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3.6: Spherically-symmetric Systems- Brute Force Approach
Now let us proceed to the mathematically more involved, but practically even more important case of the 3D motion, in a
spherically-symmetric potential

Let us start, again, with solving the eigenproblem for a rigid rotator - now a spherical rotator, i.e. a particle confined to move on the
spherical surface of radius . The rotator has two degrees of freedom because its position on the surface is completely described by
two coordinates - say, the polar angle  and the azimuthal angle . In this case, the kinetic energy we need to consider is limited to
its angular part, so that in the Laplace operator in spherical coordinates 66 we may keep only those parts, with fixed .
Because of this, the stationary Schrödinger equation becomes

(Again, we will attach indices to  and  in a minute.) With the natural variable separation,

Eq. (156), with all terms multiplied by , yields

Just as in Eq. (143), the fraction  may be a function of  only, and hence has to be constant, giving Eq. (144) for it.
So, with the same periodicity condition (145), the azimuthal functions are expressed by (146) again; in the normalized form,

With that, the fraction  in Eq. (158) equals , and after the multiplication of all terms of that equation by 
, it is reduced to the following ordinary linear differential equation for the polar eigenfunctions  :

It is common to recast it into an equation for a new function , with  :

where a new notation for the normalized energy is introduced: . The motivation for such notation is that, according to
the mathematical analysis of Eq. (161) with integer  it has solutions only if the parameter  is an integer: , and
only if that integer is not smaller than , i.e. if

This fact immediately gives the following spectrum of the spherical rotator’s energy  - and, as we will see later, the angular part
of the energy of any spherically-symmetric system:

so that the only effect of the magnetic quantum number  here is imposing the restriction (162) on the non-negative integer  - the
so-called orbital quantum number. This means, in particular, that each energy  corresponds to  different values of ,
i.e. is -degenerate.

To understand the nature of this degeneracy, we need to explore the corresponding eigenfunctions of Eq. (161). They are naturally
numbered by two integers,  and , and are called the associated Legendre functions . (Note that here  is an upper index, not
a power!) For the particular, simplest case , these functions are the so-called Legendre polynomials , which
may be defined as the solutions of the following Legendre equation, resulting from Eq. (161) at  :
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but also may be calculated explicitly from the following Rodrigues formula: 68

Using this formula, it easy to spell out a few lowest Legendre polynomials:

though such explicit expressions become bulkier and bulkier as  is increased. As these expressions (and Fig. 19) show, as the
argument  is increased, all these functions end up at the same point, , while starting at either at the same point or at
the opposite point: . On the way between these two end points, the  polynomial crosses the horizontal axis
exactly  times, i.e. Eq. (164) has  roots. 

Fig. 3.19. A few lowest Legendre polynomials.

It is also easy to use the Rodrigues formula (165) and the integration by parts to show that on the segment , the
Lagrange polynomials form a full orthogonal set of functions, with the following normalization rule:

For , the associated Legendre functions (now not necessarily polynomials!), may be expressed via the Legendre polynomials
(165) using the following formula: 

while the functions with a negative magnetic quantum number may be found as

On the segment , the associated Legendre functions with a fixed index  form a full orthogonal set, with the
normalization relation,

which is evidently a generalization of Eq. (167) for arbitrary .

Since the difference between the angles  and  is to large extent artificial (due to an arbitrary direction of the polar axis),
physicists prefer to use not the functions  and  separately, but normalized products of the type
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(157), which are called the spherical harmonics:

The specific front factor in Eq. (171) is chosen in a way to simplify the following two expressions: the relation of the spherical
harmonics with opposite signs of the magnetic quantum number,

and the following normalization relation:

with the integration over the whole solid angle. The last formula shows that on a spherical surface, the spherical harmonics form an
orthonormal set of functions. This set is also full, so that any function defined on the surface, may be uniquely represented as a
linear combination of .

Despite a somewhat intimidating character of the formulas given above, they yield quite simple expressions for the lowest spherical
harmonics, which are most important for applications:

It is important to understand the general structure and symmetry of these functions. Since the spherical functions with  are
complex, the most popular way of their graphical representation is to normalize their real and imaginary parts 

(for  ), and then plot the magnitude of these real functions in the spherical coordinates as the distance from the
origin, while using two colors to show their sign - see Fig. 20 .

Let us start from the simplest case . According to Eq. (162), for this lowest orbital quantum number, there may be only one
magnetic quantum number, . According to Eq. (174), the spherical harmonic corresponding to that state is just a constant, so
that the wavefunction of this so-called  state  is uniformly distributed over the sphere. Since this function has no gradient in any
angular direction, it is only natural that the angular kinetic energy (163) of the particle equals zero.

According to the same Eq. (162), for , there are 3 different  states, with , and  - see Eq. (175). As
the second row of Fig. 20 shows, these states are essentially identical in structure and are just differently oriented in space, thus
readily explaining the 3 -fold degeneracy of the kinetic energy (163). Such a simple explanation, however, is not valid for the 5
different  states , shown in the third row of Fig. 20, as well as the states with higher  : despite their equal energies, they
differ not only by their spatial orientation but their structure as well. All states with  have a nonzero gradient only in the 
direction. On the contrary, the states with the ultimate values of , change only monotonically  in the polar
direction, while oscillating in the azimuthal direction. The states with intermediate values of  provide a gradual transition
between these two extremes, oscillating in both directions, stronger and stronger in the azimuthal direction as  is increased.
Still, the magnetic quantum number, surprisingly, does not affect the angular energy for any .
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Fig. 3.20. Radial plots of several lowest real spherical harmonics . (Adapted from https://en.Wikipedia.org/wiki/Spherical
harmonics under the CC BY-SA  license.)

Another counter-intuitive feature of the spherical harmonics follows from the comparison of Eq. (163) with the second of the
classical relations (152). These expressions coincide if we interpret the constant

as the value of the full angular momentum squared,  (including its both  and  components) in the eigenstate with
eigenfunction . On the other hand, the structure (159) of the azimuthal component  of the wavefunction is exactly the
same as in  axially-symmetric problems, implying that Eq. (139) still gives correct values  for the -component of the
angular momentum. This fact invites a question: why for any state with  is always less than 

 In other words, what prevents the angular momentum vector to be fully aligned with the axis  ?

Besides the difficulty of answering this question using the above formulas, this analysis (though mathematically complete), is as
intellectually unsatisfactory as the harmonic oscillator analysis in Sec. 2.9. In particular, it does not explain the meaning of the
extremely simple relations for the eigenvalues of the energy and the angular momentum, coexisting with rather complicated
eigenfunctions.

We will obtain natural answers to all these questions and concerns in Sec.  below, and now proceed to the extension of our
wave-mechanical analysis to the 3D motion in an arbitrary sphericallysymmetric potential (155). In this case, we have to use the
full form of the Laplace operator in spherical coordinates.  The variable separation procedure is an evident generalization of what
we have done before, with the particular solutions of the type

whose substitution into the stationary Schrödinger equation yields

It is evident that the angular part of the left-hand side (the two last terms in the square brackets) separates from the radial part, and
that for the former part we get Eq. (156) again, with the only change, . This change does not affect the fact that the
eigenfunctions of that equation are still the spherical harmonics (171), which obey Eq. (164). As a result, Eq. (180) gives the
following equation for the radial function  :
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Note that no information about the magnetic quantum number  has crept into this radial equation (besides setting the limitation
(162) for the possible values of  ) so that it includes only the orbital quantum number .

Let us explore the radial equation for the simplest case when  - for example, to solve the eigenproblem for a 3D particle
free to move only inside the sphere of radius  - say, confined there by the potential 

In this case, Eq. (181) is reduced to

Multiplying both parts of this equality by , and introducing the dimensionless argument , where  is defined by the
usual relation , we obtain the canonical form of this equation,

Satisfied by so-called spherical Bessel functions of the first and second kind,  and  These functions are directly related
to the Bessel functions of semi-integer order, 

but are actually much simpler than even the "usual" Bessel functions, such as  and  of an integer order , because the
former ones may be directly expressed via elementary functions:

A few lowest-order spherical Bessel functions are plotted in Fig. 

Fig. 3.21. Several lowest-order spherical Bessel functions.

As these formulas and plots show, the functions  are diverging at , and thus cannot be used in the solution of our current
problem (182), so that we have to take

Still, even for these functions, with the sole exception of the simplest function , the characteristic equation ,
resulting from the boundary condition , can be solved only numerically. However, the roots  of the equation 

, where the integer  is the root’s number, are tabulated in virtually any math handbook, and we may
express the eigenvalues we are interested in,
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via these tabulated numbers. The table below lists several smallest roots, and the corresponding eigenenergies (normalized to their
natural unit  ), in the order of their growth. It shows a very interesting effect: going up the energy spectrum, first
the eigenenergies grow because of increases of the orbital quantum number , at the same (lowest) radial quantum number ,
due to the growth of the first roots of functions , but then suddenly the second root of  cuts into this orderly sequence,
just to be followed by the first root of . With the further growth of energy, the sequences of  and  become even more
entangled.

0 1

1 1

2 1

0 2

3 1

To complete the discussion of our current problem (182), note again that the energy levels, listed in the table above, are -
degenerate because each of them corresponds to  different eigenfunctions, each with a specific value of the magnetic
quantum number  :

 See, e.g., MA Eq. (10.9).

 This analysis was first carried out by A.-M. Legendre (1752-1833). Just as a historic note: besides many original mathematical
achievements, Dr. Legendre had authored a famous textbook, Éléments de Géométrie, which dominated teaching geometry through
the 19th century.

 This wonderful formula may be readily proved by plugging it into Eq. (164), but was not so easy to discover! This was done
(independently) by B. O. Rodrigues in 1816, J. Ivory in 1824, and C. Jacobi in 

 In this behavior, we may readily recognize the "standing wave" pattern typical for all 1D eigenproblems - cf. Figs.  and ,
as well as the discussion of the Sturm oscillation theorem at the end of Sec. .

 Note that some texts use different choices for the front factor (called the Condon-Shortley phase) in the functions , which do
not affect the final results for the spherical harmonics .

 Such real functions , which also form a full orthonormal set, and are frequently called the real (or "tesseral") spherical
harmonics, are more convenient than the complex harmonics  for several applications, especially when the variables of interest
are real by definition.

 The letter names for the states with various values of  stem from the history of optical spectroscopy - for example, the letter " 
" used for states with , originally denoted the "sharp" optical line series, etc. The sequence of the letters is as follows: 

, and then continuing in alphabetical order.

 Again, see MA Eq. (10.9).

 This problem, besides giving a simple example of the quantization in spherically-symmetric systems, is also an important
precursor for the discussion of scattering by spherically-symmetric potentials in Sec. 8 .

 Alternatively,  are called "spherical Weber functions" or "spherical Neumann functions".

 Note that the Bessel functions  and  of any order  obey the universal recurrent formulas and asymptotic formulas
(discussed, e.g., in EM Sec. 2.7), so that many properties of the functions  and  may be readily derived from these
relations and Eqs. (185).
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