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3.3: Scattering and Diffraction
The second class of quantum effects, which becomes richer in multi-dimensional spaces, is typically referred to as either diffraction
or scattering - depending on the context. In classical physics, these two terms are used to describe very different effects. The term
"diffraction" is used for the interference of the waves re-emitted by elementary components of extended objects, under the effect of
a single incident wave  On the other hand, the term "scattering" is used in classical mechanics to describe the result of the
interaction of a beam of incident particles  with such an extended object, called the scatterer - see Fig. 8 .

Fig. 3.8. Scattering (schematically).

Most commonly, the detector of the scattered particles is located at a large distance  from the scatterer. In this case, the
main observable independent of  is the flux (the number per unit time) of particles scattered in a certain direction, i.e. their flux
per unit solid angle . Since it is proportional to the incident flux of particles per unit area, the efficiency of scattering in a
particular direction may be characterized by the ratio of these two fluxes. This ratio has is called the differential cross-section of the
scatterer:

Such terminology and notation stem from the fact that the integral of  over all scattering angles,

evidently having the dimensionality of area, has a simple interpretation as the total cross-section of scattering. For the simplest case
when a solid object scatters all classical particles hitting its surface, but does not affect the particles flying by it,  is just the
geometric area of the scatterer, as observed from the direction of the incident particles. In classical mechanics, we first calculate the
particle’s scattering angle as a function of its impact parameter  and then average the result over all values of , considered
random. 

In quantum mechanics, due to the particle/wave duality, a relatively broad, parallel beam of incident particles of the same energy 
may be fairly represented with a plane de Broglie wave (1.88):

with the free-space wave number . As a result, the particle scattering becomes a synonym of the de Broglie
wave diffraction, and (somewhat counter-intuitively) the description of the effect becomes simpler, excluding the notion of the
impact parameter. Indeed, the wave (60) corresponds to a constant probability current density (1.49):

which is exactly the flux of incident particles per unit area that is used in the denominator of Eq. (58), while the numerator of that
fraction may be simply expressed via the probability current density  of the scattered de Broglie waves:

Hence our task is reduced to the calculation of  at sufficiently large distances  from the scatterer. For that, let us rewrite the
stationary Schrödinger equation for the elastic scattering problem (when the energy  of the scattered particles is the same as that
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of the incident particles) in the form

where the potential energy  describes the effect of the scatterer. Looking for the solution of Eq. (62) in the natural form

where  is the incident wave  and  has the sense of the scattered wave, and taking into account that the former wave
satisfies the free-space Schrödinger equation

we may reduce Eq. (63) to either of the following equivalent forms:

For applications, an integral form of this equation is more convenient. To derive it, we may look at the second of Eqs. (66) as a
linear, inhomogeneous differential equation for the function , thinking of its right-hand side as a known "source". The solution of
such an equation obeys the linear superposition principle, i.e. we may represent it as the sum of the waves outcoming from all
elementary volumes  of the scatterer. Mathematically, this sum may be expressed as either

or, equivalently, as 

where  is the spatial Green’s function, defined as such an elementary, spherically-symmetric response of the 3D Helmholtz
equation to a point source, i.e. the outward-propagating solution of the following equation 

But we already know such solution of this equation - see Eq. (7) and its discussion:

so that we need just to calculate the coefficient for Eq. (68). This can be done in several ways, for example by noticing that at 
, the second term on the left-hand side of Eq. (68) is negligible, so that it is reduced to the well-known Poisson equation

with a delta-functional right-hand side, which describes, for example, the electrostatic potential induced by a point electric charge.
Either recalling the Coulomb law or applying the Gauss theorem,  we readily get the asymptote

which is compatible with Eq. (69) only if , i.e. if

Plugging this result into Eq. (67a), we get the following formal solution of Eq. (66):

Scattering problem: formal solution

Note that if the function  is smooth, the singularity in the denominator is integrable (i.e. not dangerous); indeed, the
contribution of a sphere with some radius , with the center at point , into this integral scales as
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= E , Ĥ0ψi ψi (3.3.8)

(E− ) = U(r) ( + ) , ( + ) = U(r)ψĤ0 ψs ψi ψs ∇2 k2 ψs
2m

ℏ2
(3.3.9)

ψs

d3r′

(r) = ∫ U ( )ψ ( )G(r, ) ,ψs
2m

ℏ2
r′ r′ r′ d3r′ (3.3.10)

31

ψ(r) = (r) + ∫ U ( )ψ ( )G(r, ) ,ψi
2m

ℏ2
r′ r′ r′ d3r′ (3.3.11)

G(r, )r′

32

( + )G= δ (r − ) .∇2 k2
r

′ (3.3.12)

G(r, ) = ,  where R ≡ r − ,r
′ f+

R
eikR r

′ (3.3.13)

f+

R << k−1

33

G→ − ,  at kR << 1,
1

4πR
(3.3.14)

= −1/4πf+

G(r, ) = − .r
′ 1

4πR
eikR (3.3.15)

(r) = − ∫ U ( ) .ψs
m

2πℏ2
r

′ ψ ( )r′

R
eikRd3r′ (3.3.16)

U(r)

R → 0 r′

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/57554?pdf


3.3.3 https://phys.libretexts.org/@go/page/57554

So far, our result (72) is exact, but its apparent simplicity is deceiving, because the wavefunction  on its right-hand side generally
includes not only the incident wave  but also the scattered wave  - see Eq. (64). The most straightforward, and most common
simplification of this problem, called the Born approximation,  is possible if the scattering potential  is in some sense small.
(We will derive the quantitative condition of this smallness in a minute.) Since at  the scattering wave  has to
disappear, at small but non-zero  has to be much smaller than  In this case, on the righthand side of Eq. (73) we may
ignore  in comparison with , getting

Actually, Eq. (74) gives us even more than we wanted: it evaluates the scattered wave at any point, including those within of the
scattering object, while to spell out Eq. (62), we only need to find the wave far from the scatterer, at . However, before
going to that limit, we can use this general formula to find a quantitative criterion of the Born approximation’s validity. For that, let
us estimate the magnitude of the right-hand side of this equation for a scatterer of a linear size , and the potential magnitude’s
scale . The results are different in the following two limits:

(i) If , then inside the scatterer (i.e., at distances  ), both  and the second exponent under the integral
in Eq. (74) change little, so that a crude but fair estimate of the solution’s magnitude is

(ii) In the opposite limit , the function under the integral is nearly periodic in one of the spatial directions (that of the
scattered wave propagation), so that the net integral accumulates only on distances of the order of the de Broglie wavelength, 

, and the integral is correspondingly smaller:

These relations allow us to spell out the Born approximation’s condition, , as

In the fraction on the right-hand side, we may readily recognize the scale of the kinetic (quantumconfinement) energy  of the
particle inside a potential well of a size of the order of , so that the Born approximation is valid essentially if the potential energy
of particle’s interaction with the scatterer is smaller than . Note, however, that the estimates (75) and (76) are not valid in some
special situations when the effects of scattering accumulate in some direction. This is frequently the case for small angles  of
scattering by extended objects, when , but .

Now let us proceed to large distances , and simplify Eq. (74) using an approximation similar to the dipole expansion
in electrodynamics.  Namely, in the denominator’s , we may ignore  ’ in comparison with the much larger , but the exponents
require more care, because even if , the product  may still be of the order of 1 . In the first approximation in ,
we can take (Fig.  :

and since directions of the vectors  and  coincide, i.e. , we get
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Fig. 3.9. (a) The long-range expansion of , and (b) the definitions of , and .

With this replacement, Eq. (74) yields

This relation is a particular case of a more general formula 

where  is called the scattering function.  The physical sense of this function becomes clear from the calculation of the
corresponding probability current density . For that, generally, we need to use Eq. (1.47) with the gradient operator having all
spherical-coordinate components.  However, at , the main contribution to , proportional to , is provided by
differentiating the factor , which changes in the common direction of vectors  and , so that

and Eq. (1.47) yields

Plugging this expression, and also Eq. (61) into Eq. (62), for the differential cross-section we get simply

while the total cross-section is

so that the scattering function  gives us everything we need - and in fact more, because the function also contains
information about the phase of the scattered wave.

According to Eq. (80), in the Born approximation the scattering function is reduced to the socalled Born integral

where for the notation simplicity  ’ is replaced with , and the following scattering vector is introduced:

with the length , where  is the scattering angle between the vectors  and  Fig. 9b. For the differential
cross-section, Eqs. (84) and (86) yield 

This is the main result of this section; it may be further simplified for spherically-symmetric scatterers, with
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In this case, it is convenient to represent the exponent in the Born integral as , where  is the angle between the
vectors  (i.e. the direction  toward the detector) and  (rather than the incident wave vector  ) - see Fig. 9 b. Now, for a fixed

, we can take this vector’s direction for the polar axis of a spherical coordinate system, and reduce Eq. (86) to a  integral:

As a simple example, let us use the Born approximation to analyze scattering on the following spherically-symmetric potential:

In this particular case, it is better to avoid the temptation to exploit the spherical symmetry by using Eq. (90), and instead, use the
general Eq. (88), because it may be represented as a product of three similar Cartesian factors:

and similar integrals for  and . From Chapter 2, we already know that the Gaussian integrals like  may be readily worked out
by complementing the exponent to the full square, in our current case giving

Now, the total cross-section  is an integral of  over all directions of the vector . Since in our case the scattering intensity
does not depend on the azimuthal angle , the only nontrivial integration is over the scattering angle  - see Fig.  :

Let us analyze these results. In the low-energy limit,  (and hence  for any scattering angle), the scattered wave is
virtually isotropic:  const  a very typical feature of a scalar-wave scattering  by small objects, in any approximation.
Note that according to Eq. (77), the Born expression for , following from Eq. (94) in this limit,

is only valid if  is much smaller than the scale  of the physical cross-section of the scatterer. In the opposite, high-energy limit 
, the scattering is dominated by small angles  :

This is, again, very typical for diffraction. Note, however, that due to the smooth character of the Gaussian potential (91), the
diffraction pattern (98) exhibits no oscillations of  as a function of the diffraction angle .

Such oscillations naturally appear for scatterers with sharp borders. Indeed, let us consider a uniform spherical scatterer, described
by the potential

In this case, integration by parts of Eq. (90) readily yields
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According to this result, the scattered wave’s intensity drops very fast with , so that one needs a semi  plot (such as shown in
Fig. 10) to reveal small diffraction fringes  with the  destructive interference (zero-intensity) point tending to 

 at . Since, as Fig.  shows,  may only change from 0 to , these intensity minima are only
observable at sufficiently large values of the parameter , when they correspond to real values of the scattering angle . (At 

, approximately  of these minima, i.e. "dark rings" of low scattering probability, are observable.) On the contrary, at 
 all allowed values of  are much smaller than 1 , and is this limit, the differential cross-section does not depend on ,

i.e. the scattering by the sphere (as by any object in this limit) is isotropic.

Fig. 3.10. The differential cross-section of the Born scattering of a particle by a "hard" (sharp-border) sphere (97), normalized to its
geometric cross-section  and the square of the potential’s magnitude parameter , as a function of
the normalized magnitude of the scattering vector .

This example shows that in quantum mechanics the notions of particle scattering and diffraction are essentially inseparable.

The Born approximation, while being very simple and used more than any other scattering theory, is not without substantial
shortcomings, as becomes clear from the following example. It is not too difficult to prove the so-called optical theorem, strictly
valid for an arbitrary scatterer:

However, Eq. (86) shows that in the Born approximation, the function  is purely real at  (i.e. for   ), and hence cannot
satisfy the optical theorem. Even more evidently, it cannot describe such a simple effect as a dark shadow  cast by a
virtually opaque object (say, with  ). There are several ways to improve the Born approximation, while still keeping its
general idea of an approximate treatment of .

(i) Instead of the main assumption , we may use a complete perturbation series:

with , and find successive approximations  one by one. In the  approximation we return to the Born formula, but
already the  approximation yields

where  is the total cross-section calculated in the  approximation, so that the optical theorem (99) is "almost satisfied".

(ii) As was mentioned above, the Born approximation does not work very well for the objects stretching along the direction (say, 
) of the initial wave vector . This deficiency may be corrected by the so-called eikonal  approximation, which replaces the
plane-wave representation (60) of the incident wave with a WKB-like exponent, though still in the  approximation in  :
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Results of this approach satisfy the optical theorem (99) already in the  approximation.

Another way toward quantitative results in the theory of scattering, beyond the Born approximation, may be pursued for
spherically-symmetric potentials (89); I will discuss it in Sec. 8, after a general discussion of particle motion in such potentials in
Sec. 7 .

 The notion of interference is very close to diffraction, but the former term is typically reserved for the wave reemission by just a
few components, such as two slits in the Young experiment - see Figs. 1 and 2 . A detailed discussion of diffraction and
interference of electromagnetic waves may be found in EM Secs. 8.3-8.8.

 In the context of classical waves, the term "scattering" is typically reserved for wave interaction with disordered sets of small
objects - see, e.g., EM Sec. 8.3.

 See, e.g., CM Sec. .

 This formula is sometimes called the Lipmann-Schwinger equation, though more frequently this term is reserved for either its
operator form or the resulting equation for the spatial Fourier components of  and .  Please notice both the similarity and
difference between this Green’s function and the propagator discussed in Sec. 2.1. In both cases, we use the linear superposition
principle to solve wave equations, but while Eq. (67) gives the solution of the inhomogeneous equation (66), Eq. (2.44) does that
for a homogeneous Schrödinger equation. In the latter case, the elementary wave sources are the elementary parts of the initial
wavefunction, rather than of the equation’s right-hand side as in our current problem.

 See, e.g., EM Sec. 1.2.

 Named after M. Born, who was the first to apply this approximation in quantum mechanics. However, the basic idea of this
approach had been developed much earlier (in 1881) by Lord Rayleigh in the context of electromagnetic wave scattering - see, e.g.,
EM Sec. 8.3. Note also that the contents of that section repeat some aspects of our current discussion - perhaps regrettably but
unavoidably so, because the Born approximation is a centerpiece of the theory of scattering/diffraction for both the electromagnetic
waves and the de Broglie waves. Hence I felt I had to cover it in this course for the benefit of the readers who skipped the EM part
of my series.

 See, e.g., EM Sec. 8.2.

 It is easy to prove that this form is an asymptotic form of any solution  of the scattering problem (even that beyond the Born
approximation) at sufficiently large distances .

 Note that the function  has the dimension of length, and does not account for the incident wave. This is why sometimes a
dimensionless function, , is used instead. This function  is called the scattering matrix, because it may be
considered a natural generalization of the 1D matrix S defined by Eq. (2.124), to higher dimensionality.

 See, e.g., MA Eq. (10.8).

 Note that according to Eq. (88), in the Born approximation the scattering intensity does not depend on the sign of the potential 
, and also that scattering in a certain direction is completely determined by a specific Fourier component of the function ,

namely by its harmonic with the wave vector equal to the scattering vector .

 Note that this is only true for scalar (e.g., the de Broglie) waves, and different for vector ones, in particular the electromagnetic
waves, where the intensity of the dipole radiation, and hence the scattering by small objects vanishes in the direction of the incident
field’s polarization - see, e.g., EM Eqs. (8.26) and (8.139).

 Their physics is very similar to that of the Fraunhofer diffraction on a 1D scatterer - see, e.g., EM Sec. 8.4.

 From the Greek word \varepsilon1коv, meaning "image". In our current context, this term is purely historic.
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