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2.8: Periodic Systems- Energy Bands and Gaps
Let us now proceed to the discussion of one of the most important issues of wave mechanics: particle motion through a periodic
system. As a precursor to this discussion, let us calculate the transparency of the potential profile shown in Fig. 22 (frequently
called the  comb): a sequence of  similar, equidistant delta-functional potential barriers, separated by  potential-
free intervals .

Fig. 2.22. Tunneling through a Dirac comb: a system of  similar, equidistant barriers, i.e.  similar coupled potential
wells.

According to Eq. (132), its transfer matrix is the following product

with the component matrices given by Eqs. (135) and (138), and the barrier height parameter  defined by the last of Eqs. (78).
Remarkably, this multiplication may be carried out analytically,  giving

where  is a new parameter, with the wave number dimensionality, defined by the following relation:

For , Eqs. (191) immediately yield our old result (79), while for  they may be readily reduced to Eq. (141) - see Fig.
16a. Fig. 20 shows its predictions for two larger numbers , and several values of the dimensionless parameter .

Let us start the discussion of the plots from the case , when three barriers limit two coupled potential wells between them.
Comparison of Fig. 23a and Fig. 16 a shows that the transmission patterns, and their dependence on the parameter , are very
similar, besides that in the coupled-well system, each resonant tunneling peak splits into two, with the -difference between them
scaling as . From the discussion in the last section, we may now readily interpret this result: each pair of resonance peaks of
transparency corresponds to the alignment of the incident particle’s energy  with the pair of energy levels  of the
symmetric and antisymmetric states of the system. However, in contrast to the system shown in Fig. 19, these states are metastable,
because the particle may leak out from these states just as it could in the system studied in Sec. 5 - see Fig. 15 and its discussion.
As a result, each of the resonant peaks has a non-zero energy width , obeying Eq. (155).
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Fig. 2.23. The Dirac comb’s transparency as a function of the product  for three values of . Since the function  ) is -
periodic (just like it is for , see Fig. 16a), only one period is shown.

A further increase of  (see Fig. 23b) results in the increase of the number of resonant peaks per period to , and at 
 the peaks merge into the so-called allowed energy bands (frequently called just the "energy bands") with average

transparency , separated from similar bands in the adjacent periods of function  by energy gaps  where .
Notice the following important features of the pattern:

(i) at , the band/gap edges become sharp for any , and tend to fixed positions (determined by  but independent of  );

(ii) the larger is well coupling (the smaller is  ), the broader are the allowed energy bands and the narrower are the gaps between
them.

Our previous discussion of the resonant tunneling gives us a clue for a semi-quantitative interpretation of this pattern: if 
potential wells are weakly coupled by tunneling through the potential barriers separating them, the system’s energy spectrum
consists of groups of  metastable energy levels, each group being close to one of the unperturbed eigenenergies of the well.
(According to Eq. (1.84), for our current example shown in Fig. 22, with its rectangular potential wells, these eigenenergies
correspond to .)

Now let us recall that in the case , analyzed in the previous section, the eigenfunctions (169) and (175) differed only by the
phase shift  between their localized components  and , with  for one of them  and  for its
counterpart. Hence it is natural to expect that for other  as well, each metastable energy level corresponds to an eigenfunction
that is a superposition of similar localized functions in each potential well, but with certain phase shifts  between them.

Moreover, we may expect that at , i.e. for periodic structures  with

when the system does not have the ends that could affect its properties, the phase shifts  between the localized wavefunctions in
all couples of adjacent potential wells should be equal, i.e.

for all  This equality is the (1D version of the) much-celebrated Bloch theorem.  Mathematical rigor aside,  it is a virtually
evident fact because the particle’s density , which has to be periodic in this -periodic system, may be so only 

 is constant. For what follows, it is more convenient to represent the real constant  in the form , so that the Bloch theorem
takes the form

The physical sense of the parameter  will be discussed in detail below, but we may immediately notice that according to Eq.
(193b), an addition of  to this parameter yields the same wavefunction; hence all observables have to be -periodic
functions of 

Now let us use the Bloch theorem to calculate the eigenfunctions and eigenenergies for the infinite version of the system shown in
Fig. 22, i.e. for an infinite set of delta-functional potential barriers - see Fig. 
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Fig. 2.24. The simplest periodic potential: an infinite Dirac comb.

To start, let us consider two points separated by one period  : one of them, , just left of the position of one of the barriers, and
another one, , just left of the following barrier-see Fig. 24 again. The eigenfunctions at each of the points may be represented
as linear superpositions of two simple waves , and the amplitudes of their components should be related by a 
transfer matrix  of the potential fragment separating them. According to Eq. (132), this matrix may be found as the product of the
matrix (135) of one delta-functional barrier by the matrix (138) of one zero-potential interval  :

However, according to the Bloch theorem (193b), the component amplitudes should be also related as

The condition of self-consistency of these two equations gives the following characteristic equation:

In Sec. 5, we have already calculated the matrix product participating in this equation - see the second operand in Eq. (140). Using
it, we see that Eq. (196) is reduced to the same simple Eq. (191b) that has jumped at us from the solution of the somewhat different
(resonant tunneling) problem. Let us explore that simple result in detail. First of all, the left-hand side of Eq. (191b) is a sinusoidal
function of the product  with unit amplitude, while its right-hand side is a sinusoidal function of the product , with amplitude 

 - see Fig. 25,

a xj
xj+1

exp{±ikx} 2 ×2

T

a

( ) = ( ) =( )( )( ) .
Aj+1

Bj+1

TaTα

Aj

Bj

eika

0

0

e−ika

1 − iα

iα

−iα

1 + iα

Aj

Bj

(2.8.7)

( ) = ( ) ≡( )( ) .
Aj+1

Bj+1

eiqa
Aj

Bj

eiqa

0

0

eiqa
Aj

Bj

(2.8.8)

( )( )−( ) = 0.
∣

∣
∣

eika

0

0

e−ika

1 − iα

iα

−iα

1 + iα

eiqa

0

0

eiqa

∣

∣
∣ (2.8.9)

qa ka

> 1(1 + )α2 1/2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/57616?pdf


2.8.4 https://phys.libretexts.org/@go/page/57616

Fig. 2.25. The graphical representation of the characteristic equation (191b) for a fixed value of the parameter . The ranges of 
that yield , correspond to allowed energy bands, while those with , correspond to energy gaps between
them.

As a result, within each half-period  of the right-hand side, there is an interval where the magnitude of the right-hand
side is larger than 1 , so that the characteristic equation does not have a real solution for . These intervals correspond to the energy
gaps (see Fig. 23 again), while the complementary intervals of , where a real solution for  exists, correspond to the allowed
energy bands. In contrast, the parameter  can take any real values, so it is more convenient to plot the eigenenergy 
as the function of the quasimomentum  (or, even more conveniently, of the dimensionless parameter  ) rather than 
Before doing that, we need to recall that the parameter , defined by the last of Eqs. (78), depends on the wave vector  as well, so
that if we vary  (and hence  ), it is better to characterize the structure by another, -independent dimensionless parameter, for
example

so that our characteristic equation (191b) becomes

Fig. 26 shows the plots of  and , following from Eq. (198), as functions of , for a particular, moderate value of the parameter 
. The first evident feature of the pattern is the -periodicity of the pattern in the argument , which we have already predicted

from the general Bloch theorem arguments. (Due to this periodicity, the complete band/gap pattern may be studied, for example, on
just one interval , called the  Brillouin zone - the so-called reduced zone picture. For some applications,
however, it is more convenient to use the extended zone picture with  see, e.g., the next section.)
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Fig. 2.26. (a) The "genuine" momentum  of a particle in an infinite Dirac comb (Fig. 24), and (b) its energy  (in the
units of  ), as functions of normalized quasimomentum, for a particular value  of the dimensionless
parameter defined by Eq. (197). Arrows in the lower right corner of panel (b) illustrate the definition of energy band  and
energy gap  widths.

However, maybe the most important fact, clearly visible in Fig. 26, is that there is an infinite number of energy bands, with
different energies  for the same value of . Mathematically, it is evident from Eq. (198) - or alternatively from Fig. 25.
Indeed, for each value of , there is a solution  to this equation on each half-period . Each of such solutions (see
Fig. 26a) gives a specific value of particle’s energy . A continuous set of similar solutions for various  forms a
particular energy band.

Since the energy band picture is one of the most practically important results of quantum mechanics, it is imperative to understand
its physics. It is natural to describe this physics in two different ways in two opposite potential strength limits. In parallel, we will
use this discussion to obtain simpler expressions for the energy band/gap structure in each limit. An important advantage of this
approach is that both analyses may be carried out for an arbitrary periodic potential  rather than for the particular model
shown in Fig. 24 .

(i) Tight-binding approximation. This approximation works well when the eigenenergy  of the states quasi-localized at the
energy profile minima is much lower than the height of the potential barriers separating them - see Fig. 27. As should be clear from
our discussion in Sec. 6, essentially the only role of coupling between these states (via tunneling through the potential barriers
separating the minima) is to establish a certain phase shift  between the adjacent quasi-localized wavefunctions 

 and .

Fig. 2. 27. The tight-binding approximation (schematically).

To describe this effect quantitatively, let us first return to the problem of two coupled wells considered in Sec. 6 , and recast the
result , with restored eigenstate index , as

where the probability amplitudes  and  oscillate sinusoidally in time:
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This evolution satisfies the following system of two equations whose structure is similar to Eq. (1.61a):

Eq. (199) may be readily generalized to the case of many similar coupled wells:

where  are the eigenenergies and  the eigenfunctions of each well. In the tight-binding limit, only the adjacent wells are
coupled, so that instead of Eq. (201) we should write an infinite system of similar equations

for each well number , where parameters  describe the coupling between two adjacent potential wells. Repeating the calculation
outlined at the end of the last section for our new situation, for a smooth potential we may get an expression essentially similar to
the last form of Eq. (188):

where  is the distance between the well bottom and the middle of the potential barrier on the right of it - see Fig. 27. The only
substantial new feature of this expression in comparison with Eq. (188) is that the sign of  alternates with the level number 

, etc. Indeed, the number of zeros (and hence, "wiggles") of the eigenfunctions  of any potential
well increases as  see, e.g., Fig.  so that the difference of the exponential tails of the functions, sneaking under the left and
right barriers limiting the well also alternates with .

The infinite system of ordinary differential equations (203) enables solutions of many important problems (such as the spread of
the wavefunction that was initially localized in one well, etc.), but our task right now is just to find its stationary states, i.e. the
solutions proportional to , where  is a still unknown, -dependent addition to the background energy  of the

 energy level. To satisfy the Bloch theorem (193) as well, such a solution should have the following form:

Plugging this solution into Eq. (203) and canceling the common exponent, we get

so that in this approximation, the energy band width  (see Fig. 26b) equals .

The relation (206), whose validity is restricted to , describes the lowest energy bands plotted in Fig. 26b reasonably
well. (For larger , the agreement would be even better.) So, this calculation explains what the energy bands really are: in the tight-
binding limit they are best interpreted as isolated well’s energy levels , broadened into bands by the interwell interaction. Also,
this result gives clear proof that the energy band extremes correspond to  and , with integer l. Finally,
the sign alteration of the coupling coefficient  explains why the energy maxima of one band are aligned, on the  axis,
with energy minima of the adjacent bands - see Fig. 26 .

(ii) Weak-potential limit. Amazingly, the energy-band structure is also compatible with a completely different physical picture that
may be developed in the opposite limit. Let the particle’s energy  be so high that the periodic potential  may be treated as a
small perturbation. Naively, in this limit we could expect a slightly and smoothly deformed parabolic dispersion relation 

. However, if we are plotting the stationary-state energy as a function of  rather than , we need to add , with
an arbitrary integer , to the argument. Let us show this by expanding all variables into the 1D-spatial Fourier series. For the
potential energy  that obeys Eq. (192), such an expansion is straightforward: 56
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where the summation is over all integers  ", from  to . However, for the wavefunction we should show due respect to the
Bloch theorem (193), which shows that strictly speaking,  is not periodic.

To overcome this difficulty, let us define another function:

and study its periodicity:

We see that the new function is -periodic, and hence we can use Eqs. (208)-(209) to rewrite the Bloch theorem in a different form:

Now it is safe to expand the periodic function  exactly as  :

so that, according to Eq. (210),

The only nontrivial part of plugging Eqs. (207) and (212) into the stationary Schrödinger equation (53) is how to handle the product
term,

At fixed , we may change the summation over  " to that over  (so that  ), and write:

Now plugging Eq. (212) (with the summation index  ’ replaced with  ) and Eq. (214) into the stationary Schrödinger equation
(53), and requiring the coefficients of each spatial exponent to match, we get an infinite system of linear equations for  :

(Note that by this calculation we have essentially proved that the Bloch wavefunction (210) is indeed  solution of the Schrödinger
equation, provided that the quasimomentum  is selected in a way to make the system of linear equation (215) compatible, i.e. is a
solution of its characteristic equation.)

So far, the system of equations (215) is an equivalent alternative to the initial Schrödinger equation, for any potential’s strength. 
In the weak-potential limit, i.e. if all Fourier coefficients  are small  we can complete all the calculations analytically. 
Indeed, in the so-called  approximation we can ignore all , so that in order to have at least one  different from 0 , Eq. (215)
requires that

(  itself should be obtained from the normalization condition). This result means that in this approximation, the dispersion
relation  has an infinite number of similar quadratic branches numbered by integer  - see Fig. 28 .
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Fig. 2.28. The energy band/gap picture in the weak potential limit   ), with the shading showing the  Brillouin
zone.

On every branch, such eigenfunction has just one Fourier coefficient, i.e. is a monochromatic traveling wave

Next, the above definition of  allows us to rewrite Eq. (215) in a more transparent form

which may be formally solved for  :

This formula shows that if the Fourier coefficients  are non-zero but small, the wavefunctions do acquire other Fourier
components (besides the main one, with the index corresponding to the branch number), but these additions are all small, besides
narrow regions near the points , where two branches (216) of the dispersion relation , with some specific numbers 
and , cross. According to Eq. (216), this happens when

i.e. at  (with the integer  )  corresponding to

with integer . (According to their definitions, the index  is just the number of the branch crossing on the energy scale,
while the index  numbers the position of the crossing points on the -axis - see Fig. 28.) In such a region,  has to be close to
both  and , so that the denominator in just one of the infinite number of terms in Eq. (219) is very small, making the term
substantial despite the smallness of . Hence we can take into account only one term in each of the sums (written for  and  ):

Taking into account that for any real function , the Fourier coefficients in its Fourier expansion (207) have to be related as 
, Eq. (222) yields the following simple characteristic equation

with the following solution:

(Δn << E (n) 1st 

→ = exp{i(q− )x}.ψl ule
ikx ul

2πl

a
(2.8.30)

El

= (E− ) ,∑
≠ll′

Ul−l′ul′ El ul (2.8.31)

ul

=ul
1

E−El

∑
≠ll′

Ul−l′ul′ (2.8.32)

Un

=El El E(q) l

l′

(q− l) ≈ −(q− ) ,
2π

a

2π

a
l′ (2.8.33)

q ≈ ≡ πm/aqm m ≡ l+ l′ 60

≈ ≈ = ≡ ,El El

ℏ2

2ma2
[π (l+ ) −2πl]l′

2 π2ℏ2

2ma2
n2 E (n) (2.8.34)

n ≡ l− l′ n

m q E

El El

Un l l′

= (E− ) ,Unul′ El ul

= (E− ) .U−nul El′ ul′

U(x)

=U−n Un
∗

= 0,
∣

∣
∣
E−El

−U ∗
n

−Un

E−El′

∣

∣
∣ (2.8.35)

= ± ,  with  ≡ =E± Eave  [ + ]( )
−El El

2

2

UnU
∗
n

1/2

Eave 

+El El′

2
E (n) (2.8.36)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/57616?pdf


2.8.9 https://phys.libretexts.org/@go/page/57616

According to Eq. (216), close to the branch crossing point , the fraction participating in this result may be
approximated as 

while the parameters  and  do not depend on , i.e. on the distance from the central point . This is
why Eq. (224) may be plotted as the famous level anticrossing (also called "avoided crossing", or "intended crossing", or "non-
crossing") diagram (Fig. 29), with the energy gap width  equal to , i.e. just twice the magnitude of the -th Fourier
harmonic of the periodic potential . Such anticrossings are also clearly visible in Fig. 28, which shows the result of the exact
solution of Eq. (198) for the particular case 

Fig. 2.29. The level anticrossing diagram.

We will run into the anticrossing diagram again and again in the course, notably at the discussion of spin-  and other two-level
systems. It is also repeatedly met in classical mechanics, for example at the calculation of frequencies of coupled oscillators. 

 In our current case of the weak potential limit of the band theory, the diagram describes the interaction of two traveling de
Broglie waves (217), with oppositely directed wave vectors,  and , via the  (i.e. the  ) Fourier harmonic of the
potential profile  This effect exists also in the classical wave theory and is known as the Bragg reflection, describing, for
example, the 1D model of the X-wave reflection by a crystal lattice (see, e.g. Fig. 1.5) in the limit of weak interaction between the
incident wave and each atom.

The anticrossing diagram shows that rather counter-intuitively, even a weak periodic potential changes the topology of the initially
parabolic dispersion relation radically, connecting its different branches, and thus creating the energy gaps. Let me hope that the
reader has enjoyed the elegant description of this effect, discussed above, as well as one more illustration of the wonderful ability
of physics to give completely different interpretations (and different approximate approaches) to the same effect in opposite limits.

So, we have explained analytically (though only in two limits) the particular band structure shown in Fig. 26. Now we may wonder
how general this structure is, i.e. how much of it is independent of the Dirac comb model (Fig. 24). For that, let us represent the
band pattern, such as that shown in Fig.  (plotted for a particular value of the parameter , characterizing the potential barrier
strength) in a more condensed form, which would allow us to place the results for a range of  values on a single comprehensible
plot. The way to do this should be clear from Fig. 26b: since the dependence of energy on the quasimomentum in each energy band
is not too eventful, we may plot just the highest and the smallest values of the particle’s energy  as functions of 
maw/  - see Fig. 30, which may be obtained from Eq. (198) with  and .
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Fig. 2.30. Characteristic curves of the Schrödinger equation for the infinite Dirac comb (Fig. 24).

These plots (in mathematics, commonly called characteristic curves, while in applied physics, band-edge diagrams) show, first of
all, that at small , all energy gap widths are equal and proportional to this parameter, and hence to . This feature is in a full
agreement with the main conclusion (224) of our general analysis of the weak-potential limit, because for the Dirac comb potential
(Fig. 24),

all Fourier harmonic amplitudes, defined by Eq. (207), are equal by magnitude: . As  is further increased, the gaps
grow and the allowed energy bands shrink, but rather slowly. This is also natural, because, as Eq. (79) shows, transparency  of
the delta-functional barriers separating the quasilocalized states (and hence the coupling parameters  participating in the
general tight-binding limit’s theory) decrease with  very gradually.

These features may be compared with those for more realistic and relatively simple periodic functions , for example the
sinusoidal potential  see Fig. 31a. For this potential, the stationary Schrödinger equation (53) takes the
following form:

By introduction of dimensionless variables 

where  is defined by Eq. (221) with , Eq. (227) is reduced to the canonical form of the wellstudied Mathieu equation 

Fig. 2.31. Two other simple periodic potential profiles: (a) the sinusoidal (“Mathieu”) potential and (b) the Kronig-Penney
potential.

Fig. 2.31. Two other simple periodic potential profiles: (a) the sinusoidal ("Mathieu") potential and (b) the Kronig-Penney
potential.

Figure 32 shows the characteristic curves of this equation. We see that now at small  the first energy gap grows much faster than
the higher ones: . This feature is in accord with the weakcoupling result , which is valid only in the linear
approximation in , because for the Mathieu potential, . Another clearly visible feature is the

β w

U(x) = w δ(x−ja+ const )∑
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+∞

(2.8.38)
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exponentially fast shrinkage of the allowed energy bands at  (in Fig. 32, on the right from the dashed line), i.e. at . It
may be readily explained by our tight-binding approximation result  : as soon as the eigenenergy drops significantly below
the potential maximum  (see Fig. 31a), the quantum states in the adjacent potential wells are connected only by
tunneling through relatively high potential barriers separating these wells, so that the coupling amplitudes  become exponentially
small - see, e.g., Eq. (189).

Fig. 2.32. Characteristic curves of the Mathieu equation. The dashed line corresponds to the equality , i.e.  ,
separating the regions of under-barrier tunneling and over-barrier motion. Adapted from Fig. 28.2.1 at http://dlmf.nist.gov.
(Contribution by US Government, not subject to copyright).

Another simple periodic profile is the Kronig-Penney potential, shown in Fig. 31b, which gives relatively simple analytical
expressions for the characteristic curves. Its advantage is a more realistic law of the decrease of the Fourier harmonics  at 

, and hence of the energy gaps in the weak-potential limit:

Leaving a detailed analysis of the Kronig-Penney potential for the reader’s exercise, let me conclude this section by addressing the
effect of potential modulation on the number of eigenstates in 1D systems of a large but finite length . Surprisingly, the
Bloch theorem makes the analysis of this problem elementary, for arbitrary . Indeed, let us assume that  is comprised of an
integer number of periods , and its ends are described by similar boundary conditions - both assumptions evidently
inconsequential for . Then, according to Eq. (210), the boundary conditions impose, on the quasimomentum , exactly the
same quantization condition as we had for  for a free 1D motion. Hence, instead of Eq. (1.100), we can write

with the corresponding change of the summation rule:

As a result, the density of states in the  q-space, , does not depend on the potential profile at all! Note, however,
that the profile does affect the density of states on the energy scale, . As an extreme example, on the bottom and at the top
of each energy band we have  , and hence

This effect of state concentration at the band/gap edges (which survives in higher spatial dimensionalities as well) has important
implications for the operation of several important electronic and optical devices, in particular semiconductor lasers and light-
emitting diodes.

 This formula will be easier to prove after we have discussed the properties of Pauli matrices in Chapter 

 In solid-state (especially semiconductor) physics and electronics, the term bandgaps is more common.
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 This is a reasonable 1D model, for example, for solid-state crystals, whose samples may feature up to  similar atoms or
molecules in each direction of the crystal lattice.

 A reasonably fair classical image of  is the geometric angle between similar objects - e.g., similar paper clips - attached at
equal distances to a long, uniform rubber band. If the band’s ends are twisted, the twist is equally distributed between the
structure’s periods, representing the constancy of . (I have to confess that, due to the lack of time, this was the only "lecture
demonstration" in my Stony Brook QM courses.)

 Named after F. Bloch who applied this concept to the wave mechanics in 1929, i.e. very soon after its formulation. Note,
however, that an equivalent statement in mathematics, called the Floquet theorem, has been known since at least 1883 .

 I will recover this rigor in two steps. Later in this section, we will see that the function obeying Eq. (193) is indeed  solution to
the Schrödinger equation. However, to save time/space, it will be better for us to postpone until Chapter 4 the proof that any
eigenfunction of the equation, with periodic boundary conditions, obeys the Bloch theorem. As a partial reward for this delay, that
proof will be valid for an arbitrary spatial dimensionality.

 The product , which has the dimensionality of linear momentum, is called either the quasimomentum or (especially in solid-
state physics) the "crystal momentum" of the particle. Informally, it is very convenient (and common) to use the name
"quasimomentum" for the bare  as well, despite its evidently different dimensionality.

 A more important reason for taking  as the argument is that for a general periodic potential , the particle’s momentum 
is not uniquely related to , while (according to the Bloch theorem) the quasimomentum  is.

 Below, we will see several other examples of this behavior. This alternation rule is also described by the Wilson-Sommerfeld
quantization condition (110).

 The benefits of such an unusual notation of the summation index (  " instead of, say,  ) will be clear in a few lines.

 By the way, the system is very efficient for fast numerical solution of the stationary Schrödinger equation for any periodic
profile , even though to describe potentials with large , this approach may require taking into account a correspondingly
large number of Fourier amplitudes .

 Besides, possibly, a constant potential , which, as was discussed in Chapter 1, may be always taken for the energy reference.
As a result, in the following calculations, I will take  to simplify the formulas.

 This method is so powerful that its multi-dimensional version is not much more complex than the 1D version described here -
see, e.g., Sec.  in the classical textbook by J. Ziman, Principles of the Theory of Solids,  ed., Cambridge U. Press, 

 Let me hope that the difference between this new integer and the particle’s mass, both called , is absolutely clear from the
context.

 Physically,  is just the velocity of a free classical particle with energy .

 From that figure, it is also clear that in the weak potential limit, the width  of the  energy band is just  
see Eq. (221). Note that this is exactly the distance between the adjacent energy levels of the simplest 1D potential well of infinite
depth  cf. Eq. (1.85).

 See, e.g., CM Sec.  and in particular Fig. .

 Actually, we could readily obtain this diagram in the previous section, for the system of two weakly coupled potential wells (Fig.
21), if we assumed the wells to be slightly dissimilar.

 In the language of the de Broglie wave scattering, to be discussed in Sec. 3.3, Eq. (220) may be interpreted as the condition that
each of these waves, scattered on the  Fourier harmonic of the potential profile, constructively interferes with its counterpart,
leading to a strong enhancement of their interaction.

 Note that this definition of  is quantitatively different from that for the Dirac comb (226), but in both cases, this parameter is
proportional to the amplitude of the potential modulation.

 This equation, first studied in the 1860s by É. Mathieu in the context of a rather practical problem of vibrating elliptical
drumheads (!), has many other important applications in physics and engineering, notably including the parametric excitation of
oscillations - see, e.g., CM Sec. 5.5.
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