospheric
pressure . Still, this negative pressure may be substantial (above 1 bar) in some cases, for example in good
dielectrics (such as high-quality , grown at high temperature, which is broadly used in integrated circuits), which can withstand
electric fields up to .

(ii) Static magnetic field’s effect on its source  – say a solenoid’s wall or a superconductor’s surface (Fig. 19). With the choice of
coordinates shown in that figure, we have , so that the Maxwell stress tensor (228) is diagonal again:

However, since for this geometry, only  differs from 0 in Eq. (236), the sign of the resulting force is opposite to that in
electrostatics: , and the force exerted by the magnetic field upon the conductor’s surface,

corresponds to positive pressure. For good laboratory magnets , this pressure is of the order of ,
i.e. is very substantial, so the magnets require solid mechanical design.
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Fig. 9.19. The magnetostatic field near a current-carrying surface.

The direction of the force (241) could be also readily predicted using elementary magnetostatics arguments. Indeed, we can imagine the
magnetic field volume limited by another, parallel wall with the opposite direction of surface current. According to the starting point of
magnetostatics, Eq. (5.1), such surface currents of opposite directions have to repulse each other – doing that via the magnetic field.

Another explanation of the fundamental sign difference between the electric and magnetic field pressures may be provided using the
electric circuit language. As we know from Chapter 2, the potential energy of the electric field stored in a capacitor may be represented
in two equivalent forms,

Similarly, the magnetic field energy of in an inductive coil is

If we do not want to consider the work of external sources at a virtual change of the system dimensions, we should use the last forms of
these relations, i.e. consider a galvanically detached capacitor  and an externally-shorted inductance .  Now
if we let the electric field forces (239) to drag capacitor’s plates in the direction they “want”, i.e. toward each other, this would lead to a
reduction of the capacitor thickness, and hence to an increase of its capacitance , and hence to a decrease of . Similarly, for a
solenoid, allowing the positive pressure (241) to move its walls from each other would lead to an increase of the solenoid’s volume, and
hence of its inductance , so that the potential energy  would be also reduced – as it should be. It is remarkable (actually, beautiful)
how do the local field formulas (239) and (241) “know” about these global circumstances.

Finally, let us see whether the major results (237) and (241), obtained in this section, match each other. For that, let us return to the
normal incidence of a plane, monochromatic wave from the free space upon the plane surface of a perfect conductor (see, e.g., Fig. 7.8
and its discussion), and use those results to calculate the time average of the pressure  imposed by the wave on the
surface. At elastic reflection from the conductor’s surface, the electromagnetic field’s momentum retains its amplitude but reverses its
sign, so that the average momentum transferred to a unit area of the surface in a unit time (i.e. the average pressure) is

where  and  are complex amplitudes of the incident wave. Using the relation (7.7) between these amplitudes (for  and 
 giving ), we get

On the other hand, as was discussed in Sec. 7.3, at the surface of a perfect mirror the electric field vanishes while the magnetic field
doubles, so that we can use Eq. (241) with . Averaging the pressure given by Eq. (241) over time,
we get

i.e. the same result as Eq. (245).

For physics intuition development, it is useful to estimate the electromagnetic radiation pressure’s magnitude. Even for a relatively high
wave intensity  of  (close to that of the direct sunlight at the Earth’s surface), the pressure  is somewhat
below . Still, this extremely small effect was experimentally observed (by P. Lebedev) as early as 1899, giving
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one more confirmation of Maxwell’s theory. Currently, there are ongoing attempts to use the pressure of the Sun’s light for propelling
small spacecraft, e.g., the LightSail 2 satellite with a  sail, launched in 2019.

Reference

 Here the implicit summation over the index  plays the role similar to the convective derivative (188) in replacing the full derivative
over time, in a way that reflects the symmetry of time and space in special relativity. I do not want to spend more time justifying Eq.
(214), because of the reasons that will be clear imminently.

 In the Gaussian units, this coefficient is .

 Since the Lagrange equations of motion are homogeneous, the simultaneous change of the signs of  and  does not change them.
Thus, it is not important which of the two energy densities,  or , we count as the potential, and which as the kinetic energy.
(Actually, such duality of the two field energy components is typical for all analytical mechanics – see, e.g., the discussion in CM Sec.
2.2.)

 In this way, we are using Eq. (219) just as a useful guess, which has led us to the definition of , and may leave its strict
justification for more in-depth field theory courses.

 Just like the Poynting theorem (233), Eq. (234) may be obtained directly from the Maxwell equations, without resorting to the 4-
vector formalism – see, e.g., Sec. 8.2.2 in D. Griffiths, Introduction to Electrodynamics, 3  ed., Prentice-Hall, 1999. However, the
derivation discussed above is superior because it shows the wonderful unity between the laws of conservation of energy and
momentum.

 The same notions are used in the mechanical stress theory – see, e.g., CM Sec. 7.2.

 It is sometimes called the hidden momentum.

 See, e.g., CM Sec. 7.2.

 By the way, repeating these arguments for a plane capacitor filled with a linear dielectric, we may readily see that Eq. (239) may be
generalized for this case by replacing  for . A similar replacement  is valid for Eq. (241) in a linear magnetic medium.

 The causal relation is not important here. Especially in the case of a superconductor, the magnetic field may be induced by another
source, with the surface supercurrent j just shielding the superconductor’s bulk from its penetration – see Sec. 6.

 Of course, this condition may hold “forever” only for solenoids with superconducting wiring, but even in normal-metal solenoids
with practicable inductances, the flux relaxation constants  may be rather large (practically, up to a few minutes), quite sufficient
to carry out the force measurement.
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