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4.8: Exercise Problems
4.1. Prove that if  and  are linear operators, and  is a -number, then:

(i) ;

(ii) 

(iii) 

(iv) the operators  and  are Hermitian.

4.2. Prove that for any linear operators , and ,

4.3. Calculate all possible binary products  (for  ) of the Pauli matrices, defined by Eqs. (105), and their
commutators and anticommutators (defined similarly to those of the corresponding operators). Summarize the results, using the
Kronecker delta and Levi-Civita permutation symbols. 

4.4. Calculate the following expressions,

(i) , and then

(ii) ,

for the scalar product  of the Pauli matrix vector  by an arbitrary -number geometric vector ,
where  is an integer, and  is an arbitrary scalar -number.

Hint: For task (ii), you may like to use the binomial theorem,  and then transform the result in a way enabling you to use the same
theorem backward.

4.5. Use the solution of the previous problem to derive Eqs. (2.191) for the transparency  of a system of  similar, equidistant,
delta-functional potential barriers.

4.6. Use the solution of Problem 4(i) to spell out the following matrix: , where  is the 3D vector (117) of the Pauli
matrices,  is a -number geometric vector of unit length, and  is a  number scalar.

4.7. Use the solution of Problem 4(ii) to calculate , where  is an arbitrary  matrix.

4.8. Express all elements of the matrix  explicitly via those of the  matrix . Spell out your result for the
following matrices:

with real  and .

4.9. Prove that for arbitrary square matrices  and ,

Is each diagonal element  necessarily equal to  ?

4.10. Calculate the trace of the following  matrix:

where  is the Pauli matrix vector, while , and  are arbitrary -number vectors.

4.11. Prove that the matrix trace of an arbitrary operator does not change at its arbitrary unitary transformation.

4.12. Prove that for any two full and orthonormal bases  and  of the same Hilbert space,
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†
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4.13. Is the  scattering matrix , defined by Eq. (2.124), unitary? What about the 1D transfer matrix T defined by Eq. (2.125)?

4.14. Calculate the trace of the following matrix:

where  is the Pauli matrix vector, while  and  are -number geometric vectors.

4.15. Prove the following vector-operator identity:

where  is the Pauli matrix vector, and  is the  identity matrix. Hint: Take into account that the vector operators  and  are
defined in the orbital-motion Hilbert space, different from that of the Pauli vector-matrix , and hence commute with it - even
though they do not commute with each other.

4.16. Let  be eigenvalues of some operator . Express the following two sums,

via the matrix elements  ’ of this operator in an arbitrary basis.

4.17. Calculate  of a spin-1/2 in the quantum state with the following ket-vector:

where  and  are the eigenstates of the Pauli matrices  and , respectively.

Hint: Double-check whether your solution is general.

4.18. A spin-  is fully polarized in the positive -direction. Calculate the probabilities of the alternative outcomes of a perfect
Stern-Gerlach experiment with the magnetic field oriented in an arbitrary different direction, performed on a particle in this spin
state.

4.19. In a certain basis, the Hamiltonian of a two-level system is described by the matrix

while the operator of some observable  of this system, by the matrix

For the system’s state with the energy definitely equal to , find the possible results of measurements of the observable  and the
probabilities of the corresponding measurement outcomes.

4.20. Certain states  form an orthonormal basis of a system with the following Hamiltonian

where  is a real constant, and h.c. means the Hermitian conjugate of the previous expression. Calculate its stationary states and
energy levels. Can you relate this system to any other(s) discussed earlier in the course?

4.21. Guided by Eq. (2.203), and by the solutions of Problems  and , suggest a Hamiltonian describing particle’s dynamics
in an infinite  chain of similar potential wells in the tightbinding approximation, in the bra-ket formalism. Verify that its
eigenstates and eigenvalues correspond to those discussed in Sec. . 4.22. Calculate eigenvectors and eigenvalues of the
following matrices:

1D S

exp{ia ⋅ σ} exp{ib ⋅ σ}, (4.8.6)

σ a b c

(σ ⋅ )(σ ⋅ ) = I ⋅ + iσ ⋅ ( × ),r̂ p̂ r̂ p̂ r̂ p̂ (4.8.7)

σ I 2 ×2 r̂ p̂

σ

Aj Â
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δ

3.11 4.20

1D

2.7

A = , B =
⎛

⎝
⎜

0

1

0

1

0

1

0

1

0

⎞

⎠
⎟

⎛

⎝

⎜⎜
⎜

0

0

0

1

0

0

1

0

0

1

0

0

1

0

0

0

⎞

⎠

⎟⎟
⎟

(4.8.13)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/57606?pdf


4.8.3 https://phys.libretexts.org/@go/page/57606

. A certain state  is an eigenstate of each of two operators,  and . What can be said about the corresponding eigenvalues 
and , if the operators anticommute?

4.24. Derive the differential equation for the time evolution of the expectation value of an observable, using both the Schrödinger
picture and the Heisenberg picture of quantum dynamics.

4.25. At , a spin-  whose interaction with an external field is described by the Hamiltonian

(where  are real -number constants, and  are the Pauli operators), was in the state , one of the two eigenstates of . In
the Schrödinger picture, calculate the time evolution of:

(i) the ket-vector  of the spin (in any time-independent basis you like),

(ii) the probabilities to find the spin in the states  and , and

(iii) the expectation values of all three Cartesian components , etc.  of the spin vector.

Analyze and interpret the results for the particular case .

Hint: Think about the best basis to use for the solution.

4.26. For the same system as in the previous problem, use the Heisenberg picture to calculate the time evolution of:

(i) all three Cartesian components of the spin operator , and

(ii) the expectation values of the spin components.

Compare the latter results with those of the previous problem.

4.27. For the same system as in the two last problems, calculate matrix elements of the operator  in the basis of the stationary
states of the system.

4.28. In the Schrödinger picture of quantum dynamics, certain three operators satisfy the following commutation relation:

What is their relation in the Heisenberg picture, at a certain time instant  ?

4.29. Prove the Bloch theorem given by either Eq. (3.107) or Eq. (3.108). Hint: Consider the translation operator  defined by the
following result of its action on an arbitrary function  :

for the case when  is an arbitrary vector of the Bravais lattice (3.106). In particular, analyze the commutation properties of this
operator, and apply them to an eigenfunction  of the stationary Schrödinger equation for a particle moving in the 3D periodic
potential described by Eq. (3.105).

4.30. A constant force  is applied to an (otherwise free) 1D particle of mass . Calculate the stationary wavefunctions of the
particle in:

(i) the coordinate representation, and

(ii) the momentum representation.

Discuss the relation between the results.

4.31. Use the momentum representation to re-solve the problem discussed at the beginning of Sec. 2.6, i.e. calculate the
eigenenergy of a 1D particle of mass , localized in a very short potential well of "weight" .

4.32. The momentum representation of a certain operator of  orbital motion is . Find its coordinate representation.

4.33. For a particle moving in a 3D periodic potential, develop the bra-ket formalism for the qrepresentation, in which a complex
amplitude similar to  in Eq. (2.234) (but generalized to 3D and all energy bands) plays the role of the wavefunction. In particular,
calculate the operators  and  in this representation, and use the result to prove Eq. (2.237) for the 1D case in the low-field limit.
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4.34. A uniform, time-independent magnetic field  is induced in one semispace, while the other semi-space is field-free, with a
sharp, plane boundary between these two regions. A monochromatic beam of non-relativistic, electricallyneutral spin-  particles
with a gyromagnetic ratio  in a certain spin state and with a kinetic energy , is incident on this boundary, from the field-
free side, under angle  - see figure on the right. Calculate the coefficient of particle reflection from the boundary.

 The fact that  may be different from zero even for electrically-neutral particles, such as neutrons, is explained by the Standard
Model of the elementary particles, in which a neutron "consists" (in a broad sense of the word) of three electrically-charged quarks
with zero net charge.

This page titled 4.8: Exercise Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Konstantin K.
Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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