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10.2: Radiation Power
Let us calculate the angular distribution of the particle’s radiation. For that, we need to return to Eqs. (19)-(20) to find the Poynting
vector , and in particular its radial component , at large distances  from the particle. Following
tradition,  let us express the result as the energy radiated into unit solid angle per unit time interval  of the radiation, rather
than that ( ) of its measurement. (We will need to return to the measurement time  in the next section, to calculate the observed
radiation spectrum.) Using Eq. (16), we get

At sufficiently large distances from the particle, i.e. in the limit  (in the radiation zone), the contribution of the first
(essentially, the Coulomb-field) term in the square brackets of Eq. (19) vanishes as , and the substitution of the remaining
term into Eqs. (20) and then (29) yields the following formula, valid for an arbitrary law of particle motion:

Now, let us apply this important result to some simple cases. First of all, Eq. (30) says that a charge moving with a constant
velocity  does not radiate at all. This might be expected from our analysis of this case in Sec. 9.5 because in the reference frame
moving with the charge it produces only the Coulomb electrostatic field, i.e. no radiation.

Next, let us consider a linear motion of a point charge with a non-zero acceleration – directed along the straight line of the motion.
In this case, with the coordinate axes selected shown in Fig. 4a, each of the vectors involved in Eq. (30) has at most two non-zero
Cartesian components:

where  is the angle between the directions of the particle’s motion and of the radiation’s propagation. Plugging these expressions
into Eq. (30) and performing the vector multiplications, we readily get

Figure 4b shows the angular distribution of this radiation, for three values of the particle’s speed .

Fig. 10.4. Particle’s radiation at linear acceleration: (a) the problem’s geometry, and (b) the last fraction of Eq. (32) as a function of
the angle

.

If the speed is relatively low , the denominator in Eq. (32) is very close to 1 for all observation angles , so
that the angular distribution of the radiation power is close to  – just as it follows from the general non-relativistic Larmor
formula (8.26), for our current case with . However, as the velocity is increased, the denominator becomes less than 1 for 

, i.e. for the forward-looking directions, and larger than 1 for back directions. As a result, the radiation in the direction of
the particle’s motion is increased (somewhat counter-intuitively, regardless of the acceleration’s sign!), while that in the back
direction is suppressed. For ultra-relativistic particles , this trend is strongly exacerbated, and radiation to very small
forward angles dominates. To describe this main part of the angular distribution, we may expand the trigonometric functions of 
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participating in Eq. (32) in the Taylor series in small , and keep only their leading terms: , so that 
. The resulting expression,

describes a narrow “hollow cone” distribution of radiation, with its maximum at the angle

Another important aspect of Eq. (33) is how extremely fast (as ) the radiation density grows with the Lorentz factor , i.e. with
the particle’s energy .

Still, the total radiated power  (into all observation angles) at linear acceleration is not too high for any practicable values of
parameters. To show this, let us first calculate  for an arbitrary motion of the particle. To start, let me demonstrate how  may
be found (or rather guessed) from the general relativistic arguments. In Sec. 8.2, we have derived Eq. (8.27) for the power of the
electric dipole radiation for a non-relativistic particle motion. That result is valid, in particular, for one charged particle, whose
electric dipole moment’s derivative over time may be expressed as , where  is 
the particle’s linear mechanical momentum (not its electric dipole moment). As the result, the Larmor formula (8.27) in free space,
i.e. with  (but ) reduces to

This is evidently not a Lorentz-invariant result, but it gives a clear hint of how such an invariant, that would be reduced to Eq. (35)
in the non-relativistic limit, may be formed:

Using the relativistic expressions , the last formula may be recast into the so-called
Liénard extension of the Larmor formula:

It may be also obtained by direct integration of Eq. (30) over the full solid angle, thus confirming our guess.

However, for some applications, it is beneficial to express  via the time evolution of the particle’s momentum alone. For that,
we may differentiate the fundamental relativistic relation (9.78), , over the proper time  to get

Please note the difference between the squared derivatives in this expression: in the first of them we have to differentiate the
momentum vector p first, and only then form a scalar by squaring the resulting vector derivative, while in the second case, only the
magnitude of the vector has to be differentiated. For example, for circular motion with a constant speed (to be analyzed in detail in
the next section), the second term vanishes, while the first one does not.

However, if we return to the simplest case of linear acceleration (Fig. 4), then , and Eq. (39) is reduced to

i.e. formally coincides with the non-relativistic relation (35). To get a better feeling of the magnitude of this radiation, we may
combine Eq. (9.144) with , and Eq. (9.148) with  to get , where  is the particle’s coordinate at
the moment . The last relation allows us to rewrite Eq. (40) in the following form:
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 p = γmcβ, E = γm ,  and dτ = dt/γc2
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For the most important case of ultra-relativistic motion , this result reduces to

where  is the classical radius of the particle, defined by Eq. (8.41). This formula shows that the radiated power, i.e. the change of
the particle’s energy due to radiation, is much smaller than that due to the accelerating field unless energy as large as  is
gained on the classical radius of the particle. For example, for an electron, with  and ,
such an acceleration would require the accelerating electric field of the order of , while
practicable accelerating fields are below  – limited by the electric breakdown effects. (As described by the factor 
in the denominator of Eq. (41), for heavier particles such as protons, the relative losses are even lower.) Such negligible radiative
losses of energy is actually a large advantage of linear accelerators – such as the famous two-mile-long SLAC,  which can
accelerate electrons or positrons to energies up to 50 GeV, i.e. to . If obtaining radiation from the accelerated particles is
the goal, it may be readily achieved by bending their trajectories using additional magnetic fields – see the next section.

Reference
 This tradition may be reasonably justified. Indeed, we may say that the radiation field “detaches” from the particle at times close

to , while the observation time  depends on the detector’s position, and hence is less relevant for the radiation process as such.

 If the direction of radiation, n, does not change in time, this formula does not depend on the observer’s position R. Hence, from
this point on, the index “ret” may be safely dropped for brevity, though we should always remember that  in Eq. (30) is the
reduced velocity of the particle at the instant of the radiation’s emission, not of its observation.

 The second form of Eq. (10.37), which is frequently more convenient for applications, may be readily obtained from the first one
by applying MA Eq. (7.7a) to the vector product.

 See, e.g., https://www6.slac.stanford.edu/.
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