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7.6: Waveguides- H and E Waves

Let us now return to Egs. (100) and explore the H- and E-waves — with, respectively, either H, or E, different from zero. At the
first sight, they may seem more complex. However, Egs. (101), which determine the distribution of these longitudinal components
over the cross-section, are just the 2D Helmholtz equations for scalar functions. For simple cross-section geometries, they may be
readily solved using the methods discussed for the Laplace equation in Chapter 2, in particular the variable separation. After the
solution of such an equation has been found, the transverse components of the fields may be calculated by differentiation, using the
simple formulas,

E;, = kl—z[szth —kZ(n,xV:H,)], H;= é k. V.H,+ %(nz xV:E,)|, (7.121)

t t

which follow from the two equations in the first line of Egs. (100).°”

In comparison with the boundary problems of electro- and magnetostatics, the only conceptually new feature of Egs. (101) is that
they form the so-called eigenproblems, with typically many solutions (eigenfunctions), each describing a specific wave mode, and
corresponding to a specific eigenvalue of the parameter k;. The good news here is that these values of k; are determined by this
2D boundary problem and hence do not depend on k.. As a result, the dispersion law w (k,) of any mode, which follows from the
last form of Eq. (102),

: : . : kg'”“? b2 272 2\ 1/2

Universal dispersion relation w= = (V2 +w?) ", (7.122)
EQ

is functionally similar for all modes. It is also similar to that of plane waves in plasma (see Eq. (38), Fig. 6, and their discussion in

Sec. 2), with the only differences that the speed in light c is generally replaced with v =1/(eu)/2, i.e. the speed of the plane (or

any TEM) waves in the medium filling the waveguide, and that w;, is replaced with the so-called cutoff frequency

we = vky, (7.123)

specific for each mode. (As Eq. (101) implies, and as we will see from several examples below, k; has the order of 1/a, where a
is the characteristic dimension of waveguide’s cross-section, so that the critical value of the free-space wavelength A = 27c/w is
of the order of a.) Below the cutoff frequency of each particular mode, such wave cannot propagate in the waveguide.”” As a
result, the modes with the lowest values of w, present special practical interest, because the choice of the signal frequency w
between the two lowest values of the cutoff frequency (123) guarantees that the waves propagate in the form of only one mode,
with the lowest k;. Such a choice enables engineers to simplify the excitation of the desired mode by wave generators, and to
avoid the parasitic transfer of electromagnetic wave energy to undesirable modes by (virtually unavoidable) small inhomogeneities
of the system.

The boundary conditions for the Helmholtz equations (101) depend on the propagating wave type. For the E-modes, with H, =0
but E, # 0, the condition E, =0 immediately gives

E.l;=0, (7.124)

where C is the inner contour limiting the conducting wall’s cross-section. For the H-modes, with E, =0 but H, #0, the
boundary condition is slightly less obvious and may be obtained using, for example, the second equation of the system (100),
vector-multiplied by n,. Indeed, for the component normal to the conductor surface, the result of such multiplication is

) k O0H,

ZkZ(Ht)n_ZE(HZXEt)n: on . (7125)
But the first term on the left-hand side of this relation must be zero on the wall surface, because of the second of Egs. (104), while
according to the first of Egs. (104), the vector E; in the second term cannot have a component tangential to the wall. As a result,
the vector product in that term cannot have a normal component, so that the term should equal zero as well, and Eq. (125) is
reduced to

OH,
on

=0. (7.126)
C
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Let us see how does all this machinery work for a simple but practically important case of a metallic-wall waveguide with a
rectangular cross-section — see Fig. 22

y/\
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Fig. 7.22. A rectangular waveguide, and the transverse field distribution in its fundamental mode
Hiyp
(schematically).

In the natural Cartesian coordinates, shown in this figure, both Egs. (101) take the simple form

02 0? 9 E,, for E— modes,
(— + 7 —I-kt> f=0, wheref= { H. for H— modes, (7.127)

From Chapter 2 we know that the most effective way of solution of such equations in a rectangular region is the variable
separation, in which the general solution is represented as a sum of partial solutions of the type

f=X()Y(y). (7.128)
Plugging this expression into Eq. (127), and dividing each term by XY, we get the equation,

1d2X 1d%Y

——+=—+k=0 7.129

X d:L_Q + Y dy2 + t ’ ( )
which should be satisfied for all values of x and y within the waveguide’s interior. This is only possible if each term of the sum
equals a constant. Taking the X-term and Y -term constants in the form (—k%) and (—k%), respectfully, and solving the
corresponding ordinary differential equations,” for the eigenfunction (128) we get

f=(cgcoskyx + s, sink,x) (cycoskyy +sysinkyy), with k2 +k2 = k2, (7.130)
where the constants ¢ and s should be found from the boundary conditions. Here the difference between the H-modes and E-
modes comes in.

For the H-modes, Eq. (130) is valid for H,, and we should use the boundary condition (126) on all metallic walls of the
waveguide, i.e. at £ =0 and a; and y =0 and b — see Fig. 22. As a result, we get very simple expressions for eigenfunctions
and eigenvalues:

(H.), = Hjcos %cos Mb"y, (7.131)
ke = T2 k=T g0 that (k) = (K2 +2) 7 = (£)2+(m)2 . (7.132)
2= T v Tp S0 that \Rt )pm = Rz Y =m @ b ) .

where H; is the longitudinal field’s amplitude, and n and m are two integer numbers — arbitrary besides that they cannot be equal
to zero simultaneously.”” Assuming, just for certainty, that a > b (as shown in Fig. 22), we see that the lowest eigenvalue of k;,
and hence the lowest cutoff frequency (123), is achieved for the so-called Hyy mode with n =1 and m = 0, and hence with

Fundamental mode’s cutoff (k)10 = 1, (7.133)
a

thus confirming our prior estimate of k;.

Depending on the a/b ratio, the second-lowest k; (and hence w, ) belongs to either the H;; mode with n =1 and m =1:
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1 1) 1/2 ar2]1/2
(k)11 n(a—2+§) = [1+(3) } (Ft) 105 (7.134)
or to the Hyy mode with n =2 and m =0:
27
(kt)yo = P 2(kt) - (7.135)

These values become equal at a/b = /3 ~ 1.7 ; in practical waveguides, the a/b ratio is not too far from this value. For example,
in the standard X-band (~ 10 — GHz) waveguide WR90, a ~2.3 cm (f. =w./27 ~ 6.5 GHz),and b~ 1.0 cm.

Now let us have a look at the alternative E-modes. For them, we still should use the general solution (130) with f = E, but now

with the boundary condition (124). This gives us the eigenfunctions

™my
b )

and the same eigenvalue spectrum (132) as for the H modes. However, now neither n nor m can be equal to zero; otherwise Eq.

(136) would give the trivial solution E,(z,y) = 0. Hence the lowest cutoff frequency of TM waves is achieved at the so-called
E11 mode with n =1, m =1, and with the eigenvalue given by Eq. (134), always higher than (k¢),,.

sin

(E.),,, = Eysin — (7.136)

Thus the fundamental H;y mode is certainly the most important wave in rectangular waveguides; let us have a better look at its
field distribution. Plugging the corresponding solution (131) with n =1 and m = 0 into the general relation (121), we easily get

k.a . 7T

(Hz)lo = _ZTHZ s 7, (Hy)m = 0, (7137)
k

(Be)iy =0, (By)yy =i—ZHysin "=, (7.138)

This field distribution is (schematically) shown in Fig. 22. Neither of the fields depends on the coordinate y — the feature very
convenient, in particular, for microwave experiments with small samples. The electric field has only one (in Fig. 22, vertical)
component that vanishes at the side walls and reaches its maximum at the waveguide’s center; its field lines are straight, starting
and ending on wall surface charges (whose distribution propagates along the waveguide together with the wave). In contrast, the
magnetic field has two non-zero components ( H, and H,), and its field lines are shaped as horizontal loops wrapped around the
electric field maxima.

An important question is whether the H7y wave may be usefully characterized by a unique impedance introduced similarly to Zy
of the TEM modes — see Eq. (115). The answer is not, because the main value of Zyy is a convenient description of the impedance
matching of a transmission line with a lumped load — see Fig. 19 and Eq. (118). As was discussed above, such a simple description
is possible (i.e., does not depend on the exact geometry of the connection) only if both dimensions of the line’s cross-section are
much less than A. But for the Hjy wave (and more generally, any non-TEM mode) this is impossible — see, e.g., Eq. (129): its
lowest frequency corresponds to the TEM wavelength Amax = 27/ (k¢) i, = 27/ (kt);o = 2a . (The reader is challenged to find a
simple interpretation of this equality.)

Now let us consider metallic-wall waveguides with a round cross-section (Fig. 23a). In this single-connected geometry, the TEM
waves are impossible again, while for the analysis of H-modes and E-modes, the polar coordinates {p, ¢} are most natural. In
these coordinates, the 2D Helmholtz equation (101) takes the following form:

10 0 1 62 E., for E-modes
—_— — —_ k2 — h — E2) ) 1
[p Op (p8p> i 0?2 0p? * t] f=0, where f {Hz, for H - modes. (7.139)
Separating the variables as f = R(p)F (¢), we get

1 d [ dR 1 &PF
s (P ) O (7140

But this is exactly the Eq. (2.127) that was studied in Sec. 2.7 in the context of electrostatics, just with a replacement of notation:

~ — k¢ . So we already know that to have 27-periodic functions F () and finite values R(0) (which are evidently necessary for
our current case — see Fig. 23a), the general solution must have the form given by Eq. (2.136), i.e. the eigenfunctions are expressed
via integer-order Bessel functions of the first kind:
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with the eigenvalues k,,, of the transverse wave number k; to be determined from appropriate boundary conditions, and an
arbitrary constant ¢ .

Jrm = JIn (knmp) (cn cosnp + s, sinng) = const XJ,, (knmp) cosn (¢ —eq), (7.141)

(@ cou ®

Fig. 7.23. (a) Metallic and (b) dielectric waveguides with circular cross-sections.

As for the rectangular waveguide, let us start from the H-modes (f = H,). Then the boundary condition on the wall surface
(0 = R) is given by Eq. (126), which, for the solution (141), takes the form

d
d—an (&)=0, wheref=kR. (7.142)
This means that eigenvalues of Eq. (139) are
&nm
ki = kpm = = (7.143)

where &, is the m'™™ zero of the function d.J,(£)/d€. Approximate values of these zeros for several lowest n and m may be

read out from Fig. 2.18; their more accurate values are given in Table 1 below.

Table 7.1. Zeros &', of the function dJ,(€)/dé for a few lowest values of the Bessel function’s index n and the root’s number m.

m=1 2 3
n=20 3.83171 7.015587 10.1735
1 1.84118 5.33144 8.53632
2 3.05424 6.70613 9.96947
3 4.20119 8.01524 11.34592

The table shows, in particular, that the lowest of the zeros is £'11 ~ 1 .84.°° Thus, perhaps a bit counter-intuitively, the fundamental
mode, providing the lowest cutoff frequency w. = vk, , is Hii, corresponding to n =1 rather than n =0:

H,=HJ (E{l %) cos(¢ — o). (7.144)

It has the transverse wave number is k; = ki1 =¢};/R~1.84/R, and hence the cutoff frequency corresponding to the TEM
wavelength Apay = 27/k11 &~ 3.41R. Thus the ratio of Ayax to the waveguide’s diameter 2R is about 1.7, i.e. is close to the
ratio Amax/a =2 for the rectangular waveguide. The origin of this proximity is clear from Fig. 24, which shows the transverse
field distribution in the H;; mode. (It may be readily calculated from Eqs. (121) with E, =0, and H, given by Eq. (144).)
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Fig. 7.24. Transverse field components in the fundamental
Hyy
mode of a metallic, circular waveguide (schematically).

One can see that the field structure is actually very similar to that of the fundamental mode in the rectangular waveguide, shown in
Fig. 22, despite the different nomenclature (which is due to the different coordinates used for the solution). However, note the
arbitrary constant angle ¢y, indicating that in circular waveguides the transverse field’s polarization is arbitrary. For some practical
applications, such degeneracy of these “quasi-linearly-polarized” waves creates problems; some of them may be avoided by using
waves with circular polarization.

As Table 1 shows, the next lowest H-mode is Hyq, for which k; = ko1 = &5, /R ~3.05/R, almost twice larger than that of the
fundamental mode, and only then comes the first mode with no angular dependence of any field, Hy;, with
ki = kor = f(’)l/R ~3.83/R ,°7 followed by several angle-dependent modes: Hs;, His, etc.

For the E modes, we may still use Eq. (141) (with f = E,), but with the boundary condition (124) at p = R. This gives the

following equation for the problem eigenvalues:

Enm
R )

where &, is the m'™® zero of function J,, (&) — see Table 2.1. The table shows that the lowest k; is equal to &;/R = 2.405/R.

Hence the corresponding mode (Ejy;), with no angular dependence of its fields, e.g.

Jn (kpmR) =0, i.e. kym = (7.145)

E.=EJy (501%) ) (7.146)

has the second-lowest cutoff frequency, ~30% higher than that of the fundamental mode Hi; .

Finally, let us discuss one more topic of general importance — the number N of electromagnetic modes that may propagate in a
waveguide within a certain range of relatively large frequencies w >> w, . It is easy to calculate for a rectangular waveguide, with
its simple expressions (132) for the eigenvalues of {k,,k,}. Indeed, these expressions describe a rectangular mesh on the

[kz, ky] plane, so that each point corresponds to the plane area AAy = (m/a)(m/b), and the number of modes in a large k-plane
area Ay >> AAy is N = Ay/AA, =abAy/n? = AAy/n? , where A is the waveguide’s cross-section area.”” However, it is
frequently more convenient to discuss transverse wave vectors k; of arbitrary direction, i.e. with an arbitrary sign of their
components k; and k,. Taking into account that the opposite values of each component actually give the same wave, the actual
number of different modes of each type ( E- or H-) is a factor of 22 =4 lower than was calculated above. This means that the
number of modes of both types is

_, A

N = G (7.147)

Let me leave it for the reader to find hand-waving (but convincing :-) arguments that this mode counting rule is valid for
waveguides with cross-sections of any shape, and any boundary conditions on the walls, provided that N >>1.

Reference

52 For the derivation of Eqgs. (121), one of two linear equations (100) should be first vector-multiplied by n,. Note that this
approach could not be used to analyze the TEM waves, because for them k; =0,E,=0,H,=0, and Egs. (121) yield
uncertainty.
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53 An interesting recent twist in the ideas of electromagnetic metamaterials (mentioned in Sec. 5 above) is the so-called
e-near-zero materials, designed to have the effective product eu much lower than ey within certain frequency ranges. Since
at these frequencies the speed v (4) becomes much lower than c, the cutoff frequency (123) virtually vanishes. As a result, the
waves may “tunnel” through very narrow sections of metallic waveguides filled with such materials — see, e.g., M. Silveirinha and
N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).

54 Let me hope that the solution of equations of the type d2X/dz?+k2X =0 does not present any problem for the reader, at
least due to their prior experience with problems such as standing waves on a guitar string, wavefunctions in a flat 1D quantum
well, or (with the replacement & — t) a classical harmonic oscillator.

55 Otherwise, the function H,(z,y) would be constant, so that, according to Eq. (121), the transverse components of the electric
and magnetic field would equal zero. As a result, as the last two lines of Egs. (100) show, the whole field would be zero for any

k. #£0.

56 Mathematically, the lowest root of Eq. (142) with n =0 equals 0. However, it would yield k=0 and hence a constant field
H,, which, according to the first of Egs. (121), would give a vanishing electric field.

57 The electric field lines in the Hy; mode (as well as all higher Hy,, modes) are directed straight from the symmetry axis to the
walls, reminding those of the TEM waves in the coaxial cable. Due to this property, these modes provide, at w >> w, , much
lower energy losses (see Sec. 9 below) than the fundamental H;; mode, and are sometimes used in practice, despite the
inconvenience of working in the multimode frequency range.

58 This formula ignores the fact that, according to the above analysis, some modes (with 7 =0 and m =0 for the H modes, and
n =0 or m =0 for the E modes) are forbidden. However, for IV >> 1, the associated corrections of Eq. (147) are negligible.
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