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5.5: Glauber States and Squeezed States
There is a huge difference between a quantum stationary (Fock) state of the oscillator and its classical state. Indeed, let us write the
well known classical equations of motion of the oscillator (using capital letters to distinguish classical variables from the arguments
of quantum wavefunctions): 

On the so-called phase plane, with the Cartesian coordinates  and , these equations describe a clockwise rotation of the
representation point  along an elliptic trajectory starting from the initial point . (The normalization of
the momentum by , similar to the one performed by the second of Eqs. (63), makes this trajectory pleasingly circular, with a
constant radius equal to the oscillations amplitude , corresponding to the constant full energy

determined by the initial conditions - see Fig. 8.)

Fig. 5.8. Representations of various states of a harmonic oscillator on the phase plane. The bold black point represents a classical
state with the complex amplitude , with the dashed line showing its trajectory. The (very imperfect) classical images of the Fock
states with , 1 , and 2 are shown in blue. The blurred red spot is the (equally schematic) image of the Glauber state . Finally,
the magenta elliptical spot is a classical image of a squeezed ground state - see below. Arrows show the direction of the states’
evolution in time.

For the forthcoming comparison with quantum states, it is convenient to describe this classical motion by the following
dimensionless complex variable

which is essentially the standard complex-number representation of the representing point’s position on the  phase plane, with 
. With this definition, Eqs. (100) are conveniently merged into one equation,

with an evident, very simple solution

where the constant  may be complex, and is just the (normalized) classical complex amplitude of oscillations.  This equation
describes sinusoidal oscillations of both  and , with a phase shift of  between them.

On the other hand, according to the basic Eq. (4.161), the time dependence of a Fock state, as of a stationary state of the oscillator,
is limited to the phase factor . This factor drops out at the averaging (4.125) for any observable. As a result, in this
state the expectation values of , or of any function thereof are time-independent. (Moreover, as Eqs. (98) show, .)
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Taking into account Eqs. (96)-(97), the closest (though very imperfect) geometric image  of such a state on the phase plane is a
static circle of the radius , along which the wavefunction is uniformly spread  see the blue rings in Fig. 8.
For the ground state , with the wavefunction , a better image may be a blurred round spot, of a radius , at the
origin. (It is easy to criticize such blurring, intended to represent the non-vanishing spreads (99), because it fails to reflect the fact
that the total energy of the oscillator in the state,  is defined exactly, without any uncertainty.)

So, the difference between a classical state of the oscillator and its Fock state  is very profound. However, the Fock states are not
the only possible quantum states of the oscillator: according to the basic Eq. (4.6), any state described by the ket-vector

with an arbitrary set of (complex) -numbers , is also its legitimate state, subject only to the normalization condition 
, giving

It is natural to ask: could we select the coefficients  in such a special way that the state properties would be closer to the classical
one; in particular the expectation values  and  of the coordinate and momentum would evolve in time as the classical values 

 and , while the uncertainties of these observables would be, just as in the ground state, given by Eqs. (99), and hence
have the smallest possible uncertainty product, . Let me show that such a Glauber state,  which is schematically
represented in Fig. 8 by a blurred red spot around the classical point , is indeed possible.

Conceptually the simplest way to find the corresponding coefficients  would be to calculate , and  for an arbitrary
set of , and then try to optimize these coefficients to reach our goal. However, this problem may be solved much easier using
wave mechanics. Indeed, let us consider the following wavefunction:

Its comparison with Eqs. (2.275) shows that this is just the ground-state wavefunction, but with the center shifted from the origin
into the classical point . A straightforward (though a bit bulky) differentiation over  and  shows that it satisfies the
oscillator’s Schrödinger equation, provided that the -number functions  and  obey the classical equations (100).
Moreover, a similar calculation shows that the wavefunction (107) also satisfies the Schrödinger equation of an oscillator under the
effect of a pulse of a classical force , provided that the oscillator initially was in its ground state, and that the classical
evolution law  in Eq. (107) takes this force into account.  Since for many experimental implementations of the
harmonic oscillator, the ground state may be readily formed (for example, by providing a weak coupling of the oscillator to a low-
temperature environment), the Glauber state is usually easier to form than any Fock state with . This is why the Glauber
states are so important and deserve much discussion.

In such a discussion, there is a substantial place for the bra-ket formalism. For example, to calculate the corresponding coefficients
in the expansion (105) by wave-mechanical means,

we would need to use not only the simple Eq. (107), but also the Fock state wavefunctions , which are not very appealing -
see Eq. (2.284) again. Instead, this calculation may be readily done in the braket formalism, giving us one important byproduct
result as well.

Let us start by expressing the double shift of the ground state (by  and  ), which has led us to Eq. (107), in the operator
language. Forgetting about the  for a minute, let us find the translation operator  that would produce the desired shift of an
arbitrary wavefunction  by a -number distance  along the coordinate argument . This means

Representing the wavefunction  as the standard wave packet (4.264), we see that
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Hence, the shift may be achieved by the multiplication of each Fourier component of the packet, with the momentum , by 
. This gives us a hint that the general form of the translation operator, valid in any representation, should be

The proof of this formula is provided merely by the fact that, as we know from Chapter 4 , any operator is uniquely determined by
the set of its matrix elements in any full and orthogonal basis, in particular the basis of momentum states . According to Eq. (110),
the analog of Eq. (4.235) for the -representation, applied to the translation operator (which is evidently local), is

so that the operator (111) does exactly the job we need it to.

The operator that provides the shift of momentum by a -number  is absolutely similar - with the opposite sign under the
exponent, due to the opposite sign of the exponent in the reciprocal Fourier transform, so that the simultaneous shift by both  and 

 may be achieved by the following translation operator:

As we already know, for a harmonic oscillator the creation-annihilation operators are more natural, so that we may use Eqs. (66) to
recast Eq. (113) as

where  (which, generally, may be a function of time) is the -number defined by Eq. (102). Now, according to Eq. (107), we may
form the Glauber state’s ket-vector just as

This formula, valid in any representation, is very elegant, but using it for practical calculations (say, of the expectation values of
observables) is not too easy because of the exponent-of-operators form of the translation operator. Fortunately, it turns out that a
much simpler representation for the Glauber state is possible. To show this, let us start with the following general (and very useful)
property of exponential functions of an operator argument: if

(where  and  are arbitrary linear operators, and  is a -number), then 

Let us apply Eqs. (116)-(117) to two cases, both with

First, let us take ; then Eq. (116) is valid with , and Eq. (117) yields

This equality means that the translation operator is unitary - not a big surprise, because if we shift a classical point on the phase
plane by a complex number  and then by , we certainly must come back to the initial position. Eq. (119) means merely
that this fact is true for any quantum state as well.

Second, let us take ; in order to find the corresponding parameter , we must calculate the commutator on the left-hand side
of Eq. (116) for this case. Using, at the due stage of the calculation, Eq. (68), we get
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Â B̂ μ c 39

exp{+ } exp{− } = +μ .Â B̂ Â B̂ Î (5.5.18)
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so that in this case , and Eq. (117) yields

We have approached the summit of this beautiful calculation. Let us consider the following operator:

Using Eq. (119), we may reduce this product to , while the application of Eq. (121) to the same expression (122) yields 
 Hence, we get the following operator equality:

which may be applied to any state. Now acting by both sides of this equality on the ground state’s ket , and using the fact that 
 is the null-state, while according to Eq. (115), , we finally get a very simple and elegant result: 

Thus any Glauber state  is one of the eigenstates of the annihilation operator, namely the one with the eigenvalue equal to the -
number parameter  of the state, i.e. to the complex representation (102) of the classical point which is the center of the Glauber
state’s wavefunction.  This fact makes the calculations of all Glauber state properties much simpler. As an example, let us
calculate  in the Glauber state with some -number  :

In the first term in the parentheses, we can apply Eq. (124) directly, while in the second term, we can use the bra-counterpart of that
relation, . Now assuming that the Glauber state is normalized, , and using Eq. (102), we get

Acting absolutely similarly, we may verify that , and that  and  do indeed obey Eqs. (99).

As the last sanity check, let us use Eq. (124) to re-calculate the Glauber state’s wavefunction (107). Inner-multiplying both sides of
that relation by the bra-vector , and using the definition (65a) of the annihilation operator, we get

Since  is the bra-vector of the eigenstate of the Hermitian operator , they may be swapped, with the operator giving its
eigenvalue ; acting on that bra-vector by the (local!) operator of momentum, we have to use it in the coordinate representation -
see Eq. (4.245). As a result, we get

But  is nothing else than the Glauber state’s wavefunction  so that Eq. (128) gives for it a firstorder differential equation

Chasing  and  to the opposite sides of the equation, and using the definition (102) of the parameter , we can bring this
equation to the form (valid at fixed , and hence fixed  and  ):

Integrating both parts, we return to Eq. (107).
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Now we can use Eq. (124) for finding the coefficients  in the expansion (105) of the Glauber state  in the series over the Fock
states . Plugging Eq. (105) into both sides of Eq. (124), using the second of Eqs. (89) on the left-hand side, and requiring the
coefficients at each ket-vector  in both parts of the resulting relation to be equal, we get the following recurrence relation:

Applying this relation sequentially for , etc., we get

Now we can find  from the normalization requirement (106), getting

In this sum, we may readily recognize the Taylor expansion of the function , so that the final result (besides an arbitrary

common phase multiplier) is

Hence, if the oscillator is in the Glauber state , the probabilities  of finding the system on the  energy level (86)
obey the well-known Poisson distribution (Fig. 9):

where  is the statistical average of  see Eq. (1.37):

The result of such summation is not necessarily integer! In our particular case, Eqs. (134)-(136) yield

Fig. 5.9. The Poisson distribution (135) for several values of . Note that  are defined only for integer values of ; the lines
are only guides for the eye.

For applications, perhaps the most important mathematical property of this distribution is

Another important property is that at , the Poisson distribution approaches the Gaussian ("normal") one, with a small
relative r.m.s. uncertainty:  the trend clearly visible in Fig. 9 . Now let us discuss the Glauber state’s evolution in
time. In the wave-mechanics language, it is completely described by the dynamics (100) of the -number shifts  and 
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participating in the wavefunction (107). Note again that, in contrast to the spread of the wave packet of a free particle, discussed in
Sec. 2.2, in the harmonic oscillator the Gaussian packet of the special width (99) does not spread at all!

An alternative and equivalent way of dynamics description is to use the Heisenberg equation of motion. As Eqs. (29) and (35) tell
us, such equations for the Heisenberg operators of coordinate and momentum have to be similar to the classical equations (100):

Now using Eqs. (66), for the Heisenberg-picture creation and annihilation operators we get the equations

which are completely similar to the classical equation (103) for the -number parameter  and its complex conjugate, and hence
have the solutions identical to Eq. (104):

As was discussed in Sec. 4.6, such equations are very convenient, because they enable simple calculation of time evolution of
observables for any initial state of the oscillator (Fock, Glauber, or any other) using Eq. (4.191). In particular, Eq. (141) shows that
regardless of the initial state, the oscillator always returns to it exactly with the period  Applied to the Glauber state with 

, i.e. the ground state of the oscillator, such calculation confirms that the Gaussian wave packet of the special width (99) does
not spread in time at all - even temporarily.

Now let me briefly mention the states whose initial wave packets are still Gaussian, but have different widths, say . As
we already know from Sec. , the momentum spread  will be correspondingly larger, still with the smallest possible uncertainty
product: . Such squeezed ground state , with zero expectation values of  and , may be generated from the
Fock/Glauber ground state:

using the so-called squeezing operator,

which depends on a complex -number parameter , where  and  are real. The parameter’s modulus  determines the
squeezing degree; if  is real (i.e.  ), then

On the phase plane (Fig. 8), this state, with , may be represented by an oval spot squeezed along one of two mutually
perpendicular axes (hence the state’s name), and stretched by the same factor  along the counterpart axis; the same formulas but
with  describe squeezing along the other axis. On the other hand, the phase  of the squeezing parameter  determines the
angle  of the squeezing/stretching axes about the phase plane origin - see the magenta ellipse in Fig. 8. If , Eqs. (143) are
valid for the variables  obtained from  via clockwise rotation by that angle. For any of such origin-centered squeezed
ground states, the time evolution is reduced to an increase of the angle with the rate , i.e. to the clockwise rotation of the ellipse,
without its deformation, with the angular velocity  see the magenta arrows in Fig. 8. As a result, the uncertainties  and 
oscillate in time with the double frequency . Such squeezed ground states may be formed, for example, by a parametric
excitation of the oscillator  with a parameter modulation depth close to, but still below the threshold of the excitation of
degenerate parametric oscillations.

By action of an additional external force, the center of a squeezed state may be displaced from the origin to an arbitrary point 
. Such displaced squeezed state may be described by the action of the translation operator (113) upon the ground squeezed

state, i.e. by the action of the operator product  on the usual (Fock / Glauber, i.e. non-squeezed) ground state. Calculations
similar to those that led us from Eq. (114) to Eq. (124), show that such displaced squeezed state is an eigenstate of the following
mixed operator:

with the same parameters  and , with the eigenvalue
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thus generalizing Eq. (124), which corresponds to . For the particular case , Eq. (145) yields  , i.e. the action of
the operator (144) on the squeezed ground state  yields the null-state. Just as Eq. (124) in the case of the Glauber states, Eqs.
(144)-(145) make the calculation of the basic properties of the squeezed states (for example, the proof of Eqs. (143) for the case 

 ) very straightforward.

Unfortunately, I do not have more time/space for a further discussion of the squeezed states in this section, but their importance for
precise quantum measurements will be discussed in Sec.  below. 

 If Eqs. (100) are not evident, please consult a classical mechanics course - e.g., CM Sec.  and/or Sec. 10.1.

 See, e.g.,  Chapter 5 , especially Eqs. (5.4).

 I have to confess that such geometric mapping of a quantum state on the phase plane  is not exactly defined; you may think
about colored areas in Fig. 8 as the regions of the observable pairs  most probably obtained in measurements. A quantitative
definition of such a mapping will be given in Sec.  using the Wigner function, though, as we will see, even such imaging has
certain internal contradictions. Still, such cartoons as Fig. 8 have a substantial heuristic value, provided that their limitations are
kept in mind.

 Named after Roy Jay Glauber who studied these states in detail in the mid-1965s, though they had been discussed in brief by
Ervin Schrödinger as early as in 1926. Another popular adjective, "coherent", for the Glauber states is very misleading, because all
quantum states of all systems we have studied so far (including the Fock states of the harmonic oscillator) may be represented as
coherent (pure) superpositions of the basis states. This is why I will not use this term for the Glauber states.

 For its description, it is sufficient to solve Eqs. (100), with  added to the right-hand side of the second of these equations.

 A proof of Eq. (117) may be readily achieved by expanding the operator  in the Taylor series
with respect to the -number parameter , and then evaluating the result for . This simple exercise is left for the reader.

 This result is also rather counter-intuitive. Indeed, according to Eq. (89), the annihilation operator , acting upon a Fock state ,
"beats it down" to the lower-energy state . However, according to Eq. (124), the action of the same operator on a Glauber
state  does not lead to the state change and hence to any energy change! The resolution of this paradox is given by the
representation of the Glauber state as a series of Fock states - see Eq. (134) below. The operator  indeed transfers each Fock
component of this series to a lower-energy state, but it also re-weighs each term, so that the complete energy of the Glauber state
remains constant.

 This fact means that the spectrum of eigenvalues  in Eq. (124), viewed as an eigenproblem, is continuous - it may be any
complex number.

 Actually, this fact is also evident from the Schrödinger picture of the oscillator’s time evolution: due to the exactly equal
distances  between the eigenenergies (86), the time functions  in the fundamental expansion (1.69) of its wavefunction
oscillate with frequencies , and hence they all share the same time period .

 For a discussion and classical theory of this effect, see, e.g., CM Sec. .

 For more on the squeezed states see, e.g., Chapter 7 in the monograph by C. Gerry and P. Knight, Introductory Quantum Optics,
Cambridge U. Press, 2005. Also, note the spectacular measurements of the Glauber and squeezed states of electromagnetic
(optical) oscillators by G. Breitenbach et al., Nature 387, 471 (1997), a large (ten-fold) squeezing achieved in such oscillators by H.
Vahlbruch et al., Phys. Rev. Lett. 100, 033602 (2008), and the first results on the ground state squeezing in micromechanical
oscillators, with resonance frequencies  as low as a few MHz, using their parametric coupling to microwave electromagnetic
oscillators - see, e.g., E. Wollman et al., Science 349, 952 (2015) and/or J.-M. Pirkkalainen et al., Phys. Rev. Lett. 115, 243601
(2015).
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β = α coshr+ sinhrα∗eiθ (5.5.46)
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