LibreTextsw

5.5: Fluctuations and Dissipation

One more important assumption of this theory is that the system's motion does not violate the thermal equilibrium of the
environment — well fulfilled in many cases. (Think, for example, about a typical mechanical pendulum — its motion does not
overheat the air around it to any noticeable extent.) In this case, the averaging over a statistical ensemble of similar environments,
at a fixed, specific motion of the system of interest, may be performed assuming their thermal equilibrium.?* I will denote such a
“primary” averaging by the usual angle brackets (... ). At a later stage, we may carry out additional, “secondary” averaging, over
an ensemble of many similar systems of interest, coupled to similar environments. When we do, such double averaging will be
denoted by double angle brackets ((...)).

Let me start from a simple classical system, a 1D harmonic oscillator whose equation of evolution may be represented as

mq +£q = Faet (t) + Feno(t) = Faer (t) +(F) + F(t), with (F(t)) =0, (5.5.1)
where g is the (generalized) coordinate of the oscillator, Z(t) is the deterministic external force, while both components of the
force Feny(t) represent the impact of the environment on the oscillator's motion. Again, on the time scale of the fast-moving
environmental components, the oscillator's motion is slow. The average component (') of the force exerted by the environment on
such a slowly moving object is frequently independent of its coordinate ¢ but does depend on its velocity g. For most such systems,
the Taylor expansion of the force in small velocity has a non-zero linear term:

(F) = —nd, (5.5.2)

where the constant 7 is usually called the drag (or “kinematic friction”, or “damping”) coefficient, so that Equation (5.5.1) may be
rewritten as

Langevin equation for classical oscillator:

| mi +nd + kg = Fau(t) + Z (). | (5.5.3)

Plugging into Equation (5.5.3) the representation of both variables in the Fourier form similar to Equation (5.4.7), and requiring
the coefficients before the same exp{ —iwt} to be equal on both sides of the equation, for their Fourier images we get the following

relation:

—mw?q, —iwngy + kqw = Zo, (5.5.4)

which immediately gives us q,,, i.e. the (random) complex amplitude of the coordinate fluctuations:

P Fu
qu = 5 : = D) 3 . (555)
(K —mw?) —inw  m(w? —w?) —inw
1

Sy(w) = Sz (w). (5.5.6)

m?2 (wg _ w2)2 +n2w2

In the so-called low-damping limit ( << muwy ), the fraction on the right-hand side of Equation (5.5.6) has a sharp peak near the
oscillator's own frequency wy (describing the well-known effect of high-Q resonance), and may be well approximated in that
vicinity as

g L ~— L itheo 2me—w0) (5.5.7)
m?(wy —w?)? + () nPwy(é®+1) U
oo 1 n [T d¢

(@) :2/ Sy(w)dw =~ 2 Sy(w)dw =285z (wp) —/ . (5.5.8)

0 ! wRWy ! 7’]20.}% 2m J_ 62 +1

This is a well-known table integral,' equal to 7, so that, finally:
- 1 T T

((@*)) =285 (wo) P = mw%nsy(wo) = ﬂ_nsﬂ(wﬂ)- (5.5.9)

But on the other hand, the weak interaction with the environment should keep the oscillator in thermodynamic equilibrium at the
same temperature 7'. Since our analysis has been based on the classical Langevin equation (5.5.3), we may only use it in the
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classical limit hAwy << T', in which we may use the equipartition theorem (2.2.30). In our current notation, it yields

(@) = (5.5.10)

Comparing Egs. (5.5.9) and (5.5.10), we see that the spectral density of the random force exerted by the environment has to be
fundamentally related to the damping it provides:

S (wo) = %T. (5.5.11)

Now we may argue (rather convincingly :-) that since this relation does not depend on oscillator's parameters m and «, and hence
its eigenfrequency wy = (/m)!/2, it should be valid at any relatively low frequency (wr, << 1). Using Equation (5.4.13) with
w — 0, it may be also rewritten as a formula for the effective low-frequency drag coefficient:

No dissipation without fluctuations:

-7 | Ks@ar=1 [ FOF @) (5.5.12)

Formulas (5.5.11-5.5.12) reveal an intimate, fundamental relation between the fluctuations and the dissipation provided by a
thermally-equilibrium environment. Parroting the famous political slogan, there is “no dissipation without fluctuation” — and vice
versa. This means in particular that the phenomenological description of dissipation barely by the drag force in classical
mechanics® is (approximately) valid only when the energy scale of the process is much larger than T'. To the best of my
knowledge, this fact was first recognized in 1905 by A. Einstein, for the following particular case.

Let us apply our result (5.5.11-5.5.12) to a free 1D Brownian particle, by taking xk =0 and 4. (t) =0. In this case, both
relatlons (5.5.9) and (5.5.10) give infinities. To understand the reason for that divergence, let us go back to the Langevin equation (

5.3) with not only £ = 0 and F 4 (t) = 0, but also m — 0 — just for the sake of simplicity. (The latter approximation, frequently
Called the overdamping limit, is quite appropriate, for example, for the motion of small particles in viscous fluids — such as in R.
Brown's experiments.) In this approximation, Equation (5.5.3) is reduced to a simple equation,

ng =ZF(t), with(Z(t))=0, (5.5.13)

which may be readily integrated to give the particle's displacement during a finite time interval ¢:

Aq(t) = g(t) — q(0) = % /0 " F(tar. (5.5.14)

Evidently, at the full statistical averaging of the displacement, the fluctuation effects vanish, but this does not mean that the particle
does not move — just that it has equal probabilities to be shifted in either of two possible directions. To see that, let us calculate the
variance of the displacement:

((AG*(t))) = 771—2/0tdt’/0tdt” (f;’v(t’),f(t”)> = n%/otdt’/otdt”Ky ' —t". (5.5.15)

As we already know, at times 7 >> 7., the correlation function may be well approximated by the delta function — see Equation (
5.4.17). In this approximation, with Sz (0) expressed by Equation (5.5.11), we get

(Ag* (1)) =—Sy /dt/ dat"s (1" —t') =

2 0T 2T
=L gt = Lt =2Dt, (5.5.16)
™ Jo n

with

Einstein's relation:

T
D=—.
n

(5.5.17)

The final form of Equation (5.5.16) describes the well-known law of diffusion (“random walk”) of a 1D system, with the r.m.s.
deviation from the point of origin growing as (2Dt)1/ 2, The coefficient D is this relation is called the coefficient of diffusion, and
Equation (5.5.17) describes the extremely simple and important>* Einstein's relation between that coefficient and the drag
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coefficient. Often this relation is rewritten, in the SI units of temperature, as D = ukpTx , where u =1/7 is the mobility of the
particle. The physical sense of x becomes clear from the expression for the deterministic velocity (particle's “drift”), which follows
from the averaging of both sides of Equation (5.5.13) after the restoration of the term % (¢) in it:

virign = () = 7 Fou(t) = uFa (2, (5.5.18)

Another famous embodiment of the general Equation (5.5.11-5.5.12) is the thermal (or “Johnson”, or “Johnson Nyquist”, or just
“Nyquist”) noise in resistive electron devices. Let us consider a two-terminal, dissipation-free “probe” circuit, playing the role of
the harmonic oscillator in our analysis carried out above, connected to a resistive device (Figure 5.5.1), playing the role of the
probe circuit's environment. (The noise is generated by the thermal motion of numerous electrons, randomly moving inside the
resistive device.) For this system, one convenient choice of the conjugate variables (the generalized coordinate and generalized
force) is, respectively, the electric charge @ = f I(t)dt that has passed through the “probe” circuit by time ¢, and the voltage ¥
across its terminals, with the polarity shown in Figure 5.5.1. (Indeed, the product ?'d(@ is the elementary work d’# done by the
environment on the probe circuit.)

probe
circuit

Figure 5.5.1: A resistive device as a dissipative environment of a two-terminal probe circuit.

Making the corresponding replacements, ¢ — @ and % — ¥ in Equation (5.5.2), we see that it becomes

(V) =-nQ=-nl. (5.5.19)
Comparing this relation with Ohm's law, # = R(—1I),% we see that in this case, the coefficient 7 has the physical sense of the
usual Ohmic resistance R of our dissipative device,>” so that Equation (5.5.11) becomes

Sy (w) = fT. (5.5.20)

Using last equality in Equation (5.4.16), and transferring to the SI units of temperature (I" = kpTx ), we may bring this famous
Nyquist formula® to its most popular form:

Nyquist formula:

<“//"2>AV = 4kpTx RAv. (5.5.21)

Note that according to Equation (5.5.3), this result is only valid at a negligible speed of change of the coordinate g (in our current
case, negligible current I), i.e. Equation (5.5.20-5.5.22) expresses the voltage fluctuations as would be measured by a virtually
ideal voltmeter, with its input resistance much higher than R.

On the other hand, using a different choice of generalized coordinate and force, ¢ — ®, # — I (where ® = f Y (t)dt is the
generalized magnetic flux, so that d# = I¥(t)dt = Id® ), we get n — 1/R, and Equation (5.5.11-5.5.12) yields the thermal
fluctuations of the current through the resistive device, as measured by a virtually ideal ammeter, i.e. at ¥ — 0:

1 i 4kpT
Siw)= =T, ie. <IZ>AV - = (5.5.22)

The nature of Egs. (5.5.20-5.5.22) is so fundamental that they may be used, in particular, for the so-called Johnson noise
thermometry.3® Note, however, that these relations are valid for noise in thermal equilibrium only. In electric circuits that may be
readily driven out of equilibrium by an applied voltage ¥, other types of noise are frequently important, notably the shot noise,
which arises in short conductors, e.g., tunnel junctions, at applied voltages with |¥#| >> T'/q, due to the discreteness of charge
carriers.*0 A straightforward analysis (left for the reader's exercise) shows that this noise may be characterized by current
fluctuations with the following low-frequency spectral density:
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Schottky formula:

Sr(w) = M, ie. <f2>AV:2]qf>Ay, (5.5.23)

2

where g is the electric charge of a single current carrier. This is the Schottky formula,*! valid for any relation between the average I
and ¥". The comparison of Egs. (5.5.22) and (5.5.23) for a device that obeys the Ohm law shows that the shot noise has the same
intensity as the thermal noise with the effective temperature

d

Ty = — > T. (5.5.24)

This relation may be interpreted as a result of charge carrier overheating by the applied electric field, and explains why the
Schottky formula (5.5.23) is only valid in conductors much shorter than the energy relaxation length I, of the charge carriers.*?
(Another mechanism of shot noise suppression, which may become noticeable in highly conductive nanoscale devices, is the
Fermi-Dirac statistics of electrons.*?)

Now let us return for a minute to the bolometric Dicke radiometer (see Figs. 5.3.3 —5.3.4 and their discussion in Sec. 4), and use
the Langevin formalism to finalize its analysis. For this system, the Langevin equation is an extension of the usual equation of heat
balance:

dT -
CVE +9(T —Tp) = Paer (t) + P(t), (5.5.25)

where Py = (&?) describes the (deterministic) power of the absorbed radiation and Z represents the effective source of
temperature fluctuations. Now we can use Equation (5.5.25) to carry out a calculation of the spectral density St(w) of temperature
fluctuations absolutely similarly to how this was done with Equation (5.5.3), assuming that the frequency spectrum of the
fluctuation source is much broader than the intrinsic bandwidth 1/7 =%/Cy of the bolometer, so that its spectral density at
frequencies wr ~ 1 may be well approximated by its low-frequency value S%(0):

1

2

St(w) = ‘

Then, requiring the variance of temperature fluctuations, calculated from this formula and Equation (5.4.15),

2 [e 9] oo 1 2
TV =(T )=2 =2 -
o1y = (1) /0 Sr(w)dw = 255 (0) /0 ‘ | %
1 o d S#(0
5259(0)—2/ 2~ 2(0) (5.5.27)
CiJo w2+(g/Cy)? 9SOy
to coincide with our earlier “thermodynamic fluctuation” result (5.3.9), we get
S»(0) = %Tg. (5.5.28)

The r.m.s. value of the “power noise” within a bandwidth Av << 1/7 (see Figure 5.3.4) becomes equal to the deterministic signal
power Py (or more exactly, the main harmonic of its modulation law) at

~2

P =P = (<32 >AV)1/2 = (255 (0)Aw)Y/? = 2(ZAV) /2Ty, (5.5.29)

This result shows that our earlier prediction (5.3.13) may be improved by a substantial factor of the order of (Av/ 1/)1/ % where the
reduction of the output bandwidth is limited only by the signal accumulation time At ~ 1/Av, while the increase of v is limited
by the speed of (typically, mechanical) devices performing the power modulation. In practical systems this factor may improve the

sensitivity by a couple of orders of magnitude, enabling observation of extremely weak radiation. Maybe the most spectacular
example is the recent measurements of the CMB radiation, which corresponds to blackbody temperature Tk ~ 2.726 K, with
accuracy 0Tk ~ 1078 K, using microwave receivers with the physical temperature of all their components much higher than 67
The observed weak (~ 10~° K) anisotropy of the CMB radiation is a major experimental basis of all modern cosmology.**
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Returning to the discussion of our main result, Equation (5.5.11-5.5.12), let me note that it may be readily generalized to the case
when the environment's response is different from the Ohmic form (5.5.2). This opportunity is virtually evident from Equation (
5.5.4): by its derivation, the second term on its left-hand side is just the Fourier component of the average response of the
environment to the system's displacement:

(Fu) = iwng,. (5.5.30)
Now let the response be still linear, but have an arbitrary frequency dispersion,
(Fu) = x(@)qo- (5.5.31)

where the function x(w), called the generalized susceptibility (in our case, of the environment) may be complex, i.e. have both the
imaginary and real parts:

xX(w) = x'(w) +ix" (). (5.5.32)
S5 (w) = X;;(:’) T. (5.5.33)

This fundamental relation*® may be used not only to calculate the fluctuation intensity from the known generalized responsibility
(i.e. the deterministic response of the system to a small perturbation), but also in reverse — to calculate such linear response from
the known fluctuations. The latter use is especially attractive at numerical simulations of complex systems, e.g., those based on
molecular dynamics approaches, because it circumvents the need in extracting a weak response to a small perturbation out of a
noisy background.

Now let us discuss what generalization of Equation (5.5.33) is necessary to make that fundamental result suitable for arbitrary
temperatures, 1" ~ fiw . The calculations we had performed were based on the apparently classical equation of motion, Equation (
5.5.1). However, quantum mechanics shows*’ that a similar equation is valid for the corresponding Heisenberg-picture operators,
so that repeating all the arguments leading to the Langevin equation (5.5.3), we may write its quantum-mechanical version

Heisenberg-Langevin equation:

mg+ng +kG = F e +Z. (5.5.34)

This is the so-called Heisenberg-Langevin (or “quantum Langevin”) equation — in this particular case, for a harmonic oscillator.

The further operations, however, require certain caution, because the right-hand side of the equation is now an operator, and has
some nontrivial properties. For example, the “values” of the Heisenberg operator, representing the same variable f(t) at different
times, do not necessarily commute:

fof@) i@ @, it A (5.5.35)
1/2 2 2 2 1 2 2
Kim=5(fOf+n+fe+nim)=5{({fO.fe+n}), (5.5.36)
(where {...,...} denotes the anticommutator of the two operators), and, similarly, the symmetrical spectral density St(w),
defined by the following relation:
N 1/, % A% A 1 A oAk
Sf(w)J(w—w ) = §<fwfw’ +fw’fw> - §<{fw7fw’}>7 (5~5'37)

with K¢(7) and S¢(w) still related by the Fourier transform (5.4.14).

Now we may repeat all the analysis that was carried out for the classical case, and get Equation (5.5.9) again, but now this
expression has to be compared not with the equipartition theorem, but with its quantum-mechanical generalization (5.1.15), which,
in our current notation, reads

hw() th

((q%) = 5 >coth - (5.5.38)

As a result, we get the following quantum-mechanical generalization of Equation (5.5.33):

FDT:
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) hw

Sz(w) =

This is the much-celebrated fluctuation-dissipation theorem, usually referred to just as the FDT, first derived in 1951 by Herbert
Bernard Callen and Theodore A. Welton — in a somewhat different way.

As natural as it seems, this generalization of the relation between fluctuations and dissipation poses a very interesting conceptual
dilemma. Let, for the sake of clarity, temperature be relatively low, T' << hw; then Equation (5.5.39) gives a temperature-
independent result

Quantum noise:

Sz(w)= hx;frw), (5.5.40)

which describes what is frequently called quantum noise. According to the quantum Langevin equation (5.5.34), nothing but the
random force exerted by the environment, with the spectral density (5.5.4() proportional to the imaginary part of susceptibility (i.e.
damping), is the source of the ground-state “fluctuations” of the coordinate and momentum of a quantum harmonic oscillator, with
the r.m.s. values

1/2 W 1/2
6q=<<q'2>>1/2:( h ) , 5p=<<ﬁ2>>1/2:<u) , (5.5.41)

2muwy 2

and the total energy fwg/2. On the other hand, the basic quantum mechanics tells us that exactly these formulas describe the
ground state of a dissipation-free oscillator, not coupled to any environment, and are a direct corollary of the basic commutation
relation

[4,] = ih. (5.5.42)
So, what is the genuine source of the uncertainty described by Egs. (5.5.41)?

The best resolution of this paradox I can offer is that either interpretation of Egs. (5.5.41) is legitimate, with their relative
convenience depending on the particular application. One may say that since the right-hand side of the quantum Langevin equation
(5.5.34) is a quantum-mechanical operator, rather than a classical force, it “carries the uncertainty relation within itself”. However,
this (admittedly, opportunistic :-) resolution leaves the following question open: is the quantum noise (5.5.40) of the environment's
observable Z directly, without any probe oscillator subjected to it? An experimental resolution of this dilemma is not quite simple,
because usual scientific instruments have their own ground-state uncertainty, i.e. their own quantum fluctuations, which may be
readily confused with those of the system under study. Fortunately, this difficulty may be overcome, for example, using unique
frequency-mixing (“down-conversion”) properties of Josephson junctions. Special low-temperature experiments using such down-
conversion*® have confirmed that the noise (5.5.40) is real and measurable.

<[§(t), é(tﬂ)D ik (r), (5.5.43)

where ¢(7) is the temporal Green's function of the environment, defined by the following relation:

(Z() = /0 " (r)lt — r)dr = [ Gt —t)q(t)dt . (5.5.44)

Plugging the Fourier transforms of all three functions of time participating in Equation (5.5.44) into this relation, it is
straightforward to check that this Green's function is just the Fourier image of the complex susceptibility x(w) defined by Equation
(5.5.3D:

/000 G(r)e“ dr = x(w); (5.5.45)

here 0 is used as the lower limit instead of (— o) just to emphasize that due to the causality principle, Green's function has to be
equal zero for 7 < 0.%!

In order to reveal the real beauty of Equation (5.5.43), we may use the Wiener-Khinchin theorem (5.4.14) to rewrite the
fluctuation-dissipation theorem (5.5.39) in a similar time-domain form:
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<{§(t),§(t+r)}> — 9K 5 (7). (5.5.46)

where the symmetrized correlation function K #(7) is most simply described by its Fourier transform, which is, according to
Equation (5.4.13), equal to 7S# (w), so that using the FDT, we get

o0 1
/ K z(7) coswrdr = hx—(w)coth M (5.5.47)
0 2 2T
The comparison of Egs. (5.5.43) and (5.5.45), on one hand, and Eqs (5.5.46)-(5.5.47), on the other hand, shows that both the
commutation and anticommutation properties of the Heisenberg-Langevin force operator at different moments of time are
determined by the same generalized susceptibility x(w) of the environment. However, the averaged anticommutator also depends
on temperature, while the averaged commutator does not — at least explicitly, because the complex susceptibility of an environment

may be temperature-dependent as well.
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