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1.5: Systems with a variable number of particles
Now we have to consider one more important case: when the number  of particles in a system is not rigidly fixed, but may
change as a result of a thermodynamic process. A typical example of such a system is a gas sample separated from the environment
by a penetrable partition – see Figure .

Figure : An example of a system with a variable number of particles.

Let us analyze this situation for the simplest case when all the particles are similar. (In Sec. 4.1, this analysis will be extended to
systems with particles of several sorts). In this case, we may consider  as an independent thermodynamic variable whose
variation may change the energy  of the system, so that (for a slow, reversible process) Equation ( ) should be now
generalized as

where  is a new function of state, called the chemical potential.  Keeping the definitions of other thermodynamic potentials,
given by Eqs. ( ), ( ), and ( ), intact, we see that the expressions for their differentials should be generalized as

Despite the formal similarity of all Eqs. ( ), one of them is more consequential than the others. Indeed, the Gibbs energy  is
the only thermodynamic potential that is a function of two intensive parameters,  and . However, as all thermodynamic
potentials,  has to be extensive, so that in a system of similar particles it has to be proportional to :

where  is some function of  and . Plugging this expression into the last of Eqs. ( ), we see that  equals exactly this
function, so that

 as Gibbs energy:

i.e. the chemical potential is just the Gibbs energy per particle.

In order to demonstrate how vital the notion of chemical potential may be, let us consider the situation (parallel to that shown in
Figure ) when a system consists of two parts, with equal pressure and temperature, that can exchange particles at a relatively
slow rate (much slower than the speed of the internal relaxation of each part). Then we can write two equations similar to Eqs. (

):
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 Chemical potential: definition

dE = TdS−PdV +μdN , (1.5.1)
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where  const, and Equation ( ) may be used to describe each component of :

Plugging the  expressed from the first of Eqs. ( ), , into Equation ( ), we see that

so that the minimum of  is achieved at . Hence, in the conditions of fixed temperature and pressure, i.e. when  is the
appropriate thermodynamic potential, the chemical potentials of the system parts should be equal – the so-called chemical
equilibrium.

Finally, later in the course, we will also run into several cases when the volume  of a system, its temperature , and the chemical
potential  are all fixed. (The last condition may be readily implemented by allowing the system of our interest to exchange
particles with an environment so large that its  stays constant.) The thermodynamic potential appropriate for this case may be
obtained by subtraction of the product  from the free energy , resulting in the so-called grand thermodynamic (or “Landau”)
potential:

Indeed, for a reversible process, the full differential of this potential is

Grand potential: differential

so that if  has been calculated as a function of , , and , other thermodynamic variables may be found as

Now acting exactly as we have done for other potentials, it is straightforward to prove that an irreversible process with fixed , ,
and , provides , so that system’s equilibrium indeed corresponds to the minimum of the grand potential . We will
repeatedly use this fact in this course.
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 Grand potential: definition

Ω ≡ F −μN = F − N ≡ F −G= −PV .
G

N
(1.5.11)

dΩ = dF −d(μN) = (−SdT −PdV +μdN) −(μdN +Ndμ) = −SdT −PdV −Ndμ, (1.5.12)
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