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3.5: The Velocity and Acceleration Vectors

Explain the velocity vector and the acceleration vector

The Velocity Vector
In a freshman course in Newtonian mechanics, we would define a vector as something that has three components. Furthermore, we
would require it to transform in a certain way under a rotation. For example, we could form the collection of numbers 

, where  is the fundamental charge,  is the temperature in Buffalo, New York, and  measures how the
stock market is doing. But this would not be a vector, since it doesn’t act the right way when rotated (this particular “vector” is
invariant under rotations). Figure  gives a less silly non-example. In contradistinction to a vector, a scalar is specified by a
single real number and is invariant under rotations.

Figure : A playing card returns to its original state when rotated by 180 degrees. Its orientation, unlike the orientation of an
arrow, doesn’t behave as a vector, since it doesn’t transform in the usual way under rotations. Under a 180-degree rotation, a vector
should negate itself rather than coming back to its original state.

The most basic example of a Newtonian vector was a displacement , and from the displacement vector we would go
on to construct other quantities such as a velocity vector . This worked because in Newtonian mechanics  was
treated as a scalar, and dividing a vector by a scalar produces something that again transforms in the right way to be a vector.

Now let’s upgrade to relativity, and work through the same steps by analogy. When I say “vector” in this book, I mean something
that in  dimensions has four components. This can also be referred to as a four-vector. Our only example so far has been the
spacetime displacement vector . This vector transforms according to the Lorentz transformation. In
general, we require as part of the definition of a (four-)vector that it transform in the usual way under both rotations and boosts
(Lorentz transformations). We might now imagine that the next step should be to construct a velocity four-vector . But
relativistically, the quantity  would not transform like a vector, e.g., if  was spacelike, then there would be a frame in
which we had , and then  would be finite in some frames but infinite in others, which is absurd.

To construct a valid vector, we have to divide  by a scalar. The only scalar that could be relevant would be the proper time ,
and this is indeed how the velocity vector is defined in relativity. For an inertial world-line (one with constant velocity), we define 

. The generalization to noninertial world-lines requires that we make this definition into a derivative:

Not all objects have well-defined velocity vectors. For example, consider a ray of light with a straight world-line, so that the
derivative is the same as the ratio of finite differences , i.e., calculus isn’t needed. A ray of light has ,
so that applying the metric to any segment of its world-line gives . Attempting to calculate  then gives
something with infinite components. We will see in section 4.3 that all massless particles, not just photons, travel at , so the same
would apply to them. Therefore a velocity vector is only defined for particles whose world-lines are timelike, i.e., massive
particles.

Learning Objectives

(e, T , DJIA) e T DJIA

3.5.1

3.5.1

(Δx, Δy, Δz)

v= Δr/ Δ t Δt

3 +1

Δr = (Δt, Δx, Δy, Δz)

Δr/ Δ t

Δr/ Δ t r

Δt = 0 Δr/ Δ t

Δr Δτ

v= Δr/ Δ τ

v=
dr

dτ
(3.5.1)

d. . . /d. . . Δ. . . /Δ. . . v= c

Δτ = 0 v= Δr/ Δ τ

c

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/3436?pdf
https://phys.libretexts.org/Bookshelves/Relativity/Special_Relativity_(Crowell)/03%3A_Kinematics/3.05%3A_The_Velocity_and_Acceleration_Vectors


3.5.2 https://phys.libretexts.org/@go/page/3436

An object at rest has . The first component indicates that if we attach a clock to the object with duct tape, the proper
time measured by the clock suffers no time dilation according to an observer in this frame, . The second component
tells us that the object’s position isn’t changing,

The Acceleration Vector

The acceleration vector is defined as the derivative of the velocity vector with respect to proper time,

It measures the curvature of a world-line. Its squared magnitude is the minus the square of the proper acceleration, meaning the
acceleration that would be measured by an accelerometer carried along that world-line. The proper acceleration is only
approximately equal to the magnitude of the Newtonian acceleration three-vector, in the limit of small velocities.

Suppose a spaceship moves so that the acceleration is judged to be the constant value a by an observer on board. Find the
motion  as measured by an observer in an inertial frame.

Solution

Let  stand for the ship’s proper time, and let dots indicate derivatives with respect to . The ship’s velocity has magnitude ,
so

An observer who is instantaneously at rest with respect to the ship judges is to have an acceleration vector  (because the
low-velocity limit applies). The observer in the  frame agrees on the magnitude of this vector, so

The solution of these differential equations is

and

(choosing constants of integration so that the expressions take on their simplest forms). Eliminating  gives

shown in figure . The world-line is a hyperbola, and this type of motion is sometimes referred to as hyperbolic motion.

Figure : A spaceship (curved worldline) moves with an acceleration perceived as constant by its passengers

As  approaches infinity,  approaches the speed of light. In the same limit,  increases exponentially with proper time, so
that surprisingly large distances can in theory be traveled within a human lifetime.
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2

ẋ2
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Another interesting feature of this problem is the dashed-line asymptote, which is lightlike. Suppose we interpret this as the
world-line of a ray of light. The ray comes closer and closer to the ship, but will never quite catch up. Thus provided that the
rocket never stops accelerating, the entire region of spacetime to the left of the dashed line is forever hidden from its
passengers. That is, an observer who undergoes constant acceleration has an event horizon — a boundary that prevents her
from observing anything on the other side. You may have heard about the event horizon associated with a black hole. This
example shows that we can have event horizons even when there is no gravity at all.

Constraints on the velocity and acceleration vectors

Counting degrees of freedom

There is something misleading about the foregoing treatment of the velocity and acceleration vectors, and the easiest way to see
this is by introducing the idea of a degree of freedom. Often we can describe a system using a list of real numbers. For the hand on
a clock, we only need one number, such as  o’clock. This is because the hand is constrained to stay in the plane of the clock’s face
and also to keep its tail at the center of the circle. Since one number describes its position, we say that it has one degree of freedom.
If a hiker wants to know where she is on a map, she has two degrees of freedom, which could be specified as her latitude and
longitude. If she was in a helicopter, there would be no constraint to stay on the earth’s surface, and the number of degrees of
freedom would be increased to three. If we also considered the helicopter’s velocity to be part of the description of its state, then
there would be a total of six degrees of freedom: one for each coordinate and one for each component of the velocity vector.

Now suppose that we want to specify a particle’s velocity and acceleration. In Newtonian mechanics, we would describe these
three vectors as possessing a total of six degrees of freedom: , and . Upgrading from Newtonian mechanics to
relativity can’t change the number of degrees of freedom. For example, an electron’s acceleration is fully determined by the force
we exert on it, and we might control that acceleration by placing a proton nearby and producing an electrical attraction. The
position of the proton (three degrees of freedom for its three coordinates) determines the electron’s acceleration, so the acceleration
has exactly three degrees of freedom as well.

This means that there must be some hidden redundancy in the eight components of the velocity and acceleration four-vectors. The
system only has six degrees of freedom, so there must be two constraints that we didn’t know about. Similarly, I’ve gone hiking
and had my GPS unit claim that I was a thousand feet above a lake or three thousand feet under a mountain. In those situations
there was a constraint that I knew about but that the GPS didn’t: that I was on the surface of the earth.

Normalization of the velocity

The first constraint arises naturally from a geometrical interpretation of the velocity four-vector, shown in Figure . The curve
represents the world-line of a particle. The dashed line is drawn tangent to the world-line at a certain moment. Under a microscope,
the dashed line, which represents a possible inertial motion of a particle, is indistinguishable from the solid curve, which is
noninertial. The dashed line has a slope , which corresponds to a velocity . The figure is drawn in 

 dimensions, but in  dimensions we would want to know more than this number. We would want to know the orientation
of the dashed line in the three spatial dimensions, i.e., not just the speed of the particle but also its direction of motion. All the
desired information can be encapsulated in a vector. Both of the vectors shown in the figure are parallel to the dashed line, so even
though they have different lengths, there is no difference between the velocities they represent. Since we want the particle to have a
single well-defined vector to represent its velocity, we want to pick one vector from among all the vectors parallel to the dashed
line, and call that “the” velocity vector.

Figure : Both vectors are tangent vectors.
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We have already implicitly made this choice. It follows from the original definition  that the velocity vector’s squared
magnitude  is always equal to , even though the object whose motion it describes is not moving at the speed of light.
This, along with the requirement that the velocity vector lie within the future rather than the past light cone, uniquely specifies
which tangent vector we want. The requirement  is an example of a recurring idea in physics and mathematics called
normalization. The idea is that we have some object (a vector, a function, . . . ) that could be scaled up or down by any amount, but
from among all the possible scales, there is only one that is the right one. For example, a gambler might place a horse’s chance of
winning at  to , but a physicist would divide these by  in order to normalize the probabilities to  and , the idea being that
the total probability should add up to . Our definition of the velocity vector implies that it is normalized. Thus an alternative,
geometrical definition of the velocity vector would have been that it is the vector that is tangent to the particle’s world-line, future-
directed, and normalized to .

When we hear something referred to as a “vector,” we usually take this is a statement that it not only transforms as a vector, but
also that it adds as a vector. But the sum of two velocity vectors would not typically be a valid velocity vector at all, since it would
not have unit magnitude. This lack of additivity would in any case have been expected because velocities don’t add linearly in
relativity (section 3.3).

Velocity vectors are required to have . If a vector qualifies as a valid velocity vector in some frame, could it be invalid
in another frame?

A nice way of thinking about velocity vectors is that every such vector represents a potential observer. That is, the velocity vectors
are the observer-vectors  of chapter 1, but with a normalization requirement  that we did not impose earlier. An observer
writes her own velocity vector as , i.e., as the unit vector in the timelike direction. Since we have no notion of adding one
observer to another observer, it makes sense that velocity vectors don’t add relativistically. Similarly, there is no meaningful way to
define the magnitude of an observer, so it makes sense that the magnitude of a velocity vector carries no useful information and can
arbitrarily be set equal to 1.

Regarding the magnitude, note also that the magnitude of a vector is frame-invariant, and therefore it wouldn’t make sense to
imagine that the magnitude of an object’s four-velocity would produce some number telling you how fast the object was going.
How fast relative to what?

If  and  are both future-directed, properly normalized velocity vectors, and if the signature is  as in this book, then their
inner product is , the gamma factor, introduced in section 1.3, corresponding their relative velocity.

Orthogonality of the velocity and acceleration

Now for the second of the two constraints deduced above:

Suppose an observer claims that at a certain moment in time, a particle has  and . That is, the particle is at rest 
 and its  is growing by  units per second. This is impossible, because after an infinitesimal time interval , this rate of

change will result in , which is not properly normalized: its magnitude has grown from  to . The observer
is mistaken. This is not a possible combination of velocity and acceleration vectors. In general, we always have the following
constraint on the velocity and acceleration vectors:

This is analogous to the three-dimensional idea that in uniform circular motion, the perpendicularity of the velocity and
acceleration three-vectors is what causes the velocity vector to rotate without changing its magnitude.

This page titled 3.5: The Velocity and Acceleration Vectors is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
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