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2.2: Microcanonical ensemble and distribution

Figure : A very schematic image of the microcanonical ensemble. (Actually, the ensemble deals with quantum states rather
than energy levels. An energy level may be degenerate, i.e. correspond to several states.)

This ensemble serves as the basis for the formulation of the postulate which is most frequently called the microcanonical
distribution (or, more adequately, “the main statistical postulate” or “the main statistical hypothesis”): in the thermodynamic
equilibrium of a microcanonical ensemble, all its states have equal probabilities,

Microcanonical distribution:

Though in some constructs of statistical mechanics this equality is derived from other axioms, which look more plausible to their
authors, I believe that Equation ( ) may be taken as the starting point of the statistical physics, supported “just” by the
compliance of all its corollaries with experimental observations.

Note that the postulate ( ) is closely related to the macroscopic irreversibility of the systems that are microscopically virtually
reversible (closed): if such a system was initially in a certain state, its time evolution with just minuscule interactions with the
environment (which is necessary for reaching the thermodynamic equilibrium) eventually leads to the uniform distribution of its
probability among all states with essentially the same energy. Each of these states is not “better” than the initial one; rather, in a
macroscopic system, there are just so many of these states that the chance to find the system in the initial state is practically nil –
again, think about the ink drop diffusion into a glass of water.

Now let us find a suitable definition of the entropy  of a microcanonical ensemble’s member – for now, in the thermodynamic
equilibrium only. This was done in 1877 by another giant of statistical physics, Ludwig Eduard Boltzmann – on the basis of the
prior work by James Clerk Maxwell on the kinetic theory of gases – see Sec. 3.1 below. In the present-day terminology, since  is a
measure of disorder, it should be related to the amount of information  lost when the system went irreversibly from the full order
to the full disorder, i.e. from one definite state to the microcanonical distribution ( ). In an even more convenient formulation,
this is the amount of information necessary to find the exact state of your system in a microcanonical ensemble.

In the information theory, the amount of information necessary to make a definite choice between two options with equal
probabilities (Figure ) is defined as

This unit of information is called a bit.
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Figure : “Logarithmic trees” of binary decisions for choosing between (a) , and (b)  opportunities with equal
probabilities.

Now, if we need to make a choice between four equally probable opportunities, it can be made in two similar steps (Figure ),
each requiring one bit of information, so that the total amount of information necessary for the choice is

An obvious extension of this process to the choice between  states gives

Using Equation ( ), we may recast this definition in its most frequently used form

Entropy in equilibrium:

(Again, please note that Equation (  - ) is valid in thermodynamic equilibrium only!)

Note that Equation (  - ) satisfies the major properties of the entropy discussed in thermodynamics. First, it is a unique
characteristic of the disorder. Indeed, according to Equation ( ),  (at fixed ) is the only possible measure characterizing
the microcanonical distribution, and so is its unique function . This function also satisfies another thermodynamic requirement
to the entropy, of being an extensive variable. Indeed, for several independent systems, the joint probability of a certain state is just
a product of the partial probabilities, and hence, according to Equation (  - ), their entropies just add up.

Now let us see whether Eqs. ( ) and (  - ) are compatible with the  law of thermodynamics. For that, we need to
generalize Equation (  - ) for  to an arbitrary state of the system (generally, out of thermodynamic equilibrium), with an
arbitrary set of state probabilities . Let us first recognize that  in Equation (  - ) is just the number of possible ways
to commit a particular system to a certain state  , in a statistical ensemble where each state is equally probable.
Now let us consider a more general ensemble, still consisting of a large number  of similar systems, but with a certain
number  of systems in each of  states, with the factors  not necessarily equal. In this case, the evident
generalization of Equation (  - ) is that the entropy  of the whole ensemble is

where  is the number of ways to commit a particular system to a certain state  while keeping all numbers 
fixed. This number  is clearly equal to the number of ways to distribute  distinct balls between  different
boxes, with the fixed number  of balls in each box, but in no particular order within it. Comparing this description with the
definition of the so-called multinomial coefficients,  we get
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To simplify the resulting expression for , we can use the famous Stirling formula, in its crudest, de Moivre’s form,  whose
accuracy is suitable for most purposes of statistical physics:

When applied to our current problem, this formula gives the following average entropy per system,

and since this result is only valid in the limit  anyway, we may use Equation ( ) to represent it as

Entropy out of equilibrium:

Now let us find what distribution of probabilities  provides the largest value of the entropy ( ). The answer is almost
evident from a good glance at Equation ( ). For example, if for a subgroup of  states the coefficients  are
constant and equal to , so that  for all other states, all  non-zero terms in the sum ( ) are equal to each other,
so that

and the closer  to its maximum value  the larger . Hence, the maximum of  is reached at the uniform distribution given by
Equation (  - ).

In order to prove this important fact more strictly, let us find the maximum of the function given by Equation ( ). If its
arguments  were completely independent, this could be done by finding the point (in the -dimensional space of
the coefficients ) where all partial derivatives  equal zero. However, since the probabilities are constrained by the
condition ( ), the differentiation has to be carried out more carefully, taking into account this interdependence:

At the maximum of the function , all such expressions should be equal to zero simultaneously. This condition yields 
, where the so-called Lagrange multiplier  is independent of . Indeed, at such point Equation ( ) becomes

For our particular expression ( ), the condition  yields

The last equality holds for all  (and hence the entropy reaches its maximum value) only if  is independent on . Thus the
entropy ( ) indeed reaches its maximum value (  - ) at equilibrium.

To summarize, we see that the statistical definition (  - ) of entropy does fit all the requirements imposed on this variable
by thermodynamics. In particular, we have been able to prove the  law of thermodynamics using that definition together with
the fundamental postulate ( ).

Now let me discuss one possible point of discomfort with that definition: the values of , and hence , depend on the accepted
energy interval  of the microcanonical ensemble, for whose choice no exact guidance is offered. However, if the interval 

SN
13

ln(N ! → N(lnN −1).)N→∞ (2.2.9)

14

S ≡ = → [N(lnN −1) − (ln −1)]
SN

N

1

N
[ln(N !) − ln( !)]∑

m=1

M

Nm

→∞Nm

1

N
∑
m=1

M

Nm Nm

≡ − ln∑
m=1

M
Nm

N

Nm

N
(2.2.10)

→ ∞Nm 2.1.2

S = − ln = ln .∑
m=1

M

Wm Wm ∑
m=1

M

Wm

1

Wm

(2.2.11)

Wm 2.2.11

2.2.11 ≤ MM ′ Wm

1/M ′ = 0Wm M ′ 2.2.11

S = ln ≡ ln ,M ′ 1

M ′
M ′ M ′ (2.2.12)

M ′ M S S

2.2.5 2.2.6

2.2.11

, , . . .W1 W2 WM M

Wm ∂S/∂Wm

2.1.4

= + .[ S ( , , …)]
∂

∂Wm

W1 W2

cond 

∂S

∂Wm

∑
≠mm′

∂S

∂Wm′

∂Wm′

∂Wm

(2.2.13)

S

∂S/∂ = λWm λ m 2.2.13

= λ+ λ ≡ λ + ≡ λ (1) = 0.[ S ( , , …)]
∂

∂Wm

W1 W2
cond 

∑
≠mm′

∂Wm′

∂Wm

⎛

⎝

∂Wm

∂Wm

∑
≠mm′

∂Wm′

∂Wm

⎞

⎠

∂

∂Wm

(2.2.14)

2.2.11 ∂S/∂ = λWm

≡ [− ln ] ≡ −ln −1 = λ.
∂S

∂Wm

d

dWm

Wm Wm Wm (2.2.15)

m Wm m

2.2.11 2.2.5 2.2.6

2.2.5 2.2.6

2nd

2.2.1

M Wm

ΔE ΔE

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34696?pdf


2.2.4 https://phys.libretexts.org/@go/page/34696

contains many states, , as was assumed before, then with a very small relative error (vanishing in the limit ), 
may be represented as

where  is the density of states of the system:

 being the total number of states with energies below . (Note that the average interval  between energy levels, mentioned
at the beginning of this section, is just .) Plugging Equation ( ) into Equation (  - ), we get

so that the only effect of a particular choice of  is an offset of the entropy by a constant, and in Chapter 1 we have seen that
such constant shift does not affect any measurable quantity. Of course, Equation ( ), and hence Equation ( ) are only
precise in the limit when the density of states  is so large that the range available for the appropriate choice of :

is sufficiently broad: .

In order to get some feeling of the functions  and  and the feasibility of the condition ( ), and also to see whether
the microcanonical distribution may be directly used for calculations of thermodynamic variables in particular systems, let us apply
it to a microcanonical ensemble of many sets of  independent, similar harmonic oscillators with frequency . (Please note
that the requirement of a virtually fixed energy is applied, in this case, to the total energy  of each set of oscillators, rather to
energy  of a single oscillator – which may be virtually arbitrary, though certainly much less than .) Basic
quantum mechanics tells us  that the eigenenergies of such an oscillator form a discrete, equidistant spectrum:

If  is kept constant, the ground-state energy  does not contribute to any thermodynamic properties of the system,  so that for
the sake of simplicity we may take that point as the energy origin, and replace Equation ( ) with . Let us carry out
an approximate analysis of the system for the case when its average energy per oscillator,

is much larger than the energy quantum .

For one oscillator, the number of states with energy  below a certain value  is evidently 
 (Figure ). For two oscillators, all possible values of the total energy  below some

level  correspond to the points of a 2D square grid within the right triangle shown in Figure , giving 
. For three oscillators, the possible values of the total energy  correspond

to those points of the 3D cubic grid, that fit inside the right pyramid shown in Figure , giving 
, etc.
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Figure : Calculating functions  for systems of (a) one, (b) two, and (c) three harmonic oscillators.

An evident generalization of these formulas to arbitrary  gives the number of states  .

Differentiating this expression over the energy, we get

so that

For  we can ignore the difference between  and  in both instances, and use the Stirling formula ( ) to
simplify this result as

(The second, approximate step is only valid at very high  ratios, when the logarithm in Equation ( ) is substantially
larger than 1.) Returning for a second to the density of states, we see that in the limit , it is exponentially large:

so that the conditions ( ) may be indeed satisfied within a very broad range of .

Now we can use Equation ( ) to find all thermodynamic properties of the system, though only in the limit . Indeed,
according to thermodynamics, if the system’s volume and the number of particles in it are fixed, the derivative  is nothing
else than the reciprocal temperature in thermal equilibrium – see Equation ( ). In our current case, we imply that the harmonic
oscillators are distinct, for example by their spatial positions. Hence, even if we can speak of some volume of the system, it is
certainly fixed.  Differentiating Equation ( ) over energy , we get

Classical oscillator: average energy

Reading this result backward, we see that the average energy  of a harmonic oscillator equals  (i.e.  is SI units). At this
point, the first-time student of thermodynamics should be very much relieved to see that the counter-intuitive thermodynamic
definition ( ) of temperature does indeed correspond to what we all have known about this notion from our kindergarten
physics courses.

The result ( ) may be readily generalized. Indeed, in quantum mechanics, a harmonic oscillator with eigenfrequency  may
be described by the Hamiltonian operator

2.2.3 Σ( )EN

N 19

Σ( ) ≈ .EN

1

N !
( )
EN

ℏω

N

(2.2.22)

g( ) ≡ = ,EN

dΣ( )EN

dEN

1

(N −1)!

EN−1
N

(ℏω)N
(2.2.23)

( ) = lng( ) + const  = −ln[(N −1)!] +(N −1) ln −N ln(ℏω) + const.SN EN EN EN (2.2.24)

N >> 1 N (N– 1) 2.2.9

(E) − const  ≈ N (ln +1) ≈ N (ln ) ≡ ln[ ]SN

EN

Nℏω

E

ℏω
( )

E

ℏω

N

(2.2.25)

E/ℏω 2.2.25

N → ∞

g( ) = ≈ ,EN eSN ( )
E

ℏω

N

(2.2.26)

2.2.19 ΔE

2.2.25 E >> ℏω

dS/dE

1.2.6

20 2.2.25 E

≡ = = .
1

T

dSN

dEN

N

EN

1

E
(2.2.27)

E T kBTK

1.2.6

2.2.27 ω

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34696?pdf


2.2.6 https://phys.libretexts.org/@go/page/34696

where  is some generalized coordinate,  is the corresponding generalized momentum,  is oscillator’s mass,  and  is the
spring constant, so that . Since in the thermodynamic equilibrium the density matrix is always diagonal in the basis
of stationary states  (see Sec. 1 above), the quantum mechanical averages of the kinetic and potential energies may be found from
Equation ( ):

where  is the probability to occupy the  energy level, and bra- and ket-vectors describe the stationary state corresponding to
that level.  However, both classical and quantum mechanics teach us that for any , the bra-ket expressions under the sums in
Eqs. ( ), which represent the average kinetic and mechanical energies of the oscillator on its  energy level, are equal to
each other, and hence each of them is equal to . Hence, even though we do not know the probability distribution  yet (it
will be calculated in Sec. 5 below), we may conclude that in the “classical limit” ,

with (generally, different) frequencies . Since the “modes” (effective harmonic oscillators) contributing to this
Hamiltonian, are independent, the result ( ) is valid for each of the modes. This is the famous equipartition theorem: at
thermal equilibrium with , the average energy of each so called half-degree of freedom (which is defined as any
variable, either  or , giving a quadratic contribution to the system’s Hamiltonian), is equal to .  In particular, for each of
three Cartesian component contributions to the kinetic energy of a free-moving particle, this theorem is valid for any temperature,
because such components may be considered as 1D harmonic oscillators with vanishing potential energy, i.e. , so that
condition  is fulfilled at any temperature.

I believe that this case study of harmonic oscillator systems was a fair illustration of both the strengths and the weaknesses of the
microcanonical ensemble approach.  On one hand, we could readily calculate virtually everything we wanted in the classical limit 

, but calculations for an arbitrary , though possible, are rather unpleasant because for that, all vertical steps of the
function  have to be carefully counted. In Sec. 4, we will see that other statistical ensembles are much more convenient for
such calculations.

Let me conclude this section with a short notice on deterministic classical systems with just a few degrees of freedom (and even
simpler mathematical objects called “maps”) that may exhibit essentially disordered behavior, called the deterministic chaos.
Such chaotic system may be approximately characterized by an entropy defined similarly to Equation ( ), where  are the
probabilities to find it in different small regions of phase space, at well-separated small time intervals. On the other hand, one can
use an expression slightly more general than Equation ( ) to define the so-called Kolmogorov (or “Kolmogorov-Sinai”)
entropy  that characterizes the speed of loss of the information about the initial state of the system, and hence what is called the
“chaos depth”. In the definition of , the sum over  is replaced with the summation over all possible permutations 

 of small space regions, and  is replaced with , the probability of finding the system in the
corresponding regions m at time moment , with , in the limit , with  const. For chaos in the simplest
objects, 1D maps,  is equal to the Lyapunov exponent .  For systems of higher dimensionality, which are characterized by
several Lyapunov exponents , the Kolmogorov entropy is equal to the phase-space average of the sum of all positive . These
facts provide a much more practicable way of (typically, numerical) calculation of the Kolmogorov entropy than the direct use of
its definition.
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Ĥj Ĥj
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