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10.6: Stress-energy tensor of the electromagnetic field

Explain the stress-energy tensor for electromagnetic field

The electromagnetic field has a stress-energy tensor associated with it. From our study of electromagnetism we know that the
electromagnetic field has energy density  and momentum density  (in units where ,
with  being the Coulomb constant). This fixes the components of the stress-energy tensor of the form  and , i.e., the top
row and left column, to look like this:

Figure : Pressure and tension in electrostatic fields.

The following argument tells us something about what to expect for the components , , and , which are interpreted as
pressures or tensions, depending on their signs. In figure  (1), the capacitor plates want to collapse against each other in the
vertical ( ) direction, but at the same time the internal repulsions within each plate make that plate want to expand in the 
direction. If the capacitor is built out of materials that hold their shape, then the electromagnetic tension in  is counteracted
by pressure  in the materials, while the electromagnetic pressure  is canceled by the materials’ tension .
We got these results for a particular physical situation, but relativity requires that the stress-energy be defined at every point based
on the fields at that point, so our conclusions must hold generally. In figure  (2) and figure  (3), white boxes have been
drawn in regions where the total field is strong and the fields are strongly interacting. In figure  (2), there is tension in the 
direction and pressure in ; the tension can be thought of as contributing to the attraction between the opposite charges. In 3, there
is also  tension and  pressure; the pressure contributes to the like charges’ repulsion.

To make this more quantitative, consider the discontinuity in  at the upper plate in figure  (1). The field abruptly switches
from  on the outside to some value  between the plates. By Gauss’s law, the charge per unit area on the plate must be 

. The average field experienced by the charge in the plate is , so the force per unit area, i.e., the
tension in the field, is . Thus we expect  if  is along the  axis.

For the reader who wants the full derivation of the remaining nine components of the tensor, we now give an argument that makes
use of the following list of its properties. Other readers can skip ahead to where the full tensor is presented.
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1.  is symmetric, .
2. The components must be second-order in the fields, e.g., we can have terms like , but not  or . This is

because Maxwell’s equations are linear, and when a wave equation is perfectly linear, the corresponding energy expression is
second-order in the amplitude of the wave.

3.  has the parity properties described in Example 9.2.3.
4. The electric and magnetic fields are treated symmetrically in Maxwell’s equations, so they should be treated symmetrically in

the stress-energy tensor. E.g., we could have a term like , but not .
5. In section 9.2, we saw that the trace energy condition  is satisfied by a cloud of dust if and only if the dust’s mass-

energy is not transported at a speed greater than . In section 4.1, we saw that all ultrarelativistic particles have the same
mechanical properties. Since a cloud of dust, in the limit where its speed approaches , is on the edge of the bound set by the
trace energy condition, , we expect that the electromagnetic field, in which disturbances propagate at , should also
exactly saturate the trace energy condition, so that .

6. The stress-energy tensor should behave properly under rotations, which basically means that , , and  should be treated
symmetrically.

7. An electromagnetic plane wave propagating in the  direction should not exert any pressure in the  or  directions.
8. If the field obeys Maxwell’s equations, then the energy-conservation condition  should hold.

These facts are enough to completely determine the form of the remaining nine components of the stress-energy tensor. Property 3
requires that all of these components be even under parity. Since electric fields flip under parity but magnetic fields don’t (Example
10.3.1), these components can only have terms like  and , not mixed terms like . Taking into account properties 4
and 6, we find that the diagonal terms must look like

and the off-diagonal ones

Property 5 gives  and 7 gives , so we have  and . The determination of  is left
as an exercise, problem Q4.

We have now established the complete expression for the stress-energy tensor of the electromagnetic field, which is

where

and , known as the Maxwell stress tensor, is given by

All of this can be expressed more compactly and in a coordinate-independent way as

where  is a future-directed velocity vector, so that  for the signature  used in this book, and  if the
signature is .

Let an electromagnetic plane wave (not necessarily sinusoidal) propagate along the -axis, with its polarization such that  is
in the  direction and  on the  axis, and . Then we have the following for the stress-energy tensor.

The  component tells us that the wave has a certain energy density. Because the wave is massless, we have 
, so the momentum density is the same as the energy density, and  is the same as . If this wave

strikes a surface in the  plane, the momentum the surface absorbs from the wave will be felt as a pressure, represented by 
.

In the ultrarelativistic limit , this becomes
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Example : Stress-energy tensor of a plane wave10.6.1
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which is exactly the same as the result for our electromagnetic wave. This illustrates the fact discussed in section 4.1 that all
ultrarelativistic particles have the same mechanical properties.

Figure : Mass of a capacitor.

Consider the mass of a charged parallel-plate capacitor, figure  (1), first in its rest frame and then in a frame boosted in
the direction parallel to the field (perpendicular to the plates). If we’re not careful, we run into the following paradox. Under a
boost, an electric field parallel to the boost remains unchanged. Therefore in the boosted frame, we have exactly the same field
strength, but filling a volume that has been decreased by length contraction. Therefore the mass-energy of the capacitor is
greatest in its own rest frame, which is absurd and would contradict our proof in section 9.3 that the energy-momentum of an
isolated system transforms as a four-vector.

There solution of the paradox comes from recognizing that we assumed the capacitor to be in static equilibrium, but we
ignored the stress-energy of whatever mechanical supports were maintaining this equilibrium. If we consider only the stress-
energy  of the electromagnetic field, then we have  (energy density) and  (tension in the

 direction, parallel to the field), figure  (2). It’s easy to see that this has a nonvanishing divergence, since 
at the plates, and there are no other terms in the stress-energy tensor that could compensate for this.

There is nothing surprising here; only the total stress-energy tensor  has to be divergenceless, not . It would violate the
laws of physics if the capacitor were to remain in equilibrium like this without some force to counter the electromagnetic
tension. Let’s say that this force is provided by a spring, as in figure  (3). The spring has its own contribution  to the
stress-energy. For convenience, let’s imagine making the spring filled in (rather than a hollow cylinder) and fattening it up so
that it fills the entire interior volume of the capacitor. Then to achieve static equilibrium in the rest frame, we need the pressure
in the spring to cancel out the pressure in the electric field. We therefore have  for the total stress-energy tensor.

If we now apply the tensor transformation law to the stress-energy tensor, we find that the stress-energy tensor in the boosted
frame contains a mass-energy density  that depends only on  and . (There also has to be an  component to keep
the plates from exploding laterally, but that doesn’t enter here.) But we have , so the problem is exactly the same as
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transforming a lump of nonrelativistic matter, and we know that that calculation comes out OK. For an explicit demonstration
that this still works out if we drop the simplifying assumption that the spring fills the entire interior volume of the capacitor,
see Rindler and Denur, “A simple relativistic paradox about electrostatic energy,” Am J Phys 56 (1988) 9.
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