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2.9: Exercise problems

A famous example of macroscopic irreversibility was suggested in 1907 by P. Ehrenfest. Two dogs share  fleas. Each
flea may jump onto another dog, and the rate  of such events (i.e. the probability of jumping per unit time) does not depend
either on time or on the location of other fleas. Find the time evolution of the average number of fleas on a dog, and of the flea-
related part of the total dogs’ entropy (at arbitrary initial conditions), and prove that the entropy can only grow.

Use the microcanonical distribution to calculate thermodynamic properties (including the entropy, all relevant thermodynamic
potentials, and the heat capacity), of a two-level system in thermodynamic equilibrium with its environment, at temperature 
that is comparable with the energy gap . For each variable, sketch its temperature dependence, and find its asymptotic values
(or trends) in the low-temperature and high-temperature limits.

Solve the previous problem using the Gibbs distribution. Also, calculate the probabilities of the energy level occupation, and
give physical interpretations of your results, in both temperature limits.

Calculate low-field magnetic susceptibility  of a quantum spin-1/2 particle with a gyromagnetic ratio , in thermal
equilibrium with an environment at temperature , neglecting its orbital motion. Compare the result with that for a classical
spontaneous magnetic dipole  of a fixed magnitude , free to change its direction in space.

Hint: The low-field magnetic susceptibility of a single particle is defined  as

where the -axis is aligned with the direction of the external magnetic field .

Calculate the low-field magnetic susceptibility of a particle with an arbitrary (either integer or semi-integer) spin , neglecting
its orbital motion. Compare the result with the solution of the previous problem.

Hint: Quantum mechanics  tells us that the Cartesian component  of the magnetic moment of such a particle, in the
direction of the applied field, has  stationary values:

where  is the gyromagnetic ratio of the particle, and  is Planck’s constant.

Analyze the possibility of using a system of non-interacting spin-1/2 particles, placed into a strong, controllable external
magnetic field, for refrigeration.

The rudimentary “zipper” model of DNA replication is a chain of  links that may be either open or closed – see the figure on
the right.
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Opening a link increases the system’s energy by ; a link may change its state (either open or closed) only if all links to
the left of it are open, while those on the right of it, are closed. Calculate the average number of open links at thermal
equilibrium, and analyze its temperature dependence, especially for the case .

Use the microcanonical distribution to calculate the average entropy, energy, and pressure of a classical particle of mass ,
with no internal degrees of freedom, free to move in volume , at temperature .

Hint: Try to make a more accurate calculation than has been done in Sec. 2.2 for the system of  harmonic oscillators. For
that, you will need to know the volume  of a -dimensional hypersphere of the unit radius. To avoid being too cruel, I am
giving it to you:

where  is the gamma function.

Solve the previous problem starting from the Gibbs distribution.

Calculate the average energy, entropy, free energy, and the equation of state of a classical 2D particle (without internal degrees
of freedom), free to move within area , at temperature , starting from:

(i) the microcanonical distribution, and

(ii) the Gibbs distribution.

Hint: For the equation of state, make the appropriate modification of the notion of pressure.

A quantum particle of mass  is confined to free motion along a 1D segment of length . Using any approach you like,
calculate the average force the particle exerts on the “walls” (ends) of such “1D potential well” in thermal equilibrium, and
analyze its temperature dependence, focusing on the low-temperature and high-temperature limits.

Hint: You may consider the series  a known function of . 

Rotational properties of diatomic molecules (such as , CO, etc.) may be reasonably well described by the so-called
dumbbell model: two point particles, of masses  and , with a fixed distance  between them. Ignoring the translational
motion of the molecule as the whole, use this model to calculate its heat capacity, and spell out the result in the limits of low
and high temperatures. Discuss whether your solution is valid for the so-called homonuclear molecules, consisting of two
similar atoms, such as , , , etc.
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Calculate the heat capacity of a heteronuclear diatomic molecule, using the simple model described in the previous problem,
but now assuming that the rotation is confined to one plane.

A classical, rigid, strongly elongated body (such as a thin needle), is free to rotate about its center of mass, and is in thermal
equilibrium with its environment. Are the angular velocity vector  and the angular momentum vector , on average, directed
along the elongation axis of the body, or normal to it?

Two similar classical electric dipoles, of a fixed magnitude , are separated by a fixed distance . Assuming that each dipole
moment  may take any spatial direction and that the system is in thermal equilibrium, write the general expressions for its
statistical sum , average interaction energy , heat capacity , and entropy , and calculate them explicitly in the high-
temperature limit.

A classical 1D particle of mass , residing in the potential well

is in thermal equilibrium with its environment, at temperature . Calculate the average values of its potential energy  and the
full energy , using two approaches:

(i) directly from the Gibbs distribution, and

For a thermally-equilibrium ensemble of slightly anharmonic classical 1D oscillators, with mass  and potential energy

with a small coefficient , calculate  in the first approximation in low temperature .

A small conductor (in this context, usually called the single-electron island) is placed between two conducting electrodes, with
voltage  applied between them. The gap between one of the electrodes and the island is so narrow that electrons may tunnel
quantum-mechanically through this gap (the “weak tunnel junction”) – see the figure on the right. Calculate the average charge
of the island as a function of  at temperature .

Hint: The quantum-mechanical tunneling of an electron through a weak junction  between two macroscopic conductors and
their subsequent energy relaxation, may be considered as a single inelastic (energy-dissipating) event, so that the only energy
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relevant for the thermal equilibrium of the system is its electrostatic potential energy.

An  circuit (see the figure on the right) is in thermodynamic equilibrium with its environment. Calculate the r.m.s.
fluctuation  of the voltage across it, for an arbitrary ratio , where  is the resonance
frequency of this “tank circuit”.

Derive Equation ( ) from simplistic arguments, representing the blackbody radiation as an ideal gas of photons
treated as classical ultra-relativistic particles. What do similar arguments give for an ideal gas of classical but non-relativistic
particles?

Calculate the enthalpy, the entropy, and the Gibbs energy of blackbody electromagnetic radiation with temperature  inside
volume , and then use these results to find the law of temperature and pressure drop at an adiabatic expansion.

As was mentioned in Sec. 6(i), the relation between the temperatures  of the visible Sun’s surface and that  of the
Earth’s surface follows from the balance of the thermal radiation they emit. Prove that the experimentally observed relation
indeed follows, with good precision, from a simple model in which the surfaces radiate as perfect black bodies with constant
temperatures.

Hint: You may pick up the experimental values you need from any (reliable :-) source.

If a surface is not perfectly radiation-absorbing (“black”), the electromagnetic power of its thermal radiation differs from the
Planck radiation law by a frequency-dependent factor , called the emissivity. Prove that such surface reflects the ( )
fraction of the incident radiation.

If two black surfaces, facing each other, have different temperatures (see the figure on the right), then according to the Stefan
radiation law ( ), there is a net flow of thermal radiation, from a warmer surface to the colder one:

For many applications, notably including most low-temperature experiments, this flow is detrimental. One way to suppress it is
to reduce the emissivity  (for its definition, see the previous problem) of both surfaces – say by covering them with shiny
metallic films. An alternative way toward the same goal is to place, between the surfaces, a thin layer (usually called the
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thermal shield), with a low emissivity of both surfaces – see the dashed line in Figure above. Assuming that the emissivity is
the same in both cases, find out which way is more efficient.

Two parallel, well-conducting plates of area  are separated by a free-space gap of a constant thickness . Calculate
the energy of the thermally-induced electromagnetic field inside the gap at thermal equilibrium with temperature  in the
range

Does the field push the plates apart?

Use the Debye theory to estimate the specific heat of aluminum at room temperature (say, 300 K), and express the result in the
following popular units:

(i) eV/K per atom,

(ii) J/K per mole, and

(iii) J/K per gram.

Compare the last number with the experimental value (from a reliable book or online source).

Low-temperature specific heat of some solids has a considerable contribution from thermal excitation of spin waves, whose
dispersion law scales as  at .  Neglecting anisotropy, calculate the temperature dependence of this contribution
to  at low temperatures, and discuss conditions of its experimental observation.

Hint: Just as the photons and phonons discussed in section 2.6, the quantum excitations of spin waves (called magnons) may
be considered as non-interacting bosonic quasiparticles with zero chemical potential, whose statistics obeys Equation ( ).

Derive a general expression for the specific heat of a very long, straight chain of similar particles of mass , confined to move
only in the direction of the chain, and elastically interacting with effective spring constants  – see the figure on the right. Spell
out the result in the limits of very low and very high temperatures.

Hint: You may like to use the following integral:

Calculate the r.m.s. thermal fluctuation of the middle point of a uniform guitar string of length , stretched by force , at
temperature . Evaluate your result for  m,  N, and room temperature.

Hint: You may like to use the following series:
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Use the general Equation ( ) to re-derive the Fermi-Dirac distribution ( ) for a system in equilibrium.

Each of two identical particles, not interacting directly, may be in any of two quantum states, with single-particle energies 
equal to 0 and . Write down the statistical sum  of the system, and use it to calculate its average total energy  at
temperature , for the cases when the particles are:

(i) distinguishable (say, by their positions);

(ii) indistinguishable fermions;

(iii) indistinguishable bosons.

Analyze and interpret the temperature dependence of  for each case, assuming that .

Calculate the chemical potential of a system of  independent fermions, kept at a fixed temperature , if each particle
has two non-degenerate energy levels separated by gap .

Footnotes
1. For the reader interested in a more rigorous approach, I can recommend, for example, Chapter 18 of the handbook by G. Korn

and T. Korn – see MA Sec. 16(ii).
2. The most popular counter-example is an energy-conserving system. Consider, for example, a system of particles placed in a

potential that is a quadratic form of its coordinates. The theory of oscillations tells us (see, e.g., CM Sec. 6.2) that this system is
equivalent to a set of non-interacting harmonic oscillators. Each of these oscillators conserves its own initial energy  forever,
so that the statistics of  measurements of one such system may differ from that of  different systems with a random
distribution of , even if the total energy of the system, , is the same. Such non-ergodicity, however, is a rather
feeble phenomenon and is readily destroyed by any of many mechanisms, such as weak interaction with the environment
(leading, in particular, to oscillation damping), potential anharmonicity (see, e.g., CM Chapter 5), and chaos (CM Chapter 9), all
of them strongly enhanced by increasing the number of particles in the system, i.e. the number of its degrees of freedom. This is
why an overwhelming part of real-life systems are ergodic; for the readers interested in non-ergodic exotics, I can recommend
the monograph by V. Arnold and A. Avez, Ergodic Problems of Classical Mechanics, Addison Wesley, 1989.

3. Here, and everywhere in this series, angle brackets  mean averaging over a statistical ensemble, which is generally
different from averaging over time – as it will be the case in quite a few examples considered below.

4. See, e.g., QM Sec. 7.1.
5. Here I use the Schrödinger picture of quantum dynamics, in which the matrix elements  representing quantum-mechanical

operators, do not evolve in time. The final results of this discussion do not depend on the particular picture – see, e.g., QM Sec.
4.6.

6. Personally, I believe that the genius of J. Gibbs, praised by Albert Einstein as the “greatest mind in the American history”, is
still insufficiently recognized, and agree with R. Millikan that Gibbs “did for statistical mechanics and thermodynamics what
[...] Maxwell did for electrodynamics”.

7. The terms “microcanonical”, as well as “canonical” (see Sec. 4 below) are apparently due to Gibbs and I was unable to find out
his motivation for the former name. (“Canonical” in the sense of “standard” or “common” is quite appropriate, but why
“micro”? Perhaps to reflect the smallness of ?)

8. Formally, the main result of this section, Equation ( ), is valid for any  (including ); it is just less informative for
small  – and trivial for .
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9. Though I have to move on, let me note that the microcanonical distribution ( ) is a very nontrivial postulate, and my advice
to the reader is to find some time to give additional thought to this keystone of the whole building of statistical mechanics.

10. I will rely on the reader’s common sense and intuitive understanding of what information is, because even in the formal
information theory, this notion is essentially postulated – see, e.g., the wonderfully clear text by J. Pierce, An Introduction to
Information Theory, Dover, 1980.

11. This is of course just the change of a constant factor: . A
review of Chapter 1 shows that nothing in thermodynamics prevents us from choosing such a constant coefficient arbitrarily,
with the corresponding change of the temperature scale – see Equation (1.9). In particular, in the SI units, where Equation (

) becomes , one bit of information corresponds to the entropy change 
 J/K. By the way, the formula “ ” is engraved on L. Boltzmann’s

tombstone in Vienna.
12. See, e.g., MA Equation (2.3). Despite the intimidating name, Equation ( ) may be very simply derived. Indeed, ! is just

the number of all possible permutations of  balls, i.e. the ways to place them in certain positions – say, inside  boxes. Now
to take into account that the particular order of the balls in each box is not important, that number should be divided by all
numbers ! of possible permutations of balls within each box – that’s it.

13. See, e.g., MA Equation (2.10).
14. Strictly speaking, I should use the notation  here. However, following the style accepted in thermodynamics, I will drop the

averaging signs until we will really need them to avoid confusion. Again, this shorthand is not too bad because the relative
fluctuations of entropy (as those of any macroscopic variable) are very small at .

15. With the replacement of  with  (i.e. division of both sides by ), Equation ( ) becomes the famous
Shannon (or “Boltzmann-Shannon”) formula for the average information  per symbol in a long communication string using 
different symbols, with probability  each.

16. In some textbooks, this interpretation is even accepted as the derivation of Equation ( ); however, it is evidently less strict
than the one outlined above.

17. See, e.g., QM Secs. 2.9 and 5.4.
18. Let me hope that the reader knows that the ground-state energy is experimentally measurable – for example, using the famous

Casimir effect – see, e.g., QM Sec. 9.1. (In Sec. 5.5 below I will briefly discuss another method of experimental observation of
that energy.)

19. The coefficient ! in this formula has the geometrical meaning of the (hyper)volume of the -dimensional right pyramid
with unit sides.

20. For the same reason, the notion of pressure  in such a system is not clearly defined, and neither are any thermodynamic
potentials but  and .

21. I am using this fancy font for the mass to avoid any chance of its confusion with the state number.
22. Note again that while we have committed the energy  of  oscillators to be fixed (to apply Equation ( ), valid only for

a microcanonical ensemble at thermodynamic equilibrium), the single oscillator’s energy  in our analysis may be arbitrary –
within the limits .

23. As a reminder, the Hamiltonian of any system whose classical Lagrangian function is an arbitrary quadratic form of its
generalized coordinates and the corresponding generalized velocities, may be brought to the form ( ) by an appropriate
choice of “normal coordinates”  which are certain linear combinations of the original coordinates – see, e.g., CM Sec. 6.2.

24. This also means that in the classical limit, the heat capacity of a system is equal to one-half of the number of its half-degrees of
freedom (in the SI units, multiplied by ).

25. The reader is strongly urged to solve Problem 2, whose task is to do a similar calculation for another key (“two level”) physical
system, and compare the results.

26. See, e.g., CM Chapter 9 and literature therein.
27. For the definition of , see, e.g., CM Equation (9.9).
28. For more discussion, see, e.g., either Sec. 6.2 of the monograph H. G. Schuster and W. Just, Deterministic Chaos,  ed.,

Wiley-VHS, 2005, or the monograph by Arnold and Avez, cited in Sec. 1.
29. This system is frequently called the Szilard engine, after L. Szilard who published its detailed theoretical discussion in 1929, but

is essentially a straightforward extension of the thought experiment suggested by J. Maxwell as early as 1867.
30. This procedure of the statistical ensemble re-definition is the central point of the connection between physics and information

theory, and is crucial in particular for any (or rather any meaningful :-) discussion of measurements in quantum mechanics –
see, e.g., QM Secs. 2.5 and 10.1.
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31. See, for example, A. Bérut et al., Nature 483, 187 (2012); J. Koski et al., PNAS USA 111, 13786 (2014); Y. Jun et al., Phys. Rev.
Lett. 113, 190601 (2014); J. Peterson et al., Proc. Roy. Soc. A 472, 20150813 (2016).

32. C. Bennett, IBM J. Res. Devel. 17, 525 (1973); see also C. Bennett, Int. J. Theor. Phys. 21, 905 (1982).
33. For that, all gates have to be physically reversible, with no static power consumption. Such logic devices do exist, though they

are still not very practicable – see, e.g., K. Likharev, Int. J. Theor. Phys. 21, 311 (1982). (Another reason for citing, rather
reluctantly, my own paper is that it also gave constructive proof that the reversible computation may also beat the perceived
“fundamental quantum limit”, , where  is the time of the binary logic operation.)

34. Many currently explored schemes of quantum computing are also reversible – see, e.g., QM Sec. 8.5 and references therein.
35. Another famous example is Charles Darwin’s theory of biological evolution.
36. The temperature dependence of the type , especially when showing up in rates of certain events, e.g., chemical

reactions, is also frequently called the Arrhenius law – after chemist S. Arrhenius who has noticed this law in numerous
experimental data. In all cases I am aware of, the Gibbs distribution is the underlying reason of the Arrhenius law. (We will see
several examples of that later in this course.)

37. This is the opinion of many physicists, including Richard Feynman – who climbs on this “summit” already on the first page of
his brilliant book Statistical Mechanics, CRC Press, 1998. (This is a collection of lectures on a few diverse, mostly advanced
topics of statistical physics, rather than its systematic course, so that it can hardly be used as the first textbook on the subject.
However, I can highly recommend its first chapter to all my readers.

38. The task of making a similar (and even simpler) calculation for another key quantum-mechanical object, the two-level system,
is left for the reader’s exercise.

39. See, e.g., MA Equation (2.8b).
40. It was first obtained in 1924 by S. Bose and is sometimes called the Bose distribution – a particular case of the Bose-Einstein

distribution to be discussed in Sec. 8 below.
41. See, e.g., QM Sec. 2.10.
42. The calculation may be found, e.g., in QM Sec. 7.2.
43. As a reminder: the equality of these two averages, at arbitrary temperature, was proved already in Sec. 2.
44. See, e.g., EM Sec. 7.8.
45. In our current context, the volume should be much larger than , where  m/s is the speed of light. For the

room temperature (  K  J), this lower bound is of the order of .
46. See, e.g., QM Sec. 9.1.
47. Let me hope the reader knows that this law was first suggested in 1900 by Max Planck as an empirical fit for the experimental

data on blackbody radiation, and this was the historic point at which the Planck constant  (or rather ) was introduced
– see, e.g., QM Sec. 1.1.

48. The last step in Equation ( ) uses a table integral, equal to  – see, e.g., MA Equation
(6.8b), with , and then MA Eqs. (6.7e), and (2.7b).

49. Note that the heat capacity , following from Equation ( ), is proportional to  at any temperature, and
hence does not obey the trend  const at . This is the result of the unlimited growth, with temperature, of the
number of thermally-exited field oscillators with frequencies  below .

50. Its functional part  was deduced in 1879 by Joseph Stefan from earlier experiments by John Tyndall. Theoretically, it
was proved in 1884 by L. Boltzmann, using a result derived earlier by Adolfo Bartoli from the Maxwell equations for the
electromagnetic field – all well before Max Planck’s work.

51. This formula may be also derived from the expression for the forces exerted by the electromagnetic radiation on the walls (see,
e.g. EM Sec. 9.8), but the above calculation is much simpler.

52. Note that according to Eqs. ( ), ( ), and ( ), the difference between the equations of state of the photon
gas and an ideal gas of non-relativistic particles, expressed in the more usual form , is much more dramatic: 

 vs. .
53. Due to a rather low temperature expansion of solids, the difference between their  and  is small.
54. In good conductors (e.g., metals), specific heat is contributed (and at low temperatures, dominated) by free electrons – see Sec.

3.3 below.
55. See, e.g., CM Sec. 7.7.
56. See, e.g., CM Sec. 6.3, in particular Figure 6.5 and its discussion.
57. See, e.g., CM Sec. 6.2.
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58. In the SI units, the Debye temperature  is of the order of a few hundred K for most simple solids (e.g.,  K for
aluminum and  K for copper), with somewhat lower values for crystals with heavy atoms (  K for lead), and reaches
its highest value  K for diamond, with its relatively light atoms and very stiff lattice.

59. This is why there is the following general “rule of thumb” in quantitative sciences: if you plot your data on a linear rather than
log scale, you better have a good excuse ready. (An example of a valid excuse: the variable you are plotting changes its sign
within the range you want to exhibit.)

60. This term stems from the fact that at , the mechanical waves corresponding to these branches have phase velocities 
 that are much higher than that of the acoustic waves, and may approach the speed of light. As a result, these

waves can strongly interact with electromagnetic (practically, optical) waves of the same frequency, while acoustic waves
cannot.

61. The additional index in the new notation  for the energy of the system of interest reflects the fact that its spectrum is
generally dependent on the number  of particles in it.

62. The average number of particles  is exactly what was called  in thermodynamics (see Chapter 1), but I keep this explicit
notation here to make a clear distinction between this average value of the variable, and its particular values participating in
Eqs. ( )-( ).

63. The distribution was first suggested in 1877 by L. Boltzmann. For the particular case when  is the kinetic energy of a free
classical particle (and hence has a continuous spectrum), it is reduced to the Maxwell distribution (see Sec. 3.1 below), which
was derived earlier – in 1860.

64. This invites a natural question: what particles are “elementary enough” for their identity? For example, protons and neutrons
have an internal structure, in some sense consisting of quarks and gluons; can they be considered elementary? Next, if protons
and neutrons are elementary, are atoms? molecules? What about really large molecules (such as proteins)? viruses? The general
answer to these questions, given by quantum mechanics (or rather experiment :-), is that any particles/systems, no matter how
large and complex they are, are identical if they not only have the same internal structure but also are exactly in the same
internal quantum state – for example, in the ground state of all their internal degrees of freedom.

65. For a more detailed discussion of this issue, see, e.g., QM Sec. 8.1.
66. As the reader certainly knows, for the electromagnetic field oscillators, such excitations are called photons; for mechanical

oscillation modes, phonons. It is important, however, not to confuse these mode excitations with the oscillators as such, and be
very careful in prescribing to them certain spatial locations – see, e.g., QM Sec. 9.1.

67. See, e.g., MA Equation (2.2).
68. See also MA Equation (2.4).
69. This is essentially a simpler (and funnier :-) version of the particle scattering model used by L. Boltzmann to prove his famous 

-theorem (1872). Besides the historic significance of that theorem, the model used in it (see Sec. 6.2 below) is as cartoonish,
and not more general.

70. See, e.g., QM Secs. 4.6 and 5.1, for example, Equation (4.167).
71. This “atomic” (or “molecular”) susceptibility should be distinguished from the “volumic” susceptibility ,

where  is the magnetization, i.e. the magnetic moment of a unit volume of a system – see, e.g., EM Equation (5.111). For a
uniform medium with  non-interacting dipoles per unit volume, .

72. See, e.g., QM Sec. 5.7, in particular Equation (5.169).
73. For its definition and main properties, see, e.g., MA Eqs. (6.6)-(6.9).
74. It may be reduced to the so-called elliptic theta-function  for a particular case  – see, e.g., Sec. 16.27 in the

Abramowitz-Stegun handbook cited in MA Sec. 16(ii). However, you do not need that (or any other) handbook to solve this
problem.

75. This is a reasonable model of the constraints imposed on small atomic groups (e.g., ligands) by their atomic environment inside
some large molecules.

76. See, e.g., CM Problem 1.12.
77. In this particular context, the adjective “weak” denotes a junction with the tunneling transparency so low that the tunneling

electron’s wavefunction loses its quantum-mechanical coherence before the electron has a chance to tunnel back. In a typical
junction of a macroscopic area this condition is fulfilled if its effective resistance is much higher than the quantum unit of
resistance (see, e.g., QM Sec. 3.2),  k .

78. Note that the same dispersion law is typical for bending waves in thin elastic rods – see, e.g., CM Sec. 7.8.
79. It may be reduced, via integration by parts, to the table integral MA Equation (6.8d) with .

TD ∼ 430

∼ 340 ∼ 105

∼ 2200

k → 0

≡ ω(k)/kvph
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