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4.4: Ising model - Weiss molecular-field theory
The Landau mean-field theory is phenomenological in the sense that even within the range of its validity, it tells us nothing about
the value of the critical temperature  and other parameters (in Equation ( ), the coefficients , , and ), so that they have to
be found from a particular “microscopic” model of the system under analysis. In this course, we would have time to discuss only
the Ising model ( ) for various dimensionalities .

This energy is plotted in Figure  as a function of , for several values of .

Figure : Field dependences of (a) the free energy profile and (b) the order parameter (i.e. magnetization) in the crudest mean-
field approach to the Ising model.

The plots show that at , the system may be in either of two stable states, with , corresponding to two different spin
directions (i.e. two different directions of magnetization), with equal energy.  (Formally, the state with  is also stationary,
because at this point , but it is unstable, because for the ferromagnetic interaction, , the second derivative 

 is always negative.)

As the external field is increased, it tilts the potential profile, and finally at the critical field,

So, this simplest mean-field theory ( ) does give a (crude) description of the ferromagnetic ordering. However, this theory
grossly overestimates the stability of these states with respect to thermal fluctuations. Indeed, in this theory, there is no thermally-
induced randomness at all, until  becomes comparable with the height of the energy barrier separating two stable states,

which is proportional to the number of particles. At , this value diverges, and in this sense, the critical temperature is
infinite, while numerical experiments and more refined theories of the Ising model show that actually its ferromagnetic phase is
suppressed at  – see below.

The accuracy of this theory may be dramatically improved by even an approximate account for thermally-induced randomness. In
this approach (suggested in 1907 by Pierre-Ernest Weiss), called the molecular-field theory,  random deviations of individual spin
values from the lattice average,

are allowed, but considered small, . This assumption allows us, after plugging the resulting expression  to
the first term on the right-hand side of Equation ( ),
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ignore the last term in the square brackets. Making the replacement ( ) in the terms proportional to , we may rewrite the
result as

where  is defined as the sum

This sum may be interpreted as the effective external field, which takes into account (besides the genuine external field ) the effect
that would be exerted on spin  by its  next neighbors if they all had non-fluctuating (but possibly continuous) spin values 

. Such addition to the external field,

Weiss molecular field:

is called the molecular field – giving its name to the Weiss theory.

From the point of view of statistical physics, at fixed parameters of the system (including the order parameter ), the first term on
the right-hand side of Equation ( ) is merely a constant energy offset, and  is just another constant, so that

Such separability of the energy means that in the molecular-field approximation the fluctuations of different spins are independent
of each other, and their statistics may be examined individually, using the energy spectrum . But this is exactly the two-level
system that was the subject of Problems 2.2- 2.4. Actually, its statistics is so simple that it is easier to redo this fundamental
problem starting from scratch, rather than to use the results of those exercises (which would require changing notation).

Indeed, according to the Gibbs distribution ( )-( ), the equilibrium probabilities of the states  may be found as

From here, we may readily calculate  and all other thermodynamic variables, but let us immediately use Equation (
) to calculate the statistical average of , i.e. the order parameter:

Now comes the punch line of the Weiss' approach: plugging this result back into Equation ( ), we may write the condition of
self-consistency of the molecular-field theory:

Self-consistency equation:

This is a transcendental equation, which evades an explicit analytical solution, but whose properties may be readily analyzed by
plotting both its sides as functions of the same argument, so that the stationary state(s) of the system corresponds to the intersection
point(s) of these plots.

First of all, let us explore the field-free case , when , so that Equation ( ) is reduced to

giving one of the patterns sketched in Figure , depending on the dimensionless parameter .
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Figure : The ferromagnetic phase transition in Weiss' molecular-field theory: two sides of Equation ( ) sketched as
functions of  for three different temperatures: above  (red), below  (blue), and equal to  (green).

If this parameter is small, the right-hand side of Equation ( ) grows slowly with  (see the red line in Figure ), and there
is only one intersection point with the left-hand side plot, at . This means that the spin system has no spontaneous
magnetization; this is the so-called paramagnetic phase. However, if the parameter  exceeds 1, i.e. if  is decreased below
the following critical value,

Critical ("Curie") temperature:

the right-hand side of Equation ( ) grows, at small , faster than its left-hand side, so that their plots intersect it in 3 points: 
 and  – see the blue line in Figure . It is almost evident that the former stationary point is unstable, while the

two latter points are stable. (This fact may be readily verified by using Equation ( ) to calculate . Now the condition 
 returns us to Equation ( ), while calculating the second derivative, for  we get  at 

, and  at ). Thus, below  the system is in the ferromagnetic phase, with one of two possible
directions of the average spontaneous magnetization, so that the critical (Curie ) temperature, given by Equation ( ), marks
the transition between the paramagnetic and ferromagnetic phases. (Since the stable minimum value of the free energy  is a
continuous function of temperature at , this phase transition is continuous.)

Now let us repeat this graphics analysis to examine how each of these phases responds to an external magnetic field .
According to Equation ( ), the effect of  is just a horizontal shift of the straight-line plot of its left-hand side – see Figure

. (Note a different, here more convenient, normalization of both axes.)

Figure : External field effects on: (a) a paramagnet , and (b) a ferromagnet .

In the paramagnetic case (Figure ) the resulting dependence  is evidently continuous, but the coupling effect 
makes it steeper than it would be without spin interaction. This effect may be quantified by the calculation of the low-field
susceptibility defined by Equation ( ). To calculate it, let us notice that for small , and hence small , the function tanh in
Equation ( ) is approximately equal to its argument so that Equation ( ) is reduced to
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Solving this equation for , and then using Equation ( ), we get

Recalling Equation ( ), we can rewrite this result for the order parameter:

so that the low-field susceptibility

Curie-Weiss law:

This is the famous Curie-Weiss law, which shows that the susceptibility diverges at the approach to the Curie temperature .

In the ferromagnetic case, the graphical solution (Figure ) of Equation ( ) gives a qualitatively different result. A field
increase leads, depending on the spontaneous magnetization, either to the further saturation of  (with the order parameter 
gradually approaching 1), or, if the initial  was negative, to a jump to positive  at some critical (coercive) field . In contrast
with the crude approximation ( ), at  the coercive field is smaller than that given by Equation ( ), and the
magnetization saturation is gradual, in a good (semi-qualitative) accordance with experiment.

To summarize, the Weiss molecular-field theory gives an approximate but realistic description of the ferromagnetic and
paramagnetic phases in the Ising model, and a very simple prediction ( ) of the temperature of the phase transition between
them, for an arbitrary dimensionality  of the cubic lattice. It also enables calculation of other parameters of Landau's mean-field
theory for this model – an easy exercise left for the reader. Moreover, the molecular-field approach allows one to obtain analytical
(if approximate) results for other models of phase transitions – see, e.g., Problem 18.
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