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9.3: Photon Emission- Spontaneous and Stimulated
In our simple model of photon counting, considered in the last section, the trigger atom in the counter absorbed a photon. Now let
us have a look at the opposite process of spontaneous emission of photons by an atom in an excited state, still using the same
electric-dipole approximation (24) for the atom-to-field interaction. For this, we may still use the Golden Rule for the model
depicted in Fig. 6.12, but now the roles have changed: we have to associate the operator  with the electric dipole moment of the
atom, while the operator , with the electric field, so that the continuous spectrum of the system  represents the plurality of the
electromagnetic field modes into which the spontaneous radiation may happen. Since now the transition increases the energy of the
electromagnetic field, and decreases that of the atom, after the multiplication of the field bracket in Eq. (27a) by exp , and
the second, by , we may keep only the photon creation operator whose time evolution (26) compensates this additional
fast "rotation". As a result, the Golden Rule takes the following form:

where all operators and states are time-independent (i.e. taken in the Schrödinger picture), and  is the density of final states of the
electromagnetic field - which in this problem plays the role of the atom’s environment.  Here the electromagnetic field oscillator
has been assumed to be initially in the ground state - the assumption that will be changed later in this section.

This relation, together with Eq. (19), shows that for the field’s matrix element be different from zero, the final state of the field has
to be the first excited Fock state, . (By the way, this is exactly the most practicable way of generating an excited Fock state of
a field oscillator.) With that, Eq. (48) yields

where the density  of the excited electromagnetic field states should be calculated at the energy  , and  is the Cartesian
component of the vector  along the electric dipole’s direction. The expression for the density  was our first formula in this
course - see Eq. (1.1).  From it, we get

where the bounding volume  should be large enough to ensure spectrum’s virtual continuity:  . Because of
that, in the normalization condition used to simplify Eq. (9), we may consider  constant. Let us represent this square as a sum
of squares of the three Cartesian components of the vector  : one of those  aligned with the dipole’s direction; due to the
space isotropy we may write

As a result, the normalization condition yields

and Eq. (49) gives the famous (and very important) formula 

Leaving a comparison of this formula with the classical theory of radiation,  and the exact evaluation of  for a particular
transition in the hydrogen atom, for reader’s exercises, let me just estimate its order of magnitude. Assuming that 

 and , and taking into account the definition (6.62) of the fine
structure constant , we get

This estimate shows that the emission lines at atomic transitions are typically very sharp. With the present-day availability of high-
speed electronics, it also makes sense to evaluate the time scale  of the typical quantum transition: for a typical optical
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frequency , it is close to . This is exactly the time constant that determines the time-delay dependence of the
photon counting statistics of the spontaneously emitted radiation - see Fig. 3. Colloquially, this is the temporal scale of the photon
emitted by an atom. 

Note, however, that the above estimate of  is only valid for a transition with a non-zero electricdipole matrix element. If it equals
zero, i.e. the transition does not satisfy the selection rules,  - say, due to the initial and final state symmetry - it is "forbidden". The
"forbidden" transition may still take place due to a different, smaller interaction (say, via a magnetic dipole field of the atom, or its
quadrupole electric field  ), but takes much longer. In some cases the increase of  is rather dramatic sometimes to hours! Such
long-lasting radiation is called the luminescence - or the fluorescence if the initial atom’s excitation was due to external radiation of
a higher frequency, followed first by nonradiative transitions down the ladder of energy levels.

Now let us consider a more general case when the electromagnetic field mode of frequency  is initially in an arbitrary Fock state 
, and from it may either get energy  from the atomic system (photon emission) or, vice versa, give such energy back to the

atom (photon absorption). For the photon emission rate, an evident generalization of Eq. (48) gives

where both brackets should be calculated in the Schrödinger picture, and  is the spontaneous emission rate (48) of the same
atomic system. According to the second of Eqs. (19), at the photon emission, the final field state has to be the Fock state with 

, and Eq. (55) yields

Thus the initial field increases the photon emission rate; this effect is called the stimulated emission of radiation. Note that the
spontaneous emission may be considered as a particular case of the stimulated emission for , and hence interpreted as the
emission stimulated by the ground state of the electromagnetic field  one more manifestation of the non-trivial nature of this
"vacuum" state.

On the other hand, following the arguments of Sec.  for the description of radiation absorption, the photon creation operator
has to be replaced with the annihilation operator, giving the rate ratio

According to this relation and the first of Eqs. (19), the final state of the field at the photon absorption has to be the Fock state with 
, and Eq. (57) yields

The results (56) and (58) are usually formulated in terms of relations between the Einstein coefficients  and  defined in the way
shown in Fig. 4, where the two energy levels are those of the atom,  is the rate of energy absorption from the electromagnetic
field in its  Fock state, and  is that of energy emission into the field, initially in the same state. In this notation, Eqs. (56) and
(58) yield 

because each of these coefficients equals the spontaneous emission rate .

Fig. 9.4. The Einstein coefficients on the atomic quantum transition diagram – cf. Fig. 7.6.
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I cannot resist the temptation to use this point for a small detour - an alternative derivation of the Bose-Einstein statistics for
photons. Indeed, in the thermodynamic equilibrium, the average probability flows between levels 1 and 2 (see Fig. 4 again) should
be equal: 30

where  and  are the probabilities for the atomic system to occupy the corresponding levels, so that Eqs. (56) and (58) yield

where  is the average number of photons in the field causing the interstate transitions. But, on the other hand, for an atomic
subsystem only weakly coupled to its electromagnetic environment, we ought to have the Gibbs distribution of these probabilities:

Requiring Eqs. (61) and (62) to give the same result for the probability ratio, we get the Bose-Einstein distribution for the
electromagnetic field in thermal equilibrium:

the same result as that obtained in Sec.  by other means - see Eq. (7.26b).

Now returning to the discussion of Eqs. (56) and (58), their very important implication is the possibility to achieve the stimulated
emission of coherent radiation using the level occupancy inversion. Indeed, if the ratio  is larger than that given by Eq.
(62), the net power flow from the atomic system into the electromagnetic field,

may be positive. The necessary inversion may be produced using several ways, notably by intensive quantum transitions to level 2
from an even higher energy level (which, in turn, is populated, e.g., by absorption of external radiation, usually called pumping, at
a higher frequency.)

A less obvious, but crucial feature of the stimulated emission is spelled out by Eq. (55): as was mentioned above, it shows that the
final state of the field after the absorption of energy  from the atom is a pure (coherent) Fock state . Colloquially, one
may say that the new,  photon emitted from the atom is automatically in phase with the  photons that had been in the
field mode initially, i.e. joins them coherently.  The idea of stimulated emission of coherent radiation using population inversion 

 was first implemented in the early 1950s in the microwave range (masers) and in 1960 in the optical range (lasers). Nowadays,
lasers are ubiquitous components of almost all high-tech systems and constitute one of the cornerstones of our technological
civilization.

A quantitative discussion of laser operation is well beyond the framework of this course, and I have to refer the reader to special
literature,  but still would like to briefly mention two key points:

(i) In a typical laser, each generated electromagnetic field mode is in its Glauber (rather than the Fock) state, so that Eqs. (56) and
(58) are applicable only for the  averaged over the Fock-state decomposition of the Glauber state - see Eq. (5.134).

(ii) Since in a typical laser , its operation may be well described using quasiclassical theories that use Eq. (64) to
describe the electromagnetic energy balance (with the addition of a term describing the energy loss due to field absorption in
external components of the laser, including the useful load), plus the equation describing the balance of occupancies  due to all
interlevel transitions - similar to Eq. (60), but including also the contribution(s) from the particular population inversion mechanism
used in the laser. At this approach, the role of quantum mechanics in laser science is essentially reduced to the calculation of the
parameter  for the particular system.

This role becomes more prominent when one needs to describe fluctuations of the laser field. Here two approaches are possible,
following the two options discussed in Chapter 7 . If the fluctuations are relatively small, one can linearize the Heisenberg
equations of motion of the field oscillator operators near their stationary-lasing "values", with the Langevin "forces" (also time-
dependent operators) describing the fluctuation sources, and use these Heisenberg-Langevin equations to calculate the radiation
fluctuations, just as was described in Sec. 7.5. On the other hand, near the lasing threshold, the field fluctuations are relatively
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large, smearing the phase transition between the no-lasing and lasing states. Here the linearization is not an option, but one can use
the density-matrix approach described in Sec. 7.6, for the fluctuation analysis.  Note that while the laser fluctuations may look
like a peripheral issue, pioneering research in that field has led to the development of the general theory of open quantum systems,
which was discussed in Chapter 7 .

 Here the sum over all electromagnetic field modes  may be smuggled back. Since in the quasi-static approximation ,
which is necessary for the interaction representation by Eq. (24), the matrix elements in Eq. (48) are virtually independent on the
direction of the wave vectors, and their magnitudes are fixed by , the summation is reduced to the calculation of the total  for all
modes, and the averaging of  see below.

 If the same atom is placed into a high-  resonant cavity (see, e.g., EM 7.9), the rate of its photon emission is strongly
suppressed at frequencies between the cavity resonances (where  ) - see, e.g., the review by . Haroche and D. Klepner,
Phys. Today  (Jan. 1989). On the other hand, the emission is strongly (by a factor , where  is cavity’s volume)
enhanced at resonance frequencies - the so-called Purcell effect, discovered by E. Purcell in the 1940s. For a brief discussion of this
and other quantum electrodynamic effects in cavities, see the next section.

 This was the breakthrough result obtained by P. Dirac in 1927, which jumpstarted the whole field of quantum electrodynamics.
An equivalent expression was obtained from more formal arguments in 1930 by V. Weisskopf and E. Wigner, so that sometimes
Eq. (53) is (very unfairly) called the "Weisskopf-Wigner formula".

 See, e.g., EM Sec. 8.2, in particular Eq. (8.29).

 The scale  of the spatial extension of the corresponding wave packet is surprisingly macroscopic - in the range of a few
millimeters. Such a "human" size of spontaneously emitted photons makes the usual optical table, with its -scale
components, the key equipment for many optical experiments - see, e.g., Fig. 

 As was already discussed in Sec. 5.6, for a single spin-less particle moving in a spherically-symmetric potential (e.g., a
hydrogen-like atom), the orbital selection rules are simple: the only allowed electric-dipole transitions are those with 

 and  or . The simplest example of the transition that does  satisfy this rule, i.e.
is "forbidden", is that between the -states  with  and ; because of that, the lifetime of the lowest excited -state
of a hydrogen atom is as long as .

 See, e.g., EM Sec. 8.9.

 Note, however, a major difference between the rate  discussed in , and  in Eq. (57). In our current case, the atomic
transition is still between two discrete energy levels (see Fig. 4 below), so that the rate  is proportional to , the density of final
states of the electromagnetic field, i.e. the same density as in Eq. (48) and beyond, while the rate (27) is proportional to , the
density of final (ionized) states of the "trigger" atom-more exactly, of it’s the electron released at its ionization.

 These relations were conjectured, from very general arguments, by Albert Einstein as early as 

 This is just a particular embodiment of the detailed balance equation (7.198).

 It is straightforward to show that this fact is also true if the field is initially in the Glauber state - which is more typical for modes
in practical lasers.

 This idea may be traced back at least to an obscure 1939 publication by V. Fabrikant.

 I can recommend, for example, P. Milloni and J. Eberly, Laser Physics,  ed., Wiley, 2010, and a less technical text by A.
Yariv, Quantum Electronics, 3rd ed., Wiley, 

 This path has been developed (also in the mid-1960s), by several researchers, notably including M. Sully and W. Lamb - see,
e.g., M. Sargent III, M. Scully, and W. Lamb, Jr., Laser Physics, Westview, 
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