
3.4.1 https://phys.libretexts.org/@go/page/56985

3.4: Electrostatics of Linear Dielectrics
First, let us discuss the simplest problem: how is the electrostatic field of a set of stand-alone charges of density  modified by
a uniform linear dielectric medium, which obeys Eq. (46) with a space-independent dielectric constant . In this case, we may
combine Eqs. (32) and (46) to write

As a reminder, in the free space we had a similar equation (1.27), but with a different constant, . Hence all the results
discussed in Chapter 1 are valid inside a uniform linear dielectric, for the macroscopic field the  (and the corresponding
macroscopic electrostatic potential ), if they are reduced by the factor of . Thus, the most straightforward result of the
induced polarization of a dielectric medium is the electric field reduction. This is a very important effect, especially taken into
account the very high values of  in such dielectrics as water – see Table 1. Indeed, it is the reduction of the attraction between
positive and negative ions (called, respectively, cations and anions) in water that enables their substantial dissociation and hence
almost all biochemical reactions, which are the basis of the biological cell functions – and hence of the life itself.

Let us apply this general result to the important particular case of the plane capacitor (Fig. 2.3) filled with a linear, uniform
dielectric. Applying the macroscopic Gauss law (34) to a pillbox-shaped volume on the conductor surface, we get the following
relation,

which differs from Eq. (2.3) only by the replacement . Hence, for a fixed field , the charge density calculated
for the free-space case, should be increased by the factor of  – that’s it. In particular, this means that the mutual capacitance
(2.28) has to be increased by this factor:

C of a planar capacitor

(As a reminder, this increase of  by  has been already incorporated, without derivation, into some estimates made in Secs. 2.1
and 2.2.)

If a linear dielectric is nonuniform, the situation is more complex. For example, let us consider the case of a sharp interface
between two otherwise uniform dielectrics, free of stand-alone charges. In this case, we still may use Eq. (37) for the tangential
component of the macroscopic electric field, and also Eq. (36), with , which yields

Boundary condition for 

Let us apply these boundary conditions, first of all, to the very illuminating case of two very thin  slits carved in a
uniform dielectric with an initially uniform  electric field  (Fig. 9). In both cases, a slit with  cannot modify the field
distribution outside it substantially.

Fig. 3.9. Fields inside two narrow slits cut in a linear dielectric with a uniform field .
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For slit A, with the plane normal to the applied field, we may apply Eq. (56) to the “major” (broad) interfaces, shown horizontal in
Fig. 9, to see that the vector  should be continuous. But according to Eq. (46), this means that in the free space inside the gap the
electric field equals , and hence is  times higher than the applied field . This field, and hence , may be
measured by a sensor placed inside the gap, showing that the electric displacement is by no means a purely mathematical
construct.  On the contrary, for the slit B parallel to the applied field, we may apply Eq. (37) to the major (now, vertical) interfaces
of the slit, to see that now the electric field  is continuous, while the electric displacement  inside the gap is a factor of 

 lower than its value in the dielectric. (Similarly to case A, any perturbations of the field uniformity, caused by the compliance
with Eq. (56) at the minor interfaces, settle down at distances ~t from them.)

For other problems with piecewise-constant , with more complex geometries we may need to apply the methods studied in
Chapter 2. As in the free space, in the simplest cases we can select such a set of orthogonal coordinates that the electrostatic
potential depends on just one of them. Consider, for example, two types of plane capacitor’s filling with two different dielectrics –
see Fig. 10.

Fig. 3.10. Plane capacitors filled with two different dielectrics.

In case (a), the voltage  between the electrodes is the same for each part of the capacitor, telling us that at least far from the
dielectric interface, the electric field is vertical, uniform, and constant . Hence the boundary condition (37) is satisfied
even if such a distribution is valid near the surface as well, i.e. at any point of the system. The only effect of different values of 
in the two parts is that the electric displacement  and hence electrodes’ surface charge density  are different in the
two parts. Thus we can calculate the electrode charges  of the two parts independently, and then add up 
the results to get the total mutual capacitance

Note that this formula may be interpreted as the total capacitance of two separate lumped capacitors connected (by wires) in
parallel. This is natural, because we may cut the system along the dielectric interface, without any effect on the fields in either part,
and then connect the corresponding electrodes by external wires, again without any effect on the system – besides very close
vicinities of capacitor’s edges.

Case (b) may be analyzed just as in the problem shown in Fig. 6, by applying Eq. (34) to a Gaussian pillbox with one lid inside the
(for example) bottom electrode, and the other lid inside any of the layers. As a result, we see that  anywhere inside the system
should be equal to the surface charge density  of the electrode, i.e. constant. Hence, according to Eq. (46), the electric field inside
each dielectric layer is also constant: in the top layer, it is , while in bottom layer, .
Integrating the field  across the whole capacitor, we get

so that the mutual capacitance per unit area

Note that this result is similar to the total capacitance of an in-series connection of two plane capacitors based on each of the layers.
This is also natural because we could insert an uncharged, thin conducting sheet (rather than a cut as in the previous case) at the
layer interface, which is an equipotential surface, without changing the field distribution in any part of the system. Then we could
thicken the conducting sheet as much as we like (and possibly shaping its internal part into a wire), also without changing the fields
in the dielectric parts of the system, and hence its capacitance.
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Proceeding to problems with more complex geometry, let us consider the system shown in Fig.11a: a dielectric sphere placed into
an initially uniform external electric field . According to Eq. (53) for the macroscopic electric field, and the definition of the
macroscopic electrostatic potential, , the potential satisfies the Laplace equation both inside and outside the sphere. Due
to the spherical symmetry of the dielectric sample, this problem invites the variable separation method in spherical coordinates,
which was discussed in Sec. 2.8. From that discussion, we already know, in particular, the general solution (2.172) of the Laplace
equation outside of the sphere. To satisfy the uniform-field condition at , we have to reduce this solution to

Inside the sphere, we can also use Eq. (2.172), but keeping only the radial functions finite at :

Now, spelling out the boundary conditions (37) and (56) at , we see that for all coefficients  and  with , we get
homogeneous linear equations (just like for the conducting sphere, discussed in Sec. 2.8) that have only trivial solutions. Hence, all
these terms may be dropped, while for the only surviving terms, proportional to the Legendre polynomial , we
get two equations:

Solving this simple system of linear equations for  and , and plugging the result into Eqs. (60) and (61), we get the final
solution of the problem:

Fig. 3.11. A dielectric sphere in an initially uniform electric field: (a) the problem, and (b) the equipotential surfaces, as given by
Eq. (63), for .

Fig. 11b shows the equipotential surfaces given by this solution, for a particular value of the dielectric constant . Note that
according to Eq. (62), at  the dielectric sphere, just as the conducting sphere in a similar problem, produces (on the top of
the uniform external field) a pure dipole field, with the dipole moment

This is an evident generalization of Eq. (11), to which Eq. (64) tends at . By the way, this property is common: for their
electrostatic (but not transport!) properties, conductors may be adequately described as dielectrics with .

Another remarkable feature of Eqs. (63) is that the electric field and polarization inside the sphere are uniform, with R-independent
values
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In the limit  (the “sphere made of free space”, i.e. no sphere at all), the electric field inside it naturally tends to the external
one, and its polarization disappears. In the opposite limit , the electric field inside the sphere vanishes. Curiously enough,
in this limit the electric displacement inside the sphere remains finite: .

More complex problems with piecewise-uniform dielectrics also may be addressed by the methods discussed in Chapter 2, and in
Sec. 6 I provide a few of them for the reader’s exercise. Let me discuss just one of such problems because it exhibits a new feature
of the charge image method which was discussed in Secs 2.9 (and is the basis of the Green’s function approach – see Sec. 2.10).
Consider the system shown in Fig. 12: a point charge near a dielectric half-space, which evidently parallels the system discussed in
Sec. 2.9 – see Fig. 2.26.

Fig. 3.12. Charge images for a dielectric half-space.

As for the case of a conducting half-space, the Laplace equation for the electrostatic potential in the upper half-space 
(besides the charge point , ) may be satisfied using a single image charge  at point , , but now 
may differ from . In addition, in contrast to the case analyzed in Sec. 2.9, we should also calculate the field inside the
dielectric (at ). This field cannot be contributed by the image charge , because it would provide a potential divergence at
its location. Thus, in that half-space we should try to use the real point source only, but maybe with a re normalized charge 
rather than the genuine charge  – see Fig. 12. As a result, we may look for the potential distribution in the form

at this stage with unknown  and . Plugging this solution into the boundary conditions (37) and (56) at  (with 
), we see that they are indeed satisfied (so that Eq. (66) does express the unique solution of the boundary problem),

provided that the effective charges  and  obey the following relations:

Solving this simple system of linear equations, we get

If , then , and  – both facts very natural, because in this limit (no polarization at all!) we have to recover the
unperturbed field of the initial point charge in both semi-spaces. In the opposite limit  (which, according to our discussion
of the last problem, should correspond to a conducting half-space),  (repeating the result we have discussed in detail in
Sec. 2.9) and . The last result means that in this limit, the electric field  in the dielectric tends to zero – as it should.
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