
5.5.1 https://phys.libretexts.org/@go/page/34724

5.5: Fluctuations and Dissipation
One more important assumption of this theory is that the system's motion does not violate the thermal equilibrium of the
environment – well fulfilled in many cases. (Think, for example, about a typical mechanical pendulum – its motion does not
overheat the air around it to any noticeable extent.) In this case, the averaging over a statistical ensemble of similar environments,
at a fixed, specific motion of the system of interest, may be performed assuming their thermal equilibrium.  I will denote such a
“primary” averaging by the usual angle brackets . At a later stage, we may carry out additional, “secondary” averaging, over
an ensemble of many similar systems of interest, coupled to similar environments. When we do, such double averaging will be
denoted by double angle brackets .

Let me start from a simple classical system, a 1D harmonic oscillator whose equation of evolution may be represented as

where  is the (generalized) coordinate of the oscillator,  is the deterministic external force, while both components of the
force  represent the impact of the environment on the oscillator's motion. Again, on the time scale of the fast-moving
environmental components, the oscillator's motion is slow. The average component  of the force exerted by the environment on
such a slowly moving object is frequently independent of its coordinate  but does depend on its velocity . For most such systems,
the Taylor expansion of the force in small velocity has a non-zero linear term:

where the constant  is usually called the drag (or “kinematic friction”, or “damping”) coefficient, so that Equation ( ) may be
rewritten as

Langevin equation for classical oscillator:

Plugging into Equation ( ) the representation of both variables in the Fourier form similar to Equation ( ), and requiring
the coefficients before the same  to be equal on both sides of the equation, for their Fourier images we get the following
relation:

which immediately gives us , i.e. the (random) complex amplitude of the coordinate fluctuations:

In the so-called low-damping limit ( ), the fraction on the right-hand side of Equation ( ) has a sharp peak near the
oscillator's own frequency  (describing the well-known effect of high-  resonance), and may be well approximated in that
vicinity as

This is a well-known table integral,  equal to , so that, finally:

But on the other hand, the weak interaction with the environment should keep the oscillator in thermodynamic equilibrium at the
same temperature . Since our analysis has been based on the classical Langevin equation ( ), we may only use it in the

24

⟨. . . ⟩

⟨⟨. . . ⟩⟩

m +κq = (t) + (t) ≡ (t) + ⟨F⟩+ (t),  with ⟨ (t)⟩ = 0,q̈ Fdet Fenv Fdet F
~

F
~

(5.5.1)

q (t)Fdet

(t)Fenv

⟨F ⟩

q q̇

⟨F⟩ = −η ,q̇ (5.5.2)

η 5.5.1

m +η +κq = (t) + (t).q̈ q̇ Fdet F
~

(5.5.3)

5.5.3 5.4.7

exp{−iωt}

−m − iωη +κ = ,ω2qω qω qω Fω (5.5.4)

qω

= ≡ .qω
Fω

(κ−m ) − iηωω2

Fω

m( − ) − iηωω2
0 ω2

(5.5.5)

(w) = (ω).Sq

1

( − +m2 ω2
0 ω2)2 η2ω2

SF (5.5.6)

η << mω0 5.5.6

ω0 Q

≈ ,  with ξ ≡ .
1

( − +(ηωm2 ω2
0 ω2)2 )2

1

( +1)η2ω2
0 ξ2

2m(ω− )ω0

η
(5.5.7)

⟨⟨ ⟩⟩ = 2 (ω)dω ≈ 2 (ω)dω = 2 ( ) .q~2 ∫
∞

0

Sq ∫
ω≈ω0

Sq SF ω0
1

η2ω2
0

η

2m
∫

+∞

−∞

dξ

+1ξ2
(5.5.8)

31 π

⟨⟨ ⟩⟩ = 2 ( ) π ≡ ( ) ≡ ( ).q~2 SF ω0
1

η2ω2
0

η

2m

π

m ηω2
0

SF ω0
π

κη
SF ω0 (5.5.9)

T 5.5.3

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34724?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Essential_Graduate_Physics_-_Statistical_Mechanics_(Likharev)/05%3A_Fluctuations/5.05%3A_Fluctuations_and_dissipation


5.5.2 https://phys.libretexts.org/@go/page/34724

classical limit , in which we may use the equipartition theorem ( ). In our current notation, it yields

Comparing Eqs. ( ) and ( ), we see that the spectral density of the random force exerted by the environment has to be
fundamentally related to the damping it provides:

Now we may argue (rather convincingly :-) that since this relation does not depend on oscillator's parameters  and , and hence
its eigenfrequency , it should be valid at any relatively low frequency . Using Equation ( ) with 

, it may be also rewritten as a formula for the effective low-frequency drag coefficient:

No dissipation without fluctuations:

Formulas ( - ) reveal an intimate, fundamental relation between the fluctuations and the dissipation provided by a
thermally-equilibrium environment. Parroting the famous political slogan, there is “no dissipation without fluctuation” – and vice
versa. This means in particular that the phenomenological description of dissipation barely by the drag force in classical
mechanics  is (approximately) valid only when the energy scale of the process is much larger than . To the best of my
knowledge, this fact was first recognized in 1905 by A. Einstein,  for the following particular case.

Let us apply our result ( - ) to a free 1D Brownian particle, by taking  and . In this case, both
relations ( ) and ( ) give infinities. To understand the reason for that divergence, let us go back to the Langevin equation (

) with not only  and , but also  – just for the sake of simplicity. (The latter approximation, frequently
called the overdamping limit, is quite appropriate, for example, for the motion of small particles in viscous fluids – such as in R.
Brown's experiments.) In this approximation, Equation ( ) is reduced to a simple equation,

which may be readily integrated to give the particle's displacement during a finite time interval :

Evidently, at the full statistical averaging of the displacement, the fluctuation effects vanish, but this does not mean that the particle
does not move – just that it has equal probabilities to be shifted in either of two possible directions. To see that, let us calculate the
variance of the displacement:

As we already know, at times , the correlation function may be well approximated by the delta function – see Equation (
). In this approximation, with  expressed by Equation ( ), we get

with

Einstein's relation:

The final form of Equation ( ) describes the well-known law of diffusion (“random walk”) of a 1D system, with the r.m.s.
deviation from the point of origin growing as . The coefficient  is this relation is called the coefficient of diffusion, and
Equation ( ) describes the extremely simple and important  Einstein's relation between that coefficient and the drag
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coefficient. Often this relation is rewritten, in the SI units of temperature, as , where  is the mobility of the
particle. The physical sense of  becomes clear from the expression for the deterministic velocity (particle's “drift”), which follows
from the averaging of both sides of Equation ( ) after the restoration of the term  in it:

Another famous embodiment of the general Equation ( - ) is the thermal (or “Johnson”, or “Johnson Nyquist”, or just
“Nyquist”) noise in resistive electron devices. Let us consider a two-terminal, dissipation-free “probe” circuit, playing the role of
the harmonic oscillator in our analysis carried out above, connected to a resistive device (Figure ), playing the role of the
probe circuit's environment. (The noise is generated by the thermal motion of numerous electrons, randomly moving inside the
resistive device.) For this system, one convenient choice of the conjugate variables (the generalized coordinate and generalized
force) is, respectively, the electric charge  that has passed through the “probe” circuit by time , and the voltage 
across its terminals, with the polarity shown in Figure . (Indeed, the product  is the elementary work  done by the
environment on the probe circuit.)

Figure : A resistive device as a dissipative environment of a two-terminal probe circuit.

Making the corresponding replacements,  and  in Equation ( ), we see that it becomes

Comparing this relation with Ohm's law, ,  we see that in this case, the coefficient  has the physical sense of the
usual Ohmic resistance  of our dissipative device,  so that Equation ( ) becomes

Using last equality in Equation ( ), and transferring to the SI units of temperature ( ), we may bring this famous
Nyquist formula  to its most popular form:

Nyquist formula:

Note that according to Equation ( ), this result is only valid at a negligible speed of change of the coordinate  (in our current
case, negligible current ), i.e. Equation ( - ) expresses the voltage fluctuations as would be measured by a virtually
ideal voltmeter, with its input resistance much higher than .

On the other hand, using a different choice of generalized coordinate and force, ,  (where  is the
generalized magnetic flux, so that ), we get , and Equation ( - ) yields the thermal
fluctuations of the current through the resistive device, as measured by a virtually ideal ammeter, i.e. at :

The nature of Eqs. ( - ) is so fundamental that they may be used, in particular, for the so-called Johnson noise
thermometry.  Note, however, that these relations are valid for noise in thermal equilibrium only. In electric circuits that may be
readily driven out of equilibrium by an applied voltage , other types of noise are frequently important, notably the shot noise,
which arises in short conductors, e.g., tunnel junctions, at applied voltages with , due to the discreteness of charge
carriers.  A straightforward analysis (left for the reader's exercise) shows that this noise may be characterized by current
fluctuations with the following low-frequency spectral density:
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Schottky formula:

where  is the electric charge of a single current carrier. This is the Schottky formula,  valid for any relation between the average 
and . The comparison of Eqs. ( ) and ( ) for a device that obeys the Ohm law shows that the shot noise has the same
intensity as the thermal noise with the effective temperature

This relation may be interpreted as a result of charge carrier overheating by the applied electric field, and explains why the
Schottky formula ( ) is only valid in conductors much shorter than the energy relaxation length  of the charge carriers.
(Another mechanism of shot noise suppression, which may become noticeable in highly conductive nanoscale devices, is the
Fermi-Dirac statistics of electrons. )

Now let us return for a minute to the bolometric Dicke radiometer (see Figs.  and their discussion in Sec. 4), and use
the Langevin formalism to finalize its analysis. For this system, the Langevin equation is an extension of the usual equation of heat
balance:

where  describes the (deterministic) power of the absorbed radiation and  represents the effective source of
temperature fluctuations. Now we can use Equation ( ) to carry out a calculation of the spectral density  of temperature
fluctuations absolutely similarly to how this was done with Equation ( ), assuming that the frequency spectrum of the
fluctuation source is much broader than the intrinsic bandwidth  of the bolometer, so that its spectral density at
frequencies  may be well approximated by its low-frequency value :

Then, requiring the variance of temperature fluctuations, calculated from this formula and Equation ( ),

to coincide with our earlier “thermodynamic fluctuation” result ( ), we get

The r.m.s. value of the “power noise” within a bandwidth  (see Figure ) becomes equal to the deterministic signal
power  (or more exactly, the main harmonic of its modulation law) at

This result shows that our earlier prediction ( ) may be improved by a substantial factor of the order of , where the
reduction of the output bandwidth is limited only by the signal accumulation time , while the increase of  is limited
by the speed of (typically, mechanical) devices performing the power modulation. In practical systems this factor may improve the
sensitivity by a couple of orders of magnitude, enabling observation of extremely weak radiation. Maybe the most spectacular
example is the recent measurements of the CMB radiation, which corresponds to blackbody temperature  K, with
accuracy  K, using microwave receivers with the physical temperature of all their components much higher than .
The observed weak (  K) anisotropy of the CMB radiation is a major experimental basis of all modern cosmology.
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Returning to the discussion of our main result, Equation ( - ), let me note that it may be readily generalized to the case
when the environment's response is different from the Ohmic form ( ). This opportunity is virtually evident from Equation (

): by its derivation, the second term on its left-hand side is just the Fourier component of the average response of the
environment to the system's displacement:

Now let the response be still linear, but have an arbitrary frequency dispersion,

where the function , called the generalized susceptibility (in our case, of the environment) may be complex, i.e. have both the
imaginary and real parts:

This fundamental relation  may be used not only to calculate the fluctuation intensity from the known generalized responsibility
(i.e. the deterministic response of the system to a small perturbation), but also in reverse – to calculate such linear response from
the known fluctuations. The latter use is especially attractive at numerical simulations of complex systems, e.g., those based on
molecular dynamics approaches, because it circumvents the need in extracting a weak response to a small perturbation out of a
noisy background.

Now let us discuss what generalization of Equation ( ) is necessary to make that fundamental result suitable for arbitrary
temperatures, . The calculations we had performed were based on the apparently classical equation of motion, Equation (

). However, quantum mechanics shows  that a similar equation is valid for the corresponding Heisenberg-picture operators,
so that repeating all the arguments leading to the Langevin equation ( ), we may write its quantum-mechanical version

Heisenberg-Langevin equation:

This is the so-called Heisenberg-Langevin (or “quantum Langevin”) equation – in this particular case, for a harmonic oscillator.

The further operations, however, require certain caution, because the right-hand side of the equation is now an operator, and has
some nontrivial properties. For example, the “values” of the Heisenberg operator, representing the same variable f(t) at different
times, do not necessarily commute:

(where  denotes the anticommutator of the two operators), and, similarly, the symmetrical spectral density ,
defined by the following relation:

with  and  still related by the Fourier transform ( ).

Now we may repeat all the analysis that was carried out for the classical case, and get Equation ( ) again, but now this
expression has to be compared not with the equipartition theorem, but with its quantum-mechanical generalization ( ), which,
in our current notation, reads

As a result, we get the following quantum-mechanical generalization of Equation ( ):
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This is the much-celebrated fluctuation-dissipation theorem, usually referred to just as the FDT, first derived in 1951 by Herbert
Bernard Callen and Theodore A. Welton – in a somewhat different way.

As natural as it seems, this generalization of the relation between fluctuations and dissipation poses a very interesting conceptual
dilemma. Let, for the sake of clarity, temperature be relatively low, ; then Equation ( ) gives a temperature-
independent result

Quantum noise:

which describes what is frequently called quantum noise. According to the quantum Langevin equation ( ), nothing but the
random force exerted by the environment, with the spectral density ( ) proportional to the imaginary part of susceptibility (i.e.
damping), is the source of the ground-state “fluctuations” of the coordinate and momentum of a quantum harmonic oscillator, with
the r.m.s. values

and the total energy . On the other hand, the basic quantum mechanics tells us that exactly these formulas describe the
ground state of a dissipation-free oscillator, not coupled to any environment, and are a direct corollary of the basic commutation
relation

So, what is the genuine source of the uncertainty described by Eqs. ( )?

The best resolution of this paradox I can offer is that either interpretation of Eqs. ( ) is legitimate, with their relative
convenience depending on the particular application. One may say that since the right-hand side of the quantum Langevin equation
( ) is a quantum-mechanical operator, rather than a classical force, it “carries the uncertainty relation within itself”. However,
this (admittedly, opportunistic :-) resolution leaves the following question open: is the quantum noise ( ) of the environment's
observable  directly, without any probe oscillator subjected to it? An experimental resolution of this dilemma is not quite simple,
because usual scientific instruments have their own ground-state uncertainty, i.e. their own quantum fluctuations, which may be
readily confused with those of the system under study. Fortunately, this difficulty may be overcome, for example, using unique
frequency-mixing (“down-conversion”) properties of Josephson junctions. Special low-temperature experiments using such down-
conversion  have confirmed that the noise ( ) is real and measurable.

where  is the temporal Green's function of the environment, defined by the following relation:

Plugging the Fourier transforms of all three functions of time participating in Equation ( ) into this relation, it is
straightforward to check that this Green's function is just the Fourier image of the complex susceptibility  defined by Equation
( ):

here 0 is used as the lower limit instead of ( ) just to emphasize that due to the causality principle, Green's function has to be
equal zero for .

In order to reveal the real beauty of Equation ( ), we may use the Wiener-Khinchin theorem ( ) to rewrite the
fluctuation-dissipation theorem ( ) in a similar time-domain form:
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where the symmetrized correlation function  is most simply described by its Fourier transform, which is, according to
Equation ( ), equal to , so that using the FDT, we get

The comparison of Eqs. ( ) and ( ), on one hand, and Eqs ( )-( ), on the other hand, shows that both the
commutation and anticommutation properties of the Heisenberg-Langevin force operator at different moments of time are
determined by the same generalized susceptibility  of the environment. However, the averaged anticommutator also depends
on temperature, while the averaged commutator does not – at least explicitly, because the complex susceptibility of an environment
may be temperature-dependent as well.

This page titled 5.5: Fluctuations and Dissipation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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