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9.7: Low Energy Limit
The generalization of Dirac’s theory to the case of a (spin-  ) particle with an electric charge , moving in a classically-
described electromagnetic field, may be obtained using the same replacement (90). As a result, Eq. (95) turns into

where the Hamiltonian operator  is understood in the sense of Eq. (95), i.e. as the partial time derivative with the multiplier .
Let us prepare this equation for a low-energy approximation by acting on its left-hand side by a similar square bracket but with the
opposite sign before the last parentheses also an operator! Using Eqs. (99) and (100), and the fact that the space- and time-
independent operators  and  commute with the spin-independent, -number functions  and , as well as with the
Hamiltonian operator , the result is

A direct calculation of the first square bracket, using Eqs. (98) and (107), yields

But the last vector product on the right-hand side is just the magnetic field - see, e.g., Eqs. (3.21):

Similarly, we may use the first of Eqs. (3.21), for the electric field,

to simplify the commutator participating in Eq. (9.113):

As a result, Eq. (113) becomes

So far, this is an exact result, equivalent to Eq. (112), but it is more convenient for an analysis of the low-energy limit, in which not
only the energy offset  (which is just the energy used in the non-relativistic mechanics), but also the electrostatic energy
of the particle, , are much smaller than the rest energy . In this limit, the second and third terms of Eq. (118) almost
cancel, and introducing the offset Hamiltonian

we may approximate their difference, up to the first non-zero term, as

As a result, after the division of all terms by , Eq. (118) may be approximated as Lowenergy Hamiltonian

Let us discuss this important result. The first two terms in the square brackets give the nonrelativistic Hamiltonian (3.26), which
was extensively used in Chapter 3 for the discussion of charged particle motion. Note again that the contribution of the vector
potential  into that Hamiltonian is essentially relativistic, in the following sense: when used for the description of magnetic
interaction of two charged particles, due to their orbital motion with speed , the magnetic interaction is a factor of 
smaller than the electrostatic interaction of the particles.  The reason why we did discuss the effects of  in Chapter 3 was that is
was used there to describe external magnetic fields, keeping our analysis valid even for the cases when that field is strong because
of being produced by relativistic effects - such as aligned spins of a permanent magnet.
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The next, third term in the square brackets of Eq. (121) should be also familiar to the reader: this is the Pauli Hamiltonian - see Eqs.
(4.3), (4.5), and (4.163). When justifying this form of interaction in Chapter 4, I referred mostly to the results of Stern-Gerlach-type
experiments, but it is extremely pleasing that this result  follows from such a fundamental relativistic treatment as Dirac’s theory.
As we already know from the discussion of the Zeeman effect in Sec. 6.4, the magnetic field effects on the orbital motion of an
electron (described by the orbital angular momentum  ) and its spin  are of the same order, though quantitatively different.

Finally, the last term in the square brackets of Eq. (121) is also not quite new for us: in particular, it describes the spin-orbit
interaction. Indeed, in the case of a classical, spherical-symmetric electric field  corresponding to the potential ,
this term may be reduced to Eq. (6.56):

The proof of this correspondence requires a bit of additional work.  Indeed, in Eq. (121), the term responsible for the spin-orbit
interaction acts on 4-component wavefunctions, while the Hamiltonian (122) is supposed to act on non-relativistic state vectors
with an account of spin, whose coordinate representation may be given by 2 -component spinors:

The simplest way to prove the equivalence of these two expressions is not to use Eq. (121) directly, but to return to the Dirac
equation (112), for the particular case of motion in a static electric field but no magnetic field, when Dirac’s Hamiltonian is reduced
to

Since this Hamiltonian is time-independent, we may look for its 4-component eigenfunctions in the form

where each of is a 2-component column of the type (123), representing two spin states of the particle (index  ) and its
antiparticle (index -). Plugging Eq. (125) into Eq. (95) with the Hamiltonian (124), and using Eq. (98a), we get the following
system of two linear equations:

Expressing . from the latter equation, and plugging the result into the former one, we get the following single equation for the
particle’s spinor:

So far, this is an exact equation for eigenstates and eigenvalues of the Hamiltonian (124), but it may be substantially simplified in
the low-energy limit when both the potential energy  and the nonrelativistic eigenenergy

are much lower than . Indeed, in this case, the expression in the denominator of the last term in the brackets of Eq. (127) is
close to . Since , with that replacement, Eq. (127) is reduced to the non-relativistic Schrödinger equation, similar for
both spin components of , and hence giving spindegenerate energy levels. To recover small relativistic and spin-orbit effects, we
need a slightly more accurate approximation:

in which Eq. (127) is reduced to
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As Eqs. (5.34) shows, the operators of the momentum and of a function of coordinates commute as

so that the last term in the square brackets of Eq. (130) may be rewritten as

Since in the low-energy limit, both terms on the right-hand side of this relation are much smaller than the three leading terms of Eq.
(130), we may replace the first term’s numerator with its nonrelativistic approximation . With this replacement, the term
coincides with the first relativistic correction to the kinetic energy operator - see Eq. (6.47). The second term, proportional to the
electric field , may be transformed further on, using a readily verifiable identity

Of the two terms on the right-hand side of this relation, only the second one depends on spin,  giving the following spin-orbital
interaction contribution to the Hamiltonian,

For a central potential , its gradient has only the radial component: , and with the angular
momentum definition (5.147), Eq. (134) is (finally!) reduced to Eq. (122).

As was shown in Sec. 6.3, the perturbative treatment of Eq. (122), together with the kineticrelativistic correction (6.47), in the
hydrogen-like atom/ion problem, leads to the fine structure of each Bohr level , given by Eq. (6.60):

This result receives a confirmation from the surprising fact that for the hydrogen-like atom/ion problem, the Dirac equation may be
solved exactly - without any assumptions. I would not have time/space to reproduce the solution,  and will only list the final
result for the energy spectrum:

Here  is the same principal quantum number as in Bohr’s theory, while  is the quantum number specifying the
eigenvalues (5.175) of , in our case of a spin-  particle taking half-integer values:  see
Eq. (5.189). This is natural, because due to the spin-orbit interaction, the orbital momentum and spin are not conserved, while their
vector sum, , is  at least in the absence of an external field. Each energy level (136) is doubly-degenerate, with two
eigenstates representing two directions of the spin. (In the low-energy limit, we may say: corresponding to two values of 

, at fixed .)

Speaking of that limit (when  ): since according to Eq. (1.13) for , the square of the fine-structure
constant  may be represented as the ratio , we may follow this limit expanding Eq. (136) into the Taylor
series in . The result,

has the same structure, and allows the same interpretation as Eq. (92), but with the last term coinciding with Eq. (6.60) - and with
experimental results. Historically, this correct description of the fine structure of the atomic levels provided the decisive proof of
Dirac’s theory.

However, even such an impressive theory does not have too many direct applications. The main reason for that was already
discussed in brief in the end of . 5: due to the possibility of creation and annihilation of particle-antiparticle pairs by an energy
influx higher than , the number of particles participating in high-energy interactions is not fixed. An adequate general
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description of such situations is given by the quantum field theory, in which the particle’s wavefunction is treated as a field to be
quantized, using so-called field operators  very much similar to the electromagnetic field operators (16). The Dirac
equation follows from such theory in the single-particle approximation.

As was mentioned above on several occasions, the quantum field theory is well beyond the time/space limits of this course, and I
have to stop here, referring the interested reader to one of several excellent textbooks on this discipline.  However, I would
strongly encourage the students going in this direction to start by playing with the field operators on their own, taking clues from
Eqs. (16), but replacing the creation/annihilations operators  and  of the electromagnetic field oscillators with those of the
general second quantization formalism outlined in .

 This difference may be traced by classical means - see, e.g., EM Sec. 5.1.

 Note that in this result, the -factor of the particle is still equal to exactly 2 - see Eq. (4.115) and its discussion in Sec. 4.4. In
order to describe the small deviation of  from 2 , the electromagnetic field should be quantized (just as this was discussed in
Secs. 1-4 of this chapter), and its potentials  and , participating in Eq. (121), should be treated as operators - rather than as -
number functions as was assumed above.

 The only facts immediately evident from Eq. (121) are that the term we are discussing is proportional to the electric field, as
required by Eq. (122), and that it is of the proper order of magnitude. Indeed, Eqs. (101)-(102) imply that in the Dirac theory,
c\hat{\boldsymbol{\alpha plays the role of the velocity operator, so that the expectation values of the term } } are of the order of 

. Since the expectation values of the operators participating in the Hamiltonian (122) scale as  and ,
the spin-orbit interaction energy has the same order of magnitude.

 In this course, the notion of spinor (popular in some textbooks) was not used much; it was introduced earlier only for two-
particle states - see Eq. (8.13). For a single particle, such definition is reduced to , whose representation in a particular spin-
1/2 basis is the column (123). Note that such spinors may be used as a basis for an expansion of the spin-orbitals  defined by
Eq. (8.125), where the index  is used for numbering both the spin’s orientation (i.e. the particular component of the spinor’s
column) and the orbital eigenfunction.

 Strictly speaking, this requirement is imposed on the expectation values of  in the eigenstates to be found.

 The first term gives a small spin-independent energy shift, which is very difficult to verify experimentally.

 Good descriptions of the solution are available in many textbooks (the older the better :-) - see, e.g., Sec. 53 in L. Schiff,
Quantum Mechanics,  ed., McGraw-Hill (1968).

 For a gradual introduction see, e.g., either L. Brown, Quantum Field Theory, Cambridge U. Press (1994) or R. Klauber, Student
Friendly Quantum Field Theory, Sandtrove (2013). On the other hand, M. Srednicki, Quantum Field Theory, Cambridge U. Press
(2007) and A. Zee, Quantum Field Theory in a Nutshell,  ed., Princeton (2010), among others, offer steeper learning curves.

This page titled 9.7: Low Energy Limit is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Konstantin K.
Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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