
12.4.1 https://phys.libretexts.org/@go/page/33001

12.4: Complex Exponential Solutions
Complex exponential functions of the form  also constitute solutions to the free harmonic oscillator governed by
equation (12.2.1). This makes sense, as the complex exponential is the sum of sines and cosines. However, for the frictionless
harmonic oscillator, the exponential solutions provide no particular advantage over sines and cosines. Furthermore, oscillator
displacements are real, not complex quantities.

The superposition principle solves the problem of complex versus real solutions. For an equation like (12.2.1) which has real
coefficients, if  is a solution, then so is , so the superposition of these two solutions is also a solution.
Furthermore

This shows a shortcut for getting the physical part of a complex exponential solution to equations like the harmonic oscillator
equation; simply take the real part.

Complex exponential solutions come into their own for more complicated equations. For instance, suppose the force on the mass in
the mass-spring system takes the form

The term containing b represents a frictional damping effect on the harmonic oscillator and the governing differential equation
becomes

Trying the exponential function  in this equation results in

where we have set

The quantity  is the actual frequency of oscillation of the damped oscillator, which one can see is less than the
oscillation frequency ω  that occurs with the damping turned off. The physical solution to the damped oscillator is thus

as long as . Notice that this solution is in the form of an oscillation  multiplied by a decaying exponential 
. This confirms that the  term decreases the amplitude of the oscillation with time.
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x(t) = Re[exp(σt)] = Re[exp(iωt) exp(−βt)] = cos(ωt) exp(−βt) (12.4.6)
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