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1.2: The Gauss Law

Due to the extension of Eq. (9) to point (“discrete”) charges, it may seem that we do not need anything else for solving any problem
of electrostatics. In practice, however, this is not quite true — first of all, because the direct use of Eq. (9) frequently leads to
complex calculations. Indeed, let us try to solve a very simple problem: finding the electric field induced by a spherically-
symmetric charge distribution with density p (r'). We may immediately use the problem’s symmetry to argue that the

electric field should be also spherically-symmetric, with only one component in the spherical coordinates: E(r) = E(r)n, , where
n, =r/r is the unit vector in the direction of the field observation point r (Fig. 2).

Fig. 1.2. One of the simplest problems of electrostatics: the electric field produced by a spherically-symmetric charge distribution.

Taking this direction for the polar axis of a spherical coordinate system, we can use the evident axial symmetry of the system to
reduce Eq. (9) to

FE =

K o0 /
yr—y / sin ' de’ / r’2dr’%cosﬁ, (1.11)
TEQ 0 0

where 6 and R are the geometrical parameters marked in Fig. 2. Since they all may be readily expressed via 7' and &', using the
auxiliary parameters a and h,

cosf = rl—%a’ R2:h2—|—(r—r’c050)2, where a =7'cos@’, h=r'sinf, (1.12)

Eg. (11) may be eventually reduced to an explicit integral over ' and @', and worked out analytically, but that would require some
effort.

For other problems, the integral (9) may be much more complicated, defying an analytical solution. One could argue that with the
present-day abundance of computers and numerical algorithm libraries, one can always resort to numerical integration. This
argument may be enhanced by the fact that numerical integration is based on the replacement of the required integral by a discrete
sum, and the summation is much more robust to the (unavoidable) rounding errors than the finite-difference schemes typical for the
numerical solution of differential equations. These arguments, however, are only partly justified, since in many cases the numerical
approach runs into a problem sometimes called the curse of dimensionality — the exponential dependence of the number of needed
calculations on the number of independent parameters of the problem.” Thus, despite the proliferation of numerical methods in
physics, analytical results have an everlasting value, and we should try to get them whenever we can. For our current problem of
finding the electric field generated by a fixed set of electric charges, large help may come from the so-called Gauss law.

To derive it, let us consider a single point charge ¢ inside a smooth, closed surface S (Fig. 3), and calculate product E, d?r, where
d?r is an elementary area of the surface (which may be well approximated with a plane fragment of that area), and E, =E-n is
the component of the electric field at that point, normal to the plane.
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Fig. 1.3. Deriving the Gauss law: a point charge ¢ (a) inside the volume V/, and (b) outside of that volume.

This component may be calculated as E cos, where 6 is the angle between the vector E and the unit vector n normal to the
surface. Now let us notice that the product cos@d>r is nothing more than the area d?+' of the projection of d*r onto the plane
perpendicular to vector r connecting the charge ¢ with this point of the surface (Fig. 3), because the angle between the planes d*r/
and d?r is also equal to 6. Using the Coulomb law for E, we get

id27’/.

E,d*r = Ecos0d’r =
4dmey 72

(1.13)
But the ratio d?r' / 72 is nothing more than the elementary solid angle d§) under which the areas d?r' and d?r are seen from the
charge point, so that E,d*r may be represented as just a product of df2 by a constant (q/4meg). Summing these products over

the whole surface, we get
]{End%:ifdﬂzi, (1.14)
S 47('80 S 0]

since the full solid angle equals 4. (The integral on the left-hand side of this relation is called the flux of electric field through
surface S.)

The relation (14) expresses the Gauss law for one point charge. However, it is only valid if the charge is located inside the volume
V limited by the surface S. To find the flux created by a charge located outside of the volume, we still can use Eq. (13), but have
to be careful with the signs of the elementary contributions E,dA. Let us use the common convention to direct the unit vector n
out of the closed volume we are considering (the so-called outer normal), so that the elementary product E,d’r = (E- n)d2r and
hence dQ = E,d*r'/r? is positive if the vector E is pointing out of the volume (like in the example shown in Fig. 3a and the
upper-right area in Fig. 3b), and negative in the opposite case (for example, in the lower-left area in Fig. 3b). As the latter figure
shows, if the charge is located outside of the volume, for each positive contribution df2 there is always an equal and opposite
contribution to the integral. As a result, at the integration over the solid angle, the positive and negative contributions cancel
exactly, so that

?{Ener:O. (1.15)
S

The real power of the Gauss law is revealed by its generalization to the case of several charges within volume V. Since the
calculation of flux is a linear operation, the linear superposition principle (4) means that the flux created by several charges is equal
to the (algebraic) sum of individual fluxes from each charge, for which either Eq. (14) or Eq. (15) are valid, depending on the
charge position (in or out of the volume). As the result, for the total flux we get:

1 1
]{ E,d*r = v =— ) g=—|[ p)d*, Gauss Law (1.16)
s €0 €0 . 4

where Qy is the net charge inside volume V. This is the full version of the Gauss law.”

In order to appreciate the problem-solving power of the law, let us return to the problem illustrated by Fig. 2, i.e. a spherical charge
distribution. Due to its symmetry, which had already been discussed above, if we apply Eq. (16) to a sphere of radius r, the electric
field should be normal to the sphere at each its point (i.e., E, = E), and its magnitude the same at all points: E,, = E(r). As a
result, the flux calculation is elementary:
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fEnd% =47 E(r) (1.17)
Now, applying the Gauss law (16), we get:
1 4 "
4rr?B(r) = — / p(r)d* = = / 2p (r') dr', (1.18)
€0 Jr<r €0 Jo
so that, finally,
1 ! 1 Q(r)
E(r) = 2507 dr' = 1.19
0= [ ot = == (119)

where Q(r) is the full charge inside the sphere of radius r:

Q(r) E/W@p(r')d‘gr' :47TATp(r/)r'2dr/. (1.20)

In particular, this formula shows that the field outside of a sphere of a finite radius R is exactly the same as if all its charge
@ = Q(R) was concentrated in the sphere’s center. (Note that this important result is only valid for a spherically-symmetric
charge distribution.) For the field inside the sphere, finding the electric field still requires the explicit integration (20), but this 1D
integral is much simpler than the 2D integral (11), and in some important cases may be readily worked out analytically. For
example, if the charge @ is uniformly distributed inside a sphere of radius R,

Q Q

P(T')ZPZVZW, (1.21)

the integration is elementary:

P (" g PT 1 Qr

E(r) = dr' = 2 — =_. 1.22
(r) 7"280 0 r " 350 47['50 R3 ( )

We see that in this case, the field is growing linearly from the center to the sphere’s surface, and only at r > R starts to decrease in

agreement with Eq. (19) with constant @ (r) = Q. Note also that the electric field is continuous for all r (including » = R) — as

for all systems with finite volumic density,

In order to underline the importance of the last condition, let us consider one more elementary but very important example of the
Gauss law’s application. Let a thin plane sheet (Fig. 4) be charged uniformly, with an areal density o = const. In this case, it is
fruitful to use the Gauss volume in the form of a planar “pillbox” of thickness 2z (where z is the Cartesian coordinate
perpendicular to the plane) and certain area A — see the dashed lines in Fig. 4. Due to the symmetry of the problem, it is evident
that the electric field should be: (i) directed along the z-axis, (ii) constant on each of the upper and bottom sides of the pillbox, (iii)
equal and opposite on these sides, and (iv) parallel to the side surfaces of the box. As a result, the full electric field flux through the
pillbox’ surface is just 2AE(z), so that the Gauss law (16) yields 2AE(z) = Qa/eo =0A/eo , and we get a very simple but
important formula

E(z)= 2 — const. (1.23)

E

Fig. 1.4. The electric field of a charged plane.

Notice that, somewhat counter-intuitively, the field magnitude does not depend on the distance from the charged plane. From the
point of view of the Coulomb law (5), this result may be explained as follows: the farther the observation point from the plane, the
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weaker the effect of each elementary charge, d@ = od?r, but the more such elementary charges give contributions to the z-
component of vector E, because they are “seen” from the observation point at relatively small angles to the z-axis.

Note also that though the magnitude E = |E| of the electric field is constant, its component F, normal to the plane (for our
coordinate choice, E,) changes its sign at the plane, experiencing a discontinuity (jump) equal to

AE, = 2. (1.24)

€0
This jump disappears if the surface is not charged. Returning for a split second to our charged sphere problem, solving it we
considered the volumic charge density p to be finite everywhere, including the sphere’s surface, so that on it ¢ =0, and the

electric field should be continuous — as it is.

Admittedly, the integral form (16) of the Gauss law is immediately useful only for highly symmetrical geometries, such as in the
two problems discussed above. However, it may be recast into an alternative, differential form whose field of useful applications is
much wider. This form may be obtained from Eq. (16) using the divergence theorem of the vector algebra, which is valid for any
space-differentiable vector, in particular E, and for the volume V' limited by any closed surface S’

%SEnd%:/V(V-E)d?’r (1.25)

where V is the del (or “nabla”) operator of spatial differentiation.'” Combining Eq. (25) with the Gauss law (16), we get

/V(V~E—£> d*r=0. (1.26)

For a given spatial distribution of electric charge (and hence of the electric field), this equation should be valid for any choice of the
volume V. This can hold only if the function under the integral vanishes at each point, i.e. if"’

Inhomo-geneous Maxwell equation for E vV E=2 (1.27)
€0
Note that in sharp contrast with the integral form (16), Eq. (27) is local: it relates the electric field’s divergence to the charge
density at the same point. This equation, being the differential form of the Gauss law, is frequently called one of the Maxwell
equations'” — to be discussed again and again later in this course.

In the mathematical terminology, Eq. (27) is inhomogeneous, because it has a right-hand side independent (at least explicitly) of the
field E that it describes. Another, homogeneous Maxwell equation’s “embryo” (valid for the stationary case only!) may be obtained
by noticing that the curl of the point charge’s field, and hence that of any system of charges, equals zero: "’

Homo-geneous Maxwell equation for E VXE=0. (1.28)

(We will arrive at two other Maxwell equations, for the magnetic field, in Chapter 5, and then generalize all the equations to their
full, time-dependent form at the end of Chapter 6. However, Eq. (27) would stay the same.)

Just to get a better gut feeling of Eq. (27), let us apply it to the same example of a uniformly charged sphere (Fig. 2). Vector algebra
tells us that the divergence of a spherically symmetric vector function E(r) = E(r)n, may be simply expressed in spherical
coordinates:'* V-E = [d (T‘QE) / dr] /r% . As a result, Eq. (27) yields a linear, ordinary differential equation for the scalar
function E(r):

1d, ,. [p/eg, forr<R,
e (r*E) = { 0 forr> R (1.29)

which may be readily integrated on each of these segments:

E(r) =

iix{pfr2drp7'3/3+cl, forr <R, (1.30)

€ T2 co, forr > R.

To determine the integration constant ¢, we can use the following boundary condition: E(0) =0. (It follows from the problem’s
spherical symmetry: in the center of the sphere, the electric field has to vanish, because otherwise, where would it be directed?)
This requirement gives ¢; = 0. The second constant, ¢z, may be found from the continuity condition E(R—0)= E(R+0) ,
which has already been discussed above, giving ¢, = pR3 /3 =Q/4m. As aresult, we arrive at our previous results (19) and (22).
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We can see that in this particular, highly symmetric case, using the differential form of the Gauss law is more complex than its
integral form. (For our second example, shown in Fig. 4, it would be even less natural.) However, Eq. (27) and its generalizations
are more convenient for asymmetric charge distributions, and are invaluable in the cases where the distribution p(r) is not known
a priori and has to be found in a self-consistent way. (We will start discussing such cases in the next chapter.)

Reference
"For a more detailed discussion of this problem, see, e.g., CM Sec. 5.8.

8Named after the famed Carl Gauss (1777-1855), even though it was first formulated earlier (in 1773) by Joseph-Louis Lagrange,
who was also the father-founder of analytical mechanics — see, e.g., CM Chapter 2.

9See, e.g., MA Eq. (12.2). Note also that the scalar product under the volumic integral in Eq. (25) is nothing else than the
divergence of the vector E — see, e.g., MA Eq. (8.4).

105ee, e.g., MA Secs. 8-10.

n the Gaussian units, just as in the initial Eq. (6), & has to be replaced with 1/4, so that the Maxwell equation (27) looks like
V -E =4mp, while Eq. (28) stays the same.

12Named after the genius of classical electrodynamics and statistical physics, James Clerk Maxwell (1831-1879).

13This follows, for example, from the direct application of MA Egq. (10.11) to any spherically-symmetric vector function of type
f(r) = f(r)n, (in particular, to the electric field of a point charge placed at the origin), giving fs=f,=0 and
0f./00 =0f,/0¢p =0 so that all components of the vector V x f vanish. Since nothing prevents us from placing the reference
frame’s origin at the point charge’s location, this result remains valid for any position of the charge.

l45ee, e.g., MA Eq. (10.10) for the particular case 8/80 =09/0p =0 .
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