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3.5: Fermat’s Principle
An alternate approach to geometrical optics can be developed from Fermat’s principle. This principle states (in its simplest form)
that light waves of a given frequency traverse the path between two points which takes the least time. The most obvious example of
this is the passage of light through a homogeneous medium in which the speed of light doesn’t change with position. In this case
the shortest time corresponds to the shortest distance between the points, which, as we all know, is a straight line. Thus, Fermat’s
principle is consistent with light traveling in a straight line in a homogeneous medium.

Figure : Definition sketch for deriving the law of reflection from Fermat’s principle. θ  is the angle of incidence and θ  the
angle of reflection as in Figure :.

Fermat’s principle can also be used to derive the laws of reflection and refraction. For instance, Figure : shows a candidate
ray for reflection in which the angles of incidence and reflection are not equal. The time required for the light to go from point A to
point B is

where c is the speed of light. We find the minimum time by differentiating t with respect to y and setting the result to zero, with the
result that

However, we note that the left side of this equation is simply sin θ , while the right side is sin θ , so that the minimum time
condition reduces to sin θ  = sin θ  or θ  = θ , which is the law of reflection.

  

Figure : Definition sketch for deriving Snell’s law of refraction from Fermat’s principle. The shaded area has index of
refraction n > 1.
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A similar analysis may be done to derive Snell’s law of refraction. The speed of light in a medium with refractive index n is c ∕ n,
where c is its speed in a vacuum. Thus, the time required for light to go some distance in such a medium is n times the time light
takes to go the same distance in a vacuum. Referring to Figure :, the time required for light to go from A to B becomes

This results in the condition

where θ  is now the refracted angle. We recognize this result as Snell’s law.

Notice that the reflection case illustrates a point about Fermat’s principle: The minimum time may actually be a local rather than a
global minimum — after all, in Figure :, the global minimum distance from A to B is still just a straight line between the two
points! In fact, light starting from point A will reach point B by both routes — the direct route and the reflected route.

Figure : Ellipsoidal mirror showing minimum and maximum time rays from the center of the ellipsoid to the mirror surface
and back again.

It turns out that trajectories allowed by Fermat’s principle don’t strictly have to be minimum time trajectories. They can also be
maximum time trajectories, as illustrated in Figure :. In this case light emitted at point O can be reflected back to point O
from four points on the mirror, A, B, C, and D. The trajectories O-A-O and O-C-O are minimum time trajectories while O-B-O and
O-D-O are maximum time trajectories.

Fermat’s principle seems rather mysterious. However, the American physicist Richard Feynman made sense out of it by invoking
an even more fundamental principle, as we now see.

If a light ray originates at point O in Figure :, reflects off of the ellipsoidal mirror surface at point A, and returns to point O,
the elapsed time isn’t much different from that experienced by a ray which reflects off the mirror a slight distance from point A and
returns to O. This is because at point A the beam from point O is perpendicular to the tangent to the surface of the mirror at point
A. In contrast, the time experienced by a ray going from point O to point E and back would differ by a much greater amount than
the time experienced by a ray reflecting off the mirror a slight distance from point E. This is because the tangent to the mirror
surface at point E is not perpendicular to the beam from point O.

Technically, the change in the round trip time varies linearly with the deviation in the reflection point from point E, but
quadratically with the deviation from point A. If this deviation is small in the first place, then the change in the round trip time will
be much smaller for the quadratic case than for the linear case.

It seems odd that we would speak of a beam reflecting back to point O if it hit the mirror at any point except A, B, C, or D, due to
the requirements of the law of reflection. However, recall that the law of reflection itself depends on Fermat’s principle, so we
cannot assume the validity of that law in this investigation.

Feynman postulated that light rays explore all possible paths from one point to another, but that the only paths realized in nature are
those for which light taking closely neighboring paths experiences nearly the same elapsed time (or more generally, traverses
nearly the same number of wavelengths) as the original path. If this is true, then neighboring rays interfere constructively with each
other, resulting in a much brighter beam than would occur in the absence of this constructive interference. Thus, the round-trip
paths O-A-O, O-B-O, O-C-O, and O-D-O in Figure : actually occur, but not O-E-O. Feynman explains Fermat’s principle by
invoking constructive and destructive interference!
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Figure : Ray trajectories from a point O being focused to another point I by a lens.

Figure : illustrates a rather peculiar situation. Notice that all the rays from point O which intercept the lens end up at point I.
This would seem to contradict Fermat’s principle, in that only the minimum (or maximum) time trajectories should occur.
However, a calculation shows that all the illustrated trajectories in this particular case take the same time. Thus, the light cannot
choose one trajectory over another using Fermat’s principle and all of the trajectories are equally favored. Note that this inference
applies not to just any set of trajectories, but only those going from an object point to the corresponding image point.
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