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2.5: Harmonic Oscillator Statistics
The last property may be immediately used in our first example of the Gibbs distribution application to a particular, but very
important system – the harmonic oscillator, for a much more general case than was done in Sec. 2, namely for an arbitrary relation
between  and .  Let us consider a canonical ensemble of similar oscillators, each in a contact with a heat bath of temperature 

. Selecting the ground-state energy  for the origin of , the oscillator eigenenergies ( ) become  (with 
), so that the Gibbs distribution ( ) for probabilities of these states is

with the following statistical sum:

This is just the well-known infinite geometric progression (the “geometric series”),  with the sum

Quantum oscillator: statistics

so that Equation ( ) yields

Quantum oscillator: statistics

Figure  shows  for several lower energy levels, as functions of temperature, or rather of the  ratio. The plots show
that the probability to find the oscillator in each particular state (except for the ground one, with ) vanishes in both low- and
high-temperature limits, and reaches its maximum value  at , so that the contribution  of each
excited level to the average oscillator energy  is always smaller than .

Figure : Statistical and thermodynamic parameters of a harmonic oscillator, as functions of temperature.

This average energy may be calculated in either of two ways: either using Equation ( ) directly:

or (simpler) using Equation ( ), as
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Quantum oscillator: average energy

which is valid for arbitrary temperature and plays a key role in many fundamental problems of physics. The red line in Figure
 shows this result as a function of the normalized temperature. At relatively low temperatures, , the oscillator is

predominantly in its lowest (ground) state, and its energy (on top of the constant zero-point energy , which was used in our
calculation as the reference) is exponentially small: . On the other hand, in the high-temperature
limit, the energy tends to . This is exactly the result (a particular case of the equipartition theorem) that was obtained in Sec. 2
from the microcanonical distribution. Please note how much simpler is the calculation using the Gibbs distribution, even for an
arbitrary ratio .

To complete the discussion of the thermodynamic properties of the harmonic oscillator, we can calculate its free energy using
Equation ( ):

Now the entropy may be found from thermodynamics: either from the first of Eqs. ( ), , or (even more
easily) from Equation ( ): . Both relations give, of course, the same result:

Finally, since in the general case the dependence of the oscillator properties (essentially, of ) on volume  is not specified, such
variables as , , , , and  are not defined, and what remains is to calculate the average heat capacity  per one oscillator:

The calculated thermodynamic variables are plotted in Figure . In the low-temperature limit , they all tend to
zero. On the other hand, in the high-temperature limit , , , and 

 (in the SI units, ). Note that the last limit is the direct corollary of the equipartition theorem: each of the two “half-
degrees of freedom” of the oscillator gives, in the classical limit, the same contribution  into its heat capacity.

Now let us use Equation ( ) to discuss the statistics of the quantum oscillator described by Hamiltonian ( ), in the
coordinate representation. Again using the density matrix’ diagonality in thermodynamic equilibrium, we may use a relation similar
to Eqs. ( ) to calculate the probability density to find the oscillator at coordinate :

where  is the normalized eigenfunction of the  stationary state of the oscillator. Since each  is proportional to the
Hermite polynomial  that requires at least m elementary functions for its representation, working out the sum in Equation ( )
is a bit tricky,  but the final result is rather simple:  is just a normalized Gaussian distribution (the “bell curve”),

with , and

Since the function  tends to 1 at , and diverges as  at , Equation ( ) shows that the width  of the
coordinate distribution is nearly constant (and equal to that, , of the ground state wavefunction ) at , and
grows as  at .
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As a sanity check, we may use Equation ( ) to write the following expression,

for the average potential energy of the oscillator. To comprehend this result, let us recall that Equation ( ) for the average full
energy  was obtained by counting it from the ground state energy  of the oscillator. If we add this reference energy to that
result, we get

Quantum oscillator: total average energy

In the classical limit , both energies equal , reproducing the equipartition theorem result ( ).
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