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6.6: Exercise problems

Use the Boltzmann equation in the relaxation-time approximation to derive the Drude formula for the complex ac conductivity 
, and give a physical interpretation of the result's trend at high frequencies.

Apply the variable separation method  to Equation ( ) to calculate the time evolution of the particle density distribution
in an unlimited uniform medium, in the absence of external forces, provided that at  the particles are released from their
uniform distribution in a plane layer of thickness :

Solve the previous problem using an appropriate Green's function for the 1D version of the diffusion equation, and discuss the
relative convenience of the results.

Calculate the electric conductance of a narrow, uniform conducting link between two bulk conductors, in the low-voltage and
low-temperature limit, neglecting the electron interaction and scattering inside the link.

Calculate the effective capacitance (per unit area) of a broad plane sheet of a degenerate 2D electron gas, separated by distance 
 from a metallic ground plane.

Give a quantitative description of the dopant atom ionization, which would be consistent with the conduction and valence band
occupation statistics, using the same simple model of an -doped semiconductor as in Sec. 4 (see Figure ), and taking
into account that the ground state of the dopant atom is typically doubly degenerate, due to two possible spin orientations of the
bound electron. Use the results to verify Equation ( ), within the displayed limits of its validity.

Generalize the solution of the previous problem to the case when the -doping of a semiconductor by  donor atoms per unit
volume is complemented with its simultaneous -doping by  acceptor atoms per unit volume, whose energy  of
activation, i.e. of accepting an additional electron and hence becoming a negative ion, is much lower than the bandgap  – see
the figure on the right.
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A nearly-ideal classical gas of  particles with mass , was in thermal equilibrium at temperature , in a closed container of
volume . At some moment, an orifice of a very small area  is open in one of the container's walls, allowing the particles to
escape into the surrounding vacuum.  In the limit of very low density , use simple kinetic arguments to calculate
the r.m.s. velocity of the escaped particles during the time period when the total number of such particles is still much smaller
than . Formulate the limits of validity of your results in terms of , , and the mean free path .

Hint: Here and below, the term “nearly-ideal” means that  is so large that particle collisions do not affect the basic statistical
properties of the gas.

For the system analyzed in the previous problem, calculate the rate of particle flow through the orifice – the so-called effusion
rate. Discuss the limits of validity of your result.

Use simple kinetic arguments to estimate:

i. the diffusion coefficient ,
ii. the thermal conductivity , and

iii. the shear viscosity ,

of a nearly-ideal classical gas with mean free path . Compare the result for  with that calculated in Sec. 3 from the
Boltzmann-RTA equation.

where  is the  Cartesian component of the tangential force between two parts of a fluid, separated by an imaginary
interface normal to some direction  (with , and hence ), exerted over an elementary area  of this surface,
and  is the velocity of the fluid at the interface.

Use simple kinetic arguments to relate the mean free path  in a nearly-ideal classical gas, with the full cross-section  of
mutual scattering of its particles.  Use the result to evaluate the thermal conductivity and the viscosity coefficient estimates
made in the previous problem, for the molecular nitrogen, with the molecular mass  kg and the effective
(“van der Waals”) diameter  m, at ambient conditions, and compare them with experimental results.
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Use the Boltzmann-RTA equation to calculate the thermal conductivity of a nearly-ideal classical gas, measured in conditions
when the applied thermal gradient does not create a net particle flow. Compare the result with that following from the simple
kinetic arguments (Problem 6.10), and discuss their relationship.

Use the heat conduction equation ( ) to calculate the time evolution of temperature in the center of a uniform solid sphere
of radius , initially heated to a uniformly distributed temperature , and at  placed into a heat bath that keeps its
surface at temperature .

Suggest a reasonable definition of the entropy production rate (per unit volume), and calculate this rate for stationary thermal
conduction, assuming that it obeys the Fourier law, in a material with negligible thermal expansion. Give a physical
interpretation of the result. Does the stationary temperature distribution in a sample correspond to the minimum of the total
entropy production in it?

Use the Boltzmann-RTA equation to calculate the shear viscosity of a nearly-ideal gas. Spell out the result in the classical limit,
and compare it with the estimate made in the solution of Problem 10.

1. This topic was briefly addressed in EM Chapter 4, carefully avoiding the aspects related to the thermal effects.
2. See, e.g., CM Sec. 10.1.
3. Actually, this is just one of several theorems bearing the name of Joseph Liouville (1809-1882).
4. See, e.g., MA Equation (4.2).
5. See, e.g., CM Sec. 9.3.
6. Indeed, the quantum state coherence is described by off-diagonal elements of the density matrix, while the classical probability 

 represents only the diagonal elements of that matrix. However, at least for the ensembles close to thermal equilibrium, this is
a reasonable approximation – see the discussion in Sec. 2.1.

7. One may wonder whether this approximation may work for Fermi particles, such as electrons, for whom the Pauli principle
forbids scattering into the already occupied state, so that for the scattering , the term  in Equation ( ) has
to be multiplied by the probability  that the final state is available. This is a valid argument, but one should
notice that if this modification has been done with both terms of Equation ( ), it becomes

Opening both square brackets, we see that the probability density products cancel, bringing us back to Equation ( ).
8. This was the approximation used by L. Boltzmann to prove the famous -theorem, stating that entropy of the gas described by

Equation ( ) may only grow (or stay constant) in time, . Since the model is very approximate, that result does
not seem too fundamental nowadays, despite all its historic significance.

9. Sometimes this approximation is called the “BGK model”, after P. Bhatnager, E. Gross, and M. Krook who suggested it in
1954. (The same year, a similar model was considered by P. Welander.)

10. See, e.g., CM Sec. 3.7.
11. Since the scale of the fastest change of  in the momentum space is of the order of ,

where  is the scale of particle's speed, the necessary condition of the linear approximation ( ) is , i.e. if 
, where  has the meaning of the effective mean-free path. Since the left-hand side of the last inequality is just

the average energy given to the particle by the electric field between two scattering events, the condition may be interpreted as
the smallness of the gas' “overheating” by the applied field. However, another condition is also necessary – see the last
paragraph of this section.
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12. See, e.g., QM Sec. 2.1.
13. It was obtained by Arnold Sommerfeld in 1927.
14. See, e.g., QM Secs. 2.7, 2.8, and 3.4. (In this case,  should be understood as the quasimomentum rather than the genuine

momentum.)
15. As Equation ( ) shows, if the dispersion law  is anisotropic, the current density direction may be different from that of

the electric field. In this case, conductivity should be described by a tensor , rather than a scalar. However, in most important
conducting materials, the anisotropy is rather small – see, e.g., EM Table 4.1.

16. This is why to determine the dominating type of charge carriers in semiconductors (electrons or holes, see Sec. 4 below), the
Hall effect, which lacks such ambivalence (see, e.g., QM 3.2), is frequently used.

17. It was derived in 1900 by Paul Drude. Note that Drude also used the same arguments to derive a very simple (and very
reasonable) approximation for the complex electric conductivity in the ac field of frequency , with 

 given by Equation ( ); sometimes the name “Drude formula” is used for this expression rather than for Equation (
). Let me leave its derivation, from the Boltzmann-RTA equation, for the reader's exercise.

18. See also EM Sec. 4.2.
19. So here, as it frequently happens in physics, formulas (or graphical sketches, such as Figure ) give a more clear and

unambiguous description of reality than words – the privilege lacked by many “scientific” disciplines, rich with unending,
shallow verbal debates. Note also that, as frequently happens in physics, the dual interpretation of  is expressed by two
different but equal integrals ( ) and ( ), related by the integration-by-parts rule.

20. This formula is probably self-evident, but if you need you may revisit EM Sec. 4.4.
21. Since we will not encounter  in the balance of this chapter, from this point on, the subscript  of the operator  is dropped

for the notation brevity.
22. Since we consider  as a function of two independent arguments  and , taking its gradient, i.e. the differentiation of this

function over , does not involve its differentiation over the kinetic energy  – which is a function of  only.
23. Note that Equation ( ) does not include the phenomenological parameter  of the relaxation-time approximation, signaling

that it is much more general than the RTA. Indeed, this equality is based entirely on the relation between the second and third
terms on the left-hand side of the general Boltzmann equation ( ), rather than on any details of the scattering integral on its
right-hand side.

24. Sometimes it is also called the “electron affinity”, though this term is mostly used for atoms and molecules.
25. In semiconductor physics and engineering, the situation shown in Figure  is called the flat-band condition, because any

electric field applied normally to a surface of a semiconductor leads to the so-called energy band bending – see the next section.
26. As measured from a common reference value, for example from the vacuum level – rather than from the bottom of an

individual potential well as in Figure .
27. In physics literature, it is usually called the contact potential difference, while in electrochemistry (for which it is one of the key

notions), the term Volta potential is more common.
28. The devices for such measurement may be based on the interaction between the measured current and a permanent magnet, as

pioneered by A.-M. Ampère in the 1820s – see, e.g., EM Chapter 5. Such devices are sometimes called galvanometers,
honoring another pioneer of electricity, Luigi Galvani.

29. If this relation is not evident, please revisit EM Sec. 4.1.
30. Sometimes this term is associated with Equation ( ). One may also run into the term “convection-diffusion equation” for

Equation ( ) with the replacement ( ).
31. And hence, at negligible , identical to the diffusion equation ( ).
32. See, e.g., QM Sec. 2.7 and 3.4, but the thorough knowledge of this material is not necessary for following discussions of this

section. If the reader is not familiar with the notion of quasimomentum (alternatively called the “crystal momentum”), its
following semi-quantitative interpretation may be useful:  is the result of quantum averaging of the genuine electron
momentum  over the crystal lattice period. In contrast to , which is not conserved because of the electron's interaction with
the atomic lattice,  is an integral of motion – in the absence of other forces.

33. In insulators, the bandgap  is so large (e.g.,  eV in ) that the conduction band remains unpopulated in all practical
situations, so that the following discussion is only relevant for semiconductors, with their moderate bandgaps – such as 1.14 eV
in the most important case of silicon at room temperature.

34. It is easy (and hence is left for the reader's exercise) to verify that all equilibrium properties of charge carriers remain the same
(with some effective values of  and ) if  and  are arbitrary quadratic forms of the Cartesian components of
the quasimomentum. A mutual displacement of the branches  and ) in the quasimomentum space is also unimportant
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for statistical and most transport properties of the semiconductors, though it is very important for their optical properties –
which I will not have time to discuss in any detail.

35. The collective name for them in semiconductor physics is charge carriers – or just “carriers”.
36. Note that in the case of simple electron spin degeneracy ( ), the first logarithm vanishes altogether. However, in

many semiconductors, the degeneracy is factored by the number of similar energy bands (e.g., six similar conduction bands in
silicon), and the factor  may slightly affect quantitative results.

37. Note that in comparison with Figure , here the (for most purposes, redundant) information on the -dependence of the
energies is collapsed, leaving the horizontal axis of such a band-edge diagram free for showing their possible spatial
dependences – see Figs. , , and  below.

38. Very similar relations may be met in the theory of chemical reactions (where it is called the law of mass action), and other
disciplines – including such exotic examples as the theoretical ecology.

39. Let me leave it for the reader's exercise to prove that this assumption is always valid unless the doping density  becomes
comparable to , and as a result, the Fermi energy  moves into a -wide vicinity of .

40. For the typical donors (P) and acceptors (B) in silicon, both ionization energies, (  and ), are close to 45 meV,
i.e. are indeed much smaller than  eV.

41. A simplified version of this analysis was discussed in EM Sec. 2.1.
42. See, e.g., EM Sec. 3.4.
43. I am sorry for using, for the SI electric constant , the same Greek letter as for single-particle energies, but both notations are

traditional, and the difference between these uses will be clear from the context.
44. It is common (though not necessary) to select the energy reference so that deep inside the semiconductor, ; in what

follows I will use this convention.
45. Here  is the field just inside the semiconductor. The free-space field necessary to create it is  times larger – see, e.g., the

same EM Sec. 3.4, in particular Equation ( ).
46. In semiconductor physics literature, the value of  is usually called the Fermi level, even in the absence of the degenerate

Fermi sea typical for metals – cf. Sec. 3.3. In this section, I will follow this common terminology.
47. Even some amorphous thin-film insulators, such as properly grown silicon and aluminum oxides, can withstand fields up to 

 MV/cm.
48. As a reminder, the derivation of this formula was the task of Problem 3.14.
49. The classical monograph in this field is S. Sze, Physics of Semiconductor Devices,  ed., Wiley 1981. (The  edition, circa

2006, co-authored with K. Ng, is more tilted toward technical details.) I can also recommend a detailed textbook by R. Pierret,
Semiconductor Device Fundamentals,  ed., Addison Wesley, 1996.

50. Frequently, Equation ( ) is also rewritten in the form . In the view of the second of Eqs. ( ),
this equality is formally correct but may be misleading because the intrinsic carrier density  is an exponential function of
temperature and is physically irrelevant for this particular problem.

51. Note that such  is again much larger than  – the fact that justifies the first two boundary conditions ( ).
52. Another important limit is quantum-mechanical tunneling through the gate insulator, whose thickness has to be scaled down in

parallel with lateral dimensions of a FET, including its channel length.
53. In the semiconductor physics lingo, the “carrier generation” event is the thermal excitation of an electron from the valence band

to the conduction band, leaving a hole behind, while the reciprocal event of filling such a hole by a conduction-band electron is
called the “carrier recombination”.

54. Note that if an external photon with energy  generates an electron-hole pair somewhere inside the depletion layer, this
electric field immediately drives its electron component to the right, and the hole component to the left, thus generating a pulse
of electric current through the junction. This is the physical basis of the whole vast technological field of photovoltaics,
currently strongly driven by the demand for renewable electric power. Due to the progress of this technology, the cost of solar
power systems has dropped from ~$300 per watt in the mid-1950s to the current ~$1 per watt, and its global generation has
increased to almost 1015 watt-hours per year – though this is still below 2% of the whole generated electric power.

55. I will not try to reproduce this calculation (which may be found in any of the semiconductor physics books mentioned above),
because getting all its scaling factors right requires using some model of the recombination process, and in this course, there is
just no time for their quantitative discussion. However, see Equation ( ) below.

56. In our model, the positive sign of  corresponds to the additional electric field, ,
directed in the positive direction of the -axis (in Figure , from the left to the right), i.e. to the positive terminal of the
voltage source connected to the p-doped semiconductor – which is the common convention.
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57. This change, schematically shown in Figure , may be readily calculated by making the replacement ( ) in the first of
Eqs. ( ).

58. This sign invariance may look strange, due to the opposite (positive) electric charge of the holes. However, this difference in the
charge sign is compensated by the opposite direction of the hole diffusion – see Figure . (Note also that the actual charge
carriers in the valence band are still electrons, and the positive charge of holes is just a convenient representation of the specific
dispersion law in this energy band, with a negative effective mass – see Figure , the second line of Equation ( ), and a
more detailed discussion of this issue in QM Sec. 2.8.)

59. Some metal-semiconductor junctions, called Schottky diodes, have similar rectifying properties (and may be better fitted for
high-power applications than silicon  junctions), but their properties are more complex because of the rather involved
chemistry and physics of interfaces between different materials.

60. See, e.g., the monograph by R. Stratonovich cited in Sec. 4.2.
61. Named after Thomas Johann Seebeck who experimentally discovered, in 1822, the effect described by the second term in

Equation ( ) – and hence by Equation ( ).
62. Again, such independence hints that Equation ( ) has a broader validity than in our simple model of an isotropic gas. This is

indeed the case: this result turns out to be valid for any form of the Fermi surface, and for any dispersion law . Note,
however, that all calculations of this section are valid for the simplest RTA model in that  is an energy-independent parameter;
for real metals, a more accurate description of experimental results may be obtained by tweaking this model to take this
dependence into account – see, e.g., Chapter 13 in the monograph by N. Ashcroft and N. D. Mermin, cited in Sec. 3.5.

63. Both these materials are alloys, i.e. solid solutions: chromel is 10% chromium in 90% nickel, while constantan is 45% nickel
and 55% copper.

64. An alternative explanation of the factor  in Equation ( ) is that according to Eqs. ( ) and ( ), for a uniform
system of  particles this factor is just . The full differential of the numerator is 

, so that in the absence of the mechanical work , and changes of temperature and
pressure, it is just  – see Equation ( ).

65. Named after Jean Charles Athanase Peltier who experimentally discovered, in 1834, the effect expressed by the first term in
Equation ( ) – and hence by Equation ( ).

66. See, for example, Sec. 15.7 in R. Pathria and P. Beale, Statistical Mechanics,  ed., Elsevier, 2011. Note, however, that the
range of validity of the Onsager relations is still debated – see, e.g., K.-T. Chen and P. Lee, Phys. Rev. B 79, 18 (2009).

67. It was named after Gustav Wiedemann and Rudolph Franz who noticed the constancy of ratio  for various materials, at the
same temperature, as early as 1853. The direct proportionality of the ratio to the absolute temperature was noticed by Ludwig
Lorenz in 1872. Due to his contribution, the Wiedemann-Franz law is frequently represented, in the SI temperature units, as 

, where the constant , called the Lorenz number, is close to .
Theoretically, Equation ( ) was derived in 1928 by A. Sommerfeld.

68. Let me emphasize that here we are discussing the heat transferred through a conductor, not the Joule heat generated in it by the
current. (The latter effect is quadratic, rather than linear, in current, and hence is much smaller at .)

69. See, e.g., D. Rowe (ed.), Thermoelectrics Handbook: Macro to Nano, CRC Press, 2005.
70. It was suggested (in 1822) by the same universal scientific genius J.-B. J. Fourier who has not only developed such a key

mathematical tool as the Fourier series but also discovered what is now called the greenhouse effect!
71. They are all similar to continuity equations for other quantities – e.g., the mass (see CM Sec. 8.3) and the quantum-mechanical

probability (see QM Secs. 1.4 and 9.6).
72. According to Equation ( ), in the case of negligible thermal expansion, it does not matter whether we speak about the

internal energy  or the enthalpy .
73. If the dependence of  on temperature may be ignored only within a limited temperature interval, Eqs. ( ) and ( )

may be still used within that interval, for temperature deviations from some reference value.
74. I hope the reader knows it by heart by now, but if not – see, e.g., MA Equation (12.2).
75. A much more detailed coverage of this important part of physics may be found, for example, in the textbook by L. Pitaevskii

and E. Lifshitz, Physical Kinetics, Butterworth-Heinemann, 1981. A deeper discussion of the Boltzmann equation is given, e.g.,
in the monograph by S. Harris, An Introduction to the Theory of the Boltzmann Equation, Dover 2011. For a discussion of
applied aspects of kinetics see, e.g., T. Bergman et al., Fundamentals of Heat and Mass Transfer,  ed., Wiley, 2011.

76. A detailed introduction to this method (repeatedly used in this series) may be found, for example, in EM Sec. 2.5.
77. In chemistry-related fields, this process is frequently called effusion.
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78. See, e.g., CM Equation (8.56). Please note the difference between the shear viscosity coefficient  considered in this problem
and the drag coefficient  whose calculation was the task of Problem 3.2. Despite the similar (traditional) notation, and
belonging to the same realm (kinematic friction), these coefficients have different definitions and even different
dimensionalities.

79. I am sorry for using the same letter for the cross-section as for the electric Ohmic conductivity. (Both notations are very
traditional.) Let me hope this would not lead to confusion, because the conductivity is not discussed in this problem.

80. This problem does not follow Problem 12 only for historic reasons.
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