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2.7: Grand canonical ensemble and distribution

As we have seen, the Gibbs distribution is a very convenient way to calculate the statistical and thermodynamic properties of
systems with a fixed number N of particles. However, for systems in which N may vary, another distribution is preferable for
applications. Several examples of such situations (as well as the basic thermodynamics of such systems) have already been
discussed in Sec. 1.5. Perhaps even more importantly, statistical distributions for systems with variable N are also applicable to
some ensembles of independent particles in certain single-particle states even if the number of the particles is fixed — see the next
section.

With this motivation, let us consider what is called the grand canonical ensemble (Figure 2.7.1). It is similar to the canonical
ensemble discussed in Sec. 4 (see Figure 2.4.1) in all aspects, besides that now the system under study and the heat bath (in this
case more often called the environment) may exchange not only heat but also particles. In this ensemble, all environments are in
both the thermal and chemical equilibrium, with their temperatures T" and chemical potentials y the same for all members.
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Figure 2.7.1: A member of the grand canonical ensemble.

Let us assume that the system of interest is also in the chemical and thermal equilibrium with its environment. Then using exactly
the same arguments as in Sec. 4 (including the specification of microcanonical sub-ensembles with fixed Ex and Ny), we may
generalize Equation (2.4.4), taking into account that the entropy S, of the environment is now a function of not only its energy
Eepy = Exs— Ep, v, %! but also of the number of particles N, = Nx— N, with Ex; and Ny, fixed:
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To simplify this relation, let us rewrite Equation (1.5.1) in the following equivalent form:
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Hence, if the entropy S of a system is expressed as a function of E, V, and N, then
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Applying the first one and the last one of these relations to the last form of Equation (2.7.1), and using the equality of the

temperatures T' and chemical potentials p in the system under study and its environment, at equilibrium (as was discussed in Sec.
1.5), we get

1
I Wi,y = Sens (B, Ne) = 7 By + %N—I—const. (2.7.4)

Again, exactly as at the derivation of the Gibbs distribution in Sec. 4, we may argue that since E,, x, T, and p do not depend on
the choice of environment’s size, i.e. on Es and Ny, the probability W, x for a system to have N particles and be in m?
quantum state in the whole grand canonical ensemble should also obey Equation (2.7.4). As a result, we get the so-called grand
canonical distribution:

Grand canonical distribution:
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1 NN_Em,N
Won = Zo exp{ T } (2.7.5)

Just as in the case of the Gibbs distribution, the constant Zg (most often called the grand statistical sum, but sometimes the “grand
partition function”) should be determined from the probability normalization condition, now with the summation of probabilities
W, v over all possible values of both m and V:

Grand canonical sum:

N —-E,,
Za :Zexp{ﬂT’N}. (2.7.6)

Now, using the general Equation (2.2.11) to calculate the entropy for the distribution (2.7.5) (exactly like we did it for the
canonical ensemble), we get the following expression,
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which is evidently a generalization of Equation (2.4.12).5> We see that now the grand thermodynamic potential € (rather than the
free energy F') may be expressed directly via the normalization coefficient Zg:

Q from Zg:

_ 1 HN_Em,N
Q=F—pu(N)=E—-TS—pu(N) = Tan—G = —TlnT;Vexp{T}. (2.7.8)

Finally, solving the last equality for Zs, and plugging the result back into Equation (2.7.5), we can rewrite the grand canonical
distribution in the form

(2.7.9)

Q+uN - E,
Wm’N:exp{M},
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similar to Equation (2.4.15) for the Gibbs distribution. Indeed, in the particular case when the number NV of particles is fixed,
N =(N),sothat Q+uN =Q+pu(N)=F , Equation (2.7.9) is reduced to Equation (2.4.15).
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