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9.1: The Current Vector

Explain the conservation of charge

Current as the flux of charged particles
The most fundamental laws of physics are conservation laws, which tell us that we can’t create or destroy “stuff,” where “stuff”
could mean quantities such as electric charge or energy-momentum. Since charge is a Lorentz invariant, it’s an easy example to
start with. Because charge is invariant, we might also imagine that charge density  was invariant. But this is not the case,
essentially because spatial ( -dimensional) volume isn’t invariant; in  dimensions, only four -dimensional volume is an
invariant . For example, suppose we have an insulator in the shape of a cube, with charge distributed uniformly throughout it
according to an observer  at rest relative to the cube. Then in a frame  moving relative to the cube, parallel to one of its axes,
the cube becomes foreshortened by length contraction, and its volume is reduced by the factor . The result is that the charge
density in  is greater by a factor of .

This means that knowledge of the charge density  in one frame is insufficient to determine the charge density in another frame. In
the example of the cube, what would be sufficient would be knowledge of the vector , where  is the charge density in the
cube’s rest frame, and  is the cube’s velocity vector. , called the current vector, transforms as a relativistic vector because of the
transformation properties of the two factors that define it. The velocity  is a vector (section 3.5). The factor  is an invariant,
since it in turn breaks down into charge divided by rest-volume. Charge is an invariant, and all observers agree on what the volume
the cube would have in its rest frame.

Figure : Charged particles with world-lines that contribute to  and . The  dimension isn’t shown, so the cubical 3-
surfaces appear as squares.

 can be expressed in Minkowski coordinates as , where  is the charge density and, e.g.,  is the density of
electric current in the  direction. Suppose we define the three-surface  shown in figure  (1), consisting of the set of events
with coordinates  such that , , and . Some charged particles have world-lines that intersect
this surface, passing through it either in the positive  direction or the negative  direction (which we count as negative charge
transport).  has a three-volume . If we add up the total charge transport  across this surface and divide by , we get the
average value of . If we let  shrink down to smaller and smaller three-surfaces surrounding the event , then we get
the the value of  at this point, . In other words,  measures the flux density of charge that passes through . Of
course this description in terms of a limit implies a large number of charges, not just one as in figure .

You can write out the analogous definition for , using a surface of simultaneity for like , figure  (2), and you’ll see that it
expresses the density of charge . In this case  represents a moment in time, and the flux through  means that the charges are
crossing the threshold from the past into the future.

Our argument that  transformed like a vector was based on a case where all the charged particles had the same velocity vector, but
the above description in terms of the flux of charge eliminated any discussion of velocity. It’s true, but less obvious, that the 
described in this way also transforms as a vector, even in cases where the charged particles do not all have parallel world-lines. The
current vector is the source of electric and magnetic fields. Remarkably, no macroscopic electrical measurement is capable of
detecting anything more detailed about the motion of the charges than the averaged information provided by .
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Figure : Solenoid

The figure  shows a solenoid, at rest, wound from copper wire. At point , we construct a rectangular Ampérian loop in
the  plane that has its right edge inside the solenoid and its left one outside. Ampére’s law,

then tells us that the current density  causes a difference between the exterior field  and the interior field 

, where  is the thickness of the solenoid. There are two things we can get from this result, both of them

nontrivial.

First, the field depends only on the current density, not on any information about the details of the motion of the electrons in
the copper. The electrons’ motion is fast and highly random, but all that contributes to  is the slow drift velocity, typically 

, superimposed on the randomness. This is exact and not at all obvious. For example, the total momentum of the
electrons does depend on the random part of their motion, because  has a factor of  in it.

Second, we can use the transformation properties of the current vector to find the field of this solenoid in a frame boosted
along its axis. This is the kind of situation that would naturally arise, for example, in an electric motor whose rotor contains an
electromagnet. A Lorentz transformation in the  direction doesn’t change the  component of a vector, nor does it change ,
so  is the same in both frames. This is nontrivial both in the sense that it would have been difficult to figure out by brute
force and in the sense that fields don’t have to be the same in different frames of reference — for example, a boost in the  or
the  direction would have changed the result.

In a solid conductor such as a copper wire, we have two types of charges, protons and electrons. The protons are at rest in the
lab frame , with charge density  and current density

in Minkowski coordinates. The motion of the electrons is complicated. Some electrons are bound to a particular atom, but still
move at relativistic speeds within their atoms. Others exhibit violent thermal motion that very nearly, but not quite, averages
out to zero when there is a current measurable by an ammeter. For simplicity, we treat all the electrons (both the bound ones
and the mobile ones) as a single density of charge . Let the average velocity of the electrons, known as their drift velocity, be

 in the  direction. Then in the frame  moving along with the drift velocity we have

which under a Lorentz transformation back into the lab frame becomes

Adding the two current vectors, we have a total current in the lab frame

The wire is electrically neutral in this frame, so . Since  is a fixed property of the wire, we express  in terms
of it as . Eliminating  gives
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Because the  factors canceled, we find that the current is exactly proportional to the drift velocity. Geometrically, we have
added two timelike vectors and gotten a spacelike one; this is possible because one of the timelike vectors was future-directed
and the other past-directed.

Conservation of charge

Figure :

Conservation of charge can be expressed elegantly in terms of . Charge density is the timelike component . If this charge
density near a certain point is, for example, increasing, then it might be because charge conservation has been violated as in figure 

 (1). In this example, more world-lines emerge into the future at the top of the four-cube than had entered through the bottom
in the past. Some process inside the cube is creating charge. In the limit where the cube is made very small, this would be measured
by a value of  that was greater than zero.

But experiments have never detected any violation of charge conservation, so if more charge is emerging from the top (future) side
of the cube than came in from the bottom (past), the more likely explanation is that the charges are not all at rest, as in figure 
(1), but are moving, figure  (2), and there has been a net flow in from neighboring regions of space. We should find this
reflected in the spatial components ,  and . Moreover, if these spatial components were all constant, then any given region
of space would have just as much current flowing into it from one side as there was flowing out the other. We therefore need to
have some nonzero partial derivatives such as . For example, figure  (2)has a positive  on the left and a negative  on

the right, so . Charge conservation is expressed by the simple equation . Writing out the implied sum over , this
says that

with an implied sum over the index . If you’ve taken vector calculus, you’ll recognize the operator being applied to  as a four-
dimensional generalization of the divergence. This charge-conservation equation is valid regardless of the coordinate system, so it
can also be rewritten in abstract index notation as

J = (0, − V , 0, 0)ρp (9.1.6)
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In a solenoid, we have charge circulating at some drift velocity . Ignoring the protons, and adapting the relevant expression
from example  to the case of circular rather than linear motion, we might have for the electrons’ contribution to the
current something of the form

where  and  depends on the  and on the radius of the solenoid. Conservation of charge is satisfied, because each of the
four terms in the equation

vanishes individually.
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