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1.9: Exercise Problems
1.1. The actual postulate made by N. Bohr in his original 1913 paper was not directly Eq. (8), but the assumption that at quantum
leaps between adjacent large (quasiclassical) orbits with , the hydrogen atom either emits or absorbs energy ,
where  is its classical radiation frequency according to classical electrodynamics, equal to the angular velocity of electron’s
rotation.  Prove that this postulate is indeed compatible with Eqs. (7)-(8).

1.2. Use Eq. (53) to prove that the linear operators of quantum mechanics are commutative: , and associative:

1.3. Prove that for any time-independent Hamiltonian operator  and two arbitrary

complex functions  and ,

1.4. Prove that the Schrödinger equation (25) with the Hamiltonian operator given by Eq. (41), is Galilean form-invariant, provided
that the wavefunction is transformed as

where the prime sign marks the variables measured in the reference frame 0 ’ that moves, without rotation, with a constant velocity 
 relatively to the "lab" frame 0 . Give a physical interpretation of this transformation.

1.5.  Prove the so-called Hellmann-Feynman theorem: 67

where  is some -number parameter, on which the time-independent Hamiltonian , and hence its eigenenergies , depend.

1.6.  Use Eqs. (73) and (74) to analyze the effect of phase locking of Josephson oscillations on the dc current flowing through a
weak link between two superconductors (frequently called the Josephson junction), assuming that an external source applies to the
junction a sinusoidal ac voltage with frequency  and amplitude .

1.7. Calculate , and  for the eigenstate  of a particle in a rectangular hard-wall box described by Eq.
(77), and compare the product  with the Heisenberg’s uncertainty relation.

1.8. Looking at the lower (red) line in Fig. 8, it seems plausible that the 1D ground-state function (84) of the simple potential well
(77) may be well approximated with an inverted quadratic parabola:

where  is a normalization constant. Explore how good this approximation is.

1.9. A particle placed in a hard-wall rectangular box with sides , and , is in its ground state. Calculate the average force
acting on each face of the box. Can the forces be characterized by a certain pressure?

1.10. A 1D quantum particle was initially in the ground state of a very deep, rectangular potential well of width  :

At some instant, the well’s width is abruptly increased to a new value , leaving the potential symmetric with respect to the
point , and then left constant. Calculate the probability that after the change, the particle is still in the ground state of the
system.

1.11. At , a  particle of mass  is placed into a hard-wall, flat-bottom potential well

in a 50/50 linear superposition of the lowest (ground) state and the first excited state. Calculate:
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(i) the normalized wavefunction  for arbitrary time , and

(ii) the time evolution of the expectation value  of the particle’s coordinate.

1.12. Calculate the potential profiles  for that the following wavefunctions,

(i) , and

(ii) 

(with real coefficients  and  ), satisfy the 1D Schrödinger equation for a particle with mass . For each case, calculate 
, and , and compare the product  with the Heisenberg’s uncertainty relation.

1.13. A 1D particle of mass , moving in the field of a stationary potential , has the following eigenfunction

where  is the normalization constant, and  is a real constant. Calculate the function  and the state’s eigenenergy .

1.14. Calculate the density  of traveling-wave quantum states in large rectangular potential wells of various dimensions: 
, and 

 Use the finite-difference method with steps  and  to find as many eigenenergies as possible for a 1D particle in the
infinitely deep, hard-wall 1D potential well of width . Compare the results with each other, and with the exact formula. 

 Despite this common name, H. Hellmann (in 1937) and R. Feynman (in 1939) were not the first ones in the long list of
physicists who had (apparently, independently) discovered this equality. Indeed, it has been traced back to a 1922 paper by W.
Pauli, and was carefully proved by P. Güttinger in 

 You may like to start by reading about the finite-difference method - see, e.g., CM Sec.  or EM Sec. .

This page titled 1.9: Exercise Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Konstantin K.
Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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