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2.7: 2.6. Localized State Coupling, and Quantum Oscillations
Now let us discuss one more effect specific to quantum mechanics. Its mathematical description may be simplified using a model
potential consisting of two very short and deep potential wells. For that, let us first analyze the properties of a single well of this
type (Fig. 18), which may be modeled similarly to the short and high potential barrier - see Eq. (74), but with a negative "weight":

In contrast to its tunnel-barrier counterpart (74), such potential sustains a stationary state with a negative eigenenergy , and a
localized eigenfunction , with  at .

Fig. . Delta-functional potential well and its localized eigenstate (schematically).

Indeed, at , so the  Schrödinger equation is reduced to the Helmholtz equation (1.83), whose localized
solutions with  are single exponents, vanishing at large distances: 

(The coefficients before the exponents have been selected equal to satisfy the boundary condition (76) of the wavefunction’s
continuity at .) Plugging Eq. (159) into the second boundary condition, given by Eq. (75), but now with the negative sign
before , we get

in which the common factor  may be canceled. This equation  has one solution for any  :

and hence the system has only one (ground) localized state, with the following eigenenergy: 40

Now we are ready to analyze localized states of the two-well potential shown in Fig. 19:

Here we may still use the single-exponent solutions, similar to Eq. (159), for the wavefunction outside the interval ,
but inside the interval, we need to take into account both possible exponents:

with the parameter  defined as in Eq. (159). The last of these equivalent expressions is more convenient because due to the
symmetry of the potential (163) to the central point , the system’s eigenfunctions should be either symmetric (even) or
antisymmetric (odd) functions of  (see Fig. 19), so that they may be analyzed separately, only for one half of the system, say 

, and using just one of the hyperbolic function (164) in each case.
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Fig. 2.19. A system of two coupled potential wells, and its localized eigenstates (schematically).

For the antisymmetric eigenfunction, Eqs. (159) and (164) yield

where the front coefficient in the lower line has been selected to satisfy the condition (76) of the wavefunction’s continuity at 
 and hence at . What remains is to satisfy the condition (75), with a negative sign before , for the

derivative’s jump at that point. This condition yields the following characteristic equation:

where , given by Eq. (161), is the value of  for a single well, i.e. the reciprocal spatial width of its localized eigenfunction - see
Fig. 18 .

Figure 20 a shows both sides of Eq. (166) as functions of the dimensionless product , for several values of the parameter ,
i.e. of the normalized distance between the two wells. The plots show, first of all, that as the parameter  is decreased, the LHS
and RHS plots cross (i.e. Eq. (166) has a solution) at lower and lower values of . At , the left-hand side of the last form
of this equation may be approximated as . Comparing this expression with the right-hand side of the characteristic equation,
we see that this transcendental equation has a solution (i.e. the system has an antisymmetric localized state) only if , i.e. if
the distance  between the two narrow potential wells is larger than the following value,

which is equal to the characteristic spread of the wavefunction in a single well - see Fig. 18. (At  , meaning that
the state’s localization becomes weaker and weaker.)

(a) the antisymmetric eigenstate (165), and (b) the symmetric eigenstate (171).

In the opposite limit of large distances between the potential wells, i.e. , Eq. (166) shows that  as well, so that its
left-hand side may be approximated as , and the equation yields
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This result means that the eigenfunction is an antisymmetric superposition of two virtually unperturbed wavefunctions (159) of
each partial potential well:

and the front coefficient is selected in such a way that if the eigenfunction  of each well is normalized, so is . Plugging the
middle (more exact) form of Eq. (168) into the last of Eqs. (159), we can see that in this limit the antisymmetric state’s energy is
only slightly higher than the eigenenergy  of a single well, given by Eq. (162):

The symmetric eigenfunction has a form reminding Eq. (165), but still different from it:

giving a characteristic equation similar in structure to Eq. (166), but with a different left-hand side:

Figure  shows both sides of this equation for several values of the parameter . It is evident that in contrast to Eq. (166), Eq.
(172) has a unique solution (and hence the system has a localized symmetric eigenstate) for any value of the parameter , i.e. for
any distance between the partial wells. In the limit of very close wells (i.e. their strong coupling), , we get , 

, and Eq. (172) yields , leading to a four-fold increase of the eigenenergy’s magnitude in comparison
with that of the single well:

The physical meaning of this result is very simple: two very close potential wells act (on the symmetric eigenfunction only!)
together, so that their "weights"  just add up.

In the opposite, weak coupling limit, i.e. , Eq. (172) shows that  as well, so that its left-hand side may be
approximated as , and the equation yields

In this limit, the eigenfunction is a symmetric superposition of two virtually unperturbed wavefunctions (159) of each partial
potential well:

and the eigenenergy is also close to the energy  of a partial well, but is slightly lower:

where  is again given by the last of Eqs. (170).

So, the eigenenergy of the symmetric state is always lower than that of the antisymmetric state. The physics of this effect (which
remains qualitatively the same in more complex two-component systems, most importantly in diatomic molecules such as  ) is
evident from the sketch of the wavefunctions  and , given by Eqs. (165) and (171), in Fig. 19. In the antisymmetric mode, the
wavefunction has to vanish at the center of the system, so that each its half is squeezed to one half of the system’s spatial extension.
Such a squeeze increases the function’s gradient, and hence its kinetic energy (1.27), and hence its total energy. On the contrary, in
the symmetric mode, the wavefunction effectively spreads into the counterpart well. As a result, it changes in space slower, and
hence its kinetic energy is also lower.

Even more importantly, the symmetric state’s energy decreases as the distance  is decreased, corresponding to the effective
attraction of the partial wells. This is a good toy model of the strongest (and most important) type of atomic cohesion - the covalent
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(or "chemical") bonding.  In the simplest case of the  molecule, each of two electrons of the system, in its ground state, 
reduces its kinetic energy by spreading its wavefunction around both hydrogen nuclei (protons), rather than being confined near
one of them - as it had to be in a single atom. The resulting bonding is very strong: in chemical units, , i.e.  per
molecule. Perhaps counter-intuitively, this quantum-mechanical covalent bonding is even stronger than the strongest classical
(ionic) bonding due to electron transfer between atoms, leading to the Coulomb attraction of the resulting ions. (For example, the
atomic cohesion in the  molecule is just .)

Now let us analyze the dynamic properties of our model system (Fig. 19) because such a pair of weakly coupled potential wells is
our first example of the very important class of two-level systems.  It is easiest to do in the weak-coupling limit , when
the simple results (168)-(170) and (174)-(176) are quantitatively valid. In particular, Eqs. (169) and (175) enable us to represent the
quasi-localized states of the particle in each partial well as linear combinations of its two eigenstates:

Let us perform the following thought ("gedanken") experiment: place a particle, at , into one of these quasi-localized states,
say , and leave the system alone to evolve, so that

According to the general solution (1.69) of the time-independent Schrödinger equation, the time dynamics of this wavefunction
may be obtained simply by multiplying each eigenfunction by the corresponding complex-exponential time factor:

From here, using Eqs. (170) and (176), and then Eqs. (169) and (175) again, we get

This result implies, in particular, that the probabilities  and  to find the particle, respectively, in the right and left wells
change with time as

mercifully leaving the total probability constant: . (If our calculation had not passed this sanity check, we would be
in big trouble.)

This is the famous effect of quantum oscillations  of the particle’s wavefunction between two similar, coupled subsystems, with
the frequency

In its last form, this result does not depend on the assumption of weak coupling, though the simple form (181) of the oscillations,
with its  probability variations, does. (Indeed, at a strong coupling of two subsystems, the very notion of the quasi-localized
states  and  is ambiguous.) Qualitatively, this effect may be interpreted as follows: the particle, placed into one of the
potential wells, tries to escape from it via tunneling through the potential barrier separating the wells. (In our particular system,
shown in Fig. 17, the barrier is formed by the spatial segment of length , which has the potential energy,  0 , higher than the
eigenstate energy .) However, in the two-well system, the particle can only escape into the adjacent well. After the tunneling
into that counterpart well, the particle tries to escape from it, and hence comes back, etc. - very much as a classical 1D oscillator,
initially deflected from its equilibrium position, at negligible damping.

Some care is required at using such interpretation for quantitative conclusions. In particular, let us compare the period  of
the oscillations (181) with the metastable state’s lifetime discussed in the previous section. For our particular model, we may use
the second of Eqs. (170) to write
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where  is the effective attempt time. On the other hand, according to Eq. (80), the transparency  of our
potential barrier, in this limit, scales as  so that according to the general relation (153), the lifetime  is of the order
of . This is a rather counterintuitive result: the speed of particle tunneling into a similar adjacent well is much
higher than that, through a similar barrier, to the free space!In order to show that this important result is not an artifact of our delta-
functional model of the potential barrier, and also compare  and  more directly, let us analyze the quantum oscillations between
two weakly coupled wells, now assuming that the (symmetric) potential profile  is sufficiently soft (Fig. 21), so that all its
eigenfunctions  and  are at least differentiable at all points.  If the barrier’s transparency is low, the quasi-localized
wavefunctions  and  and their eigenenergies may be found approximately by solving the Schrödinger
equations in one of the wells, neglecting the tunneling through the barrier, but the calculation of  requires a little bit more care. Let
us write the stationary Schrödinger equations for the symmetric and antisymmetric solutions in the form

multiply the former equation by  and the latter one by , subtract them from each other, and then integrate the result from 0 to 
. The result is

If , and hence , are finite for all , we may integrate the right-hand side by parts to get

Fig. 2.21. Weak coupling between two similar, soft potential wells.

So far, this result is exact (provided that the derivatives participating in it are finite at each point); for weakly coupled wells, it may
be further simplified. Indeed, in this case, the left-hand side of Eq. (186) may be approximated as

because this integral is dominated by the vicinity of point , where the second terms in each of Eqs. (169) and (175) are
negligible, and the integral is equal to , assuming the proper normalization of the function . On the right-hand side of Eq.
(186), the substitution at  vanishes (due to the wavefunction’s decay in the classically forbidden region), and so does the
first term at , because for the antisymmetric solution, . As a result, the energy half-split  may be expressed in any
of the following (equivalent) forms:

It is straightforward (and hence left for the reader’s exercise) to show that within the limits of the WKB approximation’s validity,
Eq. (188) may be reduced to
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where  is the time period of the classical motion of the particle, with the energy , inside each well, the function 
 is defined by Eq. (82), and  and  ’ are the classical turning points limiting the potential barrier at the level  of the

particle’s eigenenergy - see Fig. 21. The result (189) is evidently a natural generalization of Eq. (183), so that the strong
relationship between the times of particle tunneling into the continuum of states and into a discrete eigenstate, is indeed not specific
for the delta-functional model. We will return to this fact, in its more general form, at the end of Chapter 6.

 See Eqs. (56)-(58), with .

 Such algebraic equations for linear differential equations are frequently called characteristic.

 Note that this  is equal, by magnitude, to the constant  that participates in Eq. (79). Note also that this result was actually
already obtained, "backward", in the solution of Problem 1.12(ii), but that solution did not address the issue of whether the
calculated potential (158) could sustain any other localized eigenstates.

 Historically, the development of the quantum theory of such bonding in the  molecule (by Walter Heinrich Heitler and Fritz
Wolfgang London in 1927) was the breakthrough decisive for the acceptance of the thenemerging quantum mechanics by the
community of chemists.

 Due to the opposite spins of these electrons, the Pauli principle allows them to be in the same orbital ground state - see Chapter 8
.

 As we will see later in Chapter 4 , these properties are similar to those of spin-  particles; hence two-level systems are
frequently called the spin-1/2-like systems.

 Sometimes they are called the Bloch oscillations, but more commonly the last term is reserved for a related but different effect in
spatially-periodic systems - to be discussed in Sec. 8 below.

 It is hard to use Eq. (80) for a more exact evaluation of  in our current system, with its infinitely deep potential wells, because
the meaning of the wave number  is not quite clear. However, this is not too important, because in the limit , the
tunneling exponent makes the dominant contribution into the transparency see, again, Fig. 2.7b.

 Such a smooth well may have more than one quasi-localized eigenstate, so that the proper state (and energy) index  is implied
in all remaining formulas of this section.
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