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3.E: Kinematics (Exercises)

Q1

Fred buys a ticket on a spaceship that will accelerate to an ultrarelativistic speed  such that  is only . Fred was on the
track team in high school, so he knows he can run about . Once the ship is up to speed, Fred plans to run in the forward
direction, thereby becoming the first human to exceed the speed of light. Other than the possible lack of gravity to allow running,
what is wrong with Fred’s plan?

Q2
a. In the equation  for combination of velocities, interpret the case where one of the velocities (but not the other)

equals the speed of light.
b. Interpret the case where the denominator goes to zero.
c. Use the geometric series to rewrite the factor \[(tfrac{1}{1+v_1v_2}\), and then expand the expression for  as a series in 

and , retaining terms up to third order in velocity. How does this relate to the correspondence principle?

Q3
Determine which of the identities in section 3.6 need to be modified in order to be valid in units with , and describe how they
should be modified.

Q4

The Large Hadron Collider accelerates counterrotating beams of protons and collides them head-on. The beam energy has been
gradually increased, and the accelerator is designed to reach a maximum energy of , corresponding to a rapidity of .

a. Find the velocity of the beam.
b. In any collision, the kinetic energy available to do something inelastic (smash up your car, produce nuclear reactions, ...) is the

energy in the center of mass frame; in any other frame, there is initial kinetic energy that must also be present in the final state
due to conservation of momentum. Suppose that a particular proton in the LHC beam never undergoes a collision with a proton
from the opposite beam, and instead is wasted by being dumped into a beamstop. Let’s say that this collision is with a proton in
a hydrogen atom left behind by someone’s fingerprint. Find the velocities of the two protons in their common center of mass
frame.

Q5
Each GPS satellite is in an orbit with a radius of , with an orbital period of half a sidereal day, giving it a velocity of 

. The atomic clock aboard such a satellite is tuned to , which is chosen so that when the satellite
is directly overhead, the effect of time dilation (transverse Doppler shift), combined with a general-relativistic effect due to gravity,
results in a frequency of exactly . (GPS started out as a military project, and legend has it that the top brass, suspicious
of the crazy relativity stuff, demanded that the satellites be equipped with a software switch to turn off the correction, just in case
the physicists were wrong.) There are oscillations superimposed onto these static effects due to the longitudinal Doppler shifts as
the satellites approach and recede from a given observer on the ground.

a. Calculate the maximum Doppler-shifted frequency for a hypothetical observer in outer space who is being directly approached
by the satellite in its orbit.

b. In reality, the greatest possible longitudinal component of the velocity is considerably smaller than this due to the geometry. Use
the size of the earth to determine this velocity and the corresponding maximum frequency.

Q6
Verify directly, using the geometry of figure below, that for , the Doppler shift factor is . (Do not simply plug 

 into the formula .)
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Q7

Generalize the numerical calculation of problem Q6 to prove the general result .

Q8
Expand the relativistic equation for the longitudinal Doppler shift of light  in a Taylor series, and find the first two
nonvanishing terms. Show that these two terms agree with the nonrelativistic expression, so that any relativistic effect is of higher
order in .

Q9

Prove, as claimed in section 3.5, that we must have  if the velocity four-vector is to remain properly normalized.

Q10

Example 3.5.1 described the motion of an object having constant proper acceleration , the world-line being  and 
 in a particular observer’s Minkowski coordinates.

a. Prove the following results for  and for the (three-)velocity and (three-)acceleration measured by this observer.

Do the calculations simply by taking the first and second derivatives of position with respect to time. You will find the
following facts helpful:

b. Interpret the results in the limit of large .

Q11

Example 3.5.1 described the motion of an object having constant proper acceleration , the world-line being  and 
 in a particular observer’s Minkowski coordinates. Find the corresponding velocity and acceleration four-vectors.
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Q12
Starting from the results of problem Q11, repeat problem Q10a using the techniques of section 3.7. You will find it helpful to know
that .

Q13
Let  be a future-directed, properly normalized velocity vector. Compare the value of  in the  signature used in this
book with its value in the signature .

Q14

a. Prove the relation , in the special case where the motion is linear.
b. Generalize the result to  dimensions.

Q15

Derive the identity .

Q16
Recapitulating the geometry in figure below, let  be a smooth, timelike world line,  an event not on , and  the vector from 

 to a point on , parametrized by proper time . Define the proper distance  between  and a point on  as ,
where the square indicates an inner product of the vector with itself, and the minus sign is because we use the  signature.
Show that , where the final factor is just a signature-dependent sign. Does this make sense when  is
inertial? Give an example where the derivative vanishes because the first factor is zero, and another example where the second
factor is the one that vanishes (but ).

Q17
Consider an observer  moving along a world-line  with the constant-acceleration motion defined in Example 3.5.1. In section
3.9, we gave the coordinates of a certain event  that was never “now” as described by our observer. The purpose of this problem
is to analyze this is a more elegant and coordinate-invariant way. Let  be a point on , let  be the event described in section

3.9, and let , , and .

a. Show that , which was originally described in a certain set of coordinates, can instead by defined by the fact that 
for every point on .

b. Show that if  is timelike, then  is never zero.
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