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6.1: Time-independent Perturbations
Unfortunately, only a few problems of quantum mechanics may be solved exactly in an analytical form. Actually, in the previous
chapters we have solved a substantial part of such problems for a single particle, while for multiparticle systems, the exactly
solvable cases are even more rare. However, most practical problems of physics feature a certain small parameter, and this
smallness may be exploited by various approximate analytical methods giving asymptotically correct results  i.e. the results
whose error tends to zero at the reduction of the small parameter(s). Earlier in the course, we have explored one of them, the WKB
approximation, which is adequate for a particle moving through a soft potential profile. In this chapter, we will discuss other
techniques that are more suitable for other cases. The historic name for these techniques is the perturbation theory, though it is
more fair to speak about several perturbative approaches, because they are substantially different for different situations.

The simplest version of the perturbation theory addresses the problem of stationary states and energy levels of systems described
by time-independent Hamiltonians of the type

where the operator , describing the system’s "perturbation", is relatively small - in the sense that its addition to the unperturbed

operator  results in a relatively small change of the eigenenergies  of the system, and the corresponding eigenstates. A
typical problem of this type is the 1D weakly anharmonic oscillator (Fig. 1), described by the Hamiltonian (1) with

with sufficiently small coefficients .

Fig. 6.1. The simplest application of the perturbation theory: a weakly anharmonic 1D oscillator. (Dashed lines characterize the
unperturbed, harmonic oscillator.)

I will use this system as our first example, but let me start by describing the perturbative approach to the general time-independent
Hamiltonian (1). In the bra-ket formalism, the eigenproblem (4.68) for the perturbed Hamiltonian, i.e. the stationary Schrödinger
equation of the system, is

Let the eigenstates and eigenvalues of the unperturbed Hamiltonian, which satisfy the equation

be considered as known. In this case, the solution of problem (3) means finding, first, its perturbed eigenvalues  and, second, the
coefficients  of the expansion of the perturbed state’s vectors  in the following series over the unperturbed ones, 
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Let us plug Eq. (5), with the summation index  ’ replaced with  " (just to have a more compact notation in our forthcoming
result), into both sides of Eq. (3):

and then inner-multiply all terms by an arbitrary unperturbed bra-vector  of the system. Assuming that the unperturbed
eigenstates are orthonormal, , and using Eq. (4) in the first term on the left-hand side, we get the following
system of linear equations

where the matrix elements of the perturbation are calculated, by definition, in the unperturbed brackets:

The linear equation system  is still exact,  and is frequently used for numerical calculations. (Since the matrix coefficients (8)
typically decrease when  ’ and/or  "’ become sufficiently large, the sum on the left-hand side of Eq. (7) may usually be
truncated, still giving an acceptable accuracy of the solution.) To get analytical results, we need to make approximations. In the
simple perturbation theory we are discussing now, this is achieved by the expansion of both the eigenenergies and the expansion
coefficients into the Taylor series in a certain small parameter  of the problem:

where

In order to explore the -order approximation, which ignores all terms  and higher, let us plug only the two first terms of
the expansions (9) and (10) into the basic equation (7):

Now let us open the parentheses, and disregard all the remaining terms . The result is

This relation is valid for any set of indices  and  ’; let us start from the case , immediately getting a very simple (and
practically, the most important!) result:

For example, let us see what this result gives for two first perturbation terms in the weakly anharmonic oscillator (2):

As the reader knows (or should know :-) from the solution of Problem 5.9, the first bracket equals zero, while the second one yields

Naturally, there should be some non-vanishing contribution to the energies from the (typically, larger) perturbation proportional to 
, so that for its calculation we need to explore the  order of the theory. However, before doing that, let us complete our

discussion of its  order.
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Ĥ

(1)∣
∣
n(0) (6.1.12)

= α ⟨ ⟩+β ⟨ ⟩ .E
(1)
n n(0) ∣∣x̂

3∣∣ n(0) n(0) ∣∣x̂
4∣∣ n(0) (6.1.13)

2

= β (2 +2n +1) .E
(1)
n

3

4
x4

0 n2 (6.1.14)

α 2nd 

1st 

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/57561?pdf


6.1.3 https://phys.libretexts.org/@go/page/57561

For , Eq. (13) may be used to calculate the eigenstates rather than the eigenvalues:

This means that the eigenket’s expansion (5), in the  order, may be represented as

The coefficient  cannot be found from Eq. (17); however, requiring the final state  to be normalized, we see that
other terms may provide only corrections , so that in the  order we should take . The most important feature of Eq.
(18) is its denominators: the closer are the unperturbed eigenenergies of two states, the larger is their mutual "interaction" due to the
perturbation.

This feature also affects the -order’s validity condition, which may be quantified using Eq. (17): the magnitudes of the brackets
it describes have to be much less than the unperturbed bracket , so that all elements of the perturbation matrix have
to be much less than difference between the corresponding unperturbed energies. For the anharmonic oscillator’s energy
corrections (16), this requirement is reduced to .

Now we are ready for going after the -order approximation to Eq. (7). Let us focus on the case , because as we already
know, only this term will give us a correction to the eigenenergies. Moreover, since the left-hand side of Eq. (7) already has a small
factor , the bracket coefficients in that part may be taken from the -order result (17). As a result, we get

Since  has to be Hermitian, we may rewrite this expression as

This is the much-celebrated -order perturbation result, which frequently (in sufficiently symmetric problems) is the first non-
vanishing correction to the state energy - for example, from the cubic term (proportional to  ) in our weakly anharmonic oscillator
problem (2). To calculate the corresponding correction, we may use another result of the solution of Problem 5.9:

So, according to Eq. (20), we need to calculate

The summation is not as cumbersome as may look, because at the curly brackets’ squaring, all mixed products are proportional to
the products of different Kronecker deltas and hence vanish, so that we need to sum up only the squares of each term, finally
getting
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This formula shows that all energy level corrections are negative, regardless of the sign of  On the contrary, the  order
correction , given by Eq. (16), does depend on the sign of , so that the net correction, , may be of any sign.

The results (18) and (20) are clearly inapplicable to the degenerate case where, in the absence of perturbation, several states
correspond to the same energy level, because of the divergence of their denominators.  This divergence hints that in this case, the
largest effect of the perturbation is the degeneracy lifting, e.g., some splitting of the initially degenerate energy level  (Fig. 2),
and that for the analysis of this case we can, in the first approximation, ignore the effect of all other energy levels. (A careful
analysis shows that this is indeed the case until the level splitting becomes comparable with the distance to other energy levels.)

Fig. 5.2. Lifting the energy level degeneracy by a perturbation (schematically).

Limiting the summation in Eq. (7) to the group of  degenerate states with equal , we reduce it to

where now  and  " number the  states of the degenerate group.  For , Eq. (24) may be rewritten as

For each , this is a system of  linear, homogenous equations (with  terms each) for  unknown coefficients 
. In this problem, we may readily recognize the problem of diagonalization of the perturbation matrix . Sec. 

 and in particular Eq. (4.101). As in the general case, the condition of self-consistency of the system is:

where now the index  numbers the  roots of this equation, in an arbitrary order. According to the definition (25) of , the
resulting  energy levels  may be found as . If the perturbation matrix is diagonal in the chosen basis , the
result is extremely simple,

and formally coincides with Eq. (14) for the non-degenerate case, but now it may give a different result for each of  previously
degenerate states .

Now let us see what this general theory gives for several important examples. First of all, let us consider a system with just two
degenerate states with energy sufficiently far from all other levels. Then, in the basis of these two degenerate states, the most
general perturbation matrix is

This matrix coincides with the general matrix (5.2) of a two-level system. Hence, we come to the very important conclusion: for a
weak perturbation, all properties of any double-degenerate system are identical to those of the genuine two-level systems, which
were the subject of numerous discussions in Chapter 4 and again in Sec. 5.1. In particular, its eigenenergies are given by Eq. (5.6),
and may be described by the level-anticrossing diagram shown in Fig. 5.1.
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 Please note the similarity of Eq. (7) with Eq. (2.215) of the 1D band theory. Indeed, the latter equation is not much more than a
particular form of Eq. (7) for the 1D wave mechanics, and a specific (periodic) potential  considered as the perturbation
Hamiltonian. Moreover, the whole approximate treatment of the weak-potential limit in Sec.  is essentially a particular case of
the perturbation theory we are discussing now (in its  order).

 A useful exercise for the reader: analyze the relation between Eq. (16) and the result of the classical theory of such weakly
anharmonic ("nonlinear") oscillator - see, e.g., CM Sec. 5.2, in particular, Eq. (5.49).

 Note that this is correct for the ground-state energy correction  of any system, because for this state, the denominators of all
terms of the sum (20) are negative, while their numerators are always non-negative.

 This is exactly the reason why such simple perturbation approach runs into serious problems for systems with a continuous
spectrum, and other techniques (such as the WKB approximation) are often necessary.

 Note that here the choice of the basis is to some extent arbitrary, because due to the linearity of equations of quantum mechanics,
any linear combination of the states  is also an eigenstate of the unperturbed Hamiltonian. However, for using Eq. (25), these
combinations have to be orthonormal, as was supposed at the derivation of Eq. (7).
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