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3.7: The Projection Operator

Explain the projection operator

A frequent source of confusion in relativity is that we write down equations that are coordinate-dependent, but forget the
dependency. Similarly, it is possible to write expressions that are only valid for one choice of signature. The following notation,
defining a projection operator , is one tool for avoiding these difficulties.

Usually  is the future timelike vector representing a certain observer, but the definition can be applied as long as  isn’t lightlike.
The idea being expressed is that we want to get rid of any part of  that is parallel to ’s arrow of time. In a graph constructed
according to ’s Minkowski coordinates, we cast ’s shadow down perpendicularly onto the spacelike axis, or the spacelike three-
plane in  dimensions. This is why  is referred to as a projection operator. The notation sometimes allows us to express the
things that we would otherwise express by explicitly or implicitly constructing and referring to ’s spacelike Minkowski
coordinates.

 has the following properties:

1. 
2.  is parallel to .
3. 
4. 
5. 
6.  is linear, i.e.,  and 
7. , where  is any variable and  doesn’t depend on .
8. If  and  are both future timelike, and , then we can express  as , where  has the usual

interpretation for world-lines that coincide with these two vectors.

All of these hold regardless of whether the signature is  or , and none of them refer to any coordinates.
Properties 1 and 2 can serve as an alternative, geometrical definition of . Property 3 says that an observer considers herself to
be at rest. Property 4 is a general property of all projection operators. Property 8 splits the vector into its spatial and temporal
parts according to .

Sometimes if we know a position, velocity, or acceleration fourvector, we want to find out how these would be measured by a
particular observer using clocks and rulers. The following table  shows how to switch back and forth between the two
representations. We use, for example, the notation  to mean the velocity vector of the form  that would be measured
by an observer whose velocity vector is  (so that the subscript is an “ ” for “observer,” not a zero). Since this type of vector,
expressed in the Minkowski coordinates of observer , has a zero time component, we refer to it as a three-vector. In all of these
expressions, the velocity vectors  and  are assumed to be normalized, and the signature is assumed to be  (one
implication being that  is simply ).

Table : How to switch back and forth between the two representations.

Finding the three-vector from the four-vector Finding the four-vector from the three-vector

, where  is found as above
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As an example of how these are derived, the three-velocity  is the derivative of  with respect to observer ’s Minkowski time
coordinate , whereas the four-velocity is defined as the derivative of  with respect to the proper time  of the world-line being
observed. Therefore we have

and applying property 7 of the projection operator this becomes

The similar but messier derivation of the expression for  is problem Q15. In manipulating expressions of this type, the identity 

 is often handy.

The following example is a form of a paradox discussed by Lewis and Tolman in 1909.

Figure : Frame of reference of observer 

Figure  shows the frame of reference of observer  in which identical particles  and  are at initially rest and located at
equal distances  from the origin along the  and  axes. External forces of equal strength act in the directions shown by the
arrows so as to produce accelerations of magnitude . The system is in rotational equilibrium , because the rate at
which particle  picks up clockwise angular momentum is the same as the rate at which  acquires it in the counterclockwise
direction.

Now change to the frame of reference o0, moving to the right relative to  at velocity . Particle ’s distance from the origin is
Lorentz-contracted from  to , so its angular momentum is also reduced by . It now appears that the system’s total
angular momentum is increasing in the clockwise sense. How can we have rotational equilibrium in one frame, but not
another?

The resolution of the paradox is that the accelerations transform as well. In the original frame , the four-velocities are 
, and the four-accelerations are  and . Applying a Lorentz

transformation, we have  and
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Our definition of angular momentum is expressed in terms of three-vectors such as  and , not four-vectors like  and 
. We have

Using the relations  and , we find

and

The result is

which is zero.
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