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23.3: Two Bricks in Thermal Contact
Where does the idea of temperature fit into the picture? This concept has come up informally, but we need to give it a precise
definition. If two objects at different temperatures are placed in contact with each other, we observe that internal energy flows from
the warmer object to the cooler object, as illustrated in Figure :.

Figure :: Two bricks in thermal contact, one at temperature T , the other at temperature T . If T  > T , internal energy flows
from brick A to brick B.

We wish to see if the role of temperature differences in the flow of internal energy can be related to the ideas developed in the
previous section. Let us consider two bricks as before, but possibly of different size, and therefore containing different numbers of
harmonic oscillators. Suppose brick A has  oscillators and energy  while brick B has  oscillators and energy . The two
bricks have entropies

and

If the two bricks are thermally isolated from each other but are nevertheless considered together as one system, then the total
number of states available to this combined system is just the product of the numbers of states available to each brick separately:

To make an analogy, the total number of ways of arranging two coins, each of which may either be heads up or tails up, is 4 = 2 ×
2, or heads-heads, heads-tails, tails-heads, and tails-tails. We compute the states of the combined system just as we compute the
total number of ways of arranging the coins, i. e., by taking the product of the numbers of states of the individual systems.

Taking the logarithm of  and multiplying by Boltzmann’s constant results in an equation for the combined entropy S of the two
bricks:

Figure :: Total entropy of two systems for fixed total energy  as a function of , the energy of system A.

We can determine how the total entropy of the two bricks depends on the distribution of energy between them by using equations (
) and ( ). Plotting the sum of the entropies of the two bricks  versus the energy E  of brick A

under the constraint that the total energy  is constant yields a curve that typically looks something like Figure 
:. Notice that the total entropy reaches a maximum for some critical value of . Since the slope of  is zero at this
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point, we can determine the corresponding value of by setting the derivative to zero of the total entropy with respect to ,
subject to the condition that the total energy is constant. Under the constraint of constant total energy E, we have 

, so

(The partial derivatives indicate that parameters besides the energy are held constant while taking the derivative of entropy.) Thus,

at the point of maximum entropy.

Once the equilibrium values of  and  are found, we can calculate the total entropy  of two thermally isolated
bricks. We now assert that this entropy doesn’t change when two bricks in equilibrium are brought into thermal contact. Why is this
so?

The derivative of the entropy of a system with respect to energy turns out to be one over the temperature of the system. Thus, the
temperatures of the bricks can be found from

The condition for equilibrium ( ) therefore reduces to . This is consistent with observations of
the behavior of real systems. Thus, at the equilibrium point the temperatures of the two bricks are the same and bringing them
together causes no heat flow to occur. The process of bringing two bricks at the same temperature into thermal contact is thus
completely reversible, since separating them leaves each with the same amount of energy it started with.

The temperature of a brick is easily calculated using equation ( ):

We see that the temperature of a brick is just the average energy per harmonic oscillator in the brick divided by Boltzmann’s
constant.
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