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2.1: Math Tutorial — Vectors

Figure : .1: Displacement vectors in a plane. Vector A represents the displacement of George from Mary, while vector B
represents the displacement of Paul from George. Vector C represents the displacement of Paul from Mary and C = A + B. The
quantities A , A , etc., represent the Cartesian components of the vectors.

Figure : .2: Definition sketch for the angle θ representing the orientation of a two dimensional vector.

Before we can proceed further we need to explore the idea of a vector. A vector is a quantity which expresses both magnitude and
direction. Graphically we represent a vector as an arrow. In typeset notation a vector is represented by a boldface character, while in
handwriting an arrow is drawn over the character representing the vector.

Figure : shows some examples of displacement vectors, i. e., vectors which represent the displacement of one object from
another, and introduces the idea of vector addition. The tail of vector B is collocated with the head of vector A, and the vector
which stretches from the tail of A to the head of B is the sum of A and B, called C in Figure :.

The quantities  etc., represent the Cartesian components of the vectors in Figure :. A vector can be represented either
by its Cartesian components, which are just the projections of the vector onto the Cartesian coordinate axes, or by its direction and
magnitude. The direction of a vector in two dimensions is generally represented by the counterclockwise angle of the vector
relative to the x axis, as shown in Figure :. Conversion from one form to the other is given by the equations

where A is the magnitude of the vector. A vector magnitude is sometimes represented by absolute value notation: A ≡|A|.

Notice that the inverse tangent gives a result which is ambiguous relative to adding or subtracting integer multiples of π. Thus the
quadrant in which the angle lies must be resolved by independently examining the signs of A  and A  and choosing the appropriate
value of θ.

To add two vectors, A and B, it is easiest to convert them to Cartesian component form. The components of the sum C = A + B are
then just the sums of the components:

Subtraction of vectors is done similarly, e. g., if A = C - B, then
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A unit vector is a vector of unit length. One can always construct a unit vector from an ordinary (non-zero) vector by dividing the
vector by its length: n = A∕|A|. This division operation is carried out by dividing each of the vector components by the number in
the denominator. Alternatively, if the vector is expressed in terms of length and direction, the magnitude of the vector is divided by
the denominator and the direction is unchanged.

Unit vectors can be used to define a Cartesian coordinate system. Conventionally, i, j, and k indicate the x, y, and z axes of such a
system. Note that i, j, and k are mutually perpendicular. Any vector can be represented in terms of unit vectors and its Cartesian
components: A = A i + A j + A k. An alternate way to represent a vector is as a list of components: A = (A ,A ,A ). We tend to use
the latter representation since it is somewhat more economical notation.

There are two ways to multiply two vectors, yielding respectively what are known as the dot product and the cross product. The
cross product yields another vector while the dot product yields a number. Here we will discuss only the dot product. The cross
product will be presented later when it is needed.

Figure :: Definition sketch for dot product.

Given vectors A and B, the dot product of the two is defined as

where θ is the angle between the two vectors. In two dimensions an alternate expression for the dot product exists in terms of the
Cartesian components of the vectors:

It is easy to show that this is equivalent to the cosine form of the dot product when the x axis lies along one of the vectors, as in
Figure :. Notice in particular that A  = |A| cos θ, while B  = |B| and B  = 0. Thus, A ⋅ B = |A| cos θ|B| in this case, which is
identical to the form given in equation (2.5).

Figure : .4: Definition figure for rotated coordinate system. The vector R has components X and Y in the unprimed coordinate
system and components X′ and Y ′ in the primed coordinate system.

All that remains to be proven for Equation  to hold in general is to show that it yields the same answer regardless of how the
Cartesian coordinate system is oriented relative to the vectors. To do this, we must show that A B  + A B  = A ′B ′ + A ′B ′, where
the primes indicate components in a coordinate system rotated from the original coordinate system.

Figure : shows the vector R resolved in two coordinate systems rotated with respect to each other. From this figure it is clear
that . Focusing on the shaded triangles, we see that . Thus, we find 

. Similar reasoning shows that . Substituting these and using the trigonometric
identity cos θ + sin θ = 1 results in
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thus proving the complete equivalence of the two forms of the dot product as given by equations (2.5) and (2.6). Multiply out the
above expression to verify this.

A numerical quantity that doesn’t depend on which coordinate system is being used is called a scalar. The dot product of two
vectors is a scalar. However, the components of a vector, taken individually, are not scalars, since the components change as the
coordinate system changes. Since the laws of physics cannot depend on the choice of coordinate system being used, we insist that
physical laws be expressed in terms of scalars and vectors, but not in terms of the components of vectors.

In three dimensions the cosine form of the dot product remains the same, while the component form is
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