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CHAPTER OVERVIEW

1: Review of Thermodynamics

This chapter starts from a brief discussion of the subject of statistical physics and thermodynamics, and the relation between these
two disciplines. Then I proceed to a review of the basic notions and relations of thermodynamics. Most of this material is supposed
to be known to the reader from their undergraduate studies,’ so the discussion is rather brief.

1.1: Introduction - Statistical physics and thermodynamics

1.2: The 2nd law of thermodynamics, entropy, and temperature

1.3: The 1st and 3rd laws of thermodynamics, and heat capacity

1.4: Thermodynamic potentials
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1.6: Thermal machines

1.7: Exercise problems

This page titled 1: Review of Thermodynamics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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1.1: Introduction - Statistical physics and thermodynamics

Statistical physics (alternatively called “statistical mechanics”) and thermodynamics are two different but related approaches to the
same goal: an approximate description of the “internal”? properties of large physical systems, notably those consisting of N >> 1
identical particles — or other components. The traditional example of such a system is a human-scale portion of gas, with the
number N of atoms/molecules® of the order of the Avogadro number N4 ~ 10?3 (see Sec. 4 below).

The motivation for the statistical approach to such systems is straightforward: even if the laws governing the dynamics of each
particle and their interactions were exactly known, and we had infinite computing resources at our disposal, calculating the exact
evolution of the system in time would be impossible, at least because it is completely impracticable to measure the exact initial
state of each component — in the classical case, the initial position and velocity of each particle. The situation is further exacerbated
by the phenomena of chaos and turbulence,* and the quantum-mechanical uncertainty, which do not allow the exact calculation of
final positions and velocities of the component particles even if their initial state is known with the best possible precision. As a
result, in most situations, only statistical predictions about the behavior of such systems may be made, with the probability theory
becoming a major tool of the mathematical arsenal.

However, the statistical approach is not as bad as it may look. Indeed, it is almost self-evident that any measurable macroscopic
variable characterizing a stationary system of N >> 1 particles as a whole (think, e.g., about the stationary pressure P of the gas
contained in a fixed volume V') is almost constant in time. Indeed, as we will see below, besides certain exotic exceptions, the
relative magnitude of fluctuations — either in time, or among many macroscopically similar systems — of such a variable is of the
order of 1/N 1/2 and for N ~ Ny is extremely small. As a result, the average values of appropriate macroscopic variables may
characterize the state of the system quite well — satisfactory for nearly all practical purposes. The calculation of relations between
such average values is the only task of thermodynamics and the main task of statistical physics. (Fluctuations may be important, but
due to their smallness, in most cases their analysis may be based on perturbative approaches — see Chapter 5.)

Now let us have a fast look at the typical macroscopic variables the statistical physics and thermodynamics should operate with.
Since I have already mentioned pressure P and volume V, let me start with this famous pair of variables. First of all, note that
volume is an extensive variable, i.e. a variable whose value for a system consisting of several non-interacting parts is the sum of
those of its parts. On the other hand, pressure is an example of an intensive variable whose value is the same for different parts of a
system — if they are in equilibrium. To understand why P and V' form a natural pair of variables, let us consider the classical
playground of thermodynamics, a portion of a gas contained in a cylinder, closed with a movable piston of area A (Figure 1.1.1).

NN,
S

A -—

PV

/11,

/o

N I hh h R iy

X

Figure 1.1.1: Compressing gas.

Neglecting the friction between the walls and the piston, and assuming that it is being moved so slowly that the pressure P is
virtually the same for all parts of the volume at any instant, the elementary work of the external force # = P A, compressing the
gas, at a small piston displacement dz =—dV /A4, is

Work on a gas:

AW = Fdx = (%) (Adz) = —PdV. (1.1.1)

Of course, the last expression is more general than the model shown in Figure 1.1.1, and does not depend on the particular shape of
the system’s surface.> (Note that in the notation of Equation (1.1.1), which will be used through the course, the elementary work
done by the gas on the external system equals —d#’.)

From the point of analytical mechanics,® V and (- P) is just one of many possible canonical pairs of generalized coordinates g;
and generalized forces #;, whose products d#; = #;dq; give independent contributions to the total work of the environment on

@ 0 e @ 1.1.1 https://phys.libretexts.org/@go/page/34687
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the system under analysis. For example, the reader familiar with the basics of electrostatics knows that if the spatial distribution
&(r) of an external electric field does not depend on the electric polarization £?(r) of a dielectric medium placed into the field, its
elementary work on the medium is

dW:/é’(r)-d?(r)d?’rE/ié?(r)dﬁﬂr)d%. (1.1.2)

a¥ =) d#, withd#; =& (ry)- dp;. (1.1.3)
k
3
d¥ = o / H(r)- dM(v)d>r = po / > A (x)d(x)dr, (1.1.4)
j=1
av => d#, withd# = pH (vy)- dmy. (1.1.5)
k

where .# and m are the vectors of, respectively, the medium’s magnetization and the magnetic moment of a single dipole.
Formulas (1.1.2-1.1.3) and (1.1.4- 1.1.5) show that the roles of generalized coordinates may be played by Cartesian components
of the vectors & (or p) and .4 (or m), with the components of the electric and magnetic fields playing the roles of the
corresponding generalized forces. This list may be extended to other interactions (such as gravitation, surface tension in fluids,
etc.). Following tradition, I will use the {— P, V'} pair in almost all the formulas below, but the reader should remember that they
all are valid for any other pair {.%;, g;}.°

Again, the specific relations between the variables of each pair listed above may depend on the statistical properties of the system
under analysis, but their definitions are not based on statistics. The situation is very different for a very specific pair of variables,
temperature T' and entropy S, although these “sister variables” participate in many formulas of thermodynamics exactly as if they
were just one more canonical pair {fj, qj}. However, the very existence of these two notions is due to statistics. Namely,
temperature 7' is an intensive variable that characterizes the degree of thermal “agitation” of the system’s components. On the
contrary, the entropy S is an extensive variable that in most cases evades immediate perception by human senses; it is a qualitative
measure of the disorder of the system, i.e. the degree of our ignorance about its exact microscopic state.'

The reason for the appearance of the {T', S} pair of variables in formulas of thermodynamics and statistical mechanics is that the
statistical approach to large systems of particles brings some qualitatively new results, most notably the notion of the irreversible
time evolution of collective (macroscopic) variables describing the system. On one hand, the irreversibility looks absolutely natural
in such phenomena as the diffusion of an ink drop in a glass of water. In the beginning, the ink molecules are located in a certain
small part of the system’s volume, i.e. to some extent ordered, while at the late stages of diffusion, the position of each molecule in
the glass is essentially random. However, as a second thought, the irreversibility is rather surprising, taking into account that the
laws governing the motion of the system’s components are time-reversible — such as the Newton laws or the basic laws of quantum
mechanics.!! Indeed, if at a late stage of the diffusion process, we reversed the velocities of all molecules exactly and
simultaneously, the ink molecules would again gather (for a moment) into the original spot.'?> The problem is that getting the
information necessary for the exact velocity reversal is not practicable. This example shows a deep connection between statistical
mechanics and information theory.

A qualitative discussion of the reversibility-irreversibility dilemma requires a strict definition of the basic notion of statistical
mechanics (and indeed of the probability theory), the statistical ensemble, and I would like to postpone it until the beginning of
Chapter 2. In particular, in that chapter, we will see that the basic law of irreversible behavior is an increase of the entropy S in any
closed system. Thus, the statistical mechanics, without defying the “microscopic” laws governing the evolution of system’s
components, introduces on top of them some new “macroscopic” laws, intrinsically related to the evolution of information, i.e. the
degree of our knowledge of the microscopic state of the system.

To conclude this brief discussion of variables, let me mention that as in all fields of physics, a very special role in statistical
mechanics is played by the energy E. To emphasize the commitment to disregard the motion of the system as a whole in this
subfield of physics, the E considered in thermodynamics it is frequently called the internal energy, though just for brevity, I will
skip this adjective in most cases. The simplest example of such E is the sum of kinetic energies of molecules in a dilute gas at their
thermal motion, but in general, the internal energy also includes not only the individual energies of the system’s components but
also their interactions with each other. Besides a few “pathological” cases of very-long-range interactions, these interactions may
be treated as local; in this case the internal energy is proportional to IV, i.e. is an extensive variable. As will be shown below, other
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extensive variables with the dimension of energy are often very useful as well, including the (Helmholtz) free energy F, the Gibbs
energy G, the enthalpy H, and the grand potential €. (The collective name for such variables is thermodynamic potentials.)

Now, we are ready for a brief discussion of the relationship between statistical physics and thermodynamics. While the task of
statistical physics is to calculate the macroscopic variables discussed abovel3 for various microscopic models of the system, the
main role of thermodynamics is to derive some general relations between the average values of the macroscopic variables (also
called thermodynamic variables) that do not depend on specific models. Surprisingly, it is possible to accomplish such a feat using
just a few either evident or very plausible general assumptions (sometimes called the laws of thermodynamics), which find their
proof in statistical physics.1# Such general relations allow for a substantial reduction of the number of calculations we have to do in
statistical physics: in most cases, it is sufficient to calculate from the statistics just one or two variables, and then use general
thermodynamic relations to get all other properties of interest. Thus the thermodynamics, sometimes snubbed as a phenomenology,
deserves every respect not only as a useful theoretical tool but also as a discipline more general than any particular statistical
model. This is why the balance of this chapter is devoted to a brief review of thermodynamics.

This page titled 1.1: Introduction - Statistical physics and thermodynamics is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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1.2: The 2nd law of thermodynamics, entropy, and temperature

Thermodynamics accepts a phenomenological approach to the entropy S, postulating that there is such a unique extensive measure

of the aggregate disorder, and that in a closed system (defined as a system completely isolated from its environment, i.e. the system

with its internal energy fixed) it may only grow in time, reaching its constant (maximum) value at equilibrium:®

24 Jaw of thermodynamics:

(1.2.1)

Figure 1.2.1: A composite thermodynamic system.

Neglecting the energy of interaction between the parts (which is always possible at N >> 1, and in the absence of long-range
interactions), we may use the extensive character of the variables E and S to write

E=FE(S1)+Ex(S2), S=51+9,, (1.2.2)
for the full energy and entropy of the system. Now let us use them to calculate the following derivative:

dS  dS, dS, dS, dS, dB, dS, dS, d(E—Ey)
f = = . 1.2.
dE, dE, dB, _ dB, | dB, dB, _ dE, | dE,  dE; (1.2.3)

Since the total energy E of the closed system is fixed and hence independent of its re-distribution between the subsystems, we have
to take dE/dE; =0, and Equation (1.2.3) yields
ds ds; dS;

= 1.2.4
dE, dE; + dE, ( )

According to the 2" law of thermodynamics, when the two parts have reached the thermodynamic equilibrium, the total entropy S
reaches its maximum, so that dS/dE; = 0, and Equation (1.2.4) yields

s, dS,

—_— = 1.2.
dE, dE» (1.2.5)

This equality shows that if a thermodynamic system may be partitioned into weakly interacting macroscopic parts, their derivatives

dS/dE should be equal in the equilibrium. The reciprocal of this derivative is called temperature. Taking into account that our
analysis pertains to the situation (Figure 1.2.1) when both volumes V; 5 are fixed, we may write this definition as

(5).

the subscript V' meaning that volume is kept constant at the differentiation. (Such notation is common and very useful in
thermodynamics, with its broad range of variables.)

# Definition of Temperature

If
5

(1.2.6)

In those units, the entropy becomes dimensional: S = kp.S .

i. according to Equation (1.2.6), the temperature is an intensive variable (since both E and S are extensive), i.e., in a system of
similar particles, it is independent of the particle number V;
ii. temperatures of all parts of a system are equal at equilibrium — see Equation (1.2.5);
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iii. in a closed system whose parts are not in equilibrium, thermal energy (heat) always flows from a warmer part (with higher T°)
to the colder part.

In order to prove the last property, let us revisit the closed, composite system shown in Figure 1.2.1, and consider another

derivative:
ds _ d_S1 dS, dS, dE; dS; dFE,

— = — = . 1.2.7
dt dt * dt dE, * dt * dE, dt ( )

If the internal state of each part is very close to equilibrium (as was assumed from the very beginning) at each moment of time, we
can use Equation (1.2.6) to replace the derivatives dS1 o/dE; » with 1/T7 5, getting
dsS 1 dE; 1 dE,
ade et S i 1.2.8
i T dt T d (12.8)

Since in a closed system E = E; + E» = const, these time derivatives are related as dE»/dt =—dE; /dt, and Equation (1.2.8)

yields
ds 1 1\ dEy
— == | — 1.2.
dt (T1 T, ) dt (1.2.9)
But according to the 2" Jaw of thermodynamics, this derivative cannot be negative: d.S/d¢ > 0. Hence,
1 1\ dE;y
—— =) ==>9 1.2.10
(T] T, ) dt — ( )

For example, if T} > Ty, then dE; /dt <0, i.e. the warmer part gives energy to its colder counterpart.
Note also that at such a heat exchange, at fixed volumes V; o, and T7 # T, increases the total system’s entropy, without

performing any “useful” mechanical work — see Equation (1.1.1).

This page titled 1.2: The 2nd law of thermodynamics, entropy, and temperature is shared under a CC BY-NC-SA 4.0 license and was authored,
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1.3: The 1st and 3rd laws of thermodynamics, and heat capacity

Now let us consider a thermally insulated system whose volume V' may be changed by force — see, for example, Figure 1.1.1. Such
a system is different from the fully closed one, because its energy E may be changed by the external force’s work — see Equation (
1.1.1):

dE =d¥ =—PdV. (1.3.1)

Let the volume change be so slow (dV'/dt — 0) that the system is virtually at equilibrium at any instant. Such a slow process is
called reversible, and in the particular case of a thermally insulated system, it is also called adiabatic. If the pressure P (or any
generalized external force .%;) is deterministic, i.e. is a predetermined function of time, independent of the state of the system
under analysis, it may be considered as coming from a fully ordered system, i.e. the one having zero entropy, with the total system
(the system under our analysis plus the source of the force) completely closed. Since the entropy of the total closed system should
stay constant (see the second of Egs. (1.2.2) above), S of the system under analysis should stay constant on its own. Thus we arrive
at a very important conclusion: at an adiabatic process, the entropy of a system cannot change. (Sometimes such a process is called
isentropic.) This means that we may use Equation (1.3.1) to write

P:—(?—‘E/)S. (1.3.2)

Now let us consider a more general thermodynamic system that may also exchange thermal energy (“heat”) with its environment
(Figure 1.3.1).

do an

Figure 1.3.1: An example of the thermodynamic process involving both the mechanical work by the environment, and the heat
exchange with it.

For such a system, our previous conclusion about the entropy’s constancy is not valid, so that S, in equilibrium, may be a function
of not only the system’s energy FE, but also of its volume: S = S(E,V). Let us consider this relation resolved for energy:
E =E(S,V), and write the general mathematical expression for the full differential of F as a function of these two independent

arguments:
OF OF

This formula, based on the stationary relation E = E(S, V'), is evidently valid not only in equilibrium but also for all very slow,
reversible?! processes. Now, using Eqs. (1.2.6) and (1.3.2), we may rewrite Equation (1.3.3) as

Energy: differential

|dE =TdS — PdV.] (1.3.4)

According to Equation (1.1.1), the second term on the right-hand side of this equation is just the work of the external force, so that
due to the conservation of energy,?? the first term has to be equal to the heat dQ transferred from the environment to the system
(see Figure 1.3.1):

1°¢ law of thermodynamics:

|dE =dQ +d¥/,| (1.3.5)

139

The last relation, divided by 7" and then integrated along an arbitrary (but reversible!) process,
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S:/%—i—const, (1.3.7)

is sometimes used as an alternative definition of entropy S — provided that temperature is defined not by Equation (1.2.6), but in
some independent way. It is useful to recognize that entropy (like energy) may be defined to an arbitrary constant, which does not
affect any other thermodynamic observables. The common convention is to take

§—0, atT—0. (1.3.8)

This condition is sometimes called the “3" law of thermodynamics”, but it is important to realize that this is just a convention
rather than a real law.?® Indeed, the convention corresponds well to the notion of the full order at 7' =0 in some systems (e.g.,
separate atoms or perfect crystals), but creates ambiguity for other systems, e.g., amorphous solids (like the usual glasses) that may
remain highly disordered for “astronomic” times, even at T' — 0.

Now let us discuss the notion of heat capacity that, by definition, is the ratio dQ /dT, where d@ is the amount of heat that should
be given to a system to raise its temperature by a small amount d7".* (This notion is important because the heat capacity may be
most readily measured experimentally.) The heat capacity depends, naturally, on whether the heat d@ goes only into an increase of
the internal energy dE of the system (as it does if its volume V is constant), or also into the mechanical work (—d%#") performed by
the system at its expansion — as it happens, for example, if the pressure P, rather than the volume V, is fixed (the so-called isobaric
process — see Figure 1.3.2).

v Mg

dQ "\ /% P:%:const

Figure 1.3.2: The simplest example of the isobaric process.

Hence we should discuss at least two different quantities,?” the heat capacity at fixed volume,

# Heat capacity at fixed volume

C,= (%Q)V (1.3.9)

and the heat capacity at fixed pressure

# Heat capacity at fixed pressure

C, = (%)P, (1.3.10)

and expect that for all “normal” (mechanically stable) systems, Cp > Cy . The difference between Cp and Cly is rather minor for
most liquids and solids, but may be very substantial for gases — see Sec. 4.
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1.4: Thermodynamic potentials

Since for a fixed volume, d# =— PdV =0, and Equation (1.3.5) yields d@Q = dE, we may rewrite Equation (1.3.9) in another
convenient form

oo (%) wan

so that to calculate C'y from a certain statistical-physics model, we only need to calculate E as a function of temperature and
volume. If we want to obtain a similarly convenient expression for Cp, the best way is to introduce a new notion of so-called
thermodynamic potentials — whose introduction and effective use is perhaps one of the most impressive techniques of
thermodynamics. For that, let us combine Eqs. (1.1.1) and (1.3.5) to write the 1 law of thermodynamics in its most common form

dQ =dE+ PdV (1.4.2)
At an isobaric process (Figure 1.3.2), i.e. at P = const, this expression is reduced to

(dQ)p =dEp+d(PV)p =d(E+PV)p (1.4.3)

# Enthalpy: definition

H=E+PV (1.4.4)

called enthalpy (or, sometimes, the “heat function” or the “heat contents”),%” we may rewrite Equation (1.3.10) as
O0H
Cp = (_) . (1.4.5)
or ) p
Comparing Egs. (1.4.5) and (1.4.1) we see that for the heat capacity, the enthalpy H plays the same role at fixed pressure as the

internal energy E plays at fixed volume.

Now let us explore properties of the enthalpy at an arbitrary reversible process, i.e. lifting the restriction P = const, but keeping
the definition (1.4.4). Differentiating this equality, we get

dH =dE+ PdV +VdP. (1.4.6)
Plugging into this relation Equation (1.3.4) for dE, we see that the terms +=PdV cancel, yielding a very simple expression

Enthalpy: differential

|dH =TdS+VdP, | (1.4.7)

whose right-hand side differs from Equation (1.3.4) only by the swap of P and V in the second term, with the simultaneous change
of its sign. Formula (1.4.7) shows that if H has been found (say, experimentally measured or calculated for a certain microscopic
model) as a function of the entropy S and the pressure P of a system, we can calculate its temperature 7" and volume V by simple

partial differentiation:
O0H 0H
T=|— === . 1.4.
(%), 7= (%), (49

The comparison of the first of these relations with Equation (1.2.6) shows that not only for the heat capacity but for temperature as
well, enthalpy plays the same role at fixed pressure, as played by internal energy at fixed volume.

This success immediately raises the question of whether we could develop this idea further on, by defining other useful
thermodynamic potentials — the variables with the dimensionality of energy that would have similar properties — first of all, a
potential that would enable a similar swap of T' and S in its full differential, in comparison with Equation (1.4.7). We already
know that an adiabatic process is the reversible process with fixed entropy, inviting analysis of a reversible process with fixed
temperature. Such an isothermal process may be implemented, for example, by placing the system under consideration into thermal
contact with a much larger system (called either the heat bath, or “heat reservoir”, or “thermostat”) that remains in thermodynamic
equilibrium at all times — see Figure 1.4.1.
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Figure 1.4.1: The simplest example of the isothermal process.

Due to its very large size, the heat bath temperature 7" does not depend on what is being done with our system, and if the change is
being done sufficiently slowly (i.e. reversibly), that this temperature is also the temperature of our system — see Equation (1.2.5)
and its discussion. Let us calculate the elementary mechanical work d# (1.1.1) at such a reversible isothermal process. According
to the general Equation (1.3.5), d# = dE—dQ . Plugging d@ from Equation (1.3.6) into this equality, for 7' = const we get

(d#)r =dE—TdS = d(E—TS) =dF, (1.4.9)

where the following combination,

# Free energy: definition

F=E-TS, (1.4.10)

is called the free energy (or the “Helmholtz free energy”, or just the “Helmholtz energy”?®). Just as we have done for the enthalpy,
let us establish properties of this new thermodynamic potential for an arbitrarily small, reversible (now not necessarily isothermal!)
variation of variables, while keeping the definition (1.4.10). Differentiating this relation and then using Equation (1.3.4), we get

Free energy: differential

|dF = —SdT — PdV.| (1.4.11)

Thus, if we know the function F(T, V'), we can calculate S and P by simple differentiation:

s:_(g—i>v, P:—(g—g)T. (1.4.12)

E=E(S,V); H=H(S,P); F=F(T,V). (1.4.13)

In this list of pairs of four arguments, only one pair is missing: {T", P}. The thermodynamic function of this pair, which gives the
two remaining variables (S and V') by simple differentiation, is called the Gibbs energy (or sometimes the “Gibbs free energy”):
G =G(T, P). The way to define it in a symmetric way is evident from the so-called circular diagram shown in Figure 1.4.2.

(a) (b)
S H P S H— PP
A
/:PV -TS\
E G E G

\TS +P?
B

v F T Vv F T

Figure 1.4.2: (a) The circular diagram and (b) an example of its use for variable calculation. The thermodynamic potentials are
typeset in red, each flanked with its two canonical arguments.

In this diagram, each thermodynamic potential is placed between its two canonical arguments — see Equation (1.4.13). The left two
arrows in Figure 1.4.2a show the way the potentials H and F' have been obtained from energy E — see Eqgs. (1.4.4) and (1.4.10).
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This diagram hints that G has to be defined as shown by either of the two right arrows on that panel, i.e. as

# Gibbs energy: definition

| G=F+PV=H-TS=E-TS+PV. | (1.4.14)

In order to verify this idea, let us calculate the full differential of this new thermodynamic potential, using, e.g., the first form of
Equation (1.4.14) together with Equation (1.4.11):

Gibbs energy: differential

| dG=dF +d(PV) = (—8dT — PdV) + (PdV +VdP) = —SdT + VdP, (1.4.15)

so that if we know the function G(T', P), we can indeed readily calculate both entropy and volume:

() v-(2). a0

Now I have to justify the collective name “thermodynamic potentials” used for E, H, F, and G. For that, let us consider an
irreversible process, for example, a direct thermal contact of two bodies with different initial temperatures. As was discussed in
Sec. 2, at such a process, the entropy may grow even without the external heat flow: dS >0 at dQ =0 — see Equation (1.2.9).
This means that at a more general process with d@Q) # 0, the entropy may grow faster than predicted by Equation (1.3.6), which has
been derived for a reversible process, so that

s> 3¢ (1.4.17)
T

with the equality approached in the reversible limit. Plugging Equation (1.4.17) into Equation (1.3.5) (which, being just the energy
conservation law, remains valid for irreversible processes as well), we get

dE <TdS - PdV. (1.4.18)

We can use this relation to have a look at the behavior of other thermodynamic potentials in irreversible situations, still keeping
their definitions given by Eqs. (1.4.4), (1.4.10), and (1.4.14). Let us start from the (very common) case when both the temperature
T and the volume V of a system are kept constant. If the process is reversible, then according to Equation (1.4.11), the full time
derivative of the free energy F’ would equal zero. Equation (1.4.18) says that at an irreversible process, this is not necessarily so: if
dT =dV =0, then

%:%(E—TS)T:%—T(Z—‘? <0. (1.4.19)
Hence, in the general (irreversible) situation, F' can only decrease, but not increase in time. This means that F' eventually
approaches its minimum value F'(T',S), given by the equations of reversible thermodynamics. To re-phrase this important
conclusion, in the case T' = const, V' = const, the free energy F/, i.e. the difference E—T'S, plays the role of the potential energy in
the classical mechanics of dissipative processes: its minimum corresponds to the (in the case of F', thermodynamic) equilibrium of
the system. This is one of the key results of thermodynamics, and I invite the reader to give it some thought. One of its possible
handwaving interpretations of this fact is that the heat bath with fixed T° > 0, i.e. with a substantial thermal agitation of its
components, “wants” to impose thermal disorder in the system immersed into it, by “rewarding” it with lower F for any increase of
disorder.

Repeating the calculation for a different case, T' = const, P = const, it is easy to see that in this case the same role is played by the
Gibbs energy:

Ezi(E—TS—FPV):E—Tﬁ—kPﬂS 795 _pdV )\ _pdS pdV _, (1.4.20)
dt — dt dt dt  dt dt  dt dt ' dt

so that the thermal equilibrium now corresponds to the minimum of G rather than F'.

For the two remaining thermodynamic potentials, E and H, the calculations similar to Eqgs. (1.4.19) and (1.4.20) make less sense
because that would require keeping S = const (with V' = const for F, and P = const for H) for an irreversible process, but it is
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usually hard to prevent the entropy from growing if initially it had been lower than its equilibrium value, at least on the long-term
basis.?! Thus the circular diagram is not so symmetric after all: G and F' are somewhat more useful for most practical calculations
than £ and H.

Note that the difference G- F = PV between the two “more useful” potentials has very little to do with thermodynamics at all
because this difference exists (although is not much advertised) in classical mechanics as well.32 Indeed, the difference may be
generalized as G- F =— % ¢, where ¢ is a generalized coordinate, and % is the corresponding generalized force. The minimum of
F corresponds to the equilibrium of an autonomous system (with % = 0), while the equilibrium position of the same system under
the action of external force % is given by the minimum of G. Thus the external force “wants” the system to subdue to its effect,
“rewarding” it with lower G.

Moreover, the difference between F' and G becomes a bit ambiguous (approach-dependent) when the product #q may be
partitioned into single-particle components — just as it is done in Egs. (1.1.3) and (1.1.5) for the electric and magnetic fields. Here
the applied field may be taken into account on the microscopic level, including its effect directly into the energy ¢;, of each particle.
In this case, the field contributes to the total internal energy E directly, and hence the thermodynamic equilibrium (at 7" = const) is
described as the minimum of F'. (We may say that in this case F' = G, unless a difference between these thermodynamic potentials
is created by the actual mechanical pressure P.) However, in some cases, typically for condensed systems, with their strong
interparticle interactions, the easier (and sometimes the only one practicable?) way to account for the field is on the macroscopic
level, taking G = F— %q. In this case, the same equilibrium state is described as the minimum of G. (Several examples of this
dichotomy will be given later in this course.) Whatever the choice, one should mind not take the same field effect into account
twice.

One more important conceptual question I would like to discuss here is why usually statistical physics pursues the calculation of
thermodynamic potentials, rather than just of a relation between P, V, and T'. (Such relation is called the equation of state of the
system.) Let us explore this issue on the particular but important example of an ideal classical gas in thermodynamic equilibrium,
for which the equation of state should be well known to the reader from undergraduate physics:>*

Ideal gas: equation of state

(a2

where NN is the number of particles in volume V. (In Chapter 3, we will derive Equation (1.4.21) from statistics.) Let us try to use
it for the calculation of all thermodynamic potentials, and all other thermodynamic variables discussed above. We may start, for
example, from the calculation of the free energy F'. Indeed, integrating the second of Egs. (1.4.12) with the pressure calculated
from Equation (1.4.21), P =NT/V, we get

F—-[pav

where V has been divided by IV in both instances just to represent F' as a manifestly extensive variable, in this uniform system
proportional to N. The integration “constant” f(7') is some function of temperature, which cannot be recovered from the equation
of state. This function affects all other thermodynamic potentials, and the entropy as well. Indeed, using the first of Egs. (1.4.12)

together with Equation (1.4.22), we get
d
S:—(a—F) - [mz—ﬁ], (1.4.23)
14

av _ (V/N) _ 14
T'=const - _NT/ 1% —NT / V/N —NTln +Nf( ) (1422)

or N dr

and now may combine Eqs. (1.4.10) with (1.4.23) to calculate the (internal) energy of the gas,

_ _ v v df(T) af(T)
E=F+TS= [—NTlnN +Nf(T)} +T {NlnN N—— aT ] =N [f(T)—T aT ] , (1.4.24)
then use Eqgs. (1.4.4), (1.4.21) and (1.4.24) to calculate its enthalpy,
H:E—l—PV:E—i-NT:N[f(T) dffr)—&-T] (1.4.25)

and, finally, plug Egs. (1.4.21) and (1.4.22) into Equation (1.4.14) to calculate the Gibbs energy
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v
GzF—i—PV:N[—Tlnﬁ—i-f(T)—&-T . (1.4.26)
One might ask whether the function f(T') is physically significant, or it is something like the inconsequential, arbitrary constant —
like the one that may be always added to the potential energy in non-relativistic mechanics. In order to address this issue, let us
calculate, from Eqs. (1.4.1) and (1.4.5), both heat capacities, which are evidently measurable quantities:

OF a2 f
Cy = (—BT)V =-NT—2, (1.4.27)
oOH a2 f
Cp= <—>P_N <—TW+1> =Cy+N. (1.4.28)

We see that the function f(T'), or at least its second derivative, is measurable.3® (In Chapter 3, we will calculate this function for
two simple “microscopic” models of the ideal classical gas.) The meaning of this function is evident from the physical picture of
the ideal gas: the pressure P exerted on the walls of the containing volume is produced only by the translational motion of the gas
molecules, while their internal energy E (and hence other thermodynamic potentials) may be also contributed by the internal
dynamics of the molecules — their rotations, vibrations, etc. Thus, the equation of state does not give us the full thermodynamic
description of a system, while the thermodynamic potentials do.

This page titled 1.4: Thermodynamic potentials is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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1.5: Systems with a variable number of particles

Now we have to consider one more important case: when the number N of particles in a system is not rigidly fixed, but may
change as a result of a thermodynamic process. A typical example of such a system is a gas sample separated from the environment
by a penetrable partition — see Figure 1.5.1.37

environment

+— > system [r—

dN |

Figure 1.5.1: An example of a system with a variable number of particles.

Let us analyze this situation for the simplest case when all the particles are similar. (In Sec. 4.1, this analysis will be extended to
systems with particles of several sorts). In this case, we may consider N as an independent thermodynamic variable whose
variation may change the energy E of the system, so that (for a slow, reversible process) Equation (1.3.4) should be now
generalized as

# Chemical potential: definition

| dE =TdS — PdV + pudN, (1.5.1)

where 4 is a new function of state, called the chemical potential.*® Keeping the definitions of other thermodynamic potentials,

given by Egs. (1.4.4), (1.4.10), and (1.4.14), intact, we see that the expressions for their differentials should be generalized as

dH =TdS+VdP + udN, (1.5.2)
dF = —SdT — PdV + pdN,, (1.5.3)
dG = —SdT +VdP + pdN (1.5.4)
oOF OH OF oG
_ ([ = — | == — (= — | = . 1.5.5
g (6N)S,V (6N)s,p (aN)T,V (8N>T,P (1.55)

Despite the formal similarity of all Egs. (1.5.5), one of them is more consequential than the others. Indeed, the Gibbs energy G is
the only thermodynamic potential that is a function of two intensive parameters, T' and P. However, as all thermodynamic
potentials, G has to be extensive, so that in a system of similar particles it has to be proportional to NV :

G =Ny, (1.5.6)

where g is some function of 7" and P. Plugging this expression into the last of Eqs. (1.5.5), we see that p equals exactly this
function, so that

[ as Gibbs energy:

G
=y (1.5.7)

i.e. the chemical potential is just the Gibbs energy per particle.

In order to demonstrate how vital the notion of chemical potential may be, let us consider the situation (parallel to that shown in
Figure 1.2.1) when a system consists of two parts, with equal pressure and temperature, that can exchange particles at a relatively
slow rate (much slower than the speed of the internal relaxation of each part). Then we can write two equations similar to Egs. (
1.2.2):
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where N = const, and Equation (1.5.7) may be used to describe each component of G

N=N+N,, G=G1+G> (1.5.8)

G:,ulNl ~+ pa No (1.5.9)
Plugging the N5 expressed from the first of Egs. (1.5.8), No = N— Ny, into Equation (1.5.9), we see that
dG
—_— = — 1.5.1
aN, M ke (1.5.10)

so that the minimum of G is achieved at pu; = po . Hence, in the conditions of fixed temperature and pressure, i.e. when G is the
appropriate thermodynamic potential, the chemical potentials of the system parts should be equal — the so-called chemical
equilibrium.

Finally, later in the course, we will also run into several cases when the volume V of a system, its temperature 7', and the chemical
potential g are all fixed. (The last condition may be readily implemented by allowing the system of our interest to exchange
particles with an environment so large that its p stays constant.) The thermodynamic potential appropriate for this case may be
obtained by subtraction of the product 4N from the free energy F', resulting in the so-called grand thermodynamic (or “Landau”)
potential:

# Grand potential: definition

QEF—#NZF—%NEF—GZ—PV. (1.5.11)

Indeed, for a reversible process, the full differential of this potential is

Grand potential: differential

dQ = dF —d(uN) = (—SdT — PdV + udN) — (udN + Ndy) = —SdT — PdV — Ndy, | (1.5.12)

so that if Q has been calculated as a function of T', V, and p, other thermodynamic variables may be found as

o0 o0 o0
s=—(Z) |, pP=—(Z) . Nn=—(Z) . 1.5.13
<6T)V,u (8V>T,M (al‘L)T,V ( )

Now acting exactly as we have done for other potentials, it is straightforward to prove that an irreversible process with fixed T', V,
and p, provides d2/dt <0, so that system’s equilibrium indeed corresponds to the minimum of the grand potential Q2. We will
repeatedly use this fact in this course.
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1.6: Thermal machines

In order to complete this brief review of thermodynamics, I cannot completely pass the topic of thermal machines — not because it
will be used much in this course, but mostly because of its practical and historic significance.*’ Figure 1.6.1a shows the generic
scheme of a thermal machine that may perform mechanical work on its environment (in our notation, equal to —#") during each
cycle of the expansion/compression of some “working gas”, by transferring different amounts of heat from a high temperature heat
bath (Q g) and to the low-temperature bath (Qr,).

(b)
> 0 '
o % N\

“\-VOI'killg gas"’ ——

B

>QL

v

0 V

Figure 1.6.1: (a) The simplest implementation of a thermal machine, and (b) the graphic representation of the mechanical work it
performs. On panel (b), the solid arrow indicates the heat engine cycle direction, while the dashed arrow, the refrigerator cycle
direction.

One relation between the three amounts Q, Q1, and # is immediately given by the energy conservation (i.e. by the 1% law of

thermodynamics):
Qu—-Qr=-%. (1.6.1)

From Equation (1.1.1), the mechanical work during the cycle may be calculated as
-V = ?{PdV, (1.6.2)

and hence represented by the area circumvented by the state-representing point on the [P, V] plane — see Figure 1.6.1b Note that
the sign of this circular integral depends on the direction of the point’s rotation; in particular, the work (— %) done by the working
gas is positive at its clockwise rotation (pertinent to heat engines) and negative in the opposite case (implemented in refrigerators
and heat pumps — see below). Evidently, the work depends on the exact form of the cycle, which in turn may depend not only on
Ty and 17, but also on the working gas’ properties.

An exception from this rule is the famous Carnot cycle, consisting of two isothermal and two adiabatic processes (all reversible!).
In its heat engine’s form, the cycle may start, for example, from an isothermic expansion of the working gas in contact with the hot
bath (i.e. at T'="T% ). It is followed by its additional adiabatic expansion (with the gas being disconnected from both heat baths)
until its temperature drops to 77,. Then an isothermal compression of the gas is performed in its contact with the cold bath (at
T =1Tt), followed by its additional adiabatic compression to raise T to Ty again, after which the cycle is repeated again and
again. Note that during this cycle the working gas is never in contact with both heat baths simultaneously, thus avoiding the
irreversible heat transfer between them. The cycle’s shape on the [V, P] plane (Figure 1.6.2a) depends on the exact properties of
the working gas and may be rather complicated. However, since the system’s entropy is constant at any adiabatic process, the
Carnot cycle’s shape on the [.S, T'] plane is always rectangular — see Figure 1.6.2h
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@ 7 ®)
Tyr-- —
S=5,
TL -__l 1
I; 0 S, S, 5,

Figure 1.6.2: Representation of the Carnot cycle: (a) on the [V, P] plane (schematically), and (b) on the [S,T] plane. The meaning
of the arrows is the same as in Figure 1.6.1.

Since during each isotherm, the working gas is brought into thermal contact only with the corresponding heat bath, i.e. its
temperature is constant, the relation (1.3.6), d@Q = T'dS, may be immediately integrated to yield

Qu=Tu(S2—51), Qr=T(S2—5). (1.6.3)
Hence the ratio of these two heat flows is completely determined by their temperature ratio:
T
Qu _Tn (1.6.4)
Qr TL

# Heat engine's efficiency: definition

-~ =l-g <t (1.6.5)

Carnot cycle's efficiency:

nCarnot*]-f T (166)

which shows that at a given 77, (that is typically the ambient temperature ~ 300 K), the efficiency may be increased, ultimately to
1, by raising the temperature T of the heat source.*

On the other hand, if the cycle is reversed (see the dashed arrows in Figs. 1.6.1 and 1.6.2), the same thermal machine may serve as
a refrigerator, providing heat removal from the low-temperature bath (Qr < 0) at the cost of consuming external mechanical
work: # > 0. This reversal does not affect the basic relation (1.6.1), which now may be used to calculate the relevant figure-of-
merit, called the cooling coefficient of performance (C' O Peooing):

Qul __ Qu

¥  Qu—QL
Notice that this coefficient may be above unity; in particular, for the Carnot cycle we may use Equation (1.6.4) (which is also
unaffected by the cycle reversal) to get

COPipoiing = (1.6.7)

(COPcuoling)Camot = %a (168)
so that this value is larger than 1 at Ty < 277, and even may be much larger than that when the temperature difference (I5—7%)
sustained by the refrigerator, tends to zero. For example, in a typical air-conditioning system, this difference is of the order of 10 K,
while T7, ~ 300 K, so that (T5—17) ~ T1 /30, i.e. the Carnot value of COPpoiing is as high as ~ 30. (In the state-of-the-art
commercial HVAC systems it is within the range of 3 to 4.) This is why the term “cooling efficiency”, used in some textbooks
instead of (COP)cooling may be misleading.

Since in the reversed cycle Qg =—# + Q1 <0, i.e. the system provides heat flow into the high temperature heat bath, it may be
used as a heat pump for heating purposes. The figure-of-merit appropriate for this application is different from Equation (1.6.7):
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Qx| Qu
COPresting = = 1.6.9
Ty Qe —Qy (16.9)
so that for the Carnot cycle, using Equation (1.6.4) again, we get
Ty
COPresting) Carnot = ———- 1.6.10
( heating )C ot Ty —T; ( )

Note that this COP is always larger than 1, meaning that the Carnot heat pump is always more efficient than the direct conversion
of work into heat (when Qi =—#, so that COPheqting = 1), though practical electricity-driven heat pumps are substantially more
complex, and hence more expensive than simple electric heaters. Such heat pumps, with the typical COPjeqting values around 4 in
summer and 2 in winter, are frequently used for heating large buildings.

Finally, note that according to Equation (1.6.8), the COP,01ing of the Carnot cycle tends to zero at Ty, — 0, making it impossible
to reach the absolute zero of temperature, and hence illustrating the meaningful (Nernst’s) formulation of the 3" law of
thermodynamics, cited in Sec. 3. Indeed, let us prescribe a finite but very large heat capacity C(T') to the low-temperature bath,
and use the definition of this variable to write the following expression for the relatively small change of its temperature as a result
of dn similar refrigeration cycles:

C(TL)dTL :QLdn. (1611)
Together with Equation (1.6.4), this relation yields
C(Ty)dT,  |Qu]
=— dn.

11 Ty

If T;, — 0, so that Ty >> Ty, and |Qg| ~—# = const, the right-hand side of this equation does not depend on 77, so that if we
integrate it over many (n >> 1) cycles, getting the following simple relation between the initial and final values of 17 :

(1.6.12)

Tm C(T)dT Q]
=— n. 1.6.13
For example, if C(T') is a constant, Equation (1.6.13) yields an exponential law,
|Qa|
Ty = Tini - , 1.6.14

with the absolute zero of temperature not reached as any finite 7. Even for an arbitrary function C(T') that does not vanish at
T — 0, Equation (1.6.12) proves the Nernst theorem, because dn diverges at 77, — 0. %
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1.7: Exercise problems

Two bodies, with temperature-independent heat capacities C; and Cs, and different initial temperatures 717 and T%, are placed
into a weak thermal contact. Calculate the change of the total entropy of the system before it reaches the thermal equilibrium.

? Exercise 1.7.2

A gas portion has the following properties:
(i) its heat capacity Cy = aT"®, and
(ii) the work #7 needed for its isothermal compression from V5 to V; equals ¢T' In(V,/ V1),

where a, b, and ¢ are some constants. Find the equation of state of the gas, and calculate the temperature dependence of its
entropy S and thermodynamic potentials E, H, F', GG, and (2.

? Exercise 1.7.3

A closed volume with an ideal classical gas of similar molecules is separated with a partition in such a way that the number N
of molecules in each part is the same, but their volumes are different. The gas is initially in thermal equilibrium, and its
pressure in one part is P;, and in the other part, P. Calculate the change of entropy resulting from a fast removal of the
partition, and analyze the result.

? Exercise 1.7.4

An ideal classical gas of IV particles is initially confined to volume V/, and is in thermal equilibrium with a heat bath of
temperature 7'. Then the gas is allowed to expand to volume V' > V' in one the following ways:

(i) The expansion is slow, so that due to the sustained thermal contact with the heat bath, the gas temperature remains equal to
T.

(i) The partition separating the volumes V and (V'— V') is removed very fast, allowing the gas to expand rapidly.

For each process, calculate the eventual changes of pressure, temperature, energy, and entropy of the gas at its expansion.

For an ideal classical gas with temperature-independent specific heat, derive the relation between P and V at an adiabatic
expansion/compression.

? Exercise 1.7.6

Calculate the speed and the wave impedance of acoustic waves propagating in an ideal classical gas with temperature-
independent specific heat, in the limits when the propagation may be treated as:

(i) an isothermal process, and
(ii) an adiabatic process.

Which of these limits is achieved at higher wave frequencies?

As will be discussed in Sec. 3.5, the so-called “hardball” models of classical particle interaction yield the following equation of
state of a gas of such particles:

P = T¢(n)a
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where n = N /V is the particle density, and the function ¢(n) is generally different from that (¢igeq (n) =n) of the ideal gas,
but still independent of temperature. For such a gas, with temperature-independent cy, calculate:

(i) the energy of the gas, and

(ii) its pressure as a function of n at the adiabatic compression.

? Exercise 1.7.8

For an arbitrary thermodynamic system with a fixed number of particles, prove the following four Maxwell relations (already
mentioned in Sec. 4):

(0: (ii):
().~ () (), - ()
v )y, \aoT )y’ aS)p \oP)¢
(iii): @iv):
95\ __(ov () -(&)
oP ), \oT ), as /), \av)g
and also the following relation:

(), (), »

? Exercise 1.7.9

Express the heat capacity difference, Cp— Cy, via the equation of state P = P(V, T') of the system.

? Exercise 1.7.10

__1jev
M=Tv\er ),y

in a single-phase system may be expressed in two different ways:

Vv? (62P) Vv (BN)
K = - —_— = — —_— .
! N2\ou* )r N2\ Ou T,V

I

2 Exercise 1.7.11

A reversible process, performed with a fixed portion of an ideal classical gas, may be represented on the [V, P| plane with the
straight line shown in the figure on the right. Find the point at which the heat flow into/out of the gas changes its direction.
P a
3F, -7
1
I
By fmontene
i ) o
0 / rd
Wz Vv
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Two bodies have equal, temperature-independent heat capacities C, but different temperatures, 77 and T5. Calculate the
maximum mechanical work obtainable from this system, using a heat engine.

? Exercise 1.7.13

Express the efficiency 7 of a heat engine that uses the so called Joule cycle, consisting of two adiabatic and two isobaric
processes (see the figure on the right), via the minimum and maximum values of pressure, and compare the result with 9camot-
Assume an ideal classical working gas with temperature-independent Cp and Cly.

P N
Pmax T
S = const
S = t
PSS
0 I;

? Exercise 1.7.14

Calculate the efficiency of a heat engine using the Otto cycle,*” which consists of two adiabatic and two isochoric (constant
volume) reversible processes — see the figure on the right. Explore how the efficiency depends on the ratio » = Viar / Vinin s
and compare it with the Carnot cycle’s efficiency. Assume an ideal classical working gas with temperature-independent heat
capacity.

P N

S=const T _
v, N

? Exercise 1.7.15

A heat engine’s cycle consists of two isothermal (I' = const) and two isochoric (V' = const) reversible processes — see the
figure on the right.*®

T
A ,
Ty b----
T, t----
. i
0 7 v, vV

(i) Assuming that the working gas is an ideal classical gas of N particles, calculate the mechanical work performed by the
engine during one cycle.
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l (ii) Are the specified conditions sufficient to calculate the engine’s efficiency? (Justify your answer.)

? Exercise 1.7.16

The Diesel cycle (an approximate model of the Diesel internal combustion engine’s operation) consists of two adiabatic
processes, one isochoric process, and one isobaric process — see the figure on the right. Assuming an ideal working gas with
temperature independent C'y; and Cp, express the efficiency n of the heat engine using this cycle via the gas temperature
values in its transitional states corresponding to the corners of the cycle diagram.

P = const
P+ 5 /3

S = const

S = const

Footnotes

1. For remedial reading, I can recommend, for example (in the alphabetical order): C. Kittel and H. Kroemer, Thermal Physics,
274 ed., W. H. Freeman (1980); F. Reif, Fundamentals of Statistical and Thermal Physics, Waveland (2008); D. V. Schroeder,
Introduction to Thermal Physics, Addison Wesley (1999).

2. Here “internal” is an (admittedly loose) term meaning all the physics unrelated to the motion of the system as a whole. The
most important example of internal dynamics is the thermal motion of atoms and molecules.

3. This is perhaps my best chance for a reverent mention of Democritus (circa 460-370 BC) — the Ancient Greek genius who was
apparently the first one to conjecture the atomic structure of matter.

4. See, e.g., CM Chapters 8 and 9.

5. In order to prove that, it is sufficient to integrate the scalar product d# = d% - dr , with dF = nPd?r, where dr is the
surface displacement vector (see, e.g., CM Sec. 7.1), and n is the outer normal, over the surface.

6. See, e.g., CM Chapters 2 and 10.

7. Some of my students needed an effort to reconcile the positive signs in Egs. (1.1.2 —1.1.3) with the negative sign in the well-
known relation dUy, =— &(r},)dp,, for the potential energy of a dipole in an external electric field — see, e.g., EM Egs. (3.15).
The resolution of this paradox is simple: each term of Equation (1.1.3) describes the work d#4, of the electric field on the
internal degrees of freedom of the k™ dipole, changing its internal energy Ej, : dEj, = d#;, . This energy change may be
viewed as coming from the dipole’s potential energy in the field: dEj =—dUj,.

8. Here, as in all my series, I am using the ST units; for their translation to the Gaussian units, I have to refer the reader to the EM
part of the series.

9. Note that in systems of discrete particles, most generalized forces, including the fields & and #, differ from the pressure P in
the sense that their work may be explicitly partitioned into single-particle components — see Egs. (1.1.3) and (1.1.5). This fact
gives some discretion for the calculations based on thermodynamic potentials — see Sec.4.

10. The notion of entropy was introduced into thermodynamics in 1865 by Rudolf Julius Emanuel Clausius on a purely
phenomenological basis. In the absence of a clue about the entropy’s microscopic origin (which had to wait for the works by L.
Boltzmann and J. Maxwell), this was an amazing intellectual achievement.

11. Because of that, the possibility of the irreversible macroscopic behavior of microscopically reversible systems was questioned
by some serious scientists as recently as in the late 19" century — notably by J. Loschmidt in 1876.

12. While quantum-mechanical effects, with their intrinsic uncertainty, may be quantitatively important in this example, our
qualitative discussion does not depend on them. Another classical example is the chaotic motion of a ball on a 2D Sinai billiard
— see CM Chapter 9 and in particular Figure 9.8 and its discussion.

13. Several other quantities, for example the heat capacity C', may be calculated as partial derivatives of the basic variables
discussed above. Also, at certain conditions, the number of particles IV in a certain system may be not fixed and also considered
as an (extensive) variable — see Sec. 5 below.
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Admittedly, some of these proofs are based on other plausible but deeper postulates, for example the central statistical
hypothesis (Sec. 2.2), whose best proof, to my knowledge, is just the whole body of experimental data.

Implicitly, this statement also postulates the existence, in a closed system, of thermodynamic equilibrium, an asymptotically
reached state in which all macroscopic variables, including entropy, remain constant. Sometimes this postulate is called the o™
law of thermodynamics.

Two initial formulations of this law, later proved equivalent, were put forward independently by Lord Kelvin (born William
Thomson) in 1851 and by Rudolf Clausius in 1854.

Here we strongly depend on a very important (and possibly the least intuitive) aspect of the 2"¢ law, namely that the entropy is
a unique measure of disorder.

Here I have to mention a traditional unit of thermal energy, the calorie, still being used in some applied fields. In the most
common modern definition (as the so-called thermochemical calorie) it equals exactly 4.148 J.

For the more exact values of this and other constants, see appendix CA: Selected Physical Constants. Note that both T' and T,
define the natural absolute (also called “thermodynamic™) scale of temperature, vanishing at the same point — in contrast to
such artificial scales as the degrees Celsius (“centigrades”), defined as T = Tx +273.15, or the degrees Fahrenheit:
Tr=(9/5)Tc +32.

Historically, such notion was initially qualitative — just as something distinguishing “hot” from “cold”. After the invention of
thermometers (the first one by Galileo Galilei in 1592), mostly based on thermal expansion of fluids, this notion had become
quantitative but not very deep: being understood as something “what the thermometer measures” — until its physical sense as a
measure of thermal motion’s intensity, was revealed in the 19" century.

Let me emphasize again that any adiabatic process is reversible, but not vice versa.

Such conservation, expressed by Egs. (1.3.5)-(1.3.6), is commonly called the 1¥ law of thermodynamics. While it (in contrast
with the 2"¢ law) does not present any new law of nature, and in particular was already used de-facto to write the first of Egs. (
1.2.2) and also Equation (1.3.1), such a grand name was absolutely justified in the 19% century when the mechanical nature of
the internal energy (the thermal motion) was not at all clear. In this context, the names of three scientists, Benjamin Thompson
(who gave, in 1799, convincing arguments that heat cannot be anything but a form of particle motion), Julius Robert von Mayer
(who conjectured the conservation of the sum of the thermal and macroscopic mechanical energies in 1841), and James Prescott
Joule (who proved this conservation experimentally two years later), have to be reverently mentioned.

Actually, the 3™ law (also called the Nernst theorem) as postulated by Walter Hermann Nernst in 1912 was different — and
really meaningful: “It is impossible for any procedure to lead to the isotherm 7" = 0 in a finite number of steps.” I will discuss
this theorem at the end of Sec. 6.

By this definition, the full heat capacity of a system is an extensive variable, but it may be used to form such intensive variables
as the heat capacity per particle, called the specific heat capacity, or just the specific heat. (Please note that the last terms are
rather ambiguous: they are used for the heat capacity per unit mass, per unit volume, and sometimes even for the heat capacity
of the system as the whole, so that some caution is in order.)

Dividing both sides of Equation (1.3.6) by dT, we get the general relation dQ /dT = T'dS/dT, which may be used to rewrite
the definitions (1.3.9) and (1.3.10) in the following forms:

oS oS
Cy=T|—=— |, Cp=T|=—
Y (aT)V i} (aT)P
more convenient for some applications.

From the point of view of mathematics, Equation (1.4.4) is a particular case of the so-called Legendre transformations.

This function (as well as the Gibbs free energy G, see below), had been introduced in 1875 by J. Gibbs, though the term
“enthalpy” was coined (much later) by H. Onnes.

It was named after Hermann von Helmholtz (1821-1894). The last of the listed terms for F' was recommended by the most
recent (1988) TUPAC’s decision, but I will use the first term, which prevails is physics literature. The origin of the adjective
“free” stems from Equation (1.4.9): F' is may be interpreted as the internal energy’s part that is “free” to be transferred to the
mechanical work, at the (most common) reversible, isothermal process.

Note the similarity of this situation with that is analytical mechanics (see, e.g., CM Chapters 2 and 10): the Lagrangian function
may be used to derive the equations of motion if it is expressed as a function of generalized coordinates and their velocities,
while to use the Hamiltonian function in a similar way, it has to be expressed as a function of the generalized coordinates and
the corresponding momenta.
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30. There is also a wealth of other relations between thermodynamic variables that may be represented as second derivatives of the
thermodynamic potentials, including four Maxwell relations such as (8S/0V )y = (0P /8T)y , etc. (They may be readily
recovered from the well-known property of a function of two independent arguments, say,

f(z,y): 0(0f/0x) /0y = 0(0f /Oy)/Oz. ) In this chapter, I will list only the thermodynamic relations that will be used later
in the course; a more complete list may be found, e.g., in Sec. 16 of the book by L. Landau and E. Lifshitz, Statistical Physics,
Part 1, 3™ ed., Pergamon, 1980 (and its later re-printings).

31. There are a few practicable systems, notably including the so-called adiabatic magnetic refrigerators (to be discussed in
Chapter 2), where the unintentional growth of .S is so slow that the condition S = const may be closely approached.

32. Tt is convenient to describe it as the difference between the “usual” (internal) potential energy U of the system to its “Gibbs
potential energy” U, — see CM Sec. 1.4. For the readers who skipped that discussion: my pet example is the usual elastic spring
with U = kz? /2, under the effect of an external force %, whose equilibrium position (zg = #/k) evidently corresponds to
the minimum of Ug = U- %, , rather than just U.

33. An example of such an extreme situation is the case when an external magnetic field 7 is applied to a superconductor in its
so-called intermediate state, in which the sample partitions into domains of the “normal” phase with & = poF# , and the
superconducting phase with £ = 0. In this case, the field is effectively applied to the interfaces between the domains, very
similarly to the mechanical pressure applied to a gas portion via a piston — see Figure 1.1.1 again.

34. The long history of the gradual discovery of this relation includes the very early (circa 1662) work by R. Boyle and R. Townely,
followed by contributions from H. Power, E. Mariotte, J. Charles, J. Dalton, and J. Gay-Lussac. It was fully formulated by
Benoit Paul Emile Clapeyron in 1834, in the form PV = nRTx , where n is the number of moles in the gas sample, and
R ~ 8.31 J/mole - K is the so-called gas constant. This form is equivalent to Equation (1.4.21), taking into account that
R=kpNy , where Ny = 6.022 140 76 x 10?®* mole! is the Avogadro number, i.e. the number of molecules per mole. (By
the mole’s definition, N4 is just the reciprocal mass, in grams, of the 1/12% part of the 12C atom, which is close to the mass of
one proton or neutron — see Appendix CA: Selected Physical Constants.) Historically, this equation of state was the main
argument for the introduction of the absolute temperature T, because only with it, the equation acquires the spectacularly
simple form (1.4.21).

35. Note that Equation (1.4.24), in particular, describes a very important property of the ideal classical gas: its energy depends only
on temperature (and the number of particles), but not on volume or pressure.

36. Note, however, that the difference Cp— Cy = N is independent of f(7T'). (If the temperature is measured in kelvins, this
relation takes a more familiar form C'p— Cy = nR.) It is straightforward (and hence left for the reader’s exercise) to show that
the difference C'p— Cy of any system is fully determined by its equation of state.

37. Another important example is a gas in a contact with the open-surface liquid of similar molecules.

38. This name, of a historic origin, is misleading: as evident from Equation (1.5.1), i has a clear physical sense of the average
energy cost of adding one more particle to the system of N >> 1 particles.

39. Note that strictly speaking, Egs. (1.2.6), (1.3.2), (1.4.8), (1.4.12). and (1.4.16) should be now generalized by adding another
lower index, N, to the corresponding derivatives; I will just imply this.

40. The whole field of thermodynamics was spurred by the famous 1824 work by Nicolas Léonard Sadi Carnot, in which he, in
particular, gave an alternative, indirect form of the 2" Jaw of thermodynamics — see below.

41. Curiously, S. Carnot derived his key result still believing that heat is some specific fluid (“caloric”), whose flow is driven by the
temperature difference, rather than just a form of particle motion.

42. Semi-quantitatively, such trend is valid also for other, less efficient but more practicable heat engine cycles — see Problems 13-
16. This trend is the leading reason why internal combustion engines, with T’y of the order of 1,500 K, are more efficient than
steam engines, with the difference Ty—T7, of at most a few hundred K.

43. In some alternative axiomatic systems of thermodynamics, this fact is postulated and serves the role of the 2" law. This is why
it is under persisting (dominantly, theoretical) attacks by suggestions of more efficient heat engines — recently, mostly of
quantum systems using sophisticated protocols such as the so-called shortcut-to adiabaticity — see, e.g., the recent paper by O.
Abah and E. Lutz, Europhysics Lett. 118, 40005 (2017), and references therein. To the best of my knowledge, reliable analyses
of all the suggestions put forward so far have confirmed that the Carnot efficiency (1.6.6) is the highest possible even in
quantum systems.

44. Such a hypothetical heat engine, which would violate the 2" Jaw of thermodynamics, is called the “perpetual motion machine
of the 2"? kind” — in contrast to any (also hypothetical) “perpetual motion machine of the 1% kind” that would violate the 1%
law, i.e., the energy conservation.
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45. Note that for such metastable systems as glasses the situation may be more complicated. (For a detailed discussion of this issue
see, e.g., J. Wilks, The Third Law of Thermodynamics, Oxford U. Press, 1961.) Fortunately, this issue does not affect other
aspects of statistical physics — at least those to be discussed in this course.

46. Note that the compressibility is just the reciprocal bulk modulus, K =1/ K - see, e.g., CM Sec. 7.3.

47. This name stems from the fact that the cycle is an approximate model of operation of the four-stroke internal combustion
engine, which was improved and made practicable (though not invented!) by N. Otto in 1876.

48. The reversed cycle of this type is a reasonable approximation for the operation of the Stirling and Gifford McMahon (GM)
refrigerators, broadly used for cryocooling — for a recent review see, e.g., A. de Waele, J. Low Temp. Phys. 164, 179 (2011).

This page titled 1.7: Exercise problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Konstantin K.
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CHAPTER OVERVIEW

2: Principles of Physical Statistics

This chapter is the keystone of this course. It starts with a brief discussion of such basic notions of statistical physics as statistical
ensembles, probability, and ergodicity. Then the so-called microcanonical distribution postulate is formulated, simultaneously with
the statistical definition of the entropy. This allows a derivation of the famous Gibbs (“canonical”) distribution — the most
frequently used tool of statistical physics. Then we will discuss one more, “grand canonical” distribution, which is more convenient
for some tasks. In particular, it is immediately used for the derivation of the most important Boltzmann, Fermi-Dirac, and Bose-
Einstein statistics of independent particles, which will be repeatedly utilized in the following chapters.

2.1: Statistical ensemble and probability

2.2: Microcanonical ensemble and distribution

2.3: Maxwell’s Demon, information, and computing
2.4: Canonical ensemble and the Gibbs distribution
2.5: Harmonic Oscillator Statistics

2.6: Two important applications

2.7: Grand canonical ensemble and distribution

2.8: Systems of Independent Particles

2.9: Exercise problems

This page titled 2: Principles of Physical Statistics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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2.1: Statistical ensemble and probability

As has been already discussed in Sec. 1.1, statistical physics deals with situations when either unknown initial conditions, or
system’s complexity, or the laws of its motion (as in the case of quantum mechanics) do not allow a definite prediction of
measurement results. The main formalism for the analysis of such systems is the probability theory, so let me start with a very brief
review of its basic concepts, using an informal “physical” language — less rigorous but (hopefully) more transparent than standard
mathematical treatments,' and quite sufficient for our purposes.

Consider N >>1 independent similar experiments carried out with apparently similar systems (i.e. systems with identical
macroscopic parameters such as volume, pressure, etc.), but still giving, by any of the reasons listed above, different results of
measurements. Such a collection of experiments, together with a fixed method of result processing, is a good example of a
statistical ensemble. Let us start from the case when the experiments may have M different discrete outcomes, and the number of

experiments giving the corresponding different results is Ny, Na, . .., Ny, so that
M
> Nn=N. (2.1.1)
m=1
The probability of each outcome, for the given statistical ensemble, is then defined as
Probability:
A
W :]\1,51010 N (2.1.2)

Though this definition is so close to our everyday experience that it is almost self-evident, a few remarks may still be relevant.

First, the probabilities W,,, depend on the exact statistical ensemble they are defined for, notably including the method of result
processing. As the simplest example, consider throwing the standard cubic-shaped dice many times. For the ensemble of all thrown
and counted dice, the probability of each outcome (say, “1”) is 1/6. However, nothing prevents us from defining another statistical
ensemble of dice-throwing experiments in which all outcomes “1” are discounted. Evidently, the probability of finding outcomes
“1” in this modified (but legitimate) ensemble is 0, while for all other five outcomes (“2” to “6”), it is 1/5 rather than 1/6.

(Ny) = Wi N, (2.1.3)
with the relative deviations decreasing as ~ 1/(N;,)'/2, i.e. as 1/ N1/,

Now let me list those properties of probabilities that we will immediately need. First, dividing both sides of Equation (2.1.1) by IV
and following the limit N — oo, we get the well-known normalization condition

M
> W =1 (2.1.4)
m=1
just remember that it is true only if each experiment definitely yields one of the outcomes N1, Na, ..., Nyy.
Second, if we have an additive function of the results,
_ L v f (2.1.5)
- m m» L.
N4

where f,, are some definite (deterministic) coefficients, the statistical average (also called the expectation value) of the function is
naturally defined as

1

(f) Nmi_ 'm ) fms (2.1.6)

so that using Equation (2.1.3) we get

Expectation value via probabilities:

https://phys.libretexts.org/@go/page/34695
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M
(£) = W fom- (2.1.7)

Notice that Equation (2.1.3) may be considered as the particular form of this general result, when all f,, = 1.

Next, the spectrum of possible experimental outcomes is frequently continuous for all practical purposes. (Think, for example,
about the set of positions of the marks left by bullets fired into a target from afar.) The above formulas may be readily generalized
to this case; let us start from the simplest situation when all different outcomes may be described by just one continuous scalar
variable ¢ — which replaces the discrete index m in Egs. (2.1.1)-(2.1.7). The basic relation for this case is the self-evident fact that
the probability dW of having an outcome within a small interval dg near some point ¢ is proportional to the magnitude of that
interval:

dW =w(q)dg, (2.1.8)

where w(q) is some function of ¢, which does not depend on dg. This function is called probability density. Now all the above
formulas may be recast by replacing the probabilities W,,, with the products (2.1.8), and the summation over m, with the
integration over q. In particular, instead of Equation (2.1.4) the normalization condition now becomes

/w(q)dq= 1, (2.1.9)

where the integration should be extended over the whole range of possible values of g. Similarly, instead of the discrete values f,,
participating in Equation (2.1.5), it is natural to consider a function f(q). Then instead of Equation (2.1.7), the expectation value of
the function may be calculated as

Expectation value via probability density:

(f) :/w(Q)f(‘Z)d‘I- (2.1.10)

It is also straightforward to generalize these formulas to the case of more variables. For example, the state of a classical particle
with three degrees of freedom may be fully described by the probability density w defined in the 6D space of its generalized radius-
vector q and momentum p. As a result, the expectation value of a function of these variables may be expressed as a 6D integral

(H= /w(q,p)f(q,p)d3qd3p~ (2.1.11)

Some systems considered in this course consist of components whose quantum properties cannot be ignored, so let us discuss how
(f) should be calculated in this case. If by f,;, we mean measurement results, then Equation (2.1.7) (and its generalizations)
remains valid, but since these numbers themselves may be affected by the intrinsic quantum-mechanical uncertainty, it may make
sense to have a bit deeper look into this situation. Quantum mechanics tells us* that the most general expression for the expectation
value of an observable f in a certain ensemble of macroscopically similar systems is

(£) =" W' frnm = Tr(WH). (2.1.12)

m,m’

Here f, are the matrix elements of the quantum-mechanical operator f corresponding to the observable f, in a full basis of
orthonormal states m,

e = (m| f |m), (2.1.13)

while the coefficients W, are the elements of the so-called density matrix W, which represents, in the same basis, the density

operator |14 describing properties of this ensemble. Equation (2.1.12) is evidently more general than Equation (2.1.7), and is
reduced to it only if the density matrix is diagonal:

(where 9, is the Kronecker symbol), when the diagonal elements W,, play the role of probabilities of the corresponding states.

Thus formally, the largest difference between the quantum and classical description is the presence, in Equation (2.1.12), of the off-
diagonal elements of the density matrix. They have the largest values in the pure (also called “coherent”) ensemble, in which the
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state of the system may be described with state vectors, e.g., the ket-vector
o) =) am|m) (2.1.15)

where a;,, are some (generally, complex) coefficients. In this case, the density matrix elements are merely
Winm = 0 G (2.1.16)

so that the off-diagonal elements are of the same order as the diagonal elements. For example, in the very important particular case
of a two-level system, the pure-state density matrix is

aja; afa
W:( = 2), (2.1.17)
;o azon

so that the product of its off-diagonal components is as large as that of the diagonal components.

In the most important basis of stationary states, i.e. the eigenstates of the system’s time independent Hamiltonian, the coefficients
oy, oscillate in time as®

E, E
am(t) = am(0) exp{—iTmt} = |am| exp{—iTmt —l—igom}, (2.1.18)
where E,, are the corresponding eigenenergies, and ¢,,, are constant phase shifts. This means that while the diagonal terms of the
density matrix (2.1.16) remain constant, its off-diagonal components are oscillating functions of time:

Em _Em’ .
W = 0%, 0ty = |0ty Oty | exp{iTt} exp{i (¢m — Pm)} (2.1.19)

Due to the extreme smallness of the Planck constant (on the human scale of things), minuscule random perturbations of
eigenenergies are equivalent to substantial random changes of the phase multipliers, so that the time average of any off-diagonal
matrix element tends to zero. Moreover, even if our statistical ensemble consists of systems with exactly the same E,,, but different
values ¢, (which are typically hard to control at the initial preparation of the system), the average values of all W,y (with
m # m') vanish again.

This is why, besides some very special cases, typical statistical ensembles of quantum particles are far from being pure, and in most
cases (certainly including the thermodynamic equilibrium), a good approximation for their description is given by the opposite
limit of the so-called classical mixture, in which all off-diagonal matrix elements of the density matrix equal zero, and its diagonal
elements W,,,,,, are merely the probabilities W,,, of the corresponding eigenstates. In this case, for the observables compatible with
energy, Equation (2.1.12) is reduced to Equation (2.1.7), with f,,, being the eigenvalues of the variable f, so that we may base our
further discussion on this key relation and its continuous extensions (2.1.10)-(2.1.11).

This page titled 2.1: Statistical ensemble and probability is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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2.2: Microcanonical ensemble and distribution

E A

} AE

Figure 2.2.1: A very schematic image of the microcanonical ensemble. (Actually, the ensemble deals with quantum states rather
than energy levels. An energy level may be degenerate, i.e. correspond to several states.)

This ensemble serves as the basis for the formulation of the postulate which is most frequently called the microcanonical
distribution (or, more adequately, “the main statistical postulate” or “the main statistical hypothesis”): in the thermodynamic
equilibrium of a microcanonical ensemble, all its states have equal probabilities,

Microcanonical distribution:

1
W = S const. (2.2.1)

Though in some constructs of statistical mechanics this equality is derived from other axioms, which look more plausible to their
authors, I believe that Equation (2.2.1) may be taken as the starting point of the statistical physics, supported “just” by the
compliance of all its corollaries with experimental observations.

Note that the postulate (2.2.1) is closely related to the macroscopic irreversibility of the systems that are microscopically virtually
reversible (closed): if such a system was initially in a certain state, its time evolution with just minuscule interactions with the
environment (which is necessary for reaching the thermodynamic equilibrium) eventually leads to the uniform distribution of its
probability among all states with essentially the same energy. Each of these states is not “better” than the initial one; rather, in a
macroscopic system, there are just so many of these states that the chance to find the system in the initial state is practically nil —
again, think about the ink drop diffusion into a glass of water.’

Now let us find a suitable definition of the entropy S’ of a microcanonical ensemble’s member — for now, in the thermodynamic
equilibrium only. This was done in 1877 by another giant of statistical physics, Ludwig Eduard Boltzmann — on the basis of the
prior work by James Clerk Maxwell on the kinetic theory of gases — see Sec. 3.1 below. In the present-day terminology, since S is a
measure of disorder, it should be related to the amount of information!® lost when the system went irreversibly from the full order
to the full disorder, i.e. from one definite state to the microcanonical distribution (2.2.1). In an even more convenient formulation,
this is the amount of information necessary to find the exact state of your system in a microcanonical ensemble.

In the information theory, the amount of information necessary to make a definite choice between two options with equal
probabilities (Figure 2.2.2q) is defined as

I(2)=log,2=1 (2.2.2)

This unit of information is called a bit.
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1 bit
Figure 2.2.2: “Logarithmic trees” of binary decisions for choosing between (a) M = 2, and (b) M = 4 opportunities with equal
probabilities.

1 bit 1 bit

Now, if we need to make a choice between four equally probable opportunities, it can be made in two similar steps (Figure 2.2.2b),
each requiring one bit of information, so that the total amount of information necessary for the choice is

I(4) = 2I(2) =2 = log, 4. (2.2.3)
An obvious extension of this process to the choice between M = 2™ states gives

I(M)=mI(2)=m=log, M (2.2.4)

S=lnM. (2.2.5)

Using Equation (2.2.1), we may recast this definition in its most frequently used form

Entropy in equilibrium:

1

m

(Again, please note that Equation (2.2.5- 2.2.6) is valid in thermodynamic equilibrium only!)

Note that Equation (2.2.5 - 2.2.6) satisfies the major properties of the entropy discussed in thermodynamics. First, it is a unique
characteristic of the disorder. Indeed, according to Equation (2.2.1), M (at fixed AE) is the only possible measure characterizing
the microcanonical distribution, and so is its unique function In M . This function also satisfies another thermodynamic requirement
to the entropy, of being an extensive variable. Indeed, for several independent systems, the joint probability of a certain state is just
a product of the partial probabilities, and hence, according to Equation (2.2.5 - 2.2.6), their entropies just add up.

Now let us see whether Egs. (2.2.1) and (2.2.5 - 2.2.6) are compatible with the 2”¢ law of thermodynamics. For that, we need to
generalize Equation (2.2.5- 2.2.6) for S to an arbitrary state of the system (generally, out of thermodynamic equilibrium), with an
arbitrary set of state probabilities W,,. Let us first recognize that M in Equation (2.2.5- 2.2.6) is just the number of possible ways
to commit a particular system to a certain state m (m =1,2,... M), in a statistical ensemble where each state is equally probable.
Now let us consider a more general ensemble, still consisting of a large number NV >> 1 of similar systems, but with a certain
number N,,, = W,, N >>1 of systems in each of M states, with the factors W, not necessarily equal. In this case, the evident
generalization of Equation (2.2.5 - 2.2.6) is that the entropy Sy of the whole ensemble is

Sy =InM(Ny, Ny, ...), (2.2.7)

where M(Ny, Na, . ..) is the number of ways to commit a particular system to a certain state m while keeping all numbers N,
fixed. This number M (N7, Ny, ...) is clearly equal to the number of ways to distribute N distinct balls between M different
boxes, with the fixed number N,,, of balls in each box, but in no particular order within it. Comparing this description with the
definition of the so-called multinomial coefficients,'? we get

N!

M(Nl,Nz,...):NCNl,NZ,...,NME N1|N2| NMI’

M
with N =" N, (2.2.8)

m=1
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To simplify the resulting expression for Sy, we can use the famous Stirling formula, in its crudest, de Moivre’s form,'® whose
accuracy is suitable for most purposes of statistical physics:

In(N)Nooo — N(InN —1). (2.2.9)
When applied to our current problem, this formula gives the following average entropy per system, !4
g=5v_1 I(N')—il(N ) L N( N—1)—§:N (InN,, —1)
=N = N n ! & n(LVp . N n _ m ULV,
m=1 Nyp—00 m=1
M
Nm m
=_ g, 2.2.10
m; Ny (2.2.10)

and since this result is only valid in the limit V,,, — co anyway, we may use Equation (2.1.2) to represent it as

Entropy out of equilibrium:

M M
1
S:—Z;Wmanm:Z:lean—m. (2.2.11)

Now let us find what distribution of probabilities W,,, provides the largest value of the entropy (2.2.11). The answer is almost
evident from a good glance at Equation (2.2.11). For example, if for a subgroup of M’ < M states the coefficients W, are
constant and equal to 1/M’, so that W,,, =0 for all other states, all M’ non-zero terms in the sum (2.2.11) are equal to each other,
so that

1
M
and the closer M’ to its maximum value M the larger S. Hence, the maximum of S is reached at the uniform distribution given by
Equation (2.2.5- 2.2.6).

S=M'"—InM' =InM, (2.2.12)

In order to prove this important fact more strictly, let us find the maximum of the function given by Equation (2.2.11). If its
arguments Wy, W, ... Wi, were completely independent, this could be done by finding the point (in the M-dimensional space of
the coefficients W,,,) where all partial derivatives 8S/0W,, equal zero. However, since the probabilities are constrained by the
condition (2.1.4), the differentiation has to be carried out more carefully, taking into account this interdependence:

as N as ow,,
Wn 4 ol W,y OW,,

(2.2.13)

0
[—S(Wl,Wz,...)] -
BWm cond

At the maximum of the function S, all such expressions should be equal to zero simultaneously. This condition yields
08/OW,,, = A, where the so-called Lagrange multiplier X is independent of m. Indeed, at such point Equation (2.2.13) becomes

0 W, oW, W, 0
sy, Wy, ... .Y A P addi = 1)=0. (2.2.14
aw,, S W W )] I VL (awm > awm> aw,, M (22.14)

m/'#m m'#m

For our particular expression (2.2.11), the condition 8S/0W,,, = A yields

oS d
—=——[-W,,InW, | =—-InW,, - 1=\ (2.2.15)
oW, dw,
The last equality holds for all m (and hence the entropy reaches its maximum value) only if W,,, is independent on m. Thus the
entropy (2.2.11) indeed reaches its maximum value (2.2.5 - 2.2.6) at equilibrium.

To summarize, we see that the statistical definition (2.2.5- 2.2.6) of entropy does fit all the requirements imposed on this variable
by thermodynamics. In particular, we have been able to prove the 2" law of thermodynamics using that definition together with
the fundamental postulate (2.2.1).

Now let me discuss one possible point of discomfort with that definition: the values of M, and hence W, depend on the accepted
energy interval AE of the microcanonical ensemble, for whose choice no exact guidance is offered. However, if the interval AE
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contains many states, M >> 1, as was assumed before, then with a very small relative error (vanishing in the limit M — c0), M
may be represented as

M =g(E)AFE, (2.2.16)
where g(E) is the density of states of the system:
d3(E)
FE)= 2.2.1
om) =28 (22.17)

3 (E) being the total number of states with energies below E. (Note that the average interval § E between energy levels, mentioned
at the beginning of this section, is just AE/ M =1/g(E).) Plugging Equation (2.2.16) into Equation (2.2.5 - 2.2.6), we get

S=InM=Ing(E)+InAE, (2.2.18)

so that the only effect of a particular choice of AFE is an offset of the entropy by a constant, and in Chapter 1 we have seen that
such constant shift does not affect any measurable quantity. Of course, Equation (2.2.16), and hence Equation (2.2.18) are only
precise in the limit when the density of states g(E) is so large that the range available for the appropriate choice of AE:

g }(E) << AE << E, (2.2.19)
is sufficiently broad: g(E)E = E/6E >> 1.

In order to get some feeling of the functions g(E) and S(E) and the feasibility of the condition (2.2.19), and also to see whether
the microcanonical distribution may be directly used for calculations of thermodynamic variables in particular systems, let us apply
it to a microcanonical ensemble of many sets of NV >> 1 independent, similar harmonic oscillators with frequency w. (Please note
that the requirement of a virtually fixed energy is applied, in this case, to the total energy Ey of each set of oscillators, rather to
energy E of a single oscillator — which may be virtually arbitrary, though certainly much less than Exy ~ NE >> E .) Basic
quantum mechanics tells us'” that the eigenenergies of such an oscillator form a discrete, equidistant spectrum:

1
Emhw(m+5) , wherem =0,1,2,... (2.2.20)

If w is kept constant, the ground-state energy fiw/2 does not contribute to any thermodynamic properties of the system,® so that for
the sake of simplicity we may take that point as the energy origin, and replace Equation (2.2.20) with E,, = mhw. Let us carry out
an approximate analysis of the system for the case when its average energy per oscillator,

En

E = T, (2.2.21)

is much larger than the energy quantum Aw.

For one oscillator, the number of states with energy &; below a certain value E; >>hw is evidently
Y(E1) = Ei /hw = (E; /hw)/1! (Figure 2.2.3q). For two oscillators, all possible values of the total energy (¢; +¢2) below some
level E5 correspond to the points of a 2D square grid within the right triangle shown in Figure 2.2.34 giving
Y(Ey) ~ (1/2)(Ey/hw)? = (B, /hw)?/2!. For three oscillators, the possible values of the total energy (g1 +&5 +€3) correspond
to those points of the 3D cubic grid, that fit inside the right pyramid shown in Figure 2.2.3¢  giving
S(By) ~ (1/3)[(1/2)(Bs /hw)?] = (By /w)? /3 et

https://phys.libretexts.org/@go/page/34696


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34696?pdf

LibreTextsw

(a) AE2 (b) g N2 (c)
Ez 3/8
L ]
E,
P N N g 2ho
" —o  —9o o —o > 9
0 ho2he ho 1 0 e
S(E)x ho ‘! £
1 0 ho 2he B N ’
E;

Figure 2.2.3: Calculating functions 3 ( Ey) for systems of (a) one, (b) two, and (c) three harmonic oscillators.

An evident generalization of these formulas to arbitrary N gives the number of states'® .

1 (Exy\"
Y(Ey)~—| — ) . 2.2.22
(En) N! ( hw ) ( )
Differentiating this expression over the energy, we get
dX(E 1 EN-L
9(Ex) = Ex) _ N (2.2.23)

dEy  (N—1)! ()™’
so that
Sn(En)=Ing(En)+ const = —In[(N —1)!]+ (N —1)In Exy — N In(hw) + const. (2.2.24)

For N >>1 we can ignore the difference between N and (N—1) in both instances, and use the Stirling formula (2.2.9) to
simplify this result as

Sy (E) — const ~ N (111 ]fgw +1) ~N (m%) Elnl(%)Nl (2.2.25)

(The second, approximate step is only valid at very high E/hw ratios, when the logarithm in Equation (2.2.25) is substantially
larger than 1.) Returning for a second to the density of states, we see that in the limit N — oo, it is exponentially large:

9(En) =™ ~ (%)N (2.2.26)

so that the conditions (2.2.19) may be indeed satisfied within a very broad range of AFE.

Now we can use Equation (2.2.25) to find all thermodynamic properties of the system, though only in the limit £ >> hw. Indeed,
according to thermodynamics, if the system’s volume and the number of particles in it are fixed, the derivative dS/dFE is nothing
else than the reciprocal temperature in thermal equilibrium — see Equation (1.2.6). In our current case, we imply that the harmonic
oscillators are distinct, for example by their spatial positions. Hence, even if we can speak of some volume of the system, it is
certainly fixed.?? Differentiating Equation (2.2.25) over energy E, we get

Classical oscillator: average energy

— =N — (2.2.27)

Reading this result backward, we see that the average energy E of a harmonic oscillator equals T (i.e. kgTk is SI units). At this
point, the first-time student of thermodynamics should be very much relieved to see that the counter-intuitive thermodynamic
definition (1.2.6) of temperature does indeed correspond to what we all have known about this notion from our kindergarten
physics courses.

The result (2.2.27) may be readily generalized. Indeed, in quantum mechanics, a harmonic oscillator with eigenfrequency w may
be described by the Hamiltonian operator
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~2 ~2

5 b rq

H=— 4+ — 2.2.2
5 Ty (2.2.28)

where ¢ is some generalized coordinate, p is the corresponding generalized momentum, m is oscillator’s mass,?! and & is the
spring constant, so that w = (k/ m)l/ 2 Since in the thermodynamic equilibrium the density matrix is always diagonal in the basis
of stationary states m (see Sec. 1 above), the quantum mechanical averages of the kinetic and potential energies may be found from

Equation (2.1.7):
U L N SR W o S L
2m = m ’ 2 — m 2

where W,, is the probability to occupy the m* energy level, and bra- and ket-vectors describe the stationary state corresponding to
that level.?> However, both classical and quantum mechanics teach us that for any m, the bra-ket expressions under the sums in
Egs. (2.2.29), which represent the average kinetic and mechanical energies of the oscillator on its m* energy level, are equal to
each other, and hence each of them is equal to F,, /2. Hence, even though we do not know the probability distribution W, yet (it
will be calculated in Sec. 5 below), we may conclude that in the “classical limit” 7" >> hw,

<%><“Tq2>§ (2.2.30)

(2.2.31)

~2

m> (2.2.29)

yas
2m

with (generally, different) frequencies w; = (k;/ mj)l/ 2 Since the “modes” (effective harmonic oscillators) contributing to this
Hamiltonian, are independent, the result (2.2.30) is valid for each of the modes. This is the famous equipartition theorem: at
thermal equilibrium with 7" >> hw;, the average energy of each so called half-degree of freedom (which is defined as any
variable, either p; or g;, giving a quadratic contribution to the system’s Hamiltonian), is equal to T'/2.2* In particular, for each of
three Cartesian component contributions to the kinetic energy of a free-moving particle, this theorem is valid for any temperature,
because such components may be considered as 1D harmonic oscillators with vanishing potential energy, i.e. w; =0, so that
condition T' >> hw; is fulfilled at any temperature.

I believe that this case study of harmonic oscillator systems was a fair illustration of both the strengths and the weaknesses of the
microcanonical ensemble approach.?> On one hand, we could readily calculate virtually everything we wanted in the classical limit
T >> hw, but calculations for an arbitrary T ~ hw, though possible, are rather unpleasant because for that, all vertical steps of the
function X (Ey) have to be carefully counted. In Sec. 4, we will see that other statistical ensembles are much more convenient for
such calculations.

Let me conclude this section with a short notice on deterministic classical systems with just a few degrees of freedom (and even
simpler mathematical objects called “maps”) that may exhibit essentially disordered behavior, called the deterministic chaos.?®
Such chaotic system may be approximately characterized by an entropy defined similarly to Equation (2.2.11), where W,,, are the
probabilities to find it in different small regions of phase space, at well-separated small time intervals. On the other hand, one can
use an expression slightly more general than Equation (2.2.11) to define the so-called Kolmogorov (or “Kolmogorov-Sinai”)
entropy K that characterizes the speed of loss of the information about the initial state of the system, and hence what is called the
“chaos depth”. In the definition of K, the sum over m is replaced with the summation over all possible permutations
{m} =mgy,mq,...,my_; of small space regions, and W,, is replaced with W{m}, the probability of finding the system in the
corresponding regions m at time moment t,,, with ¢,, =m, in the limit 7 — 0, with N7 = const. For chaos in the simplest
objects, 1D maps, K is equal to the Lyapunov exponent A > 0.2’ For systems of higher dimensionality, which are characterized by
several Lyapunov exponents A, the Kolmogorov entropy is equal to the phase-space average of the sum of all positive A. These
facts provide a much more practicable way of (typically, numerical) calculation of the Kolmogorov entropy than the direct use of
its definition.?®

This page titled 2.2: Microcanonical ensemble and distribution is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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2.3: Maxwell’'s Demon, information, and computing

Before proceeding to other statistical distributions, I would like to make a detour to address one more popular concern about
Equation (2.2.5 — 2.2.6) — the direct relation between entropy and information. Some physicists are still uneasy with entropy being
nothing else than the (deficit of) information, though to the best of my knowledge, nobody has yet been able to suggest any
experimentally verifiable difference between these two notions. Let me give one example of their direct relation.? Consider a
cylinder containing just one molecule (considered as a point particle), and separated into two halves by a movable partition with a
door that may be opened and closed at will, at no energy cost — see Figure 2.3.1a. If the door is open and the system is in
thermodynamic equilibrium, we do not know on which side of the partition the molecule is. Here the disorder, i.e. the entropy has
the largest value, and there is no way to get, from a large ensemble of such systems in equilibrium, any useful mechanical energy.

(a) (b) ()
o |
\ N2 P

Figure 2.3.1: The Szilard engine: a cylinder with a single molecule and a movable partition: (a) before and (b) after closing the
door, and (c) after opening the door at the end of the expansion stage.

Now, let us consider that we know (as instructed by, in Lord Kelvin’s formulation, an omniscient Maxwell’s Demon) on which side
of the partition the molecule is currently located. Then we may close the door, trapping the molecule, so that its repeated impacts
on the partition create, on average, a pressure force % directed toward the empty part of the volume (in Figure 2.3.14 the right
one). Now we can get from the molecule some mechanical work, say by allowing the force & to move the partition to the right,
and picking up the resulting mechanical energy by some deterministic (zero-entropy) external mechanism. After the partition has
been moved to the right end of the volume, we can open the door again (Figure 2.3.1¢), equalizing the molecule’s average pressure
on both sides of the partition, and then slowly move the partition back to the middle of the volume — without its resistance, i.e.
without doing any substantial work. With the continuing help by the Maxwell’s Demon, we can repeat the cycle again and again,
and hence make the system perform unlimited mechanical work, fed “only” by the molecule’s thermal motion, and the information
about its position — thus implementing the perpetual motion machine of the 2"? kind — see Sec. 1.6. The fact that such heat engines
do not exist means that getting any new information, at non-zero temperature (i.e. at a substantial thermal agitation of particles) has
a non-zero energy cost.

In order to evaluate this cost, let us calculate the maximum work per cycle that can be made by the Szilard engine (Figure 2.3.1),
assuming that it is constantly in the thermal equilibrium with a heat bath of temperature 7". Formula. (2.2.2) tells us that the
information supplied by the demon (on what exactly half of the volume contains the molecule) is exactly one bit, I(2) =1.
According to Equation (2.2.5 — 2.2.6), this means that by getting this information we are changing the entropy of our system by

AS; = —In2. (2.3.1)

Now, it would be a mistake to plug this (negative) entropy change into Equation (1.3.6). First, that relation is only valid for slow,
reversible processes. Moreover (and more importantly), this equation, as well as its irreversible version (1.4.18), is only valid for a
fixed statistical ensemble. The change AS; does not belong to this category and may be formally described by the change of the
statistical ensemble — from the one consisting of all similar systems (experiments) with an unknown location of the molecule, to a
new ensemble consisting of the systems with the molecule in its certain (in Figure 2.3.1, left) half.>°

Actually, discussion of another issue closely related to Maxwell’s Demon, namely of energy consumption at numerical calculations,
was started earlier, in the 1960s. It was motivated by the exponential (Moore’s-law) progress of the digital integrated circuits, which
has led in particular, to a fast reduction of the energy AFE “spent” (turned into heat) per one binary logic operation. In the recent
generations of semiconductor digital integrated circuits, the typical AFE is still above 10717 J, i.e. still exceeds the room-
temperature value of TIn2 =~ 4 x 107! J by several orders of magnitude. Still, some engineers believe that thermodynamics
imposes this important lower limit on AE and hence presents an insurmountable obstacle to the future progress of computation.
Unfortunately, in the 2000s this delusion resulted in a substantial and unjustified shift of electron device research resources toward
using “non charge degrees of freedom” such as spin (as if they do not obey the general laws of statistical physics!), so that the issue
deserves at least a brief discussion.
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Let me believe that the reader of these notes understands that, in contrast to naive popular talk, computers do not create any new
information; all they can do is reshaping (“processing”) the input information, losing most of it on the go. Indeed, any digital
computation algorithm may be decomposed into simple, binary logical operations, each of them performed by a circuit called the
logic gate. Some of these gates (e.g., the logical NOT performed by inverters, as well as memory READ and WRITE operations)
do not change the amount of information in the computer. On the other hand, such information-irreversible logic gates as two-input
NAND (or NOR, or XOR, etc.) erase one bit at each operation, because they turn two input bits into one output bit — see Figure
2.3.2a

In 1961, Rolf Landauer argued that each logic operation should turn into heat at least energy

Irreversible computation: energy cost

| AE,;n = TIn2 = kpTx In2. (2.3.2)

This result may be illustrated with the Szilard engine (Figure 2.3.1), operated in a reversed cycle. At the first stage, with the door
closed, it uses external mechanical work AE =T1n2 to reduce the volume in that the molecule is confined, from V to V/2,
pumping heat AQ = AFE into the heat bath. To model a logically irreversible logic gate, let us now open the door in the partition,
and thus lose one bit of information about the molecule’s position. Then we will never get the work T'1n2 back, because moving
the partition back to the right, with the door open, takes place at zero average pressure. Hence, Equation (2.3.2) gives a
fundamental limit for energy loss (per bit) at the logically irreversible computation.

(a) (b)
A >
—» A —» A
F S
—» B —» B
B L

Figure 2.3.2: Simple examples of (a) irreversible and (b) potentially reversible logic circuits. Each rectangle denotes a circuit

storing one bit of information.
Before we leave Maxwell’s Demon behind, let me use it to revisit, for one more time, the relation between the reversibility of the
classical and quantum mechanics of Hamiltonian systems and the irreversibility possible in thermodynamics and statistical physics.
In the gedanken experiment shown in Figure 2.3.1, the laws of mechanics governing the motion of the molecule are reversible at
all times. Still, at partition’s motion to the right, driven by molecular impacts, the entropy grows, because the molecule picks up the
heat AQ > 0, and hence the entropy AS = AQ/T > 0, from the heat bath. The physical mechanism of this irreversible entropy
(read: disorder) growth is the interaction of the molecule with uncontrollable components of the heat bath, and the resulting loss of
information about the motion of the molecule. Philosophically, such emergence of irreversibility in large systems is a strong
argument against reductionism — a naive belief that knowing the exact laws of Nature at the lowest, most fundamental level of its
complexity, we can readily understand all phenomena on the higher levels of its organization. In reality, the macroscopic
irreversibility of large systems is a good example3® of a new law (in this case, the 2"¢ law of thermodynamics) that becomes
relevant on a substantially new, higher level of complexity — without defying the lower-level laws. Without such new laws, very
little of the higher-level organization of Nature may be understood.
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2.4: Canonical ensemble and the Gibbs distribution

As was shown in Sec. 2 (see also a few problems of the list given in the end of this chapter), the microcanonical distribution may
be directly used for solving some simple problems. However, its further development, also due to J. Gibbs, turns out to be much
more convenient for calculations.

Let us consider a statistical ensemble of macroscopically similar systems, each in thermal equilibrium with a heat bath of the same
temperature 7" (Figure 2.4.1a). Such an ensemble is called canonical.

(a) (b)

system Es : } AEs
under study dQ, ds
En T <>
Eng = Ex — Ep
heat bath
B, T Em
0

Figure 2.4.1: (a) A system in a heat bath (i.e. a canonical ensemble’s member) and (b) the energy spectrum of the composite
system (including the heat bath).
It is intuitively evident that if the heat bath is sufficiently large, any thermodynamic variables characterizing the system under study
should not depend on the heat bath’s environment. In particular, we may assume that the heat bath is thermally insulated, so that the
total energy Ey of the composite system, consisting of the system of our interest plus the heat bath, does not change in time. For
example, if the system of our interest is in a certain (say, m*") quantum state, then the sum

Esx, =E,, + Enp (2.4.1)

is time-independent. Now let us partition the considered canonical ensemble of such systems into much smaller sub-ensembles,
each being a microcanonical ensemble of composite systems whose total, time independent energies Ex are the same — as was
discussed in Sec. 2, within a certain small energy interval AEy << Ex — see Figure 2.4.1b Due to the very large size of each heat
bath in comparison with that of the system under study, the heat bath’s density of states ggp is very high, and AEy may be
selected so that

1
— << AEyx << |E,—E,| << Egg, (2.4.2)
9gHB

where m and m' are any states of the system of our interest.

According to the microcanonical distribution, the probabilities to find the composite system, within each of these microcanonical
sub-ensembles, in any state are equal. Still, the heat bath energies Egp = Ex— E,, (Figure 2.4.1b) of the members of this sub-
ensemble may be different — due to the difference in E,,. The probability W (E,,) to find the system of our interest (within the
selected sub-ensemble) in a state with energy E,, is proportional to the number AM of the corresponding heat baths in the sub-
ensemble. As Figure 2.4.1bshows, in this case we may write AM = gy p(Egp)AEs . As a result, within the microcanonical sub-
ensemble with the total energy Ex;,

Wm x AM = gHB(EHB)AEE == gHB(EE —Em)AEE. (243)

Let us simplify this expression further, using the Taylor expansion with respect to relatively small E,, << Ey, . However, here we
should be careful. As we have seen in Sec. 2, the density of states of a large system is an extremely fast growing function of energy,
so that if we applied the Taylor expansion directly to Equation (2.4.3), the Taylor series would converge for very small E,, only. A
much broader applicability range may be obtained by taking logarithms of both parts of Equation (2.4.3) first:

InW,, = const +1Il[gHB(EE 7Em)] +1InAFEysy, = const +SHB(EE 7Em), (244)
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where the last equality results from the application of Equation (2.2.18) to the heat bath, and In A E’y; has been incorporated into
the (inconsequential) constant. Now, we can Taylor-expand the (much more smooth) function of energy on the right-hand side, and
limit ourselves to the two leading terms of the series:

dSup
dExp

InW,, ~ const + Sgp

Ep. (2.4.5)
E,,=0

En=0 —

But according to Equation (1.2.6), the derivative participating in this expression is nothing else than the reciprocal temperature of
the heat bath, which (due to the large bath size) does not depend on whether E,, is equal to zero or not. Since our system of interest
is in the thermal equilibrium with the bath, this is also the temperature 7" of the system — see Equation (1.2.5). Hence Equation (
2.4.5) is merely

InW,, = const — E?m (2.4.6)

This equality describes a substantial decrease of W,,, as E,, is increased by ~ T, and hence our linear approximation (2.4.5) is
virtually exact as soon as Eyp is much larger than 7" — the condition that is rather easy to satisfy, because as we have seen in Sec.
2, the average energy per one degree of freedom of the system of the heat bath is also of the order of T', so that its total energy is
much larger because of its much larger size.

Now we should be careful again because so far Equation (2.4.6) was only derived for a sub-ensemble with a certain fixed Ex.
However, since the second term on the right-hand side of Equation (2.4.6) includes only E,,, and T', which are independent of Ey,
this relation, perhaps with different constant terms, is valid for all sub-ensembles of the canonical ensemble, and hence for that
ensemble as the whole. Hence for the total probability to find our system of interest in a state with energy E,,, in the canonical
ensemble with temperature 7', we can write

Gibbs distribution:

E 1 E,
Wy = constxexp{—Tm} EEeXp{_Tm}' (2.4.7)

This is the famous Gibbs distribution,>® sometimes called the “canonical distribution”, which is arguably the summit of statistical
physics,?” because it may be used for a straightforward (or at least conceptually straightforward :-) calculation of all statistical and
thermodynamic variables of a vast range of systems.

Before illustrating this, let us first calculate the coefficient Z participating in Equation (2.4.7) for the general case. Requiring, per
Equation (2.1.4), the sum of all W,,, to be equal 1, we get

Statistical sum:

Z;exp{ETm}, (2.4.8)

where the summation is formally extended to all quantum states of the system, though in practical calculations, the sum may be
truncated to include only the states that are noticeably occupied. The apparently humble normalization coefficient Z turns out to be
so important for applications that it has a special name — or actually, two names: either the statistical sum or the partition function
of the system. To appreciate the importance of Z, let us use the general expression (2.2.11) for entropy to calculate it for the
particular case of the canonical ensemble, i.e. the Gibbs distribution (2.4.7) of the probabilities W,

InZ E,, 1 B,
S:—ZWmanm:% eXp{_T}+ﬁZEWEXp{_T}' (2.4.9)

On the other hand, according to the general rule (2.1.7), the thermodynamic (i.e. ensemble-averaged) value E of the internal
energy of the system is

E:;WmEm :%;Emexp{—E—;}, (2.4.10)

so that the second term on the right-hand side of Equation (2.4.9) is just E/T, while the first term equals In Z, due to Equation (
2.4.8). (By the way, using the notion of reciprocal temperature 8 = 1/T, with the account of Equation (2.4.8), Equation (2.4.10)
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may be also rewritten as

E from Z:

d(In2)
28

This formula is very convenient for calculations if our prime interest is the average internal energy E rather than F' or W,,.) With

E=—

(2.4.11)

these substitutions, Equation (2.4.9) yields a very simple relation between the statistical sum and the entropy of the system:
E
S= TJran' (2.4.12)

Now using Equation (1.4.10), we see that Equation (2.4.12) gives a straightforward way to calculate the free energy F' of the
system from nothing other than its statistical sum (and temperature):

F from Z:

|F=E-TS=-ThhZ. | (2.4.13)

The relations (2.4.11) and (2.4.13) play the key role in the connection of statistics to thermodynamics, because they enable the
calculation, from Z alone, of the thermodynamic potentials of the system in equilibrium, and hence of all other variables of
interest, using the general thermodynamic relations — see especially the circular diagram shown in Figure 1.4.2, and its discussion
in Sec. 1.4. Let me only note that to calculate the pressure P, e.g., from the second of Egs. (1.4.12), we would need to know the
explicit dependence of F, and hence of the statistical sum Z on the system’s volume V. This would require the calculation, by
appropriate methods of either classical or quantum mechanics, of the dependence of the eigenenergies E,, on the volume.
Numerous examples of such calculations will be given later in the course.

Before proceeding to first such examples, let us notice that Eqgs. (2.4.8) and (2.4.13) may be readily combined to give an elegant
equality,

F E,
exp{—T}Z;exp{—T}. (2.4.14)
This equality, together with Equation (2.4.8), enables us to rewrite the Gibbs distribution (2.4.7) in another form:

F—Em}

7 (2.4.15)

W,, =exp {—
more convenient for some applications. In particular, this expression shows that since all probabilities W,,, are below 1, F' is
always lower than the lowest energy level. Also, Equation (2.4.15) clearly shows that the probabilities W,,, do not depend on the
energy reference, i. e. on an arbitrary constant added to all E,,, — and hence to E and F'.
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2.5: Harmonic Oscillator Statistics

The last property may be immediately used in our first example of the Gibbs distribution application to a particular, but very
important system — the harmonic oscillator, for a much more general case than was done in Sec. 2, namely for an arbitrary relation
between T" and Aw.3® Let us consider a canonical ensemble of similar oscillators, each in a contact with a heat bath of temperature
T. Selecting the ground-state energy Fiw/2 for the origin of E, the oscillator eigenenergies (2.2.28 become E,,, = mhw (with
m =0,1,...), so that the Gibbs distribution (2.4.7) for probabilities of these states is

1 E,, 1 mhw
W = Zexp{— T }— Zexp{— T }, (2.5.1)

with the following statistical sum:

= mhw >\ hw
Z:%exp{—T}E";])\, Where)\Eexp{—?}gl (2.5.2)

This is just the well-known infinite geometric progression (the “geometric series”),3 with the sum

Quantum oscillator: statistics

Z = = 2.5.
T A= 1 ot (2.5.3)

so that Equation (2.5.1) yields

Quantum oscillator: statistics

Wi = (1 —e*’W/T) BT (2.5.4)

Figure 2.5.1ashows W, for several lower energy levels, as functions of temperature, or rather of the 7'/ hw ratio. The plots show
that the probability to find the oscillator in each particular state (except for the ground one, with m = 0) vanishes in both low- and
high-temperature limits, and reaches its maximum value W,,, ~0.3/m at T ~ mhw, so that the contribution mhwW,, of each
excited level to the average oscillator energy F is always smaller than Aw.

@ | ®)

W,
W,

0.1

/

10 AO 05 1 15 2 25 3

1
T/heo T/he

0.1

Figure 2.5.1: Statistical and thermodynamic parameters of a harmonic oscillator, as functions of temperature.

This average energy may be calculated in either of two ways: either using Equation (2.4.10) directly:
E=Y B W, = (1-5""””) 3 mhwe ™I, (2.5.5)
m=0 m=0

or (simpler) using Equation (2.4.11), as
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0 7] 1
E:_(?_BIHZ: 6—ﬁln(1—exp{—,3hw}), Where,BET. (2.5.6)

Quantum oscillator: average energy

1

which is valid for arbitrary temperature and plays a key role in many fundamental problems of physics. The red line in Figure
2.5.1b shows this result as a function of the normalized temperature. At relatively low temperatures, 7' << hw, the oscillator is
predominantly in its lowest (ground) state, and its energy (on top of the constant zero-point energy fw/2, which was used in our
calculation as the reference) is exponentially small: E ~ fwexp{—hw/T} << T, hw . On the other hand, in the high-temperature
limit, the energy tends to 7. This is exactly the result (a particular case of the equipartition theorem) that was obtained in Sec. 2
from the microcanonical distribution. Please note how much simpler is the calculation using the Gibbs distribution, even for an
arbitrary ratio T'/ hw.

To complete the discussion of the thermodynamic properties of the harmonic oscillator, we can calculate its free energy using
Equation (2.4.13):

F:Tln% =TIn(1 —e™/T), (2.5.8)

Now the entropy may be found from thermodynamics: either from the first of Eqs. (1.4.12), S =—(0F/8T)y, or (even more
easily) from Equation (1.4.10): S = (E- F)/T. Both relations give, of course, the same result:

hw 1

S:Feh‘*’/T—l

—ln(l —e*ﬁw/T). (2.5.9)

Finally, since in the general case the dependence of the oscillator properties (essentially, of w) on volume V is not specified, such
variables as P, u, G, W, and (2 are not defined, and what remains is to calculate the average heat capacity C' per one oscillator:

¢= %E - (%)2 (enj/h:/_Tl)? - [sinhhzuh/j/Z;T)r' (25.10)

The calculated thermodynamic variables are plotted in Figure 2.5.1b In the low-temperature limit (7 << hw), they all tend to
zero. On the other hand, in the high-temperature limit (7" >> hw), F' —— T In(T/hw) ——00, S — In(T'/hw) — +oc0, and
C — 1 (in the ST units, C' — kp). Note that the last limit is the direct corollary of the equipartition theorem: each of the two “half-
degrees of freedom” of the oscillator gives, in the classical limit, the same contribution C' = 1/2 into its heat capacity.

Now let us use Equation (2.5.4) to discuss the statistics of the quantum oscillator described by Hamiltonian (1.4.23), in the
coordinate representation. Again using the density matrix’ diagonality in thermodynamic equilibrium, we may use a relation similar
to Egs. (1.4.24) to calculate the probability density to find the oscillator at coordinate q:

w(@) =Y Waon(0) = Y Warltm (@) = (1-77) 3 e/ o), (2:5.1)

m=0 m=0

where ¥, (g) is the normalized eigenfunction of the m!" stationary state of the oscillator. Since each ), () is proportional to the
Hermite polynomial*! that requires at least m elementary functions for its representation, working out the sum in Equation (2.5.11)
is a bit tricky,*” but the final result is rather simple: w(q) is just a normalized Gaussian distribution (the “bell curve”),

w(q)=;exr>{— T } (2.5.12)

(27)1/25¢ 2(d9)?
with {g) =0, and
h hw
2\ —(89)% = th —. 2.5.13
<q > (%) 2mwCO 2T ( )

Since the function coth& tends to 1 at £ — oo, and diverges as 1/£ at £ — 0, Equation (2.5.13) shows that the width dq of the
coordinate distribution is nearly constant (and equal to that, (/2mw)'/2, of the ground state wavefunction 1) at T << Fiw, and
grows as (T /mw?)"/? = (T /k)"/? at T/ w — 0.
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As a sanity check, we may use Equation (2.5.13) to write the following expression,

2
_ /8w o hw Fw/4, for T < hw,
v= < 2 > =g othgr { T/2, forhw<T, (2.5.14)

for the average potential energy of the oscillator. To comprehend this result, let us recall that Equation (2.5.7) for the average full
energy E was obtained by counting it from the ground state energy fw/2 of the oscillator. If we add this reference energy to that
result, we get

Quantum oscillator: total average energy

hw hw  hw hw
E ehN/T_]_ +7 = TCOth ﬁ (2515)
2 2
P [ RgT\ E  hw hw
<2m> = < 5 > =3=7 coth T (2.5.16)

In the classical limit 7' >> hw, both energies equal 7'/2, reproducing the equipartition theorem result (2.2.30).
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2.6: Two important applications

The results of the previous section, especially Equation (2.5.7), have innumerable applications in physics and related disciplines,
but here I have time for a brief discussion of only two of them.

Blackbody radiation

Let us consider a free-space volume V limited by non-absorbing (i.e. ideally reflecting) walls. Electrodynamics tells us** that the
electromagnetic field in such a “cavity” may be represented as a sum of “modes” with the time evolution similar to that of the usual
harmonic oscillator. If the volume V is large enough,*> the number of these modes within a small range dk of the wavevector
magnitude k is

dN = -2 IV yrk2ar, (2.6.1)

(2m)? (2m)?
where for electromagnetic waves, the degeneracy factor g is equal to 2, due to their two different independent (e.g., linear)
polarizations of waves with the same wave vector k. With the linear, isotropic dispersion relation for waves in vacuum, k = w/c,
Equation (2.6.1) yields

2V dow WP
dN = (27r)347T = :Vﬂ2c3dw (2.6.2)

On the other hand, quantum mechanics says*® that the energy of such a “field oscillator” is quantized per Equation (2.2.20), so that
at thermal equilibrium its average energy is described by Equation (2.5.7). Plugging that result into Equation (2.6.2), we see that
the spectral density of the electromagnetic field’s energy, per unit volume, is

Planck's radiation law:

_EdN R* 1

==—=—"—. 2.6.3
Vdv 723 /T 1 ( )

u(w)

This is the famous Planck’s blackbody radiation law.*” To understand why its common name mentions radiation, let us consider a
small planar part, of area dA, of a surface that completely absorbs electromagnetic waves incident from any direction. (Such
“perfect black body” approximation may be closely approached using special experimental structures, especially in limited
frequency intervals.) Figure 2.6.1 shows that if the arriving wave was planar, with the incidence angle 8, then the power dZy(w)
absorbed by the surface of small area dA, within a small frequency interval dw, i.e. the energy incident at that area in unit time,
would be equal to the radiation energy within the same frequency interval, contained inside an imaginary cylinder (shaded in
Figure 2.6.1) of height ¢, base area d A cos 6, and hence volume dV = cdA cosf:

dPp(w) = u(w)dwdV = u(w)dwed A cos 6. (2.6.4)

Figure 2.6.1: Calculating the relation
between d#(w) and u(w)dw.

Since the thermally-induced field is isotropic, i.e. propagates equally in all directions, this result should be averaged over all solid
angles within the polar angle interval 0 <0 < 7/2:
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dPw) 1 [(dP(w) . 1 (™2 2m _c
Td 471_/ TAde dQ = cu(w) 471_/0 sdeO/O dypcosf = 4u(w). (2.6.5)

Hence the Planck’s expression (2.6.3), multiplied by ¢/4, gives the power absorbed by such a “blackbody” surface. But at thermal
equilibrium, this absorption has to be exactly balanced by the surface’s own radiation, due to its non-zero temperature 7'.

I hope the reader is familiar with the main features of the Planck law (2.6.3), including its general shape (Figure 2.6.2), with the
low-frequency asymptote u(w) oc w?® (due to its historic significance bearing the special name of the Rayleigh-Jeans law), the
exponential drop at high frequencies (the Wien law), and the resulting maximum of the function u(w), reached at the frequency
Winaz With

Ftwpmas ~ 2.82T, (2.6.6)
i.e. at the wavelength A\op = 27/ Kmae = 27C/ Winae = 2.22¢h/T.

10

u(w)

0.1

0.01
0.1 1 10

ha!T

Figure 2.6.2: The frequency dependence of the blackbody radiation density, normalized by uy = T3 /w2h%c?, according to the

Planck law (red line) and the Rayleigh-Jeans law (blue line).
Still, I cannot help mentioning a few important particular values: one corresponding to the visible light (A4, ~ 500 nm) for the
Sun’s effective surface temperature T ~ 6,000 K, and another one corresponding to the mid-infrared range (Asq; ~ 10 pm) for
the Earth’s surface temperature Tx ~ 300 K. The balance of these two radiations, absorbed and emitted by the Earth, determines
its surface temperature and hence has the key importance for all life on our planet. This is why it is at the front and center of the
current climate change discussions. As one more example, the cosmic microwave background (CMB) radiation, closely following
the Planck law with T = 2.725 K (and hence having the maximum density at A;,q; ~ 1.9 mm), and in particular its (very small)
anisotropy, is a major source of data for modern cosmology.

Now let us calculate the total energy E of the blackbody radiation inside some volume V. It may be found from Equation (2.6.3)
by its integration over all frequencies: 4849

0 ® Bt dw VT [ gde 2
E=V dw=V = =V T, 2.6.7
/0 u(w)dw /0 w23 ew/T — 1  w2h3c3 /0 et —1 15R3¢3 ( )

Stefan law:

2
Z—‘f = ﬁ 4= o}, (2.6.8)
Stefan-Boltzmann constant:
o= ”—Qk‘*B ~5.67x107° —_| (2.6.9)
60h3c? m2K*

By this point, the thoughtful reader should have an important concern ready: Equation (2.6.3) and hence Equation (2.6.7) are based
on Equation (2.5.7) for the average energy of each oscillator, referred to its ground-state energy hw/2. However, the radiation
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power should not depend on the energy origin; why have not we included the ground energy of each oscillator into the integration (
2.6.7), as we have done in Equation (2.5.15)? The answer is that usual radiation detectors only measure the difference between the
power &, of the incident radiation (say, that of a blackbody surface with temperature 7) and their own back-radiation power
P, corresponding to some effective temperature T of the detector — see Figure 2.6.3. But however low Ty is, the temperature-
independent contribution Aw/2 of the ground-state energy to the back radiation is always there. Hence, the term hw/2 drops out
from the balance, and cannot be detected — at least in this simple way. This is the reason why we had the right to ignore this
contribution in Equation (2.6.7) — very fortunately, because it would lead to the integral’s divergence at its upper limit. However,
let me repeat that the ground-state energy of the electromagnetic field oscillators is physically real — and important — see Sec. 5.5
below.

ds

i

(@) o [E(a),T) + %‘"}dm

»
»

<
<

T d
ds

out

(a)) o {E(a), T,)+ hTw}da)

Figure 2.6.3: The power balance at the electromagnetic radiation power measurement.

One more interesting result may be deduced from the free energy F' of the electromagnetic radiation, which may be calculated by
integration of Equation (2.5.8) over all the modes, with the appropriate weight (2.6.2):

F:;Tln<1—e_h“’/T) —>/000T1n<1—e_h“’/T)CCll—]Zdwz/OooTln<l—e_h“’/T) (V o )dw. (2.6.10)

w2ed

Representing w’dw as d(w?)/3, we can readily work out this integral by parts, reducing it to a table integral similar to that in
Equation (2.6.7), and getting a surprisingly simple result:

2
us 4 E
F=—V————T"=——. 2.6.11
45R3¢3 3 ( )
P—_[Z) = T = —/. 2.6.12
<8V>T 45h3c3 3V ( )
Rewritten in the form,
Photon gas: PV vs. E
E

PV = 3 (2.6.13)

Finally, let me note that Equation (2.6.12- 2.6.13) allows for the following interesting interpretation. The last of Egs. (1.5.11),
being applied to Equation (2.6.12 - 2.6.13), shows that in this particular case the grand thermodynamic potential  equals
(= E/3), so that according to Equation (2.6.11), it is equal to F'. But according to the definition of €2, i.e. the first of Egs. (1.5.11),
this means that the chemical potential of the electromagnetic field excitations (photons) vanishes:

F-Q
_ I . 2.6.14
p=—F—=0 (2.6.14)

In Sec. 8 below, we will see that the same result follows from the comparison of Equation (2.5.7) and the general Bose-Einstein
distribution for arbitrary bosons. So, from the statistical point of view, photons may be considered as bosons with zero chemical
potential.

(ii) Specific heat of solids. The heat capacity of solids is readily measurable, and in the early 1900s, its experimentally observed
temperature dependence served as an important test for the then-emerging quantum theories. However, the theoretical calculation
of Cy is not simple®3 — even for insulators, whose specific heat at realistic temperatures is due to thermally-induced vibrations of
their crystal lattice alone.>* Indeed, at relatively low frequencies, a solid may be treated as an elastic continuum. Such a continuum
supports three different modes of mechanical waves with the same frequency w, that all obey linear dispersion laws, w = vk, but
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the velocity v =v; for one of these modes (the longitudinal sound) is higher than that (v;) of two other modes (the transverse

sound).”® At such frequencies, the wave mode density may be described by an evident generalization of Equation (2.6.2):
1 1 2
AN =V ——| = + = | 47w’ dw. 2.6.15
(2m)3 <v? v} ) ( )
For what follows, it is convenient to rewrite this relation in a form similar to Equation (2.6.2):
3V Wi 11 2\
wdw
dN = ——4Anr——, withv= || —+ — . 2.6.16
(2m)3 v? l?} ( v v ) ] ( )

However, the basic wave theory shows®® that as the frequency w of a sound wave in a periodic structure is increased so that its half-
wavelength 7/k approaches the crystal period d, the dispersion law w(k) becomes nonlinear before the frequency reaches its
maximum at k =/d. To make things even more complex, 3D crystals are generally anisotropic, so that the dispersion law is
different in different directions of the wave propagation. As a result, the exact statistics of thermally excited sound waves, and
hence the heat capacity of crystals, is rather complex and specific for each particular crystal type.

In 1912, P. Debye suggested an approximate theory of the specific heat’s temperature dependence, which is in a surprisingly good
agreement with experiment for many insulators, including polycrystalline and amorphous materials. In his model, the linear
(acoustic) dispersion law w = vk, with the effective sound velocity v defined by the second of Egs. (2.6.16), is assumed to be
exact all the way up to some cutoff frequency wp, the same for all three wave modes. This Debye frequency may be defined by the
requirement that the total number of acoustic modes, calculated within this model from Equation (2.6.16),

1 3 [ Vi,
N=V 2n) el A drw dw = pYCICE (2.6.17)
is equal to the universal number N = 3nV of the degrees of freedom (and hence of independent oscillation modes) in a 3D system
of nV elastically coupled particles, where n is the atomic density of the crystal, i.e. the number of atoms per unit volume.>” For
this model, Equation (2.5.7) immediately yields the following expression for the average energy and specific heat (in thermal
equilibrium at temperature T°):

E=V L 3 /WD L4ﬂ'w2dwz 3nVTD(x), 1,7, (2.6.18)
2m)3 v® Sy eM/T -1 =P
Debye law:
Cy 1 (0FE dD(z)

=—=——=—) =3|D(z)— 2.6.19
V= nv(aT)V { (@) —2—2 o7 ( )

where Tp = hwp is called the Debye temperature,58 and

3 [T gde 1, forz — 0,

D(x)=— My {ﬂ4/5m3, forz —» om, (2.6.20)

is the Debye function. Red lines in Figure 2.6.4 show the temperature dependence of the specific heat ¢y (per particle) within the
Debye model. At high temperatures, it approaches a constant value of three, corresponding to the energy £ = 3nV'T, in agreement
with the equipartition theorem for each of three degrees of freedom (i.e. six half-degrees of freedom) of each mode. (This value of
cy is known as the Dulong-Petit law.) In the opposite limit of low temperatures, the specific heat is much smaller:

1204 /T 3
~ — ] <<1, 2.6.21
v 5 (TD) ( )

reflecting the reduction of the number of excited phonons with Aw < T as the temperature is decreased.
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Figure 2.6.4: The specific heat as a function of temperature in the Debye (red lines) and Einstein (blue lines) models.

As a historic curiosity, P. Debye’s work followed one by A. Einstein, who had suggested (in 1907) a simpler model of crystal
vibrations. In his model, all 3nV independent oscillatory modes of nV atoms of the crystal have approximately the same
frequency, say wg, and Equation (2.5.7) immediately yields

huwg

ehwe/T _

so that the specific heat is functionally similar to Equation (2.5.10):

we (L) <[t 2

This dependence cy (T") is shown with blue lines in Figure 2.6.4 (assuming, for the sake of simplicity, that hwg = Tp ). At high
temperatures, this result does satisfy the universal Dulong-Petit law (cy = 3), but for T' << T, Einstein’s model predicts a much
faster (exponential) drop of the specific heart as the temperature is reduced. (The difference between the Debye and Einstein
models is not too spectacular on the linear scale, but in the log-log plot, shown on the right panel of Figure 2.6.4, it is rather
dramatic.”®) The Debye model is in a much better agreement with experimental data for simple, monoatomic crystals, thus
confirming the conceptual correctness of his wave-based approach.

Note, however, that when a genius such as Albert Einstein makes an error, there is usually some deep and important background
under it. Indeed, crystals with the basic cell consisting of atoms of two or more types (such as NaCl, etc.), feature two or more
separate branches of the dispersion law w(k) — see, e.g., Figure 2.6.5. While the lower, “acoustic” branch is virtually similar to
those for monoatomic crystals and may be approximated by the Debye model, w = vk, reasonably well, the upper (“optical”?)
branch does not approach w =0 at any k. Moreover, for large values of the atomic mass ratio r, the optical branches are almost
flat, with virtually k-independent frequencies wy, which correspond to simple oscillations of each light atom between its heavy
neighbors. For thermal excitations of such oscillations, and their contribution to the specific heat, Einstein’s model (with wg = wq)
gives a very good approximation, so that for such solids, the specific heat may be well described by a sum of the Debye and
Einstein laws (2.6.19) and (2.6.23), with appropriate weights.

I
“optical” branch

(k) T e —
(arbitrary units,
linear scale) | <«acoustic” branch

=

0 0.5 1.0

kd/x

Figure 2.6.5: The dispersion relation for mechanical waves in a simple 1D model of a solid, with similar interparticle distances d,
but alternating particle masses, plotted for a particular mass ratio » = 5 — see CM Chapter 6.
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2.7: Grand canonical ensemble and distribution

As we have seen, the Gibbs distribution is a very convenient way to calculate the statistical and thermodynamic properties of
systems with a fixed number N of particles. However, for systems in which N may vary, another distribution is preferable for
applications. Several examples of such situations (as well as the basic thermodynamics of such systems) have already been
discussed in Sec. 1.5. Perhaps even more importantly, statistical distributions for systems with variable N are also applicable to
some ensembles of independent particles in certain single-particle states even if the number of the particles is fixed — see the next
section.

With this motivation, let us consider what is called the grand canonical ensemble (Figure 2.7.1). It is similar to the canonical
ensemble discussed in Sec. 4 (see Figure 2.4.1) in all aspects, besides that now the system under study and the heat bath (in this
case more often called the environment) may exchange not only heat but also particles. In this ensemble, all environments are in
both the thermal and chemical equilibrium, with their temperatures T" and chemical potentials y the same for all members.

1 osystem
I under study ! d0, dS
E EmN- T;# ' dN
environment
T ou

Figure 2.7.1: A member of the grand canonical ensemble.

Let us assume that the system of interest is also in the chemical and thermal equilibrium with its environment. Then using exactly
the same arguments as in Sec. 4 (including the specification of microcanonical sub-ensembles with fixed Ex and Ny), we may
generalize Equation (2.4.4), taking into account that the entropy S, of the environment is now a function of not only its energy
Eepy = Exs— Ep, v, %! but also of the number of particles N, = Nx— N, with Ex; and Ny, fixed:

anm,N xInM = lngem, (EE _Em,N;NE —N) —I—IDAE}] = Sem/ (EE _Em,N,NE —N) + const
8Sem] aSenv

m,N

%Sem; EEaNE_ P 9N,
env EZ,NE env EE,NE

N + const. (2.7.1)

To simplify this relation, let us rewrite Equation (1.5.1) in the following equivalent form:
1 P
dS=—dE+=dv —£an. (2.7.2)
T T T

Hence, if the entropy S of a system is expressed as a function of E, V, and N, then

95\ 1 (8S\ _P (0S\ _ (2.73)
OF V7N_T’ ov E,N_T, ON E’V_ T o
Applying the first one and the last one of these relations to the last form of Equation (2.7.1), and using the equality of the

temperatures T' and chemical potentials p in the system under study and its environment, at equilibrium (as was discussed in Sec.
1.5), we get

1
I Wi,y = Sens (B, Ne) = 7 By + %N—I—const. (2.7.4)

Again, exactly as at the derivation of the Gibbs distribution in Sec. 4, we may argue that since E,, x, T, and p do not depend on
the choice of environment’s size, i.e. on Es and Ny, the probability W, x for a system to have N particles and be in m?
quantum state in the whole grand canonical ensemble should also obey Equation (2.7.4). As a result, we get the so-called grand
canonical distribution:

Grand canonical distribution:
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1 NN_Em,N
Won = Zo exp{ T } (2.7.5)

Just as in the case of the Gibbs distribution, the constant Zg (most often called the grand statistical sum, but sometimes the “grand
partition function”) should be determined from the probability normalization condition, now with the summation of probabilities
W, v over all possible values of both m and V:

Grand canonical sum:

N —-E,,
Za :Zexp{ﬂT’N}. (2.7.6)

Now, using the general Equation (2.2.11) to calculate the entropy for the distribution (2.7.5) (exactly like we did it for the
canonical ensemble), we get the following expression,

N
S:—ZWm,Nanm,N:——%+anG, (2.7.7)

m,N T

which is evidently a generalization of Equation (2.4.12).5> We see that now the grand thermodynamic potential € (rather than the
free energy F') may be expressed directly via the normalization coefficient Zg:

Q from Zg:

_ 1 HN_Em,N
Q=F—pu(N)=E—-TS—pu(N) = Tan—G = —TlnT;Vexp{T}. (2.7.8)

Finally, solving the last equality for Zs, and plugging the result back into Equation (2.7.5), we can rewrite the grand canonical
distribution in the form

(2.7.9)

Q+uN - E,
Wm’N:exp{M},

T

similar to Equation (2.4.15) for the Gibbs distribution. Indeed, in the particular case when the number NV of particles is fixed,
N =(N),sothat Q+uN =Q+pu(N)=F , Equation (2.7.9) is reduced to Equation (2.4.15).
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2.8: Systems of Independent Particles

Now let us apply the general statistical distributions discussed above to a simple but very important case when the system we are
considering consists of many similar particles whose explicit (“direct”) interaction is negligible. As a result, each particular energy
value E,, y of such a system may be represented as a sum of energies ¢;, of the particles, where the index k numbers single-
particle states — rather than those of the whole system, as the index m does.

Let us start with the classical limit. In classical mechanics, the energy quantization effects are negligible, i.e. there is a formally
infinite number of quantum states k within each finite energy interval. However, it is convenient to keep, for the time being, the
discrete-state language, with the understanding that the average number (Ny) of particles in each of these states, usually called the
state occupancy, is very small. In this case, we may apply the Gibbs distribution to the canonical ensemble of single particles, and
hence use it with the substitution E,,, — €, so that Equation (2.4.7) becomes

Boltzmann distribution:

<Nk>=cexp{—%} <<1, (2.8.1)

where the constant ¢ should be found from the normalization condition:

D (Ng) =1. (2.8.2)
k

This is the famous Boltzmann distribution.®® Despite its formal similarity to the Gibbs distribution (2.4.7), let me emphasize the
conceptual difference between these two important formulas. The Gibbs distribution describes the probability to find the whole
system on one of its states with energy FE,,, and it is always valid — more exactly, for a canonical ensemble of systems in
thermodynamic equilibrium. On the other hand, the Boltzmann distribution describes the occupancy of an energy level of a single
particle, and, as we will see in just a minute, is valid for quantum particles only in the classical limit (Ny,) << 1, even if they do
not interact directly.

The last fact may be surprising, because it may seem that as soon as particles of the system are independent, nothing prevents us
from using the Gibbs distribution to derive Equation (2.8.1), regardless of the value of (V). This is indeed true if the particles are
distinguishable, i.e. may be distinguished from each other — say by their fixed spatial positions, or by the states of certain internal
degrees of freedom (say, spin), or by any other “pencil mark”. However, it is an experimental fact that elementary particles of each
particular type (say, electrons) are identical to each other, i.e. cannot be “pencil-marked”.®* For such particles we have to be more
careful: even if they do not interact explicitly, there is still some implicit dependence in their behavior, which is especially evident
for the so-called fermions (elementary particles with semi-integer spin): they obey the Pauli exclusion principle that forbids two
identical particles to be in the same quantum state, even if they do not interact explicitly.5®

Note that the term “the same quantum state” carries a heavy meaning load here. For example, if two particles are confined to stay at
different spatial positions (say, reliably locked in different boxes), they are distinguishable even if they are internally identical.
Thus the Pauli principle, as well as other particle identity effects such as the Bose-Einstein condensation to be discussed in the next
chapter, are important only when identical particles may move in the same spatial region. To emphasize this fact, it is common to
use, instead of “identical”, a more precise (though grammatically rather unpleasant) adjective indistinguishable.

In order to take these effects into account, let us examine statistical properties of a system of many non-interacting but
indistinguishable particles (at the first stage of calculation, either fermions or bosons) in equilibrium, applying the grand canonical
distribution (2.7.8) to a very unusual grand canonical ensemble: a subset of particles in the same quantum state k (Figure 2.8.1).
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single-particle energy levels:

- - - — —.C » gk
€l
&
particle #: 1 2 J

Figure 2.8.1: The grand canonical ensemble of particles in the same quantum state with energy ¢, — schematically.

In this ensemble, the role of the environment may be played just by the set of particles in all other states k¥’ # k, because due to
infinitesimal interactions, the particles may gradually change their states. In the resulting equilibrium, the chemical potential x and
temperature T of the system should not depend on the state number k, though the grand thermodynamic potential {2, of the chosen
particle subset may. Replacing N with N; — the particular (not average!) number of particles in the selected k™ state, and the
particular energy value E,, y with €, N}, we reduce the final form of Equation (2.7.8) to

Q= —Tln(z exp{M }) = _Th ; (exp{ ";f’f })Nk] , (2.8.3)

Ni
where the summation should be carried out over all possible values of INi. For the final calculation of this sum, the elementary
particle type is essential.

On one hand, for fermions, obeying the Pauli principle, the numbers IV}, in Equation (2.8.3) may take only two values, either 0 (the
state k is unoccupied) or 1 (the state is occupied), and the summation gives

N;’l (exp{ L })Nk = Tln<1 +exp{ L }) (2.8.4)

Now the state occupancy may be calculated from the last of Egs. (1.5.13) — in this case, with the (average) N replaced with (Ny):

Qk =-—TIn

Fermi-Dirac distribution:

o, 1
N = —| — = ————: 2. .
o) =-(52) - (2.8.5)

This is the famous Fermi-Dirac distribution, derived in 1926 independently by Enrico Fermi and Paul Dirac.

On the other hand, bosons do not obey the Pauli principle, and for them the numbers IV}, can take any non-negative integer values.
In this case, Equation (2.8.3) turns into the following equality:

> (so{272))"

This sum is just the usual geometric series, which converges if A < 1, giving

Qk =—-TIn

[o.¢]
: B €k
=—-TIn )\N’“, with A =ex . 2.8.6
> o{ 472} (2.8.6)

Qk =-TIn

1 U —Eg
Tx :Tln(l exp{ T }), for p < eg. (2.8.7)

In this case, the average occupancy, again calculated using Equation (1.5.13) with N replaced with (N} ), obeys the Bose-Einstein
distribution,

Bose-Einstein distribution:

oy, 1
) “( O )T,V_ Ty oTH<En (2:8.8)

which was derived in 1924 by Satyendra Nath Bose (for the particular case p = 0) and generalized in 1925 by Albert Einstein for
an arbitrary chemical potential. In particular, comparing Equation (2.8.8) with Equation (2.5.15), we see that harmonic oscillator’s
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excitations,%® each with energy fiw, may be considered as bosons, with the chemical potential equal to zero. As a reminder, we have

already obtained this equality (x = 0) in a different way — see Equation (2.6.14). Its physical interpretation is that the oscillator
excitations may be created inside the system, so that there is no energy cost x of moving them into the system under consideration
from its environment.

The simple form of Egs. (2.8.5) and (2.8.8), and their similarity (besides “only” the difference of the signs before the unity in their
denominators), is one of the most beautiful results of physics. This similarity, however, should not disguise the fact that the energy
dependences of the occupancies (Ny) given by these two formulas are very different — see their linear and semi-log plots in Figure
2.8.2

In the Fermi-Dirac statistics, the level occupancy is not only finite, but below 1 at any energy, while in the Bose-Einstein it may be
above 1, and diverges at £, — 1 .. However, as the temperature is increased, it eventually becomes much larger than the difference
(ex— ). In this limit, (Ng) << 1, both quantum distributions coincide with each other, as well as with the classical Boltzmann
distribution (2.8.1) with ¢ = exp{p/T'}:

Boltzmann distribution: identical particles

(Ni) —>exp{ ”‘;fk } for (Nj,) — 0. (2.8.9)

This distribution (also shown in Figure 2.8.2) may be, therefore, understood also as the high-temperature limit for indistinguishable
particles of both sorts.

\ N
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\ \
0.6) \ N \\
(N~ \ < "> \
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04 \ \
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\ \
N\ N
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Figure 2.8.2: The Fermi-Dirac (blue line), Bose-Einstein (red line), and Boltzmann (dashed line) distributions for indistinguishable

quantum particles. (The last distribution is valid only asymptotically, at (Ny) << 1.)
A natural question now is how to find the chemical potential p participating in Egs. (2.8.5), (2.8.8), and (2.8.9). In the grand
canonical ensemble as such (Figure 2.7.1), with the number of particles variable, the value of p is imposed by the system’s
environment. However, both the Fermi-Dirac and Bose-Einstein distributions are also approximately applicable (in thermal
equilibrium) to systems with a fixed but very large number N of particles. In these conditions, the role of the environment for some
subset of N’ << N particles is essentially played by the remaining N— N’ particles. In this case, u may be found by the
calculation of (N) from the corresponding probability distribution, and then requiring it to be equal to the genuine number of
particles in the system. In the next section, we will perform such calculations for several particular systems.

For that and other applications, it will be convenient for us to have ready formulas for the entropy S of a general (i.e. not
necessarily equilibrium) state of systems of independent Fermi or Bose particles, expressed not as a function of W, of the whole
system, as in Equation (2.2.11), but via the occupancy numbers (). For that, let us consider an ensemble of composite systems,
each consisting of M >>1 similar but distinct component systems, numbered by index m =1,2,... M, with independent (i.e.

not directly interacting) particles. We will assume that though in each of M component systems the number IV, k(m) of particles in

their £ quantum state may be different (Figure 2.8.3), their total number N k(z) in the composite system is fixed. As a result, the
total energy of the composite system is fixed as well,

M M
ZNk(m) :Nk(z) =const, Ej= ZNk(m)sk :Nk(z)sk = const, (2.8.10)
m=1 m=1

so that an ensemble of many such composite systems (with the same k), in equilibrium, is microcanonical.
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number of particles in the &™
single-particle quantum state: N NP N N
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component system’s number: 1 2 m
Figure 2.8.3: A composite system of IV k(z) particles in the k" quantum state, distributed between M component systems.

According to Equation (2.2.5), the average entropy Sy, per component system in this microcanonical ensemble may be calculated
as
In M, k
Sk = li 2.8.11
k 1m M ( )

M—o0

where M}, is the number of possible different ways such a composite system (with fixed Nk(E) ) may be implemented. Let us start
the calculation of Mj, for Fermi particles — for which the Pauli principle is valid. Here the level occupancies XV, k(m) may be only
equal to either 0 or 1, so that the distribution problem is solvable only if NV, k(z) < M, and evidently equivalent to the choice of
Nk(z) balls (in arbitrary order) from the total number of M distinct balls. Comparing this formulation with the definition of the
binomial coefficient,®” we immediately get

My =" Cyo = M : (2.8.12)
C (M =NIYINTT
From here, using the Stirling formula (again, in its simplest form (2.2.9)), we get
Fermions: entropy
| Sk = —(Ni)In(N) — (1 = (N})) In(1 — (M), | (2.8.13)
where
N®
(Ni) = lim ]’\fl (2.8.14)

is exactly the average occupancy of the k% single-particle state in each system, which was discussed earlier in this section. Since
for a Fermi system, (INy) is always somewhere between 0 and 1, its entropy (2.8.13) is always positive.

(Mf 1 +N,§E))!

M, =ML oy = — (2.8.15)
(M —1)!N)
Applying the Stirling formula (2.2.9) again, we get the following result,
Bosons: entropy
| Sk = —(N)) In(Ny.) + (1 + (Ni)) In(1 + (N)), | (2.8.16)

which again differs from the Fermi case (2.8.13) “only” by the signs in the second term, and is valid for any positive (Ng).

Expressions (2.8.13) and (2.8.16) are valid for an arbitrary (possibly non-equilibrium) case; they may be also used for an
alternative derivation of the Fermi-Dirac (2.8.5) and Bose-Einstein (2.8.8) distributions, which are valid only in equilibrium. For
that, we may use the method of Lagrange multipliers, requiring (just like it was done in Sec. 2) the total entropy of a system of IV
independent, similar particles,

S=> 5, (2.8.17)
k

considered as a function of state occupancies (Nj), to attain its maximum, under the conditions of the fixed total number of
particles IV and total energy E:

Z(Nk) = N = const, Z(Nk)ek = FE = const. (2.8.18)
% %
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The completion of this calculation is left for the reader’s exercise.

In the classical limit, when the average occupancies (N} of all states are small, the Fermi and Bose expressions for Sy tend to the
same limit

Boltzmann entropy:

| S = —(Ni) In(N;), for (V) << 1. | (2.8.19)

This expression, frequently referred to as the Boltzmann (or “classical”) entropy, might be also obtained, for arbitrary (Ng),
directly from the functionally similar Equation (2.2.11), by considering an ensemble of systems, each consisting of just one
classical particle, so that E,, — &, and W, — (Ni). Let me emphasize again that for indistinguishable particles, such
identification is generally (i.e. at (INg) ~ 1) illegitimate even if the particles do not interact explicitly. As we will see in the next
chapter, indistinguishability may affect the statistical properties of identical particles even in the classical limit.

This page titled 2.8: Systems of Independent Particles is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by

Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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2.9: Exercise problems

? Exercise 2.9.1

A famous example of macroscopic irreversibility was suggested in 1907 by P. Ehrenfest. Two dogs share 2N >> 1 fleas. Each
flea may jump onto another dog, and the rate I" of such events (i.e. the probability of jumping per unit time) does not depend
either on time or on the location of other fleas. Find the time evolution of the average number of fleas on a dog, and of the flea-
related part of the total dogs’ entropy (at arbitrary initial conditions), and prove that the entropy can only grow.%®

? Exercise 2.9.2

Use the microcanonical distribution to calculate thermodynamic properties (including the entropy, all relevant thermodynamic
potentials, and the heat capacity), of a two-level system in thermodynamic equilibrium with its environment, at temperature 7’
that is comparable with the energy gap A. For each variable, sketch its temperature dependence, and find its asymptotic values
(or trends) in the low-temperature and high-temperature limits.

? Exercise 2.9.3

Solve the previous problem using the Gibbs distribution. Also, calculate the probabilities of the energy level occupation, and
give physical interpretations of your results, in both temperature limits.

? Exercise 2.9.4

Calculate low-field magnetic susceptibility x of a quantum spin-1/2 particle with a gyromagnetic ratio 7, in thermal
equilibrium with an environment at temperature 7', neglecting its orbital motion. Compare the result with that for a classical
spontaneous magnetic dipole m of a fixed magnitude my, free to change its direction in space.

Hint: The low-field magnetic susceptibility of a single particle is defined’" as

§: 86<m2> |J“f~>0a

where the z-axis is aligned with the direction of the external magnetic field 7.

? Exercise 2.9.5

Calculate the low-field magnetic susceptibility of a particle with an arbitrary (either integer or semi-integer) spin s, neglecting
its orbital motion. Compare the result with the solution of the previous problem.

Hint: Quantum mechanics’? tells us that the Cartesian component m, of the magnetic moment of such a particle, in the
direction of the applied field, has (2s+ 1) stationary values:

m, =+vyhm,, withm;=—-s,—s+1,...,8—1,s,

where + is the gyromagnetic ratio of the particle, and & is Planck’s constant.

? Exercise 2.9.6*

Analyze the possibility of using a system of non-interacting spin-1/2 particles, placed into a strong, controllable external
magnetic field, for refrigeration.

? Exercise 2.9.7

The rudimentary “zipper” model of DNA replication is a chain of IV links that may be either open or closed — see the figure on
the right.

https://phys.libretexts.org/@go/page/34703


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34703?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Essential_Graduate_Physics_-_Statistical_Mechanics_(Likharev)/02%3A_Principles_of_Physical_Statistics/2.09%3A_Exercise_problems

LibreTextsm

0—©
0—©

O
O
1

Opening a link increases the system’s energy by A > 0; a link may change its state (either open or closed) only if all links to
the left of it are open, while those on the right of it, are closed. Calculate the average number of open links at thermal
equilibrium, and analyze its temperature dependence, especially for the case N >>1.

? Exercise 2.9.8

Use the microcanonical distribution to calculate the average entropy, energy, and pressure of a classical particle of mass m,
with no internal degrees of freedom, free to move in volume V, at temperature 7.

Hint: Try to make a more accurate calculation than has been done in Sec. 2.2 for the system of N harmonic oscillators. For
that, you will need to know the volume V; of a d-dimensional hypersphere of the unit radius. To avoid being too cruel, I am
giving it to you:

Vy=n%2/T (% +1) ,

where I'(£) is the gamma function.”?

? Exercise 2.9.9

Solve the previous problem starting from the Gibbs distribution.

? Exercise 2.9.10

Calculate the average energy, entropy, free energy, and the equation of state of a classical 2D particle (without internal degrees
of freedom), free to move within area A, at temperature 7', starting from:

(i) the microcanonical distribution, and
(ii) the Gibbs distribution.

Hint: For the equation of state, make the appropriate modification of the notion of pressure.

? Exercise 2.9.11

A quantum particle of mass m is confined to free motion along a 1D segment of length a. Using any approach you like,
calculate the average force the particle exerts on the “walls” (ends) of such “1D potential well” in thermal equilibrium, and
analyze its temperature dependence, focusing on the low-temperature and high-temperature limits.

Hint: You may consider the series ©(¢) = _,7; exp{ —£n2} a known function of ¢. 74

? Exercise 2.9.12*

Rotational properties of diatomic molecules (such as N,, CO, etc.) may be reasonably well described by the so-called
dumbbell model: two point particles, of masses m; and ms, with a fixed distance d between them. Ignoring the translational
motion of the molecule as the whole, use this model to calculate its heat capacity, and spell out the result in the limits of low
and high temperatures. Discuss whether your solution is valid for the so-called homonuclear molecules, consisting of two
similar atoms, such as H,, O,, N,, etc.
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? Exercise 2.9.13

Calculate the heat capacity of a heteronuclear diatomic molecule, using the simple model described in the previous problem,
but now assuming that the rotation is confined to one plane.”>

? Exercise 2.9.14

A classical, rigid, strongly elongated body (such as a thin needle), is free to rotate about its center of mass, and is in thermal
equilibrium with its environment. Are the angular velocity vector w and the angular momentum vector L, on average, directed
along the elongation axis of the body, or normal to it?

? Exercise 2.9.15

Two similar classical electric dipoles, of a fixed magnitude d, are separated by a fixed distance r. Assuming that each dipole
moment d may take any spatial direction and that the system is in thermal equilibrium, write the general expressions for its
statistical sum Z, average interaction energy F, heat capacity C, and entropy S, and calculate them explicitly in the high-

temperature limit.
? Exercise 2.9.16
A classical 1D particle of mass m, residing in the potential well
U(z)=a|z|’, withy>0,

is in thermal equilibrium with its environment, at temperature 7. Calculate the average values of its potential energy U and the
full energy F, using two approaches:

(i) directly from the Gibbs distribution, and

? Exercise 2.9.17

For a thermally-equilibrium ensemble of slightly anharmonic classical 1D oscillators, with mass m and potential energy
K
U(Q) = §$2 +Oé.’L'3,

with a small coefficient «, calculate () in the first approximation in low temperature 7.

? Exercise 2.9.18*

A small conductor (in this context, usually called the single-electron island) is placed between two conducting electrodes, with
voltage V' applied between them. The gap between one of the electrodes and the island is so narrow that electrons may tunnel
quantum-mechanically through this gap (the “weak tunnel junction”) — see the figure on the right. Calculate the average charge
of the island as a function of V" at temperature 7'.

| tunnel
2/ junction

o, KRR e

S

Hint: The quantum-mechanical tunneling of an electron through a weak junction’” between two macroscopic conductors and
their subsequent energy relaxation, may be considered as a single inelastic (energy-dissipating) event, so that the only energy
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l relevant for the thermal equilibrium of the system is its electrostatic potential energy.

? Exercise 2.9.19

An LC circuit (see the figure on the right) is in thermodynamic equilibrium with its environment. Calculate the r.m.s.
fluctuation 6V = (V'2)1/2 of the voltage across it, for an arbitrary ratio 7'/fw, where w = (LC)'/? is the resonance
frequency of this “tank circuit”.

? Exercise 2.9.20

Derive Equation (2.6.12 — 2.6.13) from simplistic arguments, representing the blackbody radiation as an ideal gas of photons
treated as classical ultra-relativistic particles. What do similar arguments give for an ideal gas of classical but non-relativistic
particles?

? Exercise 2.9.21

Calculate the enthalpy, the entropy, and the Gibbs energy of blackbody electromagnetic radiation with temperature 7" inside
volume V/, and then use these results to find the law of temperature and pressure drop at an adiabatic expansion.

? Exercise 2.9.22

As was mentioned in Sec. 6(i), the relation between the temperatures Ty, of the visible Sun’s surface and that (7,) of the
Earth’s surface follows from the balance of the thermal radiation they emit. Prove that the experimentally observed relation
indeed follows, with good precision, from a simple model in which the surfaces radiate as perfect black bodies with constant
temperatures.

Hint: You may pick up the experimental values you need from any (reliable :-) source.

? Exercise 2.9.23

If a surface is not perfectly radiation-absorbing (“black™), the electromagnetic power of its thermal radiation differs from the
Planck radiation law by a frequency-dependent factor € < 1, called the emissivity. Prove that such surface reflects the (1-¢)
fraction of the incident radiation.

? Exercise 2.9.24

I
I
e
Lo —— |L<T

l
I
I
If two black surfaces, facing each other, have different temperatures (see the figure on the right), then according to the Stefan

radiation law (2.6.8 —2.6.9), there is a net flow of thermal radiation, from a warmer surface to the colder one:

tWnet
A

For many applications, notably including most low-temperature experiments, this flow is detrimental. One way to suppress it is

=o(T} - T)).

to reduce the emissivity € (for its definition, see the previous problem) of both surfaces — say by covering them with shiny

metallic films. An alternative way toward the same goal is to place, between the surfaces, a thin layer (usually called the
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thermal shield), with a low emissivity of both surfaces — see the dashed line in Figure above. Assuming that the emissivity is
the same in both cases, find out which way is more efficient.

? Exercise 2.9.25

Two parallel, well-conducting plates of area A are separated by a free-space gap of a constant thickness ¢ << A2 Calculate
the energy of the thermally-induced electromagnetic field inside the gap at thermal equilibrium with temperature 7" in the
range

i <<T << E
Al/2 t
Does the field push the plates apart?

? Exercise 2.9.26

Use the Debye theory to estimate the specific heat of aluminum at room temperature (say, 300 K), and express the result in the
following popular units:

(i) eV/K per atom,
(ii) J/K per mole, and
(iii) J/K per gram.

Compare the last number with the experimental value (from a reliable book or online source).

? Exercise 2.9.27

Low-temperature specific heat of some solids has a considerable contribution from thermal excitation of spin waves, whose
dispersion law scales as w oc k? at w — 0.”8 Neglecting anisotropy, calculate the temperature dependence of this contribution
to Cy at low temperatures, and discuss conditions of its experimental observation.

Hint: Just as the photons and phonons discussed in section 2.6, the quantum excitations of spin waves (called magnons) may
be considered as non-interacting bosonic quasiparticles with zero chemical potential, whose statistics obeys Equation (2.5.15).

? Exercise 2.9.28

Derive a general expression for the specific heat of a very long, straight chain of similar particles of mass m, confined to move
only in the direction of the chain, and elastically interacting with effective spring constants « — see the figure on the right. Spell
out the result in the limits of very low and very high temperatures.

m m m
MWW O MWW~
K K K K
Hint: You may like to use the following integral:”?
400 52 dg 71_2
/0 sinh®¢ 6

? Exercise 2.9.29

Calculate the r.m.s. thermal fluctuation of the middle point of a uniform guitar string of length [, stretched by force 7, at
temperature 7. Evaluate your result for / = 0.7 m, 7 = 10® N, and room temperature.

Hint: You may like to use the following series:
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R S T
z z = (2m+1)? 8

? Exercise 2.9.30

Use the general Equation (2.8.13) to re-derive the Fermi-Dirac distribution (2.8.5) for a system in equilibrium.

? Exercise 2.9.31

Each of two identical particles, not interacting directly, may be in any of two quantum states, with single-particle energies
equal to 0 and A. Write down the statistical sum Z of the system, and use it to calculate its average total energy E at
temperature 7', for the cases when the particles are:

(i) distinguishable (say, by their positions);
(ii) indistinguishable fermions;

(iii) indistinguishable bosons.

Analyze and interpret the temperature dependence of F for each case, assuming that A > 0.

? Exercise 2.9.32

Calculate the chemical potential of a system of N >> 1 independent fermions, kept at a fixed temperature T, if each particle
has two non-degenerate energy levels separated by gap A.

Footnotes

1. For the reader interested in a more rigorous approach, I can recommend, for example, Chapter 18 of the handbook by G. Korn
and T. Korn — see MA Sec. 16(ii).

2. The most popular counter-example is an energy-conserving system. Consider, for example, a system of particles placed in a
potential that is a quadratic form of its coordinates. The theory of oscillations tells us (see, e.g., CM Sec. 6.2) that this system is
equivalent to a set of non-interacting harmonic oscillators. Each of these oscillators conserves its own initial energy E; forever,
so that the statistics of N measurements of one such system may differ from that of N different systems with a random
distribution of E;, even if the total energy of the system, Ef = ¥; F;, is the same. Such non-ergodicity, however, is a rather
feeble phenomenon and is readily destroyed by any of many mechanisms, such as weak interaction with the environment
(leading, in particular, to oscillation damping), potential anharmonicity (see, e.g., CM Chapter 5), and chaos (CM Chapter 9), all
of them strongly enhanced by increasing the number of particles in the system, i.e. the number of its degrees of freedom. This is
why an overwhelming part of real-life systems are ergodic; for the readers interested in non-ergodic exotics, I can recommend
the monograph by V. Amold and A. Avez, Ergodic Problems of Classical Mechanics, Addison Wesley, 1989.

3. Here, and everywhere in this series, angle brackets (. . .) mean averaging over a statistical ensemble, which is generally
different from averaging over time — as it will be the case in quite a few examples considered below.

4. See, e.g., QM Sec. 7.1.

5. Here I use the Schrodinger picture of quantum dynamics, in which the matrix elements f,,, representing quantum-mechanical
operators, do not evolve in time. The final results of this discussion do not depend on the particular picture — see, e.g., QM Sec.
4.6.

6. Personally, I believe that the genius of J. Gibbs, praised by Albert Einstein as the “greatest mind in the American history”, is
still insufficiently recognized, and agree with R. Millikan that Gibbs “did for statistical mechanics and thermodynamics what
[...] Maxwell did for electrodynamics”.

7. The terms “microcanonical”, as well as “canonical” (see Sec. 4 below) are apparently due to Gibbs and I was unable to find out
his motivation for the former name. (“Canonical” in the sense of “standard” or “common” is quite appropriate, but why
“micro”? Perhaps to reflect the smallness of AE?)

8. Formally, the main result of this section, Equation (2.2.1), is valid for any M (including M = 1); it is just less informative for
small M — and trivial for M =1.
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9. Though I have to move on, let me note that the microcanonical distribution (2.2.1) is a very nontrivial postulate, and my advice
to the reader is to find some time to give additional thought to this keystone of the whole building of statistical mechanics.

10. I will rely on the reader’s common sense and intuitive understanding of what information is, because even in the formal
information theory, this notion is essentially postulated — see, e.g., the wonderfully clear text by J. Pierce, An Introduction to
Information Theory, Dover, 1980.

11. This is of course just the change of a constant factor: S(M) =InM =1n2 xlogy M =1In2 x I(M) ~ 0.693I(M) .A
review of Chapter 1 shows that nothing in thermodynamics prevents us from choosing such a constant coefficient arbitrarily,
with the corresponding change of the temperature scale — see Equation (1.9). In particular, in the ST units, where Equation (
2.2.6) becomes S =— kg In W,,,, one bit of information corresponds to the entropy change
AS =Ekpln2~0.693kp ~ 0.965 x 10723 J/K. By the way, the formula “S = klog W” is engraved on L. Boltzmann’s
tombstone in Vienna.

12. See, e.g., MA Equation (2.3). Despite the intimidating name, Equation (2.2.8) may be very simply derived. Indeed, V! is just
the number of all possible permutations of NV balls, i.e. the ways to place them in certain positions — say, inside M boxes. Now
to take into account that the particular order of the balls in each box is not important, that number should be divided by all
numbers N,,,! of possible permutations of balls within each box — that’s it.

13. See, e.g., MA Equation (2.10).

14. Strictly speaking, I should use the notation (S) here. However, following the style accepted in thermodynamics, I will drop the
averaging signs until we will really need them to avoid confusion. Again, this shorthand is not too bad because the relative
fluctuations of entropy (as those of any macroscopic variable) are very small at N >> 1.

15. With the replacement of In W,,, with log, W, (i.e. division of both sides by 1n 2), Equation (2.2.11) becomes the famous
Shannon (or “Boltzmann-Shannon”) formula for the average information I per symbol in a long communication string using M
different symbols, with probability W,,, each.

16. In some textbooks, this interpretation is even accepted as the derivation of Equation (2.2.11); however, it is evidently less strict
than the one outlined above.

17. See, e.g., QM Secs. 2.9 and 5.4.

18. Let me hope that the reader knows that the ground-state energy is experimentally measurable — for example, using the famous
Casimir effect — see, e.g., QM Sec. 9.1. (In Sec. 5.5 below I will briefly discuss another method of experimental observation of
that energy.)

19. The coefficient 1 /N in this formula has the geometrical meaning of the (hyper)volume of the N -dimensional right pyramid
with unit sides.

20. For the same reason, the notion of pressure P in such a system is not clearly defined, and neither are any thermodynamic
potentials but £ and F'.

21. T am using this fancy font for the mass to avoid any chance of its confusion with the state number.

22. Note again that while we have committed the energy En of N oscillators to be fixed (to apply Equation (2.2.18), valid only for
a microcanonical ensemble at thermodynamic equilibrium), the single oscillator’s energy E in our analysis may be arbitrary —
within the limits iw << E < Ey ~ NT .

23. As a reminder, the Hamiltonian of any system whose classical Lagrangian function is an arbitrary quadratic form of its
generalized coordinates and the corresponding generalized velocities, may be brought to the form (2.2.31) by an appropriate
choice of “normal coordinates” g; which are certain linear combinations of the original coordinates — see, e.g., CM Sec. 6.2.

24. This also means that in the classical limit, the heat capacity of a system is equal to one-half of the number of its half-degrees of
freedom (in the ST units, multiplied by kp).

25. The reader is strongly urged to solve Problem 2, whose task is to do a similar calculation for another key (“two level”) physical
system, and compare the results.

26. See, e.g., CM Chapter 9 and literature therein.

27. For the definition of A, see, e.g., CM Equation (9.9).

28. For more discussion, see, e.g., either Sec. 6.2 of the monograph H. G. Schuster and W. Just, Deterministic Chaos, 4t eq.,
Wiley-VHS, 2005, or the monograph by Arnold and Avez, cited in Sec. 1.

29. This system is frequently called the Szilard engine, after L. Szilard who published its detailed theoretical discussion in 1929, but
is essentially a straightforward extension of the thought experiment suggested by J. Maxwell as early as 1867.

30. This procedure of the statistical ensemble re-definition is the central point of the connection between physics and information
theory, and is crucial in particular for any (or rather any meaningful :-) discussion of measurements in quantum mechanics —
see, e.g., QM Secs. 2.5 and 10.1.
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. See, for example, A. Bérut et al., Nature 483, 187 (2012); J. Koski et al., PNAS USA 111, 13786 (2014); Y. Jun et al., Phys. Rev.
Lett. 113, 190601 (2014); J. Peterson et al., Proc. Roy. Soc. A 472, 20150813 (2016).

. C. Bennett, IBM J. Res. Devel. 17, 525 (1973); see also C. Bennett, Int. J. Theor. Phys. 21, 905 (1982).

For that, all gates have to be physically reversible, with no static power consumption. Such logic devices do exist, though they

are still not very practicable — see, e.g., K. Likharev, Int. J. Theor. Phys. 21, 311 (1982). (Another reason for citing, rather

reluctantly, my own paper is that it also gave constructive proof that the reversible computation may also beat the perceived

“fundamental quantum limit”, AEAt > h, where At is the time of the binary logic operation.)

Many currently explored schemes of quantum computing are also reversible — see, e.g., QM Sec. 8.5 and references therein.

Another famous example is Charles Darwin’s theory of biological evolution.

The temperature dependence of the type exp{—const/T'}, especially when showing up in rates of certain events, e.g., chemical

reactions, is also frequently called the Arrhenius law — after chemist S. Arrhenius who has noticed this law in numerous

experimental data. In all cases I am aware of, the Gibbs distribution is the underlying reason of the Arrhenius law. (We will see

several examples of that later in this course.)

This is the opinion of many physicists, including Richard Feynman — who climbs on this “summit” already on the first page of

his brilliant book Statistical Mechanics, CRC Press, 1998. (This is a collection of lectures on a few diverse, mostly advanced

topics of statistical physics, rather than its systematic course, so that it can hardly be used as the first textbook on the subject.

However, I can highly recommend its first chapter to all my readers.

The task of making a similar (and even simpler) calculation for another key quantum-mechanical object, the two-level system,

is left for the reader’s exercise.

See, e.g., MA Equation (2.8b).

It was first obtained in 1924 by S. Bose and is sometimes called the Bose distribution — a particular case of the Bose-Einstein

distribution to be discussed in Sec. 8 below.

See, e.g., QM Sec. 2.10.

The calculation may be found, e.g., in QM Sec. 7.2.

As a reminder: the equality of these two averages, at arbitrary temperature, was proved already in Sec. 2.

See, e.g., EM Sec. 7.8.

In our current context, the volume should be much larger than (ch/T')3, where ¢ ~ 3 x 108 m/s is the speed of light. For the

room temperature (T' ~ kg x 300 K ~ 4 x 1072 J), this lower bound is of the order of 10~16m3.

See, e.g., QM Sec. 9.1.

Let me hope the reader knows that this law was first suggested in 1900 by Max Planck as an empirical fit for the experimental

data on blackbody radiation, and this was the historic point at which the Planck constant % (or rather h = 27h) was introduced

—see, e.g., QM Sec. 1.1.

The last step in Equation (2.6.7) uses a table integral, equal to ['(4)¢(4) = (3!)(7*/90) = n* /15 — see, e.g., MA Equation

(6.8b), with s =4, and then MA Egs. (6.7¢), and (2.7b).

Note that the heat capacity Cy = (0E/0T)y , following from Equation (2.6.7), is proportional to 7'3 at any temperature, and

hence does not obey the trend C'yy — const at T' — oco. This is the result of the unlimited growth, with temperature, of the

number of thermally-exited field oscillators with frequencies w below T'/ k.

Its functional part (E o< T'4) was deduced in 1879 by Joseph Stefan from earlier experiments by John Tyndall. Theoretically, it

was proved in 1884 by L. Boltzmann, using a result derived earlier by Adolfo Bartoli from the Maxwell equations for the

electromagnetic field — all well before Max Planck’s work.

This formula may be also derived from the expression for the forces exerted by the electromagnetic radiation on the walls (see,

e.g. EM Sec. 9.8), but the above calculation is much simpler.

Note that according to Egs. (1.4.21), (2.6.7), and (2.6.12 — 2.6.13), the difference between the equations of state of the photon

gas and an ideal gas of non-relativistic particles, expressed in the more usual form P = P(V,T'), is much more dramatic:

PxT4WO0vs. PxTV -1,

Due to a rather low temperature expansion of solids, the difference between their Cy and Cp is small.

In good conductors (e.g., metals), specific heat is contributed (and at low temperatures, dominated) by free electrons — see Sec.

3.3 below.

See, e.g., CM Sec. 7.7.

See, e.g., CM Sec. 6.3, in particular Figure 6.5 and its discussion.

See, e.g., CM Sec. 6.2.
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In the ST units, the Debye temperature T is of the order of a few hundred K for most simple solids (e.g., ~ 430 K for
aluminum and ~ 340 K for copper), with somewhat lower values for crystals with heavy atoms (~ 105 K for lead), and reaches
its highest value ~ 2200 K for diamond, with its relatively light atoms and very stiff lattice.

This is why there is the following general “rule of thumb” in quantitative sciences: if you plot your data on a linear rather than
log scale, you better have a good excuse ready. (An example of a valid excuse: the variable you are plotting changes its sign
within the range you want to exhibit.)

This term stems from the fact that at £ — 0, the mechanical waves corresponding to these branches have phase velocities

vpr, = w(k)/k that are much higher than that of the acoustic waves, and may approach the speed of light. As a result, these
waves can strongly interact with electromagnetic (practically, optical) waves of the same frequency, while acoustic waves
cannot.

The additional index in the new notation E,, x for the energy of the system of interest reflects the fact that its spectrum is
generally dependent on the number N of particles in it.

The average number of particles (IV) is exactly what was called N in thermodynamics (see Chapter 1), but I keep this explicit
notation here to make a clear distinction between this average value of the variable, and its particular values participating in
Eqgs. (2.7.1)-(2.7.10).

The distribution was first suggested in 1877 by L. Boltzmann. For the particular case when ¢ is the kinetic energy of a free
classical particle (and hence has a continuous spectrum), it is reduced to the Maxwell distribution (see Sec. 3.1 below), which
was derived earlier — in 1860.

This invites a natural question: what particles are “elementary enough” for their identity? For example, protons and neutrons
have an internal structure, in some sense consisting of quarks and gluons; can they be considered elementary? Next, if protons
and neutrons are elementary, are atoms? molecules? What about really large molecules (such as proteins)? viruses? The general
answer to these questions, given by quantum mechanics (or rather experiment :-), is that any particles/systems, no matter how
large and complex they are, are identical if they not only have the same internal structure but also are exactly in the same
internal quantum state — for example, in the ground state of all their internal degrees of freedom.

For a more detailed discussion of this issue, see, e.g., QM Sec. 8.1.

As the reader certainly knows, for the electromagnetic field oscillators, such excitations are called photons; for mechanical
oscillation modes, phonons. It is important, however, not to confuse these mode excitations with the oscillators as such, and be
very careful in prescribing to them certain spatial locations — see, e.g., QM Sec. 9.1.

See, e.g., MA Equation (2.2).

See also MA Equation (2.4).

This is essentially a simpler (and funnier :-) version of the particle scattering model used by L. Boltzmann to prove his famous
H-theorem (1872). Besides the historic significance of that theorem, the model used in it (see Sec. 6.2 below) is as cartoonish,
and not more general.

See, e.g., QM Secs. 4.6 and 5.1, for example, Equation (4.167).

This “atomic” (or “molecular”) susceptibility should be distinguished from the “volumic” susceptibility ., = 0.4, /0,
where . is the magnetization, i.e. the magnetic moment of a unit volume of a system — see, e.g., EM Equation (5.111). For a
uniform medium with n = N /V non-interacting dipoles per unit volume, x,, = nx.

See, e.g., QM Sec. 5.7, in particular Equation (5.169).

For its definition and main properties, see, e.g., MA Egs. (6.6)-(6.9).

It may be reduced to the so-called elliptic theta-function 65 (z, 7) for a particular case z =0 - see, e.g., Sec. 16.27 in the
Abramowitz-Stegun handbook cited in MA Sec. 16(ii). However, you do not need that (or any other) handbook to solve this
problem.

This is a reasonable model of the constraints imposed on small atomic groups (e.g., ligands) by their atomic environment inside
some large molecules.

See, e.g., CM Problem 1.12.

In this particular context, the adjective “weak” denotes a junction with the tunneling transparency so low that the tunneling
electron’s wavefunction loses its quantum-mechanical coherence before the electron has a chance to tunnel back. In a typical
junction of a macroscopic area this condition is fulfilled if its effective resistance is much higher than the quantum unit of
resistance (see, e.g., QM Sec. 3.2), Rg = 7r7'1/2e2 ~ 6.5 k.

Note that the same dispersion law is typical for bending waves in thin elastic rods — see, e.g., CM Sec. 7.8.

It may be reduced, via integration by parts, to the table integral MA Equation (6.8d) withn =1.
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CHAPTER OVERVIEW

3: Ideal and Not-So-ldeal Gases

In this chapter, the general principles of thermodynamics and statistics, discussed in the previous two chapters, are applied to
examine the basic physical properties of gases, i.e. collections of identical particles (for example, atoms or molecules) that are free
to move inside a certain volume, either not interacting or weakly interacting with each other. We will see that due to the quantum
statistics, properties of even the simplest, so-called ideal gases, with negligible direct interactions between particles, may be highly
nontrivial.

3.1: Ideal Classical Gas

3.2: Calculating Chemical Potentials

3.3: Degenerate Fermi gas

3.4: The Bose-Einstein condensation

3.5: Gases of weakly interacting particles

3.6: Exercise problems

This page titled 3: Ideal and Not-So-Ideal Gases is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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3.1: Ideal Classical Gas

Direct interactions of typical atoms and molecules are well localized, i.e. rapidly decreasing with distance r between them and
becoming negligible at a certain distance 7y. In a gas of N particles inside volume V, the average distance rave between the
particles is (V/N)'/3. As a result, if the gas density n = N/V = (r4,)® is much lower than 72, i.e. if nr} << 1, the chance
for its particles to approach each other and interact is rather small. The model in which such direct interactions are completely
ignored is called the ideal gas.

Let us start with a classical ideal gas, which may be defined as the ideal gas in whose behavior the quantum effects are also
negligible. As was discussed in Sec. 2.8, the condition of that is to have the average occupancy of each quantum state low:

(Ng) << 1. (3.1.1)
It may seem that we have already found all properties of such a system, in particular the equilibrium occupancy of its states — see
Equation (2.8.1):

(Nk>:ctmst><exp{f%}. (3.1.2)

In some sense this is true, but we still need, first, to see what exactly Equation (3.1.2) means for the gas, a system with an
essentially continuous energy spectrum, and, second, to show that, rather surprisingly, the particles’ indistinguishability affects
some properties of even classical gases.

The first of these tasks is evidently easiest for gas out of any external fields, and with no internal degrees of freedom.! In this case,
€r, is just the kinetic energy of the particle, which is an isotropic and parabolic function of p:
P pAptp

e (3.1.3)

k= 2m 2m

Now we have to use two facts from other fields of physics, hopefully well known to the reader. First, in quantum mechanics, the
linear momentum p is associated with the wavevector k of the de Broglie wave, p = hk . Second, the eigenvalues of k for any
waves (including the de Broglie waves) in free space are uniformly distributed in the momentum space, with a constant density of
states, given by Equation (2.6.1):

dN. states gV . dN. states gV

Bk @2np " T @p  (2nh)p®

(3.1.4)

where g is the degeneracy of particle’s internal states (for example, for all spin-1/2 particles, the spin degeneracy g=2s+1=2).
Even regardless of the exact proportionality coefficient between dNgyqses and d3p, the very fact that this coefficient does not
depend on p means that the probability dWW to find the particle in a small region d*p = dp;dp,dps of the momentum space is
proportional to the right-hand side of Equation (3.1.2), with g given by Equation (3.1.3):

Maxwell distribution:

2mT 2mT

2 2 42 2
dWCexp{p—}d3pCexp{u}dpldpgdp& (3.1.5)

This is the famous Maxwell distribution.”> The normalization constant C' may be readily found from the last form of Equation (
3.1.5), by requiring the integral of dW over all the momentum space to equal 1. Indeed, the integral is evidently a product of three
similar 1D integrals over each Cartesian component p; of the momentum (j = 1, 2, 3), which may be readily reduced to the well-
known dimensionless Gaussian integral,® so that we get

T [(2mT)1/2 [ e df] " am1) ", (3.1.6)

(o¢]

+o0 pz. B
J
C= [/oo exp{—m}dpj

As a sanity check, let us use the Maxwell distribution to calculate the average energy corresponding to each half-degree of
freedom:
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+00 p2. p2
-2 1/3 it
< > / dw = |C [m o exp{ 5T }dpj

+o00 5

The last, dimensionless integral equals /7 / 24 so that, finally,

P B mu} T
<%>:<T>_ 5" (3.1.8)

This result is (fortunately :-) in agreement with the equipartition theorem (2.2.30). It also means that the r.m.s. velocity of each

particle is
1/2 T\ /2
Sv=(1?)V/2 = <§ v > = (301)1/2 = (?%) : (3.1.9)

For a typical gas (say, for N,, the air’s main component), with m ~ 28m, ~ 4.7 x 10726 kg, this velocity, at room temperature (
T =kpTx ~ kg x 300 K~ 4.1 x1072' J)is about 500 m/s, comparable with the sound velocity in the same gas — and with the
muzzle velocity of a typical handgun bullet. Still, it is measurable using even the simple table-top equipment (say, a set of two
concentric, rapidly rotating cylinders with a thin slit collimating an atomic beam emitted at the axis) that was available in the end of
the 19" century. Experiments using such equipment gave convincing early confirmations of the Maxwell distribution.

This is all very simple (isn’t it?), but actually the thermodynamic properties of a classical gas, especially its entropy, are more
intricate. To show that, let us apply the Gibbs distribution to a gas portion consisting of N particles, rather than just one of them. If
the particles are exactly similar, the eigenenergy spectrum {ej } of each of them is also exactly the same, and each value E,, of the
total energy is just the sum of particular energies e5(;) of the particles, where k(l), with I =1,2,... N, is the number of the energy
level on which the I** particle resides. Moreover, since the gas is classical, (Ni) << 1, the probability of having two or more
particles in any state may be ignored. As a result, we can use Equation (2.4.8) to write

7= Zexp{ } Zexp{ Z%} >3- Znexp{ } (3.1.10)

where the summation has to be carried over all possible states of each particle. Since the summation over each set {k(l)} concerns
only one of the operands of the product of exponents under the sum, it is tempting to complete the calculation as follows:

Z = Zgst ZeXP{%}-ZeXP{%}----Zexp{Ek ) } = (;exp{%}>N, (3.1.11)

k(1) k(2) k(N)
where the final summation is over all states of one particle. This formula is indeed valid for distinguishable particles.> However, if
the particles are indistinguishable (again, meaning that they are internally identical and free to move within the same spatial
region), Equation (3.1.11) has to be modified by what is called the correct Boltzmann counting:

Correct Boltzmann counting:

:%<Zexp{_%}) , (3.1.12)
k

that considers all quantum states different only by particle permutations, as the same state.

Z(...)ﬁ/(...)sttates - %/(...)d?’k_ %/(...)dgp. (3.1.13)

k

In application to Equation (3.1.12), this rule yields

https://phys.libretexts.org/@go/page/34706


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34706?pdf

LibreTextsw

) . (3.1.14)

/+oo p? d
ex — ;
o IR o (P

7= L[ 9 _
N!'\ (27R)3

The integral in the square brackets is the same one as in Equation (3.1.6), i.e. is equal to (27rmT)1/ 2 so that finally
N
1 [ gv AR mT \*?
Z=— 2mmT =—|gV 3.1.15
i ( @y 27 T) N7\ 2mn2 (8.1.15)
Now, assuming that N >> 1,7 and applying the Stirling formula, we can calculate the gas’ free energy:
F=T1 1 NT1 V+Nf(T) (3.1.16)
— n—-—— n— A
Z N ’
with
T \3/2
F(T)=-T{In|g( = 1. (3.1.17)
2mh?

The first of these relations exactly coincides with Equation (1.4.22), which was derived in Sec. 1.4 from the equation of state
PV = NT, using thermodynamic identities. At that stage, this equation of state was just postulated, but now we can derive it by
calculating the pressure from the second of Egs. (1.4.12), and Equation (3.1.16):

OF NT
P=——) =—. 3.1.18
(7),=7 @118
So, the equation of state of the ideal classical gas, with density n = N /V, is indeed given by Equation (1.4.21):
NT
P:7EnT. (3.1.19)

Hence we may use Egs. (1.4.23)-(1.4.28), derived from this equation of state, to calculate all other thermodynamic variables of the
gas. For example, using Equation (1.4.24) with f(T') given by Equation (3.1.17), for the internal energy and the specific heat of
the gas we immediately get

E:N[f(T)—T%(;)] :gNT, CVE%:%(?WE)V:S, (3.1.20)

in full agreement with Equation (3.1.8) and hence with the equipartition theorem.

Much less trivial is the result for entropy, which may be obtained by combining Egs. (1.4.23) and (3.1.16):

S:—(%)V:N[n%—%]. (3.1.21)

This formula,® in particular, provides the means to resolve the following gas mixing paradox (sometimes called the “Gibbs
paradox™). Consider two volumes, V; and V5, separated by a partition, each filled with the same gas, with the same density n, at
the same temperature 7', and hence with the same pressure P. Now let us remove the partition and let the gas portions mix; would
the total entropy change? According to Equation (3.1.21), it would not, because the ratio V /N = n, and hence the expression in
the square brackets is the same in the initial and the final state, so that the entropy is additive, as any extensive variable should be.
This makes full sense if the gas particles in both parts of the volume are truly identical, i.e. the partition’s removal does not change
our information about the system. However, let us assume that all particles are distinguishable; then the entropy should clearly
increase because the mixing would decrease our information about the system, i.e. increase its disorder. A quantitative description
of this effect may be obtained using Equation (3.1.11). Repeating for Z4 the calculations made above for Z, we readily get a

different formula for entropy:

dfaist (T) mT \**

_— . 3.1.22
e ( )

dr

Sdist =N |:an—

:| ) fdist (T) =-TIn
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Please notice that in contrast to the S given by Equation (3.1.21), this entropy includes the term InV instead of In(V/N), so that
Sair is not proportional to N (at fixed temperature T' and density N /V). While for distinguishable particles this fact does not
present any conceptual problem, for indistinguishable particles it would mean that entropy was not an extensive variable, i.e. would
contradict the basic assumptions of thermodynamics. This fact emphasizes again the necessity of the correct Boltzmann counting in
the latter case.

Using Equation (3.1.22), we can calculate the change of entropy due to mixing two gas portions, with N; and N, distinguishable
particles, at a fixed temperature 7" (and hence at unchanged function fg;s ):

ASgst = (N1 +No)In(V3 + Vo) — (N1 InV; + Ny InVa)
i+V, +N21nV1+V2
1 2
> 0. (3.1.23)

:Nlln

Note that for a particular case, V; = Vo =V /2, Equation (3.1.23) reduces to the simple result, ASgy;ss = (N1 + N2)1n2 , which
may be readily understood in terms of the information theory. Indeed, allowing each particle of the total number N = N; + N2 to
spread to a twice larger volume, we lose one bit of information per particle, i.e. AT = (N; +NN») bits for the whole system. Let
me leave it for the reader to show that Equation (3.1.23) is also valid if particles in each sub-volume are indistinguishable from
each other, but different from those in another sub-volume, i.e. for mixing of two different gases.? However, it is certainly not
applicable to the system where all particles are identical, stressing again that the correct Boltzmann counting (3.1.12) does indeed
affect the gas entropy, even though it may be not as consequential as the Maxwell distribution (3.1.5), the equation of state (
3.1.19), and the average energy (3.1.20).

Now let us briefly discuss two generalizations of our results for ideal classical gases. First, let us consider such gas in an external
field of potential forces. It may be described by replacing Equation (3.1.3) with
_n

€ = om +U(I‘k), (3.1.24)

where 1y, is the position of the & particular particle, and U(r) is the potential energy of the particle. If the potential U(r) is
changing in space sufficiently slowly,'® Equation (3.1.4) is still applicable, but only to small volumes, V' — dV = d®r whose
linear size is much smaller than the spatial scale of substantial variations of the function U(r) . Hence, instead of Equation (3.1.5),
we may only write the probability dW of finding the particle in a small volume d®rd?p of the 6-dimensional phase space:

2
dW =w(r,p)d3rd®p, w(r,p)= const x exp ) . (3.1.25)
2mT T

Hence, the Maxwell distribution of particle velocities is still valid at each point r, so that the equation of state (3.1.19) is also valid
locally. A new issue here is the spatial distribution of the total density,

n(r) = N/w(r,p)d3p, (3.1.26)

of all gas particles, regardless of their momentum/velocity. For this variable, Equation (3.1.25) yields'#

n(r) —n(O)exp{Ug) } (3.1.27)

where the potential energy at the origin (r =0) is used as the reference of U, and the local gas pressure may be still calculated
from the local form of Equation (3.1.19):

P(r) =n(r)T = P(0)exp {— Uj(f) } . (3.1.28)
P(h) = P(0)exp {:—0} ,  withhy= mig = "’ZZK . (3.1.29)

For the same N5, the main component of the atmosphere, at Tx = 300 K, hy &~ 7 km. This gives the correct order of magnitude of
the atmosphere’s thickness, though the exact law of the pressure change differs somewhat from Equation (3.1.29), because the flow
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of radiation from Sun and Earth cause a relatively small deviation of the atmospheric air from the thermal equilibrium: a drop of its
temperature 1" with height, with the so-called lapse rate of about 2% (~ 6.5 K) per km.

The second generalization I need to discuss is to particles with internal degrees of freedom. Now ignoring the potential energy
U(r), we may describe them by replacing Equation (3.1.3) with

S A (3.1.30)
2m K

where ¢ describes the internal energy spectrum of the kth particle. If the particles are similar, we may repeat all the above
calculations, and see that all their results (including the Maxwell distribution, and the equation of state) are still valid, with the only
exception of Equation (3.1.16-3.1.17), which now becomes

mT \*?
g( 2mh?2 )

As we already know from Egs. (1.4.27)-(1.4.28), this change may affect both specific heats of the ideal gas — though not their
difference, cy—cp = 1. They may be readily calculated for usual atoms and molecules, at not very high temperatures (say the room

fT)=-T<ln

E.l
+1+1In Zexp{—%} . (3.1.31)
%

temperature of ~ 25 meV), because in these conditions, &} >>T' for most their internal degrees of freedom, including the
electronic and vibrational ones. (The typical energy of the lowest electronic excitations is of the order of a few eV, and that of the
lowest vibrational excitations is only an order of magnitude lower.) As a result, these degrees of freedom are “frozen out”: they are
in their ground states, so that their contributions exp{—¢}, /T"} to the sum in Equation (3.1.31), and hence to the heat capacity, are
negligible. In monoatomic gases, this is true for all degrees of freedom besides those of the translational motion, already taken into
account by the first term in Equation (3.1.31), i.e. by Equation (3.1.17), so that their specific heat is typically well described by
Equation (3.1.20).

The most important exception is the rotational degrees of freedom of diatomic and polyatomic molecules. As quantum mechanics
shows,° the excitation energy of these degrees of freedom scales as h2/21I, where I is the molecule’s relevant moment of inertia.
In the most important molecules, this energy is rather low (e.g. for N,, it is close to 0.25 meV, i.e. ~ 1% of the room temperature),
so that at usual conditions they are well excited and, moreover, behave virtually as classical degrees of freedom, each giving a
quadratic contribution to the molecule’s energy, and hence obeying the equipartition theorem, i.e. giving an extra contribution of
T/2 to the energy, i.e. 1/2 to the specific heat.'® In polyatomic molecules, there are three such classical degrees of freedom
(corresponding to their rotations about three principal axes!”), but in diatomic molecules, only two.'® Hence, these contributions
may be described by the following generalization of Equation (3.1.20):

3/2, for monoatomic gases,
cy =< 5/2, for gases of diatomic molecules, (3.1.32)
3, for gases of polyatomic molecules.

Please keep in mind, however, that as the above discussion shows, this simple result is invalid at very low and very high
temperatures; its most notable violation is that the thermal activation of vibrational degrees of freedom for many important
molecules at temperatures of a few thousand K.

This page titled 3.1: Ideal Classical Gas is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Konstantin K.

Likharev via source content that was edited to the style and standards of the LibreTexts platform.

https://phys.libretexts.org/@go/page/34706


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34706?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Essential_Graduate_Physics_-_Statistical_Mechanics_(Likharev)/03%3A_Ideal_and_Not-So-Ideal_Gases/3.01%3A_Ideal_classical_gas
https://creativecommons.org/licenses/by-nc-sa/4.0
https://www.linkedin.com/in/konstantin-likharev-2389805/
https://sites.google.com/site/likharevegp/

LibreTextsw

3.2: Calculating Chemical Potentials

Now let us discuss properties of ideal gases of free, indistinguishable particles in more detail, paying special attention to the
chemical potential ¢ — which, for some readers, may still be a somewhat mysterious aspect of the Fermi and Bose distributions.
Note again that particle indistinguishability requires the absence of thermal excitations of their internal degrees of freedom, so that
in the balance of this chapter such excitations will be ignored, and the particle’s energy €5 will be associated with its “external”
energy alone: for a free particle in an ideal gas, with its kinetic energy (3.1.3).

Let us start from the classical gas, and recall the conclusion of thermodynamics that y is just the Gibbs potential per unit particle —
see Equation (1.5.7). Hence we can calculate p = G/N from Egs. (1.4.26) and (3.1.17). The result,

N [ 27h2\*/?
g_V(mT)

uz—Tln%—i—f(T)—i—Tln , (3.2.1)

which may be rewritten as

3/2
m } N [ 27h?
= =— , 3.2.2
eXp{ TS gv ( mT (3:2:2)
gives us some information about  not only for a classical gas but for quantum (Fermi and Bose) gases as well. Indeed, we already

know that for indistinguishable particles, the Boltzmann distribution (2.8.1) is valid only if (N;) << 1. Comparing this condition
with the quantum statistics (2.8.5) and (2.8.8), we see again that the condition of the gas behaving classically may be expressed as

exp{ “;E’“ } <<1 (3.2.3)

for all €. Since the lowest value of €; given by Equation (3.1.3) is zero, Equation (3.2.3) may be satisfied only if
exp{u/T} << 1. This means that the chemical potential of a classical gas has to be not just negative, but also “strongly negative”
in the sense

—u>>T. (3.2.4)
According to Equation (3.2.1-3.2.2), this important condition may be represented as

T >>Ty, (3.2.5)
with T defined as

Quantum scale of temperature:

h2 N 2/3 hZ 2/3 h2
TO_—(—) = <ﬁ) =, (3.2.6)

where 74, is the average distance between the gas particles:

1 VY3
Tave = m = (N) . (3.2.7)

In this form, the condition (3.2.4-3.2.5) is very transparent physically: disregarding the factor g%/® (which is typically of the order
of 1), it means that the average thermal energy of a particle, which is always of the order of 7', has to be much larger than the
energy of quantization of particle’s motion at the length r,,.. An alternative form of the same condition is!®

h

Tave >> ¢ /37, wherer, = W (3.2.8)

For a typical gas (say, N,, with m ~14m, ~2.3 X 10726 kg) at the standard room temperature (T =kp x300 K
~ 4.1 x 102! J), the correlation length . is close to 10" m, ie. is significantly smaller than the physical size @ ~ 3 x 10 m
of the molecule. This estimate shows that at room temperature, as soon as any practical gas is rare enough to be ideal (4. >> a),
it is classical, i.e. the only way to observe quantum effects in the translational motion of molecules is very deep refrigeration.
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According to Equation (3.2.8), for the same nitrogen molecule, taking 7qye ~ 10%a ~ 10~ m (to ensure that direct interaction
effects are negligible), the temperature should be well below 1 mK.

In order to analyze quantitatively what happens with gases when 7' is reduced to such low values, we need to calculate x for an
arbitrary ideal gas of indistinguishable particles. Let us use the lucky fact that the Fermi-Dirac and the Bose-Einstein statistics may
be represented with one formula:

1
ele=w)/T 41"

(N(e)) = (3.2.9)
where (and everywhere in the balance of this section) the top sign stands for fermions and the lower one for bosons, to discuss

fermionic and bosonic ideal gases in one shot.

If we deal with a member of the grand canonical ensemble (Figure 2.7.1), in which not only T" but also p is externally fixed, we
may use Equation (3.2.9) to calculate the average number N of particles in volume V. If the volume is so large that N >> 1, we
may use the general state counting rule (3.1.13) to get

_ 9V 3, gV dp 4 /00 Arpdp
N= (2m)3 /<N(E)>d k= (2mh)3 / el -ul/TL1 ~ (27h)3 J, ele®-u/T41" (3.2.10)

In most practical cases, however, the number NV of gas particles is fixed by particle confinement (i.e. the gas portion under study is
a member of a canonical ensemble — see Figure 2.4.1), and hence y rather than IV should be calculated. Let us use the trick already
mentioned in Sec. 2.8: if N is very large, the relative fluctuation of the particle number, at fixed p, is negligibly small (
dN/N ~1/4/N << 1), and the relation between the average values of N and  should not depend on which of these variables is
exactly fixed.

Hence, Equation (3.2.10), with  having the sense of the average chemical potential, should be valid even if N is exactly fixed, so
that the small fluctuations of N are replaced with (equally small) fluctuations of p. Physically, in this case the role of the p-fixing
environment for any sub-portion of the gas is played by the rest of it, and Equation (3.2.10) expresses the condition of self-
consistency of such chemical equilibrium.

So, at N >> 1, Equation (3.2.1(0) may be used for calculating the average w as a function of two independent parameters: IV (i.e.
the gas density n = N /V') and temperature T'. For carrying out this calculation, it is convenient to convert the right-hand side of
Equation (3.2.10) to an integral over the particle’s energy &(p) = p?/2m, so that p = (2me)"/?, and dp = (m/2¢)"/2de, getting

Basic equation for pi:

3/2 00 1/2d
_ gVm / £’ (3.2.11)
o el

B V27r2R3 e—p)/T 41

This key result may be represented in two other, more convenient forms. First, Equation (3.2.11), derived for our current (3D,
isotropic and parabolic-dispersion) approximation (3.1.3), is just a particular case of the following self-evident state-counting
relation

N:AwﬂmN@Ma (3.2.12)
where

9(€) = dNitates /de (3.2.13)

is the temperature-independent density of all quantum states of a particle — regardless of whether they are occupied or not. Indeed,
according to the general Equation (3.1.4), for our simple model (3.1.3),

- o sttates - d gV 47 3\ ng3/2 1/2
9&)=a)=—0— =% ( @y 37 ) Vamms©

(3.2.14)

so that we return to Equation (3.2.10).

On the other hand, for some calculations, it is convenient to introduce the following dimensionless energy variable: £ =¢/T, to
express Equation (3.2.11) via a dimensionless integral:
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N = VD) /oo ¢ g (3.2.15)
0

V2m2h3 e H/T+1

As a sanity check, in the classical limit (3.2.4-3.2.5), the exponent in the denominator of the fraction under the integral is much
larger than 1, and Equation (3.2.15) reduces to

gV (mT)*? /°° g2 gV(mT)? puy [
N= ~ e {—}/ e €de, at —pu>T. 3.2.16
Tonni )y et s CPATS ), € 3 Iz ( )
By the definition of the gamma function T'(¢),?° the last integral is just T'(3/2) = /2 /2, and we get
2n2KS 2 Ty \*/?
exp{ﬁ} _ 2Rt 2 (27r—0) , (3.2.17)
T oV (mT)y2 w T

which is exactly the same result as given by Equation (3.2.1-3.2.2), obtained earlier in a rather different way — from the Boltzmann
distribution and thermodynamic identities.

Unfortunately, in the general case of arbitrary y, the integral in Equation (3.2.15) cannot be worked out analytically.2! The best we
can do is to use Ty, defined by Equation (3.2.6), to rewrite Equation (3.2.15) in the following convenient, fully dimensionless
form:

T 1 e gzge 173 4918
?o_[\/iﬂ/o ef—ﬂ/Til] ’ (8.2.18)

and then use this relation to calculate the ratios T'/Tp and /Ty = (u/T) x (T'/To) , as functions of p/T numerically. After that,
we may plot the results versus each other, now considering the first ratio as the argument. Figure 3.2.1 below shows the resulting
plots, for both particle types. They show that at high temperatures, T' >> Tj , the chemical potential is negative and approaches the
classical behavior given by Equation (3.2.17) for both fermions and bosons — just as we could expect. However, at temperatures
T ~ Ty the type of statistics becomes crucial. For fermions, the reduction of temperature leads to p changing its sign from
negative to positive, and then approaching a constant positive value called the Fermi energy, ep ~ 7.595 T at T'— 0. On the
contrary, the chemical potential of a bosonic gas stays negative, and then turns into zero at a certain critical temperature
T. ~ 3.313 Tp. Both these limits, which are very important for applications, may (and will be :-) explored analytically, separately
for each statistics.

¢k, s fermions
T, 6 e

=
o o
Ny

TIT,

Figure 3.2.1: The chemical potential of an ideal gas of N >> 1 indistinguishable quantum particles, as a function of temperature
at a fixed gas density n = N/V (i.e. fixed Ty ox n? 3), for two different particle types. The dashed line shows the classical
approximation (3.2.17), valid only at T' >> Tj .
Before carrying out such studies (in the next two sections), let me show that, rather surprisingly, for any non-relativistic, ideal
quantum gas, the relation between the product PV and the energy,

Ideal gas: PV vs. E
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2
PV =ZE, (3.2.19)

is exactly the same as follows from Egs. (3.1.19) and (3.1.20) for the classical gas, and hence does not depend on the particle
statistics. To prove this, it is sufficient to use Egs. (2.8.4) and (2.8.7) for the grand thermodynamic potential of each quantum state,
which may be conveniently represented by a single formula,

O =T ln(l ieW—Ek)/T), (3.2.20)

and sum them over all states k, using the general summation formula (3.1.13). The result for the total grand potential of a 3D gas
with the dispersion law (3.1.3) is

3/2

g[ /oo ( (u— 2/2m)/T 2 gi m
Q=T In(1+e¥™ dwp“dp = FT
" (27mR)* Jo : ‘ ) =T V2n2h3

Working out this integral by parts, exactly as we did it with the one in Equation (2.6.10), we get

/ ln(l j:e(”’ﬁ)/T)sl/st. (3.2.21)
0

2 gVm3? [ &3%e 9 [
- _E \/571-2}13 \/0' 6(5_”)/T:t 1 = _E A €93 (€)<N(€)>d€ (3222)
But the last integral is just the total energy E of the gas:
Ideal gas: energy
gv © p? 4mpdp gVmd/? /oo £3/24¢ /oo
- om = = N(e))d 3.2.23
o ST T~ e |, e =), w@OWEnd | 3229

so that for any temperature and any particle type, 2 = (2/3)E. But since, from thermodynamics, Q@ =— PV, we have Equation (
3.2.19) proved. This universal relation® will be repeatedly used below.

This page titled 3.2: Calculating Chemical Potentials is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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3.3: Degenerate Fermi gas

Analysis of low-temperature properties of a Fermi gas is very simple in the limit 7" = 0. Indeed, in this limit, the Fermi-Dirac
distribution (2.8.5) is just the step function:

1, fore<
wen={5 e (3.3.1)
- see by the bold line in Figure 3.3.1a. Since ¢ = p?/2m is isotropic in the momentum space, in that space the particles, at 7' =0,
fully occupy all possible quantum states inside a sphere (frequently called either the Fermi sphere or the Fermi sea) with some
radius pr (Figure 3.3.1b), while all states above the sea surface are empty. Such degenerate Fermi gas is a striking manifestation
of the Pauli principle: though in thermodynamic equilibrium at 7' = 0 all particles try to lower their energies as much as possible,
only g of them may occupy each translational (“orbital”) quantum state. As a result, the sphere’s volume is proportional to the
particle number N, or rather to their density n = N /V.

(Ne)) (a)

I NT=0
|}
\
\]
‘\\T << &
0 £y £

Figure 3.3.1: Representations of the Fermi sea: (a) on the Fermi distribution plot, and (b) in the momentum space.

Indeed, the radius pr may be readily related to the number of particles N using Equation (3.2.10), with the upper sign, whose
integral in this limit is just the Fermi sphere’s volume:

gV pr 2 gV 4 3
N= dmp?dp — s 3.2
(27rh)3/0 PP = onRys 3 PF (3:3.2)

Now we can use Equation (3.1.3) to express via N the chemical potential y+ (which, in the limit 7" = 0, it bears the special name of
the Fermi energy )23

Fermi energy:

2 2 2/3 4N\ 1/3

Pr h s N o7

= = =— — = — To~T. T 3.
ER 143 |T—0 2 2 (671' gV 2 0 7.595 0, (3 3 3)

where T} is the quantum temperature scale defined by Equation (3.2.6). This formula quantifies the low temperature trend of the
function p(T"), clearly visible in Figure 3.2.1, and in particular, explains the ratio e /T mentioned in Sec. 2. Note also a simple
and very useful relation,

w

N . 3 N
=— , le.gslep)==—— (3.3.4)
2 gs(er)

ER )
25F

that may be obtained immediately from the comparison of Egs. (3.2.14) and (3.3.2).
The total energy of the degenerate Fermi gas may be (equally easily) calculated from Equation (3.2.23):

gV Prop? 9 gV Axw pi’m 3
FE = —4 dp = ——= = —¢rN 3.3.5
/0 2m L P T 2xmp2m 5 500 (3:3:5)

(27h)3

showing that the average energy, (¢) = E//N, of a particle inside the Fermi sea is equal to 3/5 of that (¢r) of the particles in the
most energetic occupied states, on the Fermi surface. Since, according to the formulas of Chapter 1, at zero temperature
H=G=Np,and F = E, the only thermodynamic variable still to be calculated is the gas pressure P. For it, we could use any
of the thermodynamic relations P = (H—-E)/V or P =—(0F/8V)r, but it is even easier to use our recent result (3.2.19).
Together with Equation (3.3.5), it yields

https://phys.libretexts.org/@go/page/34708



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34708?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Essential_Graduate_Physics_-_Statistical_Mechanics_(Likharev)/03%3A_Ideal_and_Not-So-Ideal_Gases/3.03%3A_Degenerate_Fermi_gas

LibreTextsw

2E 2 N [36x%\"? h2n5/3
22 2,2 (25) P ~3.035P), where Py=nT)— —" . (3.3.6)
3Vv. 5V 125 mg?/3
From here, it is straightforward to calculate the bulk modulus (reciprocal compressibility),?*
oP 2 N
(av)T 3Ty (3:3.7)

which may be simpler to measure experimentally than P.

Perhaps the most important example®® of the degenerate Fermi gas is the conduction electrons in metals — the electrons that belong
to outer shells of the isolated atoms but become shared in solid metals, and as a result, can move through the crystal lattice almost
freely. Though the electrons (which are fermions with spin s =1/2 and hence with the spin degeneracy g=2s+1=2) are
negatively charged, the Coulomb interaction of the conduction electrons with each other is substantially compensated by the
positively charged ions of the atomic lattice, so that they follow the simple model discussed above, in which the interaction is
disregarded, reasonably well. This is especially true for alkali metals (forming Group 1 of the periodic table of elements), whose
experimentally measured Fermi surfaces are spherical within 1% — even within 0.1% for Na.

- Er (‘e\‘/)‘E‘ql‘lation ( K (GP?) ‘Equation ( K (GPa) experiment y(mce.ll/m(?le“K2) 'y(mcal/r%‘lole'Kz)
3.3.33.3.9 3.3.7) Equation (3.3.18) experiment
Na 3.24 923 642 0.26 0.35
K 2.12 319 281 0.40 0.47
Rb 1.85 230 192 0.46 0.58
Cs 1.59 154 143 0.53 0.77

Looking at the values of e listed in this table, note that room temperatures (Ix ~ 300 K) correspond to 7' ~ 25 meV. As a result,
virtually all experiments with metals, at least in their solid or liquid form, are performed in the limit 7' << e . According to
Equation (3.2.10), at such temperatures, the occupancy step described by the Fermi-Dirac distribution has a non-zero but relatively
small width of the order of T' — see the dashed line in Figure 3.3.1a Calculations for this case are much facilitated by the so

called Sommerfeld expansion formula®® for the integrals like those in Egs. (3.2.12) and (3.2.23):

Sommerfeld expansion:

w2, do(p)

I(T) E/Ooo<,0(5)<N(a))daz/ouga(es)des—k?T2 i for T << p, (3.3.8)

where ¢(g) is an arbitrary function that is sufficiently smooth at € =y and integrable at e =0. To prove this formula, let us
introduce another function,

fle)= /0E @(e)de',  sothat p(e) = dj;(;) , (3.3.9)
and work out the integral I(T") by parts:
(1) = /0 " %(;)av(e))de _ / E:o (N(e))df (3.3.10)

~wensers - [ reawer = [~ e [F25E a

As evident from Equation (2.8.5) and/or Figure 3.3.1q, at T' << p the function —9(N (€))/0e is close to zero for all energies,
besides a narrow peak of the unit area, at € = p. Hence, if we expand the function f(g) in the Taylor series near this point, just a
few leading terms of the expansion should give us a good approximation:
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0 Oe Oe
+% ZL“) /Ooo(s—u)2 [—%] de. (3.3.11)
/Ooo(euf [Wg—f»] de ~T? /_:o Qd%(ﬁ) dg_4T2/O+OO % :4T271T—;. (3.3.12)

Being plugged into Equation (3.3.11), this result proves the Sommerfeld formula (3.3.8).

The last preparatory step we need to make is to account for a possible small difference (as we will see below, also proportional to
T'2) between the temperature-dependent chemical potential 1 (7") and the Fermi energy defined as e = p(0), in the largest (first)
term on the right-hand side of Equation (3.3.8), to write

e m? L, dp(p w2, dp(p
1)~ [ oot (r-enyol) + =T <104 (u- e o+ T (589
0 6 du 6 du
Now, applying this formula to Equation (3.2.12) and the last form of Equation (3.2.23), we get the following results (which are
valid for any dispersion law £(p) and even any dimensionality of the gas):

71'2
N(T) = N0)+ (1 erolo) + o722, (3.3.14)
7'['2
B(T) = B(0) + (u ~=r)ug(h) + 75T g (3.3.15)

If the number of particles does not change with temperature, N (T') = N(0), as in most experiments, Equation (3.3.14) gives the
following formula for finding the temperature-induced change of w:
2
n? o, 1 dg(p)
p—ep=—"7T"—Fc——. (3.3.16)

6 g(u) du
Note that the change is quadratic in 7' and negative, in agreement with the numerical results shown with the red line in Figure
3.2.1 Plugging this expression (which is only valid when the magnitude of the change is much smaller than £¢) into Equation (
3.3.15), we get the following temperature correction to the energy:

71.2

E(T) — E(0) = ——g(u)T*, (3.3.17)
where within the accuracy of our approximation, x may be replaced with €. (Due to the universal relation (3.2.19), this result also
gives the temperature correction to the Fermi gas’ pressure.) Now we may use Equation (3.3.17) to calculate the heat capacity of

the degenerate Fermi gas:

Low-T heat capacity:

T

B 2
Cy = (8 ) —~T, withy= %g(gp), (3.3.18)
\4

According to Equation (3.3.4), in the particular case of a 3D gas with the isotropic and parabolic dispersion law (3.1.3), Equation (
3.3.18 reduces to

2 N c 27
L, deep=—-L=2_—- <1. (3.3.19)

= N 2 Er

7EF

This important result deserves a discussion. First, note that within the range of validity of the Sommerfeld approximation (

T << eF), the specific heat of the degenerate gas is much smaller than that of the classical gas, even without internal degrees of
freedom: ¢y = 3/2 — see Equation (3.1.20). The physical reason for such a low heat capacity is that the particles deep inside the
Fermi sea cannot pick up thermal excitations with available energies of the order of T' << er, because the states immediately
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above them are already occupied. The only particles (or rather quantum states, due to the particle indistinguishability) that may be
excited with such small energies are those at the Fermi surface, more exactly within a surface layer of thickness Ae ~ T << ep ,
and Equation (3.3.19) presents a very vivid manifestation of this fact.

The second important feature of Egs. (3.3.18-(3.3.19) is the linear dependence of the heat capacity on temperature, which
decreases with a reduction of 7" much slower than that of crystal vibrations — see Equation (2.6.21). This means that in metals the
specific heat at temperatures T' << Tp is dominated by the conduction electrons. Indeed, experiments confirm not only the linear
dependence (3.3.19) of the specific heat,3! but also the values of the proportionality coefficient v = Cy /T for cases when e can
be calculated independently, for example for alkali metals — see the two rightmost columns of Table 1 above. More typically,
Equation (3.3.18) is used for the experimental measurement of the density of states on the Fermi surface, g(er) — the factor which
participates in many theoretical results, in particular in transport properties of degenerate Fermi gases (see Chapter 6 below).

This page titled 3.3: Degenerate Fermi gas is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Konstantin
K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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3.4: The Bose-Einstein condensation

BEC: critical temperature
1 [ l2ge) P 1 3\ . (3
o il e B v AL
\/571'2 0 e —1 \/§7l'2 2 2

the result explaining the T /T ratio mentioned in Sec. 2 and indicated in Figure 3.2.1.

(a) (b)

-2/3
)] ~ 3.313T), (3.4.1)
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Figure 3.4.1: The Bose-Einstein condensation: (a) the chemical potential of the gas and (b) its pressure, as functions of

temperature. The dashed line corresponds to the classical gas.
Let us have a good look at the temperature interval 0 < T < T, , which cannot be directly described by Equation (3.2.11) (with the
appropriate negative sign in the denominator), and hence may look rather mysterious. Indeed, within this range, the chemical
potential y, cannot either be negative or equal zero, because according to Equation (3.4.1), in this case, Equation (3.2.11) would
give a value of IV smaller than the number of particles we actually have. On the other hand, i cannot be positive either, because
the integral (3.2.11) would diverge at € — p due to the divergence of (N(e)) — see, e.g., Figure 2.8.2. The only possible
resolution of the paradox, suggested by A. Einstein in 1925, is as follows: at T' < T, the chemical potential of each particle of the
system still equals exactly zero, but a certain number (Ny of N) of them are in the ground state (with € = p?/2m = 0), forming
the so-called Bose-Einstein condensate, usually referred to as the BEC. Since the condensate particles do not contribute to Equation
(3.2.11) (because of the factor el/? = 0), their number Ny may be calculated by using that formula (or, equivalently, Equation (
3.2.15)), with p = 0, to find the number (IN— Np) of particles still remaining in the gas, i.e. having energy ¢ > 0:

V(mT 3/2 o ¢1/24
N — N, = D) / ¢ 7dE (3.4.2)
V2m2R3  Jo e -1
T 3/2 00 1/2d
N = V(L) / & dE (3.4.3)
V2m2h3  Jo et -1
Dividing both sides of Egs. (3.4.2) and (3.4.3), we get an extremely simple and elegant result:
N_N T\ 3/2 T\ 3/2
TO = (E) , sothat Ng =N [1 - (E) , forT <T.. (3.4.4)

Please note that this result is only valid for the particles whose motion, within the volume V/, is free — in other words, for a system
of free particles confined within a rigid-wall box of volume V. In most experiments with the Bose-Einstein condensation of dilute
gases of neutral (and hence very weakly interacting) atoms, they are held not in such a box, but at the bottom of a “soft” potential

https://phys.libretexts.org/@go/page/34709


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34709?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Essential_Graduate_Physics_-_Statistical_Mechanics_(Likharev)/03%3A_Ideal_and_Not-So-Ideal_Gases/3.04%3A_The_Bose-Einstein_condensation

LibreTextsw

well, which may be well approximated by a 3D quadratic parabola: U(r) = mw?r? /2. Tt is straightforward (and hence left for the
reader’s exercise) to show that in this case, the dependence of Ny(T') is somewhat different:

T 3
NFNll_(T:)

where T¢* is a different critical temperature, which now depends on Aw, i.e. on the confining potential’s “steepness”. (In this case,
V is not exactly fixed; however, the effective volume occupied by the particles at 7' =T is related to this temperature by a
formula close to Equation (3.4.1), so that all estimates given above are still valid.) Figure 3.4.2 shows one of the first sets of
experimental data for the Bose-Einstein condensation of a dilute gas of neutral atoms. Taking into account the finite number of
particles in the experiment, the agreement with the simple theory is surprisingly good.

3/25/2 poo ¢3/24 3/25/2 5 5
B(T,) = gV === / S gngm —TI'(=)¢(z)~0.7701 NT,, (3.4.6)
ﬂﬂzhz’, o e—1 \/572;-13 2 2

so that using the universal relation (3.2.19), we get the pressure value,

, forT <Tg, (3.4.5)

2 E(T.) (¢(5/2) N N
P(T,) =~ = —T,.~0.5134 =T, ~1.701 P, 3.4.7
( c) 3 % 4(3/2) % c v c 0, ( )
which is somewhat lower than, but comparable to P(0) for the fermions — cf. Equation (3.3.6).
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Figure 3.4.2: The total number N of trapped 8" Rb atoms (inset) and their ground-state fraction Ny/N, as functions of the ratio
T/T.,, as measured in one of the pioneering experiments — see J. Ensher et al., Phys. Rev. Lett. 77, 4984 (1996). In this experiment,

T was as low as 0.28 x 10~% K. The solid line shows the simple theoretical dependence N (T') given by Equation (3.4.5), while
other lines correspond to more detailed theories taking into account the finite number N of trapped atoms. atoms. © 1996 APS,
reproduced with permission.

Now we can use the same Equation (3.2.23), also with p# = 0, to calculate the energy of the gas at T' < T,
m3/275/2 00 63/2d£
=gV / .
V2m2R3 Jo  ef—1

Comparing this relation with the first form of Equation (3.4.6), which features the same integral, we immediately get one more
simple temperature dependence:

E(T)

(3.4.8)

BEC: energy

5/2
E(T) E(TC)<—) , for T <T.. (3.4.9)

From the universal relation (3.2.19), we immediately see that the gas pressure follows the same dependence:

BEC: pressure
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5/2
P(T) :P(TJ(FC) , for T <T.. (3.4.10)

This temperature dependence of pressure is shown with the blue line in Figure 3.4.1b The plot shows that for all temperatures
(both below and above T.) the pressure is lower than that of the classical gas of the same density. Now note also that since,
according to Egs. (3.3.6) and (3.4.7), P(T.) x Py V —5/3 | while according to Egs. (3.2.6) and (3.4.1), T, < Ty x V %/ | the
pressure (3.4.1() is proportional to v 5/3 / (V’2/ 3)5/ 2=V7 ie. does not depend on the volume at all! The physics of this result
(which is valid at T' < T, only) is that as we decrease the volume at a fixed total number N of particles, more and more of them go
to the condensate, decreasing the number (/N— NNp) of particles in the gas phase, but not changing its spatial density pressure. Such
behavior is very typical for the coexistence of two different phases of the same matter — see, in particular, the next chapter.

The last thermodynamic variable of major interest is heat capacity, because it may be most readily measured. For temperatures
T < T, it may be easily calculated from Equation (3.4.9):

OE 5 T3/2
Cy(T) = (—) = E(T. Py (3.4.11)
T ) ny 2 T
so that below T, the capacity increases with temperature, at the critical temperature reaching the value
5 E(T.
Cy(T,) = 5 ;C) ~1.925 N, (3.4.12)

which is approximately 28% above that (3N /2) of the classical gas. (As a reminder, in both cases we ignore possible contributions
from the internal degrees of freedom.) The analysis for 7' > T, is a little bit more cumbersome because differentiating £ over
temperature — say, using Equation (3.2.23) — one should also take into account the temperature dependence of u that follows from
Equation (3.2.11) — see also Figure 3.4.1. However, the most important feature of the result may be predicted without the
calculation (which is being left for the reader’s exercise). Namely, since at 7' >> T, the heat capacity has to approach the classical
value 1.5 N, starting from the value (3.4.12), it must decrease with temperature at T' > T, thus forming a sharp maximum (a
“cusp”) at the critical point T' = T, — see Figure 3.4.3.

3313
25 l
21.925 —».
C 7
N W$W—r——T T
1
0.5
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TIT,

Figure 3.4.3: Temperature dependences of the heat capacity of an ideal Bose-Einstein gas, numerically calculated from Egs. (

3.2.23) and (3.2.11) for T' > T, and given by Equation (3.4.11) for T' < T,.
Such a cusp is a good indication of the Bose-Einstein condensation in virtually any experimental system, especially because inter-
particle interactions (unaccounted for in our simple discussion) typically make this feature even more substantial, frequently
turning it into a weak (logarithmic) singularity. Historically, such a singularity was the first noticed, though not immediately
understood sign of the Bose-Einstein condensation, observed in 1931 by W. Keesom and K. Clusius in liquid “He at its A-point
(called so exactly because of the characteristic shape of the Cy(T") dependence) T' =T, ~ 2.17 K. Other milestones of the Bose-
Einstein condensation studies include:

o the experimental discovery of superconductivity (which was later explained as the result of the Bose-Einstein condensation of
electron pairs) by H. Kamerlingh-Onnes in 1911;

o the development of the Bose-Einstein statistics, and predicting the condensation, by S. Bose and A. Einstein, in 1924-1925;

o the discovery of superfluidity in liquid  He by P. Kapitza and (independently) by J. Allen and D. Misener in 1937, and its
explanation as a result of the Bose-Einstein condensation by F. and H. Londons and L. Titza, with further significant
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elaborations by L. Landau — all in 1938;

o the explanation of superconductivity as a result of electron binding into Cooper pairs, with a simultaneous Bose-Einstein
condensation of the resulting bosons, by J. Bardeen, L. Cooper, and J. Schrieffer in 1957

o the discovery of superfluidity of two different phases of ®He, due to the similar Bose-Einstein condensation of pairs of its
fermion atoms, by D. Lee, D. Osheroff, and R. Richardson in 1972;

o the first observation of the Bose-Einstein condensation in dilute gases (3"Ru by E. Cornell, C. Wieman, et al., and ?>Na by W.
Ketterle et al.) in 1995.

The importance of the last achievement stems from the fact that in contrast to other Bose Einstein condensates, in dilute gases (with
the typical density n as low as ~ 10 cm~?) the particles interact very weakly, and hence many experimental results are very
close to the simple theory described above and its straightforward elaborations — see, e.g., Figure 3.4.2.> On the other hand, the
importance of other Bose-Einstein condensates, which involve more complex and challenging physics, should not be
underestimated — as it sometimes is.

Perhaps the most important feature of any Bose-Einstein condensate is that all Ny condensed particles are in the same quantum
state, and hence are described by exactly the same wavefunction. This wavefunction is substantially less “feeble” than that of a
single particle — in the following sense. In the second quantization language,® the well-known Heisenberg’s uncertainty relation
may be rewritten for the creation/annihilation operators; in particular, for bosons,

|6ada’| > 1. (3.4.13)

Since a and &' are the quantum-mechanical operators of the complex amplitude a = Aexp{iy} and its complex conjugate
a* = Aexp{-ip}, where A and ¢ are real amplitude and phase of the wavefunction, Equation (3.4.13) yields the following
approximate uncertainty relation (strict in the limit ¢ << 1) between the number of particles N = AA* and the phase ¢:

§Nép >1/2. (3.4.14)

This means that a condensate of N >> 1 bosons may be in a state with both phase and amplitude of the wavefunction behaving
virtually as c-numbers, with very small relative uncertainties: 6N << N,d¢p << 1. Moreover, such states are much less
susceptible to perturbations by experimental instruments. For example, the electric current carried along a superconducting wire by
a coherent Bose-Einstein condensate of Cooper pairs may be as high as hundreds of amperes. As a result, the “strange” behaviors
predicted by the quantum mechanics are not averaged out as in the usual particle ensembles (see, e.g., the discussion of the density
matrix in Sec. 2.1), but may be directly revealed in macroscopic, measurable dynamics of the condensate.

For example, the density j of the electric “supercurrent” of the Cooper pairs may be described by the same formula as the well-
known usual probability current density of a single quantum particle,?” just multiplied by the electric charge ¢ =— 2e of a single
pair, and the pair density n:

j=qn% (V<p— 2A), (3.4.15)

where A is the vector potential of the (electro)magnetic field. If a superconducting wire is not extremely thin, the supercurrent does
not penetrate into its interior.® As a result, the integral of Equation (3.4.15), taken along a closed superconducting loop, inside its
interior (where j = 0), yields

i?{ A -dr=Ap =21M, (3.4.16)
kJe

where M is an integer. But, according to the basic electrodynamics, the integral on the left-hand side of this relation is nothing
more than the flux ® of the magnetic field & piercing the wire loop area A. Thus we immediately arrive at the famous magnetic
flux quantization effect:

27h

& z/ Bod?r = M®,, where &)= ﬁ ~2.07 x 10 Wb, (3.4.17)
A

which was theoretically predicted in 1950 and experimentally observed in 1961. Amazingly, this effect holds even “over miles of
dirty lead wire”, citing H. Casimir’s famous expression, sustained by the coherence of the Bose-Einstein condensate of Cooper
pairs.
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Other prominent examples of such macroscopic quantum effects in Bose-Einstein condensates include not only the superfluidity
and superconductivity as such, but also the Josephson effect, quantized Abrikosov vortices, etc. Some of these effects are briefly
discussed in other parts of this series.3?

This page titled 3.4: The Bose-Einstein condensation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by

Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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3.5: Gases of weakly interacting particles

Now let us discuss the effects of weak particle interaction effects on properties of their gas. (Unfortunately, I will have time to do that
only very briefly, and only for classical gases.*?) In most cases of interest, particle interaction may be well described by a certain
potential energy U, so that in the simplest model, the total energy is
N2
E=Y L 4U(ry,..,15...,18), (3.5.1)

P 2m

where ry, is the radius-vector of the k™ particle's center.*! First, let us see how far would the statistical physics allow us to proceed for
an arbitrary potential U. For N >> 1, at the calculation of the Gibbs statistical sum (2.4.8), we may perform the usual transfer from
the summation over all quantum states of the system to the integration over the 6 N-dimensional space, with the correct Boltzmann
counting:

_ 1 gN N p2 U (1‘1 ...I‘N)
_ En/T _ J 3 3 _ ) 3 3
Z—Eme _>N!(27rh)3N/eXp{ E o T dpl...de/exp T d’ry...d°ry

k=1

(1 gNv~N NP 3 5 1 U(ry,...tx) | 3 3

k=1

But according to Equation (3.1.14), the first operand in the last product is just the statistical sum of an ideal gas (with the same g, NV,
V, and T'), so that we may use Equation (2.4.13) to write

1 1
F =Fieq —Tln[w /d37"1. .. d37"Ne_U/T:| = Figew —T'ln |:1 + W /d37"1. .. d37’N(€_U/T — 1):| ) (3.5.3)

where Fjgeq is the free energy of the ideal gas (i.e. the same gas but with U = 0), given by Equation (3.1.16 — 3.1.17).

I believe that Equation (3.5.3) is a very convincing demonstration of the enormous power of statistical physics methods. Instead of
trying to solve an impossibly complex problem of classical dynamics of N >> 1 (think of N ~ 10?3) interacting particles, and only
then calculating appropriate ensemble averages, the Gibbs approach reduces finding the free energy (and then, from thermodynamic
relations, all other thermodynamic variables) to the calculation of just one integral on its right-hand side of Equation (3.5.3). Still, this
integral is 3 N-dimensional and may be worked out analytically only if the particle interactions are weak in some sense. Indeed, the last
form of Equation (3.5.3) makes it especially evident that if U — 0 everywhere, the term in the parentheses under the integral vanishes,
and so does the integral itself, and hence the addition to Fjgeq; -

Now let us see what would this integral yield for the simplest, short-range interactions, in which the potential U is substantial only
when the mutual distance r;;; =r;—r; between the centers of two particles is smaller than certain value 2rj, where 7y may be
interpreted as the particle's radius. If the gas is sufficiently dilute, so that the radius 7y is much smaller than the average distance 74y
between the particles, the integral in the last form of Equation (3.5.3) is of the order of (27r9)3", i.e. much smaller than
(Pave)®™¥ = V'V . Then we may expand the logarithm in that expression into the Taylor series with respect to the small second term in
the square brackets, and keep only its first non-zero term:

F~F, fi/d?’r &r (e*U/T f1) (3.5.4)

~ L'ideal % N 1--- N . -J.

Moreover, if the gas density is so low, the chances for three or more particles to come close to each other and interact (collide)
simultaneously are typically very small, so that pair collisions are the most important. In this case, we may recast the integral in
Equation (3.5.4) as a sum of N(N—-1)/2 ~ N2 /2 similar terms describing such pair interactions, each of the type

VN*Q/(e*U(’kk’)/Tfl) Bridiry. (3.5.5)

It is convenient to think about the r;;; =r;—r; as the radius-vector of the particle number k in the reference frame with the origin
placed at the center of the particle number &’ — see Figure 3.5.1a.
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Figure 3.5.1: The definition of the interparticle distance vectors at their (a) pair and (b) triple interactions.

Then in Equation (3.5.5), we may first calculate the integral over ry, while keeping the distance vector ry, and hence U(ry),
constant, getting one more factor V. Moreover, since all particle pairs are similar, in the remaining integral over r;;; we may drop the
radius-vector's index, so that Equation (3.5.4) becomes

T
F = Fige — —— —V N1 / (e*UWT - 1) d°r = Figea + 7 N*B(T), (3.5.6)
where the function B(T), called the second virial coefficient,*? has an especially simple form for spherically-symmetric interactions:

Second virial coefficient:

1 1 [
B(T) = / (1 —e—U(r>/T) d'r— 5 /0 amrtdr (1 e VT, (3.5.7)

From Equation (3.5.6), and the second of the thermodynamic relations (1.4.12), we already know something particular about the
equation of state P(V,T):

N N 2] . (3.5.8)

OF N2T
P=—(—=— =P B(T)=T |+ +B(T)—5
We see that at a fixed gas density n = N/V/, the pair interaction creates additional pressure, proportional to (N/V)? =n? and a
function of temperature, B(T')T.

Let us calculate B(T") for a few simple models of particle interactions. The solid curve in Figure 3.5.2 shows (schematically) a typical
form of the interaction potential between electrically neutral atoms/molecules. At large distances the interaction of particles that do not
their own permanent electrical dipole moment p, is dominated by the attraction (the so-called London dispersion force) between the
correlated components of the spontaneously induced dipole moments, giving U(r) — r~% at » — 00.#3 At closer distances the
potential is repulsive, growing very fast at » — 0, but its quantitative form is specific for particular atoms/molecules.** The crudest
description of such repulsion is given by the so-called hardball model:

(3.5.9)

| 400, for0 <r<2r,
ufr)= {0, for 2rg <r < oo,

— see the dashed line and the inset in Figure 3.5.2.
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Figure 3.5.2: Pair interactions of particles. Solid line: a typical interaction potential; dashed line: its hardball model (3.5.9); dash-
dotted line: the improved model (3.5.11) — all schematically. The inset illustrates the hardball model’s physics.

As Equation (3.5.7) shows, in this model the second virial coefficient is temperature-independent:

1 [2m 2 4
B(T)=b= 5 / 4rridr = %(27‘0)3 =4Vy, where V= ?ﬂ-rg, (3.5.10)
0
so that the equation of state (3.5.8) still gives a linear dependence of pressure on temperature.
R for 0 < r < 27,
U(r)_{U(r), with |U| << T, for2ry <r < oo. (3.5.11)
For this improved model, Equation (3.5.7) yields:
1 /> U(r o0
B(T):b+—/ 47rr2dr£ Eb—g, withaz27r/ rdr|U(r)|. (3.5.12)
2 2o T T 279
In this model, the equation of state (3.5.8) acquires a temperature-independent term:
N (N)? a N N\? N2
P=T|Z+(7) (b-2)| =7 |5 +0(5) | -al5) - 3.5.13
v (v) C-p)| =7 (7) (%) 6519

Still, the correction to the ideal-gas pressure is proportional to (IV/V')? and has to be relatively small for this result to be valid.

Generally, the right-hand side of Equation (3.5.13) may be considered as the sum of two leading terms in the general expansion of P
into the Taylor series in the density n = N /V of the gas:

X () o () ..

where C(T') is called the third virial coefficient. It is natural to ask how can we calculate C'(T") and the higher virial coefficients. This
may be done, first of all, just by a careful direct analysis of Equation (3.5.4),%® but I would like to use this occasion to demonstrate a
different, very interesting and counter-intuitive approach, called the cluster expansion method,*” which allows streamlining such
calculations.

Pressure: virial expansion

P=T : (3.5.14)

Let us apply to our system, with the energy given by Equation (3.5.1), the grand canonical distribution. (Just as in Sec. 2, we may
argue that if the average number (') of particles in a member of a grand canonical ensemble, with fixed y and 7', is much larger than
1, the relative fluctuations of N are small, so that all its thermodynamic properties should be similar to those when IV is exactly fixed.)
For our current case, Equation (2.7.8) takes the form

00 N 2

p
0=-T1 § Z with Zy = ﬂN/tE e Enn/T | _—§ £+ U(r, .. ) 3.5.15
nN:() N 1 N =€ . (& s Lim, N 2 B (7’1» aTN) ( )
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(Notice that here, as at all discussions of the grand canonical distribution, N means a particular rather than the average number of
particles.) Now let us try to forget for a minute that in real systems of interest the number of particles is extremely large, and start to
calculate, one by one, the first terms Z .

In the term with N =0, both contributions to E,, x vanish, and so does the factor uN /T, so that Zy = 1. In the next term, with
N =1, the interaction term vanishes, so that F,, 1 is reduced to the kinetic energy of one particle, giving

—e“/TZexp{ 2mT} (3.5.16)

Making the usual transition from the summation to integration, we may write

gV p? 3
2nh)? expy —5 d°p, and I; =1. (3.5.17)

This is the same simple (Gaussian) integral as in Equation (3.1.6), giving

Zy = ZI, where Z = /T

Z =T

/
T
(2rmT)*/2 —e”/TgV< n ) . (3.5.18)

(2 n) 2mh?

Now let us explore the next term, with N = 2, which describes, in particular, pair interactions U = U(r) , with r =r— r’ . Due to the
assumed particle indistinguishability, this term needs the “correct Boltzmann counting" factor 1/2! — cf. Egs. (3.1.12) and (3.5.2):

2 2
Zzzezﬂ/TiZ expd b P U vwyr| | (3.5.19)
2! 2mT  2mT

kK

Since U is coordinate-dependent, here the transfer from the summation to integration should be done more carefully than in the first
term — cf. Egs. (3.1.25) and (3.5.2):

1 (gV)? p? p> .
Z2=62”/Taw/exp P d3px/exp P d3’><—/ “UW/T g3y, (3.5.20)

Comparing this expression with the Equation (3.5.18) for the parameter Z, we get

2

Z
Zy=Srh, wherel, = —/ /T g3y, (3.5.21)

Acting absolutely similarly, for the third term of the grand canonical sum we may get

3

Z
Zy ==

1 I
3l I;, wherelz = V2 /e_U(” VT @3 a3, (3.5.22)

where r’ and r” are the vectors characterizing the mutual positions of 3 particles — see Figure 3.5.1b

These results may be extended by induction to an arbitrary N. Plugging the expression for Zy into the first of Egs. (3.5.15) and
recalling that 2 =— PV, we get the equation of state of the gas in the form

2

T z
P:V1n<1 + 70+ =

Z3

As a sanity check: at U =0, all integrals Iy are equal to 1, and the expression under the logarithm in just the Taylor expansion of the
function e, giving P =TZ/V, and = PV =-TZ. In this case, according to the last of Eqs. (1.5.13), the average number of
particles of particles in the system is (N) =— (09/8u)r v = Z , because since Z o exp{u/T}, 0Z/0u = Z/T .*® Thus, in this limit,
we have happily recovered the equation of state of the ideal gas.

Returning to the general case of non-zero interactions, let us assume that the logarithm in Equation (3.5.23) may be also represented as
a direct Taylor expansion in Z:

Cluster expansion: pressure

T T,
P== > T2 (3.5.24)
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(The lower limit of the sum reflects the fact that according to Equation (3.5.23,at Z=0, P = (T/V)In1 =0, so that the coefficient
Jo in a more complete version of Equation (3.5.24) would equal 0 anyway.) According to Eq, (1.5.11), this expansion corresponds to
the grand potential

Q:—PV:—TZ%Z’. (3.5.25)

Again using the last of Egs. (1.5.13), and the definition (3.5.18) of the parameter Z, we get

Cluster expansion: (IN)

o0 f-]l .
— z. 3.5.26
l; (1—1)! ( )
n(l+¢) = i )i E (3.5.27)
=1

Using it together with Equation (3.5.23), we get a Taylor series in Z, starting as
T z? VA
P=—|Z+—(L-1)+—[(s—-1)—-3(L—-1)]+...|. 3.5.28
|24 3 1)+ -1 =30 - ) (3.5.28)
Comparing this expression with Equation (3.5.24), we see that
Ji =1,
J2 —.[271——‘/ d31",

Jy =(I—1)—3(L 1)

= % (er(r AT _ g Um/T _ g=UE")/T _ o=U)/T 2) d3r'ddr’, ... (3.5.29)
where v’/ =1’ —r” - see Figure 3.5.1b The expression of Js, describing the pair interactions of particles, is (besides a different

numerical factor) equal to the second virial coefficient B(T') — see Equation (3.5.7). As a reminder, the subtraction of 1 from the
integral I, in the second of Eqs. (3.5.29) makes the contribution of each elementary 3D volume d>r into the integral J, different from
zero only if at this r two particles interact (U # 0) . Very similarly, in the last of Egs. (3.5.29), the subtraction of three pair-interaction
terms from (I3~ 1) makes the contribution from an elementary 6D volume d®r'd3r ” into the integral J3 different from zero only if at
that mutual location of particles, all three of them interact simultaneously, etc.

In order to illustrate the cluster expansion method at work, let us eliminate the factor Z from the system of equations (3.5.24) and (
3.5.26), with accuracy to terms O(Z?2). For that, let us spell out these equations up to the terms O(Z3):

PV J. J
5z 2Z2+ 6323 (3.5.30)
2, I3 3
NY=LZ+J72+2 734 3.5.31
2

and then divide these two expressions. We get the following result:

(3.5.32)

PV 1+(J/2J1)Z+(J3/6J1)Z%+... 1 Py JP T o
(NT 1+ (J2/J1)Z+(J3/2J1)Z2%+. .. 2J; 2J2 34

whose final form is accurate to terms O(Z?). In this approximation, we may again use Equation (3.5.31), now solved for Z with the
same accuracy:

Z~(N)—2(N)2 (3.5.33)

Plugging this expression into Equation (3.5.32), we get the virial expansion (3.5.14) with

274 and 3™ virial coefficients:
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A

B(T)=-=—2V, C(T)= (J22 Js ) 1748 (3.5.34)

The first of these relations, combined with the first two of Eqs. (3.5.29), yields for the 2"¢ virial coefficient the same Equation (
3.5.10), B(T) = 4V}, that was obtained from the Gibbs distribution. The second of these relations enables the calculation of the 3rd
virial coefficient C'(T'). (Let me leave the calculation of J3 and C(T'), for the hardball model, for the reader's exercise.) Evidently, a
more complete solution of Egs. (3.5.28), (3.5.30), and (3.5.31) may be used to calculate an arbitrary virial coefficient, though starting
from the 5™ coefficient, such calculations may be completed only numerically even in the simplest hardball model.

This page titled 3.5: Gases of weakly interacting particles is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by

Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.

https://phys.libretexts.org/@go/page/34710


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34710?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Essential_Graduate_Physics_-_Statistical_Mechanics_(Likharev)/03%3A_Ideal_and_Not-So-Ideal_Gases/3.05%3A_Gases_of_weakly_interacting_particles
https://creativecommons.org/licenses/by-nc-sa/4.0
https://www.linkedin.com/in/konstantin-likharev-2389805/
https://sites.google.com/site/likharevegp/

LibreTextsm

3.6: Exercise problems

? Exercise 3.6.1

Use the Maxwell distribution for an alternative (statistical) calculation of the mechanical work performed by the Szilard engine
discussed in Sec. 2.3.

Hint: You may assume the simplest geometry of the engine — see Figure 2.3.1.

? Exercise 3.6.2

Use the Maxwell distribution to calculate the drag coefficient 1 =— (%) /0u, where &% is the force exerted by an ideal
classical gas on a piston moving with a low velocity u, in the simplest geometry shown in the figure on the right, assuming that
collisions of gas particles with the piston are elastic.

A

? Exercise 3.6.3

Derive the equation of state of the ideal classical gas from the grand canonical distribution.

? Exercise 3.6.4

Prove that Equation (3.1.23),

Vi+V, —|—N21nV1+V2,

AS=DN;1
S 11in V,l ‘/2

derived for the change of entropy at mixing of two ideal classical gases of completely distinguishable particles (that initially
had equal densities N /V and temperatures T), is also valid if particles in each of the initial volumes are indistinguishable from
each other but different from those in the counterpart volume. For simplicity, you may assume that masses and internal
degeneracy factors of all particles are equal.

? Exercise 3.6.5

A round cylinder of radius R and length L, containing an ideal classical gas of N >> 1 particles of mass m each, is rotated
about its symmetry axis with angular velocity w. Assuming that the gas as the whole rotates with the cylinder, and is in thermal
equilibrium at temperature 7',

(i) calculate the gas pressure distribution along its radius, and analyze its temperature dependence, and

(ii) neglecting the internal degrees of freedom of the particles, calculate the total energy of the gas and its heat capacity in the
high- and low-temperature limits.

? Exercise 3.6.6

N >>1 classical, non-interacting, indistinguishable particles of mass m are confined in a parabolic, spherically-symmetric
3D potential well U(r) = kr?/2 . Use two different approaches to calculate all major thermodynamic characteristics of the
system, in thermal equilibrium at temperature 7', including its heat capacity. Which of the results should be changed if the
particles are distinguishable, and how?

@ 0 a @ 3.6.1 https://phys.libretexts.org/@go/page/34711
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l Hint: Suggest a replacement of the notions of volume and pressure, appropriate for this system.

? Exercise 3.6.7

In the simplest model of thermodynamic equilibrium between the liquid and gas phases of the same molecules, temperature
and pressure do not affect the molecule's condensation energy A. Calculate the concentration and pressure of such saturated
vapor, assuming that it behaves as an ideal gas of classical particles.

? Exercise 3.6.8

An ideal classical gas of N >>1 particles is confined in a container of volume V' and wall surface area A. The particles may
condense on container walls, releasing energy A per particle, and forming an ideal 2D gas. Calculate the equilibrium number
of condensed particles and the gas pressure, and discuss their temperature dependences.

? Exercise 3.6.9

The inner surfaces of the walls of a closed container of volume V, filled with N >> 1 particles, have Ng >> 1 similar traps
(small potential wells). Each trap can hold only one particle, at potential energy —A < 0. Assuming that the gas of the
particles in the volume is ideal and classical, derive an equation for the chemical potential x4 of the system in equilibrium, and
use it to calculate the potential and the gas pressure in the limits of small and large values of the N/ N ratio.

? Exercise 3.6.10

Calculate the magnetic response (the Pauli paramagnetism) of a degenerate ideal gas of spin-1/2 particles to a weak external
magnetic field, due to a partial spin alignment with the field.

? Exercise 3.6.11

Calculate the magnetic response (the Landau diamagnetism) of a degenerate ideal gas of electrically charged fermions to a
weak external magnetic field, due to their orbital motion.

? Exercise 3.6.12*

Explore the Thomas-Fermi model of a heavy atom, with nuclear charge ) = Ze >> e , in which the electrons are treated as a
degenerate Fermi gas, interacting with each other only via their contribution to the common electrostatic potential ¢(r). In
particular, derive the ordinary differential equation obeyed by the radial distribution of the potential, and use it to estimate the
effective radius of the atom.>

? Exercise 3.6.13"

Use the Thomas-Fermi model, explored in the previous problem, to calculate the total binding energy of a heavy atom.
Compare the result with that for a simpler model, in that the Coulomb electron-electron interaction of electrons is completely
ignored.

? Exercise 3.6.14

Calculate the characteristic Thomas-Fermi length Ay of weak electric field’s screening by conduction electrons in a metal,
modeling their ensemble as an ideal, degenerate, isotropic Fermi gas.

Hint: Assume that Arp is much larger than the Bohr radius rp.
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? Exercise 3.6.15

For a degenerate ideal 3D Fermi gas of IV particles, confined in a rigid-wall box of volume V/, calculate the temperature
dependencies of its pressure P and the heat capacity difference (Cp—Cy ), in the leading approximation in 7T << ep.
Compare the results with those for the ideal classical gas.

Hint: You may like to use the solution of Problem 1.9.

? Exercise 3.6.16

How would the Fermi statistics of an ideal gas affect the barometric formula (3.1.29)?

? Exercise 3.6.17

Derive general expressions for the energy F and the chemical potential 1 of a uniform Fermi gas of NV >> 1 non-interacting,
indistinguishable, ultra-relativistic particles.>! Calculate F, and also the gas pressure P explicitly in the degenerate gas limit
T — 0. In particular, is Equation (3.2.19) valid in this case?

? Exercise 3.6.18

Use Equation (3.2.20) to calculate the pressure of an ideal gas of ultra-relativistic, indistinguishable quantum particles, for an
arbitrary temperature, as a function of the total energy E of the gas, and its volume V. Compare the result with the
corresponding relations for the electromagnetic blackbody radiation and for an ideal gas of non-relativistic particles.

? Exercise 3.6.19*

Calculate the speed of sound in an ideal gas of ultra-relativistic fermions of density n at negligible temperature.

? Exercise 3.6.20

Calculate basic thermodynamic characteristics, including all relevant thermodynamic potentials, specific heat, and the surface
tension of a uniform, non-relativistic 2D electron gas with given areal density n = N/ A:

(i) atT =0, and

? Exercise 3.6.21

Calculate the effective latent heat A,y =— N(90Q/ONy)n v of evaporation of the spatially uniform Bose-Einstein condensate
as a function of temperature 7'. Here (@ is the heat absorbed by the (condensate + gas) system of IV >> 1 particles as a whole,
while Ny is the number of particles in the condensate alone.

? Exercise 3.6.22*

For an ideal, spatially-uniform Bose gas, calculate the law of the chemical potential’s disappearance at 7' — T, and use the
result to prove that the heat capacity C'y is a continuous function of temperature at the critical point 7' = T,

? Exercise 3.6.23

In Chapter 1 of these notes, several thermodynamic relations involving entropy have been discussed, including the first of Egs.
(1.4.16):

S =—(8G/dT),.

If we combine this expression with Equation (1.5.7), G = uN, it looks like that for the Bose-Einstein condensate, whose
chemical potential i equals zero at temperatures below the critical point 7, the entropy should vanish as well. On the other
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hand, dividing both parts of Equation (1.3.6) by dT', and assuming that at this temperature change the volume is kept constant,
we get

Cy =T(88/8T)y.

(This equality was also mentioned in Chapter 1.) If the Cy; is known as a function of temperature, the last relation may be
integrated over T to calculate S
Cy(T
S= LdT + const.
V=const

According to Equation (3.4.11), the specific heat for the Bose-Einstein condensate is proportional to T3/ 2 5o that the
integration gives a non-zero entropy S o T'3/2 Resolve this apparent contradiction, and calculate the genuine entropy at
T=T,.

? Exercise 3.6.24

The standard analysis of the Bose-Einstein condensation, outlined in Sec. 4, may seem to ignore the energy quantization of the
particles confined in volume V. Use the particular case of a cubic confining volume V =a xa xa with rigid walls to
analyze whether the main conclusions of the standard theory, in particular Equation (3.4.1) for the critical temperature of the
system of N >> 1 particles, are affected by such quantization.

? Exercise 3.6.25*

N >>1 non-interacting bosons are confined in a soft, spherically-symmetric potential well U(r) = mw?r?/2. Develop the
theory of the Bose-Einstein condensation in this system; in particular, prove Equation (3.4.5), and calculate the critical
temperature 7*. Looking at the solution, what is the most straightforward way to detect the condensation in experiment?

? Exercise 3.6.26

Calculate the chemical potential of an ideal, uniform 2D gas of spin-0 Bose particles as a function of its areal density n (the
number of particles per unit area), and find out whether such gas can condense at low temperatures. Review your result for the
case of a large (IN >> 1) but finite number of particles.

? Exercise 3.6.27

Can the Bose-Einstein condensation be achieved in a 2D system of N >> 1 non-interacting bosons placed into a soft, axially-
symmetric potential well, whose potential may be approximated as U(r) = mw?p?/2, where p? =22 +y? , and {z, y} are
the Cartesian coordinates in the particle confinement plane? If yes, calculate the critical temperature of the condensation.

? Exercise 3.6.28

Use Eqgs. (3.5.29) and (3.5.34) to calculate the third virial coefficient C'(T') for the hardball model of particle interactions.

? Exercise 3.6.29

Assuming the hardball model, with volume V;, per molecule, for the liquid phase, describe how the results of Problem 3.7
change if the liquid forms spherical drops of radius R >> V;)l/ 5. Briefly discuss the implications of the result for water cloud
formation.

Hint: Surface effects in macroscopic volumes of liquids may be well described by attributing an additional energy - (equal to
the surface tension) to the unit surface area.”
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1. In more realistic cases when particles do have internal degrees of freedom, but they are all in a certain (say, ground) quantum
state, Equation (3.1.3) is valid as well, with ¢, referred to the internal ground-state energy. The effect of thermal excitation of
the internal degrees of freedom will be briefly discussed at the end of this section.

2. This formula had been suggested by J. C. Maxwell as early as 1860, i.e. well before the Boltzmann and Gibbs distributions
were developed. Note also that the term “Maxwell distribution” is often associated with the distribution of the particle
momentum (or velocity) magnitude,

mv2

2
dW = 4xCpexp {_p_ } dp = 4rCmPv’exp {—— } dv, with0 <p,v< oo,
2mT 2T
which immediately follows from the first form of Equation (3.1.5), combined with the expression d*p = 4wp?dp due to the
spherical symmetry of the distribution in the momentum/velocity space.

3. See, e.g., MA Equation (6.9b).

4. See, e.g., MA Equation (6.9c).

5. Since, by our initial assumption, each particle belongs to the same portion of gas, i.e. cannot be distinguished from others by its
spatial position, this requires some internal “pencil mark” for each particle — for example, a specific structure or a specific
quantum state of its internal degrees of freedom.

6. As a reminder, we have already used this rule (twice) in Sec. 2.6, with particular values of g.

7. For the opposite limit when N = g =1, Equation (3.1.15) yields the results obtained, by two alternative methods, in the
solutions of Problems 2.8 and 2.9. Indeed, for IV = 1, the “correct Boltzmann counting” factor N! equals 1, so that the particle
distinguishability effects vanish — naturally.

8. The result represented by Equation (3.1.21), with the function f given by Equation (3.1.17), was obtained independently by O.
Sackur and H. Tetrode as early as in 1911, i.e. well before the final formulation of quantum mechanics in the late 1920s.

9. By the way, if an ideal classical gas consists of particles of several different sorts, its full pressure is a sum of independent
partial pressures exerted by each component — the so-called Dalton law. While this fact was an important experimental
discovery in the early 1800s, for statistical physics this is just a straightforward corollary of Equation (3.1.19), because in an
ideal gas, the component particles do not interact.

10. Interestingly, the statistical mechanics of weak solutions is very similar to that of ideal gases, with Equation (3.1.19) recast into
the following formula (derived in 1885 by J. van ’t Hoff), PV = c¢NT, for the partial pressure of the solute. One of its
corollaries is that the net force (called the osmotic pressure) exerted on a semipermeable membrane is proportional to the
difference of the solute concentrations it is supporting.

11. Unfortunately, I do not have time for even a brief introduction into this important field, and have to refer the interested reader to
specialized textbooks — for example, P. A. Rock, Chemical Thermodynamics, University Science Books, 1983; or P. Atkins,
Physical Chemistry, 5t ed., Freeman, 1994; or G. M. Barrow, Physical Chemistry, 6" ed., McGraw-Hill, 1996.

12. See, e.g., either Chapter 6 in A. Bard and L. Falkner, Electrochemical Methods, ond ed,, Wiley, 2000 (which is a good
introduction to electrochemistry as the whole); or Sec. 11.8.3.1 in F. Scholz (ed.), Electroanalytical Methods, 2" ed., Springer,
2010.

13. Quantitatively, the effective distance of substantial variations of the potential, T'/|VU(r)|, has to be much larger than the mean
free path [ of the gas particles, i.e. the average distance a particle passes its successive collisions with its counterparts. (For more
on this notion, see Chapter 6 below.)

14. In some textbooks, Equation (3.1.27) is also called the Boltzmann distribution, though it certainly should be distinguished from
Equation (2.8.1).

15. See, e.g., either the model solution of Problem 2.12 (and references therein), or QM Secs. 3.6 and 5.6.

16. This result may be readily obtained again from the last term of Equation (3.1.31) by treating it exactly like the first one was and
then applying the general Equation (1.4.27).

17. See, e.g., CM Sec. 4.1.

18. This conclusion of the quantum theory may be interpreted as the indistinguishability of the rotations about the molecule’s
symmetry axis.

19. In quantum mechanics, the parameter 7. so defined is frequently called the correlation length — see, e.g., QM Sec. 7.2 and in
particular Equation (7.37).

20. See, e.g., MA Equation (6.7a).

21. For the reader’s reference only: for the upper sign, the integral in Equation (3.2.11) is a particular form (for s =1/2) of a
special function called the complete Fermi-Dirac integral Fy, while for the lower sign, it is a particular case (for s = 3/2) of
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another special function called the polylogarithm Li,. (In what follows, I will not use these notations.)

For gases of diatomic and polyatomic molecules at relatively high temperatures, when some of their internal degrees of freedom
are thermally excited, Equation (3.2.19) is valid only for the translational-motion energy.

Note that in the electronic engineering literature, p is usually called the Fermi level, for any temperature.

For a general discussion of this notion, see, e.g., CM Egs. (7.32) and (7.36).

Recently, nearly degenerate gases (with e ~ 5T") have been formed of weakly interacting Fermi atoms as well — see, e.g., K.
Aikawa et al., Phys. Rev. Lett. 112, 010404 (2014), and references therein. Another interesting example of the system that may
be approximately treated as a degenerate Fermi gas is the set of Z >> 1 electrons in a heavy atom. However, in this system the
account of electron interaction via the electrostatic field they create is important. Since for this Thomas-Fermi model of atoms,
the thermal effects are unimportant, it was discussed already in the quantum-mechanical part of this series (see QM Chapter 8).
However, its analysis may be streamlined using the notion of the chemical potential, introduced only in this course — the
problem left for the reader’s exercise.

See, e.g., QM Sec. 8.4.

Note also a huge difference between the very high bulk modulus of metals (K ~ 10'! Pa) and its very low values in usual,
atomic gases (for them, at ambient conditions, K ~ 10° Pa). About four orders of magnitude of this difference is due to that in
the particle density N /V/, but the balance is due to the electron gas’ degeneracy. Indeed, in an ideal classical gas,
K=P=T(N/V), so that the factor (2/3)ep in Equation (3.3.7), of the order of a few eV in metals, should be compared
with the factor T' =~ 25 meV in the classical gas at room temperature.

Data from N. Ashcroft and N. D. Mermin, Solid State Physics, W. B. Saunders, 1976.

Named after Arnold Sommerfeld, who was the first (in 1927) to apply quantum mechanics to degenerate Fermi gases, in
particular to electrons in metals, and may be credited for most of the results discussed in this section.

See, e.g., MA Egs. (6.8¢) and (2.12b), withn =1.

Solids, with their low thermal expansion coefficients, provide a virtually-fixed-volume confinement for the electron gas, so that
the specific heat measured at ambient conditions may be legitimately compared with the calculated cy .

See, e.g., MA Equation (6.8b) with s = 3/2, and then Egs. (2.7b) and (6.7e).

This is, of course, just another form of Equation (3.4.1).

For the involved dimensionless integral see, e.g., MA Egs. (6.8b) with s = 5/2, and then (2.7b) and (6.7c).

Such controllability of theoretical description has motivated the use of dilute-gas BECs for modeling of renowned problems of
many-body physics — see, e.g. the review by I. Bloch et al., Rev. Mod. Phys. 80, 885 (2008). These efforts are assisted by the
development of better techniques for reaching the necessary sub-uK temperatures — see, e.g., the recent work by J. Hu et al.,
Science 358, 1078 (2017). For a more general, detailed discussion see, e.g., C. Pethick and H. Smith, Bose-Einstein
Condensation in Dilute Gases, 2™% ed., Cambridge U. Press, 2008.

See, e.g., QM Sec. 8.3.

See, e.g., QM Equation (3.28).

This is the Meissner-Ochsenfeld (or just “Meissner") effect which may be also readily explained using Equation (3.4.15)
combined with the Maxwell equations — see, e.g., EM Sec. 6.4.

See EM Secs. 6.4-6.5, and QM Secs. 1.6 and 3.1.

A concise discussion of the effects of weak interactions on the properties of quantum gases may be found, for example, in
Chapter 10 of the textbook by K. Huang, Statistical Mechanics, 2™ ed., Wiley, 2003.

One of the most significant effects neglected by Equation (3.5.1) is the influence of atomic/molecular angular orientations on
their interactions.

The term “virial", from Latin viris (meaning “force"), was introduced to molecular physics by R. Clausius. The motivation for
the adjective “second" for B(T') is evident from the last form of Equation (3.5.8), with the “first virial coefficient", standing
before the NV /V ratio and sometimes denoted A(T'), equal to 1 — see also Equation (3.5.14) below.

Indeed, independent fluctuation-induced components p(¢) and p’(¢) of dipole moments of two particles have random mutual
orientation, so that the time average of their interaction energy, proportional to p(t) - p’(¢)/r?, vanishes. However, the electric
field & of each dipole p, proportional to 73, induces a correlated component of p’, also proportional to r—3, giving interaction
energy proportional to p’ - & oc »—% | with a non-zero statistical average. Quantitative discussions of this effect, within several
models, may be found, for example, in QM Chapters 3, 5, and 6.

Note that the particular form of the first term in the approximation U(r) = a/r'2—b/r6 (called either the Lennard-Jones
potential or the “12-6 potential"), that had been suggested in 1924, lacks physical justification, and in professional physics was
soon replaced with other approximations, including the so-called exp-6 model, which fits most experimental data much better.
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However, the Lennard-Jones potential still keeps creeping from one undergraduate textbook to another one, apparently for a not
better reason than enabling a simple analytical calculation of the equilibrium distance between the particles at 7' — 0.

45. The strong inequality |U| << T in this model is necessary not only to make the calculations simpler. A deeper reason is that if
(= Upnin ) becomes comparable with T', particles may become trapped in this potential well, forming a different phase — a liquid
or a solid. In such phases, the probability of finding more than two particles interacting simultaneously is high, so that Equation
(3.5.6), on which Egs. (3.5.7)-(3.5.8) and Egs. (3.5.12)-(3.5.13) are based, becomes invalid.

46. L. Boltzmann has used that way to calculate the 3" and 4% virial coefficients for the hardball model — as much as can be done
analytically.

47. This method was developed in 1937-38 by J. Mayer and collaborators for the classical gas, and generalized to quantum systems
in 1938 by B. Kahn and G. Uhlenbeck.

48. Actually, the fact that in that case Z = (N) could have been noted earlier — just by comparing Equation (3.5.18) with Equation
3.2.1-3.2.2.

49. Looking at Equation (3.5.23), one may think that since ¢ = Z + Z21,/2+. .. is of the order of at least Z ~ (N) >> 1, the
expansion (3.5.27), which converges only if |¢| < 1, is illegitimate. However, the expansion is justified by its result (3.5.28), in
which the n* term is of the order of (N)"(Vy/V)"~!/nl, so that the series does converge if the gas density is sufficiently low:
(NY/V << 1/Vj, i.e. rgpe >> 10 . This is the very beauty of the cluster expansion, whose few first terms, rather unexpectedly,
give good approximation even for a gas with (N') >> 1 particles.

50. Since this problem, and the next one, are important for atomic physics, and at their solution, thermal effects may be ignored,
they were given in Chapter 8 of the QM part of the series as well, for the benefit of readers who would not take this SM part.
Note, however, that the argumentation in their solutions may be streamlined by using the notion of the chemical potential y,
which was introduced only in this course.

51. This is, for example, an approximate but reasonable model for electrons in white dwarf stars, whose Coulomb interaction is
mostly compensated by the charge of nuclei of fully ionized helium atoms.

52. This condition may be approached reasonably well, for example, in 2D electron gases formed in semiconductor heterostructures
(see, e.g., the discussion in QM Sec. 1.6, and the solution of Problem 3.2 of that course), due to the electron field’s
compensation by background ionized atoms, and its screening by highly doped semiconductor bulk.

53. See, e.g., CM Sec. 8.2.
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CHAPTER OVERVIEW

4: Phase Transitions

This chapter gives a rather brief discussion of coexistence between different states (“phases”) of collections of many similar
particles, and transitions between these phases. Due to the complexity of these phenomena, which involve particle interactions,
quantitative analytical results in this field have been obtained only for a few very simple models, typically giving only a very
approximate description of real systems.

4.1: First order phase transitions

4.2: Continuous phase transitions

4.3: Landau’s mean-field theory

4.4: Tsing model - Weiss molecular-field theory

4.5: Ising model - Exact and numerical results

4.6: Exercise problems
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4.1: First order phase transitions

From our everyday experience, say with water ice, liquid water, and water vapor, we know that one chemical substance (i.e. a set of
many similar particles) may exist in different stable states — phases. A typical substance may have:

i. a dense solid phase, in which interatomic forces keep all atoms/molecules in virtually fixed relative positions, with just small
thermal fluctuations about them;
ii. a liquid phase, of comparable density, in which the relative distances between atoms or molecules are almost constant, but the
particles are virtually free to move around each other, and
iii. a gas phase, typically of a much lower density, in which the molecules are virtually free to move all around the containing
volume.!

Experience also tells us that at certain conditions, two different phases may be in thermal and chemical equilibrium — say, ice
floating on water with the freezing-point temperature. Actually, in Sec. 3.4 we already discussed a qualitative theory of one such
equilibrium: the Bose-Einstein condensate's coexistence with the uncondensed “vapor” of similar particles. However, this is a
rather exceptional case when the phase coexistence is due to the quantum nature of the particles (bosons) that may not interact
directly. Much more frequently, the formation of different phases, and transitions between them, are due to particle repulsive and
attractive interactions, briefly discussed in Sec. 3.5.

Phase transitions are sometimes classified by their order.? T will start their discussion with the so-called first-order phase
transitions that feature non-zero latent heat A — the amount of heat that is necessary to turn one phase into another phase
completely, even if temperature and pressure are kept constant.> Unfortunately, even the simplest “microscopic” models of particle
interaction, such as those discussed in Sec. 3.5, give rather complex equations of state. (As a reminder, even the simplest hardball
model leads to the series (3.5.14), whose higher virial coefficients defy analytical calculation.) This is why I will follow the
tradition to discuss the first-order phase transitions using a simple phenomenological model suggested in 1873 by Johannes Diderik
van der Waals.

For its introduction, it is useful to recall that in Sec. 3.5 we have derived Equation (3.5.13) — the equation of state for a classical gas
of weakly interacting particles, which takes into account (albeit approximately) both interaction components necessary for a
realistic description of gas condensation/liquefaction: the long-range attraction of the particles and their short-range repulsion. Let
us rewrite that result as follows:

N> NT (. Nb
Pta— ="(1+=). 4.1.1
toTs = ( + V) (4.1.1)

As we saw at the derivation of this formula, the physical meaning of the constant b is the effective volume of space taken by a
particle pair collision — see Equation (3.5.10). The relation (4.1.1) is quantitatively valid only if the second term in the parentheses
is small, Nb << V, i.e. if the total volume excluded from particles' free motion because of their collisions is much smaller than the
whole volume V. In order to describe the condensed phase (which I will call “liquid”*), we need to generalize this relation to the
case Nb ~ V. Since the effective volume left for particles' motion is V— INb, it is very natural to make the following replacement:
V — V- Nb, in the equation of state of the ideal gas. If we also keep on the left hand side the term (aN2/V 2, which describes the
long-range attraction of particles, we get the van der Waals equation of state:

Van der Waals equation:

N2 NT

One advantage of this simple model is that in the rare gas limit, Nb <<V, it reduces back to the microscopically-justified
Equation (4.1.1). (To verify this, it is sufficient to Taylor-expand the right-hand side of Equation (4.1.2) in small Nb/V << 1, and
retain only two leading terms.) Let us explore the basic properties of this model.

It is frequently convenient to discuss any equation of state in terms of its isotherms, i.e. the P(V') curves plotted at constant T'. As
Equation (4.1.2) shows, in the van der Waals model such a plot depends on four parameters: a, b, N, and T, complicating general
analysis of the model. To simplify the task, it is convenient to introduce dimensionless variables: pressure p = P/P,, volume
v="V/V,, and temperature t = T'/ T, normalized to their so-called critical values,
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1 a 8 a
P=——, V.=3Nb, T.=—-—, 4.1.3
27 b2 27 b ( )
whose meaning will be clear in a minute. In this notation, Equation (4.1.2) acquires the following form,
3 8t
— = 4.14
Pr T3 (4.14)

so that the normalized isotherms p(v) depend on only one parameter, the normalized temperature ¢ — see Figure 4.1.1.

.

1.2

1.1

=
i
T |

- 0.8

0 | 2
v=V/V,

Figure 4.1.1: The van der Waals equation of state, plotted on the [p,v] plane for several values of the reduced temperature

t =T /T, . Shading shows the single-phase instability range in that (0P /dV')r > 0.
The most important property of these plots is that the isotherms have qualitatively different shapes in two temperature regions. At
t>1, iie. T >T,, pressure increases monotonically at gas compression (qualitatively, as in an ideal classical gas, with
P =NT/V, to which the van der Waals system tends at 7' >> T} ), i.e. with (8P/8V)r <0 at all points of the isotherm.’
However, below the critical temperature T, any isotherm features a segment with (OP/9V')r > 0. It is easy to understand that, as
least in a constant-pressure experiment (see, for example, Figure 1.4.1),5 these segments describe a mechanically unstable
equilibrium. Indeed, if due to a random fluctuation, the volume deviated upward from the equilibrium value, the pressure would
also increase, forcing the environment (say, the heavy piston in Figure 1.4.1) to allow further expansion of the system, leading to
even higher pressure, etc. A similar deviation of volume downward would lead to a similar avalanche-like decrease of the volume.
Such avalanche instability would develop further and further until the system has reached one of the stable branches with a
negative slope (8P /9V)r. In the range where the single-phase equilibrium state is unstable, the system as a whole may be stable
only if it consists of the two phases (one with a smaller, and another with a higher density n = N /V') that are described by the two
stable branches — see Figure 4.1.2.

P
stable liquid
phase liquid and gas
in equilibrium
F(T) -1 2
A, /e unstable stable gaseous
branch phase
ll
0

V
Figure 4.1.2: Phase equilibrium at 7' < T, (schematically).

In order to understand the basic properties of this two-phase system, let us recall the general conditions of the thermodynamic
equilibrium of two systems, which have been discussed in Chapter 1:
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Phase equilibrium conditions:

| T\ = T, (thermal equilibrium), | (4.1.5)

Phase equilibrium conditions:

| 1 = pa (“chemical” equilibrium), | (4.1.6)

the latter condition meaning that the average energy of a single (“probe”) particle in both systems has to be the same. To those, we
should add the evident condition of mechanical equilibrium,

Phase equilibrium conditions:

| P, = P, (mechanical equilibrium), | (4.1.7)

which immediately follows from the balance of normal forces exerted on an inter-phase boundary.

If we discuss isotherms, Equation (4.1.5) is fulfilled automatically, while Equation (4.1.7) means that the effective isotherm P (V")
describing a two-phase system should be a horizontal line — see Figure 4.1.2:

P = Py(T). (4.1.8)

Along this line,” internal properties of each phase do not change; only the particle distribution is: it evolves gradually from all
particles being in the liquid phase at point 1 to all particles being in the gas phase at point 2.8 In particular, according to Equation (
4.1.6), the chemical potentials p of the phases should be equal at each point of the horizontal line (4.1.8). This fact enables us to
find the line's position: it has to connect points 1 and 2 in that the chemical potentials of the two phases are equal to each other. Let
us recast this condition as

2 2
/du:O, i.e./ dG =0, (4.1.9)
1 1

where the integral may be taken along the single-phase isotherm. (For this mathematical calculation, the mechanical instability of
states on some part of this curve is not important.) By its construction, along that curve, N = const and T" = const, so that
according to Equation (1.5.4), dG =—SdT +VdP + udN , for a slow (reversible) change, dG = VdP . Hence Equation (4.1.9)
yields

2
/ VdP =0. (4.1.10)
1

This equality means that in Figure 4.1.2, the shaded areas A, and A, should be equal.’
As the same Figure 4.1.2 figure shows, the Maxwell rule may be rewritten in a different form,

Maxwell equal-area rule:

/2[PP0(T)]dV—0- (4.1.11)
1

which is more convenient for analytical calculations than Equation (4.1.10) if the equation of state may be explicitly solved for P —
as it is in the van der Waals model (4.1.2). Such calculation (left for the reader's exercise) shows that for that model, the

temperature dependence of the saturated vapor pressure at low 7" is exponential,'”
A 27
PO(T)ocPcexp{—T}, with A = % E?TC, for T << T, (4.1.12)

corresponding very well to the physical picture of particle's thermal activation from a potential well of depth A.
The signature parameter of a first-order phase transition, the latent heat of evaporation

Latent heat: definition

2
A= 1.
/1 dQ, (4.1.13)
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may also be found by a similar integration along the single-phase isotherm. Indeed, using Equation (1.3.6), dQ = T'dS, we get
2
A:/ TdS=T(S2 — S1). (4.1.14)
1

Let us express the right-hand side of Equation (4.1.14) via the equation of state. For that, let us take the full derivative of both sides
of Equation (4.1.6) over temperature, considering the value of G = Ny for each phase as a function of P and 7', and taking into
account that according to Equation (4.1.7), P, = P, = Py(T) :

(9G1 8G1 dPO B 8G2 8G2 dP(]
<8T>p+(3P>TdT_(6T)P+<6P)TdT‘ (4.1.15)

According to the first of Egs. (1.4.16), the partial derivative (0G/8T)p is just minus the entropy, while according to the second of
those equalities, (0G/OP)r is the volume. Thus Equation (4.1.15) becomes

dP, dP,
— —_— =— —. 4.1.1
S1+Vi—s S+ Vo (4.1.16)
Solving this equation for (S2—S1), and plugging the result into Equation (4.1.14), we get the following Clapeyron-Clausius
formula:
Clapeyron-Clausius formula:
dP,
A=T(Vo—-V)—. 4.1.17
(V2 =Vi)— ( )

For the van der Waals model, this formula may be readily used for the analytical calculation of A in two limits: T' << T, and
(T.—T) << T, - the exercises left for the reader. In the latter limit, A o< (T,— T)l/ 2 naturally vanishing at the critical
temperature.

Finally, some important properties of the van der Waals' model may be revealed more easily by looking at the set of its isochores
P = P(T) for V = const, rather than at the isotherms. Indeed, as Equation (4.1.2) shows, all single-phase isochores are straight
lines. However, if we interrupt these lines at the points when the single phase becomes metastable, and complement them with the
(very nonlinear!) dependence Py(T'), we get the pattern (called the phase diagram) shown schematically in Figure 4.1.3a.

(a) (b)
PA V<V V=r Pa

[ C

critical
points

0 T ; 0 T T

Figure 4.1.3: (a) Van der Waals model's isochores, the saturated gas pressure diagram, and the critical point, and (b) the phase
diagram of a typical three-phase system (all schematically).

2

Thus, in the van der Waals model, two phases may coexist, though only at certain conditions — in particular, 7' < T, . Now a
natural, more general question is whether the coexistence of more than two phases of the same substance is possible. For example,
can the water ice, the liquid water, and the water vapor (steam) all be in thermodynamic equilibrium? The answer is essentially
given by Equation (4.1.6). From thermodynamics, we know that for a uniform system (i.e. a single phase), pressure and
temperature completely define the chemical potential x(P,T'). Hence, dealing with two phases, we had to satisfy just one chemical
equilibrium condition (4.1.6) for two common arguments P and T'. Evidently, this leaves us with one extra degree of freedom, so
that the two-phase equilibrium is possible within a certain range of P at fixed 7" (or vice versa) — see again the horizontal line in
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Figure 4.1.2 and the bold line in Figure 4.1.3a. Now, if we want three phases to be in equilibrium, we need to satisfy two equations
for these variables:

ui(P,T) = ps (P, T) = (P, T). (4.1.18)

Typically, the functions p(P,T") are monotonic, so that the two equations (4.1.18) have just one solution, the so-called triple point
{P;, T;}. Of course, the triple point {P;, T} } of equilibrium between three phases should not be confused with the critical points
{P.,T.} of transitions between each of two-phase pairs. Figure 4.1.3bshows, very schematically, their relation for a typical three-
phase system solid-liquid-gas. For example, water, ice, and water vapor are at equilibrium at a triple point corresponding to
P, ~0.612 kPa'3 and T; = 273.16 K. The practical importance of this particular temperature point is that by an international
agreement it has been accepted for the definition of not only the Kelvin temperature scale, but also of the Celsius scale's reference,
as 0.01°C, so that the absolute temperature zero corresponds to exactly —273.15°C.'* More generally, triple points of purified
simple substances (such as H,, N,, O,, Ar, Hg, and H,O) are broadly used for thermometer calibration, defining the so-called
international temperature scales including the currently accepted scale ITS-90.

This analysis may be readily generalized to multi-component systems consisting of particles of several (say, L) sorts.!5 If such a
mixed system is in a single phase, i.e. is macroscopically uniform, its chemical potential may be defined by a natural generalization
of Equation (1.5.4):

dG=-SdT +VdP +

L
pDdN O, (4.1.19)

=1

The last term reflects the fact that usually, each single phase is not a pure chemical substance, but has certain concentrations of all
other components, so that ,u(l) may depend not only on P and 7" but also on the concentrations cdh=N0 /N of particles of each
sort. If the total number N of particles is fixed, the number of independent concentrations is (L—1). For the chemical equilibrium
of R phases, all R values of p,ﬁl) (r=1,2,...,R) have to be equal for particles of each sort: ,ugl) = uél) =...= ,u%) , with each
1Y depending on (L-1) concentrations c\”, and also on P and T. This requirement gives L(R-1) equations for (L—1)R
concentrations c,(«l), plus two common arguments P and T, i.e. for [(L—1)R+ 2] independent variables. This means that the
number of phases has to satisfy the limitation

Gibbs phase rule:

| LR—1)<(L-1)R+2, ie R<L+2, | (4.1.20)

where the equality sign may be reached in just one point in the whole parameter space. This is the Gibbs phase rule. As a sanity
check, for a single-component system, L = 1, the rule yields R < 3 — exactly the result we have already discussed.
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4.2: Continuous phase transitions

As Figure 4.1.2 illustrates, if we fix pressure P in a system with a first-order phase transition, and start changing its temperature,
then the complete crossing of the transition-point line, defined by the equation Py(T') = P, requires the insertion (or extraction)
some non-zero latent heat A. Egs. (4.1.14) and (4.1.17) show that A is directly related to non-zero differences between the
entropies and volumes of the two phases (at the same pressure). As we know from Chapter 1, both .S and V' may be represented as
the first derivatives of appropriate thermodynamic potentials. This is why P. Ehrenfest called such transitions, involving jumps of
potentials' first derivatives, the first-order phase transitions.

On the other hand, there are phase transitions that have no first derivative jumps at the transition temperature 7., so that the
temperature point may be clearly marked, for example, by a jump of the second derivative of a thermodynamic potential — for
example, the derivative C' /0T which, according to Equation (1.4.1), equals to 8 E/8T?2. In the initial Ehrenfest classification,
this was an example of a second-order phase transition. However, most features of such phase transitions are also pertinent to some
systems in which the second derivatives of potentials are continuous as well. Due to this reason, I will use a more recent
terminology (suggested in 1967 by M. Fisher), in which all phase transitions with A = 0 are called continuous.

Most (though not all) continuous phase transitions result from particle interactions. Here are some representative examples:

(i) At temperatures above ~ 490 K, the crystal lattice of barium titanate (BaTiO,) is cubic, with a Ba ion in the center of each Ti-
cornered cube (or vice versa) — see Figure 4.2.1a. However, as the temperature is being lowered below that critical value, the
sublattice of Ba ions starts moving along one of six sides of the TiO, sublattice, leading to a small deformation of both lattices —
which become tetragonal. This is a typical example of a structural transition, in this particular case combined with a ferroelectric
transition, because (due to the positive electric charge of the Ba ions) below the critical temperature the BaTiO; crystal acquires a
spontaneous electric polarization even in the absence of external electric field.

Figure 4.2.1: Single cells of crystal lattices of (a) BaTiO, and (b) CuZn.

(ii) A different kind of phase transition happens, for example, in Cu, Zn; _, alloys — so-called brasses. Their crystal lattice is always
cubic, but above certain critical temperature 7, (which depends on ) any of its nodes may be occupied by either a copper or a zinc
atom, at random. At 7' < T, a trend toward ordered atom alternation arises, and at low temperatures, the atoms are fully ordered,
as shown in Figure 4.2.1bfor the stoichiometric case = 0.5. This is a good example of an order-disorder transition.

(iii) At ferromagnetic transitions (such as the one taking place, for example, in Fe at 1,388 K) and antiferromagnetic transitions
(e.g., in MnO at 116 K), lowering of temperature below the critical value16 does not change atom positions substantially, but
results in a partial ordering of atomic spins, eventually leading to their full ordering (Figure 4.2.2).
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(a) (b)

%
P

Figure 4.2.2: Classical images of fully ordered phases: (a) a ferromagnet, and (b) an antiferromagnet.

Note that, as it follows from Egs. (1.1.1)-(1.1.5), at ferroelectric transitions the role of pressure is played by the external electric
field &, and at the ferromagnetic transitions, by the external magnetic field . As we will see very soon, even in systems with
continuous phase transitions, a gradual change of such an external field, at a fixed temperature, may induce jumps between
metastable states, similar to those in systems with first-order phase transitions (see, e.g., the dashed arrows in Figure 4.1.2), with
non-zero decreases of the appropriate free energy.

Besides these standard examples, some other threshold phenomena, such as the formation of a coherent optical field in a laser, and
even the self-excitation of oscillators with negative damping (see, e.g., CM Sec. 5.4), may be treated, at certain conditions, as
continuous phase transitions.!”

The general feature of all these transitions is the gradual formation, at T' < T, of certain ordering, which may be characterized by
some order parameter 17 0. The simplest example of such an order parameter is the magnetization at the ferromagnetic
transitions, and this is why the continuous phase transitions are usually discussed on certain models of ferromagnetism. (I will
follow this tradition, while mentioning in passing other important cases that require a substantial modification of the theory.) Most
of such models are defined on an infinite 3D cubic lattice (see, e.g., Figure 4.2.2), with evident generalizations to lower
dimensions. For example, the Heisenberg model of a ferromagnet (suggested in 1928) is defined by the following Hamiltonian:

Heisenberg model:

H=-J)Y 646y h-éy (4.2.1)
(1K) F

where &, is the Pauli vector operator'® acting on the k" spin, and h is the normalized external magnetic field:

Ising model:

En=—JY spsy —thk. (4.2.3)
(KK} k

Evidently, if T'=0 and h = 0, the lowest possible energy,
Ein = —JNd, (4.2.4)

where d is the lattice dimensionality, is achieved in the “ferromagnetic” phase in which all spins s, are equal to either +1 or —1, so
that (sz) = £1 as well. On the other hand, at J = 0, the spins are independent, and if h = 0 as well, all s;, are completely random,
with the 50% probability to take either of values +1, so that (s;) = 0. Hence in the general case (with arbitrary JJ and h), we may
use the average

Ising model: order parameter
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n = (sk) (4.2.5)

as a good measure of spin ordering, i.e. as the order parameter. Since in a real ferromagnet, each spin carries a magnetic moment,
the order parameter 7 is proportional to the Cartesian component of the system's magnetization, in the direction of the applied
magnetic field.

Now that the Ising model gave us a very clear illustration of the order parameter, let me use this notion for quantitative
characterization of continuous phase transitions. Due to the difficulty of theoretical analyses of most models of the transitions at
arbitrary temperatures, their theoretical discussions are focused mostly on a close vicinity of the critical point 7. Both experiment
and theory show that in the absence of an external field, the function 5(T") is close to a certain power,

nocth, forr>0,ieT<T. (4.2.6)

of the small deviation from the critical temperature — which is conveniently normalized as

T.—T
T= CT (4.2.7)
cp o |77 (4.2.8)
X = % lh—ooc |7 7. (4.2.9)

Two other important critical exponents, ¢ and v, describe the temperature behavior of the correlation function (sjsy ), whose
dependence on the distance 7}, between two spins may be well fitted by the following law,

1 Tri
, - — , 4.2.10
(o080 o e exp{ o } (4.2.10)
with the correlation radius
reoc || (4.2.11)

Finally, three more critical exponents, usually denoted ¢, §, and p, describe the external field dependences of, respectively, ¢, 7,
and r, at 7 > 0. For example, § is defined as

noc h/°, (4.2.12)

(Other field exponents are used less frequently, and for their discussion, the interested reader is referred to the special literature that
was cited above.)

The leftmost column of Table 4.2.1 shows the ranges of experimental values of the critical exponents for various 3D physical
systems featuring continuous phase transitions. One can see that their values vary from system to system, leaving no hope for a
universal theory that would describe them all exactly. However, certain combinations of the exponents are much more reproducible
— see the four bottom lines of the table.

Table 4.2.1: Major critical exponents of continuous phase transitions

Exponents and Experimental Landau's 2D Ising 3D Ising 3D Heisenberg
combinations range (3D)@ theory model model Model@

a 0-0.14 0® (©) 0.12 -0.14

B 0.32-0.39 1/2 1/8 0.31 0.3

Y 1.3-14 1 714 1.25 1.4

) 4-5 3 15 5 ?

v 0.6-0.7 1/2 1 0.64 0.7

¢ 0.05 0 1/4 0.05 0.04

(a+28+7)/2 1.00 4 0.005 1 1 1 1
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5-/B 0.93+0.08 1 1 1 ?
(2-C)v/y 1.02+ 0.05 1 1 1 1
(2-a)/vd ? 4/d 1 1 1

(a) Experimental data are from the monograph by A. Patashinskii and V. Pokrovskii, cited above.
(b) Discontinuity at 7 = 0 — see below.
(¢) Instead of following Equation (4.2.8), in this case ¢, diverges as ln |7|.

(d) With the order parameter 7 defined as (o7 - )/ % .

Historically the first (and perhaps the most fundamental) of these universal relations was derived in 1963 by J. Essam and M.
Fisher:

a+28+vy=2. (4.2.13)

It may be proved, for example, by finding the temperature dependence of the magnetic field value, h., that changes the order
parameter by the same amount as a finite temperature deviation 7 > 0 gives at h = 0. Comparing Egs. (4.2.6) and (4.2.9), we get

hy o< TP, (4.2.14)

In order to estimate the thermal effect on F, let me first elaborate a bit more on the useful thermodynamic formula already
mentioned in Sec. 1.3:

8S
CX_T(8T>X, (4.2.15)

where X means the variable(s) maintained constant at the temperature variation. In the standard “P —V ” thermodynamics, we
may use Egs. (1.4.12) for X =V, and Egs. (1.4.16) for X = P, to write

oS 0’F 08 0*G
o-r(2) —r(ZE) | c-r(Z) —-r(ZE) 42.36)
oT V,N oT V,N or P,N or P,N
As was just discussed, in the ferromagnetic models of the type (4.2.1) or (4.2.3), at a constant field &, the role of G is played by F,

so that Equation (4.2.15) yields

oS 9’F
C,=T| — =-T( — . 4.2.17
" <3T)h,N ( oT? )h,N ( )

The last form of this relation means that F' may be found by double integration of (—C} /T over temperature. With Equation (
4.2.8) for ¢, < C}, , this means that near T, the free energy scales as the double integral of c; oc 77* over 7. In the limit 7 << 1,
the factor 7' may be treated as a constant; as a result, the change of F' due to 7 > 0 alone scales as 7o), Requiring this change to
be proportional to the same power of 7 as the field-induced part of the energy, we finally get the Essam-Fisher relation (4.2.13).

Using similar reasoning, it is straightforward to derive a few other universal relations of critical exponents, including the Widom

relation,
Y
o—==1, 4.2.18
3 ( )
v(2—¢)=n. (4.2.19)
vd=2-—a. (4.2.20)

The second column of Table 4.2.1 shows that at least three of these relations are in a very reasonable agreement with experiment,
so that we may use their set as a testbed for various theoretical approaches to continuous phase transitions.

This page titled 4.2: Continuous phase transitions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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4.3: Landau’s mean-field theory

The highest-level approach to continuous phase transitions, formally not based on any particular microscopic model (though in fact
implying either the Ising model (4.2.3) or one of its siblings), is the mean-field theory developed in 1937 by L. Landau, on the
basis of prior ideas by P. Weiss — to be discussed in the next section. The main idea of this phenomenological approach is to
represent the free energy's change AF' at the phase transition as an explicit function of the order parameter 7 (4.2.5). Since at
T — T, , the order parameter has to tend to zero, this change,

AF = F(T) - F(T,), (4.3.1)

may be expanded into the Taylor series in 77, and only a few, most important first terms of that expansion retained. In order to keep
the symmetry between two possible signs of the order parameter (i.e. between two possible spin directions in the Ising model) in
the absence of external field, at h = 0 this expansion should include only even powers of 7:
AF 1
Aflhso == =AM +=B(T)n*+..., atT=~T.. (4.3.2)
V 1o 2
As Figure 4.3.1 shows, at A(T') <0, and B(T') > 0, these two terms are sufficient to describe the minimum of the free energy at
n2 > 0, i.e. to calculate stationary values of the order parameter; this is why Landau's theory ignores higher terms of the Taylor
expansion — which are much smaller at  — 0.

AF AF
Vol 450 V A>0
4<0 -A/B
A<0
0 no4 0 E n
______________________ 5B B
Figure 4.3.1: The Landau free energy (4.3.2) as a function of (a) 7 and (b) 7%, for two signs of the coefficient A(T’), both for

B(T) > 0.
Now let us discuss the temperature dependencies of the coefficients A and B. As Equation (4.3.2) shows, first of all, the

coefficient B(T") has to be positive for any sign of 7 o< (T.—T'), to ensure the equilibrium at a finite value of 2. Thus, it is
reasonable to ignore the temperature dependence of B near the critical temperature altogether, i.e. use the approximation

B(T)=b>0. (4.3.3)

On the other hand, as Figure 4.3.1 shows, the coefficient A(T) has to change sign at T'=T,, to be positive at T' > T, and
negative at ' < T, to ensure the transition from 7 =0 at T' > T, to a certain non-zero value of the order parameter at T' < T
Assuming that A is a smooth function of temperature, we may approximate it by the leading term of its Taylor expansion in 7:

A(T)=—ar, witha>0, (4.3.4)

so that Equation (4.3.2) becomes

1
Aflio —a7n2+§b174. (4.3.5)

In this rudimentary form, the Landau theory may look almost trivial, and its main strength is the possibility of its straightforward
extension to the effects of the external field and of spatial variations of the order parameter. First, as the field terms in Egs. (4.2.1)
or (4.2.3) show, the applied field gives such systems, on average, the energy addition of —h#n per particle, i.e. —nhn per unit
volume, where 1 is the particle density. Second, since according to Equation (4.2.11) (with v > 0, see Table 4.2.1) the correlation
radius diverges at 7 — 0, in this limit the spatial variations of the order parameter should be slow, | V7| — 0. Hence, the effects of
the gradient on AF may be approximated by the first non-zero term of its expansion into the Taylor series in (V7)%.2% As a result,
Equation (4.3.5) may be generalized as

Landau theory: free energy
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AF:/Afd?’r, with Af = faTn2+%bn4—nhn+c(Vn)2, (4.3.6)

where c is a coefficient independent of 7. To avoid the unphysical effect of spontaneous formation of spatial variations of the order
parameter, that factor has to be positive at all temperatures and hence may be taken for a constant in a small vicinity of T, — the
only region where Equation (4.3.6) may be expected to provide quantitatively correct results.

Let us find out what critical exponents are predicted by this phenomenological approach. First of all, we may find the equilibrium
values of the order parameter from the condition of F' having a minimum, 8F /91 =0. At h =0, it is easier to use the equivalent
equation F'/8(n2) = 0, where F is given by Equation (4.3.5) — see Figure 4.3.1b This immediately yields

In| = { (ar/b)Y2,  forT>0

(4.3.7)
0, for 7 < 0.

Comparing this result with Equation (4.2.6), we see that in the Landau theory, 8 = 1/2. Next, plugging the result (4.3.7) back into
Equation (4.3.5), for the equilibrium (minimal) value of the free energy, we get

_J —a?7?/2b, forT>0
Af= {0, for T < 0. (438)
From here and Equation (4.2.17), the specific heat,
Ch a?/bT,, forT>0
= ) 4.3.
\%4 {0, for r <0, (4.3.9)

has, at the critical point, a discontinuity rather than a singularity, so that we need to prescribe zero value to the critical exponent a.

In the presence of a uniform field, the equilibrium order parameter should be found from the condition 8f/8n =0 applied to
Equation (4.3.6) with Vi = 0, giving

0
of _ —2a7n +2bn* —nh =0. (4.3.10)
on
In the limit of a small order parameter, 7 — 0, the term with 13 is negligible, and Equation (4.3.10) gives
nh
=—— 4.3.11
Ly ( )

so that according to Equation (4.2.9), v =1. On the other hand, at 7 =0 (or at relatively high fields at other temperatures), the
cubic term in Equation (4.3.10) is much larger than the linear one, and this equation yields

nh 1/3
n= ( 2b> , (4.3.12)

so that comparison with Equation (4.2.12) yields é = 3. Finally, according to Equation (4.2.10), the last term in Equation (4.3.6)
scales as cn? /r2. (If r. # oo, the effects of the pre-exponential factor in Equation (4.2.10) are negligible.) As a result, the gradient
term's contribution is comparable?” with the two leading terms in A f (which, according to Equation (4.3.7), are of the same order),

if
1/2
C
o (_) , (4.3.13)

alr]|
so that according to the definition (4.2.11) of the critical exponent v, in the Landau theory it is equal to 1/2.

The third column in Table 4.2.1 summarizes the critical exponents and their combinations in Landau's theory. It shows that these
values are somewhat out of the experimental ranges, and while some of their “universal” relations are correct, some are not; for
example, the Josephson relation would be only correct at d =4 (not the most realistic spatial dimensionality :-) The main reason
for this disappointing result is that describing the spin interaction with the field, the Landau mean-field theory neglects spin
randomness, i.e. fluctuations. Though a quantitative theory of fluctuations will be discussed only in the next chapter, we can readily

perform their crude estimate. Looking at Equation (4.3.6), we see that its first term is a quadratic function of the effective “half-
degree of freedom”, 1. Hence per the equipartition theorem (2.2.10), we may expect that the average square of its thermal
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fluctuations, within a d-dimensional volume with a linear size of the order of r., should be of the order of T"/2 (close to the critical
temperature, T, /2 is a good enough approximation):
- T
alr|(d)re ~ 5 (4.3.14)
In order to be negligible, the variance has to be small in comparison with the average n2 ~ a7 /b — see Equation (4.3.7). Plugging
in the 7-dependences of the operands of this relation, and values of the critical exponents in the Landau theory, for 7 > 0 we get
the so-called Levanyuk-Ginzburg criterion of its validity:

<5 (4.3.15)

We see that for any realistic dimensionality, d < 4, at 7 — 0 the order parameter's fluctuations grow faster than its average value,
and hence the theory becomes invalid.

T. raT\d/2 at
(%) <

2at \ ¢

Thus the Landau mean-field theory is not a perfect approach to finding critical indices at continuous phase transitions in Ising-type
systems with their next-neighbor interactions between the particles. Despite that fact, this theory is very much valued because of
the following reason. Any long range interactions between particles increase the correlation radius r., and hence suppress the order
parameter fluctuations. As one example, at laser self-excitation, the emerging coherent optical field couples essentially all photon-
emitting particles in the electromagnetic cavity (resonator). As another example, in superconductors the role of the correlation
radius is played by the Cooper-pair size &, which is typically of the order of 10~ m, i.e. much larger than the average distance
between the pairs (~ 1078 m). As a result, the mean-field theory remains valid at all temperatures besides an extremely small
temperature interval near T, — for bulk superconductors, of the order of 106 K.

Another strength of Landau's classical mean-field theory (4.3.6) is that it may be readily generalized for a description of Bose-
Einstein condensates, i.e. quantum fluids. Of those generalizations, the most famous is the Ginzburg-Landau theory of
superconductivity. It was developed in 1950, i.e. even before the microscopic-level explanation of this phenomenon by J. Bardeen,
L. Cooper, and R. Schrieffer in 1956-57. In this theory, the real order parameter 7 is replaced with the modulus of a complex
function 1, physically the wavefunction of the coherent Bose-Einstein condensate of Cooper pairs. Since each pair carries the
electric charge ¢ =—2e and has zero spin, it interacts with the magnetic field in a way different from that described by the
Heisenberg or Ising models. Namely, as was already discussed in Sec. 3.4, in the magnetic field, the del operator V in Equation (
4.3.6) has to be complemented with the term —4(g/k)A, where A is the vector potential of the total magnetic field =V x A ,
including not only the external magnetic field 7 but also the field induced by the supercurrent itself. With the account for the
well-known formula for the magnetic field energy, Equation (4.3.6) is now replaced with

GL theory: free energy

‘%2

1 h? ) 2
Af:—a7'|¢|2+5b\¢|4—%‘(V—z%A) ¢‘ o (4.3.16)

where m is a phenomenological coefficient rather than the actual particle's mass.

The variational minimization of the resulting Gibbs energy density Ag= Af— g - M = Af-H - B+ const?® over the
variables ¢ and & (which is suggested for reader's exercise) yields two differential equations:

GL equations:

L gt [o(V-ita) v -], (4317
ar¢=b|¢|2¢—%(V—i%A)2¢. (4.3.18)

The first of these Ginzburg-Landau equations (4.3.17) should be no big surprise for the reader, because according to the Maxwell
equations, in magnetostatics the left-hand side of Equation (4.3.17) has to be equal to the electric current density, while its right-
hand side is the usual quantum-mechanical probability current density multiplied by g, i.e. the density j of the electric current of the

Cooper pair condensate. (Indeed, after plugging ¢ = nt/ 2exp{i¢} into that expression, we come back to Equation (3.4.15) which,
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as we already know, explains such macroscopic quantum phenomena as the magnetic flux quantization and the Meissner-
Ochsenfeld effect.)

However, Equation (4.3.18) is new for us — at least for this course.?? Since the last term on its right-hand side is the standard wave-
mechanical expression for the kinetic energy of a particle in the presence of a magnetic field,30 if this term dominates that side of
the equation, Equation (4.3.18) is reduced to the stationary Schrédinger equation Ev = H 1, for the ground state of free Cooper
pairs, with the total energy E = a7. However, in contrast to the usual (single-particle) Schrédinger equation, in which |¢| is
determined by the normalization condition, the Cooper pair condensate density n = |1/)\2 is determined by the thermodynamic
balance of the condensate with the ensemble of “normal” (unpaired) electrons, which plays the role of the uncondensed part of the
particles in the usual Bose-Einstein condensate — see Sec. 3.4. In Equation (4.3.18), such balance is enforced by the first term
b\¢|2¢ on the right-hand side. As we have already seen, in the absence of magnetic field and spatial gradients, such term yields
|9| o< 71/% o (T~ T)/? — see Equation (4.3.7).

As a parenthetic remark, from the mathematical standpoint, the term b|¢|2¢, which is nonlinear in 1, makes Equation (4.3.18) a
member of the family of the so-called nonlinear Schrédinger equations. Another member of this family, important for physics, is
the Gross-Pitaevskii equation,

Gross-Pitaevskii equation:

2
ar¢=b|¢12¢—;—mvz¢+U(r)¢, (4.3.19)

which gives a reasonable (albeit approximate) description of gradient and field effects on Bose-Einstein condensates of electrically
neutral atoms at T ~ T,.. The differences between Egs. (4.3.19) and (4.3.17-4.3.18) reflect, first, the zero electric charge g of the
atoms (so that Equation (4.3.17) becomes trivial) and, second, the fact that the atoms forming the condensates may be readily
placed in external potentials U(r) # const (including the time-averaged potentials of optical traps — see EM Chapter 7), while in
superconductors such potential profiles are much harder to create due to the screening of external electric and optical fields by
conductors — see, e.g., EM Sec. 2.1.

Returning to the discussion of Equation (4.3.18), it is easy to see that its last term increases as either the external magnetic field or
the density of current passed through a superconductor are increased, increasing the vector potential. In the Ginzburg-Landau
equation, this increase is matched by a corresponding decrease of \2/)|2, i.e. of the condensate density n, until it is completely
suppressed. This balance describes the well-documented effect of superconductivity suppression by an external magnetic field
and/or the supercurrent passed through the sample. Moreover, together with Equation (4.3.17), naturally describing the flux
quantization (see Sec. 3.4), Equation (4.3.18) explains the existence of the so-called Abrikosov vortices — thin magnetic-field tubes,
each carrying one quantum ®, of magnetic flux — see Equation (3.4.17). At the core part of the vortex, |'¢J|2 is suppressed (down to
zero at its central line) by the persistent, dissipation-free current of the superconducting condensate, which circulates around the
core and screens the rest of the superconductor from the magnetic field carried by the vortex.3! The penetration of such vortices
into the so-called type-II superconductors enables them to sustain zero dc resistance up to very high magnetic fields of the order of
20 T, and as a result, to be used in very compact magnets — including those used for beam bending in particle accelerators.

Moreover, generalizing Eqgs. (4.3.17-4.3.18) to the time-dependent case, just as it is done with the usual Schrédinger equation, one
can describe other fascinating quantum macroscopic phenomena such as the Josephson effects, including the generation of
oscillations with frequency wy = (¢/h)¥ by weak links between two superconductors, biased by dc voltage #. Unfortunately,
time/space restrictions do not allow me to discuss these effects in any detail in this course, and I have to refer the reader to special
literature.®? Let me only note that in the limit 7" — T, and for not extremely pure superconductor crystals (in which the so-called
non-local transport phenomena may be important), the Ginzburg-Landau equations are exact, and may be derived (and their
parameters T, a, b, g, and m determined) from the standard “microscopic” theory of superconductivity, based on the initial work
by Bardeen, Cooper, and Schrieffer.>®> Most importantly, such derivation proves that ¢ =—2e — the electric charge of a single
Cooper pair.

This page titled 4.3: Landau’s mean-field theory is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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4.4: Ising model - Weiss molecular-field theory

The Landau mean-field theory is phenomenological in the sense that even within the range of its validity, it tells us nothing about
the value of the critical temperature T, and other parameters (in Equation (4.3.6), the coefficients a, b, and ¢), so that they have to
be found from a particular “microscopic” model of the system under analysis. In this course, we would have time to discuss only
the Ising model (4.2.3) for various dimensionalities d.

F=—(NJd)n? — Nhn. (4.4.1)

This energy is plotted in Figure 4.4.1aas a function of 7, for several values of h.

(a) (b)

0.5—\ -

R e =

o S
0 —h, 0 +h. h
0.5 h 0.5 i |
2J 5 10 . :
~1
“1 0 1 -1

Figure 4.4.1: Field dependences of (a) the free energy profile and (b) the order parameter (i.e. magnetization) in the crudest mean-

field approach to the Ising model.
The plots show that at h = 0, the system may be in either of two stable states, with 7 = £1, corresponding to two different spin
directions (i.e. two different directions of magnetization), with equal energy.>> (Formally, the state with 7 = 0 is also stationary,
because at this point 8F/0n =0, but it is unstable, because for the ferromagnetic interaction, J > 0, the second derivative
02 F /9n? is always negative.)

As the external field is increased, it tilts the potential profile, and finally at the critical field,
h=h.=2Jd, (4.4.2)

So, this simplest mean-field theory (4.4.1) does give a (crude) description of the ferromagnetic ordering. However, this theory
grossly overestimates the stability of these states with respect to thermal fluctuations. Indeed, in this theory, there is no thermally-
induced randomness at all, until 7" becomes comparable with the height of the energy barrier separating two stable states,

AF=F(n=0)—F(n=+1)=NJd, (4.4.3)

which is proportional to the number of particles. At N — oo, this value diverges, and in this sense, the critical temperature is
infinite, while numerical experiments and more refined theories of the Ising model show that actually its ferromagnetic phase is
suppressed at T' > T, ~ Jd — see below.

The accuracy of this theory may be dramatically improved by even an approximate account for thermally-induced randomness. In
this approach (suggested in 1907 by Pierre-Ernest Weiss), called the molecular-field theory,38 random deviations of individual spin
values from the lattice average,

Sp=sp—mn, withn=(sp), (4.4.4)

are allowed, but considered small, |§; << 7. This assumption allows us, after plugging the resulting expression sy =1+ 55 to
the first term on the right-hand side of Equation (4.2.3),
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Em:—JZ(n—l—é'k)(n—i—skr thk——JZ n?+n(8k+3y)+8kSy] thk, (4.4.5)
{k,k} k {k,K'}
ignore the last term in the square brackets. Making the replacement (4.4.4) in the terms proportional to s, we may rewrite the
result as
Ep ~ Bl = (NJd)n* —hep > st (4.4.6)
k

where h.; is defined as the sum

hef =h+(2Jd)n. (4.4.7)

This sum may be interpreted as the effective external field, which takes into account (besides the genuine external field h) the effect
that would be exerted on spin s by its 2d next neighbors if they all had non-fluctuating (but possibly continuous) spin values
sy = 1. Such addition to the external field,

‘Weiss molecular field:

himol = hey —h = (2Jd)n, | (4.4.8)

is called the molecular field — giving its name to the Weiss theory.

From the point of view of statistical physics, at fixed parameters of the system (including the order parameter 7), the first term on
the right-hand side of Equation (4.4.6) is merely a constant energy offset, and h. is just another constant, so that

—he, forsp=+1

+hef, fOI' Sk = —1. (449)

E!, = const —I—Zsk, with e, = —hefsp = {
k
Such separability of the energy means that in the molecular-field approximation the fluctuations of different spins are independent
of each other, and their statistics may be examined individually, using the energy spectrum €. But this is exactly the two-level
system that was the subject of Problems 2.2- 2.4. Actually, its statistics is so simple that it is easier to redo this fundamental
problem starting from scratch, rather than to use the results of those exercises (which would require changing notation).

Indeed, according to the Gibbs distribution (2.4.7)-(2.4.8), the equilibrium probabilities of the states s; = 41 may be found as

_ 1 oy . _ hes et et
Wi—Ze ,  with Z =exp{ + T +exp T =2cosh T (4.4.10)

From here, we may readily calculate F' =—T'In Z and all other thermodynamic variables, but let us immediately use Equation (
4.4.10) to calculate the statistical average of s;, i.e. the order parameter:
e+hef/Tefhgf/T hef

n=(s;) =Wy +(-1)W_ = eosh(hy/T) = tanh T

(4.4.11)

Now comes the punch line of the Weiss' approach: plugging this result back into Equation (4.4.7), we may write the condition of
self-consistency of the molecular-field theory:

Self-consistency equation:

(4.4.12)

This is a transcendental equation, which evades an explicit analytical solution, but whose properties may be readily analyzed by
plotting both its sides as functions of the same argument, so that the stationary state(s) of the system corresponds to the intersection
point(s) of these plots.

First of all, let us explore the field-free case (h = 0), when hef = hpo = 2dJn, so that Equation (4.4.12) is reduced to

2
nztanh(%dn), (4.4.13)

giving one of the patterns sketched in Figure 4.4.2, depending on the dimensionless parameter 2Jd/T.
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Figure 4.4.2: The ferromagnetic phase transition in Weiss' molecular-field theory: two sides of Equation (4.4.13) sketched as
functions of 7 for three different temperatures: above 7, (red), below T (blue), and equal to 7 (green).

If this parameter is small, the right-hand side of Equation (4.4.13) grows slowly with 7 (see the red line in Figure 4.4.2), and there
is only one intersection point with the left-hand side plot, at n =0. This means that the spin system has no spontaneous
magnetization; this is the so-called paramagnetic phase. However, if the parameter 2Jd/T exceeds 1, i.e. if T is decreased below
the following critical value,

Critical ("Curie") temperature:

(4.4.14)

the right-hand side of Equation (4.4.13) grows, at small 7, faster than its left-hand side, so that their plots intersect it in 3 points:
1 =0 and n = *£ny — see the blue line in Figure 4.4.2. It is almost evident that the former stationary point is unstable, while the
two latter points are stable. (This fact may be readily verified by using Equation (4.4.10) to calculate F'. Now the condition
OF /0n|;,_, =0 returns us to Equation (4.4.13), while calculating the second derivative, for ' < T, we get 0’F / on? >0 at
n==4ny, and 2F/0n? <0 at n =0). Thus, below T, the system is in the ferromagnetic phase, with one of two possible
directions of the average spontaneous magnetization, so that the critical (Curie®®) temperature, given by Equation (4.4.14), marks
the transition between the paramagnetic and ferromagnetic phases. (Since the stable minimum value of the free energy F' is a
continuous function of temperature at T' = T, this phase transition is continuous.)

Now let us repeat this graphics analysis to examine how each of these phases responds to an external magnetic field h #£0.
According to Equation (4.4.12), the effect of h is just a horizontal shift of the straight-line plot of its left-hand side — see Figure
4.4.3. (Note a different, here more convenient, normalization of both axes.)

) (a) (b)
pY, ) J 2dJ F------

—2dJ

Figure 4.4.3: External field effects on: (a) a paramagnet (T > T), and (b) a ferromagnet (T' < T,).

In the paramagnetic case (Figure 4.4.3q) the resulting dependence h.(h) is evidently continuous, but the coupling effect (J > 0)
makes it steeper than it would be without spin interaction. This effect may be quantified by the calculation of the low-field
susceptibility defined by Equation (4.2.9). To calculate it, let us notice that for small o, and hence small k., the function tanh in
Equation (4.4.12) is approximately equal to its argument so that Equation (4.4.12) is reduced to

2
hef —h = #hef, for

2
%dhef << 1. (4'4'15)
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Solving this equation for h.y, and then using Equation (4.4.14), we get
h h

her = = . 4.4.16
I~ 1-2Jd)T ~1-T.)T ( )
Recalling Equation (4.4.8), we can rewrite this result for the order parameter:
hef —h h
= = 4.4.17
T. T-T,’ ( )
so that the low-field susceptibility
Curie-Weiss law:
on 1
=— =———>y, forT>T,. 4.4.1
X=Gu| =g ET>T (4.4.18)

This is the famous Curie-Weiss law, which shows that the susceptibility diverges at the approach to the Curie temperature 7.

In the ferromagnetic case, the graphical solution (Figure 4.4.3b) of Equation (4.4.12) gives a qualitatively different result. A field
increase leads, depending on the spontaneous magnetization, either to the further saturation of h;,, (with the order parameter
gradually approaching 1), or, if the initial 77 was negative, to a jump to positive 7 at some critical (coercive) field h.. In contrast
with the crude approximation (4.4.1), at 7' >0 the coercive field is smaller than that given by Equation (4.4.2), and the
magnetization saturation is gradual, in a good (semi-qualitative) accordance with experiment.

To summarize, the Weiss molecular-field theory gives an approximate but realistic description of the ferromagnetic and
paramagnetic phases in the Ising model, and a very simple prediction (4.4.14) of the temperature of the phase transition between
them, for an arbitrary dimensionality d of the cubic lattice. It also enables calculation of other parameters of Landau's mean-field
theory for this model — an easy exercise left for the reader. Moreover, the molecular-field approach allows one to obtain analytical
(if approximate) results for other models of phase transitions — see, e.g., Problem 18.

This page titled 4.4: Ising model - Weiss molecular-field theory is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or

curated by Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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4.5: Ising model - Exact and numerical results

In order to evaluate the main prediction (4.4.14) of the Weiss theory, let us now discuss the exact (analytical) and quasi-exact
(numerical) results obtained for the Ising model, going from the lowest value of dimensionality, d =0, to its higher values. Zero
dimensionality means that the spin has no nearest neighbors at all, so that the first term of Equation (4.2.3) vanishes. Hence
Equation (4.4.6) is exact, with h.f = h, and so is its solution (4.4.11). Now we can simply use Equation (4.4.18), with J =0, i.e.
T. =0, reducing this result to the so-called Curie law:

Curie law:

X= 7 (4.5.1)

It shows that the system is paramagnetic at any temperature. One may say that for d =0 the Weiss molecular-field theory is exact —
or even trivial. (However, in some sense it is more general than the Ising model, because as we know from Chapter 2, it gives the
exact result for a fully quantum mechanical treatment of any two-level system, including spin-1/2.) Experimentally, the Curie law is
approximately valid for many so-called paramagnetic materials, i.e. 3D systems with sufficiently weak interaction between particle
spins.

The case d =1 is more complex but has an exact analytical solution. A simple (though not the simplest!) way to obtain it is to use
the so-called transfer matrix approach.*’ For this, first of all, we may argue that most properties of a 1D system of N >> 1 spins
(say, put at equal distances on a straight line) should not change noticeably if we bend that line gently into a closed ring (Figure
4.5.1), assuming that spins s; and sy interact exactly as all other next-neighbor pairs. Then the energy (4.2.3) becomes

E,, =—(Js182+Jsass+...+Jsnys1) — (hsy +hsa+. .. +hsy). (4.5.2)

Figure 4.5.1: The closed-ring version of the 1D Ising system.

Let us regroup the terms of this sum in the following way:

h h h h h h
E,=—||=s1+Js1s9+—=8 | +| =s2+Jsos3+ =83 | +...+ | =sy+JIns1+—=51 )|, (4.5.3)

2 2 2 2 2 2

so that the group inside each pair of parentheses depends only on the state of two adjacent spins. The corresponding statistical sum,
81 8189 89 S9 8983 S3 SN SN S1 S1
7= {h— J h—} {h— g5 h—}... {h— J h—}, 4.5.4

k;k exp\hor +I T ThappeP\har T Thapy e T thapy (454)
=12,...N

still has 2V terms, each corresponding to a certain combination of signs of N spins. However, each operand of the product under
the sum may take only four values, corresponding to four different combinations of its two arguments:

exp{(J+h)/T}, fors,=sk1 =+1,
exp{hs—k—i—JskskJrl —l—hﬁ} =< exp{(J—h)/T}, fors;=sr1=-1, (4.5.5)
exp{—J/T}, for sy = —sp41 = £1.

_ (exp{(J+h)/T}  exp{-J/T}
M= ( exp{—J/T} exp{(J—h)/T}) ’ (4.5.6)

2T T 2T
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so that the whole statistical sum (4.5.4) may be recast as a product:

Z=) Mj;, M, ... M 5 M. (4.5.7)
=12

According to the basic rule of matrix multiplication, this sum is just

Z =Tr(MY). (4.5.8)
Linear algebra tells us that this trace may be represented just as

Z =XV 4+ (4.5.9)
where A+ are the eigenvalues of the transfer matrix M, i.e. the roots of its characteristic equation,

T} - -J/T
exp{-J/T}  exp{(J—h)/T}—A
A straightforward calculation yields
J h L h 47\ V2
Ay = exp{ T} cosh T + <smh T +exp{— T }) . (4.5.11)

The last simplification comes from the condition N >> 1 — which we need anyway, to make the ring model sufficiently close to
the infinite linear 1D system. In this limit, even a small difference of the exponents, A; > A_, makes the second term in Equation (
4.5.9) negligible, so that we finally get

N
NJ h h 47\ 2
Z:)\f:exp{T} coshf—l— (sinh2 T—l—exp{—?}) . (4.5.12)
From here, we can find the free energy per particle:
F T, 1 h h 47\ 2
~ = Nlnz =—J—Tln cosh?—i— (sinh2?+exp{—?J}) , (4.5.13)

and then use thermodynamics to calculate such variables as entropy — see the first of Egs. (1.4.12).

However, we are mostly interested in the order parameter defined by Equation (4.2.5): n = (s;). The conceptually simplest
approach to the calculation of this statistical average would be to use the sum (2.1.7), with the Gibbs probabilities
W,, = Z ' exp{—E,,/T}. However, the number of terms in this sum is 2, so that for N >> 1 this approach is completely
impracticable. Here the analogy between the canonical pair {— P, V} and other generalized force-coordinate pairs {.Z, ¢}, in
particular {107 (ry,), my, } for the magnetic field, discussed in Secs. 1.1 and 1.4, becomes invaluable — see in particular Equation (
1.1.5). (In our normalization (4.2.2), and for a uniform field, the pair {5 (ry), mg } becomes {h, si}.) Indeed, in this analogy
the last term of Equation (4.2.3), i.e. the sum of NV products (—hsg) for all spins, with the statistical average (— Nhn), is similar to
the product PV, i.e. the difference between the thermodynamic potentials F' and G=F + PV in the usual “P—-V
thermodynamics”. Hence, the free energy F' given by Equation (4.5.13) may be understood as the Gibbs energy of the Ising system
in the external field, and the equilibrium value of the order parameter may be found from the last of Eqs. (1.4.16) with the

replacements — P — h,V — Nn:
Nn—(a—F) , i.e.n—[m] . (4.5.14)
oh /), Oh T

Note that this formula is valid for any model of ferromagnetism, of any dimensionality, if it has the same form of interaction with
the external field as the Ising model.

For the 1D Ising ring with N >> 1, Eqgs. (4.5.13) and (4.5.14) yield

h . a2k e - _On
n—sth/ (smh T—i—exp{—?}) , glvmgxz%

1 2J
= —exp{ — ¢ 4.5.15
h=0 Texp{ T } ( )
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This result means that the 1D Ising model does not exhibit a phase transition, i.e., in this model T, = 0. However, its susceptibility
grows, at 7' — 0, much faster than the Curie law (4.5.1). This gives us a hint that at low temperatures the system is “virtually
ferromagnetic”, i.e. has the ferromagnetic order with some rare random violations. (Such violations are commonly called low-
temperature excitations.) This interpretation may be confirmed by the following approximate calculation. It is almost evident that
the lowest-energy excitation of the ferromagnetic state of an open-end 1D Ising chain at A = 0 is the reversal of signs of all spins in
one of its parts — see Figure 4.5.2.

OROROSCHOROROR0

Figure 4.5.2: A Bloch wall in an open-end 1D Ising system.

Indeed, such an excitation (called the Bloch wall*?) involves the change of sign of just one product s;s, so that according to
Equation (4.2.3), its energy Eyy (defined as the difference between the values of E,, with and without the excitation) equals 2J,
regardless of the wall's position.*> Since in the ferromagnetic Ising model, the parameter J is positive, Ey > 0. If the system
“tried” to minimize its internal energy, having any wall in the system would be energy-disadvantageous. However, thermodynamics
tells us that at T" # 0, the system's thermal equilibrium corresponds to the minimum of the free energy F' = E—T'S, rather than just
energy E.* Hence, we have to calculate the Bloch wall's contribution Fyy to the free energy. Since in an open-end linear chain of
N >>1 spins, the wall can take (N—1) = N positions with the same energy Ey, we may claim that the entropy Sy associated
with this excitation is In N, so that

Fyw=Ew —TSw~2J—TInN. (4.5.16)

This result tells us that in the limit N — oo, and at T" # 0, walls are always free-energy-beneficial, thus explaining the absence of
the perfect ferromagnetic order in the 1D Ising system. Note, however, that since the logarithmic function changes extremely
slowly at large values of its argument, one may argue that a large but finite 1D system should still feature a quasi-critical
temperature
2J
b2 T 7’: —_— 4.5.17

¢ InN’ ( )
below which it would be in a virtually complete ferromagnetic order. (The exponentially large susceptibility (4.5.15) is another
manifestation of this fact.)

Now let us apply a similar approach to estimate T;. of a 2D Ising model, with open borders. Here the Bloch wall is a line of a
certain total length L — see Figure 4.5.3. (For the example presented in that figure, counting from the left to the right,
L=2+14+4+2+3=12 lattice periods.) Evidently, the additional energy associated with such a wall is Ey = 2JL, while
the wall's entropy Sy may be estimated using the following reasoning. Let the wall be formed along the path of a “Manhattan
pedestrian” traveling between its nodes. (The dashed line in Figure 4.5.3 is an example of such a path.) At each junction, the
pedestrian may select 3 choices of 4 possible directions (except the one that leads backward), so that there are approximately
3(L-1) ~ 3L options for a walk starting from a certain point. Now taking into account that the open borders of a square-shaped
lattice with N spins have a length of the order of N''/2, and the Bloch wall may start from any of them, there are approximately
M ~ N'/23L different walks between two borders. Again estimating Sy as In M, we get

Fy = By —TSw ~2JL—TIn(N'/?3%) = L(2J —T1n3) — (T/2)In N. (4.5.18)

(Actually, since L scales as N'*/2 or higher, at N — oo the last term in Equation (4.5.18) is negligible.) We see that the sign of the
derivative O Fyy /0L depends on whether the temperature is higher or lower than the following critical value:
2J

T.= == ~1.82J. 4.5.19
In3 ( )

AtT < T, the free energy's minimum corresponds to L — 0, i.e. the Bloch walls are free-energy detrimental, and the system is in
the purely ferromagnetic phase.
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Figure 4.5.3: A Bloch wall in a 2D Ising system.

So, for d = 2 the estimates predict a non-zero critical temperature of the same order as the Weiss theory (according to Equation (
4.4.14), in this case T, =4J). The major approximation implied in our calculation leading to Equation (4.5.19) is disregarding
possible self-crossings of the “Manhattan walk”. The accurate counting of such self-crossings is rather difficult. It had been carried
out in 1944 by L. Onsager; since then his calculations have been redone in several easier ways, but even they are rather
cumbersome, and I will not have time to discuss them.*® The final result, however, is surprisingly simple:

Onsager's exact result:

2J
T,=—2"  ~2.269J, (4.5.20)

In(1++/2)

i.e. showing that the simple estimate (4.5.19) is off the mark by only ~ 20%.

The Onsager solution, as well as all alternative solutions of the problem that were found later, are so “artificial” (2D-specific) that
they do not give a clear way towards their generalization to other (higher) dimensions. As a result, the 3D Ising problem is still
unsolved analytically. Nevertheless, we do know T for it with extremely high precision — at least to the 6 decimal place. This has
been achieved by numerical methods; they deserve a thorough discussion because of their importance for the solution of other
similar problems as well.

Conceptually, this task is rather simple: just compute, to the desired precision, the statistical sum of the system (4.2.3):

Z= ) exp %Zsksk/+%zsk . (4.5.21)
k

sp==1, for kk’
k=1.2,...N (KK}

As soon as this has been done for a sufficient number of values of the dimensionless parameters J/T and h/T, everything
becomes easy; in particular, we can compute the dimensionless function

F/T=-InZ, (4.5.22)

and then find the ratio J/T; as the smallest value of the parameter J/T at that the ratio F'/T (as a function of h/T) has a
minimum at zero field. However, for any system of a reasonable size IV, the “exact” computation of the statistical sum (4.5.21) is
impossible, because it contains too many terms for any supercomputer to handle. For example, let us take a relatively small 3D
lattice with N =10 x 10 x 10 = 10® spins, which still feature substantial boundary artifacts even using the periodic boundary
conditions, so that its phase transition is smeared about 7, by ~ 3%. Still, even for such a crude model, Z would include
21,000 = (210)100 ~ (10%)190 = 10%%0 terms. Let us suppose we are using a modern exaflops-scale supercomputer performing 10
floating-point operations per second, i.e. ~ 10?® such operations per year. With those resources, the computation of just one
statistical sum would require ~ 10(300-26) — 1274 years. To call such a number “astronomic” would be a strong understatement.
(As a reminder, the age of our Universe is close to 1.3 x 10'° years — a very humble number in comparison.)

This situation may be improved dramatically by noticing that any statistical sum,

Z:;exp{—ETm}, (4.5.23)
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is dominated by terms with lower values of E,,. To find those lowest-energy states, we may use the following powerful approach
(belonging to a broad class of numerical Monte-Carlo techniques), which essentially mimics one (randomly selected) path of the
system's evolution in time. One could argue that for that we would need to know the exact laws of evolution of statistical systems,*®
that may differ from one system to another, even if their energy spectra E,,, are the same. This is true, but since the genuine value
of Z should be independent of these details, it may be evaluated using any reasonable kinetic model that satisfies certain general
rules. In order to reveal these rules, let us start from a system with just two states, with energies E,, and E,; = E,, + A — see
Figure 4.5.4.

W

m

E, L =E, +A
X E

Figure 4.5.4: Deriving the detailed balance relation.

In the absence of quantum coherence between the states (see Sec. 2.1), the equations for the time evolution of the corresponding
probabilities W,,, and W, should depend only on the probabilities (plus certain constant coefficients). Moreover, since the
equations of quantum mechanics are linear, these master equations should be also linear. Hence, it is natural to expect them to have
the following form,

Master equations:

dw, AW,
d—t’" =W | —WpTIy, d—t’" =WnI't =Wy Ty, (4.5.24)

where the coefficients I'y and I'| have the physical sense of the rates of the corresponding transitions (see Figure 4.5.4); for
example, I'ydt is the probability of the system's transition into the state m’ during an infinitesimal time interval d¢, provided that at
the beginning of that interval it was in the state m with full certainty: W,,, = 1, W,y = 0.%” Since for the system with just two
energy levels, the time derivatives of the probabilities have to be equal and opposite, Eqgs. (4.5.24) describe an (irreversible)
redistribution of the probabilities while keeping their sum W = W,,, + W, constant. According to Egs. (4.5.24), at ¢ — oo the
probabilities settle to their stationary values related as

W T
Rk Ak (4.5.25)
Wn Ty
Now let us require these stationary values to obey the Gibbs distribution (2.4.7); from it
Wm/ Em - Em/ A
—— —expy ———— p =exps —— o < 1. (4.5.26)
Wi T T
Comparing these two expressions, we see that the rates have to satisfy the following detailed balance relation:
Detailed balance:
ry A
—_— = —— . 4.5.27
r—eo{ -7} (4.5.27)

Now comes the final step: since the rates of transition between two particular states should not depend on other states and their
occupation, Equation (4.5.27) has to be valid for each pair of states of any multi-state system. (By the way, this relation may serve
as an important sanity check: the rates calculated using any reasonable model of a quantum system have to satisfy it.)

The detailed balance yields only one equation for two rates I'y and I'|; if our only goal is the calculation of Z, the choice of the
other equation is not too important. A very simple choice is

{1, if A <0,

I(A) xy(A) = exp{—A/T},  otherwise,

(4.5.28)
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where A is the energy change resulting from the transition. This model, which evidently satisfies the detailed balance relation (
4.5.27), is very popular (despite the unphysical cusp this function has at A =0), because it enables the following simple
Metropolis algorithm (Figure 4.5.5).

set up an initial state

v

- flip a random spin
> - calculate A -«
- calculate ¥ (A)

v

generate random &

(0<é <)

reject

spin flip

compare
re> <

accept

spin flip

Figure 4.5.5: A crude scheme of the Metropolis algorithm for the Ising model simulation.

The calculation starts by setting a certain initial state of the system. At relatively high temperatures, the state may be generated
randomly; for example, in the Ising system, the initial state of each spin s; may be selected independently, with a 50% probability.
At low temperatures, starting the calculations from the lowest-energy state (in particular, for the Ising model, from the
ferromagnetic state sy = sgn(h) = const) may give the fastest convergence. Now one spin is flipped at random, the corresponding
change A of the energy is calculated,*® and plugged into Equation (4.5.2) to calculate ~(A). Next, a pseudo-random number
generator is used to generate a random number £, with the probability density being constant on the segment [0, 1]. (Such functions
are available in virtually any numerical library.) If the resulting £ is less than v(A), the transition is accepted, while if £ > y(A), it
is rejected. Physically, this means that any transition down the energy spectrum (A < 0) is always accepted, while those up the
energy profile (A > 0) are accepted with the probability proportional to exp{—A/T}.*° After sufficiently many such steps, the
statistical sum (4.5.23) may be calculated approximately as a partial sum over the states passed by the system. (It may be better to
discard the contributions from a few first steps, to avoid the effects of the initial state choice.)

This algorithm is extremely efficient. Even with modest computers available in the 1980s, it has allowed simulating a 3D Ising
system of (128)2 spins to get the following result: J/T, ~ 0.221650 +0.000005 For all practical purposes, this result is exact —
so that perhaps the largest benefit of the possible future analytical solution of the infinite 3D Ising problem will be a virtually
certain Nobel Prize for its author. Table 4.5.1 summarizes the values of T, for the Ising model. Very visible is the fast improvement
of the prediction accuracy of the molecular-field theory — which is asymptotically correct at d — oo .

Table 4.5.1: The critical temperature 7 (in the units of J) of the Ising model of a ferromagnet (J > 0), for several values of
dimensionality d

Molecular-field theory —

d Equation (4.4.14) Exact value Exact value's source
0 0 0 Gibbs distribution

1 2 0 Transfer matrix theory
2 4 2.269... Onsager's solution

3 6 4.513... Numerical simulation
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Finally, I need to mention the renormalization-group (“RG”) approach, despite its low efficiency for the Ising-type problems. The
basic idea of this approach stems from the scaling law (4.2.10)- (4.2.11): at T' =T, the correlation radius 7. diverges. Hence, the
critical temperature may be found from the requirement for the system to be spatially self-similar. Namely, let us form larger and
larger groups (“blocks™) of adjacent spins, and require that all properties of the resulting system of the blocks approach those of the
initial system, as T" approaches 7.

Let us see how this idea works for the simplest nontrivial (1D) case, described by the statistical sum (4.5.4). Assuming N to be
even (which does not matter at N — 00), and adding an inconsequential constant C' to each exponent (for the purpose that will be
clear soon), we may rewrite this expression as

J h
Z = — — 4.5.2
Z H exp{ S+ TSkSkJrl"_ o Sk —|—C} (4.5.29)
sp=+1k=1,2,...

Let us group each pair of adjacent exponents to recast this expression as a product over only even numbers k,

Z = Z H exp — 81 + S, i(sk,l +8k1) + h + — h Spy1 +2C (4.5.30)

2T T T 2T
sk=11k=2,4,.

and carry out the summation over two possible states of the internal spin s explicitly:

2>

sp=+t1 k=2,4,...N

J h h
=> 1II 2C“h{ (%1+8m1)%—}em{ (sk- 1+%ﬂ)+20} (4.5.31)
si—+1k=2.4,...N T 2T

exp{%sk,l + %(81671 + Sky1) + % + %S;H;[ + 20}
+exp{ g sk-1 — Z(Sk-1 + 5k11) — = + 2 8pp1 +2C}

Now let us require this statistical sum (and hence all statistical properties of the system of 2-spin blocks) to be identical to that of
the Ising system of N /2 spins, numbered by odd &:

Jl h/
Z H exp{—sklskHJr—skH +C"}, (4.5.32)
T T
se=1 k=2,4,.

with some different parameters &', J', and C’, for all four possible values of s;_; = 4-1 and s;,; = &1. Since the right-hand side
of Equation (4.5.37) depends only on the sum (sj_1 + Sg41), this requirement yields only three (rather than four) independent

equations for finding &', J’, and C’. Of them, the equations for ' and J’ depend only on h and J (but not on C),>' and may be
represented in an especially simple form,
RG equations for 1D Ising model:
z(1+y)? x4+
(¢ ) R | Ch N | (4.5.33)
(z+y)(1+zy) 14+zy
if the following notation is used:
J h
xzexp{—4f}, yzexp{—2f}. (4.5.34)

Now the grouping procedure may be repeated, with the same result (4.5.33)-(4.5.34). Hence these equations may be considered as
recurrence relations describing repeated doubling of the spin block size. Figure 4.5.6 shows (schematically) the trajectories of this
dynamic system on the phase plane [z, y]. (Each trajectory is defined by the following property: for each of its points {z, y}, the
point {z’, '} defined by the “mapping” Equation (4.5.33) is also on the same trajectory.) For ferromagnetic coupling (J > 0) and
h >0, we may limit the analysis to the unit square 0 < z,y <1. If this flow diagram had a stable fixed point with
T =x==2,#0 (ie. T/J<oo0)and y' =y=1 (i.e. h =0), then the first of Egs. (4.5.34) would immediately give us the
critical temperature of the phase transition in the field-free system:
4J

EZEEEJ' (4.5.35)
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However, Figure 4.5.6 shows that the only fixed point of the 1D system is x =y = 0, which (at a finite coupling J) should be

interpreted as T, = 0. This is of course in agreement with the exact result of the transfer-matrix analysis, but does not provide any
additional information.

= ex _2h /
y =mCAp T

rd

> >
0 h=o 1 y—expl-4J/T}
Figure 4.5.6: The RG flow diagram of the 1D Ising system (schematically).

Unfortunately, for higher dimensionalities, the renormalization-group approach rapidly becomes rather cumbersome and requires
certain approximations, whose accuracy cannot be easily controlled. For the 2D Ising system, such approximations lead to the
prediction T, /= 2.55 J, i.e. to a substantial difference from the exact result (4.5.20).

This page titled 4.5: Ising model - Exact and numerical results is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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4.6: Exercise problems

? Exercise 4.6.1

Compare the third virial coefficient C(T") that follows from the van der Waals equation, with its value for the hardball model
of particle interactions (whose calculation was the subject of Problem 3.28), and comment.

? Exercise 4.6.2

Calculate the entropy and the internal energy of the van der Waals gas, and discuss the results.

? Exercise 4.6.3

Use two different approaches to calculate the so-called Joule-Thomson coefficient (OE /OV ) for the van der Waals gas, and
the change of temperature of such a gas, with a temperature-independent C'y, at its fast expansion.

? Exercise 4.6.4

Calculate the difference Cp— CYy for the van der Waals gas, and compare the result with that for an ideal classical gas.

? Exercise 4.6.5

Calculate the temperature dependence of the phase-equilibrium pressure Py(T") and the latent heat A(T'), for the van der Waals
model, in the low-temperature limit 7" << T, .

? Exercise 4.6.6

Perform the same tasks as in the previous problem in the opposite limit — in close vicinity of the critical point 7.

? Exercise 4.6.7

Py a _ NT
V(V + Nb)T1/2 ~ V-—Nb’

with constant parameters a and b.

Hint: Be prepared to solve a cubic equation with particular (numerical) coefficients.

? Exercise 4.6.8

P= IivfbeXp{_N;’V}’

with constant parameters a and b. Compare the value of the dimensionless factor P.V./NT, with those given by the van der
Waals and Redlich-Kwong models.

? Exercise 4.6.9

In the crude sketch shown in Figure 4.1.34 the derivatives dP/dT' of the phase transitions liquid gas (“vaporization”) and
solid-gas (“sublimation”), at the triple point, are different, with

( dP, ) - ( dP, )
dT ) r g, iy
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l Is this occasional? What relation between these derivatives can be obtained from thermodynamics?

? Exercise 4.6.10

Use the Clapeyron-Clausius formula (4.1.17) to calculate the latent heat A of the Bose-Einstein condensation, and compare the
result with that obtained in the solution of Problem 3.21.

? Exercise 4.6.11

(i) Write the effective Hamiltonian for that the usual single-particle stationary Schrédinger equation coincides with the Gross-
Pitaevski equation (4.3.19).

(i) Use this Gross-Pitaevskii Hamiltonian, with the trapping potential U(r) = muw?r? /2, to calculate the energy E of
N >> 1 trapped particles, assuming the trial solution 1 oc exp{—12/ 27'3}, as a function of the parameter r(.>*

(iii) Explore the function E(rg) for positive and negative values of the constant b, and interpret the results.

(iv) For small b < 0, estimate the largest number IV of particles that may form a metastable Bose Einstein condensate.

? Exercise 4.6.12

Superconductivity may be suppressed by a sufficiently strong magnetic field. In the simplest case of a bulk, long cylindrical
sample of a type-I superconductor, placed into an external magnetic field F#,,; parallel to its surface, this suppression takes a
simple form of a simultaneous transition of the whole sample from the superconducting state to the “normal” (non-
superconducting) state at a certain value % (T) of the field's magnitude. This critical field gradually decreases with
temperature from its maximum value #.(0) at T'— 0 to zero at the critical temperature 7. Assuming that the function
F£.(T) is known, calculate the latent heat of this phase transition as a function of temperature, and spell out its values at
T—0andT =T,.

Hint: In this context, “bulk sample” means a sample much larger than the intrinsic length scales of the superconductor (such as
the London penetration depth 67, and the coherence length &).>°> For such bulk superconductors, magnetic properties of the
superconducting phase may be well described just as the perfect diamagnetism, with £ = 0 inside it.

? Exercise 4.6.13

In some textbooks, the discussion of thermodynamics of superconductivity is started with displaying, as self-evident, the
following formula:

_ mot(T)

Fn(T)_Fs(T) 9

v,

where F and F), are the free energy values in the superconducting and non-superconducting (“normal”) phases, and . (T') is
the critical value of the magnetic external field. Is this formula correct, and if not, what qualification is necessary to make it
valid? Assume that all conditions of the simultaneous field induced phase transition in the whole sample, spelled out in the
previous problem, are satisfied.

? Exercise 4.6.14

In Sec. 4, we have discussed Weiss' molecular-field approach to the Ising model, in which the average (s;) plays the role of the
order parameter 7). Use the results of that analysis to calculate the coefficients a and b in the corresponding Landau expansion (
4.3.6) of the free energy. List the critical exponents « and S, defined by Eqgs. (4.2.6) and (4.2.8), within this approach.
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? Exercise 4.6.15

Consider a ring of N =3 Ising “spins” (s = +1), with similar ferromagnetic coupling J between all sites, in thermal
equilibrium.

(i) Calculate the order parameter 7 and the low-field susceptibility x = dn/0h/|,_, .

(ii) Use the low-temperature limit of the result for x to predict it for a ring with an arbitrary N, and verify your prediction by a
direct calculation (in this limit).

(iii) Discuss the relation between the last result, in the limit N — oo, and Equation (4.5.15).

? Exercise 4.6.16

Calculate the average energy, entropy, and heat capacity of a three-site ring of Ising-type “spins” (sx = £1), with anti-
ferromagnetic coupling (of magnitude J) between the sites, in thermal equilibrium at temperature 7", with no external magnetic
field. Find the asymptotic behavior of its heat capacity for low and high temperatures, and give an interpretation of the results.

? Exercise 4.6.17

Using the results discussed in Sec. 5, calculate the average energy, free energy, entropy, and heat capacity (all per spin) as
functions of temperature 7" and external field k, for the infinite 1D Ising model. Sketch the temperature dependence of the heat
capacity for various values of ratio h/J, and give a physical interpretation of the result.

? Exercise 4.6.18

Use the molecular-field theory to calculate the critical temperature and the low-field susceptibility of a d-dimensional cubic
lattice of spins, described by the so-called classical Heisenberg model:®

E,=-J Z Sk'Sk'—Zh'Sk-

{k, K} k

Here, in contrast to the (otherwise, very similar) Ising model (4.2.3), the spin of each site is modeled by a classical 3D vector
sk = {Sak, Syk, Sz } of unit length: s2 =1.

1. The plasma phase, in which atoms are partly or completely ionized, is frequently mentioned on one more phase, on equal
footing with the three phases listed above, but one has to remember that in contrast to them, a typical electroneutral plasma
consists of particles of two very different sorts — positive ions and electrons.

2. Such classification schemes, started by Paul Ehrenfest in the early 1930s, have been repeatedly modified to accommodate new
results for particular systems, and by now only the “first-order phase transition” is still a generally accepted term, but with a
definition different from the original one.

3. For example, for water the latent heat of vaporization at the ambient pressure is as high as ~ 2.2 x 10® J/kg, i.e. ~ 0.4 eV per
molecule, making this ubiquitous liquid indispensable for effective fire fighting. (The latent heat of water ice's melting is an
order of magnitude lower.)

4. Due to the phenomenological character of the van der Waals model, one cannot say for sure whether the condensed phase it
predicts corresponds to a liquid or a solid. However, in most real substances at ambient conditions, gas coexists with liquid,
hence the name.

5. The special choice of numerical coefficients in Equation (4.1.3) makes the border between these two regions to take place
exactly att =1, i.e. at the temperature equal to T, with the critical point's coordinates equal to P, and V.

6. Actually, this assumption is not crucial for our analysis of mechanical stability, because if a fluctuation takes place in a small
part of the total volume V/, its other parts play the role of pressure-fixing environment.

7. Frequently, Py(T') is called the saturated vapor pressure.

8. A natural question: is the two-phase state with P = Py(T') the only state existing between points 1 and 2? Indeed, the branches
1-1' and 2-2' of the single-phase isotherm also have negative derivatives (9P /0V)r and hence are mechanically stable with
respect to small perturbations. However, these branches are actually metastable, i.e. have larger Gibbs energy per particle (i.e.
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) than the counterpart phase and are hence unstable to larger perturbations — such as foreign microparticles (say, dust),
protrusions on the confining walls, etc. In very controlled conditions, these single-phase “superheated” and “supercooled” states
can survive almost all the way to the zero-derivative points 1' and 2', leading to sudden jumps of the system into the counterpart
phase. (At fixed pressure, such jumps go as shown by dashed lines in Figure 4.1.2.) In particular, at the atmospheric pressure,
purified water may be supercooled to almost —50° C, and superheated to nearly +270° C. However, at more realistic conditions,
perturbations result in the two-phase coexistence formation close to points 1 and 2.

. This Maxwell equal-area rule (also called “Maxwell's construct”) was suggested by J. C. Maxwell in 1875 using more complex

reasoning.

It is fascinating how well is this Arrhenius exponent hidden in the polynomial van der Waals equation (4.1.2)!
(CH;—CH,)—O—(CH,—CH,), historically the first popular general anesthetic.

It is interesting that very close to the critical point the substance suddenly becomes opaque — in the case of ether, whitish. The
qualitative explanation of this effect, called the critical opalescence, is simple: at this point, the difference of the Gibbs energies
per particle (i.e. the chemical potentials) of the two phases becomes so small that unavoidable thermal fluctuations lead to
spontaneous appearance and disappearance of relatively large (a few-pm-scale) single-phase regions in all the volume. A large
concentration of boundaries of such randomly shaped regions leads to strong light scattering.

Please note that for water, P; is much lower than the normal atmospheric pressure (101.325 kPa).

Note the recent (2018) re-definition of the “legal” kelvin via joule (see, appendix CA: Selected Physical Constants); however,
the new definition is compatible, within experimental accuracy, with that mentioned above.

Perhaps the most practically important example is the air/water system. For its detailed discussion, based on Equation (4.1.19),
the reader may be referred, e.g., to Sec. 3.9 in F. Schwabl, Statistical Mechanics, Springer (2000). Other important applications
include liquid solutions, and metallic alloys — solid solutions of metal elements.

For ferromagnets, this point is usually referred to at the Curie temperature, and for antiferromagnets, as the Néel temperature.
Unfortunately, I will have no time/space for these interesting (and practically important) generalizations, and have to refer the
interested reader to the famous monograph by R. Stratonovich, Topics in the Theory of Random Noise, in 2 vols., Gordon and
Breach, 1963 and 1967, and/or the influential review by H. Haken, Ferstkorperprobleme 10, 351 (1970).

See, e.g., QM Sec. 4.4.

At J <0, the first term of Equation (4.2.1) gives a reasonable model of an antiferromagnet, but in this case, the external
magnetic field effects are more subtle; I will not have time to discuss them.

See, e.g., QM Equation (4.163).

Named after Ernst Ising who explored the 1D version of the model in detail in 1925, though a similar model was discussed
earlier (in 1920) by Wilhelm Lenz.

For more detailed discussions of phase transition theories (including other popular models of the ferromagnetic phase transition,
e.g., the Potts model), see, e.g., either H. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford U. Press,
1971; or A. Patashinskii and V. Pokrovskii, Fluctuation Theory of Phase Transitions, Pergamon, 1979; or B. McCoy, Advanced
Statistical Mechanics, Oxford U. Press, 2010. For a very concise text, I can recommend J. Yeomans, Statistical Mechanics of
Phase Transitions, Clarendon, 1992.

The forms of this and other functions of 7 are selected to make all critical exponents non-negative.

In most models of ferromagnetic phase transitions, this variable is proportional to the genuine low-field magnetic susceptibility
Xm of the material — see, e.g., EM Equation (5.111).

As was already discussed in Secs. 1.4 and 2.4, there is some dichotomy of terminology for free energies in literature. In models
(4.2.1) and (4.2.3), the magnetic field effects are accounted for at the microscopic level, by the inclusion of the corresponding
term into each particular value E,,,. From this point of view, the list of macroscopic variables in these systems does not include
either P and V or their magnetic analogs, so that we may take G = F' + PV = F+ const, and the equilibrium (at fixed h, T'
and N) corresponds to the minimum of the Helmholtz free energy F'.

Historically, the last term belongs to the later (1950) extension of the theory by V. Ginzburg and L. Landau — see below.
According to Equation (4.2.10), the correlation radius may be interpreted as the distance at that the order parameter 7 relaxes to
its equilibrium value, if it is deflected from that value at some point. Since the law of such spatial change may be obtained by a
variational differentiation of F', for the actual relaxation law, all major terms of (4.3.6) have to be comparable.

As an immediate elementary sanity check of this relation, resulting from the analogy of Egs. (1.1.1) and (1.1.5), the
minimization of Ag in the absence of superconductivity (¢ = 0) gives the correct result # = o . Note that this account of
the difference between A f and Ag is necessary here because (unlike Egs. (4.2.1) and (4.2.3)), the Ginzburg Landau free
energy (4.3.16) does not take into account the effect of the field on each particle directly.
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It is discussed in EM Sec. 6.5.

See, e.g., QM Sec. 3.1.

See, e.g., EM Sec. 6.5.

See, e.g., M. Tinkham, Introduction to Superconductivity, ond ed., McGraw-Hill, 1996. A short discussion of the Josephson
effects and Abrikosov vortices may be found in QM Sec. 1.6 and EM Sec. 6.5 of this series.

See, e.g., Sec. 45 in E. Lifshitz and L. Pitaevskii, Statistical Physics, Part 2, Pergamon, 1980.

Since in this naive approach we neglect the fluctuations of spin, i.e. their disorder, the assumption of full ordering implies

S =0,sothat F = E-TS = F, and we may use either notation for the system's energy.

The fact that the stable states always correspond to 77 = £1, partly justifies the treatment, in this crude approximation, of the
order parameter 7 as a continuous variable.

Since these magnetization jumps are accompanied by (negative) jumps of the free energy F', they are sometimes called the first-
order phase transitions. Note, however, that in this simple theory, these transitions are between two physically similar fully-
ordered phases.

For me, it was always shocking how little my graduate students knew about this fascinating (and very important) field of
modern engineering, which involves so much interesting physics and fantastic electromechanical technology. For getting
acquainted with it, I may recommend, for example, the monograph by C. Mee and E. Daniel, Magnetic Recording Technology,
2% ed., McGraw-Hill, 1996.

In some texts, this approximation is called the “mean-field theory”. This terminology may lead to confusion, because the
molecular-field theory belongs to a different, deeper level of the theoretical hierarchy than, say, the (more phenomenological)
Landau-style mean-field theories. For example, for a given microscopic model, the molecular-field approach may be used for
the (approximate) calculation of the parameters a, b, and T, participating in Equation (4.3.6) — the starting point of the Landau
theory.

Named after Pierre Curie, rather than his (more famous) wife Marie Sktodowska-Curie.

It was developed in 1941 by H. Kramers and G. Wannier. I am following this method here because it is very close to the one
used in quantum mechanics (see, e.g., QM Sec. 2.5), and may be applied to other problems as well. For a simpler approach to
the 1D Ising problem, which gives an explicit solution even for an “open-end” system with a finite number of spins, see the
model solution of Problem 5.5.

This is a result of the “translational” (or rather rotational) symmetry of the system, i.e. its invariance to the index replacement
k — k+1 in all terms of Equation (4.5.2).

Named after Felix Bloch who was the first one to discuss such excitations in ferromagnetism.

For the closed-ring model (Figure 4.5.1) such analysis gives an almost similar prediction, with the difference that in that
system, the Bloch walls may appear only in pairs, so that By =4.J, and Sy =In[N(N—-1)] =2InN.

This is a very vivid application of one of the core results of thermodynamics. If the reader is still uncomfortable with it, they are
strongly encouraged to revisit Equation (1.4.19) and its discussion.

For that, the interested reader may be referred to either Sec. 151 in the textbook by Landau and Lifshitz, or Chapter 15 in the
text by Huang, both cited above.

Discussion of such laws in the task of physical kinetics, which will be briefly reviewed in Chapter 6.

The calculation of these rates for several particular cases is described in QM Secs. 6.6, 6.7, and 7.6 — see, e.g., QM Equation
(7.196), which is valid for a very general model of a quantum system.

Note that a flip of a single spin changes the signs of only (2d 4 1) terms in the sum (4.2.3), i.e. does not require the re-
calculation of all (2d + 1) N terms of the sum, so that the computation of A takes just a few multiply-and accumulate
operations even at N >> 1.

The latter step is necessary to avoid the system's trapping in local minima of its multidimensional energy profile
E,.(51,82,---,8N)-

Initially developed in the quantum field theory in the 1950s, it was adapted to statistics by L. Kadanoff in 1966, with a
spectacular solution of the so-called Kubo problem by K. Wilson in 1972, later awarded with a Nobel Prize.

This might be expected because physically C' is just a certain constant addition to the system's energy. However, the
introduction of that constant is mathematically necessary, because Egs. (4.5.31) and (4.5.32) may be reconciled only if
C'£C.

This equation of state, suggested in 1948, describes most real gases better than not only the original van der Waals model, but
also other two-parameter alternatives, such as the Berthelot, modified-Berthelot, and Dieterici models, though some
approximations with more fitting parameters (such as the Soave-Redlich-Kwong model) work even better.
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53. This model is currently less popular than the Redlich-Kwong one (also with two fitting parameters), whose analysis was the
task of the previous problem.

54. This task is essentially the first step of the variational method of quantum mechanics — see, e.g., QM Sec. 2.9.

55. A discussion of these parameters, as well as of the difference between the type-I and type-II superconductivity, may be found in
EM Secs. 6.4-6.5. However, those details are not needed for the solution of this problem.

56. This classical model is formally similar to the generalization of the genuine (quantum) Heisenberg model (4.2.1) to arbitrary
spin s, and serves as its infinite-spin limit.

This page titled 4.6: Exercise problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Konstantin K.
Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

5: Fluctuations

This chapter discusses fluctuations of macroscopic variables, mostly at thermodynamic equilibrium. In particular, it describes the
intimate connection between fluctuations and dissipation (damping) in dynamic systems weakly coupled to multi-particle
environments, which culminates in the Einstein relation between the diffusion coefficient and mobility, the Nyquist formula, and its
quantum mechanical generalization — the fluctuation-dissipation theorem. An alternative approach to the same problem, based on
the Smoluchowski and Fokker-Planck equations, is also discussed in brief.

5.1: Characterization of Fluctuations

5.2: Energy and the number of particles

5.3: Volume and Temperature

5.4: Fluctuations as functions of time

5.5: Fluctuations and Dissipation

5.6: The Kramers problem and the Smoluchowski equation

5.7: The Fokker-Planck Equation

5.8: Back to the correlation function

5.9: Exercise problems
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5.1: Characterization of Fluctuations

At the beginning of Chapter 2, we have discussed the notion of averaging, (f), of a variable f over a statistical ensemble — see Egs.
(2.1.7) and (2.1.10). Now, the fluctuation of the variable is defined simply as its deviation from such average:

Fluctuation:

f=5=( (5.1.1)

this deviation is, generally, also a random variable. The most important property of any fluctuation is that its average (over the
same statistical ensemble) equals zero:

(F) =) =~ UH = —(f) =0. (5.1.2)

As a result, such an average cannot characterize fluctuations' intensity, and the simplest characteristic of the intensity is the
variance (sometimes called “dispersion™):

& Variance: definition

(F)=(f = (N (5.1.3)

The following simple property of the variance is frequently convenient for its calculation:

72

(F=(F =) = (2 =2f(A) + (N =) —2(H*+(H7, (5.1.4)
so that, finally:

Variance via averages:

(=0 (5.1.5)

As the simplest example, consider a variable that takes only two values, &1, with equal probabilities W; =1/2. For such a
variable, the basic Equation (2.1.7) yields

(=S Wil =5 )+ 5(-1) =0, but ()= Wi =5 (1P +5(-1°=1#0  (5.16)

so that <f2> :<f2>—<f>2 =1.

The square root of the variance,

r.m.s. fluctuation:

5f = (F)2, (5.1.7)

is called the root-mean-square (r.m.s.) fluctuation. An advantage of this measure is that it has the same dimensionality as the
variable itself, so that the ratio § f /{ f) is dimensionless, and may be used to characterize the relative intensity of fluctuations.

As has been mentioned in Chapter 1, all results of thermodynamics are valid only if the fluctuations of thermodynamic variables
(internal energy F, entropy S, etc.) are relatively small." Let us make a simple estimate of the relative intensity of fluctuations for
an example of a system of N independent, similar particles, and an extensive variable

N
F=Y I (5.1.8)
k=1

where all single-particle functions fj, are similar, besides that each of them depends on the state of only “its own” (k") particle.
The statistical average of such .Z is evidently
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(F)=> (f)=N(f), (5.1.9)

while its fluctuation variance is
— N N N N
(F)=F 5= (LA ) (X fufe)= 3 (7uf). (5.1.10)
k
Now we may use the fact that for two independent variables

<fkfk’>:0a for k' # k; (5.1.11)
indeed, this relation may be considered as the mathematical definition of their independence. Hence, only the terms with k¥’ =k
make substantial contributions to the sum (5.1.10):

N

<§2>: 3 <f§>5k,k,:N<f2>. (5.1.12)

/.
k=

Comparing Egs. (5.1.9) and (5.1.12), we see that the relative intensity of fluctuations of the variable %,

Relative fluctuation estimate:

7 _ 1 of
WA (5.1.13)

tends to zero as the system size grows (N — 00). It is this fact that justifies the thermodynamic approach to typical physical
systems, with the number N of particles of the order of the Avogadro number N4 ~ 10**. Nevertheless, in many situations even
small fluctuations of variables are important, and in this chapter we will calculate their basic properties, starting with the variance.

It should be comforting for the reader to notice that for some simple (but very important) cases, such calculation has already been
done in our course. In particular, for any generalized coordinate g and generalized momentum p that give quadratic contributions of
the type (2.2.28) to the system's Hamiltonian (as in a harmonic oscillator), we have derived the equipartition theorem (2.2.30),
valid in the classical limit. Since the average values of these variables, in the thermodynamic equilibrium, equal zero, Equation (
5.1.7) immediately yields their r.m.s. fluctuations:

1/2 1/2
T T 1/2
§p=(mT)?, &q= (—) = ( 2) ,  where w(i) . (5.1.14)
K mw m
The generalization of these classical relations to the quantum-mechanical case (T' ~ hw;) is provided by Egs. (2.5.13) and (
2.5.16):
Amw hw 1/2 1/2,
op = th — = th — . 1.1
P [ 5 2T] e [hmwco 2T] (5.1.15)

However, the intensity of fluctuations in other systems requires special calculations. Moreover, only a few cases allow for general,
model-independent results. Let us review some of them.

This page titled 5.1: Characterization of Fluctuations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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5.2: Energy and the number of particles

First of all, note that fluctuations of macroscopic variables depend on particular conditions.? For example, in a mechanically- and
thermally-insulated system with a fixed number of particles, i.e. a member of a microcanonical ensemble, the internal energy does
not fluctuate: §E = 0. However, if such a system is in thermal contact with the environment, i.e. is a member of a canonical
ensemble (Figure 2.4.1), the situation is different. Indeed, for such a system we may apply the general Equation (2.1.7), with W,
given by the Gibbs distribution (2.4.7)-(2.4.8), not only to E but also to E2. As we already know from Sec. 2.4, the first average,

1 E, E,,
ZW Epn, Wpn= ZeXp{?}, Z—;GXP{?}, (5.2.1)

yields Equation (2.4.10), which may be rewritten in the form

1 07 1
< > Za(fﬂ)’ w ere/B T? (5 )
more convenient for our current purposes. Let us carry out a similar calculation for F2:
1
=) WnEL = EZE,% exp{—BE}. (5.2.3)
It is straightforward to verify, by double differentiation, that the last expression may be rewritten in a form similar to Equation (
5.2.2):
_1 7
E?) = ex = 5.2.4
Now it is easy to use Egs. (5.1.4 — 5.1.5) to calculate the variance of energy fluctuations:
- 1 9°Z 1 0z \°_ 8 (1 8z d(E
<E2>:<E2>—(E)2:——2—(— ) = (— ): =/ (5.2.5)
Z 9(-p) Z 9(-p) o-p)\z208(-p)) O(-h)

Since Egs. (5.2.1)-(5.2.5) are valid only if the system's volume V is fixed (because its change may affect the energy spectrum
E,,), it is customary to rewrite this important result as follows:

Fluctuations of E:

(B") = % —7° <%)V=CVT2. (5.2.6)

This is a remarkably simple, fundamental result. As a sanity check, for a system of N similar, independent particles, (E) and hence
Cy are proportional to N, so that E o« N'/? and 6 E /(E) x N “1/2 in agreement with Equation (5.1.13). Let me emphasize that
the classically-looking Equation (5.2.6) is based on the general Gibbs distribution, and hence is valid for any system (either
classical or quantum) in thermal equilibrium.

Some corollaries of this result will be discussed in the next section, and now let us carry out a very similar calculation for a system
whose number N of particles in a system is not fixed, because they may go to, and come from its environment at will. If the
chemical potential & of the environment and its temperature 7" are fixed, i.e. we are dealing with the grand canonical ensemble
(Figure 2.7.1), we may use the grand canonical distribution (2.7.5)-(2.7.6):

1 ,u,N—E N —En, N
WmN—Z—Gexp{Tm}, ZG—Zexp{ LEEAE o) (5.2.7)

Acting exactly as we did above for the internal energy, we get

_ 1 NN_Em,N o T 6ZG
(N) = Z %Nexp{ = }_ o o (5.2.8)
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1 ,U'N_EmN T2 6226'
N?)y=— N? —_— = 2.
LEES-Y expl LX) -2, (5.2.9)
so that the particle number's variance is
Fluctuations of N:
—~» ) , T?0Zg T?[0Z:\° o0 (T 0Z¢ A(N)
N VY=(N2Y_ (N2 =22 = (=&} —p = — =T 5.2.10
< > (N%) =) Zeg Op  Z%\ Ou Ou\ Zg Ou ou ’ ( )

in full analogy with Equation (5.2.5).

In particular, for an ideal classical gas, we may combine the last result with Equation (3.2.2). (As was already emphasized in Sec.
3.2, though that result has been obtained for the canonical ensemble, in which the number of particles IV is fixed, at N >> 1 the
fluctuations of IV in the grand canonical ensemble should be relatively small, so that the same relation should be valid for the
average (N') in that ensemble.) Easily solving Equation (3.2.2) for (), we get

<N>:const><exp{%}, (5.2.11)

where “const” means a factor constant at the partial differentiation of (V) over p, required by Equation (5.2.10). Performing the
differentiation and then using Equation (5.2.11) again,

%JI\? :constx%exp{%} :%, (5.2.12)
we get from Equation (5.2.10) a very simple result:
Fluctuations of N: classical gas
(N*) = (N), ie 6N =(N)V2 (5.2.13)

This relation is so important that I will also show how it may be derived differently. As a by-product of this new derivation, we will
prove that this result is valid for systems with an arbitrary (say, small) IV, and also get more detailed information about the
statistics of fluctuations of that number. Let us consider an ideal classical gas of IV particles in a volume V4, and calculate the
probability Wi to have exactly N < Ny of these particles in its part of volume V' < V) — see Figure 5.2.1.

Figure 5.2.1: Deriving the binomial and Poisson distributions.
For one particle such probability is W =V /Vy = (N)/ Ny < 1, while the probability to have that particle in the remaining part of
the volume is W' = 1-W = 1- (V) / Ny . If all particles were distinguishable, the probability of having N < Ny specific particles
in volume V' and (N— Np) specific particles in volume (V—Vj;), would be WNW'(™~N) However, if we do not want to
distinguish the particles, we should multiply this probability by the number of possible particle combinations keeping the numbers
N and Nj constant, i.e. by the binomial coefficient Ny!/N!(No— N)!3 As the result, the required probability is

Binomial distribution:

B (Now N (Y (NN N
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This is the so-called binomial probability distribution, valid for any (N') and Np.*

Still keeping () arbitrary, we can simplify the binomial distribution by assuming that the whole volume Vj, and hence Ny, are
very large:

Ny >> N, (5.2.15)

where N means all values of interest, including (N'). Indeed, in this limit we can neglect N in comparison with Ny in the second
exponent of Equation (5.2.14), and also approximate the fraction Np!/(No—N)!, i.e. the product of N terms,
(No— N +1)(No— N +2)... (No—1)Ny, by just NJ¥. As a result, we get

where, as before, W = (N)/Ny. In the limit (5.2.15), W — 0, so that the factor inside the square brackets tends to 1/e, the
reciprocal of the natural logarithm base.® Thus, we get an expression independent of Ny:

Poisson distribution:

N N
Wy = <N>' e, (5.2.17)

This is the much-celebrated Poisson distribution® which describes a very broad family of random phenomena. Figure 5.2.2 shows
this distribution for several values of (N) — which, in contrast to IV, are not necessarily integer.

1 I I T I I T I

0.8 =

0.6~ =

04 - 1 -

0 2 4 6 8 10 12 14

N

Figure 5.2.2: The Poisson distribution for several values of (V). In contrast to that average, the argument N may take only integer
values, so that the lines in these plots are only guides for the cyc.

Gaussian distribution:

__ 1 (N —(N))?
" (27r)1/25NeXp{_ 2(0N)? } (:2:19)

(Note that the Gaussian distribution is also valid if both N and Ny are large, regardless of the relation between them — see Figure
5.2.3)
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Binomial distribution <N > <N 0, Poisson distribution
Eq. (28) Eq. (31)

Gaussian distribution

Eq. (32)

1<<(N),N, 1<<(N)

Figure 5.2.3: The hierarchy of three major probability distributions.

A major property of the Poisson (and hence of the Gaussian) distribution is that it has the same variance as given by Equation (
5.2.13):

(N) = ((N —(N))?) = (N). (5.2.19)

(This is not true for the general binomial distribution.) For our current purposes, this means that for the ideal classical gas, Equation
(5.2.13) is valid for any number of particles.

This page titled 5.2: Energy and the number of particles is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.

https://phys.libretexts.org/@go/page/34721



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34721?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Essential_Graduate_Physics_-_Statistical_Mechanics_(Likharev)/05%3A_Fluctuations/5.02%3A_Energy_and_the_number_of_particles
https://creativecommons.org/licenses/by-nc-sa/4.0
https://www.linkedin.com/in/konstantin-likharev-2389805/
https://sites.google.com/site/likharevegp/

LibreTextsw

5.3: Volume and Temperature

What are the r.m.s. fluctuations of other thermodynamic variables — like V, T', etc.? Again, the answer depends on specific
conditions. For example, if the volume V occupied by a gas is externally fixed (say, by rigid walls), it evidently does not fluctuate
at all: 6V = 0. On the other hand, the volume may fluctuate in the situation when the average pressure is fixed — see, e.g., Figure
1.4.1. A formal calculation of these fluctuations, using the approach applied in the last section, is complicated by the fact that it is
physically impracticable to fix its conjugate variable, P, i.e. suppress its fluctuations. For example, the force #(t) exerted by an
ideal classical gas on a container's wall (whose measure the pressure is) is the result of individual, independent hits of the wall by
particles (Figure 5.3.1), with the time scale 7, ~ 75/ (v?)"/? ~ 75 /(T/m)"/? ~ 10716 s, so that its frequency spectrum extends
to very high frequencies, virtually impossible to control.

()T

0

Figure 5.3.1: The force exerted by gas particles on a container's wall, as a function of time (schematically).

Vv

However, we can use the following trick, very typical for the theory of fluctuations. It is almost evident that the r.m.s. fluctuations
of the gas volume are independent of the shape of the container. Let us consider a particular situation similar to that shown in
Figure 1.4.1, with the container of a cylindrical shape, with the base area A.2 Then the coordinate of the piston is just g =V /A,
while the average force exerted by the gas on the cylinder is % = P A - see Figure 5.3.2. Now if the piston is sufficiently massive,
its free oscillation frequency w near the equilibrium position is small enough to satisfy the following three conditions.

First, besides balancing the average force (%) and thus sustaining the average pressure (P) = (#)/A of the gas, the interaction
between the heavy piston and the relatively light particles of the gas is weak, because of a relatively short duration of the particle
hits (Figure 5.3.1). As a result, the full energy of the system may be represented as a sum of those of the particles and the piston,
with a quadratic contribution to the piston's potential energy by small deviations from the equilibrium:

, (5.3.1)

| <

K -
U, = 5(12, where § =¢— () =

and « is the effective spring constant arising from the finite compressibility of the gas.

A,M

N .
V=) +V ()

Figure 5.3.2: Deriving Equation (5.3.4-5.3.5).

Second, at w — 0, this spring constant may be calculated just as for constant variations of the volume, with the gas remaining in
quasi-equilibrium at all times:
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nz—M:A2 (—%). (5.3.2)

This partial derivative? should be calculated at whatever the given thermal conditions are, e.g., with S = const for adiabatic
conditions (i.e., a thermally insulated gas), or with 7" = const for isothermal conditions (including a good thermal contact between
the gas and a heat bath), etc. With that constant denoted as X, Egs. (5.3.1)-(5.3.2) give

o -d(2) (5) =3(22) 559

2 _p(_2V)
% )X—T( 6<P>)X. (5.3.4)

Fluctuations of V:

Since this result is valid for any A and w, it should not depend on the system's geometry and piston's mass, provided that it is large
in comparison with the effective mass of a single system component (say, a gas molecule) — the condition that is naturally fulfilled
in most experiments. For the particular case of fluctuations at constant temperature (X =T) ,' we may use the definition (3.3.7)
of the isothermal bulk compressibility K7 of the gas to rewrite Equation (5.3.4) as

~2 TV

(Vi)r= K (5.3.5)

For an ideal classical gas of N particles, with the equation of state (V) = NT'/(P), it is easier to use directly Equation (5.3.4),
again with X =T, to get

52 NTN (V)2 Ve 1
e =1 () =S5 e g = (5.3.0)

in full agreement with the general trend given by Equation (5.1.13).

Now let us proceed to fluctuations of temperature, for simplicity focusing on the case V' = const. Let us again assume that the
system we are considering is weakly coupled to a heat bath of temperature Tj, in the sense that the time 7 of temperature
equilibration between the two is much larger than the time of internal equilibration, called thermalization. Then we may assume
that, on the former time scale, T" changes virtually simultaneously in the whole system, and consider it a function of time alone:

T =(T)+T(t). (5.3.7)

Moreover, due to the (relatively) large 7, we may use the stationary relation between small fluctuations of temperature and the
internal energy of the system:

. E(t) SE
Tt)= , so that 6T = —. 5.3.8
(t) =g so that T = &= (5.3.8)
With those assumptions, Equation (5.2.6) immediately yields the famous expression for the so-called thermodynamic fluctuations
of temperature:
Fluctuations of 7':
0F T
0T =—= u (5.3.9)
Cy o2
v

The most straightforward application of this result is to analyses of so-called bolometers — broadband detectors of electromagnetic
radiation in microwave and infrared frequency bands. (In particular, they are used for measurements of the CMB radiation, which
was discussed in Sec. 2.6). In such a detector (Figure 5.3.3), the incoming radiation is focused on a small sensor (e.g., either a
small piece of a germanium crystal or a superconductor thin film at temperature 7' ~ T, etc.), which is well isolated thermally
from the environment. As a result, the absorption of an even small radiation power & leads to a noticeable change AT of the
sensor's average temperature (I") and hence of its electric resistance R, which is probed up by low-noise external electronics.!? If
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the power does not change in time too fast, AT is a certain function of &, turning to 0 at & = 0. Hence, if AT is much lower
than the environment temperature T, we may keep only the main, linear term in its Taylor expansion in &?:

_Z
=7
where the coefficient ¥ = 04?/08T is called the thermal conductance of the (perhaps small but unavoidable) thermal coupling
between the sensor and the heat bath — see Figure 5.3.3.

AT = (T) - Ty (5.3.10)

T=(T)+T(1)
A1 | (T) =T, +AT . T,
WV R | 7

vy

to readout electronics

Figure 5.3.3: The conceptual scheme of a bolometer.

The power may be detected if the electric signal from the sensor, which results from the change AT, is not drowned in spontaneous
fluctuations. In practical systems, these fluctuations are contributed by several sources including electronic amplifiers. However, in
modern systems, these “technical” contributions to noise are successfully suppressed,'® and the dominating noise source is the
fundamental sensor temperature fluctuations, described by Equation (5.3.9). In this case, the so-called noise-equivalent power
(“NEP”), defined as the level of &2 that produces the signal equal to the r.m.s. value of noise, may be calculated by equating the
expressions (5.3.9) (with (T') =Ty ) and (5.3.10):

TvY

ol

NEP = P| \;_sp = (5.3.11)

This expression shows that to decrease the NEP, i.e. improve the detector's sensitivity, both the environment temperature 7 and the
thermal conductance ¢ should be reduced. In modern receivers of radiation, their typical values are of the order of 0.1 K and 10~1°
W/K, respectively.

On the other hand, Equation (5.3.11) implies that to increase the bolometer's sensitivity, i.e. to reduce the NEP, the Cy of the
sensor, and hence its mass, should be increased. This conclusion is valid only to a certain extent, because due to technical reasons
(parameter drifts and the so-called 1/ f noise of the sensor and external electronics), the incoming power has to be modulated with
as high frequency w as technically possible (in practical receivers, the cyclic frequency v = w/27 of the modulation is between 10
and 1,000 Hz), so that the electrical signal might be picked up from the sensor at that frequency. As a result, the Cyy may be
increased only until the thermal constant of the sensor,

C
= ?Y’ (5.3.12)
becomes close to 1/w, because at wr >>1 the useful signal drops faster than noise. So, the lowest (i.e. the best) values of the
NEP,
(NEP) i = aTy@ %0!/2,  witha ~1, (5.3.13)

are reached at v7 = 1. (The exact values of the optimal product wr, and of the numerical constant a ~ 1 in Equation (5.3.13),
depend on the exact law of the power modulation in time, and the readout signal processing procedure.) With the parameters cited
above, this estimate yields (NEP) i, / v1/2 ~ 3 x 10717 W/Hz!'/2 — a very low power indeed.

However, perhaps counter-intuitively, the power modulation allows the bolometric (and other broadband) receivers to register
radiation with power much lower than this NEP! Indeed, picking up the sensor signal at the modulation frequency w, we can use
the subsequent electronics stages to filter out all the noise besides its components within a very narrow band, of width Av << v,
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around the modulation frequency (Figure 5.3.4). This is the idea of a microwave radiometer,'* currently used in all sensitive
broadband receivers of radiation.

input
power modulation
frequency v
\ 4

L HAv<<v

@sity

N

0 - !
pick-up frequency

to output

Figure 5.3.4: The basic idea of the Dicke radiometer.

In order to analyze this opportunity, we need to develop theoretical tools for a quantitative description of the spectral distribution of
fluctuations. Another motivation for that description is a need for analysis of variables dominated by fast (high-frequency)
components, such as pressure — please have one more look at Figure 5.3.1. Finally, during such an analysis, we will run into the
fundamental relation between fluctuations and dissipation, which is one of the main results of statistical physics as a whole.

This page titled 5.3: Volume and Temperature is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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5.4: Fluctuations as functions of time

In the previous sections, the averaging (... ) of any function was assumed to be over an appropriate statistical ensemble of many
similar systems. However, as was discussed in Sec. 2.1, most physical systems of interest are ergodic. If such a system is also
stationary, i.e. the statistical averages of its variables do not change with time, the averaging may be also understood as that over a
sufficiently long time interval. In this case, we may think about fluctuations of any variable f as of a random process taking place
in just one system, but developing in time: f = f (¢).

There are two mathematically equivalent approaches to the description of such random functions of time, called the time-domain
picture and the frequency-domain picture, their relative convenience depending on the particular problem to be solved. In the time
domain, we need to characterize a random fluctuation f (£) by some deterministic function of time. Evidently, the average (f ())
cannot be used for this purpose, because it equals zero — see Equation (5.1.2). Of course, the variance (5.1.3) does not equal zero,
but if the system is stationary, that average cannot depend on time either. Because of that, let us consider the following average:

(fF@)f (¢))- (5.4.1)
Generally, this is a function of two arguments. However, in a stationary system, the average like (5.4.1) may depend only on the
difference,

=t —t, (5.4.2)
between the two observation times. In this case, the average (5.4.1) is called the correlation function of the variable f:

Correlation function:

Ki(r) = (f ) f (t+7)). (5.4.3)

Again, here the averaging may be understood as that either over a statistical ensemble of macroscopically similar systems or over a

sufficiently long interval of the time argument ¢, with the argument 7 kept constant. The correlation function's name'® catches the
idea of this notion very well: K;(7) characterizes the mutual relation between the fluctuations of the variable f at two times
separated by the given interval 7. Let us list the basic properties of this function.'®

First of all, K ¢(7) has to be an even function of the time delay 7. Indeed, we may write

Ei(—=n)={f @) f (t=) = {(f ¢ =1)F @) = (F ) (' +7)), (5.4.4)

with ¢ =t—7. For stationary processes, this average cannot depend on the common shift of two observation times, so that the
averages (5.4.3) and (5.4.4) have to be equal:

Ky(—7) = Ky(). (5.4.5)
Second, at 7 — 0 the correlation function tends to the variance:

K5 (0)=(f ®)F ) = (f) >0. (5.4.6)

In the opposite limit, when 7 is much larger than certain characteristic correlation time 7, of the system,'” the correlation function
has to tend to zero because the fluctuations separated by such time interval are virtually independent (uncorrelated). As a result, the
correlation function typically looks like one of the plots sketched in Figure 5.4.1.

Kf(r)f

~

Figure 5.4.1: The correlation function of fluctuations: two typical examples.
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Note that on a time scale much longer than 7., any physically-realistic correlation function may be well approximated with a delta
function of 7. (For example, for a process which is a sum of independent very short pulses, e.g., the gas pressure force exerted on
the container wall (Figure 5.3.1), such approximation is legitimate on time scales much longer than the single pulse duration, e.g.,
the time of particle's interaction with on the wall at the impact.)

f(t)= foe ™ dw, (5.4.7)
with the reciprocal transform being
1 +oo ot
=— t)e* dt. 4.
fo=sm [ Flte (5.48)

If the function f (t) is random (as it is in the case of fluctuations), with zero average, its Fourier transform f,, is also a random
function (now of frequency), also with a vanishing statistical average. Indeed, now thinking of the operation (...} as an ensemble

averaging, we may write
+o0 X +oo )
)= (5 [ Foeary = [ iFwpeaeo. (5.49)

The simplest non-zero average may be formed similarly to Equation (5.4.1), but with due respect to the complex-variable character
of the Fourier images:

+00 +oo

at’

(fufl)= (')t (5.4.10)

It turns out that for a stationary process, the averages (5.4.1) and (5.4.10) are directly related. Indeed, since the integration over ¢’
in Equation (5.4.10) is in infinite limits, we may replace it with the integration over 7 =t'—¢ (at fixed t), also in infinite limits.
Replacing ¢’ with ¢ +7 in the expressions under the integral, we see that the average is just the correlation function K ¢(7), while
the time exponent is equal to exp{i(w' —w)t} exp{iw'T}. As a result, changing the order of integration, we get

+00
dt

+o00 1 —+o0 o +oo ,
(fuf®) dTKf )elWm Wt = K;(r)e“ dr / e tae.  (5.4.11)

(2m)? J o oo

But the last integral is just 278 (w— W' ),19 so that we finally get

(fofy) = Sp(w)d(w—u'), (5.4.12)
where the real function of frequency,
Spectral density of fluctuations:
1 +00 . 1 o]
Sfw)=— Ky(1)edr = —/ K¢(7) coswrdr, (5.4.13)
21 J_ T Jo
Wiener-Khinchin theorem:
+00 . o]
Ky(7) :/ S’f(w)e’“”dw:2/ St(w) coswrdw. (5.4.14)
—00 0

In particular, for the fluctuation variance, Equation (5.4.14) yields

+o00

~2 00
) sz(O):/ Sf(w)dwz2/ S¢(w)dw. (5.4.15)
- 0
The last relation shows that the term “spectral density” describes the physical sense of the function Sy(w) very well. Indeed, if a
random signal f(¢) had been passed through a frequency filter with a small bandwidth Av << v of positive cyclic frequencies, the
integral in the last form of Equation (5.4.15) could be limited to the interval Aw = 27 Auw, i.e. the variance of the filtered signal
would become

(o0}
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<f2>AU = 25(w) Aw = 415 (w) Av. (5.4.16)

(A popular alternative definition of the spectral density is .#f(v) =4nSy(w), making the average (5.4.16) equal to just
L (v)Av.)

To conclude this introductory (mostly mathematical) section, let me note an important particular case. If the spectral density of
some process is nearly constant within all the frequency range of interest, S¢(w) = const = S;(0) ,%2 Equation (5.4.14) shows that
its correlation function may be well approximated with a delta function:
+00
K;(r) = 5;(0) / €T du — 215 (0)3(r). (5.4.17)
—00

From this relation stems another popular name of the white noise, the delta-correlated process. We have already seen that this is a
very reasonable approximation, for example, for the gas pressure force fluctuations (Figure 5.3.1). Of course, for the spectral
density of a realistic, limited physical variable the approximation of constant spectral density cannot be true for all frequencies
(otherwise, for example, the integral (5.4.15) would diverge, giving an unphysical, infinite value of its variance), and may be valid
only at frequencies much lower than 1 /7.

This page titled 5.4: Fluctuations as functions of time is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by

Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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5.5: Fluctuations and Dissipation

One more important assumption of this theory is that the system's motion does not violate the thermal equilibrium of the
environment — well fulfilled in many cases. (Think, for example, about a typical mechanical pendulum — its motion does not
overheat the air around it to any noticeable extent.) In this case, the averaging over a statistical ensemble of similar environments,
at a fixed, specific motion of the system of interest, may be performed assuming their thermal equilibrium.?* I will denote such a
“primary” averaging by the usual angle brackets (... ). At a later stage, we may carry out additional, “secondary” averaging, over
an ensemble of many similar systems of interest, coupled to similar environments. When we do, such double averaging will be
denoted by double angle brackets ((...)).

Let me start from a simple classical system, a 1D harmonic oscillator whose equation of evolution may be represented as

mq +£q = Faet (t) + Feno(t) = Faer (t) +(F) + F(t), with (F(t)) =0, (5.5.1)
where g is the (generalized) coordinate of the oscillator, Z(t) is the deterministic external force, while both components of the
force Feny(t) represent the impact of the environment on the oscillator's motion. Again, on the time scale of the fast-moving
environmental components, the oscillator's motion is slow. The average component (') of the force exerted by the environment on
such a slowly moving object is frequently independent of its coordinate ¢ but does depend on its velocity g. For most such systems,
the Taylor expansion of the force in small velocity has a non-zero linear term:

(F) = —nd, (5.5.2)

where the constant 7 is usually called the drag (or “kinematic friction”, or “damping”) coefficient, so that Equation (5.5.1) may be
rewritten as

Langevin equation for classical oscillator:

| mi +nd + kg = Fau(t) + Z (). | (5.5.3)

Plugging into Equation (5.5.3) the representation of both variables in the Fourier form similar to Equation (5.4.7), and requiring
the coefficients before the same exp{ —iwt} to be equal on both sides of the equation, for their Fourier images we get the following

relation:

—mw?q, —iwngy + kqw = Zo, (5.5.4)

which immediately gives us q,,, i.e. the (random) complex amplitude of the coordinate fluctuations:

P Fu
qu = 5 : = D) 3 . (555)
(K —mw?) —inw  m(w? —w?) —inw
1

Sy(w) = Sz (w). (5.5.6)

m?2 (wg _ w2)2 +n2w2

In the so-called low-damping limit ( << muwy ), the fraction on the right-hand side of Equation (5.5.6) has a sharp peak near the
oscillator's own frequency wy (describing the well-known effect of high-Q resonance), and may be well approximated in that
vicinity as

g L ~— L itheo 2me—w0) (5.5.7)
m?(wy —w?)? + () nPwy(é®+1) U
oo 1 n [T d¢

(@) :2/ Sy(w)dw =~ 2 Sy(w)dw =285z (wp) —/ . (5.5.8)

0 ! wRWy ! 7’]20.}% 2m J_ 62 +1

This is a well-known table integral,' equal to 7, so that, finally:
- 1 T T

((@*)) =285 (wo) P = mw%nsy(wo) = ﬂ_nsﬂ(wﬂ)- (5.5.9)

But on the other hand, the weak interaction with the environment should keep the oscillator in thermodynamic equilibrium at the
same temperature 7'. Since our analysis has been based on the classical Langevin equation (5.5.3), we may only use it in the
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classical limit hAwy << T', in which we may use the equipartition theorem (2.2.30). In our current notation, it yields

(@) = (5.5.10)

Comparing Egs. (5.5.9) and (5.5.10), we see that the spectral density of the random force exerted by the environment has to be
fundamentally related to the damping it provides:

S (wo) = %T. (5.5.11)

Now we may argue (rather convincingly :-) that since this relation does not depend on oscillator's parameters m and «, and hence
its eigenfrequency wy = (/m)!/2, it should be valid at any relatively low frequency (wr, << 1). Using Equation (5.4.13) with
w — 0, it may be also rewritten as a formula for the effective low-frequency drag coefficient:

No dissipation without fluctuations:

-7 | Ks@ar=1 [ FOF @) (5.5.12)

Formulas (5.5.11-5.5.12) reveal an intimate, fundamental relation between the fluctuations and the dissipation provided by a
thermally-equilibrium environment. Parroting the famous political slogan, there is “no dissipation without fluctuation” — and vice
versa. This means in particular that the phenomenological description of dissipation barely by the drag force in classical
mechanics® is (approximately) valid only when the energy scale of the process is much larger than T'. To the best of my
knowledge, this fact was first recognized in 1905 by A. Einstein, for the following particular case.

Let us apply our result (5.5.11-5.5.12) to a free 1D Brownian particle, by taking xk =0 and 4. (t) =0. In this case, both
relatlons (5.5.9) and (5.5.10) give infinities. To understand the reason for that divergence, let us go back to the Langevin equation (

5.3) with not only £ = 0 and F 4 (t) = 0, but also m — 0 — just for the sake of simplicity. (The latter approximation, frequently
Called the overdamping limit, is quite appropriate, for example, for the motion of small particles in viscous fluids — such as in R.
Brown's experiments.) In this approximation, Equation (5.5.3) is reduced to a simple equation,

ng =ZF(t), with(Z(t))=0, (5.5.13)

which may be readily integrated to give the particle's displacement during a finite time interval ¢:

Aq(t) = g(t) — q(0) = % /0 " F(tar. (5.5.14)

Evidently, at the full statistical averaging of the displacement, the fluctuation effects vanish, but this does not mean that the particle
does not move — just that it has equal probabilities to be shifted in either of two possible directions. To see that, let us calculate the
variance of the displacement:

((AG*(t))) = 771—2/0tdt’/0tdt” (f;’v(t’),f(t”)> = n%/otdt’/otdt”Ky ' —t". (5.5.15)

As we already know, at times 7 >> 7., the correlation function may be well approximated by the delta function — see Equation (
5.4.17). In this approximation, with Sz (0) expressed by Equation (5.5.11), we get

(Ag* (1)) =—Sy /dt/ dat"s (1" —t') =

2 0T 2T
=L gt = Lt =2Dt, (5.5.16)
™ Jo n

with

Einstein's relation:

T
D=—.
n

(5.5.17)

The final form of Equation (5.5.16) describes the well-known law of diffusion (“random walk”) of a 1D system, with the r.m.s.
deviation from the point of origin growing as (2Dt)1/ 2, The coefficient D is this relation is called the coefficient of diffusion, and
Equation (5.5.17) describes the extremely simple and important>* Einstein's relation between that coefficient and the drag
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coefficient. Often this relation is rewritten, in the SI units of temperature, as D = ukpTx , where u =1/7 is the mobility of the
particle. The physical sense of x becomes clear from the expression for the deterministic velocity (particle's “drift”), which follows
from the averaging of both sides of Equation (5.5.13) after the restoration of the term % (¢) in it:

virign = () = 7 Fou(t) = uFa (2, (5.5.18)

Another famous embodiment of the general Equation (5.5.11-5.5.12) is the thermal (or “Johnson”, or “Johnson Nyquist”, or just
“Nyquist”) noise in resistive electron devices. Let us consider a two-terminal, dissipation-free “probe” circuit, playing the role of
the harmonic oscillator in our analysis carried out above, connected to a resistive device (Figure 5.5.1), playing the role of the
probe circuit's environment. (The noise is generated by the thermal motion of numerous electrons, randomly moving inside the
resistive device.) For this system, one convenient choice of the conjugate variables (the generalized coordinate and generalized
force) is, respectively, the electric charge @ = f I(t)dt that has passed through the “probe” circuit by time ¢, and the voltage ¥
across its terminals, with the polarity shown in Figure 5.5.1. (Indeed, the product ?'d(@ is the elementary work d’# done by the
environment on the probe circuit.)

probe
circuit

Figure 5.5.1: A resistive device as a dissipative environment of a two-terminal probe circuit.

Making the corresponding replacements, ¢ — @ and % — ¥ in Equation (5.5.2), we see that it becomes

(V) =-nQ=-nl. (5.5.19)
Comparing this relation with Ohm's law, # = R(—1I),% we see that in this case, the coefficient 7 has the physical sense of the
usual Ohmic resistance R of our dissipative device,>” so that Equation (5.5.11) becomes

Sy (w) = fT. (5.5.20)

Using last equality in Equation (5.4.16), and transferring to the SI units of temperature (I" = kpTx ), we may bring this famous
Nyquist formula® to its most popular form:

Nyquist formula:

<“//"2>AV = 4kpTx RAv. (5.5.21)

Note that according to Equation (5.5.3), this result is only valid at a negligible speed of change of the coordinate g (in our current
case, negligible current I), i.e. Equation (5.5.20-5.5.22) expresses the voltage fluctuations as would be measured by a virtually
ideal voltmeter, with its input resistance much higher than R.

On the other hand, using a different choice of generalized coordinate and force, ¢ — ®, # — I (where ® = f Y (t)dt is the
generalized magnetic flux, so that d# = I¥(t)dt = Id® ), we get n — 1/R, and Equation (5.5.11-5.5.12) yields the thermal
fluctuations of the current through the resistive device, as measured by a virtually ideal ammeter, i.e. at ¥ — 0:

1 i 4kpT
Siw)= =T, ie. <IZ>AV - = (5.5.22)

The nature of Egs. (5.5.20-5.5.22) is so fundamental that they may be used, in particular, for the so-called Johnson noise
thermometry.3® Note, however, that these relations are valid for noise in thermal equilibrium only. In electric circuits that may be
readily driven out of equilibrium by an applied voltage ¥, other types of noise are frequently important, notably the shot noise,
which arises in short conductors, e.g., tunnel junctions, at applied voltages with |¥#| >> T'/q, due to the discreteness of charge
carriers.*0 A straightforward analysis (left for the reader's exercise) shows that this noise may be characterized by current
fluctuations with the following low-frequency spectral density:
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Schottky formula:

Sr(w) = M, ie. <f2>AV:2]qf>Ay, (5.5.23)

2

where g is the electric charge of a single current carrier. This is the Schottky formula,*! valid for any relation between the average I
and ¥". The comparison of Egs. (5.5.22) and (5.5.23) for a device that obeys the Ohm law shows that the shot noise has the same
intensity as the thermal noise with the effective temperature

d

Ty = — > T. (5.5.24)

This relation may be interpreted as a result of charge carrier overheating by the applied electric field, and explains why the
Schottky formula (5.5.23) is only valid in conductors much shorter than the energy relaxation length I, of the charge carriers.*?
(Another mechanism of shot noise suppression, which may become noticeable in highly conductive nanoscale devices, is the
Fermi-Dirac statistics of electrons.*?)

Now let us return for a minute to the bolometric Dicke radiometer (see Figs. 5.3.3 —5.3.4 and their discussion in Sec. 4), and use
the Langevin formalism to finalize its analysis. For this system, the Langevin equation is an extension of the usual equation of heat
balance:

dT -
CVE +9(T —Tp) = Paer (t) + P(t), (5.5.25)

where Py = (&?) describes the (deterministic) power of the absorbed radiation and Z represents the effective source of
temperature fluctuations. Now we can use Equation (5.5.25) to carry out a calculation of the spectral density St(w) of temperature
fluctuations absolutely similarly to how this was done with Equation (5.5.3), assuming that the frequency spectrum of the
fluctuation source is much broader than the intrinsic bandwidth 1/7 =%/Cy of the bolometer, so that its spectral density at
frequencies wr ~ 1 may be well approximated by its low-frequency value S%(0):

1

2

St(w) = ‘

Then, requiring the variance of temperature fluctuations, calculated from this formula and Equation (5.4.15),

2 [e 9] oo 1 2
TV =(T )=2 =2 -
o1y = (1) /0 Sr(w)dw = 255 (0) /0 ‘ | %
1 o d S#(0
5259(0)—2/ 2~ 2(0) (5.5.27)
CiJo w2+(g/Cy)? 9SOy
to coincide with our earlier “thermodynamic fluctuation” result (5.3.9), we get
S»(0) = %Tg. (5.5.28)

The r.m.s. value of the “power noise” within a bandwidth Av << 1/7 (see Figure 5.3.4) becomes equal to the deterministic signal
power Py (or more exactly, the main harmonic of its modulation law) at

~2

P =P = (<32 >AV)1/2 = (255 (0)Aw)Y/? = 2(ZAV) /2Ty, (5.5.29)

This result shows that our earlier prediction (5.3.13) may be improved by a substantial factor of the order of (Av/ 1/)1/ % where the
reduction of the output bandwidth is limited only by the signal accumulation time At ~ 1/Av, while the increase of v is limited
by the speed of (typically, mechanical) devices performing the power modulation. In practical systems this factor may improve the

sensitivity by a couple of orders of magnitude, enabling observation of extremely weak radiation. Maybe the most spectacular
example is the recent measurements of the CMB radiation, which corresponds to blackbody temperature Tk ~ 2.726 K, with
accuracy 0Tk ~ 1078 K, using microwave receivers with the physical temperature of all their components much higher than 67
The observed weak (~ 10~° K) anisotropy of the CMB radiation is a major experimental basis of all modern cosmology.**
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Returning to the discussion of our main result, Equation (5.5.11-5.5.12), let me note that it may be readily generalized to the case
when the environment's response is different from the Ohmic form (5.5.2). This opportunity is virtually evident from Equation (
5.5.4): by its derivation, the second term on its left-hand side is just the Fourier component of the average response of the
environment to the system's displacement:

(Fu) = iwng,. (5.5.30)
Now let the response be still linear, but have an arbitrary frequency dispersion,
(Fu) = x(@)qo- (5.5.31)

where the function x(w), called the generalized susceptibility (in our case, of the environment) may be complex, i.e. have both the
imaginary and real parts:

xX(w) = x'(w) +ix" (). (5.5.32)
S5 (w) = X;;(:’) T. (5.5.33)

This fundamental relation*® may be used not only to calculate the fluctuation intensity from the known generalized responsibility
(i.e. the deterministic response of the system to a small perturbation), but also in reverse — to calculate such linear response from
the known fluctuations. The latter use is especially attractive at numerical simulations of complex systems, e.g., those based on
molecular dynamics approaches, because it circumvents the need in extracting a weak response to a small perturbation out of a
noisy background.

Now let us discuss what generalization of Equation (5.5.33) is necessary to make that fundamental result suitable for arbitrary
temperatures, 1" ~ fiw . The calculations we had performed were based on the apparently classical equation of motion, Equation (
5.5.1). However, quantum mechanics shows*’ that a similar equation is valid for the corresponding Heisenberg-picture operators,
so that repeating all the arguments leading to the Langevin equation (5.5.3), we may write its quantum-mechanical version

Heisenberg-Langevin equation:

mg+ng +kG = F e +Z. (5.5.34)

This is the so-called Heisenberg-Langevin (or “quantum Langevin”) equation — in this particular case, for a harmonic oscillator.

The further operations, however, require certain caution, because the right-hand side of the equation is now an operator, and has
some nontrivial properties. For example, the “values” of the Heisenberg operator, representing the same variable f(t) at different
times, do not necessarily commute:

fof@) i@ @, it A (5.5.35)
1/2 2 2 2 1 2 2
Kim=5(fOf+n+fe+nim)=5{({fO.fe+n}), (5.5.36)
(where {...,...} denotes the anticommutator of the two operators), and, similarly, the symmetrical spectral density St(w),
defined by the following relation:
N 1/, % A% A 1 A oAk
Sf(w)J(w—w ) = §<fwfw’ +fw’fw> - §<{fw7fw’}>7 (5~5'37)

with K¢(7) and S¢(w) still related by the Fourier transform (5.4.14).

Now we may repeat all the analysis that was carried out for the classical case, and get Equation (5.5.9) again, but now this
expression has to be compared not with the equipartition theorem, but with its quantum-mechanical generalization (5.1.15), which,
in our current notation, reads

hw() th

((q%) = 5 >coth - (5.5.38)

As a result, we get the following quantum-mechanical generalization of Equation (5.5.33):

FDT:
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) hw

Sz(w) =

This is the much-celebrated fluctuation-dissipation theorem, usually referred to just as the FDT, first derived in 1951 by Herbert
Bernard Callen and Theodore A. Welton — in a somewhat different way.

As natural as it seems, this generalization of the relation between fluctuations and dissipation poses a very interesting conceptual
dilemma. Let, for the sake of clarity, temperature be relatively low, T' << hw; then Equation (5.5.39) gives a temperature-
independent result

Quantum noise:

Sz(w)= hx;frw), (5.5.40)

which describes what is frequently called quantum noise. According to the quantum Langevin equation (5.5.34), nothing but the
random force exerted by the environment, with the spectral density (5.5.4() proportional to the imaginary part of susceptibility (i.e.
damping), is the source of the ground-state “fluctuations” of the coordinate and momentum of a quantum harmonic oscillator, with
the r.m.s. values

1/2 W 1/2
6q=<<q'2>>1/2:( h ) , 5p=<<ﬁ2>>1/2:<u) , (5.5.41)

2muwy 2

and the total energy fwg/2. On the other hand, the basic quantum mechanics tells us that exactly these formulas describe the
ground state of a dissipation-free oscillator, not coupled to any environment, and are a direct corollary of the basic commutation
relation

[4,] = ih. (5.5.42)
So, what is the genuine source of the uncertainty described by Egs. (5.5.41)?

The best resolution of this paradox I can offer is that either interpretation of Egs. (5.5.41) is legitimate, with their relative
convenience depending on the particular application. One may say that since the right-hand side of the quantum Langevin equation
(5.5.34) is a quantum-mechanical operator, rather than a classical force, it “carries the uncertainty relation within itself”. However,
this (admittedly, opportunistic :-) resolution leaves the following question open: is the quantum noise (5.5.40) of the environment's
observable Z directly, without any probe oscillator subjected to it? An experimental resolution of this dilemma is not quite simple,
because usual scientific instruments have their own ground-state uncertainty, i.e. their own quantum fluctuations, which may be
readily confused with those of the system under study. Fortunately, this difficulty may be overcome, for example, using unique
frequency-mixing (“down-conversion”) properties of Josephson junctions. Special low-temperature experiments using such down-
conversion*® have confirmed that the noise (5.5.40) is real and measurable.

<[§(t), é(tﬂ)D ik (r), (5.5.43)

where ¢(7) is the temporal Green's function of the environment, defined by the following relation:

(Z() = /0 " (r)lt — r)dr = [ Gt —t)q(t)dt . (5.5.44)

Plugging the Fourier transforms of all three functions of time participating in Equation (5.5.44) into this relation, it is
straightforward to check that this Green's function is just the Fourier image of the complex susceptibility x(w) defined by Equation
(5.5.3D:

/000 G(r)e“ dr = x(w); (5.5.45)

here 0 is used as the lower limit instead of (— o) just to emphasize that due to the causality principle, Green's function has to be
equal zero for 7 < 0.%!

In order to reveal the real beauty of Equation (5.5.43), we may use the Wiener-Khinchin theorem (5.4.14) to rewrite the
fluctuation-dissipation theorem (5.5.39) in a similar time-domain form:
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<{§(t),§(t+r)}> — 9K 5 (7). (5.5.46)

where the symmetrized correlation function K #(7) is most simply described by its Fourier transform, which is, according to
Equation (5.4.13), equal to 7S# (w), so that using the FDT, we get

o0 1
/ K z(7) coswrdr = hx—(w)coth M (5.5.47)
0 2 2T
The comparison of Egs. (5.5.43) and (5.5.45), on one hand, and Eqs (5.5.46)-(5.5.47), on the other hand, shows that both the
commutation and anticommutation properties of the Heisenberg-Langevin force operator at different moments of time are
determined by the same generalized susceptibility x(w) of the environment. However, the averaged anticommutator also depends
on temperature, while the averaged commutator does not — at least explicitly, because the complex susceptibility of an environment

may be temperature-dependent as well.

This page titled 5.5: Fluctuations and Dissipation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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5.6: The Kramers problem and the Smoluchowski equation

Returning to the classical case, it is evident that Langevin equations of the type (5.5.3) provide means not only for the analysis of
stationary fluctuations, but also for the description of arbitrary time evolution of (classical) systems coupled to their environments —
which, again, may provide both dissipation and fluctuations. However, this approach to evolution analysis suffers from two major
handicaps.

First, the Langevin equation does enable a straightforward calculation of the statistical average of the variable g, and its fluctuation
variance — i.e., in the common mathematical terminology, the first and second moments of the probability density w(g,t) — as
functions of time, but not of the probability distribution as such. Admittedly, this is rarely a big problem, because in most cases the
distribution is Gaussian — see, e.g., Equation (2.5.12).

mg +nq‘+—8U(§Z’t) = (), (5.6.1)

valid for an arbitrary, possibly time-dependent potential U(gq, t). Unfortunately, the solution of this equation may be very hard.
Indeed, its Fourier analysis carried out in the last section was essentially based on the linear superposition principle, which is
invalid for nonlinear equations.

If the fluctuation intensity is low, |dg| << (g), where (g)(¢) is the deterministic solution of Equation (5.6.1) in the absence of
fluctuations, this equation may be linearized>* with respect to small fluctuations § = q — (g) to get a linear equation,
. . ~ 2
mq +ng +k(t)g =F(t), withk(t)= a—q2U(<q>(t), t). (5.6.2)
However, some important problems cannot be solved by linearization. Perhaps, the most apparent (and practically very important)
example is the so-called Kramers problem®® of finding the lifetime of a metastable state of a 1D classical system in a potential well
separated from the region of unlimited motion with a potential barrier — see Figure 5.6.1.

U7 7

(N

0

dqg' 49.q¢" N g
Figure 5.6.1: The Kramers problem.

In the absence of fluctuations, the system, initially placed close to the well's bottom (in Figure 5.6.1, at ¢ = ¢; ), would stay there
forever. Fluctuations result not only in a finite spread of the probability density w(g,t) around that point but also in a gradual
decrease of the total probability

W(t) = / w(q,t)dg (5.6.3)
well’s bottom

to find the system in the well, because of a non-zero rate of its escape from it, over the potential barrier, due to thermal activation.
What may be immediately expected of the situation is that if the barrier height,

U() EU(qz)—U(ql), (564)

is much larger than temperature T',° the Boltzmann distribution w oc exp{—U(q)/T} should be still approximately valid in most
of the well, so that the probability for the system to overcome the barrier should scale as exp{—Uj/T'}. From these handwaving
arguments, one may reasonably expect that if the probability W (t) of the system's still residing in the well by time ¢ obeys the
usual “decay law”

W=—-— (5.6.5)

T

then the lifetime 7 has to obey the general Arrhenius law:
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T="Ty exp{%}. (5.6.6)

However, these relations need to be proved, and the pre-exponential coefficient 7,4 (usually called the attempt time) needs to be
calculated. This cannot be done by the linearization of Equation (5.6.1), because this approximation is equivalent to a quadratic
approximation of the potential U(q), which evidently cannot describe the potential well and the potential barrier simultaneously —
see Figure 5.6.1 again.

This and other essentially nonlinear problems may be addressed using an alternative approach to fluctuations, dealing directly with
the time evolution of the probability density w(g, t). Due to the shortage of time/space, I will review this approach using mostly
handwaving arguments, and refer the interested reader to special literature®® for strict mathematical proofs. Let us start from the
diffusion of a free classical 1D particle with inertial effects negligible in comparison with damping. It is described by the Langevin
equation (5.5.13) with Z4,; = 0. Let us assume that at all times the probability distribution stays Gaussian:

ex 7((1*(10)2
(2m)!/25q(t) p{ 26¢*(t) }

where qo is the initial position of the particle, and dq(t) is the time-dependent distribution width, whose growth in time is
described, as we already know, by Equation (5.5.16):

w(g,t) = (5.6.7)

8q(t) = (2Dt)V/2. (5.6.8)
2
v _ 0w (5.6.9)
ot Oq?
with the delta-functional initial condition
w(q,0) =6(g— qo)- (5.6.10)

The simple and important equation of diffusion (5.6.9) may be naturally generalized to the 3D motion:®°

Equation of diffusion:

ow 2

— =D . .6.11
5 Viw (5.6.11)
ow .
e +V-j, =0, (5.6.12)

where the vector j,, has the physical sense of the probability current density. (The validity of this relation is evident from its
integral form,

d

— wd3r+fjw-d2q:0, (5.6.13)
dt Jy S

which results from the integration of Equation (5.6.12) over an arbitrary time-independent volume V' limited by surface .S, and

applying the divergence theorem® to the second term.) The continuity relation (5.6.12) coincides with Equation (5.6.11), with D

given by Equation (5.5.17), only if we take

T
jo=—DVw= —;V'w. (5.6.14)

The first form of this relation allows a simple interpretation: the probability flow is proportional to the spatial gradient of the
probability density (i.e., in application to N >>1 similar and independent particles, just to the gradient of their concentration
n = Nw), with the sign corresponding to the flow from the higher to lower concentrations. This flow is the very essence of the
effect of diffusion. The second form of Equation (5.6.14) is also not very surprising: the diffusion speed scales as temperature and
is inversely proportional to the viscous drag.

The fundamental Equation (5.6.12-5.6.13) has to be satisfied also in the case of a force-driven particle at negligible diffusion (
D — 0); in this case

ju =wv, (5.6.15)
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where v is the deterministic velocity of the particle. In the high-damping limit we are considering right now, v has to be just the
drift velocity:

v %fdd . —%VU(q), (5.6.16)

where £ is the deterministic force described by the potential energy U(q).

Now that we have descriptions of j,, due to both the drift and the diffusion separately, we may rationally assume that in the general
case when both effects are present, the corresponding components (5.6.14) and (5.6.15) of the probability current just add up, so

that
. 1
Jw = ;[w(—VU) —TVuw), (5.6.17)
and Equation (5.6.12) takes the form
Smoluchowski equation:
ow 9

This is the Smoluchowski equation,®® which is closely related to the drift-diffusion equation in multi particle kinetics — to be
discussed in the next chapter.

As a sanity check, let us see what the Smoluchowski equation gives in the stationary limit, w/dt — 0 (which evidently may be
eventually achieved only if the deterministic potential U is time independent.) Then Equation (5.6.12) yields j,, = const, where
the constant describes the deterministic motion of the system as the whole. If such a motion is absent, j,, = 0, then according to
Equation (5.6.17),

\% VU
wVU+TVw =0, ie —= =~ (5.6.19)
w T
Since the left-hand side of the last relation is just V (Inw), it may be easily integrated over q, giving
U
lnw:f%+ln0, ie. w(r)Cexp{%}, (5.6.20)

where C' is a normalization constant. With both sides multiplied by the number N of similar, independent systems, with the spatial
density n(q) = Nw(q), this equality becomes the Boltzmann distribution (3.1.28).

As a less trivial example of the Smoluchowski equation's applications, let us use it to solve the 1D Kramers problem (Figure 5.6.1)
in the corresponding high-damping limit, m << 574, where 74 (still to be calculated) is some time scale of the particle's motion
inside the well. It is straightforward to verify that the 1D version of Equation (5.6.17),

1
Iy==~ [w (—a—U) —Ta—w} , (5.6.21)
U 9q 9q
(where I,, is the probability current at a certain point g, rather than its density) is mathematically equivalent to
T Ulg) | @ Ulq)
[ = _= _ = 5.6.22
o= e -T2 (wew{ G2 1). (5.6.22)
so that we may write
Ulq T 0 Ulq
I, exp{%} :fga—q (wexp{% . (5.6.23)
As was discussed above, the notion of metastable state's lifetime is well defined only for sufficiently low temperatures
T << Uy. (5.6.24)

when the lifetime is relatively long: 7 >> 74 . Since according to Equation (5.6.5), the first term of the continuity equation (
5.6.13 has to be of the order of W /7, in this limit the term, and hence the gradient of I,,, are exponentially small, so the
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probability current virtually does not depend on ¢ in the potential barrier region. Let us use this fact at the integration of both sides
of Equation (5.6.23) over that region:

o onf 22} (e 22))" o2

where the integration limits ¢’ and q" (see Figure 5.6.1) are selected so that
T <<U()—U(q1),U(g:) —U(q") << Up. (5.6.26)

(Obviously, such selection is only possible if the condition (5.6.24) is satisfied.) In this limit, the contribution from the point ¢ to
the right-hand side of Equation (5.6.26) is negligible because the probability density behind the barrier is exponentially small. On
the other hand, the probability at the point ¢’ has to be close to the value given by its quasi-stationary Boltzmann distribution (
5.6.20), so that

w(q’)exp{%ql)} —w(ql)exp{@}, (5.6.27)
and Equation (5.6.25) yields
T v U(g) —U(q1)
I, = ;w(ql)/ /q’ exp{T}dq. (5.6.28)

Patience, my reader, we are almost done. The probability density w(g ) at the well's bottom may be expressed in terms of the total
probability W of the particle being in the well by using the normalization condition

Ulg1) —U(g) }dq;

= (5.6.29)

W= w(q) eXp{
well’s bottom
the integration here may be limited to the region where the difference U(q)—U(gy) is much smaller than Uy — cf. Equation (
5.6.26). According to the Taylor expansion, the shape of virtually any smooth potential U(g) near the point g; of its minimum may
be well approximated with a quadratic parabola:
d*U

K
U(q%ql)—U((h)@?1(q—q1)2 where k1 = ———

| >0 (5.6.30)

=0

k1(g—q1)? oo ki1G2 ) .. 2T\ /2
w :w(ql)/ exp{—}dqzw(q )/ exp dg =w(q1) . (5.6.31)
well’s bottom 2T ! —o0 2T ! K1

To complete the calculation, we may use a similar approximation for the barrier top:

K R
Ulg~e)-Ula) ~ [Ule) -5 (@- o)’ -Ul@) =t - 2 (-@)* (5.6.32)
2
where kg = _d_(2] >0,
dq =92

and work out the remaining integral in Equation (5.6.28), because in the limit (5.6.26) it is dominated by the contribution from a
region very close to the barrier top, where the approximation (5.6.32) is asymptotically exact. As a result, we get

¢ [U@-Ula) Up | ( 27T\ ">
—— tdq~ — | — . .6.
/q/ exp{ T } q exp{ T }( o, ) (5.6.33)
Plugging Equation (5.6.33), and the w(g; ) expressed from Equation (134), into Equation (5.6.28), we finally get
1/2 U,
I, :WMexp{——o}. (5.6.34)
2mn T

This expression should be compared with the 1D version of Equation (5.6.13) for the segment [— oo, ¢']. Since this interval covers
the region near g; where most of the probability density resides, and I,(—oc) = 0, this equation is merely
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Z—T +1I,(¢") =0. (5.6.35)

In our approximation, I,,(g') does not depend on the exact position of the point ¢/, and is given by Equation (5.6.34), so that
plugging it into Equation (5.6.35), we recover the exponential decay law (5.6.5), with the lifetime 7 obeying the Arrhenius law (
5.6.6), and the following attempt time:

Kramers formula for high damping:

2
L/ 277(7'17'2)1/2, where 7 5 = i. (5.6.36)

T T e——
A7 rm) 12 K12

Thus the metastable state lifetime is indeed described by the Arrhenius law, with the attempt time scaling as the geometric mean of
the system's “relaxation times” near the potential well bottom (71 ) and the potential barrier top (73).%> Let me leave for the reader's
exercise to prove that if the potential profile near well's bottom and/or top is sharp, the expression for the attempt time should be
modified, but the Arrhenius decay law (5.6.5-5.6.6) is not affected.

This page titled 5.6: The Kramers problem and the Smoluchowski equation is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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5.7: The Fokker-Planck Equation

Formula (5.6.36) is just a particular, high-damping limit of a more general result obtained by Kramers. In order to get all of it (and
much more), we need to generalize the Smoluchowski equation to arbitrary values of damping 7. In this case, the probability
density w is a function of not only the particle's position q (and time ¢) but also of its momentum p — see Equation (2.1.11). Thus
the continuity equation (5.6.12 —6.6.13) needs to be generalized to the 6D phase space {q, p}. Such generalization is natural:

o
ot

where j q (which was called j,, in the last section) is the probability current density in the coordinate space, and V, (which was

+Vqd,+ Yy, =0, (5.7.1)

denoted as V in that section) is the usual vector operator in the space, while j,, is the current density in the momentum space, and
V), is the similar vector operator in that space:

3 3

0 0

V=Y n-2, V=Y n——. (5.7.2)
q ~ ]8% p = ]ap]

At negligible fluctuations (7' — 0), J, may be composed using the natural analogy with j, — see Equation (5.6.15). In our new
notation, that relation reads,

. . P
= =w— 5.7.3
Jg=wq=w— (5.7.3)
so it is natural to take
Jp =wp = w(F), (5.7.4)

where the (statistical-ensemble) averaged force (&) includes not only the contribution due to the potential's gradient, but also the
drag force —nv provided by the environment — see Equation (5.5.2) and its discussion:

§p=w(—VU—nv = —w(VqU+n%). (5.7.5)

As a sanity check, it is straightforward to verify that the diffusion-free equation resulting from the combination of Egs. (5.7.1), (
5.7.3)and (5.7.4-5.7.5),

ow P P
= =V (wR) 4V, w (VU] 5.7.6
Bt | q warpw q+77m ( )
allows the following particular solution:
w(q,p,t) =d[q—q(t)]é[p — (p)(t)], (5.7.7)
where the statistical-averaged coordinate and momentum satisfy the deterministic equations of motion,
W) (p)
(@=-- B)=-VU-n-—, (5.7.8)

describing the particle's drift, with the usual deterministic initial conditions.

In order to understand how the diffusion should be accounted for, let us consider a statistical ensemble of free (V,U =0, — 0)
particles that are uniformly distributed in the direct space q (so that V,w = 0), but possibly localized in the momentum space. For
this case, the right-hand side of Equation (5.7.6) vanishes, i.e. the time evolution of the probability density w may be only due to
diffusion. In the corresponding limit (%) — 0, the Langevin equation (5.6.1) for each Cartesian coordinate is reduced to

mg; =F;(t), ie p;=F;{). (5.7.9)

The last equation is identical to the high-damping 1D equation (5.5.3) (with 4 = 0), with the replacement ¢ — p; /7, and hence
the corresponding contribution to dw /9t may be described by the last term of Equation (5.6.18), with that replacement:
ow

=DV?

T
2= ;ﬁv},w =nTViw. (5.7.10)

ot dif fusion
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Now the reasonable assumption that in the arbitrary case the drift and diffusion contributions to dw/dt just add up immediately
leads us to the full Fokker-Planck equation:%®

Fokker-Planck equation:

%_1: — v, (w%) 4V, {w (quM%)} +TVw. (5.7.11)

As a sanity check, let us use this equation to calculate the stationary probability distribution of the momentum of particles with an
arbitrary damping n but otherwise free, in the momentum space, assuming (just for simplicity) their uniform distribution in the
direct space, V, = 0. In this case, Equation (5.7.11) is reduced to

V- [w(n) | +0TV3w =0, ieV, (Ew+TV,w)=0. (5.7.12)
m m
The first integration over the momentum space yields

P p’

Ew—i—Tpr =j,, le wV, <%> +TVyw =j,, (5.7.13)
where j,, is a vector constant describing a possible general probability flow in the system. In the absence of such flow, j,, =0, we
get

2 V. w 2 2
vy (2p—m) +T Z; =V, (2p—m —I—Tlnw) =0, giving w = const X exp{— 25%1,}, (5.7.14)

i.e. the Maxwell distribution (3.1.5). However, the result (5.7.14) is more general than that obtained in Sec. 3.1, because it shows
that the distribution stays the same even at non-zero damping. It is easy to verify that in the more general case of an arbitrary
stationary potential U(q), Equation (5.7.11) is satisfied with the stationary solution (3.1.25), also giving j,, = 0.

It is also straightforward to show that if the damping is large (in the sense assumed in the last section), the solution of the Fokker-
Planck equation tends to the following product

2
w(q, p,t) %constxexp{—zizT} xw(q,t), (5.7.15)

where the direct-space distribution w(q, t) obeys the Smoluchowski equation (5.6.18).

Another important particular case is that of a quasi-periodic motion of a particle, with low damping, in a soft potential well. In this
case, the Fokker-Planck equation describes both diffusion of the effective phase ® of such (generally nonlinear, “anharmonic™)
oscillator, and slow relaxation of its energy. If we are only interested in the latter process, Equation (5.7.11) may be reduced to the
so-called energy diffusion equation,®” which is easier to solve.

However, in most practically interesting cases, solutions of Equation (5.7.11) are rather complicated. (Indeed, the reader should
remember that these solutions embody, in the particular case 7' =0, all classical dynamics of a particle.) Because of this, I will
present (rather than derive) only one more of them: the solution of the Kramers problem (Figure 5.6.1). Acting almost exactly as in
Sec. 6, one can show®® that at virtually arbitrary damping (but still in the limit 7' << Uy ), the metastable state's lifetime is again
given by the Arrhenius formula (5.6.6), with the attempt time again expressed by the first of Egs. (5.6.36), but with the reciprocal
time constants 1/ 71,2 replaced with

57 1,2 f
n ) } _n {w1,2 or 7 << mwi,2, (5.7.16)

_ | 2 i/ s
“i2= [“ﬁ,z T (2m 2m 1/12, formuw <<,

where wy 5 = (k1,2/ m)l/ 2 and k1,2 are the effective spring constants defined by Egs. (5.6.30) and (5.6.32). Thus, in the important

particular limit of low damping, Egs. (5.6.6) and (5.7.16) give the famous formula

Kramers formula for low damping:

27 U()
T= —1/2 exp{?}. (5-7-17)
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This Kramers' result for the classical thermal activation of the dissipation-free system over a potential barrier may be compared
with that for its quantum-mechanical tunneling through the barrier.’ The WKB approximation for the latter effect gives the
expression

2,2
TQ =Ty exp{—2 / n(q)dq}, with hw(q) =U(q)—E, (5.7.18)
K2(g)>0 2m

showing that generally, the classical and quantum lifetimes of a metastable state have different dependences on the barrier shape.
For example, for a nearly-rectangular potential barrier, the exponent that determines the classical lifetime (5.7.17) depends
(linearly) only on the barrier height Uy, while that defining the quantum lifetime (5.7.18) is proportional to the barrier width and to
the square root of Uy. However, in the important case of “soft” potential profiles, which are typical for the case of barely emerging
(or nearly disappearing) quantum wells (Figure 5.7.1), the classical and quantum results are closely related.

U(q) a

=
Q

oS
K< 4

Figure 5.7.1: Cubic-parabolic potential profile and its parameters.

b
U(q) :aquq? (5.7.19)
(For the particle's escape into the positive direction of the g-axis, we should have a,b > 0.) An easy calculation gives all essential
parameters of this cubic parabola: the positions of its minimum and maximum:

@ =—aq = (a/b)"/?, (5.7.20)

(a_;)m, (5.7.21)

the barrier height over the well's bottom:

w | i

Uy=U(g2) —U(q1) =

and the effective spring constants at these points:

d*U

— 1/2
@ = 2(ab)"/2. (5.7.22)

q1,2

K1 =Ko =

The last expression shows that for this potential profile, the frequencies wy o participating in Equation (5.7.17) are equal to each
other, so that this result may be rewritten as

Soft well: thermal lifetime

2 2(ab)!/?
T= —ﬂ-exp{E }, with w? = &. (5.7.23)
T m

On the other hand, for the same profile, the WKB approximation (5.7.18) (which is accurate when the height of the metastable
state energy over the well's bottom, E—U(q ) =~ hwy /2, is much lower than the barrier height Up) yields”!

o [ hwy |2 36 U,
T 2200 7.24
e wop (864Ug> exp{ 5 huwy (5 7 )

Soft well: quantum lifetime
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The comparison of the dominating, exponential factors in these two results shows that the thermal activation yields a lower lifetime
(i.e., dominates the metastable state decay) if the temperature is above the crossover value

T, = %m =17.2hw. (5.7.25)

This expression for the cubic-parabolic barrier may be compared with the similar crossover for a quadratic-parabolic barrier,”? for
which T, = 27whwy ~ 6.28hw,. We see that the numerical factors for the quantum-to-classical crossover temperature for these two
different soft potential profiles are close to each other — and much larger than 1, which could result from a naive estimate.

This page titled 5.7: The Fokker-Planck Equation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by

Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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5.8: Back to the correlation function

Unfortunately, I will not have time/space to either derive or even review solutions of other problems using the Smoluchowski and
Fokker-Planck equations, but have to mention one conceptual issue. Since it is intuitively clear that the solution w(q, p, t) of the
Fokker-Planck equation for a system provides the complete statistical information about it, one may wonder how it may be used to
find its temporal characteristics that were discussed in Secs. 4-5, using the Langevin formalism. For any statistical average of a
function taken at the same time instant, the answer is clear — cf. Equation (2.1.11):

(Fla®), pO)]) = / f(a, p)w(a,p, t)dadp, (5.8.1)

but what if the function depends on variables taken at different times, for example as in the correlation function K¢ (7) defined by
Equation (5.4.3)?

To answer this question, let us start from the discrete-variable case when Equation (5.8.1) takes the form (2.1.7), which, for our
current purposes, may be rewritten as

(@)= fnWn(?). (5.8.2)

In plain English, this is a sum of all possible values of the function, each multiplied by its probability as a function of time. But this
implies that the average (f(¢) f(¢')) may be calculated as the sum of all possible products f,, f,v, multiplied by the joint probability
to measure outcome m at moment ¢, and outcome m’ at moment ¢'. The joint probability may be represented as a product of
W, (t) by the conditional probability W (m', t'|m, t). Since the correlation function is well defined only for stationary systems, in
the last expression we may take ¢ =0, i.e. look for the conditional probability as the solution, W,,; (), of the equation describing
the system's probability evolution, at time 7 = #'—¢ (rather than ¢'), with the special initial condition

W (0) = 81 - (5.8.3)
On the other hand, since the average (f(¢)f(t +7)) of a stationary process should not depend on ¢, instead of W,,,(0) we may take

the stationary probability distribution W,,,(00), independent of the initial conditions, which may be found as the same special
solution, but at time 7 — co. As a result, we get

Correlation function: discrete system

<f(t)f(t+7-)> = Z mem(OO)fm'Wm’ (T) (5.8.4)

This expression looks simple, but note that this recipe requires solving the time evolution equations for each W, () for all
possible initial conditions (5.8.3). To see how this recipe works in practice, let us revisit the simplest two-level system (see, e.g.,
Figure 4.5.4, which is reproduced in Figure 5.8.1 below in a notation more convenient for our current purposes), and calculate the
correlation function of its energy fluctuations.

W, (1) E =A
I, I
Wo(t) E,=0

Figure 5.8.1: Dynamics of a two-level system.

The stationary probabilities of the system's states (i.e. their probabilities for 7 — oo ) have been calculated in problems of Chapter
2, and then again in Sec. 4.4 — see Equation (4.4.10). In our current notation (Figure 5.8.1),

1 1
=7, W =—,
1+4+e /T 1(c0) eAT +1

A
so that (E(oco0)) = Wy(0o) x 0+Wi(o0) x A = AT 11

Wo(c0) (5.8.5)
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To calculate the conditional probabilities W, () with the initial conditions (5.8.4) (according to Equation (5.8.5), we need all four
of them, for {m,m’} = {0, 1}), we may use the master equations (4.5.24), in our current notation reading

awy,  dWy

dr  dr

Since Equation (5.8.6) conserves the total probability, Wy +W; =1, only one probability (say, W7) is an independent variable,
and for it, Equation (5.8.6) gives a simple, linear differential equation

dWq
dr

which may be readily integrated for an arbitrary initial condition:

—T\Wy —T,W;. (5.8.6)

:FTfI‘EWl, where I's, EPT +I‘¢, (587)

Wi(r) =W1(0)e ™" + Wi (o0) (1 —e™7), (5.8.8)

where W7 (00) is given by the second of Egs. (5.8.5). (It is straightforward to verify that the solution for Wy (7) may be represented
in a similar form, with the corresponding change of the state index.)

Now everything is ready to calculate the average (E(t)E(t + 7)) using Equation (5.8.4), with fm, s = Ep 1. Thanks to our (smart
:-) choice of the energy reference, of the four terms in the double sum (5.8.4), all three terms that include at least one factor Ey =0
vanish, and we have only one term left to calculate:

(B(t)E(t +17)) = EyWi (00) B\ Wi (7) 15, (o)1 = B3 Wi (00) [W1(0)e ™™™ + Wi (00) (1—e )] o o0, (5.8.9)
_ e Ts7 4 ;(1 _erzr)} A (1 _’_eA/TefI‘ET)
eAT 11 eA/T 1 - (eA/T+1)2 .
Kp(r) = (BO)E(t +7)) = (B(t) — (B@) (B(t+7) — (B@)) (5.8.10)
GA/T e
= <E(t)E(t +T)> — <E(OO)>2 = AZ Ws T y

so that its variance, equal to Kz (0), does not depend on the transition rates I'y and I'| . However, since the rates have to obey the
detailed balance relation (4.5.27, ') /Ty = exp{A/T'}, for this variance we may formally write

Kp(0) et/r ryr, oLy Ly

= = = = , 5.8.11
A (AT (Ty/Th+1)2 - (T4 +Ty)>  T§ ( )
so that Equation (5.8.10) may be represented in a simpler form:
Energy fluctuations: two-level system
|5 A
Kg(r) :A2¥e Ts7, (5.8.12)

We see that the correlation function of energy fluctuations decays exponentially with time, with the net rate I'y,. Now using the
Wiener-Khinchin theorem (5.4.13) to calculate its spectral density, we get

1 > I4LiT A2 ILWvT
Sp(w) =— / A2 e T s rdr = —— — 1
0

—_—. 5.8.13
T % 7ls T% +w? ( )

Such Lorentzian dependence on frequency is very typical for discrete-state systems described by master equations. It is interesting
that the most widely accepted explanation of the 1/ f noise (also called the “flicker” or “excess” noise), which was mentioned in
Sec. 5, is that it is a result of thermally activated jumps between states of two-level systems with an exponentially-broad statistical
distribution of the transition rates I'y. Such a broad distribution follows from the Kramers formula (5.7.17), which is approximately
valid for the lifetimes of both states of systems with double-well potential profiles (Figure 5.8.2), for a statistical ensemble with a
smooth statistical distribution of the energy barrier heights Uy. Such profiles are typical, in particular, for electrons in disordered
(amorphous) solid-state materials, which indeed feature high 1/ f noise.
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Figure 5.8.2: Typical double-well potential profile.

Returning to the Fokker-Planck equation, we may use the following evident generalization of Equation (5.8.4) to the continuous-
variable case:

Correlation function: continuous system

(Ft)f(t+7)) =/d3qd3p/d3q’d3p’f(q,p)w(q,p,OO)f(q',p')w(q',p’,T), (5.8.14)

were both probability densities are particular values of the equation's solution with the delta-functional initial condition

w(q',p’,0) =d(a’' —q)d(p’ —p). (5.8.15)

For the Smoluchowski equation valid in the high-damping limit, the expressions are similar, albeit with a lower dimensionality:

SO F(t+7) = / d’q / ¢’ f(a)w(a, 00) f(d)w(d', 7), (5.8.16)

w(q',0) =4(q’ —q). (5.8.17)

To see this formalism in action, let us use it to calculate the correlation function K, (7') of a linear relaxator, i.e. an overdamped 1D
harmonic oscillator with mwy << 7. In this limit, as Equation (5.5.3) shows, the oscillator's coordinate, averaged over the
ensemble of environments, obeys a linear equation,

n(d) +r{a) =0, (5.8.18)

which describes its exponential relaxation from the initial position gy to the equilibrium position ¢ = 0, with the reciprocal time
constant I' = x /7:

(@)(t) = qoe ™" (5.8.19)

The deterministic equation (5.8.18) corresponds to the quadratic potential energy U(q) = nq2/ 2, so that the 1D version of the
corresponding Smoluchowski equation (5.6.18) takes the form

Ow 0 O%w

—(wq) +Tw.

-_ = . -2
U KBq (5.8.20)

It is straightforward to check, by substitution, that this equation, rewritten for the function w(q’, 7), with the 1D version of the
delta-functional initial condition (5.8.17), w(q’, 0) = §(q'—q), is satisfied with a Gaussian function:

! _ 2
w(q',7) = —exp{m}, (5.8.21)
(2m)!/28q() 28¢*(7)
with its center {g)(7) moving in accordance with Equation (5.8.19), and a time-dependent
5q2(7) = 6g2(00)(1—€7),  where 6g3(00) = (g?) — % (5.8.22)

(As a sanity check, the last equality coincides with the equipartition theorem's result.) Finally, the first probability under the integral
in Equation (5.8.16) may be found from Equation (5.8.21) in the limit 7 — oo (in which (g)(7) — 0), by replacing ¢’ with g:
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_ 1 —ex _____gf___ . .8.
w8 %) = i Tesg(o0) p{ 2002 (o0) } (6.8.23)

Now all ingredients of the recipe (5.8.16) are ready, and we can spell it out, for f(q) =g, as

(Oale +7) = g | Caf dq'qexp{—%}q' xp{—%} (5.8.24)

7FT)

The integral over q' may be worked our first, by replacing this integration variable with (¢" + ge and hence dq’ with dg"':

B 1 +00 ox 3 q2 +00 Y 0T ox B q//2 "
Ot 7)) = o a0 /_oo a p{ 2547 (o0) }dq/_oo (4" +qe ) p{ 25q2(7)}dq' (58.25)

The internal integral of the first term in the parentheses equals zero (as that of an odd function in symmetric integration limits),
while that with the second term is the standard Gaussian integral, so that

R S Hal . g _ 2T r, Halpe’ 2
) = o Tadg(o0) /. exp{ 262(0) }dq‘wwne [ €emi-elae G820

The last integral’* equals wl/2 /2, so that taking into account that for this stationary system centered at the coordinate origin,
(g(c0)) = 0, we finally get a very simple result,

Correlation function: linear relaxator

Ky(m)=(q(t)q(t+7)) = (a(t)a(t + 7)) — (a(00))* = (a(t)q(t + 7)) = %67”- (5.8.27)

As a sanity check, for 7=0 it yields K,(0) =(g*) =T/r, in accordance with Equation (5.8.29). As T is increased the
correlation function decreases monotonically — see the solid-line sketch in Figure 5.4.1.

o 0T 1 T [ T
K, (1) = 2/ Sg(w) coswrdw = 2/ Ui — 5 coswrdw =2— / LS£d§ ==—e ™. (5.8.28)
0 o 7T K+ (nw)? ™ Jo (I'r)?+€ K
This example illustrates the fact that for linear systems (and small fluctuations in nonlinear systems) the Langevin approach is
usually much simpler than the one based on the Fokker-Planck or Smoluchowski equations. However, again, the latter approach is
indispensable for the analysis of fluctuations of arbitrary intensity in nonlinear systems.

To conclude this chapter, I have to emphasize again that the Fokker-Planck and Smoluchowski equations give a quantitative
description of the time evolution of nonlinear Brownian systems with dissipation in the classical limit. The description of the
corresponding properties of such dissipative (“open”) and nonlinear quantum systems is more complex,’® and only a few simple
problems of their theory have been solved analytically so far,”” typically using a particular model of the environment, e.g., as a large
set of harmonic oscillators with different statistical distributions of their parameters, leading to different frequency dependences of
the generalized susceptibility x(w).

This page titled 5.8: Back to the correlation function is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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5.9: Exercise problems

? Exercise 5.9.1

Treating the first 30 digits of number m = 3.1415...as a statistical ensemble of integers k (equal to 3, 1, 4, 1, 5,...), calculate
the average (k) and the r.m.s. fluctuation 6k. Compare the results with those for the ensemble of completely random decimal
integers 0, 1, 2,..,9, and comment.

? Exercise 5.9.2

Calculate the variance of fluctuations of a magnetic moment m placed into an external magnetic field 7, within the same two
models as in Problem 2.4:

i. a spin-1/2 with a gyromagnetic ratio -, and
ii. a classical magnetic moment m, of a fixed magnitude m, but an arbitrary orientation,

both in thermal equilibrium at temperature 7'. Discuss and compare the results.”®

Hint: Mind all three Cartesian components of the vector m.

? Exercise 5.9.3

For a field-free, two-site Ising system with energy values E,,, =— Js;s3, in thermal equilibrium at temperature 7", calculate the
variance of energy fluctuations. Explore the low-temperature and high temperature limits of the result.

? Exercise 5.9.4

For a uniform, three-site Ising ring with ferromagnetic coupling (and no external field), calculate the correlation coefficients
K, = (sgsy) forbothk =k and k #K .

? Exercise 5.9.5*

For a field-free 1D Ising system of N >>1 “spins”, in thermal equilibrium at temperature T, calculate the correlation
coefficient K = (s;8;+n) , where l and (I +n) are the numbers of two specific spins in the chain.

Hint: You may like to start with the calculation of the statistical sum for an open-ended chain with arbitrary N > 1 and
arbitrary coupling coefficients Ji, and then consider its mixed partial derivative over a part of these parameters.

? Exercise 5.9.6

Within the framework of the Weiss molecular-field theory, calculate the variance of spin fluctuations in the d-dimensional
Ising model. Use the result to derive the conditions of its validity.

? Exercise 5.9.7

Calculate the variance of energy fluctuations in a quantum harmonic oscillator with frequency w, in thermal equilibrium at
temperature 7°, and express it via the average value of the energy.

? Exercise 5.9.8

The spontaneous electromagnetic field inside a closed volume V is in thermal equilibrium at temperature 7. Assuming that V'
is sufficiently large, calculate the variance of fluctuations of the total energy of the field, and express the result via its average
energy and temperature. How large should the volume V' be for your results to be quantitatively valid? Evaluate this limitation
for room temperature.
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Express the r.m.s. uncertainty of the occupancy N}, of a certain energy level € by non interacting:

i. classical particles,
ii. fermions, and
iii. bosons,

in thermodynamic equilibrium, via the level's average occupancy (Ny), and compare the results.

? Exercise 5.9.10

Express the variance of the number of particles, <N2>V,T,;u of a single-phase system in equilibrium, via its isothermal
compressibility k7 = —(1/V)(8V /OP)r N

? Exercise 5.9.11*

Starting from the Maxwell distribution of velocities, calculate the low-frequency spectral density of fluctuations of the pressure
P(t) of an ideal gas of N classical particles, in thermal equilibrium at temperature 7', and estimate their variance. Compare
the former result with the solution of Problem 3.2.

Hints: You may consider a cylindrically-shaped container of volume V =LA (see the figure on the right), calculate

fluctuations of the force #(t) exerted by the confined particles on its plane lid of area A, approximating it as a delta-correlated
process (5.4.17), and then re-calculate the fluctuations into those of pressure P = %/ A.

? Exercise 5.9.12

Calculate the low-frequency spectral density of fluctuations of the electric current I(¢) due to the random passage of charged
particles between two conducting electrodes — see the figure on the right. Assume that the particles are emitted, at random
times, by one of the electrodes, and are fully absorbed by the counterpart electrode. Can your result be mapped on some aspect

of the electromagnetic blackbody radiation?

qo—>

o—p

o—p

- -

Hint: For the current I(¢), use the same delta-correlated-process approximation as for the force % (t) in the previous problem.
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A very long, uniform string, of mass u per unit length, is attached to a firm support, and stretched with a constant force
(“tension”) 7 - see the figure on the right.

A\

Calculate the spectral density of the random force (t) exerted by the string on the support point, within the plane normal to
its length, in thermal equilibrium at temperature 7'.

Hint: You may assume that the string is so long that a transverse wave, propagating along it from the support point, never
comes back.

? Exercise 5.9.14%°

Each of two 3D harmonic oscillators, with mass m, resonance frequency wy, and damping é > 0, has electric dipole moment
d =gs, where s is the vector of oscillator's displacement from its equilibrium position. Use the Langevin formalism to
calculate the average potential of electrostatic interaction of these two oscillators (a particular case of the so-called London
dispersion force), separated by distance r >> (T'/m)!/2 /wy, in thermal equilibrium at temperature T' >> fwy . Also, explain
why the approach used to solve a very similar Problem 2.15 is not directly applicable to this case.

Hint: You may like to use the following integral: fooo deg ==,
[1-8"+(e9?] .

? Exercise 5.9.15

Within the van der Pol approximation,?! calculate major statistical properties of fluctuations of classical self-oscillations, at:

i. the free (“autonomous”) run of the oscillator, and
ii. their phase been locked by an external sinusoidal force,

assuming that the fluctuations are caused by a weak external noise with a smooth spectral density Sy(w). In particular,
calculate the self-oscillation linewidth.

? Exercise 5.9.16

Calculate the correlation function of the coordinate of a 1D harmonic oscillator with small Ohmic damping at thermal
equilibrium. Compare the result with that for the autonomous self-oscillator (the subject of the previous problem).

? Exercise 5.9.17

Consider a very long, uniform, two-wire transmission line (see the figure on the right) with wave impedance 2, which allows
propagation of TEM electromagnetic waves with negligible attenuation, in thermal equilibrium at temperature 7'. Calculate the

variance ("//2> Av Of the voltage 7 between the wires within a small interval Av of cyclic frequencies.
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Hint: As an E&M reminder,?? in the absence of dispersive materials, TEM waves propagate with a frequency-independent
velocity (equal to the speed ¢ of light, if the wires are in free space), with the voltage 7" and the current I (see Figure above)
related as ¥(z,t)/I(z,t) = £Z, where & is line's wave impedance.

? Exercise 5.9.18

Now consider a similar long transmission line but terminated, at one end, with an impedance-matching Ohmic resistor
R = % . Calculate the variance (¥ 2) Ay of the voltage across the resistor, and discuss the relation between the result and the
Nyquist formula (5.5.21), including numerical factors.

Hint: A termination with resistance R = % absorbs incident TEM waves without reflection.

? Exercise 5.9.19

An overdamped classical 1D particle escapes from a potential well with a smooth bottom, but a sharp top of the barrier — see
the figure on the right. Perform the necessary modification of the Kramers formula (5.6.36).

U
(6})1 /\

q

v

0 9 49> 9

? Exercise 5.9.20

Perhaps the simplest model of the diffusion is the 1D discrete random walk: each time interval 7, a particle leaps, with equal
probability, to any of two adjacent sites of a 1D lattice with spatial period a. Prove that the particle's displacement during a
time interval ¢ >> 7 obeys Equation (5.5.16), and calculate the corresponding diffusion coefficient D.

? Exercise 5.9.21

A classical particle may occupy any of IV similar sites. Its weak interaction with the environment induces random, incoherent
jumps from the occupied site to any other site, with the same time-independent rate I'. Calculate the correlation function and
the spectral density of fluctuations of the instant occupancy n(¢) (equal to either 1 or 0) of a site.

1. Let me remind the reader that up to this point, the averaging signs (. .. ) were dropped in most formulas, for the sake of notation
simplicity. In this chapter, I have to restore these signs to avoid confusion. The only exception will be temperature — whose
average, following (probably, bad :-) tradition, will be still called just T" everywhere, besides the last part of Sec. 3, where
temperature fluctuations are discussed explicitly.

2. Unfortunately, even in some popular textbooks, certain formulas pertaining to fluctuations are either incorrect or given without
specifying the conditions of their applicability, so that the reader's caution is advised.

3. See, e.g., MA Equation (2.2).

4. It was derived by Jacob Bernoulli (1655-1705).
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5. Indeed, this is just the most popular definition of that major mathematical constant — see, e.g., MA Equation (1.2a) with
n=1/W.

6. Named after the same Siméon Denis Poisson (1781-1840) who is also responsible for other mathematical tools and results used
in this series, including the Poisson equation — see Sec. 6.4 below.

7. Named after Carl Friedrich Gauss (1777-1855), though Pierre-Simone Laplace (1749-1827) is credited for substantial
contributions to its development.

8. As a math reminder, the term “cylinder” does not necessarily mean the “circular cylinder”; the shape of its base may be
arbitrary; it just should not change with height.

9. As already was discussed in Sec. 4.1 in the context of the van der Waals equation, for the mechanical stability of a gas (or
liquid), the derivative 9P /8V has to be negative, so that & is positive.

10. One may meet statements that a similar formula,

(P)x =T <@) , (WRONG!)
V) ) x
is valid for pressure fluctuations. However, a such statement does not take into account a different physical nature of pressure
(Figure 5.3.1), with its very broad frequency spectrum. This issue will be discussed later in this chapter.

11. In this case, we may also use the second of Egs. (1.4.16) to rewrite Equation (5.3.4 — 5.3.5) via the second derivative
(0°G/0P?)r.

12. Besides low internal electric noise, a good sensor should have a sufficiently large temperature responsivity dR/dT, making the
noise contribution by the readout electronics insignificant — see below.

13. An important modern trend in this progress [see, e.g., P. Day et al., Nature 425, 817 (2003)] is the replacement of the resistive
temperature sensors R(T') with thin and narrow superconducting strips with temperature-sensitive kinetic inductance Ly (T') —
see the model solution of EM Problem 6.19. Such inductive sensors have zero dc resistance, and hence vanishing Johnson-
Nyquist noise at typical signal pickup frequencies of a few kHz — see Equation (5.5.20 — 5.5.22) and its discussion below.

14. Tt was pioneered in the 1950s by Robert Henry Dicke, so that the device is frequently called the Dicke radiometer. Note that the
optimal strategy of using similar devices for time- and energy-resolved detection of single high-energy photons is different —
though even it is essentially based on Equation (5.3.9). For a recent brief review of such detectors see, e.g., K. Morgan, Phys.
Today 71, 29 (Aug. 2018), and references therein.

15. Another term, the autocorrelation function, is sometimes used for the average (5.4.3) to distinguish it from the mutual
correlation function, (f1(t) f2(t +7)) , of two different stationary processes.

16. Please notice that this correlation function is the direct temporal analog of the spatial correlation function briefly discussed in
Sec. 4.2 — see Equation (4.2.10).

17. Note that the correlation time 7, is the direct temporal analog of the correlation radius . that was discussed in Sec. 4.2 — see the
same Equation (4.2.10).

18. The argument of the function fw is represented as its index with a purpose to emphasize that this function is different from
f (t), while (very conveniently) still using the same letter for the same variable.

19. See, e.g., MA Equation (14.4).

20. The second form of Equation (5.4.14) uses the fact that, according to Equation (5.4.13), S¢(w) is an even function of frequency
—just as K () is an even function of time.

21. Although Egs. (5.4.13) and (5.4.14) look not much more than straightforward corollaries of the Fourier transform, they bear a
special name of the Wiener-Khinchin theorem — after the mathematicians N. Wiener and A. Khinchin who have proved that
these relations are valid even for the functions f(¢) that are not square-integrable, so that from the point of view of standard
mathematics, their Fourier transforms are not well defined.

22. Such process is frequently called the white noise, because it consists of all frequency components with equal amplitudes,
reminding the white light, which consists of many monochromatic components with close amplitudes.

23. To emphasize this generality, in the forthcoming discussion of the 1D case, I will use the letter ¢ rather than « for the system's
displacement.

24. For a usual (ergodic) environment, the primary averaging may be interpreted as that over relatively short time intervals,

T. << At << T, where 7. is the correlation time of the environment, while 7 is the characteristic time scale of motion of our
“heavy” system of interest.

25. Named after Paul Langevin, whose 1908 work was the first systematic development of A. Einstein's ideas on Brownian motion

(see below) using this formalism. A detailed discussion of this approach, with numerical examples of its application, may be
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26.

27.

28.

29.

30.

31

32.
33.

34.

35.

36.

37.

38.

39.
40.

41.
42.

43.
44,
45.

46.

47.

found, e.g., in the monograph by W. Coffey, Yu. Kalmykov, and J. Waldron, The Langevin Equation, World Scientific, 1996.
See, e.g., CM Sec. 5.1. Here I assume that the variable f(t) is classical, with the discussion of the quantum case postponed until
the end of the section.

Note that the direct secondary statistical averaging of Equation (5.5.3) with Z#4 = 0 yields ({(g)) = 0! This, perhaps a bit
counter-intuitive result becomes less puzzling if we recognize that this is the averaging over a large statistical ensemble of
random sinusoidal oscillations with all values of their phase, and that the (equally probable) oscillations with opposite phases
give mutually canceling contributions to the sum in Equation (2.1.6).

At this stage, we restrict our analysis to random, stationary processes ¢(t), so that Equation (5.4.12) is valid for this variable as
well, if the averaging in it is understood in the ({...)) sense.

Regardless of the physical sense of such a function of w, and of whether its maximum is situated at a finite frequency wy as in
Equation (5.5.6) or at w = 0, it is often referred to as the Lorentzian (or “Breit-Wigner”) line.

Since in this case the process in the oscillator is entirely due to its environment, its variance should be obtained by statistical
averaging over an ensemble of many similar (oscillator + environment) systems, and hence, following our convention, it is
denoted by double angular brackets.

See, e.g. MA Equation (6.5a).

See, e.g., CM Sec. 5.1.

It was published in one of the three papers of Einstein's celebrated 1905 “triad”. As a reminder, another paper started the
(special) relativity theory, and one more was the quantum description of the photoelectric effect, essentially starting the
quantum mechanics. Not too bad for one year, one young scientist!

In particular, in 1908, i.e. very soon after Einstein's publication, it was used by J. Perrin for an accurate determination of the
Avogadro number N 4. (It was Perrin who graciously suggested naming this constant after A. Avogadro, honoring his
pioneering studies of gases in the 1810s.)

Note that in solid-state physics and electronics, the charge carrier mobility is usually defined as

|Varift | E| = eVarigt || Faet| = €|p| (where & is the applied electric field), and is traditionally measured in cm?/Vs.

The minus sign is due to the fact that in our notation, the current flowing in the resistor, from the positive terminal to the
negative one, is (—I) — see Figure 5.5.1.

Due to this fact, Equation (5.5.2) is often called the Ohmic model of the environment's response, even if the physical nature of
the variables ¢ and & is completely different from the electric charge and voltage.

It is named after Harry Nyquist who derived this formula in 1928 (independently of the prior work by A. Einstein, M.
Smoluchowski, and P. Langevin) to describe the noise that had been just discovered experimentally by his Bell Labs' colleague
John Bertrand Johnson. The derivation of Equation (5.5.11 —5.5.12) and hence Equation (5.5.20 — 5.5.22) in these notes is
essentially a twist of the derivation used by H. Nyquist.

See, e.g., J. Crossno et al., Appl. Phys. Lett. 106, 023121 (2015), and references therein.

Another practically important type of fluctuations in electronic devices is the low-frequency 1/ f noise that was already
mentioned in Sec. 3 above. I will briefly discuss it in Sec. 8.

It was derived by Walter Hans Schottky as early as 1918, i.e. even before Nyquist's work.

See, e.g., Y. Naveh et al., Phys. Rev. B 58, 15371 (1998). In practically used metals, [, is of the order of 30 nm even at liquid-
helium temperatures (and much shorter at room temperatures), so that the usual “macroscopic” resistors do not exhibit the shot
noise.

For a review of this effect see, e.g., Ya. Blanter and M. Biittiker, Phys. Repts. 336, 1 (2000).

See, e.g., a concise book by A. Balbi, The Music of the Big Bang, Springer, 2008.

Reviewing the calculations leading to Equation (5.5.11 —5.5.12), we may see that the possible real part x’(w) of the
susceptibility just adds up to (k— mw2) in the denominator of Equation (5.5.5), resulting in a change of the oscillator's
frequency wy. This renormalization is insignificant if the oscillator-to-environment coupling is weak, i.e. if the susceptibility
X(w) is small — as had been assumed at the derivation of Equation (5.5.7) and hence Equation (5.5.11 —5.5.12).

It is sometimes called the Green-Kubo (or just the Kubo) formula. This is hardly fair, because, as the reader could see, Equation
(5.5.33) is just an elementary generalization of the Nyquist formula (5.5.20 — 5.5.22). Moreover, the corresponding works of
M. Green and R. Kubo were published, respectively, in 1954 and 1957, i.e. after the 1951 paper by H. Callen and T. Welton,
where a more general result (5.5.39) had been derived. Much more adequately, the Green/Kubo names are associated with
Equation (5.5.43) below.

See, e.g., QM Sec. 4.6.
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48. Here (and to the end of this section) the averaging (. .. ) should be understood in the general quantum-statistical sense — see
Equation (2.1.12). As was discussed in Sec. 2.1, for the classical-mixture state of the system, this does not create any difference
in either the mathematical treatment of the averages or their physical interpretation.

49. R. Koch et al., Phys. Rev. B 26, 74 (1982), and references therein.

50. See, e.g., QM Sec. 7.4.

51. See, e.g., CM Sec. 5.1.

52. See, e.g., CM Secs. 3.4-3.6.

53. The generalization of Equation (5.6.1) to higher spatial dimensionality is also straightforward, with the scalar variable ¢
replaced with a multi-dimensional vector q, and the scalar derivative dU /dq replaced with the vector VU, where V is the del
vector-operator in the g-space.

54. See, e.g., CM Secs. 3.2, 5.2, and beyond.

55. See, e.g., QM Problem 7.8, and also Chapters 5 and 6 in the monograph by W. Coffey et al., cited above.

56. It was named after Hendrik Anthony (“Hans”) Kramers who, besides solving this conceptually important problem in 1940, has
made several other seminal contributions to physics, including the famous Kramers-Kronig dispersion relations (see, e.g., EM
Sec. 7.4) and the WKB (Wentzel-Kramers-Brillouin) approximation in quantum mechanics — see, e.g., QM Sec. 2.4.

57. If Uy is comparable with T', the system's behavior also depends substantially on the initial probability distribution, i.e., does not
follow the simple law (5.6.5 —5.6.6).

58. See, e.g., either R. Stratonovich, Topics in the Theory of Random Noise, vol. 1., Gordon and Breach, 1963, or Chapter 1 in the
monograph by W. Coffey et al., cited above.

59. By the way, the goal of the traditional definition (5.5.17) of the diffusion coefficient, leading to the front coefficient 2 in
Equation (5.5.16), is exactly to have the fundamental equations (5.6.9) and (5.6.11) free of numerical coefficients.

60. As will be discussed in Chapter 6, the equation of diffusion also describes several other physical phenomena — in particular, the
heat propagation in a uniform, isotropic solid, and in this context is called the heat conduction equation or (rather
inappropriately) just the “heat equation”.

61. Both forms of Equation (5.6.12 —5.6.13) are similar to the mass conservation law in classical dynamics (see, e.g., CM Sec.
8.2), the electric charge conservation law in electrodynamics (see, e.g., EM Sec. 4.1), and the probability conservation law in
quantum mechanics (see, e.g., QM Sec. 1.4).

62. See, e.g., MA Equation (12.2),

63. It is named after Marian Smoluchowski, who developed this formalism in 1906, apparently independently from the slightly
earlier Einstein's work, but in much more detail. This equation has important applications in many fields of science — including
such surprising topics as statistics of spikes in neural networks. (Note, however, that in some non-physical fields, Equation (
5.6.198) is referred to as the Fokker-Planck equation, while actually, the latter equation is much more general — see the next
section.)

64. If necessary, see MA Equation (6.9b) again.

65. Actually, 7» describes the characteristic time of the exponential growth of small deviations from the unstable fixed point g5 at
the barrier top, rather than their decay, as near the stable point g; .

66. It was first derived by Adriaan Fokker in 1913 in his PhD thesis, and further elaborated by Max Planck in 1917. (Curiously, A.
Fokker is more famous for his work on music theory, and the invention and construction of several new keyboard instruments,
than for this and several other important contributions to theoretical physics.)

67. An example of such an equation, for the particular case of a harmonic oscillator, is given by QM Equation (7.214). The Fokker-
Planck equation, of course, can give only its classical limit, with n,n, >> 1.

68. A detailed description of this calculation (first performed by H. Kramers in 1940) may be found, for example, in Sec. II1.7 of
the review paper by S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

69. See, e.g., QM Secs. 2.4-2.6.

70. As a reminder, a similar approximation arises for the P (V') function, at the analysis of the van der Waals model near the critical
temperature — see Problem 4.6.

71. The main, exponential factor in this result may be obtained simply by ignoring the difference between E and U(q; ), but the
correct calculation of the pre-exponential factor requires taking this difference, hwy /2, into account — see, e.g., the model
solution of QM Problem 2.43.

72. See, e.g., QM Sec. 2.4.

73. The step from the first line of Equation (5.8.10) to its second line utilizes the fact that our system is stationary, so that
(E(t+71)) = (E(t)) = (E(0)) = const.
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74. See, e.g., MA Equation (6.9¢).

75. The involved table integral may be found, e.g., in MA Equation (6.11).

76. See, e.g., QM Sec. 7.6.

77. See, e.g., the solutions of the 1D Kramers problem for quantum systems with low damping by A. Caldeira and A. Leggett,
Phys. Rev. Lett. 46, 211 (1981), and with high damping by A. Larkin and Yu. Ovchinnikov, JETP Lett. 37, 382 (1983).

78. Note that these two cases may be considered as the non-interacting limits of, respectively, the Ising model (4.2.3) and the
classical limit of the Heisenberg model (4.2.1), whose analysis within the Weiss approximation was the subject of Problem
4.18.

79. This problem, conceptually important for the quantum mechanics of open systems, was given in Chapter 7 of the QM part of
this series, and is repeated here for the benefit of the readers who, by any reason, skipped that course.

80. This problem, for the case of arbitrary temperature, was the subject of QM Problem 7.6, with Problem 5.15 of that course
serving as the background. However, the method used in the model solutions of those problems requires one to prescribe, to the
oscillators, different frequencies w; and ws at first, and only after this more general problem has been solved, pursue the limit
w1 — we, while neglecting dissipation altogether. The goal of this problem is to show that the result of that solution is valid
even at non-zero damping.

81. See, e.g., CM Secs. 5.2-5.5. Note that in quantum mechanics, a similar approach is called the rotating-wave approximation
(RWA) —see, e.g., QM Secs. 6.5, 7.6, 9.2, and 9.4.

82. See, e.g., EM Sec. 7.6.
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CHAPTER OVERVIEW

6: Elements of Kinetics

This chapter gives a brief introduction to the basic notions of physical kinetics. Its main focus is on the Boltzmann transport
equation, especially within the simple relaxation-time approximation (RTA), which allows an approximate but reasonable and
simple description of transport phenomena (such as the electric current and thermoelectric effects) in gases, including electron
gases in metals and semiconductors.

6.1: The Liouville Theorem and the Boltzmann Rquation

6.2: The Ohm law and the Drude formula

6.3: Electrochemical potential and drift-diffusion equation

6.4: Charge Carriers in Semiconductors - Statics and Kinetics

6.5: Thermoelectric effects

6.6: Exercise problems

This page titled 6: Elements of Kinetics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Konstantin K.
Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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6.1: The Liouville Theorem and the Boltzmann Rquation

Physical kinetics (not to be confused with “kinematics”!) is the branch of statistical physics that deals with systems out of
thermodynamic equilibrium. Major effects addressed by kinetics include:

i. for autonomous systems (those out of external fields): the transient processes (relaxation), that lead from an arbitrary initial
state of a system to its thermodynamic equilibrium;
ii. for systems in time-dependent (say, sinusoidal) external fields: the field-induced periodic oscillations of the system's variables;
and
iii. for systems in time-independent (“dc”) external fields: dc transport.

In the last case, we are dealing with stationary (8/8t =0 everywhere), but non-equilibrium situations, in which the effect of an
external field, continuously driving the system out of equilibrium, is balanced by the simultaneous relaxation — the trend back to
equilibrium. Perhaps the most important effect of this class is the dc current in conductors and semiconductors,! which alone
justifies the inclusion of the basic notions of kinetics into any set of core physics courses.

The reader who has reached this point of the notes already has some taste of physical kinetics, because the subject of the last part of
Chapter 5 was the kinetics of a “Brownian particle”, i.e. of a “heavy” system interacting with an environment consisting of many
“lighter” components. Indeed, the equations discussed in that part — whether the (5.6.18) or the Fokker-
Planck equation (5.7.11) — are valid if the environment is in thermodynamic equilibrium, but the system of our interest is not
necessarily so. As a result, we could use those equations to discuss such non-equilibrium phenomena as the Kramers problem of the
metastable state's lifetime.

In contrast, this chapter is devoted to the more traditional subject of kinetics: systems of many similar particles — generally,
interacting with each other, but not too strongly, so that the energy of the system still may be partitioned into a sum of single-
particle components, with the interparticle interactions considered as a weak perturbation. Actually, we have already started the job
of describing such a system at the beginning of Sec. 5.7. Indeed, in the absence of particle interactions (i.e. when it is unimportant
whether the particle of our interest is “light” or “heavy”), the probability current densities in the coordinate and momentum spaces
are given, respectively, by Equation (5.7.3) and the first form of Equation (5.7.4), so that the continuity equation (5.7.1) takes the
form

ow . .

E+vq~(wq)+vp.(wp)=0. (6.1.1)
If similar particles do not interact, this equation for the single-particle probability density w(q, p, t) is valid for each of them, and
the result of its solution may be used to calculate any ensemble-average characteristic of the system as a whole.

Let us rewrite Equation (6.1.1) in the Cartesian-component form,

ow 0 0
= — (wg ;) +—(wp;)| =0, 6.1.2
32 [ i g ) (6.1.2)
0 . ¥ 4
i~ G B (6.1.3)
We get
ow 0 0 0 0
— + — (w—) — —(w =0. 6.1.4
N AR <] (6.1.4)
Liouville theorem:
ow ow . ow .
T Y L C R 6.1.5
5 T2 (6%(1] apjpj) (6.1.5)

Since the left-hand side of this equation is just the full derivative of the probability density w considered as a function of the
generalized coordinates g;(t) of a particle, its generalized momenta components p;(t), and (possibly) time t,* the Liouville
theorem (6.1.5) may be represented in a surprisingly simple form:
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dw(q, p,1)
dit
Physically this means that the elementary probability dW = wd®qd>p to find a Hamiltonian particle in a small volume of the
coordinate-momentum space [q, p], with its center moving in accordance to the deterministic law (6.1.3), does not change with
time — see Figure 6.1.1.

=0. (6.1.6)

T
d’qd’p

Figure 6.1.1: The Liouville theorem’s interpretation: probability’s conservation at its flow through the [q, p] space.

At the first glance, this may not look surprising because according to the fundamental Einstein relation (5.5.17), one needs non-
Hamiltonian forces (such as the kinematic friction) to have diffusion. On the other hand, it is striking that the Liouville theorem is
valid even for (Hamiltonian) systems with deterministic chaos,® in which the deterministic trajectories corresponding to slightly
different initial conditions become increasingly mixed with time.

For an ideal gas of 3D particles, we may use the ordinary Cartesian coordinates r; (with j = 1, 2, 3) for the generalized coordinates
g;, so that p; become the Cartesian components mv; of the usual (linear) momentum, and the elementary volume is just d3rd3p —
see Figure 6.1.1. In this case, Egs. (6.1.3) are just

bj

where & is the force exerted on the particle, so that the Liouville theorem may be rewritten as

ow S ow ow
EJFZ(UJ-% +3fj@) =0, (6.1.8)

j=1
and conveniently represented in the vector form

)
8—1:+v~vrw+9-va:0. (6.1.9)

Of course, the situation becomes much more complex if the particles interact. Generally, a system of N similar particles in 3D
space has to be described by the probability density being a function of 6 N +1 arguments (3/V Cartesian coordinates, plus 3N
momentum components, plus time). An analytical or numerical solution of any equation describing the time evolution of such a
function for a typical system of N ~ 10% particles is evidently a hopeless task. Hence, any theory of realistic systems' kinetics has
to rely on making reasonable approximations that would simplify the situation.

One of the most useful approximations (sometimes called Stosszahlansatz — German for the “collision-number assumption”) was
suggested by Ludwig Boltzmann for gas of particles that move freely most of the time but interact during short time intervals, when
a particle comes close to either an immobile scattering center (say, an impurity in a conductor's crystal lattice) or to another particle
of the gas. Such brief scattering events may change the particle's momentum. Boltzmann argued that they may be still
approximately described Equation (6.1.9), with the addition of a special term (called the scattering integral) to its right-hand side:

Boltzmann equation:

0 0
—w—i—v-er—l—.?-pr:—w

6.1.10
ot ot ( )

scattering

https://phys.libretexts.org/@go/page/34730


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34730?pdf

LibreTextsw

This is the Boltzmann equation, also called the “Boltzmann transport equation”. As will be discussed below, it may give a very
reasonable description of not only classical but also quantum particles, though it evidently neglects the quantum-mechanical
coherence/entanglement effects® — besides those that may be hidden inside the scattering integral.

The concrete form of the scattering integral depends on the type of particle scattering. If the scattering centers do not belong to the
ensemble under consideration (an example is given, again, by impurity atoms in a conductor), then the scattering integral may be
expressed as an evident generalization of the master equation (4.5.24):

w

ot

:/d3p' Cpopw(r,p’,t) —Tppw(r,p,t)], (6.1.11)

scattering

where the physical sense of I',_,p, is the rate (i.e. the probability per unit time) for the particle to be scattered from the state with
the momentum p into the state with the momentum p’ — see Figure 6.1.2.

scattering
center '

P

Figure 6.1.2: A single-particle scattering event.

Most elastic interactions are reciprocal, i.e. obey the following relation (closely related to the reversibility of time in Hamiltonian
systems): I'p .y = T'psp , S0 that Equation (6.1.11) may be rewritten as’

ow

ot

- / &pTy oy [w(r, Py t) —w(r, p, 1))- (6.1.12)

scattering

With such scattering integral, Equation (6.1.10) stays linear in w but becomes an integro-differential equation, typically harder to
solve analytically than differential equations.

The equation becomes even more complex if the scattering is due to the mutual interaction of the particle members of the system —
see Figure 6.1.3.

Figure 6.1.3: A particle-particle scattering event.

In this case, the probability of a scattering event scales as a product of two single-particle probabilities, and the simplest reasonable
form of the scattering integral is®

_P;Hp’,pﬂp, w(r,p,t)w(r,p,t)

ow
ot

I ' —p,p'—p ’LU(I‘, p/,t)’LU(I', p;’t)
d3p,/d3p- P —pP,P s . (6113)
scattering /

The integration dimensionality in Equation (6.1.13) takes into account the fact that due to the conservation of the total momentum
at scattering,

P+p =P +p, (6.1.14)

one of the momenta is not an independent argument, so that the integration in Equation (6.1.13) may be restricted to a 6D p-space
rather than the 9D one. For the reciprocal interaction, Equation (6.1.13) may also be a bit simplified, but it still keeps Equation (
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6.1.10) a nonlinear integro-differential transport equation, excluding such powerful solution methods as the Fourier expansion —
which hinges on the linear superposition principle.

This is why most useful results based on the Boltzmann transport equation depend on its further simplifications, most notably the
relaxation-time approximation — RTA for short.? This approximation is based on the fact that in the absence of spatial gradients
(V =0), and external forces (& = 0), in at the thermal equilibrium, Equation (6.1.10) yields

ow Ow
ot B ot scattering7 (6115)

so that the equilibrium probability distribution wy(r, p,t) has to turn any scattering integral to zero. Hence at a small deviation
from the equilibrium,

w(r,p,t) = w(r,p,t) —wo(r,p,t) =0, (6.1.16)
the scattering integral should be proportional to the deviation w, and its simplest reasonable model is

Relaxation-time approximation (RTA):

o == (6.1.17)
ot T

scattering

where 7 is a phenomenological constant (which, according to Equation (6.1.15), has to be positive for the system's stability) called
the relaxation time. Its physical meaning will be more clear in the next section.

The relaxation-time approximation is quite reasonable if the angular distribution of the scattering rate is dominated by small angles
between vectors p and p’ — as it is, for example, for the Rutherford scattering by a Coulomb center.'® Indeed, in this case the two
values of the function w, participating in Equation (6.1.12), are close to each other for most scattering events so that the loss of the
second momentum argument (p’) is not too essential. However, using the Boltzmann-RTA equation that results from combining
Egs. (6.1.10)and (6.1.17),

Boltzmann-RTA equation:

Ow w
E—&—v-er—&—.?-pr——?, (6118)

we should always remember that this is just a phenomenological model, sometimes giving completely wrong results. For example,
it prescribes the same time scale (7) to the relaxation of the net momentum of the system, and to its energy relaxation, while in
many real systems the latter process (that results from inelastic collisions) may be substantially longer. Naturally, in the following
sections, I will describe only those applications of the Boltzmann-RTA equation that give a reasonable description of physical
reality.

This page titled 6.1: The Liouville Theorem and the Boltzmann Rquation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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6.2: The Ohm law and the Drude formula

Despite its shortcomings, Equation (6.1.18) is adequate for quite a few applications. Perhaps the most important of them is deriving
the Ohm law for dc current in a “nearly-ideal” gas of charged particles, whose only important deviation from ideality is the rare
scattering effects described by Equation (6.1.17). As a result, in equilibrium it is described by the stationary probability wq of an
ideal gas (see Sec. 3.1):

_ g
wo(r,p,t) = 2nh)? (N(g)), (6.2.1)

where g is the internal degeneracy factor (say, g =2 for electrons due to their spin), and (N (¢)) is the average occupancy of a
quantum state with momentum p, that obeys either the Fermi-Dirac or the Bose Einstein distribution:

1
exp{(e—p)/TH£1

(The following calculations will be valid, up to a point, for both statistics and hence, in the limit /7T —— oo, for a classical gas as
well.)

(N(e) =

=e(p). (6.2.2)

Now let a uniform dc electric field & be applied to the gas of particles with electric charge g, exerting force # = g& on each of
them. Then the stationary solution to Equation (6.1.18), with 8/9t = 0, should also be stationary and spatially-uniform (V,, = 0),
so that this equation is reduced to

g€ -Vow=——. (6.2.3)

‘]lgx

Let us require the electric field to be relatively low, so that the perturbation w it produces is relatively small, as required by our
basic assumption (6.1.16).'* Then on the left-hand side of Equation (6.2.3), we can neglect that perturbation, by replacing w with
wy, because that side already has a small factor (&). As a result, this equation yields

6100
Oe’
where the second step implies isotropy of the parameters p and 7', i.e. their independence of the direction of the particle's

momentum p. But the gradient V¢ is nothing else than the particle's velocity v — for a quantum particle, its group velocity.
(This fact is easy to verify for the isotropic and parabolic dispersion law, pertinent to classical particles moving in free space,

w=—798 - Vywy = —71¢& - (V)e) (6.2.4)

p°  pi+pi+p

= = 6.2.5
e(p) ==~ (6.2.5)
Indeed, in this case, the j* Cartesian components of the vector Ve is
Oe Dj
Vye)j=—=—=vw; 6.2.6
(Vpe); D, m Vs> ( )
so that V,e = v.) Hence, Equation (6.2.4) may be rewritten as
6100
0 =—79E - V——. 6.2.7
o= —rgf- v (6:2.7)

Let us use this result to calculate the electric current density j. The contribution of each particle to the current density is gqv so that
the total density is

j :/qvwd3p Eq/v(wg +w)d®p. (6.2.8)
Since in the equilibrium state (with w = wy), the current has to be zero, the integral of the first term in the parentheses has to
vanish. For the integral of the second term, plugging in Equation (6.2.7), and then using Equation (6.2.1), we get
Sommerfeld theory's result:

j:q27'/v(¢£’-v) (%) d*p = (gi;T)g /V(é’-v) [@] d2p. dp|, (6.2.9)
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where d?p, is the elementary area of the constant energy surface in the momentum space, while dp is the momentum
differential's component normal to that surface. The real power of this result'® is that it is valid even for particles with an arbitrary
dispersion law e(p) (which may be rather complicated, for example, for particles moving in space-periodic potentials'#), and

gives, in particular, a fair description of conductivity's anisotropy in crystals.

For free particles whose dispersion law is isotropic and parabolic, as in Equation (6.2.5), the constant energy surface is a sphere of
radius p, so that d?p, = p?dQ = p?sinfdfdy , while dp| = dp. In the spherical coordinates, with the polar axis directed along
the electric field vector &, we get (& v) = Svcos6 . Now separating the vector v outside the parentheses into the component
vcos 6 directed along the vector &, and two perpendicular components, vsinfcos ¢ and vsinfsin g, we see that the integrals of
the last two components over the angle ¢ give zero. Hence, as we could expect, in the isotropic case the net current is directed
along the electric field and obeys the linear Ohm law,

Ohm law:

j=0&, (6.2.10)

27
_ 92T 2 gp02 | OV(E))
(2nh)? / dgo/ sin 8df cos? 0/ p°dpv [ 5% . (6.2.11)

(Note that o is proportional to g? and hence does not depend on the particle charge sign.'®)

Since sin 6d6 is just —d(cos ), the integral over 6 equals (2/3). The integral over dy is of course just 27, while that over p may be
readily transformed to one over the particle's energy &(p)=p®/2m :p® =2me, v’ =2¢/m,p=(2me)*/?, so that
dp = (m/2¢)'/2de, and p?dpv? = (2me)(m/2¢) /2de(2e/m) = (8me3)1/2de . As a result, the conductivity equals

o (;qu:)3 %/W(Smgs)l/z [_%] de. (6.2.12)
™ 0

Now we may work out the integral in Equation (6.2.12) by parts, first rewriting [—0(N (€))/d¢e]de as —d[{N(g))]. Due to the fast
(exponential) decay of the factor (N (g)) at € — oo, its product by the factor (8me®)'/2 vanishes at both integration limits, and we

get
2 00 2 [
_quﬁ 3\1/2] _ 99T 4w 1/2/ 3 172
0= / (N())d [ (8me*)""] = g em)' [ (N(e) e e
2 3/2 00
E% }m <N(s)>51/2da. (6.2.13)
Drude formula:
@
o=-—mn, (6.2.14)
m

which should be well familiar to the reader from an undergraduate physics course.

As a reminder, here is its simple classical derivation.'® Let 27 be the average time interval between two sequential scattering events
that cause a particle to lose the deterministic component of its velocity, v4f:, provided by the electric field & on the top of
particle's random thermal motion — which does not contribute to the net current. Using the 2" Newton law to describe particle's
acceleration by the field, dvgyif:/dt = g&/m, we get (Varifs) = 7q€/m. Multiplying this result by the particle's charge ¢ and
density n = N /V, we get the Ohm law j = 0&, with o given by Equation (6.2.14).

Sommerfeld's derivation of the Drude formula poses an important conceptual question. The structure of Equation (6.2.12) implies
that the only quantum states contributing to the electric conductivity are those whose derivative [—9(N (¢))/0¢] is significant. For
the Fermi particles such as electrons, in the limit 7' << ep, these are the states at the very surface of the Fermi sphere. On the
other hand, Equation (6.2.14) and the whole Drude reasoning, involves the density n of all electrons. So, what exactly electrons
are responsible for the conductivity: all of them, or only those at the Fermi surface? For the resolution of this paradox, let us return
to Equation (6.2.4) and analyze the physical meaning of that result. Let us compare it with the following model distribution:

Winodel = wo (T, P — P, 1), (6.2.15)

https://phys.libretexts.org/@go/page/34731


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34731?pdf

LibreTextsw

where p is some constant, small vector, which describes a small shift of the unperturbed distribution wqy as a whole, in the
momentum space. Performing the Taylor expansion of Equation (6.2.15) in this small parameter, and keeping only two leading
terms, we get

Winodel = Wo (T, P, t) + Wimodel;  With Wimege = —P - Vywo(r, P, t). (6.2.16)
Comparing the last expression with the first form of Equation (6.2.4), we see that they coincide if
pP=q&T=ZT. (6.2.17)

This means that Equation (6.2.4) describes a small shift of the equilibrium distribution of all particles (in the momentum space) by
q&T along the electric field's direction, justifying the cartoon shown in Figure 6.2.1.

P A (a) Poa (b)

o
S

Figure 6.2.1: Filling of momentum states by a degenerate electron gas: (a) in the absence and (b) in the presence of an external
electric field &. Arrows show representative scattering events.
At & =0, the system is in equilibrium, so that the quantum states inside the Fermi sphere (p < pr), are occupied, while those
outside of it are empty — see Figure 6.2.1a. Electron scattering events may happen only between states within a very thin layer
(|p?/2m—ep| ~ T) at the Fermi surface, because only in this layer the states are partially occupied, so that both components of the
product w(r, p,t)[1-w(r, p’,¢)], mentioned in Sec. 1, do not vanish. These scattering events, on average, do not change the
equilibrium probability distribution, because they are uniformly spread over the Fermi surface.

Now let the electric field be turned on instantly. Immediately it starts accelerating all electrons in its direction, i.e. the whole Fermi
sphere starts moving in the momentum space, along the field's direction in the real space. For elastic scattering events (with
|p’| = |p|), this creates an addition of occupied states at the leading edge of the accelerating sphere and an addition of free states
on its trailing edge (Figure 6.2.18). As a result, now there are more scattering events bringing electrons from the leading edge to
the trailing edge of the sphere than in the opposite direction. This creates the average backflow of the state occupancy in the
momentum space. These two trends eventually cancel each other, and the Fermi sphere approaches a stationary (though not a
thermal-equilibrium!) state, with the shift (6.2.17) relatively to its thermal-equilibrium position.

Now Figure 6.2.1b may be used to answer the question of which of the two different interpretations of the Drude formula is
correct, and the answer is: either. On one hand, we can look at the electric current as a result of the shift (6.2.17) of all electrons in
the momentum space. On the other hand, each filled quantum state deep inside the sphere gives exactly the same contribution to the
net current density as it did without the field. All these internal contributions to the net current cancel each other so that the applied
field changes the situation only at the Fermi surface. Thus it is equally legitimate to say that only the surface states are responsible
for the non-zero net current. '

Let me also mention another paradox related to the Drude formula, which is often misunderstood (not only by students :-). As was
emphasized above, 7 is finite even at elastic scattering — that by itself does not change the total energy of the gas. The question is
how can such scattering be responsible for the Ohmic resistivity p = 1/0, and hence for the Joule heat production, with the power
density p=j-& = pj® ?*° The answer is that the Drude/Sommerfeld formulas describe just the “bottleneck” of the Joule heat
formation. In the scattering picture (Figure 6.2.1b) the states filled by elastically scattered electrons are located above the (shifted)
Fermi surface, and these electrons eventually need to relax onto it via some inelastic process, which releases their excessive energy
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in the form of heat (in solid state, described by phonons — see Sec. 2.6). The rate and other features of these inelastic phenomena do
not participate in the Drude formula directly, but for keeping the theory valid (in particular, keeping the probability distribution w
close to its equilibrium value wy), their intensity has to be sufficient to avoid gas overheating by the applied field. In some poorly
conducting materials, charge carrier overheating effects, resulting in deviations from the Ohm law, i.e. from the linear relation (
6.2.10) between j and &, may be observed already at rather practicable electric fields.

One final comment is that the Sommerfeld theory of the Ohmic conductivity works very well for the electron gas in most
conductors. The scheme shown in Figure 6.2.1 helps to understand why: for degenerate Fermi gases the energies of all particles
whose scattering contributes to transport properties, are close (¢ ~ er) and prescribing them all the same relaxation time 7 is very
reasonable. In contrast, in classical gases, with their relatively broad distribution of €, some results given by the Boltzmann-RTA
equation (6.1.18) are valid only by the order of magnitude.

This page titled 6.2: The Ohm law and the Drude formula is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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6.3: Electrochemical potential and drift-diffusion equation

Now let us generalize our calculation to the case when the particle transport takes place in the presence of a time-independent
spatial gradient of the probability distribution, V,w # 0, caused for example by that of the particle concentration n = N /V (and
hence, according to Equation (3.2.11), of the chemical potential p), while still assuming that temperature 7 is constant. For this
generalization, we should keep the second term on the left-hand side of Equation (6.1.18). If the gradient of w is sufficiently small,
we can repeat the arguments of the last section and replace w with wy in this term as well. With the applied electric field &
represented as (— V¢)),21 where ¢ is the electrostatic potential, Equation (6.2.7) becomes

wW=TV- (%qV¢—Vwo> . (6.3.1)

Since in any of the equilibrium distributions (6.2.2), (N(g)) is a function of £ and y only in the combination (e— ), it obeys the
following relation:

=— . 3.2
ou Oe (6-3.2)
6’(.00
Vuwy = fEV,u, for T' = const, (6.3.3)
so that Equation (6.3.1) becomes
~ 611)0 o 8w0 '
W=7 V- (gVep+Vpu) = T v vV, (6.3.4)

where the following sum,

Electrochemical potential:

639

is called the electrochemical potential. Now repeating the calculation of the electric current, carried out in the last section, we get
the following generalization of the Ohm law (6.2.10):

j=0o(-Vu'/q) =€, (6.3.6)

where the effective electric field £ is proportional to the gradient of the electrochemical potential, rather of the electrostatic
potential:

Effective electric field:

E=—— =& —. (6.3.7)

The physics of this extremely important and general result?® may be explained in two ways. First, let us have a look at the energy
spectrum of a degenerate Fermi-gas confined in a volume of finite size, but otherwise free. To ensure such a confinement we need a
piecewise-constant potential U(r) — a “hard-wall, flat-bottom potential well” — see Figure 6.3.1a. (For conduction electrons in a
metal, such profile is provided by the positively charged ions of the crystal lattice.) The well should be of a sufficient depth
Uy > er = p|p_ to provide the confinement of the overwhelming majority of the particles, with energies below and somewhat
above the Fermi level €. This means that there should be a substantial energy gap,

v=Uy—p>>T, (6.3.8)

between the Fermi energy of a particle inside the well, and its potential energy Uy outside the well. (The latter value of energy is
usually called the vacuum level.) The difference defined by Equation (6.3.8) is called the workfunction;?* for most metals, it is
between 4 and 5 eV, so that the relation ¥ >> T is well fulfilled for room temperatures (I ~ 0.025 eV) — and actually for all
temperatures up to the metal's evaporation point.
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Figure 6.3.1: Potential profiles of (a) a single conductor and (b, c) a system of two closely located conductors, for two different

biasing situations: (b) zero electrostatic field (the “flat-band condition™), and (c) zero voltage Ap/'.
Now let us consider two conductors, with different values of ¥, separated by a small spatial gap d — see Figs. 6.3.1b, ¢ Panel (b)
shows the case when the electric field & =— V¢ in the free-space gap between the conductors equals zero, i.e. their electrostatic
potentials ¢ are equal.?® If there is an opportunity for particles to cross the gap (e.g., by either the thermally-activated hopping over
the potential barrier, discussed in Secs. 5.6-5.7, or the quantum-mechanical tunneling through it), there will be an average flow of
particles from the conductor with the higher Fermi level to that with the lower Fermi level,?® because the chemical equilibrium
requires their equality — see Secs. 1.5 and 2.7. If the particles have an electric charge (as electrons do), the equilibrium will be
automatically achieved by them recharging the effective capacitor formed by the conductors, until the electrostatic energy
difference qA¢ reaches the value reproducing that of the workfunctions (Figure 6.3.1¢. So for the equilibrium potential
difference?” we may write

qAp = AT = —Ap. (6.3.9)
At this equilibrium, the electric field in the gap between the conductors is

A¢ Ap Vi

— == 6.3.10
= a2, (6.3.10)
in Figure 6.3.1c this field is clearly visible as the tilt of the electric potential profile. Comparing Equation (6.3.10) with the
definition (6.3.7) of the effective electric field £, we see that the equilibrium, i.e. the absence of current through the potential

barrier, is achieved exactly when £ = 0, in accordance with Equation (6.3.6).

The electric field dichotomy, & <> £, raises a natural question: which of these fields we are speaking about in the everyday and
laboratory practice? Upon some contemplation, the reader should agree that most of our electric field measurements are done
indirectly, by measuring corresponding voltages — with voltmeters. A vast majority of these instruments belong to the so-called
electrodynamic variety, which is based on the measurement of a small current flowing through the voltmeter.?® As Equation (6.3.6)
shows, such electrodynamic voltmeters measure the electrochemical potential difference Ay'/q. However, there exists a rare breed
of electrostatic voltmeters (also called “electrometers”) that measure the electrostatic potential difference A¢ between two
conductors. One way to implement such an instrument is to use an ordinary, electrodynamic voltmeter, but with the reference point
set at the flat band condition (Figure 6.3.15) between the conductors. (This condition may be detected by vanishing electric charge
on the adjacent surfaces of the conductors, and hence by the absence of its modulation in time if the distance between the surfaces
is periodically modulated.)

Now let me return to Equation (6.3.6) and make two very important remarks. First, it says that in the presence of an electric field,
the current vanishes only if Vu' =0, i.e. that the electrochemical potential y', rather than the chemical potential u, has to be
position-independent in a system in thermodynamic (thermal, chemical, and electric) equilibrium of a conducting system. This
result by no means contradicts the fundamental thermodynamic relations for p discussed in Sec. 1.5, or the statistical relations
involving p, which were discussed in Sec. 2.7 and beyond. Indeed, according to Equation (6.3.5), g/ (r) is “merely” the chemical
potential referred to the local value of the electrostatic energy gé(r), and in all previous parts of the course, this energy was
assumed to be constant through the system.

Second, note another interpretation of Equation (6.3.6), which may be achieved by modifying Equation (6.3.3) for the particular
case of the classical gas. Indeed, the local density n = N /V of the gas obeys Equation (3.2.1 — 3.2.2), which may be rewritten as
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n(r) :constxexp{%}. (6.3.11)
Taking the spatial gradient of both sides of this relation (still at constant 7"), we get
1 n n

Vn = const x Texp{T}V,uf Tw, (6.3.12)

so that Vu = (T /n)Vn, and Equation (6.3.6), with o given by Equation (6.2.14), may be recast as

7 2 1
j=0o (—“) =47, (w)—vp) = ¢— (ngé& — TVn). (6.3.13)
q m q m

Hence the current density may be viewed as consisting of two independent parts: one due to particle drift induced by the “usual”
electric field & =— V¢, and another due to their diffusion — see Equation (5.6.14) and its discussion. This is exactly the physics of
the “mysterious” term Vy in Equation (6.3.7), though its simple form (6.3.13) is valid only in the classical limit.

d(gn) .
o TVi=0, (6.3.14)

we get (after the division of all terms by g7/m) the so-called drift-diffusion equation:°

Drift-diffusion equation:

ﬂ@n

5= V(nVU)+TV?n, withU = g¢. (6.3.15)
-

Comparing it with Equation (5.6.18), we see that the drift-diffusion equation is identical to the Smoluchowski equation,®! provided
that we parallel the ratio 7/m with the mobility p,, = 1/7 of the Brownian particle. Now using the Einstein relation (5.5.17), we
see that the effective diffusion constant D of the classical gas of similar particles is

T
p="2. (6.3.16)
m

This important relation is more frequently represented in either of two other forms. First, since the rare scattering events we are

considering do not change the statistics of the gas in thermal equilibrium, we may still use the Maxwell-distribution result (3.1.9)
for the average-square velocity (v?), to recast Equation (6.3.16) as

D = —(*)T. (6.3.17)

One more popular form of the same relation uses the notion of the mean free path I, which may be defined as the average distance
passed by the particle between two sequential scattering events:

1
D= §z<v2>1/2, withl = (*)Y/?r, (6.3.18)

In the forms (6.3.17)-(6.3.18), the result for D makes more physical sense, because it may be readily derived (admittedly, with
some uncertainty of the numerical coefficient) from simple kinematic arguments — the task left for the reader's exercise. Note that
since the definition of 7 in Equation (6.1.17) is phenomenological, so is the above definition of [; this is why several definitions of
this parameter, which may differ by a numerical factor of the order of 1, are possible.

Note also that using Equation (6.3.16), Equation (6.3.13) may be rewritten as an expression for the particle flow density
Jn=nj, =J/q:

Jn =npmq& — DVn, (6.3.19)
with the first term on the right-hand side describing particles' drift, while the second one, their diffusion. I will discuss the

application of this equation to the most important case of non-degenerate (“quasi classical”) gases of electrons and holes in
semiconductors, in the next section.

To complete this section, let me emphasize again that the mathematically similar drift-diffusion equation (6.3.15) and the
Smoluchowski equation (5.6.18) describe different physical situations. Indeed, our (or rather Einstein and Smoluchowski's :-)
treatment of the Brownian motion in Chapter 5 was based on a strong hierarchy of the system, consisting of a large “Brownian
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particle” in an environment of many smaller particles — “molecules”. On the other hand, in this chapter we are considering a gas of
similar particles. Nevertheless, the equations describing the dynamics of their probability distribution, are the same — at least within
the framework of the Boltzmann transport equation with the relaxation-time approximation (6.1.17) of the scattering integral. The
origin of this similarity is the fact that Equation (6.1.12) is clearly applicable to a Brownian particle as well, with each “scattering”
event being the particle's hit by a random molecule of its environment. Since, due to the mass hierarchy, the particle momentum
change at each such event is very small, the scattering integral has to be local, i.e. depend only on w at the same momentum p as
the left-hand side of the Boltzmann equation, so that the relaxation time approximation (6.1.17) is absolutely natural — indeed,
more natural than for our current case of similar particles.

This page titled 6.3: Electrochemical potential and drift-diffusion equation is shared under a CC BY-NC-SA 4.0 license and was authored,

remixed, and/or curated by Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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6.4: Charge Carriers in Semiconductors - Statics and Kinetics

Now let me demonstrate the application of the concepts discussed in the last section to understanding the basic kinetic properties of
semiconductors and a few key semiconductor structures — which are the basis of most modern electronic and optoelectronic
devices, and hence of all our IT civilization. For that, I will need to take a detour to discuss their equilibrium properties first.

I will use an approximate but reasonable picture in which the energy of the electron subsystem in a solid may be partitioned into
the sum of effective energies € of independent electrons. Quantum mechanics says>? that in such periodic structures as crystals, the
stationary state energy e of a particle interacting with the atomic lattice follows one of periodic functions &,(q) of the
quasimomentum q, oscillating between two extreme values €,jmin and €n|maez. These allowed energy bands are separated by
bandgaps, of widths A,, = E€n|min— En—1|maz » With no allowed states inside them. Semiconductors and insulators (dielectrics) are
defined as such crystals that in equilibrium at T" = 0, all electron states in several energy bands (with the highest of them called the
valence band) are completely filled, (N (g,)) = 1, while those in the upper bands, starting from the lowest, conduction band, are
completely empty, (N(e.)) = 0.3 Since the electrons follow the Fermi-Dirac statistics (2.8.5), this means that at T'— 0, the
Fermi energy e = p(0) is located somewhere between the valence band's maximum Ey|maz (usually called simply ey), and the
conduction band's minimum &, (called e¢) — see Figure 6.4.1.

elq) T

q

Figure 6.4.1: Calculating y in an intrinsic semiconductor.

{ e.+q%/2m,, fore >e., withe, —e, = A.

6.4.1
g, +q%/2m,, fore >e., withe, —e, =A. ( )

The positive constants m¢ and my are usually called the effective masses of, respectively, electrons and holes. (In a typical
semiconductor, m¢ is a few times smaller than the free electron mass m., while my is closer to me.)

Due to the similarity between the top line of Equation (6.4.1) and the dispersion law (3.1.3) of free particles, we may re-use
Equation (3.2.11), with the appropriate particle mass m, the degeneracy factor g, and the energy origin, to calculate the full spatial
density of populated states (in semiconductor physics, called electrons in the narrow sense of the word):

N, oo gcMc /oo ~ 1/2 3=
— = N(e g)de = ~—— N(é +ec)) ~Edé, 6.4.2
7= W= [ (NE +ee)) (6.4.2)
where € =¢e—e¢ > 0. Similarly, the density p of “no-electron” excitations (called holes) in the valence band is the number of
unfilled states in the band, and hence may be calculated as

n

3/2

:&_ ) - € € EZ—gvmv oo _ e &V EV24z
p=7 = [ [M-(NE)ge)de= \/§7r2n3/] [1—(N(e, —&))] 6"z, (6.4.3)

where in this case, £ >0 is defined as (ey—¢). If the electrons and holes® are in the thermal and chemical equilibrium, the
functions (N (g)) in these two relations should follow the Fermi-Dirac distribution (2.8.5) with the same temperature 7" and the
same chemical potential ;. Moreover, in our current case of an undoped (intrinsic) semiconductor, these densities have to be equal,

n=p=n,, (6.4.4)
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because if this electroneutrality condition was violated, the volume would acquire a non-zero electric charge density p = e(p—n),
which would result, in a bulk sample, in an extremely high electric field energy. From this condition, we get a system of two
equations,

- gome”? /°° 124z _ gym /oo 124z
C2nehs Joo exp{(E4e.—p)/TY+1  2m2h3 Sy exp{(é —ev +u) /T}+1

whose solution gives both the requested charge carrier density n; and the Fermi level p.

3/2
!

(6.4.5)

For an arbitrary ratio A /T, this solution may be found only numerically, but in most practical cases, this ratio is very large. (Again,
for Si at room temperature, A ~ 1.14 eV, while T' ~ 0.025 eV.) In this case, we may use the same classical approximation as in
Equation (3.2.16), to reduce Egs. (6.4.2) and (6.4.3) to simple expressions

n =n,exp B2 , P =n,exp S B , forT << A, (6.4.6)
T T
where the temperature-dependent parameters
3/2 3/2
ge ( m.T gv [ mu,T
=T —/— dn, =< — 6.4.7
" h3 ( 2w ) ancn h3 ( 21 ) ( )

may be interpreted as the effective numbers of states (per unit volume) available for occupation in, respectively, the conduction and
valence bands, in thermal equilibrium. For usual semiconductors (with go ~ gy ~ 1, and m¢ ~ my ~ m, ), at room temperature,
these numbers are of the order of 3 x 102*m =3 =3 x 10%m 3 . (Note that all results based on Egs. (6.4.6) are only valid if both
n and p are much lower than, respectively, n¢ and ny.)

With the substitution of Egs. (6.4.6), the system of equations (6.4.4) allows a straightforward solution:

_&vtee T g 3, my _ 1/2 A
u= 2 + 5 (ln P +—In me )’ n; = (ncnv) exp oT (° (648)

Since in all practical materials the logarithms in the first of these expressions are never much larger than 1,%° it shows that the
Fermi level in intrinsic semiconductors never deviates substantially from the so called midgap value (ey +¢e¢)/2 — see the
(schematic) Figure 6.4.1. In the result for n;, the last (exponential) factor is very small, so that the equilibrium number of charge
carriers is much lower than that of the atoms — for the most important case of silicon at room temperature, n; ~ 10%m =2 . The
exponential temperature dependence of n; (and hence of the electric conductivity o o n;) of intrinsic semiconductors is the basis
of several applications, for example simple germanium resistance thermometers, efficient in the whole range from ~ 0.5 K to
~ 100 K. Another useful application of the same fact is the extraction of the bandgap of a semiconductor from the experimental
measurement of the temperature dependence of o o n; — frequently, in just two well-separated temperature points.

However, most applications require a much higher concentration of carriers. It may be increased quite dramatically by planting into
a semiconductor a relatively small number of slightly different atoms — either donors (e.g., phosphorus atoms for Si) or acceptors
(e.g., boron atoms for Si). Let us analyze the first opportunity, called n-doping, using the same simple energy band model (6.4.1).
If the donor atom is only slightly different from those in the crystal lattice, it may be easily ionized — giving an additional electron
to the conduction band, and hence becoming a positive ion. This means that the effective ground state energy ep of the additional
electrons is just slightly below the conduction band edge £¢ — see Figure 6.4.2a.%
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(a) (b)

Figure 6.4.2: The Fermi levels p in (a) n-doped and (b) p-doped semiconductors. Hatching shows the ranges of unlocalized state
energies.

np =n2. (6.4.9)

However, for a doped semiconductor, the electroneutrality condition looks differently from Equation (6.4.4), because the total
density of positive charges in a unit volume is not p, but rather (p+n,), where n, is the density of positively-ionized
(“activated”) donor atoms, so that the electroneutrality condition becomes

n=p+n;. (6.4.10)

If virtually all dopants are activated, as it is in most practical cases,?® then we may take n, =mnp, where np is the total
concentration of donor atoms, i.e. their number per unit volume, and Equation (6.4.1(0) becomes

n=p+np. (6.4.11)

Plugging in the expression p =n?/n, following from Equation (6.4.9), we get a simple quadratic equation for n, with the
following physically acceptable (positive) solution:

9 1/2
n=—2"+ | tn . (6.4.
This result shows that the doping affects n (and hence i = e¢—T In(n¢/n) and p = n? /n) only if the dopant concentration np is
comparable with, or higher than the intrinsic carrier density n; given by Equation (6.4.8). For most applications, np is made much
higher than n;; in this case Equation (6.4.12) yields

2 2
ny n; n
nrnp>>n;, p=—~r~—<<In, ,uz,upzsc—Tln—C. (6.4.13)
n np np

Because of the reasons to be discussed very soon, modern electron devices require doping densities above 10'8¢m =3, so that the
logarithm in Equation (6.4.13) is not much larger than 1. This means that the Fermi level rises from the midgap to a position only
slightly below the conduction band edge ¢ — see Figure 6.4.2a.

The opposite case of purely p-doping, with n 4 acceptor atoms per unit volume, and a small activation (negative ionization) energy
ea—ey << A,* may be considered absolutely similarly, using the electroneutrality condition in the form

n+n=p_, (6.4.14)

where n_ is the number of activated (and hence negatively charged) acceptors. For the relatively high concentration
(n; <<myg <<ny), virtually all acceptors are activated, so that n_~n,, Equation (6.4.14) may be approximated as
n+ny = p, and the analysis gives the results dual to Equation (6.4.13):

n; n ny
pRNA>>N;, nN=——<<p, pPp,=¢cy+Tln—. (6.4.15)
p na na

so that in this case, the Fermi level is just slightly above the valence band edge (Figure 6.4.2b), and the number of holes far
exceeds that of electrons — again, in the narrow sense of the word. Let me leave the analysis of the simultaneous n- and p-doping
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(which enables, in particular, so-called compensated semiconductors with the sign-variable difference n—p ~np—mn4) for the
reader's exercise.

d’¢  p(z)
P R (6.4.16)

Here « is the dielectric constant of the semiconductor matrix — excluding the dopants and charge carriers, which in this approach
are treated as explicit (“stand-alone”) charges, with the volumic density

p=e(pn_ —n). (6.4.17)

(As a sanity check, Egs. (6.4.16)-(6.4.17) show that if & =—d¢/dz =0, then p =0, bringing us back to the electroneutrality
condition (6.4.14), and hence the “flat” band-edge diagrams shown in Figs. 6.4.2band 6.4.3a.)

(a) (b) (c)

N €c \\\\‘-~——— n=0,p~0
n=0 p>ny p=—en, <0 N
p=n, p>0 p—0 p>0,—ep<0 p:gA
A =0 ¢<0 ¢—0 < p=
¢=0 ////’ W =0
, % 09090400 5}/ U’ = const P

o oo

v=vow e

x=0 x=0 X~ x=0 X=X,
Figure 6.4.3: The band-edge diagrams of the electric field penetration into a uniform p-doped semiconductor: (a) & =0, (b)

& <0, and (c) & > &, > 0. Solid red points depict positive charges; solid blue points, negative charges; and hatched blue points,
possible electrons in the inversion layer — all very schematically.

a¢
dzx

Note that the electrochemical potential p/ (which, in accordance with the discussion in Sec. 3, replaces the chemical potential in

(0) = —&. (6.4.18)

presence of the electric field),*6 has to stay constant through the system in equilibrium, keeping the electric current equal to zero —
see Equation (6.3.6). For arbitrary doping parameters, the system of equations (6.4.6) (with the replacements ey — ey—e¢, and
pw— ') and (6.4.16)-(6.4.18), plus the relation between n_ and n, (describing the acceptor activation), does not allow an
analytical solution. However, as was discussed above, in the most practical cases n4 >> n;, we may use the approximate relations
n_~ny and n~0 at virtually any values of ' within the locally shifted bandgap [ey—ed(z),ec—ed(z)], so that the
substitution of these relations, and the second of Eqgs. (6.4.6), with the mentioned replacements, into Equation (6.4.17) yields

— — o
p R eny exp{w} —eny =eny [(n—vexp{ v }) exp{—%} —1} . (6.4.19)
T ny T T

The z-independent electrochemical potential (a.k.a. Fermi level) p’ in this relation should be equal to the value of the chemical
potential u(z — o) in the semiconductor's bulk, given by the last of Egs. (6.4.15), which turns the expression in the parentheses
into 1. With these substitutions, Equation (6.4.16) becomes

d2

d_mf = —ZnT‘; [exp{—%} - 1] , forey —eg(z) <y <ec—ed(z). (6.4.20)
This nonlinear differential equation may be solved analytically, but in order to avoid a distraction by this (rather bulky) solution, let
me first consider the case when the electrostatic potential is sufficiently small — either because the external field is small, or
because we focus on the distances sufficiently far from the surface — see Figure 6.4.3 again. In this case, in the Taylor expansion of

the exponent in Equation (6.4.2(), with respect to small ¢, we may keep only two leading terms, turning it into a linear equation:

d ¢ _ (keT\'"?
¢, i.e. dm2_)\%’ where A\p = e, ,

d?¢ e?ny

dz? KkeoT'

(6.4.21)

with the well-known exponential solution, satisfying also the boundary condition ¢ — 0 at x — 00
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Z

¢:C’exp{ e }, atelp| << T. (6.4.22)

The constant Ap given by the last of Egs. (6.4.21) is called the Debye screening length. It may be rather substantial; for example,
at Tx = 300 K, even for the relatively high doping, n4 ~ 10'8c¢m ™3 typical for modern silicon (k ~ 12) integrated circuits, it is
close to 4 nm — still much larger than the crystal lattice constant @ ~ 0.3 nm, so that the above analysis is indeed quantitatively
valid. Note also that Ap does not depend on the charge's sign; hence it should be no large surprise that repeating our analysis for an
n-doped semiconductor, we may find out that Egs. (6.4.21)-(6.4.22) are valid for that case as well, with the only replacement
ng —np.

If the applied field E is weak, Equation (6.4.22) is valid in the whole sample, and the constant C' in it may be readily calculated
using the boundary condition (6.4.18), giving

T 1/2
[¢l,g =C =ApE= (Ffo ) 8. (6.4.23)
€e“Nny

This formula allows us to express the condition of validity of the linear approximation leading to Equation (6.4.22), e|¢| << T, in
terms of the applied field:

T T 1/2

|€] << Emaz, With &gy = — = ( nA) ; (6.4.24)
e\p KEg

in the above example, &, ~ 60 kV/cm. On the lab scale, such field is not low at all (it is twice higher than the threshold of

electric breakdown in the air at ambient conditions), but may be sustained by many solid-state materials that are much less prone to

the breakdown.#” This is why we should be interested in what happens if the applied field is higher than this value.

Keo }1/2
)

— 6.4.25
e*gs(er ( )

Aef (0) ~ ATF = |:
The effects taking place at the opposite polarity of the field, & > 0, are much more interesting — and more useful for applications.
Indeed, in this case, the band bending down leads to an exponential decrease of p(z) as soon as the valence band edge eV—e¢(z)
drops down by just a few T' below its unperturbed value €V'. If the applied field is large enough, E > E,,,,, (as it is in the situation
shown in Figure 6.4.39), it forms, on the left of such point x the so-called depletion layer, of a certain width w. Within this layer,
not only the electron density n, but the hole density p as well, are negligible, so that the only substantial contribution to the charge
density p is given by the fully ionized acceptors: p ~—en_ ~—en4, and Equation (6.4.2() becomes very simple:
d2
&P _ema const, forzyg—w <z <xo. (6.4.26)
d$2 K&
Let us use this equation to calculate the largest possible width w of the depletion layer, and the critical value, &, of the applied
field necessary for this. (By definition, at & =4&,, the left boundary of the layer, where ey—ed(z)=¢c¢, ie.
ep(x) =ey—eq = A, just touches the semiconductor surface: zg—w =0, i.e. g = w. (Figure 6.4.3cshows the case when & is
slightly larger than &.) For this, Equation (6.4.26) has to be solved with the following boundary conditions:
A do d¢
(0)=—, — —
e dx dx
Note that the first of these conditions is strictly valid only if T'<< A, i.e. at the assumption we have made from the very
beginning, while the last two conditions are asymptotically correct only if A\p << w — the assumption we should not forget to
check after the solution.

0)=—-6&, dw)=0, =Z(w)=0. (6.4.27)

After all the undergraduate experience with projective motion problems, the reader certainly knows by heart that the solution of
Equation (6.4.26) is a quadratic parabola, so that let me immediately write its final form satisfying the boundary conditions (
6.4.27):

_eny (w—z)?

p(z) = ——F——, withw= (

1/2
M) Latd — 2B (6.4.28)
KEQ 2

elny
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Comparing the result for w with Equation (6.4.21), we see that if our basic condition T' << A is fulfilled, then AD << w,
confirming the qualitative validity of the whole solution (6.4.28). For the same particular parameters as in the example before (
na~108em3,k~10), and A~ 1 eV, Egs. (6.4.28) give w ~40 nm and & ~ 600 kV/cm — still a practicable field. (As
Figure 6.4.3cshows, to create it, we need a gate voltage only slightly larger than A/e, i.e. close to 1 V for typical semiconductors.)

Figure 6.4.3calso shows that if the applied field exceeds this critical value, near the surface of the semiconductor the conduction
band edge drops below the Fermi level. This is the so-called inversion layer, in which electrons with energies below p’ form a
highly conductive degenerate Fermi gas. However, typical rates of electron tunneling from the bulk through the depletion layer are
very low, so that after the inversion layer has been created (say, by the gate voltage application), it may be only populated from
another source — hence the hatched blue points in Figure 6.4.3c This is exactly the fact used in the workhorse device of
semiconductor integrated circuits — the field-effect transistor (FET) — see Figure 6.4.4.

(a) gate (b)

gate

insulator W

source |-, drain

Figure 6.4.4: Two main species of the n-FET: (a) the bulk FET, and (b) the FinFET. While on panel (a), the current flow from the

source to the drain is parallel to the plane of the drawing, on panel (b) it is normal to the plane, with the n-doped source and drain

contacting the thin “fin” from two sides off this plane.
In the “bulk” variety of this structure (Figure 6.4.4a), a gate electrode overlaps a gap between two similar highly-n-doped regions
near the surface, called source and drain, formed by n-doping inside a p doped semiconductor. It is more or less obvious (and will
be shown in a moment) that in the absence of gate voltage, the electrons cannot pass through the p-doped region, so that virtually
no current flows between the source and the drain, even if a modest voltage is applied between these electrodes. However, if the
gate voltage is positive and large enough to induce the electric field & > &, at the surface of the p-doped semiconductor, it creates
the inversion layer as shown in Figure 6.4.3¢ and the electron current between the source and drain electrodes may readily flow
through this surface channel. (Very unfortunately, in this course I would not have time/space for a detailed analysis of transport
properties of this keystone electron device, and have to refer the reader to special literature.*%)

Figure 6.4.4a makes it obvious that another major (and virtually unavoidable) structure of semiconductor integrated circuits is the
famous p —n junction — an interface between p- and n-doped regions. Let us analyze its simple model, in which the interface is in
the plane z = 0, and the doping profiles np(z) and n 4 (z) are step-like, making an abrupt jump at the interface:

_ J ng=const atz <O, _Jo atz <0,
na(z) = { 0, atz >0, np(x) = { np =const atz > 0. (6.4.29)

(This model is very reasonable for modern integrated circuits, where the doping in performed by implantation, using high-energy
ion beams.)

To start with, let us assume that no voltage is applied between the p- and n-regions, so that the system may be in thermodynamic
equilibrium. In the equilibrium, the Fermi level y’ should be flat through the structure, and at £ ——oo and £ — +00, where
¢ — 0, the level structure has to approach the positions shown, respectively, on panels (a) and (b) of Figure 6.4.2. In addition, the
distribution of the electric potential ¢(zx), shifting the level structure vertically by —e¢(z), has to be continuous to avoid
unphysical infinite electric fields. With that, we inevitably arrive at the band-edge diagram that is (schematically) shown in Figure
6.4.5.
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&5\’_ ed(x)
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Figure 6.4.5: The band-edge diagram of a p —n junction in thermodynamic equilibrium (7" = const, &' = const). The notation is

the same as in Figs. 6.4.2 and 6.4.3.
The diagram shows that the contact of differently doped semiconductors gives rise to a built-in electric potential difference A,
equal to the difference of their values of u in the absence of the contact — see Egs. (6.4.13) and (6.4.15):

eAd = ed(+00) — ed(—00) = iy — pip = A — T'ln < (6.4.30)
npna

which is usually just slightly smaller than the bandgap.>® (Qualitatively, this is the same contact potential difference that was
discussed, for the case of metals, in Sec. 3 — see Figure 6.3.1.) The arising internal electrostatic field & =—d¢/dx induces, in both
semiconductors, depletion layers similar to that induced by an external field (Figure 6.4.3¢). Their widths w, and w,, may also be
calculated similarly, by solving the following boundary problem of electrostatics, mostly similar to that given by Egs. (6.4.26)-(

6.4.27):
d? —
¢ _ e [ for —w, <z <0, (6.4.31)
dz? ke (—np), for0 <z < -+wy,
do d¢ d¢ do
¢ (wn) = ¢ (—wp) + A¢, —=(wn) = —=(-wp) =0, ¢(-0) =¢(+0), —=(-0)=——(+0), (6.4.32)
dz dz dx dz
also exact only in the limit 7 << A, n; << mnp,ny . Its (easy) solution gives the result similar to Equation (6.4.28):
2 _
¢:const—|—{ eng(wp+x) /2&602, for —¢, <z <0, (6.4.33)
A¢p—enp(w, —x)*/2kgg, for0 <z < 4wy,
with expressions for w, and w, giving the following formula for the full depletion layer width:
2kegAd 1/2 . NnANp . 1 1 1
w=wp+w, = ——— ,  withng=—"—"— 1. =—+—. (6.4.34)
eNef na-+np Nef nA np

This expression is similar to that given by Equation (6.4.28), so that for typical highly doped semiconductors (n¢f ~ 108em=3) it
gives for w a similar estimate of a few tens nm.>! Returning to Figure 6.4.4a, we see that this scale imposes an essential limit on
the reduction of bulk FETs (whose scaling down is at the heart of the well-known Moore's law),>2 explaining why such high doping
is necessary. In the early 2010s, the problems with implementing even higher doping, plus issues with dissipated power
management, have motivated the transition of advanced silicon integrated circuit technology from the bulk FETs to the FinFET
(also called “double-gate”, or “tri-gate”, or “wrap-around-gate”) variety of these devices, schematically shown in Figure 6.4.45,
despite their essentially 3D structure and hence a more complex fabrication technology. In the FinFETs, the role of p —n junctions
is reduced, but these structures remain an important feature of semiconductor integrated circuits.

Now let us have a look at the p —n junction in equilibrium from the point of view of Equation (6.3.19). In the simple model we

are considering now (in particular, at 7' << A), this equation is applicable separately to the electron and hole subsystems, because

in this model the gases of these charge carriers are classical in all parts of the system, and the generation-recombination processes®
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coupling these subsystems have relatively small rates — see below. Hence, for the electron subsystem, we may rewrite Equation (
6.3.19) as
on

where ¢ =—e. Let us discuss how each term of the right-hand of this equality depends on the system's parameters. Because of the
n-doping at > 0, there are many more electrons in this part of the system. According to the Boltzmann distribution (6.4.6), some
number of them,

ns ocexp{—eAqu}, (6.4.36)

(a) (b)

Figure 6.4.6: Electrons in the conduction band of a p —n junction at: (a) ' = 0, and (b) ¥ > 0. For clarity, other charges (of the
holes and all ionized dopant atoms) are not shown.

eAp — eAp+ Ay =eAp+qV =e(Ad— V). (6.4.37)
This change results in an exponential change of the number of electrons able to diffuse into the p-side of the junction — cf. Equation
(6.4.36):
v
n- (%) zn>(0)exp{%}, (6.4.38)

and hence in a proportional change of the diffusion flow j, of electrons from the n-side to the p-side of the system, i.e. of the
oppositely directed density of the electron current j, =—ej, — see Figure 6.4.6b.

On the other hand, the drift counter-flow of electrons is not altered too much by the applied voltage: though it does change the
electrostatic field & = V¢ inside the depletion layer, and also the depletion layer width,>” these changes are incremental, not
exponential. As the result, the net density of the current carried by electrons may be approximately expressed as

. . . . eV
Je(lj/) = Jdif fusion — Jdrift ~ Je (0) exp{ T } — const. (6439)

As was discussed above, at ¥ = 0, the net current has to vanish, so that the constant in Equation (6.4.39) has to equal j.(0), and
we may rewrite this equality as

Jo(#) = 5. 0) (exp{%} - 1) . (6.4.40)

JN) =4e(¥)+n(¥) = 5(0) (exp{%} — 1) , with j(0) = 4 (0) + 7 (0), (6.4.41)

describing the main p —n junction's property as an electric diode — a two-terminal device passing the current more “readily” in one
direction (from the p- to the n-terminal) than in the opposite one.’® Besides numerous practical applications in electrical and
electronic engineering, such diodes have very interesting statistical properties, in particular performing very non-trivial
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transformations of the spectra of deterministic and random signals. Very unfortunately, I would not have time for their discussion
and have to refer the interested reader to the special literature.%

Still, before proceeding to our next (and last!) topic, let me give for the reader reference, without proof, the expression for the
scaling factor j(0) in Equation (6.4.41), which follows from a simple, but broadly used model of the recombination process:

D, Dy, )
—_— + .
leng  Iynp

J(0) = en? ( (6.4.42)
Here [, and [}, are the characteristic lengths of diffusion of electrons and holes before their recombination, which may be expressed
by Equation (5.6.8), I, = (2D.7,)'/? and I;, = (2D} 73,)"/2, with 7, and 7, being the characteristic times of recombination of the
so-called minority carriers — of electrons in the p-doped part, and of holes in the n-doped part of the structure. Since the
recombination is an inelastic process, its times are typically rather long — of the order of 1077 s, i.e. much longer than the typical
times of elastic scattering of the same carriers, that define their diffusion coefficients — see Equation (6.3.16 —6.3.18).

This page titled 6.4: Charge Carriers in Semiconductors - Statics and Kinetics is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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6.5: Thermoelectric effects

Now let us return to our analysis of kinetic effects using the Boltzmann-RTA equation, and extend it even further, to the effects of a non-zero
(albeit small) temperature gradient. Again, since for any of the statistics (6.2.2), the average occupancy (N(g)) is a function of just one
combination of all its arguments, £ = (e— )/ T, its partial derivatives obey not only Equation (6.3.2), but also the following relation:

ON(E)  e—pON(E) e—pn dN(E))

= = . 6.5.1
oT T? 0¢ T Ou ( )
As aresult, Equation (6.3.3) is generalized as
Vg — — 20 c Fyr (6.5.2)
T e T ’ o
giving the following generalization of Equation (6.3.4):
B Owg
W=1—2v-(Vu —I——VT (6.5.3)
Oe
Now, calculating current density as in Sec. 3, we get the result that is traditionally represented as
V !
j=o (— q“ ) +oS(—VT), (6.5.4)

where the constant S, called the Seebeck coefficient®® (or the “thermoelectric power”, or just “thermopower”) is given by the following
relation:

Seebeck coefficient:

o8 = 2qu 4”/ (8me?)/2E “) [—au:;ée))]ds. (6.5.5)

Working out this integral for the most important case of a degenerate Fermi gas, with ' << er, we have to be careful because the center of
the sharp peak of the last factor under the integral coincides with the zero point of the previous factor, (- p)/T'. This uncertainty may be
resolved using the Sommerfeld expansion formula (3.3.8). Indeed, for a smooth function f(g) obeying Equation (3.3.9), so that £(0) =0,
we may use Equation (3.3.10) to rewrite Equation (3.3.8) as

3] 2m2 g2
10|22 4 s+ T L

(6.5.6)

e=p

In particular, for working out the integral (6.5.5), we may take f(¢) = (8me®)"/?(e—p)/T . (For this function, the condition f(0) =0 is
evidently satisfied.) Then f(u) =0, d* f/de?|._, = 3(8mu)/?)T ~ 3(8mep)/?/T, and Equation (6.5.5) yields
gqr  4m w2T2 3(8mep)'/?

S= il . 6.5.7
T 2R 3 6 T (6.5.7)

2
T
S= 2 Y T <<ep, (6.5.8)
29er g
where ¢y = Cy /N is the heat capacity of the gas per unit particle, in this case given by Equation (3.3.19).

In order to understand the physical meaning of the Seebeck coefficient, it is sufficient to consider a conductor carrying no current. For this
case, Equation (6.5.4) yields

Seebeck effect:

| V(i /q+8T) =0.] (6.5.9)

So, at these conditions, a temperature gradient creates a proportional gradient of the electrochemical potential u', and hence the effective
electric field £ defined by Equation (6.3.7). This is the Seebeck effect. Figure 6.5.1 shows the standard way of its measurement, using an
ordinary (electrodynamic) voltmeter that measures the difference of y'/e at its terminals, and a pair of junctions (in this context, called the
thermocouple) of two materials with different coefficients S.
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Figure 6.5.1: The Seebeck effect in a thermocouple.

Integrating Equation (6.5.9) around the loop from point A to point B, and neglecting the temperature drop across the voltmeter, we get the
following simple expression for the thermally-induced difference of the electrochemical potential, usually called either the thermoelectric
power or the “thermo e.m.f.”:

"

.UB B

A/
14 VT .-dr—38; (/ VT -dr+ VT-dr)
A

_ / Vi - dr_f/ SVT-dr=-8,
AI A"
=-8 (T” TY=S(T'-T") = (51 - S)(T' -T"). (6.5.10)

(Note that according to Equation (6.5.10), any attempt to measure such voltage across any two points of a uniform conductor would give
results depending on the voltmeter wire materials, due to an unintentional gradient of temperature in them.)

Using thermocouples is a very popular, inexpensive method of temperature measurement — especially in the few-hundred-°C range where
gas- and fluid-based thermometers are not too practicable, if a 1°C-scale accuracy is sufficient. The temperature responsivity (S;—Ss) of a
typical popular thermocouple, chromel-constantan,®® is about 70V /°C. To understand why the typical values of S are so small, let us
discuss the Seebeck effect's physics. Superficially, it is very simple: particles, heated by an external source, diffuse from it toward the colder
parts of the conductor, carrying electrical current with them if they are electrically charged. However, this naive argument neglects the fact
that at j = 0, there is no total flow of particles. For a more accurate interpretation, note that inside the integral (6.5.5), the Seebeck effect is
described by the factor (e—p)/T, which changes its sign at the Fermi surface, i.e. at the same energy where the term [—9(N (g))/0¢],
describing the availability of quantum states for transport (due to their intermediate occupancy 0 < (N (e)) < 1), reaches its peak. The only
reason why that integral does not vanish completely, and hence S # 0, is the growth of the first factor under the integral (which describes
the density of available quantum states on the energy scale) with ¢, so the hotter particles (with € > 1) are more numerous and hence carry
more heat than the colder ones.

The Seebeck effect is not the only result of a temperature gradient; the same diffusion of particles also causes the less subtle effect of heat
flow from the region of higher T to that with lower T, i.e. the effect of thermal conductivity, well known from our everyday practice. The
density of this flow (i.e. that of thermal energy) may be calculated similarly to that of the electric current — see Equation (6.2.8), with the
natural replacement of the electric charge g of each particle with its thermal energy (e— u):

Jn :/(E—u)vwdsp- (6.5.11)

(Indeed, we may look at this expression is as at the difference between the total energy flow density, j, = [ evwd?®p, and the product of the
average energy needed to add a particle to the system (i) by the particle flow density, j,, = f vwd®p =j / q.)% Again, at equilibrium
(w =wy) the heat flow vanishes, so that w in Equation (6.5.11) may be replaced with its perturbation @, which already has been calculated
— see Equation (6.5.3). The substitution of that expression into Equation (6.5.11), and its transformation exactly similar to the one
performed above for the electric current j, yields

!

jp=oll (7VT#> +r(=VT), (6.5.12)

with the coefficients II and « given, in our approximation, by the following formulas:

Peltier coefficient:

- (29;1;-)3 4?71-‘/000(877153)1/2(57“) [,%] de, (6.5.13)
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Thermal conductivity:

K:ﬁ%/j@ms)m(s;ﬂ) [,8%25))]615. (6.5.14)

Besides the missing factor 7" in the denominator, the integral in Equation (6.5.13) is the same as the one in Equation (6.5.5), so that the
constant IT (called the Peltier coefficient %), is simply and fundamentally related to the Seebeck coefficient:

IIvs. S:

(6.5.15)

On the other hand, the integral in Equation (6.5.14) is different, but may be readily calculated, for the most important case of a degenerate
Fermi gas, using the Sommerfeld expansion in the form (6.5.6), with f(¢)= (8me®)"/?(e-p)?/T, for which f(u)=0 and
d2f/de?|._, = 2(8mu?)V/2/T =~ 2(8meF3)/2/T, so that

__gr dnn’ ,28med)'? ¥ nrT (6.5.16)
- (27h)3 3 6 T T3 m <
Comparing the result with Equation (6.2.14), we get the so-called Wiedemann-Franz law %
Wiedemann-Franz law:
k T

This relation between the electric conductivity o and the thermal conductivity k is more general than our formal derivation might imply.
Indeed, it may be shown that the Wiedemann-Franz law is also valid for an arbitrary anisotropy (i.e. an arbitrary Fermi surface shape) and,
moreover, well beyond the relaxation-time approximation. (For example, it is also valid for the scattering integral (6.1.12) with an arbitrary
angular dependence of rate I, provided that the scattering is elastic.) Experiments show that the law is well obeyed by most metals, but only
at relatively low temperatures, when the thermal conductance due to electrons is well above the one due to lattice vibrations, i.e. phonons —
see Sec. 2.6. Moreover, for a non-degenerate gas, Equation (6.5.14) should be treated with the utmost care, in the context of the definition (
6.5.12) of this coefficient . (Let me leave this issue for the reader's analysis.)

Now let us discuss the effects described by Equation (6.5.12), starting from the less obvious, first term on its right-hand side. It describes the
so-called Peltier effect, which may be measured in the loop geometry similar to that shown in Figure 6.5.1, but now driven by an external

voltage source — see Figure 6.5.2.
é (Hl - Hz)]

I,/

I,/

[1,/
§(H| _Hz)l

Figure 6.5.2: The Peltier effect at 7' = const.

The voltage drives a certain dc current I = jA (where A is the area of conductor's cross-section), necessarily the same in the whole loop.
However, according to Equation (6.5.12), if materials 1 and 2 are different, the power & = j, A of the associated heat flow is different in
two parts of the loop.58 Indeed, if the whole system is kept at the same temperature (VT =0), the integration of that relation over the cross-
sections of each part yields

A4

P2 =111 241 9012 (- > =101 041 051,2 =1 o0y o =113 51, (6.5.18)
1,2
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where, at the second step, Equation (6.3.6) for the electric current density has been used. This equality means that to sustain a constant
temperature, the following power difference,

Peltier effect:

|A2 = (1, -I,)1, | (6.5.19)

has to be extracted from one junction of the two materials (in Figure 6.5.2, shown on the top), and inserted into the counterpart junction.

If a constant temperature is not maintained, the former junction is heated (in excess of the bulk, Joule heating), while the latter one is cooled,
thus implementing a thermoelectric heat pump/refrigerator. Such Peltier refrigerators, which require neither moving parts nor fluids, are
very convenient for modest (by a few tens °C) cooling of relatively small components of various systems — from sensitive radiation
detectors on mobile platforms (including spacecraft), all the way to cold drinks in vending machines. It is straightforward to use the above
formulas to show that the practical efficiency of active materials used in such thermoelectric refrigerators may be characterized by the
following dimensionless figure-of-merit,

oS?

7T =227, (6.5.20)
K

Finally, let us discuss the second term of Equation (6.5.12), in the absence of V' (and hence of the electric current) giving

Fourier law:

6521

This equality should be familiar to the reader because it describes the very common effect of thermal conductivity. Indeed, this linear
relation is much more general than the particular expression (6.5.14) for k: for sufficiently small temperature gradients it is valid for
virtually any medium — for example, for insulators. (The left column in Table 6.5.1 gives typical values of £ for most common and/or
representative materials.) Due to its universality and importance, Equation (6.5.21) has deserved its own name — the Fourier law.”®

Acting absolutely similarly to the derivation of other continuity equations, such as Egs. (5.6.12 —5.6.13) for the classical probability, and
Equation (6.3.14) for the electric charge,”! let us consider the conservation of the aggregate variable corresponding to j,, — the internal
energy F within a time-independent volume V. According to the basic Equation (1.3.5), in the absence of media's expansion (dV =0 and
hence d# = 0), the energy change’? has only the thermal component, so its only cause may be the heat flow through its boundary surface

S:
dE
— =—¢ j,-d’r. .5.22
T e (6.5.22)
E:CVT:/ cyTd’r, (6.5.23)
|4

where cy is the volumic specific heat, i.e. the heat capacity per unit volume (see the right column in Table 6.5.1).

Table 6.5.1: Approximate values of two major thermal coefficients of some materials at 20° C.

Material k(W-m™t K1) ey(J-K1-m™3)
Air@®) 0.026 1.2 x 10
Teflon ([C,F,].) 0.25 0.6 x 10°
Water® 0.60 4.2x10°
Amorphous silicon dioxide 1.1-1.4 1.5 x 10°
Undoped silicon 150 1.6 x 10°
Aluminum®© 235 2.4 % 10°
Copper® 400 3.4 x 10°
Diamond 2,200 1.8 x 10°

@At ambient pressure.

®In fluids (gases and liquids), heat flow may be much enhanced by temperature-gradient-induced turbulent circulation — convection, which
is highly dependent on the system's geometry. The given values correspond to conditions preventing the convection.
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©In the context of the Wiedemann-Franz law (valid for metals only?!), the values of & for Al and Cu correspond to the Lorenz numbers,
respectively, 2.22 x 108W - Q- K2 and 2.39 x 10 8W -Q- K2, in a pretty impressive comparison with the universal theoretical
value of 2.45 x 10 8W - Q- K2 given by Equation (6.5.17).

Now applying to the right-hand side of Equation (6.5.22) the divergence theorem,’ and taking into account that for a time-independent
volume the full and partial derivatives over time are equivalent, we get

/ (avngv-jh) d*r=0, (6.5.24)
v ot

This equality should hold for any time-independent volume V', which is possible only if the function under the integral equals zero at any
point. Using Equation (6.5.21), we get the following partial differential equation, called the heat conduction equation (or, rather
inappropriately, the “heat equation”):

Heat conduction equation:

cV(r)%T V. [k(@)VT] =0, (6.5.25)

where the spatial arguments of the coefficients ¢y and « are spelled out to emphasize that this equation is valid even for nonuniform media.
(Note, however, that Equation (6.5.21) and hence Equation (6.5.25) are valid only if the medium is isotropic.)

In a uniform medium, the thermal conductivity x may be taken out from the external spatial differentiation, and the heat conduction
equation becomes mathematically similar to the diffusion equation (5.6.11), and also to the drift-diffusion equation (6.3.15) in the absence
of drift (VU =0):

or

= _DrVPT,  with Dy = —. (6.5.26)

8t Cy
This means, in particular, that the solutions of these equations, discussed earlier in this course (such as Egs. (5.6.7)-(5.6.8) for the evolution
of the delta-functional initial perturbation) are valid for Equation (6.5.26) as well, with the only replacement D — Dy . This is why I will
leave a few other examples of the solution of this equation for the reader's exercise.

Let me finish this chapter (and this course as a whole) by emphasizing again that due to time/space restrictions I was able to barely scratch

the surface of physical kinetics.””

This page titled 6.5: Thermoelectric effects is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Konstantin K.
Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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6.6: Exercise problems

? Exercise 6.6.1

Use the Boltzmann equation in the relaxation-time approximation to derive the Drude formula for the complex ac conductivity
o(w), and give a physical interpretation of the result's trend at high frequencies.

? Exercise 6.6.2

Apply the variable separation method’6 to Equation (6.3.15) to calculate the time evolution of the particle density distribution
in an unlimited uniform medium, in the absence of external forces, provided that at £ =0 the particles are released from their
uniform distribution in a plane layer of thickness 2a:

n= o, for —a <z < +a,
0, otherwise.

? Exercise 6.6.3

Solve the previous problem using an appropriate Green's function for the 1D version of the diffusion equation, and discuss the
relative convenience of the results.

? Exercise 6.6.4*

Calculate the electric conductance of a narrow, uniform conducting link between two bulk conductors, in the low-voltage and
low-temperature limit, neglecting the electron interaction and scattering inside the link.

? Exercise 6.6.5

Calculate the effective capacitance (per unit area) of a broad plane sheet of a degenerate 2D electron gas, separated by distance
d from a metallic ground plane.

? Exercise 6.6.6

Give a quantitative description of the dopant atom ionization, which would be consistent with the conduction and valence band
occupation statistics, using the same simple model of an n-doped semiconductor as in Sec. 4 (see Figure 6.4.2a), and taking
into account that the ground state of the dopant atom is typically doubly degenerate, due to two possible spin orientations of the
bound electron. Use the results to verify Equation (6.4.13), within the displayed limits of its validity.

? Exercise 6.6.7

Generalize the solution of the previous problem to the case when the n-doping of a semiconductor by np donor atoms per unit
volume is complemented with its simultaneous p-doping by m 4 acceptor atoms per unit volume, whose energy €4—¢ey of
activation, i.e. of accepting an additional electron and hence becoming a negative ion, is much lower than the bandgap A — see
the figure on the right.
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? Exercise 6.6.8

A nearly-ideal classical gas of N particles with mass m, was in thermal equilibrium at temperature 7', in a closed container of
volume V. At some moment, an orifice of a very small area A is open in one of the container's walls, allowing the particles to
escape into the surrounding vacuum.”’ In the limit of very low density n = N/V/, use simple kinetic arguments to calculate
the r.m.s. velocity of the escaped particles during the time period when the total number of such particles is still much smaller
than V. Formulate the limits of validity of your results in terms of V, A, and the mean free path L.

Hint: Here and below, the term “nearly-ideal” means that [ is so large that particle collisions do not affect the basic statistical
properties of the gas.

? Exercise 6.6.9

For the system analyzed in the previous problem, calculate the rate of particle flow through the orifice — the so-called effusion
rate. Discuss the limits of validity of your result.

? Exercise 6.6.10

Use simple kinetic arguments to estimate:

i. the diffusion coefficient D,
ii. the thermal conductivity , and
iii. the shear viscosity 7,

of a nearly-ideal classical gas with mean free path l. Compare the result for D with that calculated in Sec. 3 from the
Boltzmann-RTA equation.

dy j/ B'U j’

d4;  or;’

where d.Z; is the 4" Cartesian component of the tangential force between two parts of a fluid, separated by an imaginary
interface normal to some direction n; (with j 7 5’ , and hence n; 1 n; ), exerted over an elementary area dA; of this surface,
and v(r) is the velocity of the fluid at the interface.

? Exercise 6.6.11

Use simple kinetic arguments to relate the mean free path [/ in a nearly-ideal classical gas, with the full cross-section o of
mutual scattering of its particles.”? Use the result to evaluate the thermal conductivity and the viscosity coefficient estimates
made in the previous problem, for the molecular nitrogen, with the molecular mass m ~ 4.7 x 10 2% kg and the effective
(“van der Waals”) diameter d.¢ ~2 4.5 X 1071% m, at ambient conditions, and compare them with experimental results.
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? Exercise 6.6.12

Use the Boltzmann-RTA equation to calculate the thermal conductivity of a nearly-ideal classical gas, measured in conditions
when the applied thermal gradient does not create a net particle flow. Compare the result with that following from the simple
kinetic arguments (Problem 6.10), and discuss their relationship.

? Exercise 6.6.13

Use the heat conduction equation (6.5.26) to calculate the time evolution of temperature in the center of a uniform solid sphere
of radius R, initially heated to a uniformly distributed temperature T},;, and at £ =0 placed into a heat bath that keeps its
surface at temperature 7j.

? Exercise 6.6.14

Suggest a reasonable definition of the entropy production rate (per unit volume), and calculate this rate for stationary thermal
conduction, assuming that it obeys the Fourier law, in a material with negligible thermal expansion. Give a physical
interpretation of the result. Does the stationary temperature distribution in a sample correspond to the minimum of the total
entropy production in it?

? Exercise 6.6.15%0

Use the Boltzmann-RTA equation to calculate the shear viscosity of a nearly-ideal gas. Spell out the result in the classical limit,
and compare it with the estimate made in the solution of Problem 10.

1. This topic was briefly addressed in EM Chapter 4, carefully avoiding the aspects related to the thermal effects.

2. See, e.g., CM Sec. 10.1.

3. Actually, this is just one of several theorems bearing the name of Joseph Liouville (1809-1882).

4. See, e.g., MA Equation (4.2).

5. See, e.g., CM Sec. 9.3.

6. Indeed, the quantum state coherence is described by off-diagonal elements of the density matrix, while the classical probability
w represents only the diagonal elements of that matrix. However, at least for the ensembles close to thermal equilibrium, this is
a reasonable approximation — see the discussion in Sec. 2.1.

7. One may wonder whether this approximation may work for Fermi particles, such as electrons, for whom the Pauli principle
forbids scattering into the already occupied state, so that for the scattering p — p’, the term w(r, p, ) in Equation (6.1.12) has
to be multiplied by the probability [1-w(r, p’, )] that the final state is available. This is a valid argument, but one should
notice that if this modification has been done with both terms of Equation (6.1.12), it becomes

dw

ot

= /dsplrpﬁp' {w(r, p/a t)[l - 1.U(I‘, p, t)] - ’LU(I‘, p, t)[l - w(r, pla t)] }
scattering
Opening both square brackets, we see that the probability density products cancel, bringing us back to Equation (6.1.12).

8. This was the approximation used by L. Boltzmann to prove the famous H-theorem, stating that entropy of the gas described by
Equation (6.1.13) may only grow (or stay constant) in time, d.S/dt > 0. Since the model is very approximate, that result does
not seem too fundamental nowadays, despite all its historic significance.

9. Sometimes this approximation is called the “BGK model”, after P. Bhatnager, E. Gross, and M. Krook who suggested it in
1954. (The same year, a similar model was considered by P. Welander.)

10. See, e.g., CM Sec. 3.7.

11. Since the scale of the fastest change of wy in the momentum space is of the order of dwq/Op = (Owy/O¢)(de/dp) ~ (1/T)v,
where v is the scale of particle's speed, the necessary condition of the linear approximation (6.2.4) is e6T << T /v, i.e. if
e&l << T, where [ = vr has the meaning of the effective mean-free path. Since the left-hand side of the last inequality is just
the average energy given to the particle by the electric field between two scattering events, the condition may be interpreted as
the smallness of the gas' “overheating” by the applied field. However, another condition is also necessary — see the last
paragraph of this section.

https://phys.libretexts.org/@go/page/34735



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34735?pdf

LibreTexts-

12. See, e.g., QM Sec. 2.1.

13. It was obtained by Arnold Sommerfeld in 1927.

14. See, e.g., QM Secs. 2.7, 2.8, and 3.4. (In this case, p should be understood as the quasimomentum rather than the genuine
momentum.)

15. As Equation (6.2.9) shows, if the dispersion law £(p) is anisotropic, the current density direction may be different from that of
the electric field. In this case, conductivity should be described by a tensor T rather than a scalar. However, in most important
conducting materials, the anisotropy is rather small — see, e.g., EM Table 4.1.

16. This is why to determine the dominating type of charge carriers in semiconductors (electrons or holes, see Sec. 4 below), the
Hall effect, which lacks such ambivalence (see, e.g., QM 3.2), is frequently used.

17. It was derived in 1900 by Paul Drude. Note that Drude also used the same arguments to derive a very simple (and very
reasonable) approximation for the complex electric conductivity in the ac field of frequency w: o(w) = ¢(0)/(1-iwr), with
o(0) given by Equation (6.2.14); sometimes the name “Drude formula” is used for this expression rather than for Equation (
6.2.14). Let me leave its derivation, from the Boltzmann-RTA equation, for the reader's exercise.

18. See also EM Sec. 4.2.

19. So here, as it frequently happens in physics, formulas (or graphical sketches, such as Figure 6.2.1b) give a more clear and
unambiguous description of reality than words — the privilege lacked by many “scientific” disciplines, rich with unending,
shallow verbal debates. Note also that, as frequently happens in physics, the dual interpretation of ¢ is expressed by two
different but equal integrals (6.2.12) and (6.2.13), related by the integration-by-parts rule.

20. This formula is probably self-evident, but if you need you may revisit EM Sec. 4.4.

21. Since we will not encounter V,, in the balance of this chapter, from this point on, the subscript r of the operator V, is dropped
for the notation brevity.

22. Since we consider wy as a function of two independent arguments r and p, taking its gradient, i.e. the differentiation of this
function over r, does not involve its differentiation over the kinetic energy € — which is a function of p only.

23. Note that Equation (6.3.7) does not include the phenomenological parameter 7 of the relaxation-time approximation, signaling
that it is much more general than the RTA. Indeed, this equality is based entirely on the relation between the second and third
terms on the left-hand side of the general Boltzmann equation (6.1.10), rather than on any details of the scattering integral on its
right-hand side.

24. Sometimes it is also called the “electron affinity”, though this term is mostly used for atoms and molecules.

25. In semiconductor physics and engineering, the situation shown in Figure 6.3.1bis called the flat-band condition, because any
electric field applied normally to a surface of a semiconductor leads to the so-called energy band bending — see the next section.

26. As measured from a common reference value, for example from the vacuum level — rather than from the bottom of an
individual potential well as in Figure 6.3.1a

27. In physics literature, it is usually called the contact potential difference, while in electrochemistry (for which it is one of the key
notions), the term Volta potential is more common.

28. The devices for such measurement may be based on the interaction between the measured current and a permanent magnet, as
pioneered by A.-M. Ampeére in the 1820s — see, e.g., EM Chapter 5. Such devices are sometimes called galvanometers,
honoring another pioneer of electricity, Luigi Galvani.

29. If this relation is not evident, please revisit EM Sec. 4.1.

30. Sometimes this term is associated with Equation (6.3.19). One may also run into the term “convection-diffusion equation” for
Equation (6.3.15) with the replacement (6.3.16).

31. And hence, at negligible VU, identical to the diffusion equation (5.6.11).

32. See, e.g., QM Sec. 2.7 and 3.4, but the thorough knowledge of this material is not necessary for following discussions of this
section. If the reader is not familiar with the notion of quasimomentum (alternatively called the “crystal momentum”), its
following semi-quantitative interpretation may be useful: q is the result of quantum averaging of the genuine electron
momentum p over the crystal lattice period. In contrast to p, which is not conserved because of the electron's interaction with
the atomic lattice, q is an integral of motion — in the absence of other forces.

33. In insulators, the bandgap A is so large (e.g., ~ 9 eV in 5i0,)) that the conduction band remains unpopulated in all practical
situations, so that the following discussion is only relevant for semiconductors, with their moderate bandgaps — such as 1.14 eV
in the most important case of silicon at room temperature.

34. Tt is easy (and hence is left for the reader's exercise) to verify that all equilibrium properties of charge carriers remain the same
(with some effective values of m¢ and my) if €.(q) and €,(q) are arbitrary quadratic forms of the Cartesian components of
the quasimomentum. A mutual displacement of the branches e.(q) and &,(q) in the quasimomentum space is also unimportant
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for statistical and most transport properties of the semiconductors, though it is very important for their optical properties —
which I will not have time to discuss in any detail.

The collective name for them in semiconductor physics is charge carriers — or just “carriers”.

Note that in the case of simple electron spin degeneracy (gy = gc = 2), the first logarithm vanishes altogether. However, in
many semiconductors, the degeneracy is factored by the number of similar energy bands (e.g., six similar conduction bands in
silicon), and the factor In(gy / gc') may slightly affect quantitative results.

Note that in comparison with Figure 6.4.1, here the (for most purposes, redundant) information on the g-dependence of the
energies is collapsed, leaving the horizontal axis of such a band-edge diagram free for showing their possible spatial
dependences — see Figs. 6.4.3, 6.4.5, and 6.4.6 below.

Very similar relations may be met in the theory of chemical reactions (where it is called the law of mass action), and other
disciplines — including such exotic examples as the theoretical ecology.

Let me leave it for the reader's exercise to prove that this assumption is always valid unless the doping density np becomes
comparable to n¢, and as a result, the Fermi energy p moves into a ~ T'-wide vicinity of ep.

For the typical donors (P) and acceptors (B) in silicon, both ionization energies, (ec—ep) and (e 4—€v), are close to 45 meV,
i.e. are indeed much smaller than A ~=1.14 eV.

A simplified version of this analysis was discussed in EM Sec. 2.1.

See, e.g., EM Sec. 3.4.

I am sorry for using, for the SI electric constant £y, the same Greek letter as for single-particle energies, but both notations are
traditional, and the difference between these uses will be clear from the context.

It is common (though not necessary) to select the energy reference so that deep inside the semiconductor, ¢ = 0; in what
follows I will use this convention.

Here & is the field just inside the semiconductor. The free-space field necessary to create it is x times larger — see, e.g., the
same EM Sec. 3.4, in particular Equation (3.3.5).

In semiconductor physics literature, the value of 4’ is usually called the Fermi level, even in the absence of the degenerate
Fermi sea typical for metals — cf. Sec. 3.3. In this section, I will follow this common terminology.

Even some amorphous thin-film insulators, such as properly grown silicon and aluminum oxides, can withstand fields up to

~ 10 MV/cm.

As a reminder, the derivation of this formula was the task of Problem 3.14.

The classical monograph in this field is S. Sze, Physics of Semiconductor Devices, 2" ed., Wiley 1981. (The 3" edition, circa
2006, co-authored with K. Ng, is more tilted toward technical details.) I can also recommend a detailed textbook by R. Pierret,
Semiconductor Device Fundamentals, ond ed., Addison Wesley, 1996.

Frequently, Equation (6.4.30) is also rewritten in the form eAp = T'In(npng4/ n?) In the view of the second of Egs. (6.4.8),
this equality is formally correct but may be misleading because the intrinsic carrier density n; is an exponential function of
temperature and is physically irrelevant for this particular problem.

Note that such w is again much larger than Ap — the fact that justifies the first two boundary conditions (6.4.32).

Another important limit is quantum-mechanical tunneling through the gate insulator, whose thickness has to be scaled down in
parallel with lateral dimensions of a FET, including its channel length.

In the semiconductor physics lingo, the “carrier generation” event is the thermal excitation of an electron from the valence band
to the conduction band, leaving a hole behind, while the reciprocal event of filling such a hole by a conduction-band electron is
called the “carrier recombination”.

Note that if an external photon with energy hw > A generates an electron-hole pair somewhere inside the depletion layer, this
electric field immediately drives its electron component to the right, and the hole component to the left, thus generating a pulse
of electric current through the junction. This is the physical basis of the whole vast technological field of photovoltaics,
currently strongly driven by the demand for renewable electric power. Due to the progress of this technology, the cost of solar
power systems has dropped from ~$300 per watt in the mid-1950s to the current ~$1 per watt, and its global generation has
increased to almost 1015 watt-hours per year — though this is still below 2% of the whole generated electric power.

I will not try to reproduce this calculation (which may be found in any of the semiconductor physics books mentioned above),
because getting all its scaling factors right requires using some model of the recombination process, and in this course, there is
just no time for their quantitative discussion. However, see Equation (6.4.42) below.

In our model, the positive sign of V' = Ay'/q =— Ay’ /e corresponds to the additional electric field, - Vu'/qg = V' /e,
directed in the positive direction of the z-axis (in Figure 6.4.6, from the left to the right), i.e. to the positive terminal of the
voltage source connected to the p-doped semiconductor — which is the common convention.
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57. This change, schematically shown in Figure 6.4.65 may be readily calculated by making the replacement (6.4.37) in the first of
Eqgs. (6.4.34).

58. This sign invariance may look strange, due to the opposite (positive) electric charge of the holes. However, this difference in the
charge sign is compensated by the opposite direction of the hole diffusion — see Figure 6.4.5. (Note also that the actual charge
carriers in the valence band are still electrons, and the positive charge of holes is just a convenient representation of the specific
dispersion law in this energy band, with a negative effective mass — see Figure 6.4.1, the second line of Equation (6.4.1), and a
more detailed discussion of this issue in QM Sec. 2.8.)

59. Some metal-semiconductor junctions, called Schottky diodes, have similar rectifying properties (and may be better fitted for
high-power applications than silicon p —n junctions), but their properties are more complex because of the rather involved
chemistry and physics of interfaces between different materials.

60. See, e.g., the monograph by R. Stratonovich cited in Sec. 4.2.

61. Named after Thomas Johann Seebeck who experimentally discovered, in 1822, the effect described by the second term in
Equation (6.5.4) — and hence by Equation (6.5.10).

62. Again, such independence hints that Equation (6.5.8) has a broader validity than in our simple model of an isotropic gas. This is
indeed the case: this result turns out to be valid for any form of the Fermi surface, and for any dispersion law £(p). Note,
however, that all calculations of this section are valid for the simplest RTA model in that 7 is an energy-independent parameter;
for real metals, a more accurate description of experimental results may be obtained by tweaking this model to take this
dependence into account — see, e.g., Chapter 13 in the monograph by N. Ashcroft and N. D. Mermin, cited in Sec. 3.5.

63. Both these materials are alloys, i.e. solid solutions: chromel is 10% chromium in 90% nickel, while constantan is 45% nickel
and 55% copper.

64. An alternative explanation of the factor (e— ) in Equation (6.5.11) is that according to Egs. (1.4.14) and (1.5.7), for a uniform
system of N particles this factor is just (E—- G)/N = (T'S— PV)/ N . The full differential of the numerator is
TdS + SdT—- PdV—-VdP, so that in the absence of the mechanical work d# = PdV, and changes of temperature and
pressure, it is just 7'dS = d@ — see Equation (1.3.6).

65. Named after Jean Charles Athanase Peltier who experimentally discovered, in 1834, the effect expressed by the first term in
Equation (6.5.12) — and hence by Equation (6.5.19).

66. See, for example, Sec. 15.7 in R. Pathria and P. Beale, Statistical Mechanics, 37 ed., Elsevier, 2011. Note, however, that the
range of validity of the Onsager relations is still debated — see, e.g., K.-T. Chen and P. Lee, Phys. Rev. B 79, 18 (2009).

67. It was named after Gustav Wiedemann and Rudolph Franz who noticed the constancy of ratio /o for various materials, at the
same temperature, as early as 1853. The direct proportionality of the ratio to the absolute temperature was noticed by Ludwig
Lorenz in 1872. Due to his contribution, the Wiedemann-Franz law is frequently represented, in the SI temperature units, as
#/o = LTy, where the constant L = (72 /3)kp /€2, called the Lorenz number, is close to 2.45 x 10 W - Q- K2,
Theoretically, Equation (6.5.17) was derived in 1928 by A. Sommerfeld.

68. Let me emphasize that here we are discussing the heat transferred through a conductor, not the Joule heat generated in it by the
current. (The latter effect is quadratic, rather than linear, in current, and hence is much smaller at I — 0.)

69. See, e.g., D. Rowe (ed.), Thermoelectrics Handbook: Macro to Nano, CRC Press, 2005.

70. It was suggested (in 1822) by the same universal scientific genius J.-B. J. Fourier who has not only developed such a key
mathematical tool as the Fourier series but also discovered what is now called the greenhouse effect!

71. They are all similar to continuity equations for other quantities — e.g., the mass (see CM Sec. 8.3) and the quantum-mechanical
probability (see QM Secs. 1.4 and 9.6).

72. According to Equation (1.4.2), in the case of negligible thermal expansion, it does not matter whether we speak about the
internal energy F or the enthalpy H.

73. If the dependence of ¢y on temperature may be ignored only within a limited temperature interval, Egs. (6.5.23) and (6.5.25)
may be still used within that interval, for temperature deviations from some reference value.

74. T hope the reader knows it by heart by now, but if not — see, e.g., MA Equation (12.2).

75. A much more detailed coverage of this important part of physics may be found, for example, in the textbook by L. Pitaevskii
and E. Lifshitz, Physical Kinetics, Butterworth-Heinemann, 1981. A deeper discussion of the Boltzmann equation is given, e.g.,
in the monograph by S. Harris, An Introduction to the Theory of the Boltzmann Equation, Dover 2011. For a discussion of
applied aspects of kinetics see, e.g., T. Bergman et al., Fundamentals of Heat and Mass Transfer, 7" ed., Wiley, 2011.

76. A detailed introduction to this method (repeatedly used in this series) may be found, for example, in EM Sec. 2.5.

77. In chemistry-related fields, this process is frequently called effusion.
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78. See, e.g., CM Equation (8.56). Please note the difference between the shear viscosity coefficient ) considered in this problem
and the drag coefficient 7 whose calculation was the task of Problem 3.2. Despite the similar (traditional) notation, and
belonging to the same realm (kinematic friction), these coefficients have different definitions and even different
dimensionalities.

79. I am sorry for using the same letter for the cross-section as for the electric Ohmic conductivity. (Both notations are very
traditional.) Let me hope this would not lead to confusion, because the conductivity is not discussed in this problem.

80. This problem does not follow Problem 12 only for historic reasons.

This page titled 6.6: Exercise problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Konstantin K.
Likharev via source content that was edited to the style and standards of the LibreTexts platform.
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