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4.3: Landau’s mean-field theory
The highest-level approach to continuous phase transitions, formally not based on any particular microscopic model (though in fact
implying either the Ising model ( ) or one of its siblings), is the mean-field theory developed in 1937 by L. Landau, on the
basis of prior ideas by P. Weiss – to be discussed in the next section. The main idea of this phenomenological approach is to
represent the free energy's change  at the phase transition as an explicit function of the order parameter  ( ). Since at 

, the order parameter has to tend to zero, this change,

may be expanded into the Taylor series in , and only a few, most important first terms of that expansion retained. In order to keep
the symmetry between two possible signs of the order parameter (i.e. between two possible spin directions in the Ising model) in
the absence of external field, at  this expansion should include only even powers of :

As Figure  shows, at , and , these two terms are sufficient to describe the minimum of the free energy at 
, i.e. to calculate stationary values of the order parameter; this is why Landau's theory ignores higher terms of the Taylor

expansion – which are much smaller at .

Figure : The Landau free energy ( ) as a function of (a)  and (b) , for two signs of the coefficient , both for 
.

Now let us discuss the temperature dependencies of the coefficients  and . As Equation ( ) shows, first of all, the
coefficient  has to be positive for any sign of , to ensure the equilibrium at a finite value of . Thus, it is
reasonable to ignore the temperature dependence of  near the critical temperature altogether, i.e. use the approximation

On the other hand, as Figure  shows, the coefficient  has to change sign at , to be positive at  and
negative at , to ensure the transition from  at  to a certain non-zero value of the order parameter at .
Assuming that  is a smooth function of temperature, we may approximate it by the leading term of its Taylor expansion in :

so that Equation ( ) becomes

In this rudimentary form, the Landau theory may look almost trivial, and its main strength is the possibility of its straightforward
extension to the effects of the external field and of spatial variations of the order parameter. First, as the field terms in Eqs. ( )
or ( ) show, the applied field gives such systems, on average, the energy addition of  per particle, i.e.  per unit
volume, where  is the particle density. Second, since according to Equation ( ) (with , see Table ) the correlation
radius diverges at , in this limit the spatial variations of the order parameter should be slow, . Hence, the effects of
the gradient on  may be approximated by the first non-zero term of its expansion into the Taylor series in .  As a result,
Equation ( ) may be generalized as
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where  is a coefficient independent of . To avoid the unphysical effect of spontaneous formation of spatial variations of the order
parameter, that factor has to be positive at all temperatures and hence may be taken for a constant in a small vicinity of  – the
only region where Equation ( ) may be expected to provide quantitatively correct results.

Let us find out what critical exponents are predicted by this phenomenological approach. First of all, we may find the equilibrium
values of the order parameter from the condition of  having a minimum, . At , it is easier to use the equivalent
equation , where  is given by Equation ( ) – see Figure . This immediately yields

Comparing this result with Equation ( ), we see that in the Landau theory, . Next, plugging the result ( ) back into
Equation ( ), for the equilibrium (minimal) value of the free energy, we get

From here and Equation ( ), the specific heat,

has, at the critical point, a discontinuity rather than a singularity, so that we need to prescribe zero value to the critical exponent .

In the presence of a uniform field, the equilibrium order parameter should be found from the condition  applied to
Equation ( ) with , giving

In the limit of a small order parameter, , the term with  is negligible, and Equation ( ) gives

so that according to Equation ( ), . On the other hand, at  (or at relatively high fields at other temperatures), the
cubic term in Equation ( ) is much larger than the linear one, and this equation yields

so that comparison with Equation ( ) yields . Finally, according to Equation ( ), the last term in Equation ( )
scales as . (If , the effects of the pre-exponential factor in Equation ( ) are negligible.) As a result, the gradient
term's contribution is comparable  with the two leading terms in  (which, according to Equation ( ), are of the same order),
if

so that according to the definition ( ) of the critical exponent , in the Landau theory it is equal to 1/2.

The third column in Table  summarizes the critical exponents and their combinations in Landau's theory. It shows that these
values are somewhat out of the experimental ranges, and while some of their “universal” relations are correct, some are not; for
example, the Josephson relation would be only correct at  (not the most realistic spatial dimensionality :-) The main reason
for this disappointing result is that describing the spin interaction with the field, the Landau mean-field theory neglects spin
randomness, i.e. fluctuations. Though a quantitative theory of fluctuations will be discussed only in the next chapter, we can readily
perform their crude estimate. Looking at Equation ( ), we see that its first term is a quadratic function of the effective “half-
degree of freedom”, . Hence per the equipartition theorem ( ), we may expect that the average square of its thermal
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fluctuations, within a -dimensional volume with a linear size of the order of , should be of the order of  (close to the critical
temperature,  is a good enough approximation):

In order to be negligible, the variance has to be small in comparison with the average  – see Equation ( ). Plugging
in the -dependences of the operands of this relation, and values of the critical exponents in the Landau theory, for  we get
the so-called Levanyuk-Ginzburg criterion of its validity:

We see that for any realistic dimensionality, , at  the order parameter's fluctuations grow faster than its average value,
and hence the theory becomes invalid.

Thus the Landau mean-field theory is not a perfect approach to finding critical indices at continuous phase transitions in Ising-type
systems with their next-neighbor interactions between the particles. Despite that fact, this theory is very much valued because of
the following reason. Any long range interactions between particles increase the correlation radius , and hence suppress the order
parameter fluctuations. As one example, at laser self-excitation, the emerging coherent optical field couples essentially all photon-
emitting particles in the electromagnetic cavity (resonator). As another example, in superconductors the role of the correlation
radius is played by the Cooper-pair size , which is typically of the order of  m, i.e. much larger than the average distance
between the pairs (  m). As a result, the mean-field theory remains valid at all temperatures besides an extremely small
temperature interval near  – for bulk superconductors, of the order of  K.

Another strength of Landau's classical mean-field theory ( ) is that it may be readily generalized for a description of Bose-
Einstein condensates, i.e. quantum fluids. Of those generalizations, the most famous is the Ginzburg-Landau theory of
superconductivity. It was developed in 1950, i.e. even before the microscopic-level explanation of this phenomenon by J. Bardeen,
L. Cooper, and R. Schrieffer in 1956-57. In this theory, the real order parameter  is replaced with the modulus of a complex
function , physically the wavefunction of the coherent Bose-Einstein condensate of Cooper pairs. Since each pair carries the
electric charge  and has zero spin, it interacts with the magnetic field in a way different from that described by the
Heisenberg or Ising models. Namely, as was already discussed in Sec. 3.4, in the magnetic field, the del operator  in Equation (

) has to be complemented with the term , where  is the vector potential of the total magnetic field ,
including not only the external magnetic field  but also the field induced by the supercurrent itself. With the account for the
well-known formula for the magnetic field energy, Equation ( ) is now replaced with

GL theory: free energy

where  is a phenomenological coefficient rather than the actual particle's mass.

The variational minimization of the resulting Gibbs energy density  const  over the
variables  and  (which is suggested for reader's exercise) yields two differential equations:

GL equations:

The first of these Ginzburg-Landau equations ( ) should be no big surprise for the reader, because according to the Maxwell
equations, in magnetostatics the left-hand side of Equation ( ) has to be equal to the electric current density, while its right-
hand side is the usual quantum-mechanical probability current density multiplied by , i.e. the density  of the electric current of the
Cooper pair condensate. (Indeed, after plugging  into that expression, we come back to Equation ( ) which,
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as we already know, explains such macroscopic quantum phenomena as the magnetic flux quantization and the Meissner-
Ochsenfeld effect.)

However, Equation ( ) is new for us – at least for this course.  Since the last term on its right-hand side is the standard wave-
mechanical expression for the kinetic energy of a particle in the presence of a magnetic field,  if this term dominates that side of
the equation, Equation ( ) is reduced to the stationary Schrödinger equation , for the ground state of free Cooper
pairs, with the total energy . However, in contrast to the usual (single-particle) Schrödinger equation, in which  is
determined by the normalization condition, the Cooper pair condensate density  is determined by the thermodynamic
balance of the condensate with the ensemble of “normal” (unpaired) electrons, which plays the role of the uncondensed part of the
particles in the usual Bose-Einstein condensate – see Sec. 3.4. In Equation ( ), such balance is enforced by the first term 

 on the right-hand side. As we have already seen, in the absence of magnetic field and spatial gradients, such term yields 
 – see Equation ( ).

As a parenthetic remark, from the mathematical standpoint, the term , which is nonlinear in , makes Equation ( ) a
member of the family of the so-called nonlinear Schrödinger equations. Another member of this family, important for physics, is
the Gross-Pitaevskii equation,

Gross-Pitaevskii equation:

which gives a reasonable (albeit approximate) description of gradient and field effects on Bose-Einstein condensates of electrically
neutral atoms at . The differences between Eqs. ( ) and ( - ) reflect, first, the zero electric charge  of the
atoms (so that Equation ( ) becomes trivial) and, second, the fact that the atoms forming the condensates may be readily
placed in external potentials  const (including the time-averaged potentials of optical traps – see EM Chapter 7), while in
superconductors such potential profiles are much harder to create due to the screening of external electric and optical fields by
conductors – see, e.g., EM Sec. 2.1.

Returning to the discussion of Equation ( ), it is easy to see that its last term increases as either the external magnetic field or
the density of current passed through a superconductor are increased, increasing the vector potential. In the Ginzburg-Landau
equation, this increase is matched by a corresponding decrease of , i.e. of the condensate density , until it is completely
suppressed. This balance describes the well-documented effect of superconductivity suppression by an external magnetic field
and/or the supercurrent passed through the sample. Moreover, together with Equation ( ), naturally describing the flux
quantization (see Sec. 3.4), Equation ( ) explains the existence of the so-called Abrikosov vortices – thin magnetic-field tubes,
each carrying one quantum  of magnetic flux – see Equation ( ). At the core part of the vortex,  is suppressed (down to
zero at its central line) by the persistent, dissipation-free current of the superconducting condensate, which circulates around the
core and screens the rest of the superconductor from the magnetic field carried by the vortex.  The penetration of such vortices
into the so-called type-II superconductors enables them to sustain zero dc resistance up to very high magnetic fields of the order of
20 T, and as a result, to be used in very compact magnets – including those used for beam bending in particle accelerators.

Moreover, generalizing Eqs. ( - ) to the time-dependent case, just as it is done with the usual Schrödinger equation, one
can describe other fascinating quantum macroscopic phenomena such as the Josephson effects, including the generation of
oscillations with frequency  by weak links between two superconductors, biased by dc voltage . Unfortunately,
time/space restrictions do not allow me to discuss these effects in any detail in this course, and I have to refer the reader to special
literature.  Let me only note that in the limit , and for not extremely pure superconductor crystals (in which the so-called
non-local transport phenomena may be important), the Ginzburg-Landau equations are exact, and may be derived (and their
parameters , , , , and  determined) from the standard “microscopic” theory of superconductivity, based on the initial work
by Bardeen, Cooper, and Schrieffer.  Most importantly, such derivation proves that  – the electric charge of a single
Cooper pair.
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