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8.2: Singlets, Triplets, and the Exchange Interaction

Now let us discuss possible approaches to quantitative analyses of identical particles, starting from a simple case of two spin-1/2
particles (say, electrons), whose explicit interaction with each other and the external world does not involve spin. The description of
such a system may be based on factorable states with ket-vectors

la) = |o12) ®|s12) (8.2.1)

with the orbital state vector |o12) and the spin vector |s12) belonging to different Hilbert spaces. It is frequently convenient to use
the coordinate representation of such a state, sometimes called the spinor:

(ri,r2 [ a-) = (r1, 12 | 012) ®[s12) =9 (r1,T2) |512) - (8.2.2)
Since the spin- 1/2 particles are fermions, the particle permutation has to change the sign:
P (r1,T2) [s12) = ¢ (v2,71) [s21) = = (r1,72) [s15), (8.2.3)

of either the orbital factor or the spin factor.

In particular, in the case of symmetric orbital factor,
Y (re,r1) =79 (r1,19), (8.2.4)
the spin factor has to obey the relation
[s21) = —|s12) - (8.2.5)

Let us use the ordinary z-basis (where 2z, in the absence of an external magnetic field, is an arbitrary spatial axis) for both spins. In
this basis, the ket-vector of any two spins- 1/2 may be represented as a linear combination of the following four basis vectors:

1), [, [ 1), and [ 1), (8.2.6)

The first two kets evidently do not satisfy Eq. (16), and cannot participate in the state. Applying to the remaining kets the same
argumentation as has resulted in Eq. (11), we get

|312>:\s,>5%

Such an orbital-symmetric and spin-antisymmetric state is called the singlet.

(114 = 141)- (8.2.7)

The origin of this term becomes clear from the analysis of the opposite (orbital-antisymmetric and spin-symmetric) case:

Y (r2, 1) =—9(r1,T2), [s12) =s21). (8.2.8)

For the composition of such a symmetric spin state, the first two kets of Eq. (17) are completely acceptable (with arbitrary
weights), and so is an entangled spin state that is the symmetric combination of the two last kets, similar to Eq. (10):

1
|8+>E$(\N>+\H>), (8.2.9)
so that the general spin state is a triplet:
Is12) = 4 | 1)+ 1) +eo—= (| 1) +] 119): (8.2.10)

V2
Note that any such state (with any values of the coefficients ¢ satisfying the normalization condition), corresponds to the same
orbital wavefunction and hence the same energy. However, each of these three states has a specific value of the z-component of the
net spin - evidently equal to, respectively, +h, —h, and 0 . Because of this, even a small external magnetic field lifts their
degeneracy, splitting the energy level in three; hence the term "triplet".

In the particular case when the particles do not interact at all, for example

~2
H = hy +ho, izk:;’—’“+a(rk), withk=1,2, (8.2.11)
m
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the two-particle Schrodinger equation for the symmetrical orbital wavefunction (15) is obviously satisfied by the direct products,

P (r1,12) = Yy (T1) Yo (T2), (8.2.12)

5

of single-particle eigenfunctions, with arbitrary sets n, n > of quantum numbers. For the particular but very important case n =n ’,
this means that the eigenenergy of the (only acceptable) singlet state,
1
7
is just 2¢,,, where ¢, is the single-particle energy level. ? In particular, for the ground state of the system, such singlet spin state

gives the lowest energy F, = 2¢,, while any triplet spin state (19) would require one of the particles to be in a different orbital
state, i.e. in a state of higher energy, so that the total energy of the system would be also higher.

(110 =1 31)%n (x1) ¢n (r2), (8.2.13)

Now moving to the systems in which two indistinguishable spin- 1/2 particles do interact, let us consider, as their simplest but
important '* example, the lower energy states of a neutral atom ! of helium - more exactly, “He. Such an atom consists of a
nucleus with two protons and two neutrons, with the total electric charge ¢ = +2e, and two electrons "rotating" about the nucleus.
Neglecting the small relativistic effects that were discussed in Sec. 6.3, the Hamiltonian describing the electron motion may be
expressed as

.2
Py 2¢? N e

= - ) int = .
2m  4megry 4d7eg |r1 — 1o

H=hi+ho+U, hi (8.2.14)
As with most problems of multiparticle quantum mechanics, the eigenvalue/eigenstate problem for this Hamiltonian does not have
an exact analytical solution, so let us carry out its approximate analysis considering the electron-electron interaction U, as a
perturbation. As was discussed in Chapter 6 , we have to start with the " 0" -order" approximation in which the perturbation is
ignored, so that the Hamiltonian is reduced to the sum (22). In this approximation, the ground state of the atom is the singlet (24),

with the orbital factor

Yg (T1,T2) =100 (1) Y100 (T2), (8.2.15)

and energy 2¢,. Here each factor ¢1go(r) is the single-particle wavefunction of the ground (1s) state of the hydrogen-like atom
with Z = 2, with quantum numbers n =1,1 =0, and m = 0 - hence the wavefunctions’ indices. According to Egs. (3.174) and

(3.208),
Br00(r) = Y00, @) Ry o(r) = —— ——e /™, withro — -2 — B (8.2.16)
100 o \Uy@)ivo \/ﬂ 7'3/2 y 0 A 9 2.
0
and according to Egs. (3.191) and (3.201), in this approximation the total ground state energy is
Z°E
B =2 =2(-2%) —o(-Z2R) = 4By~ -109V. (8.2.17)
2n2/ n=1,z-2 2 )y

This is still somewhat far (though not terribly far!) from the experimental value E,; ~ —78.8eV — see the bottom level in Fig. 1a.
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Fig. 8.1. The lower energy levels of a helium atom: (a) experimental data and (b) a schematic structure of an excited state in the
first order of the perturbation theory. On panel (a), all energies are referred to that (—2Eg ~ —55.4eV) of the ground state of the

positive ion He™!, so that their magnitudes are the (readily measurable) energies of the atom’s single ionization starting from the

corresponding state of the neutral atom. Note that the "spin direction" nomenclature on panel (b) is rather crude: it does not reflect

the difference between the entangled states s and s -
Making a minor (but very useful) detour from our main topic, let us note that we can get a much better agreement with experiment
by calculating the electron interaction energy in the 15¢ order of the perturbation theory. Indeed, in application to our system, Eq.
(6.14) reads

B = (g0 8) = [ @r1 [ @¥rati (v1,12) Vs (r1,72) 6 (14, m2). (8.2.18)

Plugging in Egs. (25)-(27), we get

2(7' +79)
W 5 1+72
E d 43 . 8.2.19
g (47r 3 ) / 1 / P — 47eg |r1 —1y] exp{ 0 } ( )

As may be readily evaluated analytically (this exercise is left for the reader), this expression equals (5/4)Eg, so that the corrected
ground state energy,

E,~E" +EY = (~4+5/4)Ey = —74.8¢V, (8.2.20)
is much closer to experiment.

There is still room here for a ready improvement, using the variational method discussed in Sec. 2.9. For our particular case of the
4He atom, we may try to use, as the trial state, the orbital wavefunction given by Egs. (26)-(27), but with the atomic number Z
considered as an adjustable parameter Z, < Z =2 rather than a fixed number. The physics behind this approach is that the
electric charge density p(r) = —e|1/1(r)|2 of each electron forms a negatively charged "cloud" that reduces the effective charge of
the nucleus, as seen by the other electron, to Zs e, with some Z, < 2. As a result, the single-particle wavefunction spreads further
in space (with the scale 7o =g/ Z¢ > rp/Z ), while keeping its functional form (27) nearly intact. Since the kinetic energy 7" in
the system’s Hamiltonian (25) is proportional to 7o 2 o Zet?, while the potential energy is proportional to 7o+
write

o Zy', we can

B, (Zs) = (sz ) (T, + Zz—efwg)H. (8.2.21)

Now we can use the fact that according to Eq. (3.212), for any stationary state of a hydrogen-like atom (just as for the classical
circular motion in the Coulomb potential), (U) =2FE, and hence (T') = E— (U)=—E . Using Eq. ( 30 ), and adding the

correction (31) to the potential energy, we get
Zef 2 5 Zef
4 84+ =
(%) +(++5) 3

This expression allows an elementary calculation of the optimal value of Z., and the corresponding minimum of the function
Eg (Zef) :

E, (Zg) = En. (8.2.22)
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5
(Zet)opt, =2 (1 — ﬁ) =1.6875, (Eg)um ~ —2.85Ey ~ —77.5eV. (8.2.23)

Given the trial state’s crudeness, this number is in surprisingly good agreement with the experimental value cited above, with a
difference of the order of 1%.

Now let us return to the main topic of this section - the effects of particle (in this case, electron) indistinguishability. As we have
just seen, the ground-level energy of the helium atom is not affected directly by this fact, but the situation is different for its excited
states - even the lowest ones. The reasonably good precision of the perturbation theory, which we have seen for the ground state,
tells us that we can base our analysis of wavefunctions (te) of the lowest excited state orbitals, on products like
%100 (Tk) Ynim (T ), with n > 1. To satisfy the fermion permutation rule, P; = —1, we have to take the orbital factor of the state
in either the symmetric or the antisymmetric form:

% [¥100 (1) Ynim (r2) £ Vnim (1) Y100 (r2)] (8.2.24)

with the proper total permutation asymmetry provided by the corresponding spin factor (18) or (21), so that the upper/lower sign in
Eq. (35) corresponds to the singlet/triplet spin state. Let us calculate the expectation values of the total energy of the system in the

1/)6 (r17r2) =

first order of the perturbation theory. Plugging Eq. (35) into the 0" -order expression

Z/d37‘1 /d37"21/13 (ri,r3) (ill +il2) Ve (r1,T2), (8.2.25)

we get two groups of similar terms that differ only by the particle index. We can merge the terms of each pair by changing the
notation as (r; —r,rs — ') in one of them, and (r; —r’,ry — ) in the counterpart term. Using Eq. (25), and the mutual
orthogonality of the wavefunctions ¥190(r) and ¥y, (r), we get the following result:

R2VZ  2¢? RIVE  g¢2 o
/1/’100 (_ 4#507") P100(r)d 7’+/¢nzm T Tom dmegr Ynim (r) d°r

=¢100 +Enim, Withn>1

It may be interpreted as the sum of eigenenergies of two separate single particles, one in the ground state 100 , and another in the
excited state nlm - although actually the electron states are entangled. Thus, in the 0" order of the perturbation theory, the
electron entanglement does not affect their energy.

However, the potential energy of the system also includes the interaction term Uy, , which does not allow such separation. Indeed,
in the 1%¢ approximation of the perturbation theory, the total energy E, of the system may be expressed as €199 + €nim + Fint @ s
with

Ei(nlt) = (Uint ) :/d37“1 /d37"21/)§ (r1,r2) Ut (r1,72) % (T1,72), (8.2.26)

Plugging Eq. (35) into this result, using the symmetry of the function Uj,, with respect to the particle number permutation, and the
same particle coordinate re-numbering as above, we get

EY = By, + Eoy (8.2.27)

int

with the following, deceivingly similar expressions for the two components of this sum/difference:

Edir = deT‘fd?’ '¢‘{00 r)"/’* (") Uins (x, ') 100(T) Ynim (r'),
E = fd3rfd3 l¢100 I‘)’(/J (rl) int ( )1/)nlm(r)1/) (rl) :

(8.2.28)

Since the single-particle orbitals can be always made real, both components are positive - or at least non-negative. However, their
physics and magnitude are different. The integral (40), called the direct interaction energy, allows a simple semi-classical
interpretation as the Coulomb energy of interacting electrons, each distributed in space with the electric charge density

p(r) = —ey* (r)y(r) : 12
Eg, = /d3 / d? ,P100 )P (x) /p1oo(r)¢nzm(r)d3rE/pnm(r)¢100(r)d3r, (8.2.29)

dmey |r —1/|
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where ¢(r) are the electrostatic potentials created by the electron "charge clouds": 13
! 1 nim !
b100(r) = /d3r’ p1oo () v Gum(r) = /d3r’ Prim (') . (8.2.30)
4reg |r—1/| 4dreg |r—1/|

However, the integral (41), called the exchange interaction energy, evades a classical interpretation, and (as it is clear from its
derivation) is the direct corollary of electrons’ indistinguishability. The magnitude of E, is also very much different from Eg;,
because the function under the integral (41) disappears in the regions where the single-particle wavefunctions ¥10o(r) and tyim (r)
do not overlap. This is in full agreement with the discussion in Sec. 1: if two particles are identical but well separated, i.e. their
wavefunctions do not overlap, the exchange interaction disappears, i.e. measurable effects of particle indistinguishability vanish.
(In contrast, the integral (40) decreases with the growing electron separation only slowly, due to the long-range Coulomb
interaction.)

Figure 1 b shows the structure of an excited energy level, with certain quantum numbers n > 1,1, and m, given by Egs. (39)-(41).
The upper, so-called parahelium * level, with the energy

Epara = (5100 +5nlm) + Egir +Eex > €100 + Enim, (8231)
corresponds to the symmetric orbital state and hence to the singlet spin state (18), while the lower, orthohelium level, with
Eorth = (5100 +5nlm) + Edir - Eex < Epara ) (8232)
corresponds to the degenerate triplet spin state (21).

This degeneracy may be lifted by an external magnetic field, whose effect on the electron spins ° is described by the following
evident generalization of the Pauli Hamiltonian (4.163),

ﬁ-ﬁeld :—él'%—éz'%E—é‘%, With"y:’yeE—miE—2NTB, (8233)

(53

where

S =8, +8, (8.2.34)
is the operator of the (vector) sum of the system of two spins. ' To analyze this effect, we need first to make one more detour, to
address the general issue of spin addition. The main rule 7 here is that in a full analogy with the net spin of a single particle,
defined by Eq. (5.170), the net spin operator (47) of any system of two spins, and its component S - along the (arbitrarily selected)
z-axis, obey the same commutation relations (5.168) as the component operators, and hence have the properties similar to those
expressed by Egs. (5.169) and (5.175):

§2|S,Ms>=h25(5+1)|S,Ms>, S’Z|S,Ms>=th|S,Ms>, with — S < Mg <+8, (8.2.35)

where the ket vectors correspond to the coupled basis of joint eigenstates of the operators of S? and S, (but not necessarily all
component operators - see again the Venn shown in Fig. 5.12 and its discussion, with the replacements S,L —+s;5 andJ — S ).
Repeating the discussion of Sec. 5.7 with these replacements, we see that in both coupled and uncoupled bases, the net magnetic
number My is simply expressed via those of the components

Mg = (my); + (my)s. (8.2.36)

However, the net spin quantum number S (in contrast to the Nature-given spins s of its elementary components) is not
universally definite, and we may immediately say only that it has to obey the following analog of the relation | — s| < j < (I+s)
discussed in Sec. 5.7:

|81—Sz|§5§31 + 89. (8237)

What exactly S is (within these limits), depends on the spin state of the system.

For the simplest case of two spin-1/2 components, each with s =1/2 and m; = +1/2, Eq. (49) gives three possible values of
Mg, equal to 0 and £1, while Eq. (50) limits the possible values of .S to just either 0 or 1 . Using the last of Egs. (48), we see that
the possible combinations of the quantum numbers are

{ =0, nd { S=1 (8.2.38)
MS :Oa

Mg =0,=+1.
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It is virtually evident that the singlet spin state s_belongs to the first class, while the simple (separable) triplet states 11 and ||
belong to the second class, with Mg = 41 and Mg = —1, respectively. However, for the entangled triplet state s, evidently with
Mg =0, the value of S is less obvious. Perhaps the easiest way to recover it '® to use the "rectangular diagram", similar to that
shown in Fig. 5.14, but redrawn for our case of two spins, ie, with the replacements
my — (ms), =+1/2,m; — (my), =+1/2— see Fig. 2.

|~LT) RIS VA I— \'TT)I

=1

Fig. 8.2. The "rectangular diagram" showing the relation between the uncoupled-representation states (dots) and the coupled-

representation states (straight lines) of a system of two spins1/2— cf. Fig. 5.14.
Just as at the addition of various angular momenta of a single particle, the top-right and bottomleft corners of this diagram
correspond to the factorable triplet states 11 and ||, which participate in both the uncoupled-representation and coupled-
representation bases, and have the largest value of S, i.e. 1. However, the entangled states s.., which are linear combinations of the
uncoupled-representation states 1. and |, cannot have the same value of S, so that for the triplet state S, , .S has to take the value
different from that (0) of the singlet state, i.e. 1. With that, the first of Eqgs. (48) gives the following expectation values for the
square of the net spin operator:

<S2> [ 22, for each triplet state,
N 0, for the singlet state.

Note that for the entangled triplet state s, whose ket-vector (20) is a linear superposition of two kets of states with opposite spins,
this result is highly counter-intuitive, and shows how careful we should be interpreting entangled quantum states. (As will be
discussed in Chapter 10, the entanglement brings even more surprises for quantum measurements.)

Now we may return to the particular issue of the magnetic field effect on the triplet state of the He atom. Directing the z-axis
along the field, we may reduce Eq. (46) to

Hﬁeld = *’)’esz% = 2#]3%? (8239)
Since all three triplet states (21) are eigenstates, in particular, of the operator S z» and hence of the Hamiltonian (53), we may use
the second of Egs. (48) to calculate their energy change simply as

+1, for the factorable triplet state 17,
AFEfqq =2pp#BMs =2up B x 0, for the entangled triplet state s,
—1, for the factorable triplet state J|.

This splitting of the "orthohelium" level is schematically shown in Fig. 1 b. 1
9 In this chapter, I try to use lower-case letters for all single-particle observables (in particular, € for their energies), in order to

distinguish them as clearly as possible from the system’s observables (including the total energy E of the system), which are
typeset in capital letters.

10 Indeed, helium makes up more than 20% of all "ordinary" matter of our Universe.

11 Note that the positive ion He™ of this atom, with just one electron, is fully described by the hydrogen-like atom theory with
Z = 2, whose ground-state energy, according to Eq. (3.191), is fZQEH/Z = —2Fg ~ —55.4€eV.

12 See, e.g., EM Sec. 1.3, in particular Eq. (1.54).
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13 Note that the result for Fg, correctly reflects the basic fact that a charged particle does not interact with itself, even if its
wavefunction is quantum-mechanically spread over a finite space volume. Unfortunately, this is not true for some popular
approximate theories of multiparticle systems - see Sec. 4 below.

14 This terminology reflects the historic fact that the observation of two different hydrogen-like spectra, corresponding to the
opposite signs in Eq. (39), was first taken as evidence for two different species of *He, which were called, respectively, the
"orthohelium" and the "parahelium".

15 As we know from Sec. 6.4, the field also affects the orbital motion of the electrons, so that the simple analysis based on Eq. (46)
is strictly valid only for the s excited state (I =0, and hence m = 0). However, the orbital effects of a weak magnetic field do not
affect the triplet level splitting we are analyzing now.

16 Note that similarly to Egs. (22) and (25), here the uppercase notation of the component spins is replaced with their lowercase
notation, to avoid any possibility of their confusion with the total spin of the system.

17 Since we already know that the spin of a particle is physically nothing more than a (specific) part of its angular momentum, the
similarity of the properties (48) of the sum (47) of spins of different particles to those of the sum (5.170) of different spin
components of the same particle it very natural, but still has to be considered as a new fact - confirmed by a vast body of
experimental data.

2
18 Another, a bit longer but perhaps a more prudent way is to directly calculate the expectation values of S~ for the states S, and
then find S' by comparing the results with the first of Egs. (48); it is highly recommended to the reader as a useful exercise.

19 Tt is interesting that another very important two-electron system, the hydrogen (Hs) molecule, which was briefly discussed in
Sec. 2.6, also has two similarly named forms, parahydrogen and orthohydrogen. However, their difference is due to two possible
(respectively, singlet and triplet) states of the system of two spins of the two hydrogen nuclei - protons, which are also spin-1/2
particles. The resulting energy of the parahydrogen is lower than that of the orthohydrogen by only ~ 45meV per molecule - the
difference comparable with kgT' at room temperature (~ 26meV). As a result, at the ambient conditions, the equilibrium ratio of
these two spin isomers is close to 3:1. Curiously, the theoretical prediction of this minor effect by W. Heisenberg (together with F.
Hund) in 1927 was cited in his 1932 Nobel Prize award as the most noteworthy application of quantum theory.

This page titled 8.2: Singlets, Triplets, and the Exchange Interaction is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,

and/or curated by Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.

https://phys.libretexts.org/@go/page/57567



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/57567?pdf
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Essential_Graduate_Physics_-_Quantum_Mechanics_(Likharev)/08%3A_Multiparticle_Systems/8.02%3A_Singlets_Triplets_and_the_Exchange_Interaction
https://creativecommons.org/licenses/by-nc-sa/4.0
https://www.linkedin.com/in/konstantin-likharev-2389805/
https://sites.google.com/site/likharevegp/

