
3.8.1 https://phys.libretexts.org/@go/page/57611

3.8: Spherically-symmetric Scatterers
The machinery of the Legendre polynomials and the spherical Bessel functions, discussed in Sec. 6 , may also be used for analysis
of particle scattering by spherically-symmetric potentials (155) beyond the Born approximation (Sec. 3), provided that such a
potential  is also localized, i.e. reduces sufficiently fast at . (The quantification of this condition is left for the reader’s
exercise.)

Indeed, directing the -axis along the propagation of the incident plane de Broglie wave , and taking its origin in the center of the
scatterer, we may expect the scattered wave  to be axially symmetric, so that its expansion in the series over the spherical
harmonics includes only the terms with . Hence, the solution (64) of the stationary Schrödinger equation (63) in this case
may be represented as 

where  is defined by the energy  of the incident particle, while the radial functions  have to satisfy Eq.
(181), and be finite at . At large distances , where  is the effective radius of the scatterer, the potential  is
negligible, and Eq. (181) is reduced to Eq. (183). In contrast to its analysis in Sec. 6, we should look for its solution using a linear
superposition of the spherical Bessel functions of both kinds:

because Eq. (183) is now invalid at , and our former argument for dropping the functions  is no more valid. In Eq.
(214),  and  are some complex coefficients, determined by the scattering potential , i.e. by the solution of Eq. (181) at 

.

As the explicit expressions (186) show, the spherical Bessel functions  and  represent standing de Broglie waves, with
equal real amplitudes, so that their simple linear combinations (called the spherical Hankel functions of the first and second kind),

represent traveling spherical waves propagating, respectively, from the origin (i.e. from the center of the scatterer), and toward the
origin. In particular, at , i.e. at large distances 

But using the same physical argument as at the beginning of Sec. 1, we may argue that in the case of a localized scatterer, there
should be no latter waves at ; hence, we have to require the amplitude of the term proportional to  to be zero. With the
relations reciprocal to Eqs. (215),

which enable us to rewrite Eq. (214) as

this means that the combination  has to be equal zero, so that . Hence we have just one unknown coefficient
(say,  ) for each  and may rewrite Eq. (218) in an even simpler form:

and use Eqs. (213) and (216) to write the following expression for the scattered wave at large distances:
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Comparing this expression with the general Eq. (81), we see that for a spherically-symmetric, localized scatterer,

so that the differential cross-section (84) is

The last expression is more convenient for the calculation of the total cross-section  :

where , because this result may be much simplified by using Eq. (167): 

Hence the solution of the scattering problem is reduced to the calculation of the partial wave amplitudes  defined by Eq. (219) -
and for the total cross-section, merely of their magnitudes. This task is much facilitated by using the following Rayleigh formula
for the expansion of the incident plane wave’s exponent into a series over the Legendre polynomials, 

As the simplest example, let us calculate scattering by a completely opaque and "hard" (meaning sharp-boundary) sphere, which
may be described by the following potential:

In this case, the total wavefunction has to vanish at , and hence for the external problem  the sphere enforces the
boundary condition  for all values of , at . With Eqs. (213), (220) and (225), this condition becomes

Due to the orthogonality of the Legendre polynomials, this condition may be satisfied for all angles  only if all the coefficients
before all  vanish, i.e. if

On the other hand, for , so that Eq. (183) is valid, and its outward-wave solution (219) has to be valid even at 
, giving

Requiring the two last expressions to give the same result, we get

so that Eqs. (222) and (224) yield:
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As Fig. 25a shows, the first of these results describes an angular structure of the scattered de Broglie wave, which is qualitatively
similar to that given by the Born approximation - cf. Eq. (98) and Fig. 10.

Fig. 3.25. Particle scattering by an opaque, hard sphere: (a) the differential cross-section normalized to the geometric cross-section 
 of the sphere, as a function of the scattering angle , and (b) the (similarly normalized) total cross-section and its lowest

spherical components, as functions of the dimensionless product .

Namely, at low particle’s energies , the scattering is essentially isotropic, while in the opposite, high-energy limit 
, it is mostly confined to small angles , and exhibits numerous local destructive-interference minima at

angles . However, in our current (exact!) theory, these minima are always finite, because the theory describes
effective bending of the de Broglie waves along the back side of the sphere, which smears the interference pattern. The same
bending is also responsible for a rather counter-intuitive fact, described by the second of Eqs. (231) and clearly visible in Fig. 25b:
even at , the total cross-section  of scattering tends to , rather than to  as in the purely-classical scattering
theory. (The fact that at  1 , the cross-section is also larger than , approaching  at , is less surprising, because
in this limit the de Broglie wavelength  is much longer than the sphere’s radius , so that the wave’s propagation is
affected by the whole sphere.)

The above analysis may be readily generalized to the case a step-like (sharp but finite) potential (97) - the problem left for the
reader’s exercise. On the other hand, for a finite and smooth scattering potential , plugging Eq. (225) into Eq. (213) and the
result into Eq. (66), requiring the coefficients before each angular function  to be balanced, and canceling the common
coefficient , we get the following inhomogeneous generalization of Eq. (181) for the radial functions defined by Eq. (213):

This differential equation has to be solved in the whole scatterer volume (i.e. for all  ) with the boundary conditions for the
functions  to be finite at , and to tend to the asymptotic form (219) at . The last requirement enables the
evaluation of the coefficients  that are needed for spelling out Eqs. (222) and (224). Unfortunately, due to the lack of time, I have
to refer the reader interested in such cases to special literature. 

 The particular terms in this sum are frequently called partial waves.

 For arbitrary , this result may be confirmed using Eqs. (185) and the asymptotic formulas for the "usual" Bessel functions - see,
e.g., EM Eqs. (2.135) and (2.152), valid for an arbitrary (not necessarily integer) index .

 Moreover, using the conservation of the orbital momentum, to be discussed in Sec. 5.6, it is possible to show that this complex
coefficient may be further reduced to just one real parameter, usually recast as the partial phase shift  between the  spherical
harmonics of the incident and scattered waves. However, I will not use this notion, because practical calculations are more
physically transparent (and not more complex) without it.

 Physically, this reduction of the double sum to a single one means that due to the orthogonality of the spherical functions, the
total scattering probability flows due to each partial wave just add up.

 It may be proved using the Rodrigues formula (165) and integration by parts - the task left for the reader’s exercise.

 See, e.g., J. Taylor, Scattering Theory, Dover, 
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