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4.2: States, State Vectors, and Linear Operators
The basic notion of the general formulation of quantum mechanics is the quantum state of a system.  To get some gut feeling of
this notion, if a quantum state  of a particle may be adequately described by wave mechanics, this description is given by the
corresponding wavefunction . Note, however, a quantum state as such is not a mathematical object,  and can participate
in mathematical formulas only as a "label" - e.g., the index of the wavefunction . On the other hand, such wavefunction is not a
state, but a mathematical object (a complex function of space and time) giving a quantitative description of the state - just as the
classical radius vector  and velocity  as real functions of time are mathematical objects describing the motion of the particle in
its classical description - see Fig. 3. Similarly, in the Dirac formalism, a certain quantum state  is described by either of two
mathematical objects, called the state vectors: the ket-vector  and bra-vector  whose relationship is close to that between
the wavefunction  and its complex conjugate .

Fig. 4.3. Physical state of a system and its descriptions.

One should be cautious with the term "vector" here. The usual geometric vectors, such as  and , are defined in the usual
geometric (say, Euclidean) space. In contrast, the bra- and ket-vectors are defined in a more abstract Hilbert space - the full set of
its possible bra- and ket-vectors of a given system.  So, despite certain similarities with the geometric vectors, the bra- and ket-
vectors are different mathematical objects, and we need to define the rules of their handling. The primary rules are essentially
postulates and are justified only by the correct description of all experimental observations of the rule corollaries. While there is a
general consensus among physicists what the corollaries are, there are many possible ways to carve from them the basic postulate
sets. Just as in Sec. 1.2, I will not try too hard to beat the number of the postulates to the smallest possible minimum, trying instead
to keep their physical meaning transparent.(i) Ket-vectors. Let us start with ket-vectors - sometimes called just kets for short. Their
most important property is the linear superposition. Namely, if several ket-vectors  describe possible states of a quantum
system, numbered by the index , then any linear combination (superposition)

where  are any (possibly complex) -numbers, also describes a possible state of the same system.  Actually, since ket-vectors
are new mathematical objects, the exact meaning of the right-hand side of Eq. (6) becomes clear only after we have postulated the
following rules of summation of these vectors,

and their multiplication by an arbitrary -number:

Note that in the set of wave mechanics postulates, the statements parallel to Eqs. (7) and (8) were unnecessary, because the
wavefunctions are the usual (albeit complex) functions of space and time, and we know from the usual algebra that such relations
are indeed valid.

As evident from Eq. (6), the complex coefficient  may be interpreted as the "weight" of the state  in the linear superposition .
One important particular case is , showing that the state  does not participate in the superposition . The corresponding
term of the sum (6), i.e. the product

has a special name: the null-state vector. (It is important to avoid confusion between the null-state corresponding to vector , and
the ground state of the system, which is frequently denoted by ketvector . In some sense, the null-state does not exist at all,
while the ground state not only does exist but frequently is the most important quantum state of the system.)

4

α

(r, t)Ψα
5

Ψα

rα vα

α

|α⟩ ⟨α|, 6

Ψα Ψα
∗

r v

7

| ⟩αj

j

|α⟩ = | ⟩∑
j

cj αj (4.2.1)

cj c 8

| ⟩+ ⟩ = ⟩ +| ⟩ ,αj ∣∣αj′ ∣∣αj′ αj (4.2.2)

c

c | ⟩ = | ⟩ c. αj αj (4.2.3)

cj αj α

= 0cj αj α

 Null-state vector  0 | ⟩ ,αj (4.2.4)

(9)
|0⟩

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/57556?pdf
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Essential_Graduate_Physics_-_Quantum_Mechanics_(Likharev)/04%3A_Bra-ket_Formalism/4.02%3A_States_State_Vectors_and_Linear_Operators


4.2.2 https://phys.libretexts.org/@go/page/57556

(ii) Bra-vectors and inner products. Bra-vectors , which obey the rules similar to Eqs. (7) and (8), are not new, independent
objects: a ket-vector  and the corresponding bra-vector  describe the same state. In other words, there is a unique dual
correspondence between  and  very similar (though not identical) to that between a wavefunction  and its complex
conjugate . The correspondence between these vectors is described by the following rule: if a ket-vector of a linear superposition
is described by Eq. (6), then the corresponding bra-vector is

The mathematical convenience of using two types of vectors rather than just one becomes clear from the notion of their inner
product (due to its second, shorthand form, also called the short bracket):

which is a scalar -number, in a certain but limited analogy with the scalar product of the usual geometric vectors. (For one
difference, the product (11) may be a complex number.)

The main property of the inner product is its linearity with respect to any of its component vectors. For example, if a linear
superposition  is described by the ket-vector (6), then

while if Eq. (10) is true, then

In plain English, -number factors may be moved either into or out of the inner products.

The second key property of the inner product is

It is compatible with Eq. (10); indeed, the complex conjugation of both parts of Eq. (12) gives:

Finally, one more rule: the inner product of the bra- and ket-vectors describing the same state (called the norm squared) is real and
non-negative,

In order to give the reader some feeling about the meaning of this rule: we will see below that if some state  may be described by
the wavefunction , then

Hence the role of the bra- and ket-vectors of the same state is very similar to that of complex-conjugate pairs of its wavefunctions.

(iii) Operators. One more key notion of the Dirac formalism is quantum-mechanical linear operators. Just as for the operators
discussed in wave mechanics, the function of an operator is to "generate" of one state from another: if  is a possible ket of the
system, and  is a legitimate  operator, then the following combination,

is also a ket-vector describing a possible state of the system, i.e. a ket-vector in the same Hilbert space as the initial vector . An
alternative formulation of the same rule is the following clarification of the notion of the Hilbert space: for the given set of linear
operators of a system, its Hilbert state includes all vectors that may be obtained from each other using the operations of the type
(18). In this context, let me note that the operator set, and hence the Hilbert space of a system, usually (if not always) implies its
certain approximate model. For example, if the coupling of orbital degrees of freedom of a particle to its spin may be ignored (as it
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may be for a non-relativistic particle in the absence of an external magnetic field), we may describe the dynamics of the particle
using spin operators only. In this case, the set of all possible spin vectors of the particle forms a Hilbert space separate from that of
the orbital-state vectors of that particle.

As the adjective "linear" in the operator definition implies, the main rules governing the operators is their linearity with respect to
both any superposition of vectors:

and any superposition of operators:

These rules are evidently similar to Eqs. (1.53)-(1.54) of wave mechanics.

The above rules imply that an operator "acts" on the ket-vector on its right; however, a combination of the type  is also
legitimate and represents a new bra-vector. It is important that, generally, this vector does not represent the same state as the ket-
vector (18); instead, the bra-vector isomorphic to the ket-vector (18) is

This statement serves as the definition of the Hermitian conjugate (also called "Hermitian adjoint")  of the initial operator . For
an important class of operators, called the Hermitian operators, the conjugation is inconsequential, i.e. for them

(This equality, as well as any other operator equation below, means that these operators act similarly on any bra- or ket-vector of
the given Hilbert space.) 

To proceed further, we need one more additional postulate, sometimes called the associative axiom of multiplication: just as an
ordinary product of scalars, any legitimate bra-ket expression, not including explicit summations, does not change from an insertion
or removal of a pair of parentheses meaning as usual that the operation inside them has to be performed first. The first two
examples of this postulate are given by Eqs. (19) and (20), but the associative axiom is more general and means, for example, that

This last equality serves as the definition of the last form, called the long bracket (evidently, also a scalar), with an operator
sandwiched between a bra-vector and a ket-vector. This definition, when combined with the definition of the Hermitian conjugate
and Eq. (14), yields an important corollary:

which is most frequently rewritten as

The associative axiom also enables us to comprehend the following definition of one more, outer product of bra- and ket-vectors:

In contrast to the inner product (11), which is a scalar, this mathematical construct is an operator. Indeed, the associative axiom
allows us to remove parentheses in the following expression:

But the last short bracket is just a scalar; hence the mathematical object (26), acting on a ket-vector (in this case, , gives a new
ket-vector, which is the essence of the operator’s action. Very similarly,
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again a typical operator’s action on a bra-vector. So, Eq. (26) defines an operator.

Now let us perform the following calculation. We may use the parentheses’ insertion into the bra-ket equality following from Eq.
(14),

to transform it to the following form:

Since this equality should be valid for any state vectors  and , its comparison with Eq. (25) gives the following operator
equality

This is the conjugate rule for outer products; it reminds the rule (14) for inner products but involves the Hermitian (rather than the
usual complex) conjugation.

The associative axiom is also valid for the operator "multiplication":

showing that the action of an operator product on a state vector is nothing more than the sequential action of its operands. However,
we have to be careful with the operator products; generally, they do not commute: . This is why the commutator - the
operator defined as

is a non-trivial and very useful notion. Another similar notion is the anticommutator: 12

Finally, the bra-ket formalism broadly uses two special operators. The null-operator  is defined by the following relations:

where  is an arbitrary state; we may say that the null-operator "kills" any state, turning it into the nullstate. Another useful notion
is the identity operator, which is defined by the following action (or rather "inaction" :-) on an arbitrary state vector:

These definitions show that the null-operator and the identity operator are Hermitian.

 An attentive reader could notice my smuggling the term "system" instead of "particle", which was used in the previous chapters.
Indeed, the bra-ket formalism allows the description of quantum systems much more complex than a single spinless particle that is
a typical (though not the only possible) subject of wave mechanics.

 As was expressed nicely by Asher Peres, one of the pioneers of the quantum information theory, "quantum phenomena do not
occur in the Hilbert space, they occur in a laboratory".

 The terms bra and ket were suggested to reflect the fact that the pair  and  may be considered as the parts of the
combinations like  (see below), which remind expressions in the usual angle brackets.

 I have to confess that this is a bit loose definition; it will be refined soon.

 One may express the same statement by saying that the vector  belongs to the same Hilbert space as all .

 Mathematicians like to say that the ket- and bra-vectors of the same quantum system are defined in two isomorphic Hilbert
spaces.

 Here the term "legitimate" means "having a clear sense in the bra-ket formalism". Some examples of "illegitimate" expressions
are: , . Note, however, that the last two expressions may be legitimate if  and  are states of
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different systems, i.e. if their state vectors belong to different Hilbert spaces. We will run into such direct products of the bra- and
ket-vectors (sometimes denoted, respectively, as  and  in Chapters 6-10.

 If we consider -numbers as a particular type of operators (which is legitimate for any Hilbert space), then according to Eqs. (11)
and (21), for them the Hermitian conjugation is equivalent to the simple complex conjugation, so that only real -numbers may be
considered as a particular type of the Hermitian operators (22).

 Another popular notation for the anticommutator (34) is it will not be used in these notes.
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