
6.4.1 https://phys.libretexts.org/@go/page/3455

6.4: Duality

Explain the concept of duality

Duality in 3+1 dimensions
In our original -dimensional example of the cuckoo clock and the earth, we had duality: the measurements  and 

 really provided the same information, and it didn’t matter whether we made our scalar out of covector  and
vector  or covector  and vector . All these quantities were simply clock rates, which could be described either by their
frequencies (covectors) or their periods (vectors).

To generalize this to  dimensions, we need to use the metric — a piece of machinery that we have never had to employ since
the beginning of the chapter. Given a vector , suppose we knew how to produce its covector version . Then we could hook
up the plumbing to form , which is just a number. What number could it be? The only reasonable possibility is the squared
magnitude of , which we calculate using the metric as . Since we can think of covectors as functions that take vectors
to real numbers, clearly  should be the function  defined by .

Given the vector  in -dimensional Minkowski coordinates, find the covector , i.e., it is dual.

Our goal is to write out an explicit expression for the covector in component form,

To define these components, we have to have some basis in mind, consisting of one time like observer-vector  and one
spacelike vector of simultaneity . Since we’re doing this in Minkowski coordinates (section 1.2), let’s notate these as 
and , where the hats indicate that these are unit vectors in the sense that  and . Writing  in terms of 
and  means that we’re identifying with the function  defined by . Therefore

or

The result of the formidable, fancy-looking calculation in Example  was simply to take the
vector  and ip the sign of its spacelike component to give the its dual, the covector . Looking back at why this
happened, it was because we were using Minkowski coordinates, and in Minkowski coordinates the form of the metric is

Therefore, we can always find duals in this way, provided that

1. we’re using Minkowski coordinates, and
2. the signature of the metric is, as assumed throughout this book, , not .

Assume Minkowski coordinates and signature . Given the vector

and the covector

find  and .
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f →= (1, 2) (6.4.6)
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Solution

By the rule established above, we can find  simply by ipping the sign of the ,

To find , we need to ask what vector , if we ipped the sign of , would give us . Obviously this is

In other words, ipping the sign of the spacelike part of a vector is also the recipe for changing covectors into vectors.

Example  shows that in Minkowski coordinates, the operation of changing a covector to the corresponding vector is the same
as that of changing a vector to its covector. Thus, the dual of a dual is the same thing you started with. In this respect, duality is
similar to arithmetic operations such as  and . That is, the duality is a self-inverse operation — it undoes itself,
like getting two sex-change operations in a row, or switching political parties twice in a country that has a two-party system.
Birdtracks notation makes this self-inverse property look obvious, since duality means switching a inward arrow to an outward one
or vice versa, and clearly doing two such switches gives back the original notation. This property was established in Example 
by using Minkowski coordinates and assuming the signature to be , but it holds without these assumptions.

In the general case where the coordinates may not be Minkowski, the above analysis plays out as follows. Covectors and vectors
are represented by row and column vectors. The metric can be specified by a matrix  so that the inner product of column vectors 
and  is given by , where  represents the transpose. Rerunning the same logic with these additional complications, we find
that the dual of a vector  is , while the dual of a covector  is , where  is the inverse of the matrix .

Change of basis

We saw in Section 6.2 that in  dimensions, vectors and covectors has opposite scaling properties under a change of units, so
that switching our base unit from hours to minutes caused our frequency covectors to go up by a factor of , while our time
vectors went down by the same factor. This behavior was necessary in order to keep scalar products the same. In more than one
dimension, the notion of changing units is replaced with that of a change of basis. In linear algebra, row vectors and column vectors
act like covectors and vectors; they are dual to each other. Let  be a matrix made of column vectors, representing a basis for the
column-vector space. Then a change of basis for a row vector  is expressed as , while the same change of basis for a
column vector  is . We then find that the scalar product is unaffected by the change of basis, since 

.

In the important special case where  is a Lorentz transformation, this means that covectors transform under the inverse
transformation, which can be found by ipping the sign of . This fact will be important in the following section.
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