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2.3: Superposition of Plane Waves

We now study wave packets in two dimensions by asking what the superposition of two plane sine waves looks like. If the two
waves have different wavenumbers, but their wave vectors point in the same direction, the results are identical to those presented in
the previous chapter, except that the wave packets are indefinitely elongated without change in form in the direction perpendicular
to the wave vector. The wave packets produced in this case move in the direction of the wave vectors and thus appear to a
stationary observer like a series of passing pulses with broad lateral extent.

Superimposing two plane waves which have the same frequency results in a stationary wave packet through which the individual
wave fronts pass. This wave packet is also elongated indefinitely in some direction, but the direction of elongation depends on the
dispersion relation for the waves being considered. These wave packets are in the form of steady beams, which guide the individual
phase waves in some direction, but don’t themselves change with time. By superimposing multiple plane waves, all with the same
frequency, one can actually produce a single stationary beam, just as one can produce an isolated pulse by superimposing multiple
waves with wave vectors pointing in the same direction.

If the frequency of a wave depends on the magnitude of the wave vector, but not on its direction, the wave’s dispersion relation is
called isotropic; otherwise it is anisotropic. In the isotropic case, two waves have the same frequency only if the lengths of their
wave vectors, and hence their wavelengths, are the same. The first two examples in Figure 2.3.6: satisfy this condition, while the
last example is anisotropic.
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Figure 2.3.2: .7: Wave fronts and wave vectors (k; and k;) of two plane waves with the same wavelength but oriented in different
directions. The vertical bands show regions of constructive interference where wave fronts coincide. The vertical regions in
between have destructive interference, and hence define the lateral boundaries of the beams produced by the superposition. The
quantities kg and Ak are also shown.
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Figure 2.3.2: .8: Example of beams produced by two plane waves with the same wavelength moving in different directions. The
wave vectors of the two waves are k = (£0.1, 1.0). Regions of positive displacement are lighter, while regions of negative
displacement are darker.

We now use the language of vectors to investigate the superposition of two plane waves with wave vectors k; and ko:

h =sin(k; - x — wt) +sin(ks - x — wt) (2.3.1)
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Applying the trigonometric identity for the sine of the sum of two angles (as we have done previously), equation (2.3.1) can be
reduced to

h =2sin(k - x — wt) cos(Ak - z) (2.3.2)
where
ko= (ki1 +ko)/2 Ak=(ks—ki)/2 (2.3.3)

This is in the form of a sine wave moving in the kg direction with phase speed cphase = w/|ko| and wavenumber |ko|, modulated
in the Ak direction by a cosine function. The lines of destructive interference are normal to Ak. The distance w between lines of
destructive interference is the distance between successive zeros of the cosine function in equation (2.3.2), implying that
| Ak|w = 7, which leads to

w=n/|AK| (2.3.4)

Thus, the smaller | Ak| the greater is the beam diameter.

Waves of Identical Wavelength

In this section we investigate the beams produced by superimposing isotropic waves of the same frequency. Figure 2.3.7: illustrates
what happens in such a superposition. Vectors k; and k, of equal length give rise to a mean wave vector k, and half the difference,
Ak. As illustrated, the lines of constructive and destructive interference are perpendicular to Ak. Figure 2.3.8: shows a concrete
example of the beams produced by superposition of two plane waves of equal wavelength oriented as in Figure 2.3.7:. The beams
are aligned vertically, since Ak is horizontal, with the lines of destructive interference separating the beams located near x = +16.
The transverse width of the beams of ~ 32 satisfies equation (2.3.4) with |Ak| = 0.1. Each beam is made up of vertically
propagating phase waves, with the crests and troughs indicated by the regions of white and black.

Waves of Differing Wavelength

In the third example of Figure 2.3.6:, the frequency of the wave depends only on the direction of the wave vector, independent of
its magnitude, which is the reverse of the case for an isotropic dispersion relation. In this highly anisotropic case, different plane
waves with the same frequency have wave vectors which point in the same direction, but have different lengths.

Figure 2.3.2: .9: Wave fronts and wave vectors (k; and kj) of two plane waves with different wavelengths oriented in different
directions. The slanted bands show regions of constructive interference where wave fronts coincide. The slanted regions in between
have destructive interference, and as mentioned previously, define the lateral limits of the beams produced by the superposition.
The quantities ko and Ak are also shown.

More generally, one might have waves for which the frequency depends on both the direction and magnitude of the wave vector. In
this case, two different plane waves with the same frequency would typically have wave vectors which differ both in direction and
magnitude. Such an example is illustrated in figures 2.9 and 2.10.
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kyy = —0.10; ks =0.10; kyy =1.00; ky =0.90
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Figure 2.3.2: .10: Example of beams produced by two plane waves with wave vectors differing in both direction and magnitude.

The wave vectors of the two waves are k; = (-0.1, 1.0) and k, = (0.1, 0.9). Regions of positive displacement are lighter, while
regions of negative displacement darker.
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Figure 2.3.2: .11: Tllustration of factors entering the addition of two plane waves with the same frequency. The wave fronts are

perpendicular to the vector average of the two wave vectors, ko = (k1 +k2) /2, while the lines of constructive interference, which

define the beam orientation, are oriented perpendicular to the difference between these two vectors, Ak = (ks —k;) /2
Figure 2.3.11 summarizes what we have learned about adding plane waves with the same frequency. In general, the beam
orientation (and the lines of constructive interference) are not perpendicular to the wave fronts. This only occurs when the wave
frequency is independent of wave vector direction.

Waves with the Same Wavelength

As with wave packets in one dimension, we can add together more than two waves to produce an isolated wave packet. We will
confine our attention here to the case of an isotropic dispersion relation in which all the wave vectors for a given frequency are of
the same length.

Figure 2.3.2: .12: Tllustration of wave vectors of plane waves which might be added together.

Figure 2.3.12 shows an example of this in which wave vectors of the same wavelength but different directions are added together.
Defining o as the angle of the iy, wave vector clockwise from the vertical, as illustrated in Figure 2.3.12, we could write the
superposition of these waves at time t = 0 as
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h = Z hi sin(kgix + kyiy)
i

= Z h; sin[ka sin(oy) + ky cos(a; )] (2.3.5)

where we have assumed that k,; = ksin(o;) and ky; = kcos(a;) . The parameter k = |k| is the magnitude of the wave vector
and is the same for all the waves. Let us also assume in this example that the amplitude of each wave component decreases with
increasing |ay| :.

h; =exp [—(ai/amax)2] (2.3.6)

The exponential function decreases rapidly as its argument becomes more negative, and for practical purposes, only wave vectors
with ;| < @mgs contribute significantly to the sum. We call g,y the spreading angle.
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Figure 2.3.2: .13: Plot of the displacement field h (x,y) from equation (2.19) for oty = 0.8 and k = 1.

Figure 2.3.13 shows what h(x,y) looks like when ay,x = 0.8 radians and k& = 1. Notice that for y = 0 the wave amplitude is only
large for a small region in the range —4 < & < 4. However, for y > 0 the wave spreads into a broad, semicircular pattern.
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Figure 2.3.2: .14: Plot of the displacement field h (x,y) from equation (2.19) for oy = 0.2 and k= 1.

Figure 2.3.14 shows the computed pattern of h(x,y) when the spreading angle a;,,x = 0.2 radians. The wave amplitude is large
for a much broader range of z at y = 0 in this case, roughly —12 < x < 12. On the other hand, the subsequent spread of the wave
is much smaller than in the case of Figure 2.3.13..

We conclude that a superposition of plane waves with wave vectors spread narrowly about a central wave vector which points in
the y direction (as in Figure 2.3.14) produces a beam which is initially broad in x but for which the breadth increases only slightly
with increasing y. However, a superposition of plane waves with wave vectors spread more broadly (as in Figure 2.3.13) produces
a beam which is initially narrow in x but which rapidly increases in width as y increases.

The relationship between the spreading angle ;. and the initial breadth of the beam is made more understandable by comparison
with the results for the two-wave superposition discussed at the beginning of this section. As indicated by equation (2.3.4), large
values of k,, and hence a, are associated with small wave packet dimensions in the x direction and vice versa. The superposition of
two waves doesn’t capture the subsequent spread of the beam which occurs when many waves are superimposed, but it does lead to
a rough quantitative relationship between amay (which is just tan™ (k¢ /ky) in the two wave case) and the initial breadth of the
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beam. If we invoke the small angle approximation for o = Gpay SO that apay = tan! (ks / ky) ~ k¢ /ky =~ ik, then ky ~ komax and
equation (2.3.4) can be written w = 7k, ~ 7 (katmax) = A (2@max) - Thus, we can find the approximate spreading angle from the
wavelength of the wave A and the initial breadth of the beam w:

Omax ~ A/(2w)  (single slit spreading angle) (2.3.7)

This page titled 2.3: Superposition of Plane Waves is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
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