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21.2: Nuclear Binding Energies
It is impossible to specify an accurate inter-nucleon force valid under all circumstances, but Figure : gives an approximate
representation of the potential energy associated with the strong force as the function of nucleon separation. The binding energy is
of order 2 MeV, with an attractive force for separations greater than about  m and an intense repulsive force for smaller
separations. At large distances the potential energy decays exponentially with distance rather than according to the  law of the
Coulomb potential.

The short range of the inter-nuclear force means that atomic nuclei can be thought of as conglomerations of “sticky billiard balls”.
The nuclear force is essentially a contact force and each nucleon simply binds to all its nearest neighbors. When nucleons are close-
packed, the binding energy per nucleon due to the strong force is simply the number of nearest neighbors for each nucleon,
multiplied by the binding energy per nucleon pair, divided by 2. The factor of  accounts for the fact that each nuclear bond is
shared by two nucleons.

Several other effects need to be accounted for in the nucleus. The nucleons on the surface of the nucleus do not have as many
bonds as nucleons in the interior. Thus, to compute the nuclear binding energy of a nucleus with a finite number of nucleons, a
correction must be made for this effect. This contributes negatively to the nuclear binding energy in proportion to the surface area
of the nucleus, which scales as the number of nucleons to the two-thirds power.

In addition to the nuclear force, the repulsive electrostatic force between protons needs to be accounted for. Since the electrostatic
force is a long range force, the (negative) contribution to the binding energy of the nucleus goes as the square of the number of
protons divided by the radius of the nucleus. The latter goes as the cube root of the number of nucleons.

Figure :: Effect of the Pauli exclusion principle on two nuclei, each with 8 nucleons. The total energy of the nucleus on the
left, which has an equal number of protons and neutrons is . The nucleus on the right has total
energy 

The Pauli exclusion principle operates in nuclei so as to favor equal numbers of protons and neutrons. This effect is illustrated in
Figure :. If a proton is converted into a neutron in a nucleus in which equal numbers of the two particles occur, then the
exclusion principle forces these nucleons to move to a higher energy level than they previously occupied. The binding energy of the
nucleus is correspondingly decreased. This effect opposes the weaker, repulsive Coulomb potential that occurs when there are more
neutrons and fewer protons.

The net result of all these effects is a nuclear binding energy equation with four terms representing the four above-mentioned
effects:

where Z is the atomic number or the number of protons, N is the number of neutrons, and  is the atomic mass number,
or number of nucleons. Equation ( ) represents the binding energy of the entire nucleus. The binding energy per nucleon is
just .
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Figure :: Nuclear binding energy per nucleon , calculated from equation ( ). The thick curved line starting
near the origin gives the line of stability for atomic nuclei. The white areas near the horizontal and vertical axes indicate negative
binding energy.

Fitting Equation  to observed binding energies in nuclei yields the following values for the coefficients of the above
equation: , , , and . A contour plot of binding energy per nucleon, ,
is shown in Figure :. We note that this equation doesn’t work well for nuclei with only a few nucleons. For instance, the
helium nucleus with  is more stable than the lithium nucleus with , and there is no stable nucleus at all with .

Part of the reason for the problem at small A is that even numbers of protons and neutrons tend to bind more strongly together than
nuclei containing odd numbers of either. This is because pairs of protons or neutrons with opposite spins fully occupy nuclear states
while an odd nucleon occupies a state by itself with energy greater than that of all the other occupied states. This behavior can be
approximately accounted for by adding the term  to equation ( ), where  if  and  are both even, 

 if either  or  is odd, and  if both are odd. We leave this term off even though it is sometimes quite
important, in order to make equation ( ) a smooth function of  and  and thus representative of the general trend of binding
energy.

For a given value of A, it is easy to demonstrate that the maximum nuclear binding energy in equation ( ) occurs when

This formula confirms the trend seen in Figure : that the most stable nuclear configuration contains an increasing fraction of
neutrons as A increases. The function  given by equation ( ) and illustrated by the curve starting near the origin in
Figure : defines the line of stability for atomic nuclei.

Figure : shows the binding energy per nucleon as a function of nucleon number  along the line of stability. The rapid
increase in binding energy for small A reflects the decreasing surface effect as the number of nucleons increases. The subsequent
decrease is a result of the combined effects of Coulomb repulsion of protons and the Pauli exclusion principle. Notice that the
maximum binding energy per nucleon occurs near .

The chemical properties of the atom associated with an atomic nucleus are determined by the number of protons, , in the nucleus.
In many cases there exists more than one stable or long-lived nucleus with a given value of . These nuclei differ in their neutron
number, . Nuclei with the same  and differing  are called isotopes of the element defined by the specified value of . For
instance, there are three isotopes of the element hydrogen, normal hydrogen, deuterium, and tritium, with zero, one, and two
neutrons respectively.
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Figure :: Binding energy per nucleon along line of stability according to equations 21.3.1 and ( ).
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