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8.1: Rotating Frames of Reference

Explain rotation and rotating coordinate system

No clock synchronization
Panels 1 and 2 of figure  recapitulate the result of Example 1.4.6. The set of three clocks fixed to the earth in  (1) have
been synchronized by Einstein synchronization (Example 1.1.4), i.e., by exchanging ashes of light. The three clocks aboard the
moving train,  (2), have been synchronized in the same way, and the events that were simultaneous according to frame 1 are
not simultaneous in frame 2. There is a systematic shift in the times, which is represented by the term  in the Lorentz
transformation (Equation 1.4.1).

Figure : Clocks can’t be synchronized in a rotating frame of reference.

Now suppose we take the diagram of the train and wrap it around,  (3). If we go on and close the loop, making the chain into a
circle like a chain necklace, we have a problem. The trend in the clock times can continue until it wraps back around to the
beginning, but then there will be a discrepancy.

We conclude that clocks can’t be synchronized in a rotating frame of reference. Such a frame does not admit a universal time
coordinate because Einstein synchronization isn’t transitive: synchronizing clock A with clock B, and B with C, does not imply that
A is synchronized with C. This nontransitivity is one way of defining what we mean by rotation. That is, if the operational
definition of an inertial frame given in section 5.1, shows that our frame is noninertial, and we want to know more about why it’s
noninertial, testing for this nontransitivity is a way of finding out whether it’s because of rotation.

Rotation is locally detectable

The people aboard the circular train know that their attempts at synchronization fail, so they can tell, without reference to anything
external, that they’re going in a circle.

Although this is a book on special, not general, relativity, it’s interesting to note the following possibility. Suppose that we verify,
by local experiments, that we have a good, nonrotating, inertial frame of reference. It is then imaginable that if we view distant
galaxies from this frame, we will see them rotate at some angular frequency  about some axis on the celestial sphere. If this is
observed, then we must infer that it is the universe as a whole — not our laboratory! — that is rotating. Such an effect has been
searched for, and, for example, an upper limit  radian/year was inferred by Clemence. General-relativistic models of
such rotating cosmologies have a preferred vector constituting the direction of the axis about which matter rotates, but there is no
global center of rotation. Current upper limits on  are good enough to rule out any significant effect on cosmological expansion
due to centrifugal forces.

The Sagnac effect

Although the train scenario is obviously unrealistic, the time shift is far from hypothetical. This type of effect, called the Sagnac
effect, was first observed by M. Georges Sagnac in 1913, and it relates to the principle of the ring laser gyroscope (Example 1.1.4),
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used in passenger jets. (The name is French, and is pronounced \sah-NYAHK.") To find the Sagnac effect quantitatively, we note
that in the circular train example (ignoring signs) the relevant term in the Lorentz transformation, , would accumulate, after one
complete circuit of Einstein synchronization, a discrepancy  equal to the circumference of the circle multiplied by . If the
circle's radius is  and the angular velocity , we have . This can be rewritten in terms of the circle's area  as 

, or, reinserting factors of  to accomodate SI units, . The proportionality to the enclosed area is not an
accident; the product  has the form of the integrand  occurring in Stokes' theorem.

A clock at the equator of the earth rotates at a frequency  of  radians per sidereal day, suffering a Sagnac effect of 
per day. The traveling atomic clocks in the Hafele-Keating experiment went around the world in both directions, and were
compared with a third set of clocks that stayed in Washington,DC. Since the time required to y around the earth was also on
the order of one day, the differences in the values of  for the three sets of clocks were on the same order of magnitude as the 

 of the earth, and we therefore expect cumulative differential Sagnac effects that are also on the order of a hundred nano
seconds. These effects exist only in the rotating frame of the earth, but the things being measured are proper times, and proper
time is a scalar, so the experimental results are independent of what frame of reference is used for calculating them. Since the
airline pilots provided Hafele and Keating with navigational data referred to the rotating earth, they analyzed their results in the
rotating frame, in which there was a Sagnac effect. They could equally well have transformed their data into the frame of the
stars, in which case the same result would have been predicted, but it would have been described as arising from kinematic
time dilation.

The ring laser gyroscope in the photo in Example 1.1.4 looks like it has an area on the order of  and uses red light. For
use in navigation, one wants to be able to detect a change in course of, say, one degree in our hour, or 

. The result is a time shift , which for red light is a phase shift of only 
 radian. In the original nineteenth-century experiments, this phase shift would have had to be

measured by producing interference between the two beams and measuring the change in intensity resulting from this change
in phase. Our estimate of  shows that this is impractical for a portable instrument. In a modern ring laser gyroscope, an active
laser medium is inserted in the loop, and the result is that the loop resonates at a frequency that is shifted from the laser’s
natural frequency by , where  is the circumference. The result is a frequency shift of a few Hz, which is easily
measurable. An alternative technique, used in the fiber optic gyroscope, is to wrap  turns of optical fiber around the
circumference, effectively changing  to .

A rotating coordinate system
The GPS system is a practical example of a case where we naturally want to employ a rotating coordinate system. Hikers and
sailors, after all, want to know where they are relative to the earth’s rotating surface. Since locations need to be determined to
within meters, the timing of signals needs to be done to a precision of something like , which is a few nanoseconds. This is
why the GPS satellites have atomic clocks aboard, and timing to this precision clearly requires that relativistic effects be taken into
account. We therefore need not a rotating Newtonian coordinate system but a rotating relativistic one. Let’s start with the
nonrotating frame, and define coordinates , with the spatial part  being ordinary cylindrical coordinates. For
simplicity, we’ll neglect the  coordinate in what follows. Extending the result of problem Q1 in chapter 7 from  dimensions
to , we have the metric

The results above show that we do not expect to be able to define a completely satisfactory time coordinate in the rotating frame, so
let’s start with the minimal change , where . This is at least enough to make world-lines of constant

 be ones that revolve around the origin at the appropriate frequency. Substituting , we find

Recognizing  as the velocity of one frame relative to another, and  as , we see that we do have a relativistic
time dilation effect in the  term. But the  and  terms look the same as in Equation . Why don’t we see any Lorentz
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contraction of the length scale in the azimuthal direction?

The answer is that coordinates in relativity are arbitrary, and just because we can write down a certain set of coordinates, that
doesn’t mean they have any special physical interpretation. The coordinates  do not correspond physically to the quantities
that a rotating observer  would measure with clocks and meter-sticks. If  uses a ruler to measure a short arc along the
circumference of the circle , the distance is a distance being measured between events in spacetime that are simultaneous in
the rest frame of the ruler, and these do not occur at the time value of the time coordinate . In the Lorentz transformation, for
linear motion, it is the  term applied to the times that fixes this problems and makes t0 properly represent simultaneity in the
new frame. In our rotational version, we could try to do something similar by defining a time coordinate , where  is a
function of  that is engineered so that the  cross term in the metric would go away. This can be done (the function  that
works turns out to be ), but the problem is that the  coordinate is not single-valued, in the sense that  and 

 would not produce the same . This is inevitable, as we’ve seen in in the beginning of this section, so we can’t
improve on the coordinates  and the metric (Equation ).

The coordinates , with the metric (Equation ) are the ones used in the GPS system, and in that context are called
Earth-Centered Inertial (ECI) coordinates. (Another name is Born coordinates.) Their time coordinate is not the time measured by a
clock in the rotating frame but is simply the time coordinate of the nonrotating frame of reference tied to the earth’s center.
Conceptually, we can imagine this time coordinate as one that is established by sending out an electromagnetic “tick-tock” signal
from the earth’s center, with each satellite correcting the phase of the signal based on the propagation time inferred from its own .
In reality, this is accomplished by communication with a master control station in Colorado Springs, which communicates with the
satellites via relays at Kwajalein, Ascension Island, Diego Garcia, and Cape Canaveral.
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