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10.5: Invariants

Invariants and electromagnetic field

We’ve seen cases before in which an invariant can be formed from a rank-  tensor. The square of the proper time corresponding to
a timelike spacetime displacement  is  or, in the index notation introduced in section , . From the momentum tensor we
can construct the square of the mass .

There are good reasons to believe that something similar can be done with the electromagnetic field tensor, since electromagnetic
fields have certain properties that are preserved when we switch frames. Specifically, an electromagnetic wave consists of electric
and magnetic fields that are equal in magnitude and perpendicular to one another. An electromagnetic wave that is a valid solution
to Maxwell’s equations in one frame should also be a valid wave in another frame. It can be shown that the following two
quantities are invariants:

and

The fact that these are written as vector dot products of three-vectors shows that they are invariant under rotation, but we also want
to show that they are relativistic scalars, i.e., invariant under boosts as well. To prove this, we can write them both in tensor
notation. The first invariant can be expressed as , while the second equals , where  is the
Levi-Civita tensor.

A field for which both  is called a null field. An electromagnetic plane wave is a null field, and although this is easily
verifiable from the definitions of  and , there is a deeper reason why this should be true, and this reason applies not just to
electromagnetic waves but to other types of waves, such as gravitational waves. Consider any relativistic scalar  that is a
continuous function of the electromagnetic field tensor , i.e., a continuous function of ’s components. We want  to vanish
when . Given an electromagnetic plane wave, we can do a Lorentz boost parallel to the wave’s direction of propagation.
Under such a boost the wave suffers a Doppler shift in its wavelength and frequency, but in addition to that, the transformation
equations in section 10.4 imply that the intensity of the fields is reduced at any given point. Thus in the limit of an indefinite
process of acceleration, , and therefore  as well. But since  is a scalar, its value is independent of our frame of
reference, and so it must be zero in all frames.

 and  are a complete set of invariants for the electromagnetic field, meaning that the only other electromagnetic invariants are
those that either can be determined from  and  or depend on the derivatives of the fields, not just their values. To see that  and

 are complete in this sense, we can break the possibilities down into cases, according to whether  and  are zero or nonzero,
positive or negative. As a representative example, consider the case where  and . First we rotate our frame of reference
so that  is along the  axis, and  lies in the -  plane. Next we do a boost along the  axis in order to eliminate the  component

of ; the field transformation equations in section 10.4 make this possible because . The result is that we have found a
frame of reference in which  and  both lie along the positive  axis. The only frame-independent information that there is to
know is the information available in this frame, and that consists of only two positive real numbers,  and , which can be
determined from the values of  and .

Although an electromagnetic plane wave is a null field, the converse is not true. For example, we can create a static null field
out of a static, uniform electric field and a static, uniform magnetic field, with the two fields perpendicular to one another.
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Let  be the squared magnitude of the Poynting vector, . Since  can be expressed in terms of dot
products and scalar products, it is guaranteed to be invariant under rotations. However, it is not a relativistic invariant. For
example, if we do a Lorentz boost parallel to the direction of an electromagnetic wave, the intensity of the wave changes, and
so does .

The quantity  is clearly an invariant, and it doesn’t vanish for an electromagnetic plane wave — in fact, it is

infinite for a plane wave. Does this contradict our proof that any invariant must vanish for a plane wave? No, because we only
proved this in the case where the invariant is defined as a continuous function of . Our function  is a discontinuous
function of  when . Such discontinuous invariants tend not to be very interesting. For suppose we try to measure ,
and the thing we’re measuring happens to be an electromagnetic wave. Our measurements of the fields will probably be
statistically consistent with zero, and therefore the error bars on our measurement of  will likely be infinitely large.
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