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9.1: Math Tutorial — Complex Waves
Until now we have represented quantum mechanical plane waves by sine and cosine functions, just as with other types of waves.
However, plane matter waves cannot be truly represented by sines and cosines. We need instead mathematical functions in which
the wave displacement is complex rather than real. This requires the introduction of a bit of new mathematics, which we tackle
first. Using our new mathematical tool, we are then able to explore two crucially important ideas in quantum mechanics; (1) the
relationship between symmetry and conservation laws, and (2) the dynamics of spatially confined waves.

A complex number  is the sum of a real number and an imaginary number. An imaginary number is just a real number multiplied
by . Thus, we can write  for any complex , where  and  are real. The quantities  and  are the real and
imaginary parts of , sometimes written  and .

Quantum mechanics requires wave functions to be complex, i. e., to possess real and imaginary parts. Plane waves in quantum
mechanics actually take the form  rather than, say, . The reason for this is the need to
distinguish between waves with positive and negative frequencies. If we replace  and  with  and  in the cosine form, we
get

In other words, changing the sign of  and  results in no change in a wave expressed as a cosine function. The two quantum
mechanical states, one with wavenumber and frequency  and  and the other with  and , yield indistinguishable wave
functions and therefore would represent physically indistinguishable states. The cosine form is thus insufficiently flexible to
represent quantum mechanical waves. On the other hand, if we replace k and ω with their negatives in the complex exponential
form of a plane wave we get , which is different from . These two wave functions are
distinguishable and thus correspond to distinct physical states.

It is not immediately obvious that a complex exponential function provides the oscillatory behavior needed to represent a plane
wave. However, the complex exponential can be expressed in terms of sines and cosines using Euler’s equation:

Figure :: Graphical representation of a complex number z as a point in the complex plane. The horizontal and vertical
Cartesian components give the real and imaginary parts of z respectively.

If we define , then an alternate way of expressing a complex number is z = r exp(iϕ), which
by Euler’s equation equals . Comparison shows that . Thus, a complex number
can be thought of as a point in the a-b plane with Cartesian coordinates a and b and polar coordinates r and . The a-b plane is
called the complex plane.

We now see how the complex wave function represents an oscillation. If , the complex function 
moves round and round the unit circle in the complex plane as x and t change, as illustrated in Figure :. This contrasts with the
back and forth oscillation along the horizontal axis of the complex plane represented by .

We will not present a formal proof of Euler’s equation — you will eventually see it in your calculus course. However, it may be
helpful to note that the  derivatives of  and  have the same behavior:
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Ψ = exp[i(kx −ωt)] cos(kx−ωt)

k ω −k −ω

cos(−kx+ωt) = cos[−(kx−ωt)] = cos(kx−ωt). (9.1.1)
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ψ = exp[−i(kx −ωt)] exp[i(kx −ωt)]

exp(iϕ) = cos(ϕ) + i sin(ϕ)  (Euler's equation).  (9.1.2)
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(In the second of these equations we have replaced the minus sign in front of the sine function by  and then extracted a common
factor of i.) The  derivative of both of these functions thus yields the function back again times i. This is a strong hint that 

 are different ways of representing the same function.

We indicate the complex conjugate of a complex number z by a superscripted asterisk, i. e., . It is obtained by replacing i by -i.
Thus, . The absolute square of a complex number is the number times its complex conjugate:

Notice that the absolute square of a complex exponential function is one:

In quantum mechanics the absolute square of the wave function at any point expresses the relative probability of finding the
associated particle at that point. Thus, the probability of finding a particle represented by a plane wave is uniform in space. Contrast
this with the relative probability associated with a sine wave: . This varies from zero to one,
depending on the phase of the wave. The “waviness” in a complex exponential plane wave resides in the phase rather than in the
magnitude of the wave function.

One more piece of mathematics is needed. The complex conjugate of Euler’s equation is

Taking the sum and the difference of this with the original Euler’s equation results in the expression of the sine and cosine in terms
of complex exponentials:

We aren’t used to having complex numbers show up in physical theories and it is hard to imagine how we would measure such a
number. However, everything observable comes from taking the absolute square of a wave function, so we deal only with real
numbers in experiments.
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exp(−iϕ) = cos(ϕ) − i sin(ϕ) (9.1.8)
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