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6.4: Charge Carriers in Semiconductors - Statics and Kinetics
Now let me demonstrate the application of the concepts discussed in the last section to understanding the basic kinetic properties of
semiconductors and a few key semiconductor structures – which are the basis of most modern electronic and optoelectronic
devices, and hence of all our IT civilization. For that, I will need to take a detour to discuss their equilibrium properties first.

I will use an approximate but reasonable picture in which the energy of the electron subsystem in a solid may be partitioned into
the sum of effective energies  of independent electrons. Quantum mechanics says  that in such periodic structures as crystals, the
stationary state energy  of a particle interacting with the atomic lattice follows one of periodic functions  of the
quasimomentum , oscillating between two extreme values  and . These allowed energy bands are separated by
bandgaps, of widths , with no allowed states inside them. Semiconductors and insulators (dielectrics) are
defined as such crystals that in equilibrium at , all electron states in several energy bands (with the highest of them called the
valence band) are completely filled, , while those in the upper bands, starting from the lowest, conduction band, are
completely empty, .  Since the electrons follow the Fermi-Dirac statistics ( ), this means that at , the
Fermi energy  is located somewhere between the valence band's maximum  (usually called simply ), and the
conduction band's minimum  (called ) – see Figure .

Figure : Calculating  in an intrinsic semiconductor.

The positive constants  and  are usually called the effective masses of, respectively, electrons and holes. (In a typical
semiconductor,  is a few times smaller than the free electron mass , while  is closer to me.)

Due to the similarity between the top line of Equation ( ) and the dispersion law ( ) of free particles, we may re-use
Equation ( ), with the appropriate particle mass , the degeneracy factor , and the energy origin, to calculate the full spatial
density of populated states (in semiconductor physics, called electrons in the narrow sense of the word):

where . Similarly, the density  of “no-electron” excitations (called holes) in the valence band is the number of
unfilled states in the band, and hence may be calculated as

where in this case,  is defined as . If the electrons and holes  are in the thermal and chemical equilibrium, the
functions  in these two relations should follow the Fermi-Dirac distribution ( ) with the same temperature  and the
same chemical potential . Moreover, in our current case of an undoped (intrinsic) semiconductor, these densities have to be equal,
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because if this electroneutrality condition was violated, the volume would acquire a non-zero electric charge density ,
which would result, in a bulk sample, in an extremely high electric field energy. From this condition, we get a system of two
equations,

whose solution gives both the requested charge carrier density  and the Fermi level .

For an arbitrary ratio , this solution may be found only numerically, but in most practical cases, this ratio is very large. (Again,
for Si at room temperature,  eV, while  eV.) In this case, we may use the same classical approximation as in
Equation ( ), to reduce Eqs. ( ) and ( ) to simple expressions

where the temperature-dependent parameters

may be interpreted as the effective numbers of states (per unit volume) available for occupation in, respectively, the conduction and
valence bands, in thermal equilibrium. For usual semiconductors (with , and ), at room temperature,
these numbers are of the order of . (Note that all results based on Eqs. ( ) are only valid if both

 and  are much lower than, respectively,  and .)

With the substitution of Eqs. ( ), the system of equations ( ) allows a straightforward solution:

Since in all practical materials the logarithms in the first of these expressions are never much larger than 1,  it shows that the
Fermi level in intrinsic semiconductors never deviates substantially from the so called midgap value  – see the
(schematic) Figure . In the result for , the last (exponential) factor is very small, so that the equilibrium number of charge
carriers is much lower than that of the atoms – for the most important case of silicon at room temperature, . The
exponential temperature dependence of  (and hence of the electric conductivity ) of intrinsic semiconductors is the basis
of several applications, for example simple germanium resistance thermometers, efficient in the whole range from  K to 

 K. Another useful application of the same fact is the extraction of the bandgap of a semiconductor from the experimental
measurement of the temperature dependence of  – frequently, in just two well-separated temperature points.

However, most applications require a much higher concentration of carriers. It may be increased quite dramatically by planting into
a semiconductor a relatively small number of slightly different atoms – either donors (e.g., phosphorus atoms for Si) or acceptors
(e.g., boron atoms for Si). Let us analyze the first opportunity, called -doping, using the same simple energy band model ( ).
If the donor atom is only slightly different from those in the crystal lattice, it may be easily ionized – giving an additional electron
to the conduction band, and hence becoming a positive ion. This means that the effective ground state energy  of the additional
electrons is just slightly below the conduction band edge  – see Figure .
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Figure : The Fermi levels  in (a) -doped and (b) -doped semiconductors. Hatching shows the ranges of unlocalized state
energies.

However, for a doped semiconductor, the electroneutrality condition looks differently from Equation ( ), because the total
density of positive charges in a unit volume is not , but rather , where  is the density of positively-ionized
(“activated”) donor atoms, so that the electroneutrality condition becomes

If virtually all dopants are activated, as it is in most practical cases,  then we may take , where  is the total
concentration of donor atoms, i.e. their number per unit volume, and Equation ( ) becomes

Plugging in the expression , following from Equation ( ), we get a simple quadratic equation for , with the
following physically acceptable (positive) solution:

This result shows that the doping affects  (and hence  and ) only if the dopant concentration  is
comparable with, or higher than the intrinsic carrier density  given by Equation ( ). For most applications,  is made much
higher than ; in this case Equation ( ) yields

Because of the reasons to be discussed very soon, modern electron devices require doping densities above , so that the
logarithm in Equation ( ) is not much larger than 1. This means that the Fermi level rises from the midgap to a position only
slightly below the conduction band edge  – see Figure .

The opposite case of purely -doping, with  acceptor atoms per unit volume, and a small activation (negative ionization) energy 
,  may be considered absolutely similarly, using the electroneutrality condition in the form

where  is the number of activated (and hence negatively charged) acceptors. For the relatively high concentration 
, virtually all acceptors are activated, so that , Equation ( ) may be approximated as 

, and the analysis gives the results dual to Equation ( ):

so that in this case, the Fermi level is just slightly above the valence band edge (Figure ), and the number of holes far
exceeds that of electrons – again, in the narrow sense of the word. Let me leave the analysis of the simultaneous - and -doping
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(which enables, in particular, so-called compensated semiconductors with the sign-variable difference ) for the
reader's exercise.

Here  is the dielectric constant of the semiconductor matrix – excluding the dopants and charge carriers, which in this approach
are treated as explicit (“stand-alone”) charges, with the volumic density

(As a sanity check, Eqs. ( )-( ) show that if , then , bringing us back to the electroneutrality
condition ( ), and hence the “flat” band-edge diagrams shown in Figs.  and .)

Figure : The band-edge diagrams of the electric field penetration into a uniform p-doped semiconductor: (a) , (b) 
, and (c) . Solid red points depict positive charges; solid blue points, negative charges; and hatched blue points,

possible electrons in the inversion layer – all very schematically.

Note that the electrochemical potential  (which, in accordance with the discussion in Sec. 3, replaces the chemical potential in
presence of the electric field),  has to stay constant through the system in equilibrium, keeping the electric current equal to zero –
see Equation ( ). For arbitrary doping parameters, the system of equations ( ) (with the replacements , and 

) and ( )-( ), plus the relation between  and  (describing the acceptor activation), does not allow an
analytical solution. However, as was discussed above, in the most practical cases , we may use the approximate relations

 and  at virtually any values of  within the locally shifted bandgap , so that the
substitution of these relations, and the second of Eqs. ( ), with the mentioned replacements, into Equation ( ) yields

The -independent electrochemical potential (a.k.a. Fermi level)  in this relation should be equal to the value of the chemical
potential  in the semiconductor's bulk, given by the last of Eqs. ( ), which turns the expression in the parentheses
into 1. With these substitutions, Equation ( ) becomes

This nonlinear differential equation may be solved analytically, but in order to avoid a distraction by this (rather bulky) solution, let
me first consider the case when the electrostatic potential is sufficiently small – either because the external field is small, or
because we focus on the distances sufficiently far from the surface – see Figure  again. In this case, in the Taylor expansion of
the exponent in Equation ( ), with respect to small , we may keep only two leading terms, turning it into a linear equation:

with the well-known exponential solution, satisfying also the boundary condition  at :
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The constant  given by the last of Eqs. ( ) is called the Debye screening length. It may be rather substantial; for example,
at  K, even for the relatively high doping,  typical for modern silicon  integrated circuits, it is
close to 4 nm – still much larger than the crystal lattice constant  nm, so that the above analysis is indeed quantitatively
valid. Note also that  does not depend on the charge's sign; hence it should be no large surprise that repeating our analysis for an

-doped semiconductor, we may find out that Eqs. ( )-( ) are valid for that case as well, with the only replacement 
.

If the applied field  is weak, Equation ( ) is valid in the whole sample, and the constant  in it may be readily calculated
using the boundary condition ( ), giving

This formula allows us to express the condition of validity of the linear approximation leading to Equation ( ), , in
terms of the applied field:

in the above example,  kV/cm. On the lab scale, such field is not low at all (it is twice higher than the threshold of
electric breakdown in the air at ambient conditions), but may be sustained by many solid-state materials that are much less prone to
the breakdown.  This is why we should be interested in what happens if the applied field is higher than this value.

The effects taking place at the opposite polarity of the field, , are much more interesting – and more useful for applications.
Indeed, in this case, the band bending down leads to an exponential decrease of  as soon as the valence band edge 
drops down by just a few  below its unperturbed value . If the applied field is large enough,  (as it is in the situation
shown in Figure ), it forms, on the left of such point  the so-called depletion layer, of a certain width . Within this layer,
not only the electron density , but the hole density  as well, are negligible, so that the only substantial contribution to the charge
density  is given by the fully ionized acceptors: , and Equation ( ) becomes very simple:

Let us use this equation to calculate the largest possible width  of the depletion layer, and the critical value, , of the applied
field necessary for this. (By definition, at , the left boundary of the layer, where , i.e. 

, just touches the semiconductor surface: , i.e. . (Figure  shows the case when  is
slightly larger than .) For this, Equation ( ) has to be solved with the following boundary conditions:

Note that the first of these conditions is strictly valid only if , i.e. at the assumption we have made from the very
beginning, while the last two conditions are asymptotically correct only if  – the assumption we should not forget to
check after the solution.

After all the undergraduate experience with projective motion problems, the reader certainly knows by heart that the solution of
Equation ( ) is a quadratic parabola, so that let me immediately write its final form satisfying the boundary conditions (

):
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Comparing the result for  with Equation ( ), we see that if our basic condition  is fulfilled, then ,
confirming the qualitative validity of the whole solution ( ). For the same particular parameters as in the example before (

), and  eV, Eqs. ( ) give  nm and  kV/cm – still a practicable field. (As
Figure  shows, to create it, we need a gate voltage only slightly larger than , i.e. close to 1 V for typical semiconductors.)

Figure  also shows that if the applied field exceeds this critical value, near the surface of the semiconductor the conduction
band edge drops below the Fermi level. This is the so-called inversion layer, in which electrons with energies below  form a
highly conductive degenerate Fermi gas. However, typical rates of electron tunneling from the bulk through the depletion layer are
very low, so that after the inversion layer has been created (say, by the gate voltage application), it may be only populated from
another source – hence the hatched blue points in Figure . This is exactly the fact used in the workhorse device of
semiconductor integrated circuits – the field-effect transistor (FET) – see Figure .

Figure : Two main species of the -FET: (a) the bulk FET, and (b) the FinFET. While on panel (a), the current flow from the
source to the drain is parallel to the plane of the drawing, on panel (b) it is normal to the plane, with the n-doped source and drain
contacting the thin “fin” from two sides off this plane.

In the “bulk” variety of this structure (Figure ), a gate electrode overlaps a gap between two similar highly- -doped regions
near the surface, called source and drain, formed by -doping inside a  doped semiconductor. It is more or less obvious (and will
be shown in a moment) that in the absence of gate voltage, the electrons cannot pass through the -doped region, so that virtually
no current flows between the source and the drain, even if a modest voltage is applied between these electrodes. However, if the
gate voltage is positive and large enough to induce the electric field  at the surface of the p-doped semiconductor, it creates
the inversion layer as shown in Figure , and the electron current between the source and drain electrodes may readily flow
through this surface channel. (Very unfortunately, in this course I would not have time/space for a detailed analysis of transport
properties of this keystone electron device, and have to refer the reader to special literature. )

Figure  makes it obvious that another major (and virtually unavoidable) structure of semiconductor integrated circuits is the
famous  junction – an interface between - and -doped regions. Let us analyze its simple model, in which the interface is in
the plane , and the doping profiles  and  are step-like, making an abrupt jump at the interface:

(This model is very reasonable for modern integrated circuits, where the doping in performed by implantation, using high-energy
ion beams.)

To start with, let us assume that no voltage is applied between the - and -regions, so that the system may be in thermodynamic
equilibrium. In the equilibrium, the Fermi level  should be flat through the structure, and at  and , where 

, the level structure has to approach the positions shown, respectively, on panels (a) and (b) of Figure . In addition, the
distribution of the electric potential , shifting the level structure vertically by , has to be continuous to avoid
unphysical infinite electric fields. With that, we inevitably arrive at the band-edge diagram that is (schematically) shown in Figure

.

w 6.4.21 T << Δ λD << w

6.4.28
≈ c ,κ ≈ 10nA 1018 m−3 Δ ≈ 1 6.4.28 w ≈ 40 ≈ 600Ec

6.4.3c Δ/e

6.4.3c
μ′

6.4.3c
6.4.4

6.4.4 n

6.4.4a n

n p

p

E > Ec

6.4.3c

49

6.4.4a
p−n p n

x = 0 (x)nD (x)nA

(x) ={ (x) ={nA
= constnA

0,
 at x < 0,
 at x > 0,

nD
0

= constnD

 at x < 0,
 at x > 0.

(6.4.29)

p n

μ′ x →– ∞ x → +∞
ϕ → 0 6.4.2

ϕ(x) – eϕ(x)

6.4.5

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34733?pdf


6.4.7 https://phys.libretexts.org/@go/page/34733

Figure : The band-edge diagram of a  junction in thermodynamic equilibrium (  = const,  = const). The notation is
the same as in Figs.  and .

The diagram shows that the contact of differently doped semiconductors gives rise to a built-in electric potential difference ,
equal to the difference of their values of  in the absence of the contact – see Eqs. ( ) and ( ):

which is usually just slightly smaller than the bandgap.  (Qualitatively, this is the same contact potential difference that was
discussed, for the case of metals, in Sec. 3 – see Figure .) The arising internal electrostatic field  induces, in both
semiconductors, depletion layers similar to that induced by an external field (Figure ). Their widths  and  may also be
calculated similarly, by solving the following boundary problem of electrostatics, mostly similar to that given by Eqs. ( )-(

):

also exact only in the limit . Its (easy) solution gives the result similar to Equation ( ):

with expressions for  and  giving the following formula for the full depletion layer width:

This expression is similar to that given by Equation ( ), so that for typical highly doped semiconductors ( ) it
gives for  a similar estimate of a few tens nm.  Returning to Figure , we see that this scale imposes an essential limit on
the reduction of bulk FETs (whose scaling down is at the heart of the well-known Moore's law),  explaining why such high doping
is necessary. In the early 2010s, the problems with implementing even higher doping, plus issues with dissipated power
management, have motivated the transition of advanced silicon integrated circuit technology from the bulk FETs to the FinFET
(also called “double-gate”, or “tri-gate”, or “wrap-around-gate”) variety of these devices, schematically shown in Figure ,
despite their essentially 3D structure and hence a more complex fabrication technology. In the FinFETs, the role of  junctions
is reduced, but these structures remain an important feature of semiconductor integrated circuits.

Now let us have a look at the  junction in equilibrium from the point of view of Equation ( ). In the simple model we
are considering now (in particular, at ), this equation is applicable separately to the electron and hole subsystems, because
in this model the gases of these charge carriers are classical in all parts of the system, and the generation-recombination processes
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w ≡ + = ,  with  ≡ ,  i.e. = + .wp wn ( )
2κ Δϕε0

enef

1/2

nef

nAnD

+nA nD

1

nef

1

nA

1

nD

(6.4.34)

6.4.28 ∼ cnef 1018 m−3

w 51 6.4.4a
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coupling these subsystems have relatively small rates – see below. Hence, for the electron subsystem, we may rewrite Equation (
) as

where . Let us discuss how each term of the right-hand of this equality depends on the system's parameters. Because of the 
-doping at , there are many more electrons in this part of the system. According to the Boltzmann distribution ( ), some

number of them,

Figure : Electrons in the conduction band of a  junction at: (a) , and (b) . For clarity, other charges (of the
holes and all ionized dopant atoms) are not shown.

This change results in an exponential change of the number of electrons able to diffuse into the -side of the junction – cf. Equation
( ):

and hence in a proportional change of the diffusion flow  of electrons from the -side to the -side of the system, i.e. of the
oppositely directed density of the electron current  – see Figure .

On the other hand, the drift counter-flow of electrons is not altered too much by the applied voltage: though it does change the
electrostatic field  inside the depletion layer, and also the depletion layer width,  these changes are incremental, not
exponential. As the result, the net density of the current carried by electrons may be approximately expressed as

As was discussed above, at , the net current has to vanish, so that the constant in Equation ( ) has to equal , and
we may rewrite this equality as

describing the main  junction's property as an electric diode – a two-terminal device passing the current more “readily” in one
direction (from the - to the -terminal) than in the opposite one.  Besides numerous practical applications in electrical and
electronic engineering, such diodes have very interesting statistical properties, in particular performing very non-trivial

6.3.19

= n qE − ,jn μm Dn

∂n

∂x
(6.4.35)

q =– e
n x > 0 6.4.6

∝ exp{− },n>
eΔϕ

T
(6.4.36)

6.4.6 p−n V = 0 V > 0

eΔϕ → eΔϕ+Δ ≡ eΔϕ+qV ≡ e(Δϕ−V ).μ′ (6.4.37)

p

6.4.36

(V ) ≈ (0) exp{ },n> n>
eV

T
(6.4.38)

jn n p

=– eje jn 6.4.6b

E =– ∇ϕ 57

(V ) = − ≈ (0) exp{ }−const.je jdiffusion jdrift je
eV

T
(6.4.39)

V = 0 6.4.39 (0)je

(V ) = (0)(exp{ }−1) .je je
eV

T
(6.4.40)

j(V ) ≡ (V ) + (V ) = j(0)(exp{ }−1) ,  with j(0) ≡ (0) + (0),je jh
eV

T
je jh (6.4.41)
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transformations of the spectra of deterministic and random signals. Very unfortunately, I would not have time for their discussion
and have to refer the interested reader to the special literature.

Still, before proceeding to our next (and last!) topic, let me give for the reader reference, without proof, the expression for the
scaling factor  in Equation ( ), which follows from a simple, but broadly used model of the recombination process:

Here  and  are the characteristic lengths of diffusion of electrons and holes before their recombination, which may be expressed
by Equation ( ),  and , with  and  being the characteristic times of recombination of the
so-called minority carriers – of electrons in the -doped part, and of holes in the -doped part of the structure. Since the
recombination is an inelastic process, its times are typically rather long – of the order of  s, i.e. much longer than the typical
times of elastic scattering of the same carriers, that define their diffusion coefficients – see Equation ( ).

This page titled 6.4: Charge Carriers in Semiconductors - Statics and Kinetics is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.

60

j(0) 6.4.41

j(0) = e ( + ) .n2
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lhnD
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