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1.2: The 2nd law of thermodynamics, entropy, and temperature
Thermodynamics accepts a phenomenological approach to the entropy , postulating that there is such a unique extensive measure
of the aggregate disorder, and that in a closed system (defined as a system completely isolated from its environment, i.e. the system
with its internal energy fixed) it may only grow in time, reaching its constant (maximum) value at equilibrium:

 law of thermodynamics:

Figure : A composite thermodynamic system.

Neglecting the energy of interaction between the parts (which is always possible at , and in the absence of long-range
interactions), we may use the extensive character of the variables  and  to write

for the full energy and entropy of the system. Now let us use them to calculate the following derivative:

Since the total energy  of the closed system is fixed and hence independent of its re-distribution between the subsystems, we have
to take , and Equation ( ) yields

According to the  law of thermodynamics, when the two parts have reached the thermodynamic equilibrium, the total entropy 
reaches its maximum, so that , and Equation ( ) yields

This equality shows that if a thermodynamic system may be partitioned into weakly interacting macroscopic parts, their derivatives
 should be equal in the equilibrium. The reciprocal of this derivative is called temperature. Taking into account that our

analysis pertains to the situation (Figure ) when both volumes  are fixed, we may write this definition as

the subscript  meaning that volume is kept constant at the differentiation. (Such notation is common and very useful in
thermodynamics, with its broad range of variables.)

In those units, the entropy becomes dimensional: .

i. according to Equation ( ), the temperature is an intensive variable (since both  and  are extensive), i.e., in a system of
similar particles, it is independent of the particle number ;

ii. temperatures of all parts of a system are equal at equilibrium – see Equation ( );
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iii. in a closed system whose parts are not in equilibrium, thermal energy (heat) always flows from a warmer part (with higher )
to the colder part.

In order to prove the last property, let us revisit the closed, composite system shown in Figure , and consider another
derivative:

If the internal state of each part is very close to equilibrium (as was assumed from the very beginning) at each moment of time, we
can use Equation ( ) to replace the derivatives  with , getting

Since in a closed system  const, these time derivatives are related as , and Equation ( )
yields

But according to the  law of thermodynamics, this derivative cannot be negative: . Hence,

For example, if , then , i.e. the warmer part gives energy to its colder counterpart.

Note also that at such a heat exchange, at fixed volumes , and , increases the total system’s entropy, without
performing any “useful” mechanical work – see Equation ( ).
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