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1.3: Scalar Potential and Electric Field Energy
One more help for solving electrostatics (and more complex) problems may be obtained from the notion of the electrostatic
potential, which is just the electrostatic potential energy  of a probe point charge  placed into the field in question, normalized
by its charge:

As we know from classical mechanics,  the notion of  (and hence ) makes the most sense for the case of potential forces, for
example those depending just on the particle’s position. Eqs. (6) and (9) show that, in stationary situations, the electric field falls
into this category. For such a field, the potential energy may be defined as a scalar function  that allows the force to be
calculated as its gradient (with the opposite sign):

Dividing both sides of this equation by the probe charge, and using Eqs. (6) and (31), we get

To calculate the scalar potential, let us start from the simplest case of a single point charge  placed at the origin. For it, Eq. (7)
takes the simple form

It is straightforward to verify that the last fraction in the last form of Eq. (34) is equal to .  Hence, according to the
definition (33), for this particular case

(In the Gaussian units, this result is spectacularly simple: .) Note that we could add an arbitrary constant to this potential
(and indeed to any other distribution of  discussed below) without changing the field, but it is convenient to define the potential
energy to approach zero at infinity.

In order to justify the introduction and the forthcoming exploration of  and , let me demonstrate (I hope, unnecessarily :-) how
useful the notions are, on a very simple example. Let two similar charges  be launched from afar, with the same initial speed 

 each, straight toward each other (i.e. with the zero impact parameter) – see Fig. 5. Since, according to the Coulomb law,
the charges repel each other with increasing force, they will stop at some minimum distance  from each other, and then fly
back. We could of course find rmin directly from the Coulomb law. However, for that we would need to write the  Newton law
for each particle (actually, due to the problem symmetry, they would be similar), then integrate them over time to find the particle
velocity  as a function of distance, and then recover  from the requirement .

Fig. 1.5. A simple problem of charged particle motion.

The notion of potential allows this problem to be solved in one line. Indeed, in the field of potential forces, the system’s total
energy  is conserved. In our non-relativistic case , the kinetic energy  is just . Hence,
equating the total energy of two particles at the points  and , and using Eq. (35) for , we get

immediately giving us the final answer: . So, the notion of scalar potential is indeed very useful.

With this motivation, let us calculate  for an arbitrary configuration of charges. For a single charge in an arbitrary position (say, 
),  in Eq. (35) should be evidently replaced with . Now, the linear superposition principle (3) allows for an

easy generalization of this formula to the case of an arbitrary set of discrete charges,
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Finally, using the same arguments as in Sec. 1, we can use this result to argue that in the case of an arbitrary continuous charge
distribution

Again, Dirac’s delta function allows using the last equation to recover Eq. (37) for discrete charges as well, so that Eq. (38) may be
considered as the general expression for the electrostatic potential.

For most practical calculations, using this expression and then applying Eq. (33) to the result, is preferable to using Eq. (9), because
 is a scalar, while E is a 3D vector, mathematically equivalent to three scalars. Still, this approach may lead to technical problems

similar to those discussed in Sec. 2. For example, applying it to the spherically-symmetric distribution of charge (Fig. 2), we get the
integral

which is not much simpler than Eq. (11).

The situation may be much improved by recasting Eq. (38) into a differential form. For that, it is sufficient to plug the definition of 
, Eq. (33), into Eq. (27):

The left-hand side of this equation is nothing else than the Laplace operator of  (with the minus sign), so that we get the famous
Poisson equation  for the electrostatic potential:

(In the Gaussian units, the Poisson equation is .) This differential equation is so convenient for applications that even
its particular case for ,

has earned a special name – the Laplace equation.

In order to get a gut feeling of the Poisson equation’s value as a problem-solving tool, let us return to the spherically-symmetric
charge distribution (Fig. 2) with a constant charge density . Using the symmetry, we can represent the potential as , and
hence use the following simple expression for its Laplace operator:

so that for the points inside the charged sphere  the Poisson equation yields

1.3: Scalar Potential and Electric Field Energy

Integrating the last form of the equation over r once, with the natural boundary condition  (because of the condition
, which has been discussed above), we get

Since this derivative is nothing more than , in this formula we can readily recognize our previous result (22). Now we may
like to carry out the second integration to calculate the potential itself:
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Before making any judgment on the integration constant , let us solve the Poisson equation (in this case, just the Laplace
equation) for the range outside the sphere :

Its first integral,

also gives the electric field (with the minus sign). Now using Eq. (45) and requiring the field to be continuous at , we get

in an evident agreement with Eq. (19). Integrating this result again,

we can select , so that , in accordance with the usual (though not compulsory) convention. Now we can finally
determine the constant  in Eq. (46) by requiring that this equation and Eq. (50) give the same value of  at the boundary 

. (According to Eq. (33), if the potential had a jump, the electric field at that point would be infinite.) The final answer may
be represented as

This calculation shows that using the Poisson equation to find the electrostatic potential distribution for highly symmetric problems
may be more cumbersome than directly finding the electric field – say, from the Gauss law. However, we will repeatedly see below
that if the electric charge distribution is not fixed in advance, using Eq. (41) may be the only practicable way to proceed.

Returning now to the general theory of electrostatic phenomena, let us calculate the potential energy  of an arbitrary system of
point electric charges . Despite the apparently simple relation (31) between  and , the result is not that straightforward.
Indeed, let us assume that the charge distribution has a finite spatial extent, so that at large distances from it (formally, at )
the electric field tends to zero, so that the electrostatic potential tends to a constant. Selecting this constant, for convenience, to
equal zero, we may calculate  as a sum of the energy increments  created by bringing the charges, one by one, from infinity
to their final positions  – see Fig. 6.  According to the integral form of Eq. (32), such a contribution is

where  is the total electric field, and  is the total electrostatic potential during this process, besides the field created by
the very charge  that is being moved.

Fig. 1.6. Deriving Eqs. (55) and (60) for the potential energies of a system of several point charges.
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This expression shows that the increment , and hence the total potential energy , depend on the source of the electric field
E. If the field is dominated by an external field , induced by some external charges, not being a part of the charge
configuration under our analysis (whose energy we are calculating, see Fig. 6), then the spatial distribution  is determined by
this field, i.e. does not depend on how many charges we have already brought in, so that Eq. (52) is reduced to

Summing up these contributions, we get what is called the charge system’s energy in the external field:

Now repeating the argumentation that has led us to Eq. (9), we see that for a continuously distributed charge, this sum turns into an
integral:

(As was discussed above, using the delta-functional representation of point charges, we may always return from here to Eq. (54), so
that Eq. (55) may be considered as a final, universal result.)

The result is different in the opposite limit, when the electric field E(r) is created only by the very charges whose energy we are
calculating. In this case,  in Eq. (52) is the potential created only by the charges with numbers 
already in place when the  charge is moved in (in Fig. 6, the charges inside the dashed boundary), and we may use the linear
superposition principle to write

This result is so important that is worthy of rewriting it in several other forms. First, we may use Eq. (35) to represent Eq. (56) in a
more symmetric form:

The expression under this sum is evidently symmetric with respect to the index swap, so that it may be extended into a different
form,

where the interaction between each couple of charges is described by two equal terms under the sum, and the front coefficient 1⁄2 is
used to compensate for this double counting. The convenience of the last form is that it may be readily generalized to the
continuous case:

(As before, in this case the restriction expressed in the discrete charge case as  is not important, because if the charge
density is a continuous function, the integral (59) does not diverge at point r = r’.)

To represent this result in one more form, let us notice that according to Eq. (38), the inner integral over  in Eq. (59), divided by 
, is just the full electrostatic potential at point r, and hence

For the discrete charge case, this result is
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but here it is important to remember that here the “full” potential’s value  should exclude the (infinite) contribution from the
point charge  itself. Comparing the last two formulas with Eqs. (54) and (55), we see that the electrostatic energy of charge
interaction within the system, as expressed via the charge-by potential product, is twice less than that of the energy of charge
interaction with a fixed (“external”) field. This is evidently the result of the fact that in the case of mutual interaction of the
charges, the electric field E in the basic Eq. (52) is proportional to the charge’s magnitude, rather than constant.

Now we are ready to address an important conceptual question: can we locate this interaction energy in space? Eqs. (58)-(61) seem
to imply that non-zero contributions to  come only from the regions where the electric charges are located. However, one of the
most beautiful features of physics is that sometimes completely different interpretations of the same mathematical result are
possible. To get an alternative view of our current result, let us write Eq. (60) for a volume  so large that the electric field on the
limiting surface S is negligible, and plug into it the charge density expressed from the Poisson equation (41):

This expression may be integrated by parts as

According to our condition of negligible field  at the surface, the first integral vanishes, and we get a very important
formula

This result, represented in the following equivalent form:

certainly invites an interpretation very much different than Eq. (60): it is natural to interpret  as the spatial density of the
electric field energy, which is continuously distributed over all the space where the field exists – rather than just its part where the
charges are located.

Let us have a look at how these two alternative pictures work for our testbed problem, a uniformly charged sphere. If we start with
Eq. (60), we may limit the integration by the sphere volume  where . Using Eq. (51), and the spherical
symmetry of the problem , we get

On the other hand, if we use Eq. (65), we need to integrate the energy density everywhere, i.e. both inside and outside of the
sphere:

Using Eqs. (19) and (22) for, respectively, the external and internal regions, we get

This is (fortunately :-) the same answer as given by Eq. (66), but to some extent, Eq. (68) is more informative because it shows how
exactly the electric field’s energy is distributed between the interior and exterior of the charged sphere.

We see that, as we could expect, within the realm of electrostatics, Eqs. (60) and (65) are equivalent. However, when we examine
electrodynamics (in Chapter 6 and beyond), we will see that the latter equation is more general and that it is more adequate to
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associate the electric energy with the field itself rather than its sources – in our current case, the electric charges.

Finally, let us calculate the potential energy of a system of charges in the general case when both the internal interaction of the
charges, and their interaction with an external field are important. One might fancy that such a calculation should be very hard
since, in both ultimate limits, when one of these interactions dominates, we have got different results. However, once again we get
help from the almighty linear superposition principle: in the general case, for the total electric field we may write

where the index “int” now marks the field induced by the charge system under analysis, i.e. the variables participating (without
indices) in Eqs. (56)-(68). Now let us imagine that our system is being built up in the following way: first, the charges are brought
together at , giving the potential energy  expressed by Eq. (60), and then  is slowly increased. Evidently, the
energy contribution from the latter process cannot depend on the internal interaction of the charges, and hence may be expressed in
the form (55). As the result, the total potential energy  is the sum of these two components:

Now making the transition from the potentials to the fields, absolutely similar to that performed in Eqs. (62)-(65), we may rewrite
this expression as

One might think that this result, more general than Eq. (65) and perhaps less familiar to the reader, is something entirely new;
however, it is not. Indeed, let us add to, and subtract  from the sum in the brackets, and use Eq. (69) for the total electric
field ; then Eq. (71) takes the form

Hence, in the most important case when we are using the potential energy to analyze the statics and dynamics of a system of
charges in a fixed external field, i.e. when the second term in Eq. (72) may be considered as a constant, we may still use for U an
expression similar to the familiar Eq. (65), but with the field  being the sum (69) of the internal and external fields.

Let us see how does this work in a very simple problem. A uniform external electric field  is applied normally to a very broad,
plane layer that contains a very large and equal number of free electric charges of both signs – see Fig. 7. What is the equilibrium
distribution of the charges over the layer?

Fig. 1.7. A simple model of the electric field screening in a conductor. Here (and in all figures below) the red and blue colors are
used to denote the opposite charge signs.

Since the equilibrium distribution should minimize the total potential energy of the system, Eq. (72) immediately gives the answer:
the distribution should provide  inside the whole layer  – the effect called the electric field screening. The
only way to ensure this equality is to have enough free charges of opposite signs residing on the layer’s surfaces to induce a
uniform field , exactly compensating the external field at each point inside the layer – see Fig. 7. According to Eq.
(24), the areal density of these surface charges should equal , with . This is a rudimentary but reasonable model
of the conductor’s polarization – to be discussed in detail in the next chapter.
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Reference
See, e.g., CM Sec. 1.4.

Eq. (28) could be also derived from this relation, because according to vector algebra, any gradient field has no curl – see, e.g.,
MA Eq. (11.1).

This may be done either by Cartesian components or using the well-known expression  valid for any
spherically-symmetric scalar function  – see, e.g., MA Eq. (10.8) for the particular case .

Named after Siméon Denis Poisson (1781-1840), also famous for the Poisson distribution – one of the central results of the
probability theory – see, e.g., SM Sec. 5.2.

After the famous mathematician (and astronomer) Pierre-Simon Laplace (1749-1827) who, together with Alexis Clairault, is
credited for the development of the very concept of potential.

See, e.g., MA Eq. (10.8) for .

Indeed, by the very definition of the potential energy of a system, it should not depend on the way we are arriving at its final
configuration.

An alternative, perhaps more accurate term for  is the energy of the system’s interaction with the external field.

The nature of this additional factor 1⁄2 is absolutely the same as in the well-known formula  for the potential
energy of an elastic spring providing the returning force , proportional to its displacement  from the equilibrium
position.

This transformation follows from the divergence theorem MA (12.2) applied to the vector function , taking into
account the differentiation rule MA Eq. (11.4a): .

In the Gaussian units, the standard replacement  turns the last of Eqs. (65) into .

Note that  at . Such divergernce appears at the application of Eq. (65) to any point charge. Since it does not
affect the force acting on the charge, the divergence does not create any technical diffeiculty for analysis of charge statics or non-
relativistic dynamics, but it points to a possible conceptual problem of classical electrodynamics as the whole at describing point
charges. This issue will be discussed at the very end of the course (Sec. 10.6).

This total U (or rather its part dependent on our system of charges) is sometimes called the Gibbs potential energy of the system.
(I will discuss this notion in detail in Sec. 3.5.)

Note that the area-uniform distribution of the charge inside the layer does not affect the field (and hence its energy) outside it.
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