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5.2: Energy and the number of particles
First of all, note that fluctuations of macroscopic variables depend on particular conditions.  For example, in a mechanically- and
thermally-insulated system with a fixed number of particles, i.e. a member of a microcanonical ensemble, the internal energy does
not fluctuate: . However, if such a system is in thermal contact with the environment, i.e. is a member of a canonical
ensemble (Figure ), the situation is different. Indeed, for such a system we may apply the general Equation ( ), with 
given by the Gibbs distribution ( )-( ), not only to  but also to . As we already know from Sec. 2.4, the first average,

yields Equation ( ), which may be rewritten in the form

more convenient for our current purposes. Let us carry out a similar calculation for :

It is straightforward to verify, by double differentiation, that the last expression may be rewritten in a form similar to Equation (
):

Now it is easy to use Eqs. ( ) to calculate the variance of energy fluctuations:

Since Eqs. ( )-( ) are valid only if the system's volume  is fixed (because its change may affect the energy spectrum 
), it is customary to rewrite this important result as follows:

Fluctuations of :

This is a remarkably simple, fundamental result. As a sanity check, for a system of  similar, independent particles,  and hence
 are proportional to , so that  and , in agreement with Equation ( ). Let me emphasize that

the classically-looking Equation ( ) is based on the general Gibbs distribution, and hence is valid for any system (either
classical or quantum) in thermal equilibrium.

Some corollaries of this result will be discussed in the next section, and now let us carry out a very similar calculation for a system
whose number  of particles in a system is not fixed, because they may go to, and come from its environment at will. If the
chemical potential  of the environment and its temperature  are fixed, i.e. we are dealing with the grand canonical ensemble
(Figure ), we may use the grand canonical distribution ( )-( ):

Acting exactly as we did above for the internal energy, we get
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so that the particle number's variance is

Fluctuations of :

in full analogy with Equation ( ).

In particular, for an ideal classical gas, we may combine the last result with Equation ( ). (As was already emphasized in Sec.
3.2, though that result has been obtained for the canonical ensemble, in which the number of particles  is fixed, at  the
fluctuations of  in the grand canonical ensemble should be relatively small, so that the same relation should be valid for the
average  in that ensemble.) Easily solving Equation ( ) for , we get

where “const” means a factor constant at the partial differentiation of  over , required by Equation ( ). Performing the
differentiation and then using Equation ( ) again,

we get from Equation ( ) a very simple result:

Fluctuations of : classical gas

This relation is so important that I will also show how it may be derived differently. As a by-product of this new derivation, we will
prove that this result is valid for systems with an arbitrary (say, small) , and also get more detailed information about the
statistics of fluctuations of that number. Let us consider an ideal classical gas of  particles in a volume , and calculate the
probability  to have exactly  of these particles in its part of volume  – see Figure .

Figure : Deriving the binomial and Poisson distributions.

For one particle such probability is , while the probability to have that particle in the remaining part of
the volume is . If all particles were distinguishable, the probability of having  specific particles
in volume  and  specific particles in volume , would be . However, if we do not want to
distinguish the particles, we should multiply this probability by the number of possible particle combinations keeping the numbers 

 and  constant, i.e. by the binomial coefficient .  As the result, the required probability is

Binomial distribution:
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This is the so-called binomial probability distribution, valid for any  and .

Still keeping  arbitrary, we can simplify the binomial distribution by assuming that the whole volume , and hence , are
very large:

where  means all values of interest, including . Indeed, in this limit we can neglect  in comparison with  in the second
exponent of Equation ( ), and also approximate the fraction , i.e. the product of  terms, 

, by just . As a result, we get

where, as before, . In the limit ( ), , so that the factor inside the square brackets tends to , the
reciprocal of the natural logarithm base.  Thus, we get an expression independent of :

Poisson distribution:

This is the much-celebrated Poisson distribution  which describes a very broad family of random phenomena. Figure  shows
this distribution for several values of  – which, in contrast to , are not necessarily integer.

Figure : The Poisson distribution for several values of . In contrast to that average, the argument  may take only integer
values, so that the lines in these plots are only guides for the cyc.

Gaussian distribution:

(Note that the Gaussian distribution is also valid if both  and  are large, regardless of the relation between them – see Figure
.)
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Figure : The hierarchy of three major probability distributions.

A major property of the Poisson (and hence of the Gaussian) distribution is that it has the same variance as given by Equation (
):

(This is not true for the general binomial distribution.) For our current purposes, this means that for the ideal classical gas, Equation
( ) is valid for any number of particles.

This page titled 5.2: Energy and the number of particles is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.

5.2.3

5.2.13

⟨ ⟩ ≡ ⟨(N − ⟨N⟩ ⟩ = ⟨N⟩.N
~2

)2 (5.2.19)

5.2.13

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34721?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Essential_Graduate_Physics_-_Statistical_Mechanics_(Likharev)/05%3A_Fluctuations/5.02%3A_Energy_and_the_number_of_particles
https://creativecommons.org/licenses/by-nc-sa/4.0
https://www.linkedin.com/in/konstantin-likharev-2389805/
https://sites.google.com/site/likharevegp/

