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7.1: Open Systems, and the Density Matrix
All the way until the last part of the previous chapter, we have discussed quantum systems isolated from their environment. Indeed,
from the very beginning, we have assumed that we are dealing with the statistical ensembles of systems as similar to each other as
only allowed by the laws of quantum mechanics. Each member of such an ensemble, called pure or coherent, may be described by
the same state vector  - in the wave mechanics case, by the same wavefunction . Even the discussion at the end of the last
chapter, in which one component system (in Fig. 6.13, system  ) may be used as a model of the environment of its counterpart
(system  ), was still based on the assumption of a pure initial state (6.143) of the composite system. If the interaction of the two
components of such a system is described by a certain Hamiltonian (the one given by Eq. (6.145) for example), and the energy
spectrum of each component system is discrete, for state  of the composite system at an arbitrary instant we may write

with a unique correspondence between the eigenstates  and .

However, in many important cases, our knowledge of a quantum system’s state is even less complete.  These cases fall into two
categories. The first case is when a relatively simple quantum system  of our interest (say, an electron or an atom) is in a weak 
but substantial contact with its environment  - here understood in the most general sense, say, as all the whole Universe less
system  - see Fig. 1. Then there is virtually no chance of making two or more experiments with exactly the same composite
system because that would imply a repeated preparation of the whole environment (including the experimenter :-) in a certain
quantum state - a rather challenging task, to put it mildly. Then it makes much more sense to consider a statistical ensemble of
another kind - a mixed ensemble, with random states of the environment, though possibly with its macroscopic parameters (e.g.,
temperature, pressure, etc.) known with high precision. Such ensembles will be the focus of the analysis in this chapter

Much of this analysis will pertain also to another category of cases - when the system of our interest is isolated from its
environment, at present, with acceptable precision, but our knowledge of its state is still incomplete for some other reason. Most
typically, the system could be in contact with its environment at earlier times, and its reduction to a pure state is impracticable. So,
this second category of cases may be considered as a particular case of the first one, and may be described by the results of its
analysis, with certain simplifications - which will be spelled out in appropriate places of my narrative.

Fig. 7.1. A quantum system and its environment (VERY schematically :-).

In classical physics, the analysis of mixed statistical ensembles is based on the notion of the probability  (or the probability
density  ) of each detailed ("microscopic") state of the system of interest.  Let us see how such an ensemble may be described in
quantum mechanics. In the case when the coupling between the system of our interest and its environment is so weak that they may
be clearly separated, we can still use state vectors of their states, defined in completely different Hilbert spaces. Then the most
general quantum state of the whole Universe, still assumed to be pure,  may be described as the following linear superposition:

The "only" difference of such a state from the superposition described by Eq. (1), is that there is no one-to-one correspondence
between the states of our system and its environment. In other words, a certain quantum state  of the system of interest may
coexist with different states  of its environment. This is exactly the quantum-mechanical description of a mixed state of the
system .

Of course, the huge size of the Hilbert space of the environment, i.e. of the number of the  factors in the superposition (2),
strips us of any practical opportunity to make direct calculations using that sum. For example, according to the basic Eq. (4.125), to
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find the expectation value of an arbitrary observable  in the state (2), we would need to calculate the long bracket

Even if we assume that each of the sets  and  is full and orthonormal, Eq. (3) still includes a double sum over the enormous
basis state set of the environment!

However, let us consider a limited, but the most important subset of operators - those of intrinsic observables, which depend only
on the degrees of freedom of the system of our interest . These operators do not act upon the environment’s degrees of freedom,
and hence in Eq. (3), we may move the environment’s bra-vectors  over all the way to the ket-vectors . Assuming, again,
that the set of environmental eigenstates is full and orthonormal, Eq. (3) is now reduced to

This is already a big relief because we have "only" a single sum over , but the main trick is still ahead. After the summation over 
, the second sum in the last form of Eq. (4) is some function  of the indices  and  ’, so that, according to Eq. (4.96), this

relation may be represented as

where the matrix w, with the elements

is called the density matrix of the system.  Most importantly, Eq. (5) shows that the knowledge of this matrix allows the
calculation of the expectation value of any intrinsic observable  (and, according to the general Eqs. (1.33)-(1.34), its r.m.s.
fluctuation as well, if needed), even for the very general state (2). This is why let us have a good look at the density matrix.

First of all, we know from the general discussion in Chapter 4, fully applicable to the pure state (2), the expansion coefficients in
superpositions of this type may be always expressed as short brackets of the type (4.40); in our current case, we may write

Plugging this expression into Eq. (6), we get

We see that from the point of our system (i.e. in its Hilbert space whose basis states may be numbered by the index  only), the
density matrix is indeed just the matrix of some construct, 

which is called the density (or "statistical") operator. As it follows from the definition (9), in contrast to the density matrix this
operator does not depend on the choice of a particular basis  - just as all linear operators considered earlier in this course.
However, in contrast to them, the density operator does depend on the composite system’s state , including the state of the system 

 as well. Still, in the -space it is mathematically just an operator whose matrix elements obey all relations of the bra-ket
formalism.In particular, due to its definition (6), the density operator is Hermitian:

so that according to the general analysis of Sec. 4.3, in the Hilbert space of the system , there should be a certain basis  in that
the matrix of this operator is diagonal:

A

⟨A⟩ = ⟨α| |α⟩ ≡ ⟨ ⊗⟨ | | ⟩⊗ ⟩ .Â ∑
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Since any operator, in any basis, may be represented in the form (4.59), in the basis  we may write

This expression reminds, but is not equivalent to Eq. (4.44) for the identity operator, that has been used so many times in this
course, and in the basis  has the form

In order to comprehend the meaning of the coefficients  participating in Eq. (12), let us use Eq. (5) to calculate the expectation
value of any observable  whose eigenstates coincide with those of the special basis , and whose matrix is, therefore, diagonal
in this basis:

where  is just the expectation value of the observable  in the state . Hence, to comply with the general Eq. (1.37), the real -
number  must have the physical sense of the probability  of finding the system in the state . As the result, we may rewrite
Eq. (12) in the form

In the ultimate case when only one of the probabilities (say,  ) is different from zero,

the system is in a coherent (pure) state . Indeed, it is fully described by one ket-vector , and we can use the general rule
(4.86) to represent it in another (arbitrary) basis  as a coherent superposition

where  is the unitary matrix of transform from the basis  to the basis . According to Eqs. (11) and (16), in such a pure
state the density matrix is diagonal in the  basis,

but not in an arbitrary basis. Indeed, using the general rule (4.92), we get

To make this result more transparent, let us denote the matrix elements  (which, for a fixed  ", depend on just
one index  ) by ; then

so that  elements of the whole  matrix is determined by just one string of -numbers . For example, for a two-level
system ,

We see that the off-diagonal terms are, colloquially, "as large as the diagonal ones", in the following sense:

Since the diagonal terms have the sense of the probabilities  to find the system in the corresponding state, we may represent
Eq. (20) in the form
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The physical sense of the (real) constant  is the phase shift between the coefficients in the linear superposition (17), which
represents the pure state  " in the basis .

Now let us consider a different statistical ensemble of two-level systems, that includes the member states identical in all aspects
(including similar probabilities  in the same basis  ), besides that the phase shifts  are random, with the phase probability
uniformly distributed over the trigonometric circle. Then the ensemble averaging is equivalent to the averaging over  from 0 to 

 which kills the off-diagonal terms of the density matrix (22), so that the matrix becomes diagonal:

The mixed statistical ensemble with the density matrix diagonal in the stationary state basis is called the classical mixture and
represents the limit opposite to the pure (coherent) state.After this example, the reader should not be much shocked by the main
claim  of statistical mechanics that any large ensemble of similar systems in thermodynamic (or "thermal") equilibrium is exactly
such a classical mixture. Moreover, for systems in the thermal equilibrium with a much larger environment of a fixed temperature 

 (such an environment is usually called a heat bath) the statistical physics gives a very simple expression, called the Gibbs
distribution, for the probabilities 

where  is the eigenenergy of the corresponding stationary state, and the normalization coefficient  is called the statistical sum.

A detailed analysis of classical and quantum ensembles in thermodynamic equilibrium is a major focus of statistical physics
courses (such as the SM of this series) rather than this course of quantum mechanics. However, I would still like to attract the
reader’s attention to the key fact that, in contrast with the similarly-looking Boltzmann distribution for single particles,  the Gibbs
distribution is general, not limited to classical statistics. In particular, for a quantum gas of indistinguishable particles, it is
absolutely compatible with the quantum statistics (such as the Bose-Einstein or Fermi-Dirac distributions) of the component
particles. For example, if we use Eq. (24) to calculate the average energy of a  harmonic oscillator of frequency  in thermal
equilibrium, we easily get 

The final form of the last result,

may be interpreted as an addition, to the ground-state energy , of the average number  of thermally-induced excitations,
with the energy  each. In the harmonic oscillator, whose energy levels are equidistant, such a language is completely
appropriate, because the transfer of the system from any level to the one just above it adds the same amount of energy, . Note
that the above expression for  is actually the Bose-Einstein distribution (for the particular case of zero chemical potential); we
see that it does not contradict the Gibbs distribution (24) of the total energy of the system, but rather immediately follows from it.

Because of the fundamental importance of Eq. (26) for virtually all fields of physics, let me draw the reader’s attention to its main
properties. At low temperatures, , there are virtually no excitations, , and the average energy of the oscillator
is dominated by that of its ground state. In the opposite limit of high temperatures, , and  approaches the
classical value .

 A broader discussion of statistical mechanics and physical kinetics, including those of quantum systems, may be found in the SM
part of this series.
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 Indeed, a system, possibly apart from our Universe as a whole (who knows? - see below), is never exactly coherent, though in
many cases, such as the ones discussed in the previous chapters, deviations from the coherence may be ignored with acceptable
accuracy.

 If the interaction between a system and its environment is very strong, their very partition is impossible.

 See, e.g., SM Sec. 2.1.

 Whether this assumption is true is an interesting issue, still being debated (more by philosophers than by physicists), but it is
widely believed that its solution is not critical for the validity of the results of this approach.

 This notion was suggested in 1927 by John von Neumann.

 Note that the "short brackets" in this expression are not -numbers, because the state  is defined in a larger Hilbert space (of the
environment plus the system of interest) than the basis states  (of the environment only).

 For a system with a time-independent Hamiltonian, such averaging is especially plausible in the basis of the stationary states  of
the system, in which the phase  is just the difference of integration constants in Eq. (4.158), and its randomness may be naturally
produced by minor fluctuations of the energy difference . In Sec. 3 below, we will study the dynamics of this dephasing
process.

 This fact follows from the basic postulate of statistical physics, called the microcanonical distribution – see, e.g., SM Sec. 2.2.

 See. e.g., SM Sec. 2.4. The Boltzmann constant  is only needed if the temperature is measured in non-energy units - say in
kelvins.

 See, e.g., SM Sec. 2.8.

 See, e.g., SM Sec.  - but mind a different energy reference level, , used for example in SM Eqs. (2.68)-(2.69),
affecting the expression for . Actually, the calculation, using Eqs. (24) and (5.86), is so straightforward that it is highly
recommended to the reader as a simple exercise.
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