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9.4: The Covariant Derivative

A constant vector function, or for any tensor of higher rank changes when expressed in a
new coordinate system

In this optional section we deal with the issues raised in section 7.5. We noted there that in non-Minkowski coordinates, one cannot
naively use changes in the components of a vector as a measure of a change in the vector itself. A constant scalar function remains
constant when expressed in a new coordinate system, but the same is not true for a constant vector function, or for any tensor of
higher rank. This is because the change of coordinates changes the units in which the vector is measured, and if the change of
coordinates is nonlinear, the units vary from point to point. This topic doesn’t logically belong in this chapter, but I’ve placed it
here because it can’t be discussed clearly without already having covered tensors of rank higher than one.

Figure : These three rulers represent three choices of coordinates.

Consider the one-dimensional case, in which a vector  has only one component, and the metric is also a single number, so that we
can omit the indices and simply write  and . (We just have to remember that  is really a vector, even though we’re leaving out
the upper index.) If  is constant, its derivative , computed in the ordinary way without any correction term, is zero. If we
further assume that the metric is simply the constant , then zero is not just the answer but the right answer.

Now suppose we transform into a new coordinate system , and the metric , expressed in this coordinate system, is not constant.
Applying the tensor transformation law, we have , and differentiation with respect to  will not give zero, because the
factor  isn’t constant. This is the wrong answer:  isn’t really varying, it just appears to vary because  does.

We want to add a correction term onto the derivative operator , forming a new derivative operator  that gives the right
answer.  is called the covariant derivative. This correction term is easy to find if we consider what the result ought to be when
differentiating the metric itself. In general, if a tensor appears to vary, it could vary either because it really does vary or because the
metric varies. If the metric itself varies, it could be either because the metric really does vary or . . . because the metric varies. In
other words, there is no sensible way to assign a nonzero covariant derivative to the metric itself, so we must have . The
required correction therefore consists of replacing  with

Applying this to  gives zero.  is a second-rank tensor with two lower indices. If we apply the same correction to the derivatives
of other tensors of this type, we will get nonzero results, and they will be the right nonzero results. Mathematically, the form of the

derivative is , which is known as a logarithmic derivative, since it equals . It measures the multiplicative rate of change
of . For example, if  scales up by a factor of  when  increases by  unit, then the logarithmic derivative of  is . The
logarithmic derivative of  is . The logarithmic nature of the correction term to  is a good thing, because it lets us take
changes of scale, which are multiplicative changes, and convert them to additive corrections to the derivative operator. The
additivity of the corrections is necessary if the result of a covariant derivative is to be a tensor, since tensors are additive creatures.
What about quantities that are not second-rank covariant tensors? Under a rescaling of coordinates by a factor of , covectors scale
by , and second-rank tensors with two lower indices scale by . The correction term should therefore be half as much for
covectors,

and should have an opposite sign for vectors.
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Generalizing the correction term to derivatives of vectors in more than one dimension, we should have something of this form:

where , called the Christoffel symbol, does not transform like a tensor, and involves derivatives of the metric. (“Christoffel” is
pronounced “Krist-AWful,” with the accent on the middle syllable.)

An important gotcha is that when we evaluate a particular component of a covariant derivative such as , it is possible for the
result to be nonzero even if the component  vanishes identically.

Figure : Airplane trajectory.

As a qualitative example, consider the airplane trajectory shown in figure , from London to Mexico City. This trajectory
is the shortest one between these two points; such a minimum-length trajectory is called a geodesic. In physics it is customary
to work with the colatitude, , measured down from the north pole, rather then the latitude, measured from the equator. At ,
over the North Atlantic, the plane’s colatitude has a minimum. (We can see, without having to take it on faith from the figure,
that such a minimum must occur. The easiest way to convince oneself of this is to consider a path that goes directly over the
pole, at .)

At , the plane’s velocity vector points directly west. At , over New England, its velocity has a large component to the south.
Since the path is a geodesic and the plane has constant speed, the velocity vector is simply being parallel-transported; the
vector’s covariant derivative is zero. Since we have  at , the only way to explain the nonzero and positive value of 

 is that we have a nonzero and negative value of .

By symmetry, we can infer that  must have a positive value in the southern hemisphere, and must vanish at the equator.

 is computed in example below.

Symmetry also requires that this Christoffel symbol be independent of , and it must also be independent of the radius of the
sphere.

To compute the covariant derivative of a higher-rank tensor, we just add more correction terms, e.g.,

or
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With the partial derivative , it does not make sense to use the metric to raise the index and form . It does make sense to do so
with covariant derivatives, so  is a correct identity.

Comma, semicolon, and birdtracks notation
Some authors use superscripts with commas and semicolons to indicate partial and covariant derivatives. The following equations
give equivalent notations for the same derivatives:

Figure : Birdtracks notation for the covariant derivative.

Figure  shows two examples of the corresponding birdtracks notation. Because birdtracks are meant to be manifestly
coordinateindependent, they do not have a way of expressing non-covariant derivatives.

Finding the Christoffel symbol from the metric
We’ve already found the Christoffel symbol in terms of the metric in one dimension. Expressing it in tensor notation, we have

where inversion of the one-component matrix  has been replaced by matrix inversion, and, more importantly, the question marks
indicate that there would be more than one way to place the subscripts so that the result would be a grammatical tensor equation.
The most general form for the Christoffel symbol would be

where , , and  are constants. Consistency with the one dimensional expression requires . The condition 
 arises on physical, not mathematical grounds; it reects the fact that experiments have not shown evidence for an effect

called torsion, in which vectors would rotate in a certain way when transported. The  and  terms have a different physical
significance than the  term.

Suppose an observer uses coordinates such that all objects are described as lengthening over time, and the change of scale
accumulated over one day is a factor of . This is described by the derivative , which affects the  term. Since the
metric is used to calculate squared distances, the  matrix element scales down by . To compensate for , so we
need to add a positive correction term, , to the covariant derivative. When the same observer measures the rate of change of
a vector  with respect to space, the rate of change comes out to be too small, because the variable she differentiates with respect
to is too big. This requires , and the correction is of the same size as the  correction, so . We find 

.

Self-check: Does the above argument depend on the use of space for one coordinate and time for the other?

The resulting general expression for the Christoffel symbol in terms of the metric is

One can go back and check that this gives .
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Self-check: In the case of  dimension, show that this reduces to the earlier result of .

 is not a tensor, i.e., it doesn’t transform according to the tensor transformation rules. Since  isn’t a tensor, it isn’t obvious that
the covariant derivative, which is constructed from it, is tensorial. But if it isn’t obvious, neither is it surprising – the goal of the
above derivation was to get results that would be coordinate-independent.

In Example , we inferred the following properties for the Christoffel symbol  on a sphere of radius  is
independent of  and ,  in the northern hemisphere (colatitude  less than ),  on the equator, and 

 in the southern hemisphere.

The metric on a sphere is . The only nonvanishing term in the expression for  is the one
involving . The result is , which can be verified to have the properties claimed
above.

The geodesic equation
A world-line is a timelike curve in spacetime. As a special case, some such curves are actually not curved but straight. Physically,
the ones we consider straight are those that could be the worldline of a test particle not acted on by any non-gravitational forces
(section 5.1). Mathematically, we will show in this section how the Christoffel symbols can be used to find differential equations
that describe such motion. The world-line of a test particle is called a geodesic. The equations also have solutions that are spacelike
or lightlike, and we consider these to be geodesics as well.

Geodesics play the same role in relativity that straight lines play in Euclidean geometry. In Euclidean geometry, we can specify two
points and ask for the curve connecting them that has minimal length. The answer is a line. In special relativity, a timelike geodesic
maximizes the proper time (section 2.4) between two events.

In special relativity, geodesics are given by linear equations when expressed in Minkowski coordinates, and the velocity vector of a
test particle has constant components when expressed in Minkowski coordinates. In general relativity, Minkowski coordinates don’t
exist, and geodesics don’t have the properties we expect based on Euclidean intuition; for example, initially parallel geodesics may
later converge or diverge.

Characterization of the geodesic

Figure : The geodesic, 1, preserves tangency under parallel transport. The non-geodesic curve, 2, doesn’t have this property; a
vector initially tangent to the curve is no longer tangent to it when parallel-transported along it.

A geodesic can be defined as a world-line that preserves tangency under parallel transport, figure . This is essentially a
mathematical way of expressing the notion that we have previously expressed more informally in terms of “staying on course” or
moving “inertially.” (For reasons discussed in more detail below, this definition is preferable to defining a geodesic as a curve of
extremal or stationary metric length.)

A curve can be specified by giving functions  for its coordinates, where  is a real parameter. A vector lying tangent to the
curve can then be calculated using partial derivatives, . There are three ways in which a vector function of  could
change:

1. it could change for the trivial reason that the metric is changing, so that its components changed when expressed in the new
metric

2. it could change its components perpendicular to the curve; or
3. it could change its component parallel to the curve.
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Possibility 1 should not really be considered a change at all, and the definition of the covariant derivative is specifically designed to
be insensitive to this kind of thing. 2 cannot apply to , which is tangent by construction. It would therefore be convenient if 
happened to be always the same length. If so, then 3 would not happen either, and we could reexpress the definition of a geodesic
by saying that the covariant derivative of  was zero. For this reason, we will assume for the remainder of this section that the
parametrization of the curve has this property. In a Newtonian context, we could imagine the  to be purely spatial coordinates,
and  to be a universal time coordinate. We would then interpret  as the velocity, and the restriction would be to a
parametrization describing motion with constant speed. In relativity, the restriction is that  must be an affine parameter. For
example, it could be the proper time of a particle, if the curve in question is timelike.

Covariant derivative with respect to a parameter

The notation of in the above section is not quite adapted to our present purposes, since it allows us to express a covariant derivative
with respect to one of the coordinates, but not with respect to a parameter such as . We would like to notate the covariant
derivative of  with respect to  as , even though  isn’t a coordinate. To connect the two types of derivatives, we can use a
total derivative. To make the idea clear, here is how we calculate a total derivative for a scalar function , without tensor
notation:

This is just the generalization of the chain rule to a function of two variables. For example, if  represents time and  temperature,
then this would tell us the rate of change of the temperature as a thermometer was carried through space. Applying this to the
present problem, we express the total covariant derivative as

The geodesic equation

Recognizing  as a total non-covariant derivative, we find

Substituting  for , and setting the covariant derivative equal to zero, we obtain

This is known as the geodesic equation.

If this differential equation is satisfied for one affine parameter , then it is also satisfied for any other affine parameter 
, where  and  are constants. Recall that affine parameters are only defined along geodesics, not along arbitrary

curves. We can’t start by defining an affine parameter and then use it to find geodesics using this equation, because we can’t define
an affine parameter without first specifying a geodesic. Likewise, we can’t do the geodesic first and then the affine parameter,
because if we already had a geodesic in hand, we wouldn’t need the differential equation in order to find a geodesic. The solution to
this chicken-and-egg conundrum is to write down the differential equations and try to find a solution, without trying to specify
either the affine parameter or the geodesic in advance.

The geodesic equation is useful in establishing one of the necessary theoretical foundations of relativity, which is the uniqueness of
geodesics for a given set of initial conditions. If the geodesic were not uniquely determined, then particles would have no way of
deciding how to move. The form of the geodesic equation guarantees uniqueness, because one can use it to define an algorithm that
constructs a geodesic for a given set of initial conditions.

Not characterizable as curves of stationary length

The geodesic equation may seem cumbersome. Why not just define a geodesic as a curve connecting two points that maximizes or
minimizes its own metric length? The trouble is that this doesn’t generalize nicely to curves that are not timelike. The casual reader

T i T i

T i

xi

λ T i

λ

λ

T i λ ∇λT
i λ

f(x, y)

= +
df

dλ

∂f

∂x

∂x

∂λ

∂f

∂y

∂y

∂λ
(9.4.14)

λ f

∇λT
i = ( )∇bT

i dxb

dλ

= ( + )∂bT
i Γi

bcT
c dxb

dλ

∂bT
i dxb

dλ

= +∇λT
i dT i

dλ
Γi

bcT
c dx

b

dλ
(9.4.15)

∂xi

∂λ
T i

+ = 0
d2xi

dλ2
Γi

bc

dxc

dλ

dxb

dλ
(9.4.16)

λ

= aλ+bλ′ a b

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/3476?pdf


9.4.6 https://phys.libretexts.org/@go/page/3476

may wish to skip the remainder of this subsection, which discusses this point.

For the spacelike case, we would want to define the proper metric length  of a curve as , the minus sign
being necessary because we are using a metric with signature , and we want the result to be real. The quantity  can be
thought of as the result we would get by approximating the curve with a chain of short line segments, and adding their proper
lengths. In the case where the whole curve lies within a plane of simultaneity for some observer,  is the curve’s Euclidean length
as measured by that observer. Our  is neither a maximum nor a minimum for a spacelike geodesic connecting two events. To see
this, pick a frame in which the two events are simultaneous, and adopt Minkowski coordinates such that the points both lie on the 

-axis. Deforming the geodesic in the  plane does what we expect according to Euclidean geometry: it increases the length.
Deforming it in the  plane, however, reduces the length (as becomes obvious when you consider the case of a large deformation
that turns the geodesic into a curve of length zero, consisting of two lightlike line segments). The result is that the geodesic is
neither a minimizer nor a maximizer of .

Maximizing or minimizing the proper length is a strong requirement. A related but more permissive criterion to apply to a curve
connecting two fixed points is that if we vary the curve by some small amount, the variation in length should vanish to first order.
For example, two points  and  on the surface of the earth determine a great circle, i.e., a circle whose circumference equals that
of the earth. This great circle gives us two different paths by which we could travel from  to . One of these will usually be
longer than the other. Both of these are as straight as they can be while keeping to the surface of the earth, so in this context of
spherical geometry they are both considered to be geodesics. One thing that the two paths have in common is that they are both
stationary. Stationarity is defined as follows. Given a certain parametrized curve , let us fix some vector  at each point on
the curve that is tangent to the earth’s surface, and let  be a continuous function of  that vanishes at the end-points. Then if is
small compared to the radius of the earth, we can clearly define what it means to perturb  by , producing another curve 
similar to, but not the same as, . Stationarity means that the difference in length between  and  is of order  for small . This is
a generalization of the elementary calculus notion that a function has a zero derivative near an extremum or point of inection. In
our example on the surface of the earth, the two geodesics connecting  and  are both stationary.

Spacelike geodesics in special relativity are stationary by the above definition. However, this assertion may be misleading. Because
we construct the displacement as the product , its derivative is also guaranteed to shrink in proportion to for small . We could
loosen this requirement a little bit, and only require that the magnitude of the displacement be of order . In this case, one can show
that spacelike curves are not stationary. For example, any spacelike curve can be approximated to an arbitrary degree of precision
by a chain of lightlike geodesic segments. Thus an arbitrarily small perturbation in the curve reduces its length to zero.

The situation becomes even worse for lightlike geodesics. Here we would have to define what “length” was. We could either take
an absolute value, , or not, . If we don’t take the absolute value,  need not be real for
small variations of the geodesic, and therefore we don’t have a well-defined ordering, and can’t say whether  is a maximum, a
minimum, or neither. Regardless of whether we take the absolute value, we have  for a lightlike geodesic, but the square root
function doesn’t have differentiable behavior when its argument is zero, so we don’t have stationarity. If we do take the absolute
value, then for the geodesic curve, the length is zero, which is the shortest possible. However, one can have nongeodesic curves of
zero length, such as a lightlike helical curve about the -axis.
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