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6.1: The Liouville Theorem and the Boltzmann Rquation
Physical kinetics (not to be confused with “kinematics”!) is the branch of statistical physics that deals with systems out of
thermodynamic equilibrium. Major effects addressed by kinetics include:

i. for autonomous systems (those out of external fields): the transient processes (relaxation), that lead from an arbitrary initial
state of a system to its thermodynamic equilibrium;

ii. for systems in time-dependent (say, sinusoidal) external fields: the field-induced periodic oscillations of the system's variables;
and

iii. for systems in time-independent (“dc”) external fields: dc transport.

In the last case, we are dealing with stationary (  everywhere), but non-equilibrium situations, in which the effect of an
external field, continuously driving the system out of equilibrium, is balanced by the simultaneous relaxation – the trend back to
equilibrium. Perhaps the most important effect of this class is the dc current in conductors and semiconductors,  which alone
justifies the inclusion of the basic notions of kinetics into any set of core physics courses.

The reader who has reached this point of the notes already has some taste of physical kinetics, because the subject of the last part of
Chapter 5 was the kinetics of a “Brownian particle”, i.e. of a “heavy” system interacting with an environment consisting of many
“lighter” components. Indeed, the equations discussed in that part – whether the Smoluchowski equation ( ) or the Fokker-
Planck equation ( ) – are valid if the environment is in thermodynamic equilibrium, but the system of our interest is not
necessarily so. As a result, we could use those equations to discuss such non-equilibrium phenomena as the Kramers problem of the
metastable state's lifetime.

In contrast, this chapter is devoted to the more traditional subject of kinetics: systems of many similar particles – generally,
interacting with each other, but not too strongly, so that the energy of the system still may be partitioned into a sum of single-
particle components, with the interparticle interactions considered as a weak perturbation. Actually, we have already started the job
of describing such a system at the beginning of Sec. 5.7. Indeed, in the absence of particle interactions (i.e. when it is unimportant
whether the particle of our interest is “light” or “heavy”), the probability current densities in the coordinate and momentum spaces
are given, respectively, by Equation ( ) and the first form of Equation ( ), so that the continuity equation ( ) takes the
form

If similar particles do not interact, this equation for the single-particle probability density  is valid for each of them, and
the result of its solution may be used to calculate any ensemble-average characteristic of the system as a whole.

Let us rewrite Equation ( ) in the Cartesian-component form,

We get

Liouville theorem:

Since the left-hand side of this equation is just the full derivative of the probability density  considered as a function of the
generalized coordinates  of a particle, its generalized momenta components , and (possibly) time ,  the Liouville
theorem ( ) may be represented in a surprisingly simple form:
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Physically this means that the elementary probability  to find a Hamiltonian particle in a small volume of the
coordinate-momentum space , with its center moving in accordance to the deterministic law ( ), does not change with
time – see Figure .

Figure : The Liouville theorem’s interpretation: probability’s conservation at its flow through the  space.

At the first glance, this may not look surprising because according to the fundamental Einstein relation ( ), one needs non-
Hamiltonian forces (such as the kinematic friction) to have diffusion. On the other hand, it is striking that the Liouville theorem is
valid even for (Hamiltonian) systems with deterministic chaos,  in which the deterministic trajectories corresponding to slightly
different initial conditions become increasingly mixed with time.

For an ideal gas of 3D particles, we may use the ordinary Cartesian coordinates  (with ) for the generalized coordinates
, so that  become the Cartesian components  of the usual (linear) momentum, and the elementary volume is just  –

see Figure . In this case, Eqs. ( ) are just

where  is the force exerted on the particle, so that the Liouville theorem may be rewritten as

and conveniently represented in the vector form

Of course, the situation becomes much more complex if the particles interact. Generally, a system of  similar particles in 3D
space has to be described by the probability density being a function of  arguments (  Cartesian coordinates, plus 
momentum components, plus time). An analytical or numerical solution of any equation describing the time evolution of such a
function for a typical system of  particles is evidently a hopeless task. Hence, any theory of realistic systems' kinetics has
to rely on making reasonable approximations that would simplify the situation.

One of the most useful approximations (sometimes called Stosszahlansatz – German for the “collision-number assumption”) was
suggested by Ludwig Boltzmann for gas of particles that move freely most of the time but interact during short time intervals, when
a particle comes close to either an immobile scattering center (say, an impurity in a conductor's crystal lattice) or to another particle
of the gas. Such brief scattering events may change the particle's momentum. Boltzmann argued that they may be still
approximately described Equation ( ), with the addition of a special term (called the scattering integral) to its right-hand side:

Boltzmann equation:
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This is the Boltzmann equation, also called the “Boltzmann transport equation”. As will be discussed below, it may give a very
reasonable description of not only classical but also quantum particles, though it evidently neglects the quantum-mechanical
coherence/entanglement effects  – besides those that may be hidden inside the scattering integral.

The concrete form of the scattering integral depends on the type of particle scattering. If the scattering centers do not belong to the
ensemble under consideration (an example is given, again, by impurity atoms in a conductor), then the scattering integral may be
expressed as an evident generalization of the master equation ( ):

where the physical sense of  is the rate (i.e. the probability per unit time) for the particle to be scattered from the state with
the momentum  into the state with the momentum  – see Figure .

Figure : A single-particle scattering event.

Most elastic interactions are reciprocal, i.e. obey the following relation (closely related to the reversibility of time in Hamiltonian
systems): , so that Equation ( ) may be rewritten as

With such scattering integral, Equation ( ) stays linear in  but becomes an integro-differential equation, typically harder to
solve analytically than differential equations.

The equation becomes even more complex if the scattering is due to the mutual interaction of the particle members of the system –
see Figure .

Figure : A particle-particle scattering event.

In this case, the probability of a scattering event scales as a product of two single-particle probabilities, and the simplest reasonable
form of the scattering integral is

The integration dimensionality in Equation ( ) takes into account the fact that due to the conservation of the total momentum
at scattering,

one of the momenta is not an independent argument, so that the integration in Equation ( ) may be restricted to a 6D -space
rather than the 9D one. For the reciprocal interaction, Equation ( ) may also be a bit simplified, but it still keeps Equation (
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) a nonlinear integro-differential transport equation, excluding such powerful solution methods as the Fourier expansion –
which hinges on the linear superposition principle.

This is why most useful results based on the Boltzmann transport equation depend on its further simplifications, most notably the
relaxation-time approximation – RTA for short.  This approximation is based on the fact that in the absence of spatial gradients 

, and external forces , in at the thermal equilibrium, Equation ( ) yields

so that the equilibrium probability distribution  has to turn any scattering integral to zero. Hence at a small deviation
from the equilibrium,

the scattering integral should be proportional to the deviation , and its simplest reasonable model is

Relaxation-time approximation (RTA):

where  is a phenomenological constant (which, according to Equation ( ), has to be positive for the system's stability) called
the relaxation time. Its physical meaning will be more clear in the next section.

The relaxation-time approximation is quite reasonable if the angular distribution of the scattering rate is dominated by small angles
between vectors  and  – as it is, for example, for the Rutherford scattering by a Coulomb center.  Indeed, in this case the two
values of the function , participating in Equation ( ), are close to each other for most scattering events so that the loss of the
second momentum argument ( ) is not too essential. However, using the Boltzmann-RTA equation that results from combining
Eqs. ( ) and ( ),

Boltzmann-RTA equation: 
 

we should always remember that this is just a phenomenological model, sometimes giving completely wrong results. For example,
it prescribes the same time scale ( ) to the relaxation of the net momentum of the system, and to its energy relaxation, while in
many real systems the latter process (that results from inelastic collisions) may be substantially longer. Naturally, in the following
sections, I will describe only those applications of the Boltzmann-RTA equation that give a reasonable description of physical
reality.
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