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4.4: Change of Basis, and Matrix Diagonalization

From the discussion of the last section, it may look that the matrix language is fully similar to, and in many instances more
convenient than the general bra-ket formalism. In particular, Eqs. (54)-(55) and (63)-(64) show that any part of any bra-ket
expression may be directly mapped on the similar matrix expression, with the only slight inconvenience of using not only columns
but also rows (with their elements complex-conjugated), for state vector representation. This invites the question: why do we need
the bra-ket language at all? The answer is that the elements of the matrices depend on the particular choice of the basis set, very
much like the Cartesian components of a usual geometric vector depend on the particular choice of reference frame orientation

(Fig. 4), and very frequently, at problem solution, it is convenient to use two or more different basis sets for the same system. (Just
a bit more patience numerous examples will follow soon.)
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Fig. 4.4. The transformation of components of a 2D vector at a reference frame’s rotation.

With this motivation, let us explore what happens at the transform from one basis, {u}, to another one, {v} - both full and

orthonormal. First of all, let us prove that for each such pair of bases, and an arbitrary numbering of the states of each base, there
exists such an operator U that, first,

Unitary operator:

vj) =Ulu;), (4.4.1)
and, second,

oo =o' =1 (4.4.2)

(Due to the last property,'® U is called a unitary operator, and Eq. (75), a unitary transformation.)
A very simple proof of both statements may be achieved by construction. Indeed, let us take

Unitary operator: construction
UEZ‘Vj/><uj/', (4.4.3)
j/
- an evident generalization of Eq. (44). Then, using Eq. (38), we obtain
Uluj) = Z |er> <ujr | uj> = Z |le> dii =vj), (4.4.4)
]'( j/

so that Eq. (75) has been proved. Now, applying Eq. (31) to each term of the sum (77), we get

Conjugate unitary operator

At
U EZ‘Uj/><Vj/‘, (4.4.5)
j/

so that

’Uj> <Uj| (446)
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But according to the closure relation (44), the last expression is just the identity operator, so that one of Egs. (76) has been proved.
(The proof of the second equality is absolutely similar.) As a by-product of our proof, we have also got another important

expression - Eq. (79). It implies, in particular, that while, according to Eq. (75), the operator U performs the transform from the
"old" basis u; to the "new" basis v;, its Hermitian adjoint [fr performs the reciprocal transform:

1

U |’Uj> = Z |ujr> 5jj = |'LL]'> (447)

-

J

Now let us see how do the matrix elements of the unitary transform operators look like. Generally, as was discussed above, the
operator’s elements may depend on the basis we calculate them in, so let us be specific - at least initially. For example, let us
calculate the desired matrix elements Uj; * in the "old" basis {u}, using Eq. (77):

Uit g = <UJ|U|W> = <uj (Z o) (ugr ) | “j’> = <uj > vj"> G = (uj [ vy).- (4.4.8)
j” j"

Now performing a similar calculation in the "new" basis {v}, we get

Uij | inv = <vj|ﬁ|vj'> = <vj > o) (uyr

j!/

Uj'> =Y G (g llvg ) = (u; | vy). (4.4.9)
j/l
Surprisingly, the result is the same! This is of course true for the Hermitian conjugate (79) as well:

I (vj |uy). (4.4.10)

These expressions may be used, first of all, to rewrite Eq. (75) in a more direct form. Applying the first of Eqgs. (41) to any state v;
> of the "new" basis, and then Eq. (82), we get

o) = D lug) (ug [ vp) = Uy lug) (4.4.11)

7t

. =U.,
inu 2

Ul
if

!

Similarly, the reciprocal transform is
fup) =3 log) (v | up) =D U Jug). (4.4.12)
J J

These formulas are very convenient for applications; we will use them already in this section.

Next, we may use Egs. (83)-(84) to express the effect of the unitary transform on the expansion coefficients o; of the vectors of an
arbitrary state «, defined by Eq. (37). As a reminder, in the "old" basis {u} they are given by Egs. (40). Similarly, in the "new"
basis {v},

&l = (07 ). (4.4.13)

Again inserting the identity operator in its closure form (44) with the internal index j ’, and then using Egs. (84) and (40), we get

aj|inv <vj | E :|uj/> <u’j’
o
J

The reciprocal transform is performed by matrix elements of the operator U :

a> = Z (v |uj)(uy |a) = U;;., (uj | o) = Ui;,aj/ . (4.4.14)
7 i j

J inu

il = Ugay| . (4.4.15)
jr

muov

So, if the transform (75) from the "old" basis {u} to the "new" basis {v} is performed by a unitary operator, the change (88) of
state vectors components at this transformation requires its Hermitian conjugate. This fact is similar to the transformation of
components of a usual vector at coordinate frame rotation. For example, for a 2D vector whose actual position in space is fixed
(Fig. 4):
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but the reciprocal transform is performed by a different matrix, which may be obtained from that participating in Eq. (90) by the
replacement ¢ — —¢. This replacement has a clear geometric sense: if the "new" reference frame {x ’, y ’ } is obtained from the
"old" frame {z, y} by a counterclockwise rotation by angle ¢, the reciprocal transformation requires angle —¢. (In this analogy,
the unitary property (76) of the unitary transform operators corresponds to the equality of the determinants of both rotation
matrices to 1.)

Due to the analogy between expressions (88) and (89) on one hand, and our old friend Eq. (62) on the other hand, it is tempting to
skip indices in these new results by writing

|ine = U [a)inw,  |@)ine =Ula)ine. ( SYMBOLIC ONLY!) (4.4.17)

Since the matrix elements of U and T]’T do not depend on the basis, such language is not too bad and is mnemonically useful.
However, since in the bra-ket formalism (or at least its version presented in this course), the state vectors are basis-independent, Eq.
(91) has to be treated as a symbolic one, and should not be confused with the strict Egs. (88)-(89), and with the rigorous basis-
independent vector and operator equalities discussed in Sec. 2 .

Now let us use the same trick of identity operator insertion, repeated twice, to find the transformation rule for matrix elements of an
arbitrary operator:

Ajiliny = <”J‘|“i|”j’> = <”J’

(; k) <uk|> A (Z Juge) <ukl|>
.

vj,> =N "UlAw| Uy (4.4.18)
kK

inu

Ajy

me = U UL (4.4.19)
kK inv

In the spirit of Eq. (91), we may represent these results symbolically as well, in a compact form:

.

inv

A inu :ﬁA

~0'4

inv

(SYMBOLIC ONLY!) (4.4.20)

U, A

As a sanity check, let us apply Eq. (93) to the identity operator:
- (v'10)

e as it should be. One more (strict rather than symbolic) invariant of the basis change is the trace of any operator, defined as the
sum of the diagonal terms of its matrix:

I

(),

mu

(4.4.21)

inv i inu

TrA=TrA=)_ A (4.4.22)
j

The (easy) proof of this fact, using previous relations, is left for the reader’s exercise.

So far, I have implied that both state bases {u} and {v} are known, and the natural question is where does this information come
from in quantum mechanics of actual physical systems. To get a partial answer to this question, let us return to Eq. (68), which

defines the eigenstates and the eigenvalues of an operator. Let us assume that the eigenstates a; of a certain operator A form a full
and orthonormal set, and calculate the matrix elements of the operator in the basis {a} of these states, at their arbitrary numbering.
For that, it is sufficient to inner-multiply both sides of Eq. (68), written for some index j ’, by the bra-vector of an arbitrary state a;
of the same set:

<aj|A\ajr> = <aj |Ajf ajr> . (4423)

The left-hand side of this equality is the matrix element A;; * we are looking for, while its right-hand side is just A;-4d;; *. As a
result, we see that the matrix is diagonal, with the diagonal consisting of the operator’s eigenvalues:

Ay = Ajb; (4.4.24)

7

https://phys.libretexts.org/@go/page/57602



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/57602?pdf

LibreTextsw

In particular, in the eigenstate basis (but not necessarily in an arbitrary basis!), A;; means the same as A;. Thus the important
problem of finding the eigenvalues and eigenstates of an operator is equivalent to the diagonalization of its matrix, 17 i.e. finding
the basis in which the operator’s matrix acquires the diagonal form (98); then the diagonal elements are the eigenvalues, and the
basis itself is the desirable set of eigenstates.

To see how this is done in practice, let us inner-multiply Eq. (68) by a bra-vector of the basis (say, {¢} ) in that we have happened
to know the matrix elements A;; ’:

<’Ufk“21|aj> = (uk |4 a;) - (4.4.25)

On the left-hand side, we can (as usual :-) insert the identity operator between the operator A and the ket-vector, and then use the
closure relation (44) in the same basis {u}, while on the right-hand side, we can move the eigenvalue A; (a c-number) out of the
bracket, and then insert a summation over the same index as in the closure, compensating it with the proper Kronecker delta

symbol:
(wlix
kl

Moving out the signs of summation over &/, and using the definition (47) of the matrix elements, we get

Z (Ap — Ajopy) (wy | aj) =0. (4.4.27)
k/

Uk’> (uy | aj) = A; Z (up | a;) by (4.4.26)
kl

But the set of such equalities, for all /N possible values of the index k, is just a system of linear, homogeneous equations for
unknown c-numbers (uy, | a;). According to Egs. (82)-(84), these numbers are nothing else than the matrix elements Uyj of a
unitary matrix providing the required transformation from the initial basis {«} to the basis {a} that diagonalizes the matrix A. This
system may be represented in the matrix form:

A11 —Aj A12 Ulj
A21 A22—Aj N Ugj =0 (4428)
and the condition of its consistency,
Characteristic
. Ay — A Az

equation

£ Ay AZ2_Aj -~ | =0,

or
eigenvalues

plays the role of the characteristic equation of the system. This equation has IV roots A;— the eigenvalues of the operator A; after
they have been calculated, plugging any of them back into the system (102), we can use it to find N matrix elements
Uij(k=1,2,...N) corresponding to this particular eigenvalue. However, since the equations (103) are homogeneous, they allow
finding Uy; only to a constant multiplier. To ensure their normalization, i.e. enforce the unitary character of the matrix U, we may
use the condition that all eigenvectors are normalized (just as the basis vectors are):

(ajla;) = (aj | ) (we | aj) =) |U[* =1, (4.4.29)
e

k

for each j. This normalization completes the diagonalization. 8

Now (at last!) I can give the reader some examples. As a simple but very important case, let us diagonalize each of the operators
described (in a certain two-function basis {u}, i.e. in two-dimensional Hilbert space) by the so-called Pauli matrices

1 —1 1
O'zE(O ), ayz(q Z), O'ZE( 0 ) (4.4.30)
10 i 0 0 -1

Though introduced by a physicist, with a specific purpose to describe electron’s spin, these matrices have a general mathematical

significance, because together with the 2 x 2 identity matrix, they provide a full, linearly-independent system - meaning that an
arbitrary 2 x 2 matrix may be represented as
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(An A

=bl+cyo0, +c,0,+cC 0, (4.4.31)
Az Ag ) i ’
with a unique set of four c-number coefficients b, ¢, ¢, and c,.

Since the matrix o, is already diagonal, with the evident eigenvalues +1, let us start with diagonalizing the matrix o,. For it, the
characteristic equation (103) is evidently

—4; 1
1 -4

=0, ie A2-1=0, (4.4.32)

and has two roots, A; 5 = £1. (Again, the state numbering is arbitrary!) So the eigenvalues of the matrix o, are the same as of the
matrix . (The reader may readily check that the eigenvalues of the matrix o, are also the same.) However, the eigenvectors of the
operators corresponding to these three matrices are different. To find them for o, let us plug its first eigenvalue, A; = 41, back
into equations (101) spelled out for this particular case (j=1;k, k' =1,2) :

—(u1 | a1) +(ug | a1) =0,
(u1 | a1) —(ug | a1) =0.

These two equations are compatible (of course, because the used eigenvalue A; = +1 satisfies the characteristic equation), and
any of them gives

(wi |a1) =(u2 | a1),i.e. Unr = Uai. (4.4.33)
With that, the normalization condition (104) yields
1
5

Although the normalization is insensitive to the simultaneous multiplication of Uy; and Us; by the same phase factor exp{ip}

Ul = |Unf = (4.4.34)

with any real ¢, it is convenient to keep the coefficients real, for example taking ¢ = 0, to get

Uin=Uy = % (4.4.35)
Performing an absolutely similar calculation for the second characteristic value, Ay = —1, we get Ujs = —Uss, and we may
choose the common phase to have
Uip=—-Usp = L, (4.4.36)
V2
so that the whole unitary matrix for diagonalization of the operator corresponding to o, is **
U, =Ul = % (1 _11) , (4.4.37)

For what follows, it will be convenient to have this result expressed in the ket-relation form - see Egs. (85)-(86):

la1) = Unq |u1) +Usq |ug) = —=(|w1) +|ua)), |az2) =Uss |u1) +Uss |ug) = —=(Ju1) — |uz)), (4.4.38)

ur) = U, Jar) + Uy, az) = == (1) +az)), |u2) = Uy lar) + Uy laz) = —=(lar) —|az)).  (4.4.39)

Sl Sl
Sl sl

Now let me show that these results are already sufficient to understand the Stern-Gerlach experiments described in Sec. 1 - but with
two additional postulates. The first of them is that the interaction of a particle with the external magnetic field, besides that due to
its orbital motion, may be described by the following vector operator of its spin dipole magnetic moment: 20

m=S§, (4.4.40)

where the constant coefficient «, specific for every particle type, is called the gyromagnetic ratio, 2! and S is the vector operator of
spin, with three Cartesian components:

S=n,5,+n,5,+n.S, (4.4.41)
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Here n, , . are the usual Cartesian unit vectors in the 3D geometric space (in the quantum-mechanics sense, just c-numbers, or

rather " c-vectors"), while S, , are the "usual" (scalar) operators.

For the so-called spin —1 /2 particles (including the electron), these components may be simply, as

N IR
Sy = PR (4.4.42)
Spin-1/2
operator expressed via those of the Pauli vector operator 6 = n,6, +n,6, +n,d, , so that we may also write
-~ h
S§=5¢ (4.4.43)

In turn, in the so-called z-basis, each Cartesian component of the latter operator is just the corresponding Pauli matrix (105), so that
it may be also convenient to use the following 3D vector of these matrices:

n, n, —iny ) (4.4.44)

O =n,0; +Nny0y+N,0, = ( i
n, +iny —n,

The z-basis, in which such matrix representation of & is valid, is defined as an orthonormal basis of certain two states, commonly
denoted 1 an |, in that the matrix of the operator &, is diagonal, with eigenvalues, respectively, +1 and —1, and hence the matrix
S, = (h/2)o, of S is also diagonal, with the eigenvalues +A/2 and —k/2. Note that we do not "understand" what exactly the
states 1 and | are, 22 but loosely associate them with some internal rotation of a spin- 1/2 particle about the z-axis, with either
positive or negative angular momentum component S,. However, attempts to use such classical interpretation for quantitative
predictions runs into fundamental difficulties - see Sec. 6 below.

The second necessary postulate describes the general relation between the bra-ket formalism and experiment. Namely, in quantum

. . .. - Al . .
mechanics, each real observable A is represented by a Hermitian operator A = A , and the result of its measurement, 2 in a
quantum state o described by a linear superposition of the eigenstates a; of the operator,

ja) = ajlag), witha; = (a;]a), (4.4.45)
j

may be only one of the corresponding eigenvalues A;. 24 Specifically, if the ket (118) and all eigenkets |a;) are normalized to 1,
(a]a)=1, (a;j|a;)=1, (4.4.46)
then the probability of a certain measurement outcome A; is 25
2 e
Wi =lo,|" =aja; =(a|a;) (a; | @), (4.4.47)

This relation is evidently a generalization of Eq. (1.22) in wave mechanics. As a sanity check, let us assume that the set of the
eigenstates a; is full, and calculate the sum of the probabilities to find the system in one of these states:

DW= (ala;)(a;| @) =(a|l]|a)=1. (4.4.48)
j J

Now returning to the Stern-Gerlach experiment, conceptually the description of the first (z2— oriented) experiment shown in Fig. 1
is the hardest for us, because the statistical ensemble describing the unpolarized electron beam at its input is mixed ("incoherent"),
and cannot be described by a pure ("coherent") superposition of the type (6) that have been the subject of our studies so far. (We
will discuss such mixed ensembles in Chapter 7.) However, it is intuitively clear that its results are compatible with the description
of the two output beams as sets of electrons in the pure states 1 and |, respectively. The absorber following that first stage (Fig. 2)
just takes all spin-down electrons out of the picture, producing an output beam of polarized electrons in the definite 1 state. For
such a beam, the probabilities (120) are W} =1 and W =0. This is certainly compatible with the result of the "control"
experiment shown on the bottom panel of Fig. 2: the repeated SG (z) stage does not split such a beam, keeping the probabilities the
same.

Now let us discuss the double Stern-Gerlach experiment shown on the top panel of Fig. 2. For that, let us represent the z-polarized
beam in another basis - of the two states (I will denote them as — and <) in that, by definition, the matrix S,, is diagonal. But this
is exactly the set we called a; 2 in the o, matrix diagonalization problem solved above. On the other hand, the states 1 and | are
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exactly what we called w5 in that problem, because in this basis, we know matrix o explicitly - see Eq. (117). Hence, in the
application to the electron spin problem, we may rewrite Egs. (114) as

_ L

1
2= TN+ == D=1,
|¢>=%<H>+|e>>, |¢>=%<H>—e>>,

Currently for us the first of Egs. (123) is most important, because it shows that the quantum state of electrons entering the SG ()
stage may be represented as a coherent superposition of electrons with S, = +h/2 and S, = —h/2. Notice that the beams have
equal probability amplitude moduli, so that according to Eq. (122), the split beams — and <— have equal intensities, in accordance
with experimental results. (The minus sign before the second ket-vector is of no consequence here, but it may have an impact on
outcomes of other experiments - for example, if coherently split beams are brought together again.)

Now, let us discuss the most mysterious (from the classical point of view) multi-stage SG experiment shown on the middle panel of
Fig. 2. After the second absorber has taken out all electrons in, say, the <— state, the remaining electrons, all in the state —, are
passed to the final, SG (z), stage. But according to the first of Eqs. (122), this state may be represented as a (coherent) linear
superposition of the 1 and | states, with equal probability amplitudes. The final stage separates electrons in these two states into
separate beams, with equal probabilities Wy = W =1/2 to find an electron in each of them, thus explaining the experimental
results.

To conclude our discussion of the multistage Stern-Gerlach experiment, let me note that though it cannot be explained in terms of
wave mechanics (which operates with scalar de Broglie waves), it has an analogy in classical theories of vector fields, such as the
classical electrodynamics. Indeed, let a plane electromagnetic wave propagate normally to the plane of the drawing in Fig. 5, and
pass through the linear polarizer 1.

Fig. 4.5. A light polarization sequence similar to the three-stage Stern-Gerlach experiment shown on the middle panel of Fig.
2.

Similarly to the output of the initial SG (z) stages (including the absorbers) shown in Fig. 2, the output wave is linearly polarized
in one direction - the vertical direction in Fig. 5. Now its electric field vector has no horizontal component — as may be revealed by
the wave’s full absorption in a perpendicular polarizer 3 . However, let us pass the wave through polarizer 2 first. In this case, the
output wave does acquire a horizontal component, as can be, again, revealed by passing it through polarizer 3 . If the angles
between the polarization directions 1 and 2 , and between 2 and 3 , are both equal to 7/4, each polarizer reduces the wave
amplitude by a factor of v/2, and hence the intensity by a factor of 2, exactly like in the multistage SG experiment, with the
polarizer 2 playing the role of the SG () stage. The "only" difference is that the necessary angle is 7 /4, rather than by 7 /2 for the
SternGerlach experiment. In quantum electrodynamics (see Chapter 9 below), which confirms classical predictions for this
experiment, this difference may be interpreted by that between the integer spin of electromagnetic field quanta (photons) and the
half-integer spin of electrons.

N A1
16 An alternative way to express Eq. (76) is to write U - U , but I will try to avoid this language.

17 Note that the expression "matrix diagonalization” is a very common but dangerous jargon. (Formally, a matrix is just a matrix, an
ordered set of c-numbers, and cannot be "diagonalized".) It is OK to use this jargon if you remember clearly what it actually means
- see the definition above.

18 A possible slight complication here is that the characteristic equation may give equal eigenvalues for certain groups of different
eigenvectors. In such cases, the requirement of the mutual orthogonality of these degenerate states should be additionally enforced.
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19 Note that though this particular unitary matrix is Hermitian, this is not true for an arbitrary choice of phases (.
20 This was the key point in the electron spin’s description, developed by W. Pauli in 1925-1927.

21 For the electron, with its negative charge g = —e, the gyromagnetic ratio is negative: 7, = —gee /2m, , where g, ~2 is the
dimensionless g-factor. Due to quantum-electrodynamic (relativistic) effects, this g-factor is slightly higher than

2:g.=2(1+a/2m+...) ~2.002319304. . ., where a = €% /dme, hic = (EH/meCQ)l/2 ~ 1/137 is the so-called fine structure
constant. (The origin of its name will be clear from the discussion in Sec. 6.3.)

22 1f you think about it, the word "understand" typically means that we can express a new, more complex notion in terms of those
discussed earlier and considered "known". In our current case, we cannot describe the spin states by some wavefunction #(r), or
any other mathematical notion discussed in the previous three chapters. The braket formalism has been invented exactly to enable
mathematical analyses of such "new" quantum states we do not initially "understand". Gradually we get accustomed to these
notions, and eventually, as we know more and more about their properties, start treating them as "known" ones.

23 Here again, just like in Sec. 1.2, the statement implies the abstract notion of "ideal experiments", deferring the discussion of real
(physical) measurements until Chapter 10 .

24 As a reminder, at the end of Sec. 3 we have already proved that such eigenstates corresponding to different values A;j are
orthogonal. If any of these values is degenerate, i.e. corresponds to several different eigenstates, they should be also selected
orthogonal, in order for Eq. (118) to be valid.

25 This key relation, in particular, explains the most common term for the (generally, complex) coefficients a;, the probability
amplitudes.
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