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6.4: Electrodynamics of Superconductivity, and the Gauge Invariance
The effect of superconductivity  takes place (in certain materials only, mostly metals) when temperature  is reduced below a
certain critical temperature , specific for each material. For most metallic superconductors,  is of the order of typically a few
kelvins, though several compounds (the so-called high-temperature superconductors) with  above 100 K have been found since
1987. The most notable property of superconductors is the absence, at , of measurable resistance to (not very high) dc
currents. However, the electromagnetic properties of superconductors cannot be described by just taking  in our previous
results. Indeed, for this case, Eq. (33) would give , i.e., no ac magnetic field penetration at all, while for the dc field we
would have the uncertainty  Experiment shows something substantially different: weak magnetic fields do penetrate into
superconductors by a material-specific distance , the so-called London’s penetration depth,  which is
virtually frequency-independent until the skin depth , measured in the same material in its “normal” state, i.e. the absence of
superconductivity, becomes less than . (This crossover happens typically at frequencies .) The smallness
of  on the human scale means that the magnetic field is pushed out of macroscopic samples at their transition into the
superconducting state.

This Meissner-Ochsenfeld effect, discovered experimentally in 1933,  may be partly understood using the following classical
reasoning. The discussion of the Ohm law in Sec. 4.2 implied that the current’s (and hence the electric field’s) frequency  is
either zero or sufficiently low. In the classical Drude reasoning, this is acceptable while , where  is the effective carrier
scattering time participating in Eqs. (4.12)-(4.13). If this condition is not satisfied, we should take into account the charge carrier
inertia; moreover, in the opposite limit , we may neglect the scattering at all. Classically, we can describe the charge
carriers in such a “perfect conductor” as particles with a non-zero mass m, which are accelerated by the electric field, following the
2  Newton law (4.11),

so that the current density  they create, changes in time as

In terms of the Fourier amplitudes of the functions  and , this means

Comparing this formula with the relation  implied in the last section, we see that we can use all its results with the
following replacement:

This change replaces the characteristic equation (29) with

i.e. replaces the skin effect with the field penetration by the following frequency-independent depth:

Superficially, this means that the field decay into the superconductor does not depend on frequency:

thus explaining the Meissner-Ochsenfeld effect.

However, there are two problems with this result. First, for the parameters typical for good metals 
, Eq. (44) gives , one or two orders of magnitude lower than the
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experimental values of . Experiment also shows that the penetration depth diverges at , which is not predicted by Eq.
(44).

The second, much more fundamental problem with Eq. (44) is that it has been derived for . Even if we assume that
somehow there is no scattering at all, i.e. , at  both parts of the characteristic equation (43) vanish, and we cannot
make any conclusion about . This is not just a mathematical artifact we could ignore. For example, let us place a non-magnetic
metal into a static external magnetic field at . The field would completely penetrate the sample. Now let us cool it. As soon
as temperature is decreased below , the above calculations would become valid, forbidding the penetration into the
superconductor of any change of the field, so that the initial field would be “frozen” inside the sample. The experiment shows
something completely different: as  is lowered below , the initial field is being pushed out of the sample.

The resolution of these contradictions has been provided by quantum mechanics. As was explained in 1957 in a seminal work by J.
Bardeen, L. Cooper, and J. Schrieffer (commonly referred to as the BSC theory), the superconductivity is due to the correlated
motion of electron pairs, with opposite spins and nearly opposite momenta. Such Cooper pairs, each with the electric charge 

 and zero spin, may form only in a narrow energy layer near the Fermi surface, of certain thickness . This 
parameter , which may be also considered as the binding energy of the pair, tends to zero at , while at  it
has a virtually constant value , of the order of a few meV for most superconductors. This fact readily explains the
relatively low spatial density of the Cooper pairs: . With the correction , Eq. (44) for the
penetration depth becomes

This result diverges at , and generally fits the experimental data reasonably well, at least for the so-called “clean”
superconductors (with the mean free path , where  is the r.m.s. velocity of electrons on the Fermi
surface, much longer than the Cooper pair size  – see below).

The smallness of the coupling energy  is also a key factor in the explanation of the Meissner-Ochsenfeld effect, as well as
several macroscopic quantum phenomena in superconductors. Because of Heisenberg’s quantum uncertainty relation ,
the spatial extension of the Cooper-pair’s wavefunction (the so-called coherence length of the superconductor) is relatively large: 

. As a result, , meaning that the wavefunctions of the pairs are strongly
overlapped in space. Due to their integer spin, Cooper pairs behave like bosons, which means in particular that at low temperatures
they exhibit the so-called Bose-Einstein condensation onto the same ground energy level .  This means that the frequency 

 of the time evolution of each pair’s wavefunction  is exactly the same, and that the phases  of the
wavefunctions, defined by the relation

are equal, so that the electric current is carried not by individual Cooper pairs but rather their Bose-Einstein condensate described
by a single wavefunction (47). Due to this coherence, the quantum effects (which are, in the usual Fermi-gases of single electrons,
masked by the statistical spread of their energies, and hence of their phases), become very explicit – “macroscopic”.

To illustrate this, let us write the well-known quantum-mechanical formula for the probability current density of a free, non-
relativistic particle,

where c.c. means the complex conjugate of the previous expression. Now let me borrow one result that will be proved later in this
course (in Sec. 9.7) when we discuss the analytical mechanics of a charged particle moving in an electromagnetic field. Namely, to
account for the magnetic field effects, the particle’s kinetic momentum  (where  is particle’s velocity) has to
be distinguished from its canonical momentum,

where  is the field’s vector potential defined by Eq. (5.27). In contrast with the Cartesian components  of the kinetic
momentum , the canonical momentum’s components are the generalized momenta corresponding to the Cartesian components 

 of the radius-vector , considered as generalized coordinates of the particle: , where  is the particle’s
Lagrangian function. According to the general rules of transfer from classical to quantum mechanics,  it is the vector  whose
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operator (in the coordinate representation) equals , so that the operator of the kinetic momentum  is equal to 
. Hence, to account for the magnetic field  effects, we should make the following replacement,

in all field-free quantum-mechanical relations. In particular, Eq. (48) has to be generalized as

This expression becomes more transparent if we take the wavefunction in form (47):

This relation means, in particular, that in order to keep  gauge-invariant, the transformation (8)-(9) has to be accompanied by a
simultaneous transformation of the wavefunction’s phase:

It is fascinating that the quantum-mechanical wavefunction (or more exactly, its phase) is not gauge-invariant, meaning that you
may change it in your mind – at your free will! Again, this does not change any observable (such as  or the probability density 

, i.e. any experimental results.

Now for the electric current density of the whole superconducting condensate, Eq. (52) yields the following constitutive relation:

The formula shows that this supercurrent may be induced by the dc magnetic field alone and does not require any electric field.
Indeed, for the simplest, 1D geometry shown in Fig.2a, , , and , so that the Coulomb
gauge condition (5.48) is satisfied for any choice of the gauge function , and for the sake of simplicity we can choose it to
provide ,  so that

where  is given by Eq. (46), and the field is assumed to be small, and hence not affecting the probability  (normalized to 1
in the absence of the field). This is the so-called London equation, proposed (in a different form) by F. and H. London in 1935 for
the Meissner-Ochsenfeld effect’s explanation. Combining it with Eq. (5.44), generalized for a linear magnetic medium by the
replacement , we get

This simple differential equation, similar to Eq. (23), for our 1D geometry has an exponential solution similar to Eq. (32):

which shows that the magnetic field and the supercurrent penetrate into a superconductor only by London’s penetration depth ,
regardless of frequency.  By the way, integrating the last result through the penetration layer, and using the vector potential’s
definition,  (for our geometry, giving ) we may readily verify that the linear density 

 of the surface supercurrent still satisfies the universal coarse-grain relation (38).

This universality should bring to our attention the following common feature of the skin effect (in “normal” conductors) and the
Meissner-Ochsenfeld effect (in superconductors): if the linear size of a bulk sample is much larger than, respectively,  or ,
than  in the dominating part of its interior. According to Eq. (5.110), a formal description of such conductors (valid only on
a coarse-grain scale much larger than either  or ), may be achieved by formally treating the sample as an ideal diamagnet,
with . In particular, we can use this description and Eq. (5.124) to immediately obtain the magnetic field’s distribution
outside of a bulk sphere:

  − iℏ∇  p = P−qA

  − iℏ∇qA 27

  − iℏ∇ → −iℏ∇ −qA, (6.50)

  = [ (−iℏ∇ −qA)ψ− c.c. ] .jw
1

2m
ψ∗ (6.51)

  = |ψ (∇φ− A) .jw
ℏ

m
|
2 q

ℏ
(6.52)

 jw

 φ → φ+ χ.
q

ℏ
(6.53)

 jw
 ψψ∗

 j ≡ q = |ψ (∇φ− A) Supercurrent densityjw np

ℏqnp

m
|2

q

ℏ
(6.54)

 j(r) = j(x)nz  A(r) = A(x)nz  ∂/∂z = 0

 χ(x)

 φ(r) ≡ const 28

 j = − A ≡ − A.
q2np

m

1

μδ2
L

(6.55)

 δL  |ψ|2

  → μμ0

  A = A,∇2 1

δ2
L

(6.56)

 A(x) = A(0) exp{− }, B(x) = B(0) exp{− }, j(x) = j(0) exp{− },
x

δL

x

δL

x

δL
(6.57)

 δL
29

 B = ∇ ×A  B(x) = dA(x)/dx = − A(x)δL

 J

 δs  δL

 B = 0

 δs  δL

 μ = 0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/57006?pdf


6.4.4 https://phys.libretexts.org/@go/page/57006

Figure 3 shows the corresponding surfaces of equal potential . It is evident that the magnetic field lines (which are normal to
the equipotential surfaces) bend to become parallel to the surface near it.

Fig. 6.3. Equipotential surfaces  around a (super)conducting sphere of radius  (or ), placed into a
uniform magnetic field, within the coarse-grain model .

This pattern also helps to answer the question that might arise at making the assumption (24): what happens to bulk conductors
placed into in a normal ac magnetic field – and to superconductors in a normal dc magnetic field as well? The answer is: the field is
deformed outside of the conductor to sustain the following coarse-grain boundary condition:

which follows from Eq. (5.118) and the coarse-grain requirement .

This answer should be taken with reservations. For normal conductors it is only valid at sufficiently high frequencies where the
skin depth (33) is sufficiently small: , where  is the scale of the conductor’s linear size – for a sphere, . In
superconductors, this simple picture is valid not 
only if , but also only in sufficiently low magnetic fields, because strong fields do penetrate into superconductors,
destroying superconductivity (completely or partly), and as a result violating the Meissner-Ochsenfeld effect – see the next section.

Reference
 Discovered experimentally in 1911 by Heike Kamerlingh Onnes.

 Named so to acknowledge the pioneering theoretical work of brothers Fritz and Heinz London – see below.

 It is hardly fair to shorten the name to just the “Meissner effect”, as it is frequently done, because of the reportedly crucial
contribution by Robert Ochsenfeld, then a Walther Meissner’s student, into the discovery.

 A quantitative discussion of the Bose-Einstein condensation of bosons may be found in SM Sec. 3.4, though the full theory of
superconductivity is more complicated because it has to describe the condensation taking place simultaneously with the formation
of effective bosons (Cooper pairs) from fermions (single electrons). For a detailed, but very readable coverage of the physics of
superconductors, I can refer the reader to the monograph by M. Tinkham, Introduction to Superconductivity, 2  ed., McGraw-Hill,
1996.

 See, e.g., QM Sec. 1.4, in particular Eq. (1.47).

 I am sorry to use traditional notations  and  for the momenta – the same symbols which were used for the electric dipole
moment and polarization in Chapter 3. I hope there will be no confusion, because the latter notions are not used in this section.

 See, e.g., CM Sec. 10.1, in particular Eq. (10.26).

 The account of the electric field is easier, because the related energy  of the particle may be directly included in the potential
energy operator.

 This is the so-called London gauge; for our simple geometry, it is also the Coulomb gauge (5.48).
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 Since at  not all electrons in a superconductor form Cooper pairs, at any frequency  the unpaired electrons provide
energy-dissipating Ohmic currents, which are not described by Eq. (54). These losses become very substantial when the frequency 

 becomes so high that the skin-effect length  of the material (as measured with superconductivity suppressed, say by high
magnetic field) becomes less than . For typical metallic superconductors, this crossover takes place at frequencies of a few
hundred GHz, so that even for microwaves, Eq. (57) still gives a fairly accurate description of the field penetration.

 Sometimes this boundary condition, as well as the (compatible) Eq. (38), are called “macroscopic”. However, this term may lead
to confusion with the genuine macroscopic boundary conditions (5.117)-(5.118), which also ignore the atomic-scale microstructure
of the “effective currents” , but (as was shown earlier in this section) still allow explicit, detailed accounts of the
skin-current (34) and supercurrent (55) distributions.
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