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Preface

Waves are everywhere. Everything waves. There are familiar, everyday sorts of waves in water, ropes and springs. There are less
visible but equally pervasive sound waves and electromagnetic waves. Even more important, though only touched on in this book,
is the wave phenomenon of quantum mechanics, built into the fabric of our space and time. How can it make sense to use the same
word — “wave” — for all these disparate phenomena? What is it that they all have in common? The superficial answer lies in the
mathematics of wave phenomena. Periodic behavior of any kind, one might argue, leads to similar mathematics. Perhaps this is the
unifying principle. In this book, I introduce you to a deeper, physical answer to the questions. The mathematics of waves is
important, to be sure. Indeed, I devote much of the book to the mathematical formalism in which wave phenomena can be
described most insightfully. But I use the mathematics only as a tool to formulate the underlying physical principles that tie
together many different kinds of wave phenomena. There are three: linearity, translation invariance and local interactions. You will
learn in detail what each of these means in the chapters to come. When all three are present, wave phenomena always occur.
Furthermore, as you will see, these principles are a great practical help both in understanding particular wave phenomena and in
solving problems. I hope to convert you to a way of thinking about waves that will permanently change the way you look at the
world. The organization of the book is designed to illustrate how wave phenomena arise in any system of coupled linear oscillators
with translation invariance and local interactions. We begin with the single harmonic oscillator and work our way through standing
wave normal modes in more and more interesting systems. Traveling waves appear only after a thorough exploration of one-
dimensional standing waves. I hope to emphasize that the physics of standing waves is the same. Only the boundary conditions are
different. When we finally get to traveling waves, well into the book, we will be able to get to interesting properties very quickly.
For similar reasons, the discussion of two- and three-dimensional waves occurs late in the book, after you have been exposed to all
the tools required to deal with one-dimensional waves. This allows us at least to set up the problems of interference and diffraction
in a xiii xiv PREFACE simple way, and to solve the problems in some simple cases. Waves move. Their motion is an integral part
of their being. Illustrations on a printed page cannot do justice to this motion. For that reason, this book comes with moving
illustrations, in the form of computer animations of various wave phenomena. These supplementary programs are an important part
of the book. Looking at them and interacting with them, you will get a much more concrete understanding of wave phenomena than
can be obtained from a book alone. I discuss the simple programs that produce the animations in more detail in Appendix A. Also
in this appendix are instructions on the use of the supplementary program disk. The subsections that are illustrated with computer
animations are clearly labeled in the text by and the number of the program. I hope you will read these parts of the book while
sitting at your computer screens. The sections and problems marked with a * can be skipped by instructors who wish to keep the
mathematical level as low as possible. Two other textbooks on the subject, Waves, by Crawford and Optics by Hecht, influenced
me in writing this book. The strength of Crawford’s book is the home experiments. These experiments are very useful additions to
any course on wave phenomena. Hecht’s book is an encyclopedic treatment of optics. In my own book, I try to steer a middle
course between these two, with a better treatment of general wave phenomena than Hecht and a more appropriate mathematical
level than Crawford. I believe that my text has many of the advantages of both books, but students may wish to use them as
supplementary texts. While the examples of waves phenomena that we discuss in this book will be chosen (mostly) from familiar
waves, we also will be developing the mathematics of waves in such a way that it can be directly applied to quantum mechanics.
Thus, while learning about waves in ropes and air and electromagnetic fields, you will be preparing to apply the same techniques to
the study of the quantum mechanical world. I am grateful to many people for their help in converting this material into a textbook.
Adam Falk and David Griffiths made many detailed and invaluable suggestions for improvements in the presentation. Melissa
Franklin, Geoff Georgi, Kevin Jones and Mark Heald, also had extremely useful suggestions. I am indebted to Nicholas Romanelli
for copyediting and to Ray Henderson for orchestrating all of it. Finally, thanks go to the hundreds of students who took the waves
course at Harvard in the last fifteen years. This book is as much the product of their hard work and enthusiasm, as my own.

Howard Georgi
Cambridge, MA
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CHAPTER OVERVIEW

1: Harmonic Oscillation

Oscillators are the basic building blocks of waves. We begin by discussing the harmonic oscillator. We will identify the general
principles that make the harmonic oscillator so special and important. To make use of these principles, we must introduce the
mathematical device of complex numbers. But the advantage of introducing this mathematics is that we can understand the solution
to the harmonic oscillator problem in a new way. We show that the properties of linearity and time translation invariance lead to
solutions that are complex exponential functions of time.

Preview
In this chapter, we discuss harmonic oscillation in systems with only one degree of freedom.

1. We begin with a review of the simple harmonic oscillator, noting that the equation of motion of a free oscillator is linear and
invariant under time translation;

2. We discuss linearity in more detail, arguing that it is the generic situation for small oscillations about a point of stable
equilibrium;

3. We discuss time translation invariance of the harmonic oscillator, and the connection between harmonic oscillation and uniform
circular motion;

4. We introduce complex numbers, and discuss their arithmetic;

5. Using complex numbers, we find solutions to the equation of motion for the harmonic oscillator that behave as simply as
possible under time translations. We call these solutions “irreducible.” We show that they are actually complex exponentials.

6. We discuss an LC circuit and draw an analogy between it and a system of a mass and springs.

7. We discuss units.

8. We give one simple example of a nonlinear oscillator.

1.1: The Harmonic Oscillator

1.2: Small Oscillations and Linearity
1.3: Time Translation Invariance
1.4: Complex Numbers

1.5: Exponential Solutions

1.6: LC Circuits

1.7: Units - Displacement and energy
1.8: A Simple Nonlinear Oscillator
1.9: Chapter Checklist

1.10: Problem

1.11: Problems

This page titled 1: Harmonic Oscillation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Howard
Georgi via source content that was edited to the style and standards of the LibreTexts platform.
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1.1: The Harmonic Oscillator

When you studied mechanics, you probably learned about the harmonic oscillator. We will begin our study of wave phenomena by
reviewing this simple but important physical system. Consider a block with mass, m, free to slide on a frictionless air-track, but
attached to a light' Hooke’s law spring with its other end attached to a fixed wall. A cartoon representation of this physical system
is shown in figure 1.1.

1 "Light" here means that the mass of the spring is small enough to be ignored in the analysis of the motion of the block. We will
explain more precisely what this means in chapter 7 when we discuss waves in a massive spring.

Figure 1.1: A mass on a spring

This system has only one relevant degree of freedom. In general, the number of degrees of freedom of a system is the number of
coordinates that must be specified in order to determine the configuration completely. In this case, because the spring is light, we
can assume that it is uniformly stretched from the fixed wall to the block. Then the only important coordinate is the position of the
block. In this situation, gravity plays no role in the motion of the block. The gravitational force is canceled by a vertical force from
the air track. The only relevant force that acts on the block comes from the stretching or compression of the spring. When the
spring is relaxed, there is no force on the block and the system is in equilibrium. Hooke’s law tells us that the force from the spring
is given by a negative constant, —K, times the displacement of the block from its equilibrium position. Thus if the position of the
block at some time is x and its equilibrium position is x(, then the force on the block at that moment is:

F=—-K(z—x) (1.1.1)

The constant, K, is called the “spring constant.” It has units of force per unit distance, or MT ~2 in terms of M (the unit of mass), L
(the unit of length) and T (the unit of time). We can always choose to measure the position, x, of the block with our origin at the
equilibrium position. If we do this, then z, = 0 in (1.1.1) and the force on the block takes the simpler form.

F=-K=z (1.1.2)

Harmonic oscillation results from the interplay between the Hooke’s law force and Newton’s law, F' =ma. Let x(t) be the
displacement of the block as a function of time, t. Then Newton’s law implies

d2

m——z(t) = —Kz(t 1.1.3

—a(t) = ~Ka(!) (1.1.3)
An equation of this form, involving not only the function x(t), but also its derivatives is called a “differential equation.” The
differential equation, (1.1.3), is the “equation of motion” for the system of figure 1.1. Because the system has only one degree of
freedom, there is only one equation of motion. In general, there must be one equation of motion for each independent coordinate
required to specify the configuration of the system. The most general solution to the differential equation of motion, (1.1.3), is a
sum of a constant times cos wt plus a constant times sin ot,

z(t) = acos(wt) + bsin(wt) (1.1.4)
where
w= % (1.1.5)

is a constant with units of 7! called the “angular frequency.” The angular frequency will be a very important quantity in our study
of wave phenomena. We will almost always denote it by the lower case Greek letter, & (omega).
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Because the equation involves a second time derivative but no higher derivatives, the most general solution involves two constants.
This is just what we expect from the physics, because we can get a different solution for each value of the position and velocity of
the block at the starting time. Generally, we will think about determining the solution in terms of the position and velocity of the
block when we first get the motion started, at a time that we conventionally take to be t=0 For this reason, the process of
determining the solution in terms of the position and velocity at a given time is called the “initial value problem.” The values of
position and velocity at t = 0 are called initial conditions. For example, we can write the most general solution, (1.1.4), in terms of
x(0) and x'(0), the displacement and velocity of the block at time t = 0. Setting t = 0 in (1.1.4) gives a = x(0). Differentiating and
then setting t = 0 gives b = wz'(0) . Thus

z(t) :m(O)coswt—i—im'(O)sinwt (1.1.6)

For example, suppose that the block has a mass of 1 kilogram and that the spring is 0.5 meters long? with a spring constant K of
100 newtons per meter. To get a sense of what this spring constant means, consider hanging the spring vertically (see problem
(1.1.1)). The gravitational force on the block is

2(The length of the spring plays no role in the equations below, but we include it to allow you to build a mental picture of the
physical system)
mg~ 9.8newtons (1.1.7)
In equilibrium, the gravitational force cancels the force from the spring, thus the spring is stretched by
mg
K

For this mass and spring constant, the angular frequency, o, of the system in figure 1.1 is

K 100% 101 1.1.9
e (1.1.9)

If, for example, the block is displaced by 0.01 m (1 cm) from its equilibrium position and released from rest at time, t = 0, the
position at any later time t is given (in meters) by

~ 0.098meters = 9.8centimeters (1.1.8)

z(t) = 0.01 e cost(10t) (1.1.10)
The velocity (in meters per second) is
z'(t) = —0.1 e sin(10¢) (1.1.11)
The motion is periodic, in the sense that the system oscillates — it repeats the same motion over and over again indefinitely. After a
time
7:2—: ~0.628s (1.1.12)

the system returns exactly to where it was at t = 0, with the block instantaneously at rest with displacement 0.01 meter. The time, t
(Greek letter tau) is called the “period” of the oscillation. However, the solution, (1.1.6), is more than just periodic. It is “simple
harmonic” motion, which means that only a single frequency appears in the motion. The angular frequency, , is the inverse of the
time required for the phase of the wave to change by one radian. The “frequency”, usually denoted by the Greek letter, v (nu), is the
inverse of the time required for the phase to change by one complete cycle, or 27 radians, and thus get back to its original state.
The frequency is measured in hertz, or cycles/second. Thus the angular frequency is larger than the frequency by a factor of 27,

w(inradians/second) = 2w (radians/cycle) e v(cycles/ second) (1.1.13)

The frequency, v, is the inverse of the period, T, of (1.1.12),
1
=— 1.1.14
v == (1.1.14)

Simple harmonic motion like (1.1.6) occurs in a very wide variety of physical systems. The question with which we will start our

study of wave phenomena is the following: Why do solutions of the form of (1.1.6) appear so ubiquitously in physics? What
do harmonically oscillating systems have in common? Of course, the mathematical answer to this question is that all of these
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systems have equations of motion of essentially the same form as (1.3). We will find a deeper and more physical answer that we
will then be able to generalize to more complicated systems. The key features that all these systems have in common with the mass
on the spring are (at least approximate) linearity and time translation invariance of the equations of motion. It is these two features
that determine oscillatory behavior in systems from springs to inductors and capacitors. Each of these two properties is interesting
on its own, but together, they are much more powerful. They almost completely determine the form of the solutions. We will see
that if the system is linear and time translation invariant, we can always write its motion as a sum of simple motions in which the
time dependence is either harmonic oscillation or exponential decay (or growth).

This page titled 1.1: The Harmonic Oscillator is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Howard
Georgi via source content that was edited to the style and standards of the LibreTexts platform.
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1.2: Small Oscillations and Linearity

A system with one degree of freedom is linear if its equation of motion is a linear function of the coordinate, z, that specifies the
system’s configuration. In other words, the equation of motion must be a sum of terms each of which contains at most one power of
z. The equation of motion involves a second derivative, but no higher derivatives, so a linear equation of motion has the general
form:

2
a —
dt?

If all of the terms involve exactly one power of x, the equation of motion is “homogeneous.” Equation (1) is not homogeneous

m(t)wditx(t)ﬂm(t) = f(t) (1.2.1)

because of the term on the right-hand side. The “inhomogeneous” term, f(t), represents an external force. The corresponding
homogeneous equation would look like this:
2 d
ad?a:(t)—l—ﬂam(t)—i—'ym(t)zo (1.2.2)
In general, o, B and y as well as f could be functions of ¢. However, that would break the time translation invariance that we will
discuss in more detail below and make the system much more complicated. We will almost always assume that a, 3 and +y are
constants. The equation of motion for the mass on a spring, m%w(t) = —Kx(t), is of this general form, but with B and f equal to

zero. As we will see in chapter 2, we can include the effect of frictional forces by allowing nonzero [3, and the effect of external
forces by allowing nonzero f. The linearity of the equation of motion, (1), implies that if z; (¢) is a solution for external force f; (t),

d? d
aﬁﬁl(t)+ﬂaxl(t)+’)’wl(t) :fl(t) (123)
and z2(t) is a solution for external force f2(t),
d? d B 4
aﬁwz(t)"i‘ﬂawz(t)‘f"ﬂz(t) = f2(t) (1.2.4)

then the sum,

il:lz(t) =A$1(t)+B$2(t) (125)
for constants A and B is a solution for external force Af; + Bfs ,
d? d
o} ﬁmu (t) + ﬂaxm(t) + leg(t) = Afl (t) + Bf2 (t) (126)

The sum 212(¢) is called a “linear combination” of the two solutions, ;1 (¢) and z2(t). In the case of “free” motion, which means
motion with no external force, if 2 (¢) and z2(t) are solutions, then the sum, Az; (t) + Bz (t) is also a solution.

The most general solution to any of these equations involves two constants that must be fixed by the initial conditions, for example,
the initial position and velocity of the particle, as in z(t) = x(0)cos(wt) + L 2'(0)sin(wt) . It follows from (6) that we can always
write the most general solution for any external force, f(t), as a sum of the “general solution” to the homogeneous equation, (2), and
any “particular” solution to (1).

No system is exactly linear. “Linearity” is never exactly “true.” Nevertheless, the idea of linearity is extremely important, because
it is a useful approximation in a very large number of systems, for a very good physical reason. In almost any system in which the
properties are smooth functions of the positions of the parts, the small displacements from equilibrium produce approximately
linear restoring forces. The difference between something that is “true” and something that is a useful approximation is the
essential difference between physics and mathematics. In the real world, the questions are much too interesting to have
answers that are exact. If you can understand the answer in a well-defined approximation, you have learned something
important.

To see the generic nature of linearity, consider a particle moving on the x-axis with potential energy, V' (z). The force on the
particle at the point, z, is minus the derivative of the potential energy,

d
F:—%V(w) (1.2.7)
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A force that can be derived from a potential energy in this way is called a “conservative” force. At a point of equilibrium, zg, the
force vanishes, and therefore the derivative of the potential energy vanishes:

=-V'(v,) =0 (1.2.8)

T=T0

d
F——%V(%’)\

We can describe the small oscillations of the system about equilibrium most simply if we redefine the origin so that 5 = 0. Then
the displacement from equilibrium is the coordinate x. We can expand the force in a Taylor series:

F(z)=-V'(z)=-V'(0) —2V"(0) — %ﬁV’”(O)—}—. . (1.2.9)

The first term in (9) vanishes because this system is in equilibrium at x = 0, from (8). The second term looks like Hooke’s law with
K=Vv"(0) (1.2.10)

The equilibrium is stable if the second derivative of the potential energy is positive, so that =0 is a local minimum of the
potential energy. The important point is that for sufficiently small x, the third term in (9), and all subsequent terms will be much
smaller than the second. The third term is negligible if

1ZV""(0)] << V"(0) (1.2.11)

Typically, each extra derivative will bring with it a factor of 1/L, where L is the distance over which the potential energy changes
by a large fraction. Then (11) becomes

z<<L (1.2.12)

There are only two ways that a force derived from a potential energy can fail to be approximately linear for sufficiently small
oscillations about stable equilibrium:

1. If the potential is not smooth so that the first or second derivative of the potential is not well defined at the equilibrium
point, then we cannot do a Taylor expansion and the argument of (9) does not work. We will give an example of this kind at
the end of this chapter.

2. Even if the derivatives exist at the equilibrium point, x = 0, it may happen that V"/(0) = 0. In this case, to have a stable
equilibrium, we must have V'"’/(0) =0 as well, otherwise a small displacement in one direction or the other would grow
with time. Then the next term in the Taylor expansion dominates at small z, giving a force proportional to z>.
5E
41F

3E

0 L 2L 3L 4L 5L

Figure 1.2: The potential energy of (13)

Both of these exceptional cases are very rare in nature. Usually, the potential energy is a smooth function of the displacement
and there is no reason for V"(0) to vanish. The generic situation is that small oscillations about stable equilibrium are linear.

An example may be helpful. Almost any potential energy function with a point of stable equilibrium will do, so long as it is
smooth. For example, consider the following potential energy

+7) (1.2.13)
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This is shown in figure 1.2. The minimum (at least for positive ) occurs at = L, so we first redefine z = X + L , so that

L X+L
X)=F 1.2.14
V) = B(p + 1) (1.2.14)
The corresponding force is
L 1
FX)=E(-~————— 1.2.1
(=B 1) (1.2.15)
we can look near X = 0 and expand in a Taylor Series:
E X E X,
F(X)_—zL(L)+3L(L)+... (1.2.16)
Now, the ratio of the first nonlinear term to the linear term is
3X
— 1.2.1
5L (1.2.17)

which is small if X<<L.

In other words, the closer you are to the equilibrium point, the closer the actual potential energy is to the parabola that we
would expect from the potential energy for a linear, Hooke’s law force. You can see this graphically by blowing up a small
region around the equilibrium point. In figure 1.3, the dotted rectangle in figure 1.2 has been blown up into a square. Note
that it looks much more like a parabola than figure 1.3. If we repeated the procedure and again expanded a small region about
the equilibrium point, you would not be able to detect the cubic term by eye.

0.9L L 1.1L

Figure 1.3: The small dashed rectangle in figure 1.2 expanded

Often, the linear approximation is even better, because the term of order 22 vanishes by symmetry. For example, when the
system is symmetrical about x = 0, so that V(z) = V(—=z), the order 3 term (and all z" for n odd) in the potential energy
vanishes, and then there is no order z2 term in the force.

For a typical spring, linearity (Hooke’s law) is an excellent approximation for small displacements. However, there are
always nonlinear terms that become important if the displacements are large enough. Usually, in this book we will simply
stick to small oscillations and assume that our systems are linear. However, you should not conclude that the subject of
nonlinear systems is not interesting. In fact, it is a very active area of current research in physics.

This page titled 1.2: Small Oscillations and Linearity is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Howard Georgi via source content that was edited to the style and standards of the LibreTexts platform.
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1.3: Time Translation Invariance

1.3: Time Translation Invariance

1.3.1 Uniform Circular Motion

When a, 8 and v in aj—;a:(t) + B%w(t) +~z(t) = f(t) do not depend on the time, t, and in the absence of an external force, that
is for free motion, time enters in (« %w(t) + ﬂ%w(t) +~z(t) = f(¢) only through derivatives. Then the equation of motion has

the form.

2
a —
dt?

The equation of motion for the undamped harmonic oscillator, (1.3), has this form with a = m, B = 0 and y = K. Solutions to (1.32)
have the property that

0 (1.3.1)

o(0) + 6 a(0) + ()

If x(t) is a solution, x(t + a) will be a solution also.

d d d ,, d
Ew(t +a)= [%(t +a)] [@x(t e=t+a = [Wﬂc
The physical reason for (1.33) is that we can change the initial setting on our clock and the physics will look the same. The solution
z(t +a) can be obtained from the solution z(¢) by changing the clock setting by a. The time label has been “translated” by a. We
will refer to the property, (1.33), as time translation invariance.

(t))¢=tra (1.3.2)

Most physical systems that you can think of are time translation invariant in the absence of an external force. To get an oscillator
without time translation invariance, you would have to do something rather bizarre, such as somehow making the spring constant
depend on time.

For the free motion of the harmonic oscillator, although the equation of motion is certainly time translation invariant, the
manifestation of time translation invariance on the solution, (1.6) is not as simple as it could be. The two parts of the solution, one
proportional to cos(wt) and the other to sin(wt), get mixed up when the clock is reset. For example,

cos[w(t +a)] = (coswa)(coswt) — (sinwa)(sinwt). (1.3.3)
It will be very useful to find another way of writing the solution that behaves more simply under resetting of the clocks. To do this,
we will have to work with complex numbers.

To motivate the introduction of complex numbers, we will begin by exhibiting the relation between simple harmonic motion and
uniform circular motion. Consider uniform circular motion in the x-y plane around a circle centered at the origin, x =y =0, with
radius R and with clockwise velocity v = Rw . The x and y coordinates of the motion are

z(t) = Reos(wt — ), y(t) = —Rsin(wt — @), (1.3.4)
where ¢ is the counterclockwise angle in radians of the position at ¢ =0 from the positive x axis. The z(t) in (1.36) is identical to
the z(t) in (1.6) with

z(0) = Rcosy, z'(0) = wRsine. (1.3.5)
Simple harmonic motion is equivalent to one component of uniform circular motion. This relation is illustrated in figure 1.4 and in
program 1-1 on the programs disk. As the point moves around the circle at constant velocity, Rw, the  coordinate executes simple
harmonic motion with angular velocity w. If we wish, we can choose the two constants required to fix the solution of (1.3) to be R

and ¢, instead of z(0) and z'(0). In this language, the action of resetting of the clock is more transparent. Resetting the clock
changes the value of ¢ without changing anything else.

Figure 1.4: The relation between uniform circular motion and simple harmonic motion.

But we would like even more. The key idea is that linearity allows us considerable freedom. We can add solutions of the equations
of motion together and multiply them by constants, and the result is still a solution. We would like to use this freedom to choose
solutions that behave as simply as possible under time translations.

The simplest possible behavior for a solution z(¢) under time translation is
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That is, we would like find a solution that reproduces itself up to an overall constant, h(a) when we reset our clocks by a. Because
we are always free to multiply a solution of a homogeneous linear equation of motion by a constant, the change from 2(t) to
h(a)z(t) doesn’t amount to much. We will call a solution satisfying (1.38) an “irreducible® solution” with respect to time
translations, because its behavior under time translations (resettings of the clock) is as simple as it can possibly be.

z(t+a) = h(a)z(t). (1.3.6)

It turns out that for systems whose equations of motion are linear and time translation invariant, as we will see in more detail
below, we can always find irreducible solutions that

3The word “irreducible” is borrowed from the theory of group representations. In the language of group theory, the irreducible
solution is an “irreducible representation of the translation group.” It just means “as simple as possible.”

have the property, (1.38). However, for simple harmonic motion, this requires complex numbers. You can see this by noting that
changing the clock setting by 7/w just changes the sign of the solution with angular frequency w, because both the cos and sin
terms change sign:

cos(wt +7) = —coswt, sin(wt +m) = —sinwt. (1.3.7)
But then from (1.38) and (1.39), we can write
—2(t) =2(t+7/w) =2t +7/2w+7/2w) (1.3.8)
= h(m/2w)2(t +7/2w) = h(m/2w) 2(t). (1.3.9)
Thus we cannot find such a solution unless h(7/2w) has the property
[h(r/2w)]* = —1. (1.3.10)

The square of h(m/2w) is —1! Thus we are forced to consider complex numbers.* When we finish introducing complex numbers,
we will come back to (1.38) and show that we can always find solutions of this form for systems that are linear and time translation
invariant.

4The connection between complex numbers and uniform circular motion has been exploited by Richard Feynman in his beautiful
little book, QED.

This page titled 1.3: Time Translation Invariance is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Howard Georgi via source content that was edited to the style and standards of the LibreTexts platform.
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1.4: Complex Numbers

The square root of —1, called 4, is important in physics and mathematics for many reasons. Measurable physical quantities can
always be described by real numbers. You never get a reading of ¢ meters on your meter stick. However, we will see that when ¢ is
included along with real numbers and the usual arithmetic operations (addition, subtraction, multiplication and division), then
algebra, trigonometry and calculus all become simpler. While complex numbers are not necessary to describe wave phenomena,
they will allow us to discuss them in a simpler and more insightful way.
1.4.1: Some Definitions
An imaginary number is a number of the form 7 times a real number.
A complex number, z, is a sum of a real number and an imaginary number: z = a + ib.
The real and “imaginary” parts, Re(z) and I'm(z), of the complex number z=a +1b :

Re(z) =a,Im(z) =b. (1.4.1)
Note that the imaginary part is actually a real number, the real coefficient of ¢ in 2 = a + ib.
The complex conjugate, z*, of the complex number z, is obtained by changing the sign of i:

z* =a—1ib. (1.4.2)

Note that Re(z) = (z+2*)/2 and Im(z) = (z—2*)/2i.

The complex plane: Because a complex number z is specified by two real numbers, it can be thought of as a two-dimensional
vector, with components (a, b). The real part of z, a = Re(z) , is the  component and the imaginary part of z, b = Im(z), is the y
component. The diagrams in figures 1.5 and 1.6 show two vectors in the complex plane along with the corresponding complex
numbers:

The absolute value, |z|, of z, is the length of the vector (a, b):
|2 = va® +b* = /2" 2. (1.4.3)
The absolute value |z| is always a real, non-negative number.
Figure 1.5: A vector with positive real part in the complex plane.

The argument or phase, arg(z), of a nonzero complex number z, is the angle, in radians, of the vector (a, b) counterclockwise
from the z axis:

\[arg(z) = { arctan(b/a) for a > 0,\]
\[ { arctan(b/a) + 1 for a < 0.\]
Like any angle, arg(z) can be redefined by adding a multiple of 27 radians or 360° (see figure 1.5 and 1.6).

Figure 1.6: A vector with negative real part in the complex plane.

1.4.2: Arithmetic

The arithmetic operations addition, subtraction and multiplication on complex numbers are defined by just treating the ¢ like a

variable in algebra, using the distributive law and the relation 2 = —1. Thus if z=a +1b and 2’ = a’ +1ib' , then
242 =(a+d)+i(b+b), (1.4.4)
z—2' =(a—ad)+i(b-b), (1.4.5)
22’ = (aa’ —bb') +i(ab’ +ba'). (1.4.6)
For example:
(B+4i)+(—2+T))=(3-2)+(4+T7)i=1+113, (1.4.7)
(3+43)-(5+7i)=(3-5—4-7)+(3-7+4-5)i =—13+41:. (1.4.8)

https://phys.libretexts.org/@go/page/34342



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34342?pdf
https://phys.libretexts.org/Bookshelves/Waves_and_Acoustics/The_Physics_of_Waves_(Goergi)/01%3A_Harmonic_Oscillation/1.04%3A_Complex_Numbers

LibreTexts"

It is worth playing with complex multiplication and getting to know the complex plane. At this point, you should check out
program 1-2.

Division is more complicated. To divide a complex number z by a real number r is easy, just divide both the real and the imaginary
parts by r to get z/r =a/r+ib/r. To divide by a complex number, 2/, we can use the fact that 2*z' = |2/|°

multiply the numerator and the denominator of z/z'byz"*, we can write:

z/2 =2"2/|2|* = (ad’ +bV)/(a? +b?) +i(ba’ —ab')/(a’? +b?). (1.4.9)

is real. If we

For example:
(3+4d)/(2+1) = (3+44)- (2—14)/5 = (10+57)/5 = 2 +i. (1.4.10)

With these definitions for the arithmetic operations, the absolute value behaves in a very simple way under multiplication and
division. Under multiplication, the absolute value of a product of two complex numbers is the product of the absolute values:

|22/| = |2]|2/]. (1.4.11)
Division works the same way so long as you don’t divide by zero:
\[|z/z' | = |z|/|z' | if 2'=0 .\]

Mathematicians call a set of objects on which addition and multiplication are defined and for which there is an absolute value
satisfying (1.51) and (1.52) a division algebra. It is a peculiar (although irrelevant, for us) mathematical fact that the complex
numbers are one of only four division algebras, the others being the real numbers and more bizarre things called quaternions and
octonians obtained by relaxing the requirements of commutativity and associativity (respectively) of the multiplication laws.

The wonderful thing about the complex numbers from the point of view of algebra is that all polynomial equations have solutions.
For example, the equation 2 — 2z +5 =0 has no solutions in the real numbers, but has two complex solutions, = 1 +2i. In
general, an equation of the form p(z) =0, where p(z) is a polynomial of degree n with complex (or real) coefficients has n
solutions if complex numbers are allowed, but it may not have any if « is restricted to be real.

Note that the complex conjugate of any sum, product, etc, of complex numbers can be obtained simply by changing the sign of ¢
wherever it appears. This implies that if the polynomial p(z) has real coefficients, the solutions of p(z) =0 come in complex
conjugate pairs. That is, if p(z) = 0, then p(z*) = 0 as well.

1.4.3: Complex Exponentials

Consider a complex number z = a +%b with absolute value 1. Because |z| = 1 implies a® +b% =1 , we can write a and b as the
cosine and sine of an angle 6.

z=cosd+isinffor|z| =1. (1.4.12)
Because
sinf b
tand = =— 1.4.13
an cos® a ( )
the angle @ is the argument of z:
arg(cosd +isinf) = 0. (1.4.14)

Let us think about z as a function of 8 and consider the calculus. The derivative with respect to 8 is:
0
e (cosf+isind) = —sinf+icosh = i(cosf +isind) (1.4.15)

A function that goes into itself up to a constant under differentiation is an exponential. In particular, if we had a function of 6, f(6),
that satisfied % f(0) =kf(6) for real k, we would conclude that f(#) = e*®. Thus if we want the calculus to work in the same

way for complex numbers as for real numbers, we must conclude that

e’ = cos+isind. (1.4.16)

We can check this relation by noting that the Taylor series expansions of the two sides are equal. The Taylor expansion of the
exponential, cos, and sin functions are:
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2 £B3 4

e _ ..z
e =1+z+ 5 + 30 +4! +... (1.4.17)
2zt
=l—-—+4+—+... 1.4.1
cos(z) >t t ( 8)
23
sin(z) =z — y—i— (1.4.19)
Thus the Taylor expansion of the left side of (1.57) is
1440+ (i6)%/2 + (i6)3 /3! +. .. (1.4.20)
while the Taylor expansion of the right side is
(1—6%/2+...)+i(0—6*/6+...) (1.4.21)

The powers of 4 in (1.59) work in just the right way to reproduce the pattern of minus signs in (1.60).

Furthermore, the multiplication law works properly:

el — (cosf+isinb)(cost) +isind') (1.4.22)
= (cosfcost — sinfsinf') +i(sinbcosd + cossind') (1.4.23)
=cos(0+6')+isin(6+6) =l+), (1.4.24)

Thus (1.57) makes sense in all respects. This connection between complex exponentials and trigonometric functions is called
Euler’s Identity. It is extremely useful. For one thing, the logic can be reversed and the trigonometric functions can be “defined”
algebraically in terms of complex exponentials:
e 4 et
cost = — (1.4.25)
el _ g—if el _ =it
inf = =—1 1.4.26
sin 57 i 3 ( )

Using (1.62), trigonometric identities can be derived very simply. For example:

c0s30 = Re(e*”) = Re((")?) = cos®0 — 3cosfsin®6. (1.4.27)

Another example that will be useful to us later is:
cos(0+6')+cos(0—6') = (ei(ew/) + e U00) | (il0-0) 4 o=il0-0) )/2 (1.4.28)
= (" + eiie)(ew/ +e )/2 = 2cosfcost . (1.4.29)

Every nonzero complex number can be written as the product of a positive real number (its absolute value) and a complex number
with absolute value 1. Thus

z=2 +iy = RePwhereR = |2|, andd = arg(2). (1.4.30)

In the complex plane, (1.65) expresses the fact that a two-dimensional vector can be written V either in Cartesian coordinates,
(z,y), or in polar coordinates, (R,6). For example, /3 +i = 2e™6;1 47 = /2e"™/4; —8i = 8¢>™2 = 8e~"/2  Figure 1.7
shows the complex number 1 47 = 4/’ 2eim/4,

The relation, (1.65), gives another useful way of thinking about multiplication of complex numbers. If
21 = Ry andz, :Rzew?, (1.4.31)
then

212y = Ry Ryel"11%2). (1.4.32)

In words, to multiply two complex numbers, you multiply the absolute values and add the arguments. You should now go back and
play with program 1-2 with this relation in mind.
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Equation (1.57) yields a number of relations that may seem surprising until you get used to them. For example:
em = —1; em/? = i;€%™ = 1. These have an interpretation in the complex plane where e is the unit vector (cosb, sinf),

This page titled 1.4: Complex Numbers is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Howard
Georgi via source content that was edited to the style and standards of the LibreTexts platform.
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1.5: Exponential Solutions

We are now ready to translate the conditions of linearity and time translation invariance into mathematics. What we will see is that
the two properties of linearity and time translation invariance lead automatically to irreducible solutions satisfying (1.38), and
furthermore that

Figure 1.8: Some special complex exponential in the complex plane.

these irreducible solutions are just exponential. We do not need to use any other details about the equation of motion to get this
result. Therefore our arguments will apply to much more complicated situations, in which there is damping or more degrees of
freedom or both. So long as the system has time translation invariance and linearity, the solutions will be sums of irreducible
exponential solutions.

We have seen that the solutions of homogeneous linear differential equations with constant coefficients, of the form,

d2
Mﬁx(t)Jer(t):O, (1.5.1)
have the properties of linearity and time translation invariance. The equation of simple harmonic motion is of this form. The
coordinates are real, and the constants M and K are real because they are physical things like masses and spring constants.
However, we want to allow ourselves the luxury of considering complex solutions as well, so we consider the same equation with
complex variables:
d2
M—2z(t)+ K=z(t) =0. (1.5.2)
dt?
Note the relation between the solutions to (1.68) and (1.69). Because the coefficients M and K are real, for every solution, 2(t), of
(1.69), the complex conjugate, z(t)*, is also a solution. The differential equation remains true when the signs of all the ¢’s are

changed.

From these two solutions, we can construct two real solutions:
z1(t) = Re(z(t)) = (2(t) + 2(¢)*)/2; (1.5.3)
5(t) = Im(2(t)) = (2(t) — 2(t)*)/ 2i. (1.5.4)

All this is possible because of linearity, which allows us to go back and forth from real to complex solutions by forming linear
combinations, as in (1.70). These are solutions of (1.68). Note that 1 (¢) and x5(t) are just the real and imaginary parts of z(t).
The point is that you can always reconstruct the physical real solutions to the equation of motion from the complex solution.
You can do all of the mathematics using complex variables, which makes it much easier. Then at the end you can get the
physical solution of interest just by taking the real part of your complex solution.

Now back to the solution to (1.69). What we want to show is that we are led to irreducible, exponential solutions for any system
with time translation invariance and linearity! Thus we will understand why we can always find irreducible solutions, not only in
(1.69), but in much more complicated situations with damping, or more degrees of freedom.

There are two crucial elements:

1. Time translation invariance, (1.33), which requires that (¢ +a) is a solution if z(¢) is a solution;
2. Linearity, which allows us to form linear combinations of solutions to get new solutions.

We will solve (1.68) using only these two elements. That will allow us to generalize our solution immediately to any system in
which the properties, (1.71), are present.

One way of using linearity is to choose a “basis” set of solutions, x;(t) for j=1 to n which is “complete” and “linearly
independent.” For the harmonic oscillator, two solutions are all we need, so n = 2. But our analysis will be much more general and
will apply, for example, to linear systems with more degrees of freedom, so we will leave n free. What “complete” means is that
any solution, z(t), (which may be complex) can be expressed as a linear combination of the z;(¢)’s,

2(t) = i cjz;(t). (1.5.5)
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What “linearly independent” means is that none of the x;(t)’s can be expressed as a linear combination of the others, so that the
only linear combination of the x(¢)’s that vanishes is the trivial combination, with only zero coefficients,

chmj =0=1¢;=0. (1.5.6)

Now let us see whether we can find an irreducible solution that behaves simply under a change in the initial clock setting, as in
(1.38),
z(t+a) = h(a)z(t) (1.5.7)

for some (possibly complex) function & (a). In terms of the basis solutions, this is
zZ(t+a)= ch:ck (1.5.8)

But each of the basis solutions also goes into a solution under a time translation, and each new solution can, in turn, be written as a
linear combination of the basis solutions, as follows:

i(t+a) ZR]k a)zi(t (1.5.9)
Thus

2(t+a) Zc]m] (t+a)= Z iRk (a)xy (2). (1.5.10)

j,k=1

Comparing (1.75) and (1.77), and using (1.73), we see that we can find an irreducible solution if and only if
ch ik(a) = h(a)cy forallk. (1.5.11)

This is called an “eigenvalue equation.” We will have much more to say about eigenvalue equations in chapter 3, when we discuss
matrix notation. For now, note that (1.78) is a set of n homogeneous simultaneous equations in the n unknown coefficients, c;. We
can rewrite it as

> " ¢;Sj(a) =0 forallk, (1.5.12)
j=1

where
\[S_{jk}(a) = \begin{cases} R_{jk}(a) for j =/ k, \\ R_{jk}(a) - h(a) for j = k. \end{cases}\]
We can find a solution to (1.78) if and only if there is a solution of the determinantal equation®

detS;r(a) =0. (1.5.13)

5We will discuss the determinant in detail in chapter 3, so if you have forgotten this result from algebra, don’t worry about it for
now.

(1.81) is an nth order equation in the variable & (a). It may have no real solution, but it always has n complex solutions for h(a)
(although some of the h(a) values may appear more than once). For each solution for h(a), we can find a set of c;s satisfying
(1.78). The different linear combinations, z(¢), constructed in this way will be a linearly independent set of irreducible solutions,
each satisfying (1.74), for some h(a). If there are n different h(a)s, the usual situation, they will be a complete set of irreducible
solutions to the equations of motions. Then we may as well take our solutions to be irreducible, satisfying (1.74). We will see later
what happens when some of the h(a)s appear more than once so that there are fewer than n different ones.

Now for each such irreducible solution, we can see what the functions h(a) and z(a) must be. If we differentiate both sides of
(1.74) with respect to a, we obtain
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2 (t+a) =h(a)z(t). (1.5.14)
Setting a = 0 gives
2/ (t) = Hz(t) (1.5.15)
where
H=Phr(0). (1.5.16)
This implies
2(t) o e, (1.5.17)

Thus the irreducible solution is an exponential! We have shown that (1.71) leads to irreducible, exponential solutions, without
using any of details of the dynamics!

1.5.1: Building Up The Exponential

There is another way to see what (1.74) implies for the form of the irreducible solution that does not even involve solving the
simple differential equation, (1.83). Begin by setting ¢ = 0 in (1.74). This gives

h(a) = z(a)/2(0). (1.5.18)

h(a) is proportional to z(a). This is particularly simple if we choose to multiply our irreducible solution by a constant so that
2(0) = 1. Then (1.86) gives

h(a) = z(a) (1.5.19)

and therefore

2(t+a) = 2(t)z(a). (1.5.20)
Consider what happens for very small \(t = € << 1\). Performing a Taylor expansion, we can write
\[z(€) =1 + HE + O(€A2)\]
where H = 7'(0) from (1.84) and (1.87). Using (1.88), we can show that
\[z(N€) = [z(€)I"N.\]
Then for any £ we can write (taking t = N?)

T N_ N _ (Ht)
2(t) = lim [2(¢/N)]Y = lim [1+ H(t/N)]¥ =e (1.5.21)
Thus again, we see that the irreducible solution with respect to time translation invariance is just an exponential! 6

2(t) = ettt (1.5.22)

1.5.2: What is H?

When we put the irreducible solution, ef?, into (1.69), the derivatives just pull down powers of H so the equation becomes a purely
algebraic equation (dropping an overall factor of ef*)

MH?2+K=0 (1.5.23)

Now, finally, we can see the relevance of complex numbers to the above discussion of time translation invariance. For positive M
and K, the equation (1.93) has no solutions at all if we restrict H to be real. We cannot find any real irreducible solutions. But there
are always two solutions for H in the complex numbers. In this case, the solution is

H = +iw (1.5.24)

where

K
= t— 1.5.2
w = sqr ” (1.5.25)
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It is only in this last step, where we actually compute H, that the details of (1.69) enter. Until (1.93), everything followed simply
from the general principles, (1.71).

Now, as above, from these two solutions, we can construct two real solutions by taking the real and imaginary parts of z(t) = et

z1(t) = Re(2(t)) = coswt (1.5.26)

z2(t) = Im(z(t)) = Lsinwt (1.5.27)

Time translations mix up these two real solutions. That is why the irreducible complex exponential solutions are easier to work
with. The quantity ® is the angular frequency that we saw in (1.5) in the solution of the equation of motion for the harmonic
oscillator. Any linear combination of such solutions can be written in terms of an “amplitude” and a “phase” as follows: For real ¢

and d
ccos(w) +dsin(wt) = c(e™ +e ™) /2 —id((e™" +e ") /2 (1.5.28)
= Re((c+id)(e™™") = Re(Ae”e ™) (1.5.29)
= Re(Ae “9) = Acos(wt —6) (1.5.30)

where A is a positive real number called the amplitude,
A = sqrtc? 4 d? (1.5.31)
and 0 is an angle called the phase,

These relations are another example of the equivalence of Cartesian coordinates and polar coordinates, discussed after (1.65). The
pair, c and d, are the Cartesian coordinates in the complex plane of the complex number, c + id. The amplitude, A, and phase, 6, are
the polar coordinate representation of the same complex (1.96) shows that c and d are also the coefficients of cos wt and sin ot in
the real part of the product of this complex number with —iwt e . This relation is illustrated in figure 1.9 (note the relation to figure
1.4). As z moves clockwise with constant angular velocity, , around the circle, |z| = A, in the complex plane, the real part of z
undergoes simple harmonic motion, A cos(wt — 8). Now that you know about complex numbers and complex exponentials, you
should go back to the relation between simple harmonic motion and uniform circular motion illustrated in figure 1.4 and in
supplementary program 1-1. The uniform circular motion can interpreted as a motion in the complex plane of the

2(t) =e ™ (1.5.32)
As t changes, z(t) moves with constant clockwise velocity around the unit circle in the complex plane. This is the clockwise motion
shown in program 1-1. The real part, cos wt, executes simple harmonic motion.

Note that we could have just as easily taken our complex solution to be e™*. This would correspond to counterclockwise motion
in the complex plane, but the real part, which is all that matters physically, would be unchanged. It is conventional in physics to go
to complex solutions proportional to e ™!, This is purely a convention. There is no physics in it. However, it is sufficiently
universal in the physics literature that we will try to do it consistently here.
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Acos(wt — 0) —

Figure 1.9: The relation (1.96) in the complex plane.
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1.6: LC Circuits

One of the most important examples of an oscillating system is an LC circuit. You probably studied these in your course on
electricity and magnetism. Like a Hooke’s law spring, this system is linear, because the relations between charge, current, voltage,
and the like for ideal inductors, capacitors and resistors are linear. Here we want to make explicit the analogy between a particular
LC circuit and a system of a mass on a spring. The LC circuit with a resistance less inductor with an inductance L. and a capacitor
of capacitance C is shown in figure 1.10. We might not ordinarily think of this as a circuit at all, because there is no battery or other
source of electrical power. However, we could imagine, for example, that the capacitor was charged initially when the circuit was
put together. Then current would flow when the circuit was completed. In fact, in the absence of resistance, the current would
continue to oscillate forever. We shall see that this circuit is analogous to the combination of springs and a mass shown in figure

1.11. The oscillation frequency of the mechanical system is
K
== 1.6.1
YTV M (1.6.1)

Figure 1.10: An LC circuit.

Figure 1.11: A system analogous to figure 1.10.

We can describe the configuration of the mechanical system of figure 1.10 in terms of x, the displacement of the block to the right.
We can describe the configuration of the LC circuit of figure 1.10 in terms of Q, the charge that has been “displaced” through the
inductor from the equilibrium situation with the capacitor uncharged. In this case, the charge displaced through the inductor goes
entirely onto the capacitor because there is nowhere else for it to go, as shown in figure 1.12. The current through the inductor is
the time derivative of the charge that has gone through,

dQ

I=—
dt

(1.6.2)
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To see how the LC circuit works, we can examine the voltages at various points in the system, as shown in figure 1.13. For an

Q—
_QQDtLQ
==

—Q

Figure 1.12: The charge moved through the inductor.

I —

T voape

V=0 V=0

Figure 1.13: Voltage and current.
inductor, the voltage drop across it is the rate of

change of current through it, or

—L— =V 1.6.3
7 (1.6.3)
For the capacitor, the stored charge is the voltage times the capacitance, or
Q
V== 1.6.4
- (1.6.4)

Putting (1.101), (1.102) and (1.103) together gives

a _d2Q 1
o =L = _EQ (1.6.5)

The correspondence between the two systems is the following:
m < L
K « 1/C
o Q

When we make the substitutions in (1.105), the equation of motion, (1.3), of the mass on a spring goes into (1.104). Thus, knowing
the solution, (1.6), for the mass on a spring, we can immediately conclude that the displaced charge in this LC circuit oscillates
with frequency

1

- 1.6.6
w= T (1.6.6)
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1.7: Units - Displacement and energy

We have now seen two very different kinds of physical systems that exhibit simple harmonic oscillation. Others are possible as
well, and we will give another example below. This is a good time to discuss the units of the equations of motions. The “generic”
equation of motion for simple harmonic motion without damping looks like this

d2X
— =—-KX 1.7.1
e (1.7.1)
where X is the generalized coordinate, M is the generalized mass, K is the generalized spring constant

In the simple harmonic motion of a point mass, X is just the displacement from equilibrium, x, M is the mass, m, and K is the
spring constant, K. The appropriate units for M and K depend on the units for X . They are conventionally determined by the
requirement that

1 dX
M

2
—M(— 1.7.2
M) (1.72)
is the “kinetic” energy of the system arising from the change of the coordinate with time, and
1
FEX? (1.7.3)

is the “potential” energy of the system, stored in the generalized spring. It makes good physical sense to grant the energy a special
status in these problems because in the absence of friction and external forces, the total energy, the sum of the kinetic energy in
(1.109) and the potential energy in (1.110), is constant. In the oscillation, the energy is alternately stored in kinetic energy and
potential energy. When the system is in its equilibrium configuration, but moving with its maximum velocity, the energy is all
kinetic. When the system instantaneously comes to rest at its maximum displacement, all the energy is potential energy. In fact, it is
sometimes easier to identify M and K by calculating the kinetic and potential energies than by finding the equation of motion
directly. We will use this trick in chapter 11 to discuss water waves. For example, in an LC circuit in SI units, we took our
generalized coordinate to be a charge, @, in Coulombs. Energy is measured in Joules or VoltsxCoulombs. The generalized spring
constant has units of

Joules Volts

= 1.7.4
Cou]omb52 Coulombs ( )
which is one over the unit of capacitance, Coulombs per Volt, or farads. The generalized mass has units of
Joules x seconds? _ Volts x seconds? (1.7.5)

Coulombs® B Amperes

which is a unit of inductance (Henrys). This is what we used in our correspondence between the LC circuit and the mechanical
oscillator, (1.105). We can also add a generalized force to the right-hand side of (1.107). The generalized force has units of energy
over generalized displacement. This is right because when the equation of motion is multiplied by the displacement, (1.109) and
(1.110) imply that each of the terms has units of energy. Thus for example, in the LC circuit example, the generalized force is a
voltage.

1.7.1: Constant Energy
The total energy is the sum of kinetic plus potential energy from (1.109) and (1.110),

E=-M(—)*+=-KX? (1.7.6)

If there are no external forces acting on the system, the total energy must be constant. You can see from (1.113) that the energy can
be constant for an oscillating solution only if the angular frequency, o, is / sqrt%. Suppose, for example, that the generalized
displacement of the system has the form

X(t) = Asin(wt) (1.7.7)

where A is an amplitude with the units of X . Then the generalized velocity, is
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%X(t) = Awcos(wt) (1.7.8)
To make the energy constant, we must have
K=w'M (1.7.9)
Then, the total energy, from (1.109) and (1.110) is
%szAzcos2(wt)+%KA2sin2(wt) = %KA2 (1.7.10)

1.7.2: Torsion Pendulum

One more example may be useful. Let us consider the torsion pendulum, shown in figure 1.14.

\ 6
o o -
side view top view

Figure 1.14: Two views of a torsion pendulum.

A torsion pendulum is a simple but very useful oscillator consisting of a dumbbell or rod supported at its center by a wire or fiber,
hung from a support above. When the dumbbell is twisted by an angle 8, as shown in the top view in figure 1.14, the wire twists
and provides a restoring torque on the dumbbell. For a suitable wire or fiber, this restoring torque is nearly linear even for rather
large displacement angles. In this system, the natural variable to use for the displacement is the angle 6. Then the equation of
motion is
d?o

Iﬁ =—ab (1.7.11)
where I is the moment of inertia of the dumbbell about its center and —a# is the restoring force. Thus the generalized mass is the
moment of inertia, I, with units of length squared times mass and the generalized spring constant is the constant a, with units of
torque. As expected, from (1.109) and (1.110), the kinetic energy and potential energy are (respectively)

1,d0

L0y natag
2(dt) and2a0 (1.7.12)
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1.8: A Simple Nonlinear Oscillator

To illustrate some of the differences between linear and nonlinear oscillators, we will give one very simple example of a nonlinear
oscillator. Consider the following nonlinear equation of motion:

9 —Fyforx >0
mﬁaf: Fyforz <0 (1.8.1)
Oforz=0

This describes a particle with mass, m, that is subject to a force to the left, —Fp, when the particle is to the right of the origin (
z(t) > 0), a force to the right, Fy, when the particle is to the left of the origin (z(¢) < 0), and no force when the particle is sitting
right on the origin. The potential energy for this system grows linearly on both sides of x = 0. It cannot be differentiated at z =0,
because the derivative is not continuous there. Thus, we cannot expand the potential energy (or the force) in a Taylor series around
the point =0, and the arguments of (1.21)-(1.24) do not apply. It is easy to find a solution of (1.120). Suppose that at time,
t =0, the particle is at the origin but moving with positive velocity, v. The particle immediately moves to the right of the origin

. . —F,
and decelerates with constant acceleration, 70 , so that

FO 2
t)=vt— t 1.8.2
2(t) = vt — 2> (1.8.2)
fort <.
where
2mu
= 1.8.3
=% (18.3)

is the time required for the particle to turn around and get back to the origin. At time, ¢ = 7, the particle moves to the left of the
origin. At this point it is moving with velocity, —v, the process is repeated for negative x and positive acceleration % Then the
solution continues in the form

z(t)=—v(t—7)+ f;(t—T)2f0'I‘TStS2T (1.8.4)

Then the whole process repeats. The motion of the particle, shown in figure 1.15, looks superficially like harmonic oscillation, but
the curve is a sequence of parabolas pasted together, instead of a sine wave. The equation of motion, (1.120), is time translation
invariant. Clearly, we can start the particle at the origin with velocity, v, at any time, t0. The solution then looks like that shown in
figure 1.15 but translated in time by #(. The solution has the form

i (t) = z(t —to) (1.8.5)

where z(t) is the function described by (1.121), (1.123), etc. This shown in figure 1.16 for t =ty = 3?7 . The dotted curve
corresponds to tg = 0
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Figure 1.15: The motion of a particle with a nonlinear equation of motion.
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Figure 1.16: Motion started from the origin at t =ty = 37/4.

Like the harmonic oscillator, this system oscillates regularly and indefinitely. However, in this case, the period of the oscillation,
the time it takes to repeat, 21 , depends on the amplitude of the oscillation, or equivalently, on the initial velocity, v. The period is
proportional to v, from (1.122). The motion of the particle started from the origin at ¢t = ¢, , for an initial velocity v/2 is shown in
figure 1.17. The dotted curve corresponds to an initial velocity, v. While the nonlinear equation of motion, (1.120), is time
translation invariant, the symmetry is much less useful because the system lacks linearity. From our point of view, the important
thing about linearity (apart from the fact that it is a good approximation in so many important physical systems), is that it allows us
to choose a convenient basis for the solutions to the equation of motion. We choose them to behave simply under time translations.

my?
2Fy

ARy

m‘u2

T 2R

0 7 2r 37 47 57 671
Figure 1.17: Initial velocity v/2.

Then, because of linearity, we can build up any solution as a linear combination of the basis solutions. In a situation like (1.120),
we do not have this option.
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1.9: Chapter Checklist

You should now be able to:

1. Analyze the physics of a harmonic oscillator, including finding the spring constant, setting up the equation of motion, solving it,
and imposing initial conditions;

2. Find the approximate “spring constant” for the small oscillations about a point of equilibrium and estimate the displacement for
which linearity breaks down;

3. Understand the connection between harmonic oscillation and uniform circular motion;

4. Use complex arithmetic and complex exponentials;

5. Solve homogeneous linear equations of motion using irreducible solutions that are complex exponentials;
6. Understand and explain the difference between frequency and angular frequency;

7. Analyze the oscillations of LC circuits;

8. Compute physical quantities for oscillating systems in SI units

9. Understand time translation invariance in nonlinear systems.
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1.10: Problem

1.1. For the mass and spring discussed (1.1)-(1.8), suppose that the system is hung vertically in the earth’s gravitational field, with
the top of the spring held fixed. Show that the frequency for vertical oscillations is given by (1.5). Explain why gravity has no
effect on the angular frequency.

1.2a. Find an expression for cos 76 in terms of cos 6 and sin 6 by using complex exponentials and the binomial expansion.
b. Do the same for sin 56.
c. Use complex exponentials to find an expression for sin(6; + 62 +603) in terms of the sines and cosines of the individual angles.

d. Do you remember the “half angle formula,”
0 1
cos” 5 = 5(1 +cos0)? (1.10.1)

Use complex exponentials to prove the "fifth angle formula,"

6 10 6 5 36 1
5 — —cos— + —cos— 4+ — 1.10.2
cos” & 160055+16c03 z + 160059 (1.10.2)

e. Use complex exponentials to prove the identity
sinbx = sinz(32cos’x — 23cos’x + 6cos) (1.10.3)
1.3a Write ¢ 4 /3 in the form Re®. Write 0 as a rational number times 7

Do the same for i — /3

. 0
c. Show that the two square roots of Re’are +1/ Re . Hint: This is easy! Don’t work too hard.
d. Use the result of c. to find the square roots of 2i and 2 +23+/3.

1.4. Find all six solutions to the equation 2% = 1 and write each in the form A + iB and plot them in the complex plane. Hint: write
2= Re" for R real and positive, and find R and 6.

1.5. Find three independent solutions to the differential equation

43

d—t3f(t)+f(t) =0 (1.10.4)
You should use complex exponentials to derive the solutions, but express the results in real form.

1.6. A block of mass M slides without friction between two springs of spring constant K and 2K, as shown. The block is
constrained to move only left and right on the paper, so the system has only one degree of freedom.

K 2K

Calculate the oscillation angular frequency. If the velocity of the block when it is at its equilibrium position is v, calculate the
amplitude of the oscillation.

1.7. A particle of mass m moves on the x axis with potential energy

E,
V(z)= a—4(m4 +4az® —8az?) (1.10.5)
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Find the positions at which the particle is in stable equilibrium. Find the angular frequency of small oscillations about each
equilibrium position. What do you mean by small oscillations? Be quantitative and give a separate answer for each point of stable
equilibrium.

1.8. For the torsion pendulum of figure 1.14, suppose that the pendulum consists of two 0.01 kg masses on a light rod of total
length 0.1 m. If the generalized spring constant, a, is 5 x 107 N m. Find the angular frequency of the oscillator.

This page titled 1.10: Problem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Howard Georgi via
source content that was edited to the style and standards of the LibreTexts platform.
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1.11: Problems

1.1. For the mass and spring discussed (1.1)-(1.8), suppose that the system is hung vertically in the earth’s gravitational field, with
the top of the spring held fixed. Show that the frequency for vertical oscillations is given by (1.5). Explain why gravity has no
effect on the angular frequency.

1.2a. Find an expression for cos 76 in terms of cos 6 and sin 6 by using complex exponentials and the binomial expansion.
b. Do the same for sin 56.
c. Use complex exponentials to find an expression for sin(6; + 62 +603) in terms of the sines and cosines of the individual angles.

d. Do you remember the “half angle formula,”
0 1
cos” 5 25(1 +cos0)? (1.11.1)

Use complex exponentials to prove the "fifth angle formula,"

6 10 6 5 30
5 — —cos— + —cos— 4+ — 1.11.2
cos” & 160055+16c03 z + 160059 ( )

e. Use complex exponentials to prove the identity
sinbx = sinz(32cos’x — 23cos’x + 6cos) (1.11.3)
1.3a Write ¢ 4 /3 in the form Re®. Write 0 as a rational number times 7

Do the same for i — /3

. 0
c. Show that the two square roots of Re’are +1/ Re . Hint: This is easy! Don’t work too hard.
d. Use the result of c. to find the square roots of 2i and 2 +23+/3.

1.4. Find all six solutions to the equation 2% = 1 and write each in the form A + iB and plot them in the complex plane. Hint: write
2= Re" for R real and positive, and find R and 6.

1.5. Find three independent solutions to the differential equation

43

d—t3f(t)+f(t):0 (1.11.4)
You should use complex exponentials to derive the solutions, but express the results in real form.

1.6. A block of mass M slides without friction between two springs of spring constant K and 2K, as shown. The block is
constrained to move only left and right on the paper, so the system has only one degree of freedom.

K 2K

Calculate the oscillation angular frequency. If the velocity of the block when it is at its equilibrium position is v, calculate the
amplitude of the oscillation.

1.7. A particle of mass m moves on the x axis with potential energy

E,
V(z)= a—4(m4 +4az® —8az?) (1.11.5)
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Find the positions at which the particle is in stable equilibrium. Find the angular frequency of small oscillations about each
equilibrium position. What do you mean by small oscillations? Be quantitative and give a separate answer for each point of stable
equilibrium.

1.8. For the torsion pendulum of figure 1.14, suppose that the pendulum consists of two 0.01 kg masses on a light rod of total
length 0.1 m. If the generalized spring constant, a, is 5 x 107 N m. Find the angular frequency of the oscillator.

This page titled 1.11: Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Howard Georgi via
source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

2: Forced Oscillation and Resonance

The forced oscillation problem will be crucial to our understanding of wave phenomena. Complex exponentials are even more
useful for the discussion of damping and forced oscillations. They will help us to discuss forced oscillations without getting lost in
algebra.

2.1: Preview

In this chapter, we apply the tools of complex exponentials and time translation invariance to deal with damped oscillation and the
important physical phenomenon of resonance in single oscillators.

1. We set up and solve (using complex exponentials) the equation of motion for a damped harmonic oscillator in the overdamped,
underdamped and critically damped regions.

2. We set up the equation of motion for the damped and forced harmonic oscillator.

3. We study the solution, which exhibits a resonance when the forcing frequency equals the free oscillation frequency of the
corresponding undamped oscillator.

4. We study in detail a specific system of a mass on a spring in a viscous fluid. We give a physical explanation of the phase
relation between the forcing term and the damping.

2.1: Damped Oscillators
2.2: Forced Oscillations
2.3: Resonance

2.4: An Example

2.5: Chapter Checklist

This page titled 2: Forced Oscillation and Resonance is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Howard Georgi via source content that was edited to the style and standards of the LibreTexts platform.
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2.1: Damped Oscillators

Consider first the free oscillation of a damped oscillator. This could be, for example, a system of a block attached to a spring, like
that shown in Figure 1.1, but with the whole system immersed in a viscous fluid. Then in addition to the restoring force from the
spring, the block experiences a frictional force. For small velocities, the frictional force can be taken to have the form

—mTv, (2.1.1)

where I' is a constant. Notice that because we have extracted the factor of the mass of the block in (2.1), 1/I" has the dimensions of
time. We can write the equation of motion of the system as

d2
dt?
where wy = 4/ K /m. This equation is linear and time translation invariant, like the undamped equation of motion. In fact, it is just

the form that we analyzed in the previous chapter, in (1.16). As before, we allow for the possibility of complex solutions to the
same equation,

w(t)—l—I‘%m(t)—!—w%x(t) =0, (2.1.2)

d? d
ﬁz(t)—kfaz(t)—kwgz(t) =0. (2.1.3)
Because (1.71) is satisfied, we know from the arguments of of chapter 1 that we can find irreducible solutions of the form
2(t) =™, (2.1.4)

where o (Greek letter alpha) is a constant. Putting (2.4) into (2.2), we find
(0® +Ta+wd) e =0. (2.1.5)

Because the exponential never vanishes, the quantity in parentheses must be zero, thus
— 2
o=——x4/— —wj. (2.1.6)
From (2.6), we see that there are three regions for I' compared to wyq that lead to different physics.

2.1.1: Overdamped Oscillators

If T'/2 > wy, both solutions for a are real and negative. The solution to (2.2) is a sum of decreasing exponentials. Any initial
displacement of the system dies away with no oscillation. This is an overdamped oscillator.

The general solution in the overdamped case has the form,

c(t)=z(t)=Ae T+ A e (2.1.7)
where
N 2
1 -
:_\\
0
t=10 t— t=10s

Figure 2.1: Solutions to the equation of motion for an overdamped oscillator.
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An example is shown in Figure 2.1. The dotted line is e T** for I'= 157! and wy = .4 s™'. The dashed line is e *-*. The solid

line is a linear combination, e T+t — %e‘r-t )

In the overdamped situation, there is really no oscillation. If the mass is initially moving very fast toward the equilibrium position,
it can overshoot, as shown in Figure 2.1. However, it then moves exponentially back toward the equilibrium position, without ever
crossing the equilibrium value of the displacement a second time. Thus in the free motion of an overdamped oscillator, the
equilibrium position is crossed either zero or one times.

2.1.2: Underdamped Oscillators

If I'/2 < wy, the expression inside the square root is negative, and the solutions for o are a complex conjugate pair, with negative
real part. Thus the solutions are products of a decreasing exponential, e * /2 times complex exponentials (or sines and cosines)

et where

w? =w? —T?/4. (2.1.9)
This is an underdamped oscillator.

Most of the systems that we think of as oscillators are underdamped. For example, a system of a child sitting still on a playground

swing is an underdamped pendulum that can oscillate many times before frictional forces bring it to rest.
The decaying exponential e Tt/2gilwt=0) spirals in toward the origin in the complex plane. Its real part, e T2 cos(wt —0),
describes a function that oscillates with decreasing amplitude. In real form, the general solution for the underdamped case has the

form,
z(t) = Ae T2 cos(wt — 6), (2.1.10)
or
z(t) = e T2 (c cos(wt) 4 d sin(wt)), (2.1.11)

where A and w are related to ¢ and d by (1.97) and (1.98). This is shown in Figure 2.2 (to be compared with Figure 1.9). The
upper figure shows the complex plane with e~T*/2e~i«t=9) plotted for equally spaced values of ¢. The lower figure is the real part,
cos(wt — @) — , for the same values of ¢ plotted versus ¢. In the underdamped case, the equilibrium position is crossed an infinite
number of times, although with exponentially decreasing amplitude!

9"

. e Tt/2g—i(wt—0)

cos(wt — ) —

https://phys.libretexts.org/@go/page/34351


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34351?pdf

LibreTexts"

Figure 2.2: A damped complex exponential.

2.1.3: Critically Damped Oscillators

If I'/2 = wy, then (2.4), gives only one solution, e T2 We know that there will be two solutions to the second order differential

equation, (2.2). One way to find the other solution is to approach this situation from the underdamped case as a limit. If we write
the solutions to the underdamped case in real form, they are e T2 T2 sin wt. Taking the limit of the first as w — 0
gives e T2 the solution we already know. Taking the limit of the second gives 0. However, if we first divide the second solution
by w, it is still a solution because w does not depend on ¢. Now we can get a nonzero limit:

coswt and e

1
lim —e T2 sinwt =te T2, (2.1.12)
w—0 W

Thus te %2 is also a solution. You can also check this explicitly, by inserting it back into (2.2). This is called the critically
damped case because it is the boundary between overdamping and underdamping.

A familiar system that is close to critical damping is the combination of springs and shock absorbers in an automobile. Here the
damping must be large enough to prevent the car from bouncing. But if the damping from the shocks is too high, the car will not be
able to respond quickly to bumps and the ride will be rough.

The general solution in the critically damped case is thus
ce T2 4 qte T2, (2.1.13)

This is illustrated in Figure 2.3. The dotted line is e T* for I'=1s"1. The dashed line is te~T*. The solid line is a linear
combination, (1 —¢)e Tt .

t=10 t— t=10s

Figure 2.3: Solutions to the equation of motion for a critically damped oscillator.

As in the overdamped situation, there is no real oscillation for critical damping. However, again, the mass can overshoot and then
go smoothly back toward the equilibrium position, without ever crossing the equilibrium value of the displacement a second time.
As for overdamping, the equilibrium position is crossed either once or not at all.

This page titled 2.1: Damped Oscillators is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Howard
Georgi via source content that was edited to the style and standards of the LibreTexts platform.
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2.2: Forced Oscillations

The damped oscillator with a harmonic driving force, has the equation of motion

d? d
e -_ 2 =
dt2w(t)+rdtm(t)+w0w(t) F(t)/m, (2.2.1)
where the force is
F(t) = Fy coswgt. (2.2.2)

The wy /2 is called the driving frequency. Notice that it is not necessarily the same as the natural frequency, wg /2, nor is it the
oscillation frequency of the free system, (2.9). It is simply the frequency of the external force. It can be tuned completely
independently of the other parameters of the system. It would be correct but awkward to refer to wy as the driving angular
frequency. We will simply call it the driving frequency, ignoring its angular character.

The angular frequencies, wy and wy, appear in the equation of motion, (2.15), in completely different ways. You must keep the
distinction in mind to understand forced oscillation. The natural angular frequency of the system, wy, is some combination of the
masses and spring constants (or whatever relevant physical quantities determine the free oscillations). The angular frequency, wy,
enters only through the time dependence of the driving force. This is the new aspect of forced oscillation. To exploit this new
aspect fully, we will look for a solution to the equation of motion that oscillates with the same angular frequency, wy, as the driving
force.

We can relate (2.14) to an equation of motion with a complex driving force

%z(t)wLF%z(t)er%z(t) =F(t)/m, (2.2.3)
where
F(t) = Fye it (2.2.4)

This works because the equation of motion, (2.14), does not involve % explicitly and because
Re F(t) = F(t). (2.2.5)

If 2(t) is a solution to (2.16), then you can prove that z(t) = Re 2(t) is a solution (2.14) by taking the real part of both sides of
(2.16).

The advantage to the complex exponential force, in (2.16), is that it is irreducible, it behaves simply under time translations. In
particular, we can find a steady state solution proportional to the driving force, e ™! whereas for the real driving force, the
coswyt and sinwgt forms get mixed up. That is, we look for a steady state solution of the form

2(t) — Ae ™t (2.2.6)

The steady state solution, (2.19), is a particular solution, not the most general solution to (2.16). As discussed in chapter 1, the most
general solution of (2.16) is obtained by adding to the particular solution the most general solution for the free motion of the same
oscillator (solutions of (2.3)). In general we will have to include these more general contributions to satisfy the initial conditions.
However, as we have seen above, all of these solutions die away exponentially with time. They are what are called “transient”
solutions. It is only the steady state solution that survives for a long time in the presence of damping. Unlike the solutions to the
free equation of motion, the steady state solution has nothing to do with the initial values of the displacement and velocity. It is
determined entirely by the driving force, (2.17). You will explore the transient solutions in problem (2.4).

Putting (2.19) and (2.17) into (2.16) and cancelling a factor of e "™ from each side of the resulting equation, we get

F
(~w} —ilwg +wf) A= —, (2.2.7)
or
F
w§ —1lwy —w’
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Notice that we got the solution just using algebra. This is the advantage of starting with the irreducible solution, (2.19).

The amplitude, (2.21), of the displacement is proportional to the amplitude of the driving force. This is just what we expect from
linearity (see problem (2.2)). But the coefficient of proportionality is complex. To see what it looks like explicitly, multiply the
numerator and denominator of the right-hand side of (2.21) by w% +ilwg — wfl , to get the complex numbers into the numerator
2, . 2
wi +ilTwg —w5) Fy/m
A= (g - 1) Fo/ . (2.2.9)
(Wi —w?) " +T2%?

The complex number .4 can be written as A + ¢ B, with A and B real:

(w% —wfi) Fy,/Tn '

A= 5 ; (2.2.10)
(Wi —w?) " +T2%]
TwiFy/m
B= d g/ (2.2.11)
(w} - ""?1) +T2w2
Then the solution to the equation of motion for the real driving force, (2.14), is
z(t) =Rez(t) = Re(Ae ™) = Acoswyt + Bsinwgt. (2.2.12)

Thus the solution for the real force is a sum of two terms. The term proportional to A is in phase with the driving force (or 180°
out of phase), while the term proportional to B is 90° out of phase. The advantage of going to the complex driving force is that it
allows us to get both at once. The coefficients, A and B, are shown in the graph in Figure 2.4 for I" = wq /2.

0 Wy — W 2w

Figure 2.4: The elastic and absorptive amplitudes, plotted versus wg. The absorptive amplitude is the dotted line.

The real part of A,, \(A=\operatorname{Re} \mathcal{A}), is called the elastic amplitude and the imaginary part of A,
B=1ImA, is called the absorptive amplitude. The reason for these names will become apparent below, when we consider the
work done by the driving force.

This page titled 2.2: Forced Oscillations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Howard

Georgi via source content that was edited to the style and standards of the LibreTexts platform.
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2.3: Resonance

The (w% _""(21) ? term in the denominator of (2.22) goes to zero for wy = wq. If the damping is small, this behavior of the
denominator gives rise to a huge increase in the response of the system to the driving force at wg; = wq . The phenomenon is called

resonance. The angular frequency wy is the resonant angular frequency. When wy = wy , the system is said to be “on resonance”.

The phenomenon of resonance is both familiar and spectacularly important. It is familiar in situations as simple as building up a
large amplitude in a child’s swing by supplying a small force at the same time in each cycle. Yet simple as it is, it is crucial in many
devices and many delicate experiments in physics. Resonance phenomena are used ubiquitously to build up a large, measurable
response to a very small disturbance.

Very often, we will ignore damping in forced oscillations. Near a resonance, this is not a good idea, because the amplitude, (2.22),
goes to infinity as I' -+ 0 for wy = wy . Infinities are not physical. This infinity never occurs in practice. One of two things
happen before the amplitude blows up. Either the damping eventually cannot be ignored, so the response looks like (2.22) for
nonzero I', or the amplitude gets so large that the nonlinearities in the system cannot be ignored, so the equation of motion no
longer looks like (2.16).

2.3.1: Work

It is instructive to consider the work done by the external force in (2.16). To do this we must use the real force, (2.14), and the
real displacement (2.25), rather than their complex extensions, because, unlike almost everything else we talk about, the
work is a nonlinear function of the force. The power expended by the force is the product of the driving force and the velocity,

P(t) = F(t)—=(t) = —Fywa A coswgt sinwgt + Fywy B cos® wgt. (2.3.1)

The first term in (2.26) is proportional to sin 2wgt. Thus it is sometimes positive and sometimes negative. It averages to zero over
any complete half-period of oscillation, a time /w4, because
ly+m/wqy 1 to+m/wa
/ dt sin 2wyt = ——cos 2wyt =0. (2.3.2)
to 2 to
This is why A is called the elastic amplitude. If A dominates, then energy fed into the system at one time is returned at a later time,
as in an elastic collision in mechanics.

The second term in (2.26), on the other hand, is always positive. It averages to
1
Paverage = EFOWdB- (233)

This is why B is called the absorptive amplitude. It measures how fast energy is absorbed by the system. The absorbed power, \
(P_{\text {average }\), reaches a maximum on resonance, at wy = wy . This is a diagnostic that is often used to find resonances in
experimental situations. Note that the dependence of B on w, looks qualitatively similar to that of \(P_{\text {average }\), which is
shown in Figure 2.5 for I" = \ (wg /2. However, they differ by a factor of w,. In particular, the maximum of B occurs slightly
below resonance.

oo
2mI’

+
]

I}ﬂ\'er;\ge

0

0 wg— W 2wy

Figure 2.5: The average power lost to the frictional force as a function of wy for I' = wy /2.
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2.3.2: Resonance Width and Lifetime

Both the height and the width of the resonance curve in Figure 2.5 are determined by the frictional term, I, in the equation of
motion. The maximum average power is inversely proportional to T,

F}
2mI’
The width (for fixed height) is determined by the ratio of I' to wy. In fact, you can check that the values of w,; for which the

average power loss is half its maximum value are
s r
w1/2=,/w3+—4 +3 (2.3.5)

The T is the “full width at half-maximum” of the power curve. In Figure 2.6 and Figure 2.7, we show the average power as a

function of wy for I' =wg /4 and T' = wy. The linear dependence of the width on I" is clearly visible. The dotted lines show the
position of half-maximum.

(2.3.4)

[}

o
2mI’ [\
T /
F, average -
r
—
0
0 wyg— o 2wy

Figure 2.6: The average power lost to the frictional force as a function of wg for I' = wy /4.

Figure 2.7: The average power lost to the frictional force as a function of wy for I' = wy .

This relation is even more interesting in view of the relationship between I' and the time dependence of the free oscillation. The
lifetime of the state in free oscillation is of order 1/I'. In other words, the width of the resonance peak in forced oscillation is
inversely proportional to the lifetime of the corresponding normal mode of free oscillation. This inverse relation is important in
many fields of physics. An extreme example is particle physics, where very short-lived particles can be described as resonances.
The quantum mechanical waves associated with these particles have angular frequencies proportional to their energies,

E =hw (2.3.6)
where h is Planck’s constant divided by 2,
h ~6.626 x 10734Js. (2.3.7)

The lifetimes of these particles, some as short as 10724 seconds, are far too short to measure directly. However, the short lifetime
shows up in the large width of the distribution of energies of these states. That is how the lifetimes are actually inferred.
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2.3.3: Phase Lag
We can also write (2.25) as \[x(t)=R \cos \left(\omega_{d} t-\theta\right)\)

for

R=+A*+B*, @=arg(A+iB). (2.3.8)

The phase angle, 6, measures the phase lag between the external force and the system’s response. The actual time lag is /wq. The
displacement reaches its maximum a time 6/wy after the force reaches its maximum.

Note that as the frequency increases, 6 increases and the motion lags farther and farther behind the external force. The phase angle,
0, is determined by the relative importance of the restoring force and the inertia of the oscillator. At low frequencies (compared to
wp), inertia (an imprecise word for the ma term in the equation of motion) is almost irrelevant because things are moving very
slowly, and the motion is very nearly in phase with the force. Far beyond resonance, the inertia dominates. The mass can no longer
keep up with the restoring force and the motion is nearly 180° out of phase with the force. We will work out a detailed example of
this in the next section.

The phase lag goes through 7/2 at resonance, as shown in the graph in Figure 2.8 for I' =w /2. A phase lag of /2 is another
frequently used diagnostic for resonance.

[ME]

0 W 2[.9‘(]
Figure 2.8: A plot of the phase lag versus frequency in a damped forced oscillator.

This page titled 2.3: Resonance is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Howard Georgi via
source content that was edited to the style and standards of the LibreTexts platform.
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2.4: An Example

2.4.1: Feeling It In Your Bones

=0

We will discuss the physics of forced oscillations further in the context of the simple system shown in Figure 2.9. The block has
mass m. The block moves in a viscous fluid that provides a frictional force. We will imagine that the fluid is something like a thick
silicone oil, so that the steady state solution is reached very quickly. The block is attached to a cord that runs over a pulley and is
attached to a spring, as shown. The spring has spring constant & . You hold on to the other end of the spring and move it back and
forth with displacement

dy coswgt. (2.4.1)

dO cos wdt . (2.35) In this arrangement, you don’t have to be in the viscous fluid with the block — this makes it a lot easier to
breathe.

dp cos wyt

D_sumM

Figure 2.9: An oscillator that is damped by moving in a viscous fluid.

The question is, how does the block move? This system actually has exactly the equation of motion of the forced, damped
oscillator. To see this, note that the change in the length of the spring from its equilibrium length is the difference,

z(t) — dy coswyt. (2.4.2)
Thus the equation motion looks like this:
md—za:(t) —i—mFiw(t) = —K [z(t) — dy coswyt] (2.4.3)
di? e 0T -

Dividing by m and rearranging terms, you can see that this is identical to (2.14) with
F()/m:Kdo/m:w%dg. (244)
Moving the other end of the spring sinusoidally effectively produces a sinusoidally varying force on the mass.

Now we will go over the solution again, stressing the physics of this system as we go. Try to imagine yourself actually doing the
experiment! It will help to try to feel the forces involved in your bones. It may help to check out program 2-1 on the supplementary
programs disk. This allows you to see the effect, but you should really try to feel it!

The first step is to go over to the complex force, as in (2.16). The result looks like

inertial frictional spring driving
N
d’ d 2 2 —iwqt
ﬁz(t)—kl“az(t)—kwoz(t) =wldoe (2.4.5)

We have labeled the terms in (2.39) to remind you of their different physical origins.

The next step is to look for irreducible steady state solutions of the form of (2.19):

2(t) = Ae it (2.4.6)

Inserting (2.40) into (2.39), we get
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[—w? —ilTwg +w?] Ae @it = w2dge it (2.4.7)

What we will discuss in detail is the phase of the quantity in square brackets on the left-hand side of (2.41). Each of the three terms,
inertial, frictional and spring, has a different phase. Each term also depends on the angular frequency, w, in a different way. The
phase of .4 depends on which term dominates.

For very small wy, in particular for

wg K wp, T, (2.4.8)

the spring term dominates the sum. Then A is in phase with the driving force. This has a simple physical interpretation. If you
move the end of the spring slowly enough, both friction and inertia are irrelevant. When the block is moving very slowly, a
vanishingly small force is required. The block just follows along with the displacement of the end of the spring, A =~ dy. You
should be able to feel this dependence in your bones. If you move your hand very slowly, the mass has no trouble keeping up with
you.

For very large wy, that is for
wq > wyp, I, (249)

the inertial term dominates the sum. The displacement is then 180° out of phase with the driving force. It also gets smaller and
smaller as wy increases, going like

A~ ——2d,. (2.4.10)

Again, this makes sense physically. When the angular frequency of the driving force gets very large, the mass just doesn’t have
time to move.

In between, at least two of the three terms on the left-hand side of (2.41) contribute significantly to the sum. At resonance, the
inertial term exactly cancels the spring term, leaving only the frictional term, so that the displacement is 90° out of phase with the
driving force. The size of the damping force determines how sharp the resonance is. If j is much smaller than wyq, then the
cancellation between the inertial and spring terms in (2.39) must be very precise in order for the frictional term to dominate. In this
case, the resonance is very sharp. On the other hand, if I" > wy, the resonance is very broad, and the enhancement at resonance is
not very large, because the frictional term dominates for a large range of w, around the point of resonance, wy = wy .

Try it! There is no substitute for actually doing this experiment. It will really give you a feel for what resonance is all about. Start
by moving your hand at a very low frequency, so that the block stays in phase with the motion of your hand. Then very gradually
increase the frequency. If you change the frequency slowly enough, the contributions from the transient free oscillation will be
small, and you will stay near the steady state solution. As the frequency increases, you will first see that because of friction, the
block starts to lag behind your hand. As you go through resonance, this lag will increase and go through 90°. Finally at very high
frequency, the block will be 180° out of phase with your hand and its displacement (the amplitude of its motion) will be very small.

This page titled 2.4: An Example is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Howard Georgi via
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2.5: Chapter Checklist

You should now be able to:

1. Solve for the free motion of the damped harmonic oscillator by looking for the irreducible complex exponential solutions;

2. Find the steady state solution for the damped harmonic oscillator with a harmonic driving term by studying a corresponding
problem with a complex exponential force and finding the irreducible complex exponential solution;

3. Calculate the power lost to frictional forces and the phase lag in the forced harmonic oscillator;

4. Feel it in your bones!

2.5.1: Problems

2.1. Prove that an overdamped oscillator can cross its equilibrium position at most once.

2.2. Prove, just using linearity, without using the explicit solution, that the steady state solution to (2.16) must be proportional to

Fy.
2.3. For the system with equation of motion (2.14), suppose that the driving force has the form
fo coswyt cos it (2.5.1)
where
d<wy and TI'=0. (2.5.2)

As § — 0, this goes on resonance. What is the displacement for ¢ nonzero to leading order in §/wy? Write the result in the form
a(t) coswyt + B(t) sinwgt (2.5.3)

and find () and B(t). Discuss the physics of this result. Hint: First show that
1 X )
coswyt cos it = ERe (e‘l(“"’”)t + e_’(“’o_‘s)t) . (2.5.4)

2.4. For the system shown in Figure 2.9, suppose that the displacement of the end of the wire vanishes for ¢ < 0, and has the form
dpsinwgt for t>0. (2.5.5)

a. Find the displacement of the block for ¢ > 0. Write the solution as the real part of complex solution, by using a complex force
and exponential solutions. Do not try to simplify the complex numbers. Hint: Use (2.23), (2.24) and (2.6). If you get confused,
go on to part b.

b. Find the solution when I' — 0 and simplify the result. Even if you got confused by the complex numbers in a., you should be
able to find the solution in this limit. When there is no damping, the “transient” solutions do not die away with time!

2.5. For the LC circuit shown in Figure 1.10, suppose that the inductor has nonzero resistance, R. Write down the equation of
motion for this system and find the relation between friction term, mI’, in the damped harmonic oscillator and the resistance, R,
that completes the correspondence of (1.105). Suppose that the capacitors have capacitance, C' =2 0.00667uF, the inductor has
inductance, L ~ 150 H and the resistance, R ~ 152. Solve the equation of motion and evaluate the constants that appear in your
solution in units of seconds.

This page titled 2.5: Chapter Checklist is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Howard Georgi
via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

3: Normal Modes

Systems with several degrees of freedom appear to be much more complicated than the simple harmonic oscillator. What we will
see in this chapter is that this is an illusion. When we look at it in the right way, we can see the simple oscillators inside the more
complicated system.

3.1: Preview
In this chapter, we discuss harmonic oscillation in systems with more than one degree of freedom.
1. We will write down the equations of motion for a system of particles moving under general linear restoring forces without
damping.
2. Next, we introduce matrices and matrix multiplication and show how they can be used to simplify the description of the
equations of motion derived in the previous section.
3. We will then use time translation invariance and find the irreducible solutions to the equations of motion in matrix form. This

will lead to the idea of “normal modes.” We then show how to put the normal modes together to construct the general solution
to the equations of motion.

4. * We will introduce the idea of “normal coordinates” and show how they can be used to automate the solution to the initial
value problem.

5. * We will discuss damped forced oscillation in systems with many degrees of freedom.

3.1: More than One Degree of Freedom

3.2: Matrices

3.3: Normal Modes

3.4: * Normal Coordinates and Initial Values
3.5: * Forced Oscillations and Resonance
3.6: Chapter Checklist

This page titled 3: Normal Modes is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Howard Georgi via
source content that was edited to the style and standards of the LibreTexts platform.



https://libretexts.org/
https://phys.libretexts.org/Bookshelves/Waves_and_Acoustics/The_Physics_of_Waves_(Goergi)/03%3A_Normal_Modes/3.01%3A_New_Page
https://phys.libretexts.org/Bookshelves/Waves_and_Acoustics/The_Physics_of_Waves_(Goergi)/03%3A_Normal_Modes/3.02%3A_New_Page
https://phys.libretexts.org/Bookshelves/Waves_and_Acoustics/The_Physics_of_Waves_(Goergi)/03%3A_Normal_Modes/3.03%3A_New_Page
https://phys.libretexts.org/Bookshelves/Waves_and_Acoustics/The_Physics_of_Waves_(Goergi)/03%3A_Normal_Modes/3.04%3A_New_Page
https://phys.libretexts.org/Bookshelves/Waves_and_Acoustics/The_Physics_of_Waves_(Goergi)/03%3A_Normal_Modes/3.05%3A_New_Page
https://phys.libretexts.org/Bookshelves/Waves_and_Acoustics/The_Physics_of_Waves_(Goergi)/03%3A_Normal_Modes/3.06%3A_New_Page
https://phys.libretexts.org/Bookshelves/Waves_and_Acoustics/The_Physics_of_Waves_(Goergi)/03%3A_Normal_Modes
https://creativecommons.org/licenses/by-nc-sa/4.0
https://www.physics.harvard.edu/people/facpages/georgi
https://ocw.mit.edu/courses/physics/8-03sc-physics-iii-vibrations-and-waves-fall-2016/syllabus/MIT8_03SCF16_Textbook.pdf

LibreTexts"

3.1: More than One Degree of Freedom

In general, the number of degrees of freedom of a system is the number of independent coordinates required to specify the system’s
configuration. The more degrees of freedom the system has, the larger the number of independent ways that the system can move.
The more possible motions, you might think, the more complicated the system will be to analyze. In fact, however, using the tools
of linear algebra, we will see that we can deal with systems with many degrees of freedom in a straightforward way.

3.1.1: Coupled Oscillators

 [RQQQRRA,

Figure 3.1: Two pendulums coupled by a spring.

Consider the system of two pendulums shown in Figure 3.1. The pendulums consist of rigid rods pivoted at the top so they oscillate
without friction in the plane of the paper. The masses at the ends of the rods are coupled by a spring. We will consider the free
motion of the system, with no external forces other than gravity. This is a classic example of two “coupled oscillators.” The spring
that connects the two oscillators is the coupling. We will assume that the spring in Figure 3.1 is unstretched when the two
pendulums are hanging straight down, as shown. Then the equilibrium configuration is that shown in Figure 3.1. This is an
example of a system with two degrees of freedom, because two quantities, the displacements of each of the two blocks from
equilibrium, are required to specify the configuration of the system. For example, if the oscillations are small, we can specify the
configuration by giving the horizontal displacement of each of the two blocks from the equilibrium position.

Suppose that block 1 has mass mj, block 2 has mass ms, both pendulums have length £ and the spring constant is x (Greek letter
kappa). Label the (small) horizontal displacements of the blocks to the right, ; and z2, as shown in Figure 3.2. We could have
called these

RIS S S
. | |

T T2

Figure 3.2: Two pendulums coupled by a spring displaced from their equilibrium positions.

masses and displacements anything, but it is very convenient to use the same symbol, z, with different subscripts. We can then
write Newton’s law, F' = ma, in a compact and useful form.
d2

for j = 1 to 2, where F7 is the horizontal force on block 1 and F3 is the horizontal force on block 2. Because there are two values
of 7, (3.1) is two equations; one for j = 1 and another for j = 2. These are the two equations of motion for the system with two
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degrees of freedom. We will often refer to all the masses, displacements or forces at once as m;, x; or F}, respectively. For
example, we will say that F} is the horizontal force on the jth block. This is an example of the use of “indices” (j is an index) to
simplify the description of a system with more than one degree of freedom.

When the blocks move horizontally, they will move vertically as well, because the length of the pendulums remains fixed. Because
the vertical displacement is second order in the z;s,

w?-
Y~ 5 (3.1.2)

we can ignore it in thinking about the spring. The spring stays approximately horizontal for small oscillations.

To find the equation of motion for this system, we must find the forces, F}, in terms of the displacements, z;. It is the approximate
linearity of the system that allows us to do this in a useful way. The forces produced by the Hooke’s law spring, and the horizontal
forces on the pendulums due to the tension in the string (which in turn is due to gravity) are both approximately linear functions of
the displacements for small displacements. Furthermore, the forces vanish when both the displacements vanish, because the system
is in equilibrium. Thus each of the forces is some constant (different for each block) times x; plus some other constant times 5. It
is convenient to write this as follows:

Py =—-Knxz — Kipzz, Fy=—-Kox) — Koz, (3.1.3)
or more compactly,
2
Fy==) Ky (3.1.4)
k=1

for j = 1 to 2. We have written the four constants as K11, K12, K21 and Kss in order to write the force in this compact way. Later,
we will call these constants the matrix elements of the K matrix. In this notation, the equations of motion are

d2 2
mjﬁzrjz—;ffjkwk (3‘1'5)

S S S S S S S

IS EESE U
|

T3

Figure 3.3: Two pendulums coupled by a spring with block 2 displaced from an equilibrium position.

Because of the linearity of the system, we can find the constants, K, by considering the displacements of the blocks one at a time.
Then we find the total force using (3.4). For example, suppose we displace block 2 with block 1 held fixed in its equilibrium
position and look at the forces on both blocks. This will allow us to compute K5 and Ky,. The system with block two displaced is
shown in Figure 3.3. The forces on the blocks are shown in Figure 3.4, where Tj is the tension in the jth pendulum string. Fij is
the force on block 1 due to the displacement of block 2. Fjs is the force on block 2 due to the displacement of block 2. For small
displacements, the restoring force from the spring is nearly horizontal and equal to kz2 on block 1 and —xx on block 2. Likewise,
in the limit of small displacement, the vertical component of the force from the tension 75 nearly cancels the gravitational force on
block 2, mayg, so that the horizontal component of the tension gives a restoring force —zamsg/£ on block 2. For block 1, the force
from the tension 77 just cancels the gravitational force m;g. Thus

F12%I€CB2, F22%— — KZ3, (316)
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and
K~ —k, Ky~ % sy (3.1.7)
An analogous argument shows that
Ko~ —r, K~ % Tt (3.1.8)
Notice that
Ko =K. (3.1.9)

We will see below that this is an example of a very general relation.

T Ty
Fip Fa
1 ——= — 2
K2 —RI
mig mag

Figure 3.4: The forces on the two blocks in Figure 3.3.

3.1.2: Linearity and Normal Modes

=

We will see in this chapter that the most general possible motion of this system, and of any such system of oscillators, can be
decomposed into particularly simple solutions, in which all the degrees of freedom oscillate with the same frequency. These simple
solutions are called “normal modes.” The displacements for the most general motion can be written as sums of the simple solutions.
We will study how this works in detail later, but it may be useful to see it first. A possible motion of the system of two coupled
oscillators is animated in program 3-1. Below the actual motion, we show the two simple motions into which the more complicated
motion can be decomposed. For this system, the normal mode with the lower frequency is one in which the displacements of the
two blocks are the same:

z1(t) = z2(t) = by cos(wit —6y). (3.1.10)
The other normal mode is one in which the displacements of the two blocks are opposite
xl(t) :*$2(t) :bz COS(UJQt*92). (3111)

The sum of these two simple motions gives the much more complicated motion shown in program 3-1.

3.1.3: n Coupled Oscillators

Before we try to solve the equations of motion, (3.5), let us generalize the discussion to systems with more degrees of freedom.
Consider the oscillation of a system of n particles connected by various springs with no damping. Our analysis will be completely
general, but for simplicity, we will talk about the particles as if they are constrained to move in the z direction, so that we can
measure the displacement of the jth particle from equilibrium with the coordinate x ;. Then the equilibrium configuration is the one
in which all the z;s are all zero.

Newton’s law, F' = ma, for the motion of the system gives
d2$j
mj
dt?

—F (3.1.12)
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where m; is the mass of the jth particle, F is the force on it. Because the system is linear, we expect that we can write the force as
follows (as in (3.4)):

Fj:fZKjkxk (3.1.13)
k=1

for j=1 to n. The constant, —Kjy, is the force per unit displacement of the jth particle due to a displacement x; of the kth
particle. Note that all the F);s vanish at equilibrium when all the z;s are zero. Thus the equations of motion are

20,
d*z;

dt?

mj

k

forj=1 ton.

To measure K, make a small displacement, x,, of the kth particle, keeping all the other particles fixed at zero, assumed to
be an equilibrium position. Then measure the force, Fj; on the jth particle with only the kth particle displaced. Since the
system is linear (because it is made out of springs or in general, as long as the displacement is small enough), the force is
proportional to the displacement, ;. The ratio of F};, to ;. is —Kj;:

K = —Fj;/x, when z, = 0 for £ # k. (3.1.15)

Note that K, is defined with a — sign, so that a positive K is a force that is opposite to the displacement, and therefore tends to
return the system to equilibrium.

Because the system is linear, the total force due to an arbitrary displacement is the sum of the contributions from each
displacement. Thus

F]:Zij :—ZKjka:k (3.1.16)
k k

Let us now try to understand (3.9). If we consider systems with no damping, the forces can be derived from a potential energy,

ov
F,=——. 3.1.17
J 31:]' ( )
But then by differentiating equation (3.16) we find that
o’V
Kjy=—F7. 3.1.18
7 Oz ;0xy, ( )
The partial differentiations commute with one another, thus equation (3.18) implies
K, = Ky;. (3.1.19)

In words, the force on particle j due to a displacement of particle k is equal to the force on particle k due to the displacement of
particle j.

This page titled 3.1: More than One Degree of Freedom is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Howard Georgi via source content that was edited to the style and standards of the LibreTexts platform.
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3.2: Matrices

It is very useful to rewrite equation (3.14) in a matrix notation. Because of the linearity of the equations of motion for harmonic
motion, it will be very useful to have the tools of linear algebra at hand for our study of wave phenomena. If you haven’t studied
linear algebra (or didn’t understand much of it) in math courses, DON’T PANIC. We will start from scratch by describing the
properties of matrices and matrix multiplication. The important thing to keep in mind is that matrices are nothing very deep or
magical. They are just bookkeeping devices designed to make your life easier when you deal with more than one equation at a time.

A matrix is a rectangular array of numbers. An N x M matrix has N rows and M columns. Matrices can be added and subtracted
simply by adding and subtracting each of the components. The difference comes in multiplication. It is very convenient to define a
multiplication law that defines the product of an N x M matrix on the left with a M x L matrix on the right (the order is
important!) to be an NV X L matrix as follows:

Call the N x M matrix A and let Aj;, be the number in the jth row and kth column for 1 <j< N and 1 <k <M . These
individual components of the matrix are called matrix elements. In terms of its matrix elements, the matrix A looks like:

A A Aim
Ay Ay - Ay

a=| T L (3.2.1)
Anvi An2 -+ Anu

Call the M x L matrix B with matrix elements By; for1 <k <M and1 <I<L:

By By -+ By
By By -+ By
B=| . (3.2.2)
Byi Bayp -+ Bur
Call the NV x L matrix C' with matrix elements C for 1 <j< N and1<I<L.
Cun Cip -+ Cip
Conn Gy - Oy
c=| . (3.2.3)
Cyi Cn2 -+ COpg

Then the matrix C is defined to be the product matrix AB if
M
Cii=Y_ Aji-Buy. (3.2.4)
k=1
Equation (3.23) is the algebraic statement of the “row-column” rule. To compute the j¢ matrix element of the product matrix, AB,

take the jth row of the matrix A and the £th column of the matrix B and form their dot-product (corresponding to the sum over k
in (3.23)). This rule is illustrated below:

Ay - Ay - Ay B, ---|Byl--- By
Ajy - Ap - Ay By | B |-+ B (3.2.5)
A Ay Anm B B B,

https://phys.libretexts.org/@go/page/34359



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34359?pdf
https://phys.libretexts.org/Bookshelves/Waves_and_Acoustics/The_Physics_of_Waves_(Goergi)/03%3A_Normal_Modes/3.02%3A_New_Page

LibreTexts"

Ch -+ Cup --- Oy
=\oy - 0 - Cip |- (3.2.6)
CNl - ONZ - CNL
For example,
10 2 2 3 13
1o 1 3 =]l0 1 3. (3.2.7)
2 1 2 -1 1

It is easy to check that the matrix product defined in this way is associative, (AB)C = A(BC'). However, in general, it is not
commutative, AB # BA. In fact, if the matrices are not square, the product in the opposite order may not even make any sense!
The matrix product AB only makes sense if the number of columns of A is the same as the number of rows of B. Beware!

Except for the fact that it is not commutative, matrix multiplication behaves very much like ordinary multiplication. For example,
there are “identity” matrices. The N x N identity matrix, called I, has zeros everywhere except for 1’s down the diagonal. For
example, the 3 x 3 identity matrix is

(3.2.8)

S = O
= o O

The N x N identity matrix satisfies

A=Al = Aforany N x N matrix A
IB = Bforany N x M matrix B; (3.2.9)
CI =C for any M x N matrix C .

We will be primarily concerned with “square” (that is NV x [N ) matrices.
Matrices allow us to deal with many linear equations at the same time.

An N dimensional column vector can be regarded as an IV x 1 matrix. We will call this object an “/N-vector.” It should not be
confused with a coordinate vector in three-dimensional space. Likewise, we can think of an N dimensional row vectorasa 1 x N 0
matrix. Matrix multiplication can also describe the product of a matrix with a vector to give a vector. The particularly important
case that we will need in order to analyze wave phenomena involves square matrices. Consider an N X N matrix A multiplying an
N -vector, X, to give another N -vector, F'. The square matrix A has N 2 matrix elements, Aji, for j and k=1 to N. The vectors
X and F' each have N matrix elements, just their components X; and F} for j =1 to IN. Then the matrix equation:

AX-F (3.2.10)

actually stands for IV equations:
N
> Aj- X, =F (3.2.11)
k=1

for j=1 to N. In other words, these are N simultaneous linear equations for the N X’s. You all know, from your studies of
algebra how to solve for the X;’s in terms of the F}’s and the Aj’s but it is very useful to do it in matrix notation. Sometimes, we
can find the “inverse” of the matrix A, A~!, which has the property

AA T =AA=T, (3.2.12)

where I is the identity matrix discussed in (3.26) and (3.27). If we can find such a matrix, then the N simultaneous linear
equations, (3.29), have a unique solution that we can write in a very compact form. Multiply both sides of (3.29) by A~1. On the
left-hand side, we can use (3.30) and (3.27) to get rid of the \(AA{-1}A\\) and write the solution as follows:

X=A'F. (3.2.13)
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3.2.1: Inverse and Determinant

We can compute A~! in terms of the “determinant” of A. The determinant of the matrix A is a sum of products of the matrix
elements of A with the following properties:

e There are V! terms in the sum;

o FEach term in the sum is a product of N different matrix elements;

o In each product, every row number and every column number appears exactly once;

e Every such product can be obtained from the product of the diagonal elements, Aj; Ass - - - Axn, by a sequence of interchanges
of the column labels. For example, AjsAs; A3z - - - Anp involves one interchange while Ays Ag3 A3y Ayy - - - Ay requires two.

o The coefficient of a product in the determinant is +1 if it involves an even number of interchanges and -1 if it involves an odd
number of interchanges.

Thus the determinant of a 2 x 2 matrix, A is
detA=A11A22 —A12A21. (3214)
The determinant of a 3 x 3 matrix, 4 is

det A = Ay1 A Ass + A1pA23 As1 + A13A21 Aso
—A11 423432 — A13 A2 A31 — A12 A1 Ass.
Unless you are very unlucky, you will never have to compute the determinant of a matrix larger than 3 x 3 by hand. If you are so

unlucky, it is best to use an inductive procedure that builds it up from the determinants of smaller submatrices. We will discuss this
procedure below.

If det A =0, the matrix has no inverse. It is not “invertible.” In this case, the simultaneous linear equations have either no solution
at all, or an infinite number of solutions. If det A # 0, the inverse matrix exists and is uniquely given by

A
-1
= 2.1
det A (3.2.15)
where A is the cofactor matrix defined by its matrix elements as follows:

(A) i, = det A(jk) (3.2.16)

with

A(jk)im =1ifm=jandl=k
A(jk)im =0ifm =jandl #k
A(jk)im =0ifm #jandl =k
A(jk lm:Almifm ;é]andl;ék

In other words, A(jk) is obtained from the matrix A by replacing the kj matrix element by 1 and all other matrix elements in row
k or column j by 0. Thus if

Ay | Ay o Ay
A= A:m A:kj A;N , (3.2.17)
A AR
Ay - lo oo Ay
A(jk) = 0 T o | (3.2.18)
T PR
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Note the sneaky interchange of j <+ k in this definition, compared to (3.23).

For example if

A= (4 3) (3.2.19)

5 2
then
,4(11):(1 0) A(12):<(1) 3)
A(21):(g 0) A(22):<3 (1’)
Thus,

A:( 2 _43) (3.2.20)

andsincedet A=4-2—-5-3=-7 ,

o (-2/T 3/7
Al _( 57 4/7). (3.2.21)

A1 satisfies AA~1 = A~1 A = I where I is the identity matrix:

I= ((1) (1)) (3.2.22)

In terms of the submatrices, A(jk), we can define the determinant inductively, as promised above. In fact, the reason that (3.30)
works is that the determinant can be written as

N
det A=) " Ay det A(k1). (3.2.23)
k=1

Actually this is true for any row, not just 7 = 1. The relation, (3.30) can be rewritten as

N
> Ajdet A (kj) =

{ det A for j=§'
k=1

0forj+# 4

The determinants of the submatrices, det A(kl), in (3.43) can, in turn, be computed by the same procedure. The result is a
definition of the determinant that refers to itself. However, eventually, the process terminates because the matrices keep getting
smaller and the determinant can always be computed in this way. The only problem with this procedure is that it is very tedious for
a large matrix. For an n X n matrix, you end up computing n! terms and adding them up. For large n, this is impractical. One of
the nice features of the techniques that we will discuss in the coming chapters is that we will be able to avoid such calculations.

(3.2.24)

3.2.2: More Useful Facts about Matrices

Suppose that A and B are N x N matrices and v is an [N -vector.

1. If you know the inverses of A and B, you can find the inverse of the product, AB, by multiplying the inverses in the reverse
order:

(AB)"' =B1A% (3.2.25)
2. The determinant of the product, AB, is the product of the determinants:

det(AB) = det Adet B, (3.2.26)

thus if det(AB) — 0, then either A or B has vanishing determinant.
3. A matrix multiplying a nonzero vector can give zero only if the determinant of the matrix vanishes:
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Av=0=det A=0o0rv=0 (3.2.27)

This is the statement, in matrix language, that N homogeneous linear equations in /N unknowns can have a nontrivial solution,
v # 0, only if the determinant of the coefficients vanishes.
4. Similarly, if det A = 0, there exists a nonzero vector, v, that is annihilated by A:

det A =0 = v # 0 such that Av=0. (3.2.28)

This is the statement, in matrix language, that N homogeneous linear equations in N unknowns actually do have a nontrivial
solution, v # 0, if the determinant of the coefficients vanishes.

5. The transpose of an N x M matrix A, denoted by AT, is the M x N matrix obtained by reflecting the matrix about a diagonal
line through the upper left-hand corner. Thus if

An A - A
Ay Axp - Ao
A=l (3.2.29)
Ant An2 -+ Anum
then
Ay Ay - oo A
. Ay Agy oo oo Apg
p e N (3.2.30)
Ay Aoy oo oo Any

Note that if N # M, the shape of the matrix is changed by transposition. Only for square matrices does the transpose give you
back a matrix of the same kind. A square matrix that is equal to its transpose is called a “symmetric” matrix.
3.2.3: Eigenvalue Equations

We will make extensive use of the concept of an “eigenvalue equation.” For an N x N matrix, R, the eigenvalue equation has the
form:

Rc = hc, (3.2.31)

where ¢ is a nonzero N -vector,! and A is a number. The idea is to find both the number, h, which is called the eigenvalue, and the
vector, ¢, which is called the eigenvector. This is the problem we discussed in chapter 1 in (1.78) in connection with time
translation invariance, but now written in matrix form.

A couple of examples may be in order. Suppose that R is a diagonal matrix, like
2 0
R= . (3.2.32)
01

Then the eigenvalues are just the diagonal elements, 2 and 1, and the eigenvectors are vectors in the coordinate directions,

(1)) =()-()

R= (i ;) (3.2.34)

A less obvious example is
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This time the eigenvalues are 3 and 1, and the eigenvectors are as shown below:

()= #(2)()

It may seem odd that in the eigenvalue equation, both the eigenvalue and the eigenvector are unknowns. The reason that it works is
that for most values of h, the equation, (3.51), has no solution. To see this, we write (3.51) as a set of homogeneous linear
equations for the components of the eigenvector, c,

(R—hI)c=0. (3.2.36)

The set of equations, (3.56), has nonzero solutions for ¢ only if the determinant of the coefficient matrix, R — hI, vanishes. But
this will happen only for IV values of h, because the condition

det(R—hI)=0 (3.2.37)
is an N'th order equation for k. For each h that solves (3.57), we can find a solution for ¢.> We will give some examples of this

procedure below.

3.2.4: Matrix Equation of Motion

It is very useful to rewrite the equation of motion, (3.14), in a matrix notation. Define a column vector, X, whose jth row (from the
top) is the coordinate x;:

x1

zo
x=|""1. (3.2.38)

Tn

Define the “K matrix”, an n x n matrix that has the coefficient Ky, in its jth row and kth column:

Ky Kiz -+ K
Ky Ki -+ Ky

| l (3.2.39)
Knl Kn2 Knn

K, is said to be the “jk matrix element” of the K matrix. Because of equation (3.19), the matrix K is symmetric, K = K T,

Define the diagonal matrix M with m; in the jth row and jth column and zeroes elsewhere

m 0 - 0
0 mg --- 0

M= _ o . . (3.2.40)
0 0 my,

M is called the “mass matrix.”
Using these definitions, we can rewrite (3.14) in matrix notation as follows:

a2xX
— =KX, (3.2.41)

There is nothing very fancy going on here. We have just used the matrix notation to get rid of the summation sign in (3.14). The
sum is now implicit in the matrix multiplication in (3.61). This is useful because we can now use the properties of matrices and
matrix multiplication discussed above to manipulate (3.61). For example, we can simplify (3.61) a bit by multiplying on the left by
M1 to get

d?x

— -1
—5 = MKX. (3.2.42)
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¢ = 0 doesn’t count, because the equation is satisfied trivially for any h. We are interested only in nontrivial solutions.
2The situation is slightly more complicated when the solutions for h are degenerate. We discuss this in (3.117) below.

This page titled 3.2: Matrices is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Howard Georgi via
source content that was edited to the style and standards of the LibreTexts platform.
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3.3: Normal Modes

If there is only one degree of freedom, then both X and M ! are just numbers and the solutions to the equation of motion, (3.62),
have the form of a constant amplitude times an exponential factor. In fact, we saw that this form is related to a very general fact
about the physics — time translation invariance, (1.33). The arguments of chapter 1, (1.71)-(1.85), did not depend on the number of
degrees of freedom. Thus they show that here again, we can find irreducible solutions, that go into themselves up to an overall
constant when the clocks are reset. As in chapter 1, the first step is to allow the solutions to be complex. That is, we replace (3.62)

by
d*z
— =-M"'KZ, (3.3.1)
dt?
where Z is a complex n vector with components, z;. The real parts of the components of Z are the components of a real solution
satisfying (3.62),
z; =Rez;. (3.3.2)

We will say that the real vector, X, is the real part of the complex vector, Z,
X=ReZ, (3.3.3)
if (3.64) is satisfied.

Just as in chapter 1, we know that we can find irreducible solutions that have the same form up to an overall constant when the
clocks are reset. We know from (1.85) that these have the form

Z(t) = Ae ™t (3.3.4)
where A is some constant n-vector and the angular frequency, w, is still just a number. Now if ¢ —¢+a , \[Z(t) \rightarrow
Z(t+a)=e/N =i \omega a} Z(t) .\)

While the irreducible form, (3.66), comes just from time translation invariance, we must still look at the equations of motion to
determine the vector, A and the angular frequency, w. Inserting (3.66) into (3.63), doing the differentiation and canceling the
exponential factors from both sides, we find that (3.66) is a solution if

WwA=M1KA. (3.3.5)
This matrix equation is an eigenvalue equation of the form that we discussed in (3.51)-(3.57). w? is the eigenvalue of the matrix
M 'K and A is the corresponding eigenvector. Let us see what it means physically.

The real part of the column vector Z specifies the displacement of each of the degrees of freedom of the system. The eigenvalue
equation, (3.68), does not involve any complex numbers (because we have not put in any damping). Therefore (as we will see
explicitly below), we can choose the solutions so that all the components of A are real. Then the real part of the complex solutions

we seek in (3.66) is
X(t) = Acosut, (3.3.6)
or in terms of the components of A,
ai
A= a2 |. (3.3.7)
z1(t) =ay coswt, x3(t) =azcoswt, etc. (3.3.8)

Not only does everything move with the same frequency, but the ratios of displacements of the individual degrees of freedom are
fixed. Everything oscillates in phase. The only difference between the motion of the different degrees of freedom is their different
amplitudes from the different components of A.

The point is worth repeating. Time translation invariance and linearity imply that we can always find irreducible solutions, (3.67),
in which all the degrees of freedom oscillate with the same frequency. The extra piece of information that leads to (3.69) is
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dynamical. If there is no damping, then all the components of A can be chosen to be real, and all the degrees of freedom oscillate
not only with the same frequency, but also with the same phase.

If such a solution is to satisfy the equations of motion, then the acceleration must also be proportional to A, so that the individual
displacements don’t get out of synch. But that is what (3.68) is telling us. —M ~! K is the matrix that, acting on the displacement,
gives the acceleration. The eigenvalue equation (3.68) means that the acceleration is proportional to A again. The constant of
proportionality, w?, is the return force per unit displacement per unit mass for the particular displacement specified by A.

We have already discussed the mathematical structure of the eigenvalue equation in (3.51)-(3.57). We will do it again, for
emphasis, in the case of physical interest, (3.68). It should be clear that not every value of A and w? gives a solution of (3.68). We
will solve for the allowed values by first finding the possible values of \oemga2 and then finding the corresponding values of A.
To find the eigenvalues, note that (3.68) can be rewritten as

(MK —w’I] A=0, (3.3.9)

where I is the n X n identity matrix. (3.72) is just a compact way of representing » homogeneous linear equations in the n
components of A where the coefficients depend on w?. We saw in (3.47) and (3.48) that for systems of n homogeneous linear
equations in n unknowns, a nonzero solution exists if and only if the determinant of the coefficient matrix vanishes. The reason is
that if the determinant were nonzero, then the matrix, M ! K — w?I , would have an inverse, and we could use (3.31) to conclude
that the only solution for the vector, A, is A = 0. Thus to have a nonzero amplitude, A, we must have

det[M 'K —w?I] =0. (3.3.10)

(3.73) is a polynomial equation for w?. It is an equation of degree n in w?, because the term in the determinant from the product of
all the diagonal elements of the matrix contains a piece that goes as [wz]n. All the coefficients in the polynomial are real.
Physically, we expect all the solutions for w? to be real and positive whenever the system is in stable equilibrium because we
expect such systems to oscillate. Mathematically, we can show that w? is always real, so long as all the masses are positive. We will
do this below in (3.127)-(3.130).

Negative w? are associated with unstable equilibrium. For example, consider a mass at the end of a rigid rod, free to swing in the

earth’s gravitational field in a vertical plane around a frictionless pivot, as shown in Figure 3.5. The mass can move along the
dotted line. The stable equilibrium position is indicated by the solid line. The unstable equilibrium position is indicated by the
dashed line.

T/
1
1
|
|
i
|
l
l

Figure 3.5: A mass on a rigid rod, free to swing in the earth’s gravity in a vertical plane.

When the mass is at the unstable equilibrium point, the smallest disturbance will cause it to fall. Once away from equilibrium, the
displacement increases exponentially until the angle from the vertical becomes so large that the nonlinearities in the equation of
motion for this system take over. We will discuss this nonlinear oscillator further in appendix B.
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Once we have found the possible values of w?, we can put each one back into (3.72) to get the corresponding A. Because (3.72) is
homogeneous, the overall scale of A is not determined, but all the ratios, a; /ax, are fixed for each W,

3.3.1: Normal Modes and Frequencies

The vector A is called the “normal mode” of the system associated with the frequency w. Because A is real, in the absence of
friction, the complex solutions, (3.66), can be put together into real solutions, like (3.69). The general real solution is of the form

X(t) =Re[(b+ic)Z(t)] =
bA coswt +cAsinwt = dA cos(wt — 0)

where b and ¢ (or d and 8) are real numbers.

We can now construct the complete solution to the equation of motion. Because of linearity, we get it by adding together all the
normal mode solutions with arbitrary coefficients that must be set by the initial conditions.

We can now see that the number of different normal modes is always equal to n, the number of degrees of freedom. Label the
normal modes as A%, where « is a label that (we will argue below) goes from 1 to n. Label the corresponding frequencies w.
Then the most general possible motion of the system is a sum of all the normal modes,

Z(t) = weA%e ! (3.3.11)
a=1

or in real form (withw =b+ic)
X(t) =) [ba A% cos(wat) + ca A® sin(wat)]

a=1

n
= Z do A% cos(wat —0,)
a=1

where b, and ¢, (or d, and 6,,) are real numbers that must be determined from the initial conditions of the system. Note that the
set of all the normal mode vectors must be “complete,” in the mathematical sense that any possible configuration of this
system can be described as a linear combination of normal modes. Otherwise, we could not satisfy arbitrary initial conditions
with the solution, (3.76). This can be proved mathematically (because the matrix, K, is symmetric and the masses are positive), but
the physical argument will be enough for us here. Likewise no normal mode can possibly be a linear combination of the other
normal modes, because each corresponds to an independent possible motion of the physical system with its own frequency. The
mathematical way of saying this is that the set of all the normal modes is “linearly independent.”

Because the set of normal modes must be both complete and linearly independent, there must be precisely n normal modes,
where again, n is the (3.77) number of degrees of freedom.

If there were fewer than n normal modes, they could not possibly describe all possible configurations of the n degrees of freedom.
If there were more than n, they could not be linearly independent n dimensional vectors. At least one of them could be written as a
linear combination of the others. As we will see later, (3.77) is the physical principle behind Fourier analysis.

It is worth noting that solving the eigenvalue equation, (3.68), gets hard very rapidly as the number of degrees of freedom
increases. First you have to compute the determinant of an 7 X n matrix. If all the entries are nonzero, this requires adding up 7!
terms. Once you have finished that, you still have to solve a polynomial equation of degree n. For n > 3, this cannot be done
analytically except in special cases.

On the other hand, it is always straightforward to check whether a given vector is an eigenvector of a given matrix and, if so, to
compute the eigenvalue. We will use this fact in the problems at the end of the chapter.

3.3.2: Back to the 2 X 2 Example

Let us return to the example from the beginning of this chapter in the special case where the two pendulum blocks have the same
mass, m; = meo =m . Simple as it is, this will be a very important system for our understanding of wave phenomena. Let us see
how the techniques that we have developed allow us to solve for the allowed frequencies and the corresponding A vectors, the
normal modes. From (3.7) and (3.8), the K matrix has the form

https://phys.libretexts.org/@go/page/34360


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34360?pdf

LibreTexts"

£+ -
K= (mg/ " " ) . (3.3.12)
—K mg/l+K
The M matrix is
A (m 0 ) _ (3.3.13)
0 m
Thus from (3.78) and (3.79),
Y _
MK = (g/ tr/mo —k/m > . (3.3.14)
—K/m g/l+Kk/m
The matrix M 'K —w?I is
L —w? —
MK -l = (9/ +r/m—w ro/m ) . (3.3.15)
—K/m g9/l+k/m—w?
To find the eigenvalues of M ~1 K, we form the determinant
L+ —w? -
det[M 'K — 1] :det[(g/ w/m e w/mo )]
—Kk/m g/l+K/m—w
= (g9/t+~K/m —w2) - (k/m)?
= (w? —g/t) (v* — g/t —2K/m) =0.
Thus the angular frequencies of the normal modes are
w=g/l, wi=g/l+2k/m. (3.3.16)

To find the corresponding normal modes, we substitute these frequencies back into the eigenvalue equation. For w%, the normal
mode vector, A",

Al = (“i) , (3.3.17)

a

satisfies the matrix equation

(MK —uw?I] Al =0. (3.3.18)
From (3.81) and (3.83),
M—lK—w§I:< r/m _“/m). (3.3.19)
—k/m  Kk/m
Thus (3.85) becomes

(i) (2 =0
:i( a}—a% ):a%:aé.

m\ ~al +a}

We can take a{ =1 because we can multiply the normal mode vector by any number we like. Only the ratio a% / a% matters. So, for

example, we can take
1
Al (1) (3.3.20)

This gives (3.10). The displacement in this normal mode is shown in Figure 3.6.
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Figure 3.6: The displacement in the normal mode, A®.

For w%, the normal mode vector, A2,

a2
A? :( ;), (3.3.21)
ay
satisfies the matrix equation (where the identity matrix multiplying wg is understood)®
(MK —w?] A*=0. (3.3.22)
This time, (3.81) and (3.83) give
—-k/m —k/m
MK —w? :( / / ) (3.3.23)
—k/m —k/m

Thus (3.90) becomes

Again, only the ratio a} /a3 matters, so we can take

A% = ( ! ) : (3.3.24)

-1

This gives (3.11). The displacement in this normal mode is shown in Figure 3.7.

LSS

| PAA AR ALY,

Figure 3.7: The displacement in the normal mode, A2.

The physics of these modes is easy to understand. In mode 1, the blocks move together and the spring is never stretched from its
equilibrium position. Thus the frequency is just g/¢, the same as an uncoupled pendulum. In mode 2, the blocks are moving in
opposite directions, so the spring is stretched by twice the displacement of each block. Thus there is an additional restoring force of
2k, and the square of the angular frequency is correspondingly larger.
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3.3.3: n = 2 — the General Case

Let us work out explicitly the case of n = 2 for an arbitrary K matrix,

K K
MK = ( w/m 12/’"1) : (3.3.25)
Kia/my  Kag/my
where we have used K2; = K5 . Then (3.73) becomes
K1 Ky — K2 K K.
(M) _ (_11 +ﬁ> W 4wt =0, (3.3.26)
mimso my ma
with solutions
1/Ky K 1 /Ky Kp\? K3
w2:_(J +—22)j: —(ﬁ—ﬁ) + (3.3.27)
2\ my mso 4\ my mo mimy
For each w?, we can take a; = 1. Then
2
-K
4y = Y UL (3.3.28)

Ky

As we anticipated, the eigenvectors turned out to be real. This a general consequence of the reality of M 'K and w?. The
argument is worth repeating. When all the elements of the matrix M ~' K —w?I are real, the ratios, a;/ay, are real (because they
are obtained by solving a set of simultaneous linear equations with real coefficients). Thus if we choose one component of the
vector A to be real (multiplying, if necessary, by a complex number), then all the components will be real. Physically, this means
that for the solution, (3.66), all the different parts of the system are oscillating not only with the same frequency, but with the same
phase up to a sign. This is true only because we have ignored damping. We will return to the question in the last section (an
optional section that is not for the fainthearted).

3.3.4: Initial Value Problem

Once you have solved for the normal modes and corresponding frequencies, it is straightforward to put them together into the most
general solution to the equations of motion for the set of N coupled oscillators, (3.76). It is
X(t) :Z(baAa CoSWut +cq A% sinw,t) . (3.3.29)
(0%

The 2N constants b,, and ¢, are determined by the initial conditions. The b, are related to the initial displacements, X (0):

X(0)=> baA%. (3.3.30)
In words, b, is the coefficient of the normal mode A® in the initial displacement X (0). The ¢, are related to the initial velocities,
ax(t)
at |,
dx(t) .
e za:cawaA . (3.3.31)

The equations, (3.99) and (3.100), are two sets of simultaneous linear equations for the b, and c,. They can be solved by hand.
This is easy enough for a small number of degrees of freedom. We will see in the next section that we can also get the solutions
directly with very little additional work by manipulating the normal modes.

Meanwhile, we should pause again to consider the physics of (3.98). This shows explicitly how the most general motion of the
system can be decomposed into the simple motions associated with the normal modes. It is worth staring at an example (real,
animated or preferably both) at this point. Try to construct the system in Figure 3.1. Any two identical oscillators with a relatively
weak spring connecting them will do. Convince yourself that the normal modes exist. If you start the system oscillating with the
blocks moving the same way with the same amplitude, they will stay that way. If you get them started moving in opposite
directions with the same amplitude, they will continue doing that. Now set up a random motion. See if you can understand how to
take it apart into normal modes. It may help to stare again at program 3-1 on the program disk, in which this is done explicitly. In

https://phys.libretexts.org/@go/page/34360


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34360?pdf

LibreTexts*

this animation, you see the two blocks of Figure 3.1 and below, the two normal modes that must be added to produce the full
solution.

31t is tiresome writing the identity matrix, I, everywhere. It is not really necessary because you can always tell from the context
whether it belongs there or not. From now on, we will often leave it out. Thus, if you see something that looks like a number in a
matrix equation, like the —w3 in (3.90), you should mentally include a factor of I.

This page titled 3.3: Normal Modes is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Howard Georgi
via source content that was edited to the style and standards of the LibreTexts platform.
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3.4: * Normal Coordinates and Initial Values

There is another way of looking at the solutions of (3.14). We can find linear combinations of the original coordinates that oscillate
only with a single frequency, no matter what else is going on. This construction is also useful. It allows us to use the form of the
normal modes to simplify the solution to the initial value problem.

To see how this works, let us return to the simple example of two identical pendulums, (3.78)-(3.93). The most general possible
motion of this system looks like

X(t) =bA! cos(wit —61) +cA? cos(wat — 05), (3.4.1)
or, using (3.88) and (3.93)

x1(t) = bcos(wit —61) +ccos(wat —B3),
Zo(t) =bcos(wit —01) — ccos(wat — 02).

The motion of each block is nonharmonic, involving two different frequencies and four constants that must be determined by
solving the initial value problem for both blocks.

But consider the linear combination
X1 (t) =21 (t) +za(t). (3.4.2)
In this combination, all dependence on ¢ and 82 goes away,
X (t) = 2bcos(wit —6). (3.4.3)

This combination oscillates with the single frequency, wy, and depends on only two constants, b and 67, no matter what the initial
conditions are. Likewise,

X% (t) = a1 (t) — z2(2) (3.4.4)
oscillates with the frequency, ws,
X2(t) = 2ccos(wat — ). (3.4.5)

X! and X? are called “normal coordinates.” We can just as well describe the motion of the system in terms of X! and X? as in
terms of x; and 5. We can go back and forth using the definitions, (3.103) and (3.105). While x; and x5 are more natural from the
point of view of the physical setup of the system, Figure 3.1, X' and X? are more convenient for understanding the solution. As
we will see below, by going back and forth from physical coordinates to normal coordinates, we can simplify the analysis of the
initial value problem.

It turns out that it is possible to construct normal coordinates for any system of normal modes. Consider a normal mode A®
corresponding to a frequency w,. Construct the row vector

B*=ATM (3.4.6)
where A°T is the transpose of A%, a row vector with a;?‘ in the jth column.
The row vector B® is also an eigenvector of the matrix M ~! K, but this time from the left. That is
B*M 'K = w:B°. (3.4.7)

To derive (3.108), note that (3.68) can be transposed to give

ATKM 1 = w2 AT (3.4.8)
because M ~! and K are both symmetric (see (3.18) and notice that the order of M ~! and K are reversed by the transposition).
Then

B*M 'K=A"MM'K=A"KM'M (3.4.9)

= w2 AT M = w2 B~ (3.4.10)
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Given a row vector satisfying (3.108), we can form the linear combination of coordinates
X“=B*-X=>) bz, (3.4.11)
J

Then X is the normal coordinate that oscillates with angular frequency w, because

d?xe d’X _
e =B“. 7 =—B*M 'KX=—-wB* X =—w2X* (3.4.12)

Thus each normal coordinate behaves just like the coordinate in a system with only one degree of freedom. The B* vectors from
which the normal coordinates are constructed carry the same amount of information as the normal modes. Indeed, we can
go back and forth using (3.107).

3.4.1: More on the Initial Value Problem

Here we show how to use normal modes and normal coordinates to simplify the solution of the initial value problem for systems of
coupled oscillators. At the same time, we can use our physical insight to learn something about the mathematics of the eigenvalue
problem. We would like to find the constants b, and c, determined by (3.99) and (3.100) without actually solving these linear
equations. Indeed there is an easy way. We can make use of the special properties of the normal coordinates. Consider the
combination

Bf A~ (3.4.13)

This combination is just a number, because it is a row vector times a column vector on the right. We know, from (3.112), that
X# = BPX is the normal coordinate that oscillates with frequency wp, that is:

BPX(t) oc eFst, (3.4.14)

On the other hand, the only terms in (3.98) that oscillate with this frequency are those for which w, = wg. Thus if wg is not equal
to Wy, then BBAa must vanish to give consistency with (3.115).

If the system has two or more normal modes with different A vectors, but the same frequency, we cannot use (3.115) to distinguish
them. In this situation, we say that the modes are “degenerate.” Suppose that A' and A? are two different modes with the same
frequency,

M7TKA' =2 A, M 1KA?=u?A2 (3.4.15)

Because the eigenvalues are the same, any linear combination of the two mode vectors is still a normal mode with the same
frequency,

MK (B1A" + B A?) =’ (B1A" + 5 A7), (3.4.16)
for any constants, 81 and Bs.

Now if AT M A? + 0, we can use (3.117) to choose a new A? as follows:

AITMA2
A? —>A2—mAl. (3.4.17)
This new normal mode satisfies
AT MA% =0. (3.4.18)

The construction in (3.118) can be extended to any number of normal modes of the same frequency. Thus even if we have several
normal modes with the same frequency, we can still use the linearity of the system to choose the normal modes to satisfy

BPA® = AP MA® =0 for B +# a. (3.4.19)

We will almost always assume that we have done this.

We can use (3.120) to simplify the initial value problem. Consider (3.99). If we multiply this vector equation on both sides by the
row vector B, we get
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B°X(0)=B") b, A* =) b,B’A* =bsB’A°. (3.4.20)

where the last step follows because of (3.120), which implies that the sum over « only contributes for « = 8. Thus we can
calculate b, directly from the normal modes and X (0),

B*X(0)
by = ——. 3.4.21
Ty ( )

Similarly

1 dX(t)
=——BN——2| . 3.4.22
Yo = Bage” Tar |, (8.4.22)
The point is that we have already solved simultaneous linear equations like (3.99) in finding the eigenvectors of M ~' K so it is not
necessary to do it again in solving for b, and c,. Physically, we know that the normal coordinate X* must be proportional to the
coefficient of the normal mode A® in the motion. The precise statement of this is (3.122).

3.4.2: Matrices from Vectors

We can also use (3.120) and the physical requirement of linear independence of the normal modes to write A/ "' K and the identity
matrix in terms of the normal modes.

First consider the identity matrix. One can think of the identity matrix as a machine that takes any vector and returns the same
vector. But, using (3.120), we can construct such a machine out of the normal modes. Consider the matrix H, defined as follows:

o o

H:ZW. (3.4.23)

Note that H is a matrix because A B* in the numerator is the product of a column vector times a row vector on the right, rather
than on the left. If we let H act on one of the normal mode vectors A?, and use (3.120), it is easy to see that only the term o« = 8 in
the sum contributes and H - A® = A® . But because the normal modes are a complete set of N linearly independent vectors, that
implies that H-V =V for any vector, V. Thus H is the identity matrix,

H=1I (3.4.24)

We can use this form for I to get an expression for M 'K in terms of a sum over normal modes. Consider the product
M'K-H=M"1K , and use the eigenvalue condition M ' KA* = w? A® to obtain
wi A*B*
M71'K= —_ 3.4.25
T 049

In mathematical language, what is going on in (3.124) and (3.126) is a change of the basis in which we describe the matrices acting
on our vector space from the original basis of some obvious set of independent displacements of the degrees of freedom to the less
obvious but more useful basis of the normal modes.

3.4.3: w? is Real

We can use (3.120) to show that all the eigenvalues of the M ~' K are real. This is a particular example of an important general
mathematical theorem. You will use it frequently when you study quantum mechanics. To prove it, let us assume the contrary and
derive a contradiction. If w? is a complex eigenvalue with eigenvector, A, then then the complex conjugate, w?', is also an
eigenvalue with eigenvector, A*. This must be so because the M ~! K matrix is real, which implies that we can take the complex
conjugate of the eigenvalue equation,

M7 KA=uW’A, (3.4.26)
to obtain
M7 KA =w” A" (3.4.27)

Then if w? is complex, w? and w?  are different and (3.120) implies

ATMA=0. (3.4.28)
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But (3.129) is impossible unless A =0 or at least one of the masses in M is negative. To see this, let us expand it in the
components of A.

n n
ATMA=Y aimja; =Y mylaf. (3.4.29)
j=1 j=1

Each of the terms in (3.130) is positive or zero. Thus the only solutions of the eigenvalue equation, (3.127), for complex w? are the
trivial ones in which A = 0 on both sides. All the normal modes have real w?.

Thus there are only three possibilities. w? > 0 corresponds to stable equilibrium and harmonic oscillation. w? < 0, in which case w
is pure imaginary, occurs when the equilibrium is unstable. w? = 0 is the situation in which the equilibrium is neutral and we can
deform the system with no restoring force.

This page titled 3.4: * Normal Coordinates and Initial Values is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Howard Georgi via source content that was edited to the style and standards of the LibreTexts platform.
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3.5: * Forced Oscillations and Resonance

One of the advantages of the matrix formalism that we have introduced is that in matrix language we can take over the above
discussion of forced oscillation and resonance in chapter 2 almost unchanged to systems with more than one degree of freedom.
We simply have to replace numbers by appropriate vectors and matrices. In particular, the force F'(¢) in the equation of
motion, (2.2), becomes a vector that describes the force on each of the degrees of freedom in the system. The only restriction here
is that the frequency of oscillation is the same for each component of the force. The w% in the equation of motion, (2.2), becomes
the matrix M ~* K. The frictional term T' becomes a matrix. In terms of the matrix T, the frictional force vector is MT'dZ/dt
(compare (2.1)). Then we can look for an irreducible, steady state solution to the equation of motion of the form

Z(t)=We ™ (3.5.1)
where W is a constant vector, which yields the matrix equation
[~w® —iTw+ M 'K|W =M""'F,. (3.5.2)
Formally, we can solve this by multiplying by the inverse matrix
W= [M1K—-u?—iTw] MR (3.5.3)
If I" were zero in the matrix
[~w® —iTw+ M K], (3.5.4)

then we know that the inverse matrix would not exist for any value of w corresponding to a free oscillation frequency of the system,
wy, because the determinant of the M 1K — w? matrix is zero. The amplitude W would go to oo in this limit, in the direction of
the normal mode associated with the driving frequency, so long as the driving force has a component in the normal mode direction.
For w close to wy, if there is no damping, the response amplitude is very large, proportional to 1/ (w% — w2) , almost in the
direction of the normal mode. However, in the presence of damping, the response amplitude does not go to oo even for w = wy,
because the I'w term is still nonvanishing.

We can see all this explicitly if the damping matrix I' is proportional to the identity matrix,
T =l (3.5.5)
Then we can use (3.124)-(3.126) to write [M 'K —w? —iTw| as a sum over the normal modes, as follows:

A*B*

-1 2 . 2 .
(M7 K —w —ilw] =Z(w§—w — iw) oA (3.5.6)
«
Then the inverse matrix can be constructed in a similar way, just by inverting the factor in the numerator:
_ _ AaBoc
MK —w?—iTw| = Wi —w? —iw) . 3.5.7
|: ] za: ( a 2 ) Ba A« ( )
Using (3.137), we can rewrite (3.133) as
A® B“M'F,
W= . 3.5.8
Z wa _w2 —z’yw BaAoz ( )

«

This has a simple interpretation. The second factor on the right hand side of (3.138) is the coefficient of the normal mode A® in the
driving term, M ! Fy. This coefficient is multiplied by the complex number

LQ;] , (3.5.9)

2 —w? —iyw

which is exactly analogous to the factor in (2.21) in the one dimensional case. Thus if I" & I, then, for each normal mode, the
forced oscillation works just as it does for one degree of freedom. If I is not proportional to the identity matrix, the formulas are a
bit more complicated, but the physics is qualitatively the same.
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3.5.1: Example

We will illustrate these considerations with our favorite example, the system of two identical coupled oscillators, with M 1K
matrix given by (3.80). We will imagine that the system is sitting in a viscous fluid that gives a uniform damping I' = I, and that
there is a periodic force that acts twice as strongly on block 1 as on block 2 (for example, we might give the blocks electric charge
2q and q and subject them to a periodic electric field), so that the force is

Ft) = (f) focoswtzRe[(f) foe—iwt]. (3.5.10)

Thus
M7Fy= (2) ﬁ. (3.5.11)
1/ m
Now to use (3.133), we need only invert the matrix
g K 2 . K
S+ —w —ryw -
[M7'K—w? —iTw] = ¢ ™ ! " . (3.5.12)
_ K I 85 (2 iyw
m V4 m

This is simple enough to do by hand. We will do that first, and then compare the result with (3.137). The determinant is \[

(g ) ()
= (% +2% —w? —i'yw) . (% —u? —i'yw) .
Applying (3.34), we find
(MK~ —iTw]
1
%-1-2% —w? —i'yw) (% —w? —i'yw)

g .

3=

3=

g . :

z+%—w—ww>

If we isolate the contribution of the two zeros in the denominator of (3.144), we can write \[
(MK —w?—iTw]

1 1 (1 1)
2 (%—wZ—i'yw) 11

+1 1 ( 1 —1)
2 (%+2ﬁ—w2—i7w) -1 1

Y
which is just (3.137), as promised. Now substituting into (3.133), we find
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m
¢
1 1
ey ()8
(%+2%—w2—i'yw> -1/ m
1 (7w rinw) (3) fo
T2 2 m
i wz) + (yw)? 3
1 (%+2%—w2+i~yw) 1\ f
_|__ —_—
2 K 2 <_1) ’
(%—1—2;—0.22) + (yw)? mn

X(t) = Re(We ) = ( az coswt + fy sinwt ) (3.5.13)
ay coswt + P2 sinwt
where
g 2
o 3 (7 —v ) fo
12) =% 2 m
(%—cﬂ) + (yw)?
g
" (7 +25 _w2) fo
2
(% +2£ —wz) + (yw)?
and
Bi(2) = 3 et fo
2 2 m
(%—uﬁ) + (yw)?
yw fo

1
+ E 5 —.
I 498 2 2 M
(Z +2L —y ) + (yw)
The power expended by the external force is the sum over all the degrees of freedom of the force times the velocity. In matrix
language, this can be written as

P(t)=F(t)"- %Et). (3.5.14)

The average power lost to the frictional force comes from the cos? wt term in (3.150) and is
1 9w’ f§
2 dm
(% - wz) + (yw)?
1 Y 3

2
(% +2£ —w2) + (yw)?

4m

Figure 3.8 shows a graph of this (for x/m = 3g/2¢ and ¥ = g/4£). There are two things to observe about Figure 3.8. First note
the two resonance peaks, at w? = g/£ and w® = g/£ +2k/m = 4g/£ . Secondly, note that the first peak is much more pronounced
that the second. That is because the force is more in the direction of the normal mode with the lower frequency, thus it is more
efficient in exciting this mode.
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Figure 3.8: The average power lost to friction in the example of 3.140.
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3.6: Chapter Checkilist

You should now be able to:

1. Write down the equations of motion for a system with more than one degree of freedom in matrix form;
2. Find the M and K matrices from the physics;
3. Add, subtract and multiply matrices;
4. Find the determinant and inverse of 2 X 2 and 3 x 3 matrices;
5. Find normal modes and corresponding frequencies of a system with two degrees of freedom, which means finding the
eigenvectors and eigenvalues of a 2 X 2 matrix;
6. Check whether a given vector is a normal mode of a system with more than two degrees of freedom, and if so, find the
corresponding angular frequency;
7. Given the normal modes and corresponding frequencies and the initial positions and velocities of all the parts in any system,
find the motion of all the parts at all subsequent times;
8. * Go back and forth from normal modes to normal coordinates;
9, * Reconstruct the M ~! K matrix from the normal modes and normal coordinates;
10. * Explicitly solve for the free oscillations of system with two degrees of freedom with damping and be able to analyze systems
with three or more degrees of freedom if you are given the eigenvectors;
11. * Explicitly solve forced oscillation problems with or without damping for systems with three or fewer degrees of freedom.

Problems

3.1. The 3 component column vector A, the 3 component row vector B and the 3 x 3 matrix C' are defined as follows:

0 1 1 1
A=|2]), B=(3 -2 1), C=|0 -2 1]. (3.6.1)
1 2 2 0
Compute the following objects:
BA, BC, AB. (3.6.2)

3.2. Consider the vertical oscillation of the system of springs and masses shown below with the spring constants K4 =78,
Kp =15 and K¢ =6 (all dynes/cm). Find the normal modes, normal coordinates and associated angular frequencies. If the 1 g.
block is displaced up 1 cm from its equilibrium position with the 3 g block held at its equilibrium position and both blocks released
from rest, describe the subsequent motion of both blocks.

Ka
Kpg

3 g. I(C
lg.

3.3. Consider the system of springs and masses shown below:
with the spring constants in newtons/meter given above the springs and with m; =100 kg, my =9 kg and m3 = 81 kg.

a. Which of the following are normal modes of the system and what are the corresponding angular frequencies? Note that the
M ~! K matrix may look a little complicated.
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P 9 9 9 9 9
v | =1 0 60 ~30 30 0 (3.6.3)
Vs 10 10 10 10 ~10

b. If the system is released from rest with an initial displacement as shown below (with the displacements measured in mm), how
long does it take before it first returns to its initial configuration?

1 9
P | =10 (3.6.4)
s 10

3.4*. A system of four masses connected by springs is described by a mass matrix,

N O

(3.6.5)

o O O =
o O

oS = O
N O O

and a K matrix

29 —10 -4 -2
-1 14 -2

g |10 %8 (3.6.6)
4 14 31 —26

a. Which of the following are normal modes?

1 1 2 4
2 1 1 1 -3 1
(3.6.7)
1 2 1 -1 0 —4
1 1 1 -1 1 3

b. For each normal mode, find the corresponding angular frequency. Hint: this requires a little arithmetic. If you are lazy, you
might want to use a programmable calculator or write a little computer program to check these for you. But the point of this
problem is to show you that the amount of work required to check whether the vectors are normal modes is really tiny
compared to the work involved in finding the modes from scratch.

c. If blocks are released from rest from an initial displacement that is proportional to

, (3.6.8)

which normal mode is not present in the subsequent motion?
d. Find the normal coordinates corresponding to each of the normal modes of the system.

3.5. Consider the longitudinal oscillations of the system shown below:

15 due g dyne 10 dyne

cI cIn cIn

mlmzw

The blocks are free to slide horizontally without friction. The displacements of the blocks from equilibrium are both measured to
the right. Block 1 has a mass of 15 grams and block 2 a mass of 10 grams. The spring constants of the springs are shown in
dynes/cm.
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a. Show that the M ~! K matrix of this system is

MlK:( 7 _6>. (3.6.9)

Alz(i), A2:(_23). (3.6.10)

Find the corresponding angular frequencies, w; and ws.

b. Show that the normal modes are

3.6. Consider the longitudinal oscillations of the system shown below:

K Ko K3

JIL N IIIEEEE AT

The blocks are free to slide horizontally without friction. The displacements of the blocks from equilibrium are both measured to
the right. Block 1 has a mass of 15 grams and block 2 a mass of 10 grams. The spring constants of the springs are K7, K> and K3,

as shown. The normal modes of this system are
2 1
Al = , A= (3.6.11)
3 -1

wr=1s"1 wy=2s"1 (3.6.12)

with corresponding frequencies

a. If the system is at rest at time ¢ = 0 with displacements 1 (0) =5 cm, z2(0) =0, or

X(0) = (2:&8;) - (5) cm. (3.6.13)

Find the displacement of block 2 at time ¢ = 7s.
b. Find Kl, K2 and Kg.

3.7*. In the system of problem (3.5), suppose we immerse the system in a damping fluid so that

re (g :) (3.6.14)

with 4 = 1571, and that an external force of the following form is applied (in dynes):
1
F(t) = fcoswt = (0> coswt. (3.6.15)
Find and graph the average power lost to the frictional force as a function of w from w =0 to 105~
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CHAPTER OVERVIEW

4: Symmetries
Symmetry is an important concept in physics and mathematics (and art!). In this chapter, we show how the mathematics of

symmetry can be used to simplify the analysis of the normal modes of symmetrical systems.

4.1: Preview
In this chapter, we introduce the formal concept of symmetry or invariance.
1. We will work out some examples of the use of symmetry arguments to simplify the analysis of oscillating systems.

4.1: Symmetries
4.2: Chapter Checklist

This page titled 4: Symmetries is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Howard Georgi via
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4.1: Symmetries

Let us return to the system of two identical pendulums coupled by a spring, discussed in chapter 3, in (3.78)-(3.93). This simple
system has more to teach us. It is shown in Figure 4.1. As in (3.78)-(3.93), both blocks have mass m, both pendulums have length
£ and the spring constant is . Again we label the small displacements of the blocks to the right, z; and 5.

We found the normal modes of this system in the last chapter. But in fact, we could have found them even more easily by making
use of the symmetry of this system. If we reflect this system in a plane midway between the two blocks, we get back a completely
equivalent system. We say that the system is “invariant” under reflections in the plane between the blocks. However, while the
physics is unchanged by the reflection, our description of the system is affected. The coordinates get changed around. The reflected
system is shown in Figure 4.2. Comparing the two figures, we can describe the reflection in terms of its effect on the
displacements,

T — —T2, Ty —> —T1. (411)

LSS

1 LRV,

I I9

Figure 4.1: A system of coupled pendulums. Displacements are measured to the right, as shown.

SIS

Figure 4.2: The system of coupled pendulums after reflection in the plane through between the two.

In particular, if

1 (t)

X(t) = (u (ﬂ) (4.1.2)

is a solution to the equations of motion for the system, then the reflected vector,
~ —x9(t
X(t)z( =a( )), (4.1.3)
—z1(t)

must also be a solution, because the reflected system is actually identical to the original. While this must be so from the physics, it
is useful to understand how the math works. To see mathematically that (4.3) is a solution, define the symmetry matrix, .S,
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SE( 0 _1), (4.1.4)

so that X (t) is related to X (¢) by matrix multiplication:

X(t)z( 0 _1) (xl(t)) — SX(2). (4.1.5)

-1 0 x5 (t)

The mathematical statement of the symmetry is the following condition on the M and K matrices:"

MS=SM, (4.1.6)
and

KS=SK. (4.1.7)
You can check explicitly that (4.6) and (4.7) are true. From these equations, it follows that if X(¢) is a solution to the equation of
motion,

d2
MEX(t) =—-KX(t), (4.1.8)

then X (t) is also. To see this explicitly, multiply both sides of (4.8) by S to get

d2
SM@X(t) =-SKX(t). (4.1.9)
Then using (4.6) and (4.7) in (4.9), we get
2
MSj?X(t) =-KSX(t). (4.1.10)

The matrix S is a constant, independent of time, thus we can move it through the time derivatives in (4.10) to get
d2
Md_tzSX(t):_KSX(t)' (4.1.11)
But now using (4.5), this is the equation of motion for X (t),

a2 .
M—sX(t) = —KX(1). (4.1.12)

Thus, as promised, (4.6) and (4.7) are the mathematical statements of the reflection symmetry because they imply, as we have now
seen explicitly, that if X(¢) is a solution, X () is also.

Note that from (4.6), you can show that
M1S=SM™1 (4.1.13)
by multiplying on both sides by M ~*. Then (4.13) can be combined with (4.7) to give
M7KS=SM'K. (4.1.14)
We will use this later.

Now suppose that the system is in a normal mode, for example
X(t) = Al coswi t. (4.1.15)

Then X (¢) is another solution. But it has the same time dependence, and thus the same angular frequency. It must, therefore, be
proportional to the same normal mode vector because we already know from our previous analysis that the two angular frequencies
of the normal modes of the system are different, w; # wy. Anything that oscillates with angular frequency, w;, must be
proportional to the normal mode, A':

X(t) x A coswt. (4.1.16)
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Thus the symmetry implies
SA oc AL (4.1.17)

That is, we expect from the symmetry that the normal modes are also eigenvectors of S. This must be true whenever the angular
frequencies are distinct. In fact, we can see by checking the solutions that this is true. The proportionality constant is just —1,

SA1:< 0 _I)Alz—Al, (4.1.18)
-1 0
and similarly

SA2< 01 _01),42,42. (4.1.19)

Furthermore, we can run the argument backwards. If A is an eigenvector of the symmetry matrix S, and if all the eigenvalues of S
are different, then because of the symmetry, (4.13), A is a normal mode. To see this, consider the vector M 1K A and act on it
with the matrix S. Using (4.14), we see that if

SA=pA (4.1.20)
then
SM'KA=M1KSA=BM"1KA. (4.1.21)

In words, (4.21) means that M 1 KA is an eigenvector of S with the same eigenvalue as A. But if the eigenvalues of S are all
different, then M ~1 KA must be proportional to A, which means that A is a normal mode. Mathematically we could say it this
way. If the eigenvectors of S are A" with eigenvalues 3, then

SA" =B, A", and B, # By, for n #m = A" are normal modes. (4.1.22)
It turns out that for the symmetries we care about, the eigenvalues of S are always all different.2

Thus even if we had not known the solution, we could have used (4.20) to determine the normal modes without bothering to
solve the eigenvalue problem for the // ! K matrix! Instead of solving the eigenvalue problem,

M71KA" = w2 A", (4.1.23)
we can instead solve the eigenvalue problem
SA™ =B, A™. (4.1.24)

It might seem that we have just traded one eigenvalue problem for another. But in fact, (4.24) is easier to solve, because we can use
the symmetry to determine the eigenvalues, 3,, without ever computing a determinant. The reflection symmetry has the nice
property that if you do it twice, you get back to where you started. This is reflected in the property of the matrix S,

§2=1. (4.1.25)

In words, this means that applying the matrix S twice gives you back exactly the vector that you started with. Multiplying both
sides of the eigenvalue equation, (4.24), by .S, we get

A" =JA" = 82 A" = SB3, A"
= B, SA" = R A",
which implies

B2=1 or f,==l. (4.1.26)

This saves some work. Once the eigenvalues of S are known, it is easier to find the eigenvectors of S. But because of the
symmetry, we know that the eigenvectors of S will also be the normal modes, the eigenvectors of M ~* K. And once the normal
modes are known, it is straightforward to find the angular frequency by acting on the normal mode eigenvectors with M "1 K.

What we have seen here, in a simple example, is how to use the symmetry of an oscillating system to determine the normal modes.
In the remainder of this chapter we will generalize this technique to a much more interesting situation. The idea is always the same.
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We can find the normal modes by solving the eigenvalue problem for the symmetry matrix, S, instead of M "' K. And
we can use the symmetry to determine the eigenvalues.

4.1.1: Beats

) = VR}

The beginnings of wave phenomena can already be seen in this simple example. Suppose that we start the system oscillating by
displacing block 1 an amount d with block 2 held fixed in its equilibrium position, and then releasing both blocks from rest at time
t = 0. The general solution has the form

X(t) = Al (by coswyt +c; sinw; ) + A2 (by coswat + ca sinwat) . (4.1.27)

The positions of the blocks at ¢ = 0 gives the matrix equation:

X(0)= (g) = A'by + A%by, (4.1.28)
or
d=0b1 +bo d
by =by = —.
0=—b; +bs — 0 2 2

Because both blocks are released from rest, we know that c1 = ¢2 = 0. We can see this in the same way by looking at the initial
velocities of the blocks:

: 0
X(0)= (0) =w Ale) +wyA’ey, (4.1.29)
or
0=ci+co o
0=—c,+os =c;=cy=0.
Thus
d
z1(t) = 5(cosw1t + coswst)
d
z2(t) = §(cosw1t —coswat).

The remarkable thing about this solution is the way in which the energy gets completely transferred from block 1 to block 2 and
back again. To see this, we can rewrite (4.34) as (using (1.64) and another similar identity)

z1(t) = dcos Qt cos dwt
z2(t) = dsin Qt sin dwt

where

w1 +w Wy —w
Q:%, 5w:%. (4.1.30)

Each of the blocks exhibits “beats.” They oscillate with the average angular frequency, €2, but the amplitude of the oscillation
changes with angular frequency dw. After a time , the ﬁ energy has been almost entirely transferred from block 1 to block 2. This
behavior is shown in program 4-1 on your program disk. Note how the beats are produced by the interplay between the two normal
modes. When the two modes are in phase for one of the blocks so that the block is moving with maximum amplitude, the modes
are 180° out of phase for the other block, so the other block is almost still.

The complete transfer of energy back and forth from block 1 to block 2 is a feature both of our special initial condition, with block
2 at rest and in its equilibrium position, and of the special form of the normal modes that follows from the reflection symmetry. As
we will see in more detail later, this is the same kind of energy transfer that takes place in wave phenomena.
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4.1.2: Less Trivial Example

Hao

Take a hacksaw blade, fix one end and attach a mass to the other. This makes a nice oscillator with essentially only one degree of
freedom (because the hacksaw blade will only bend back and forth easily in one way). Now take six identical blades and fix one
end of each at a single point so that the blades fan out at 60° angles from the center with their orientation such that they can bend
back and forth in the plane formed by the blades. If you put a mass at the end of each, in a hexagonal pattern, you will have six
uncoupled oscillators. But if instead you put identical magnets at the ends, the oscillators will be coupled together in some
complicated way. You can see what the oscillations of this system look like in program 4-2 on the program

I3 o

“o b

Is Ig

i

Figure 4.3: A system of six coupled hacksaw blade oscillators. The arrows indicate the directions in which the displacements are
measured.

disk. If the displacements from the symmetrical equilibrium positions are small, the system is approximately linear. Despite the
apparent complexity of this system, we can write down the normal modes and the corresponding angular frequencies with almost
no work! The trick is to make clever use of the symmetry of this system.

This system looks exactly the same if we rotate it by 60° about its center. We should, therefore, take pains to analyze it in a
manifestly symmetrical way. Let us label the masses 1 through 6 starting any place and going around counterclockwise. Let x; be
the counterclockwise displacement of the jth block from its equilibrium position. As usual, we will arrange these coordinates in a
vector:3 \(X=\left(

T
z2

3 (4.1.31)
T4

L5
L6

\right) .\]
The symmetry operation of rotation is implemented by the cyclic substitution
Tl —> Ty —> T3 — Tg —> T — Tg — T1- (4.1.32)
This can be represented in a matrix notation as
X — 5X, (4.1.33)

where the symmetry matrix, S, is

https://phys.libretexts.org/@go/page/34366
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01 0 0 0 O

0 01 0 0 O
S = 000 100 (4.1.34)

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0O

Note that the 1s along the next-to-diagonal of the matrix, .S, in (4.40) implement the substitutions

Tl —> Ty —> T3 — T4 — T — Tg, (4135)

while the 1 in the lower left-hand corner closes the circle with the substitution
T — T1. (4136)

The symmetry requires that the K matrix for this system has the following form:

K= . (4.1.37)

Notice that all the diagonal elements are the same (E), as they must be because of the symmetry. The jth diagonal element of the
K matrix is minus the force per unit displacement on the jth mass due to its displacement. Because of the symmetry, each of the
masses behaves in exactly the same way when it is displaced with all the other masses held fixed. Thus all the diagonal matrix
elements of the K matrix, Kj;, are equal. Likewise, the symmetry ensures that the effect of the displacement of each block, j, on
its neighbor, j+1 (j+1—1 ifj=6,j—1 — 6 if j =1 — see (4.42)), is exactly the same. Thus the matrix elements along the
next-to-diagonal (B) are all the same, along with the Bs in the corners. And so on! The K matrix then satisfies (4.7),

SK=KS (4.1.38)

which, as we saw in (4.13)-(4.12), is the mathematical statement of the symmetry. Indeed, we can go backwards and work out the
most general symmetric matrix consistent with (4.44) and check that it must have the form, (4.43). You will do this in problem
(4.9).

Because of the symmetry, we know that if a vector A is a normal mode, then the vector SA is also a normal mode with the same
frequency. This is physically obvious. If the system oscillates with all its parts in step in a certain way, it can also oscillate with the
parts rotated by 60°, but otherwise moving in the same way, and the frequency will be the same. This suggests that we look for
normal modes that behave simply under the symmetry transformation .S. In particular, if we find the eigenvectors of S and discover
that the eigenvalues of .S are all different, then we know that all the eigenvectors are normal modes, from (4.22). In the previous
example, we found modes that went into themselves multiplied by 1 under the symmetry. In general, however, we should not
expect the eigenvalues to be real because the modes can involve complex exponentials. In this case, we must look for modes that
correspond to complex eigenvalues of S,*

SA =BA. (4.1.39)

As above in (4.25)-(4.27), we can find the possible eigenvalues by using the symmetry. Note that because six 60° rotations get us
back to the starting point, the matrix, S, satisfies

SO =1. (4.1.40)
Because of (4.46), it follows that 3% = 1. Thus f is a sixth root of one,
B=PBr=e*/Sfork=0to5. (4.1.41)
Then for each k, there is a normal mode
SAF = g, AF. (4.1.42)
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Explicitly,
4 A
k k
A; A,
Ak Ak
SAF=| "4 =g, | 3 (4.1.43)
k k
Ay Ay
k k
Ag A;
Ap A5
If we take A’f =1 we can solve for all the other components,
k— Jj-1
Aj =(B)’ . (4.1.44)
Thus
Ak 1
Ak e2ik/6
A’§ likr/6
A{j = Sk /6 (4.1.45)
A’g 8ikm/6
Ak 10ikm/6
6
Now to determine the angular frequencies corresponding to the normal modes, we have to evaluate
M KA* = w2 AF. (4.1.46)

Since we already know the form of the normal modes, this is straightforward. For example, we can compare the first components of
these two vectors:

wz _ (E _ Be2ikn/6 _ ghikn/6 _ ) bikn/6 _ ~ Bikm/6 _ Bell)ikﬂ'/ﬁ) /m

E B k 2k D
== 2 cos = —2£cos =T (-1)F=.
m m 3 m 3 m

Notice that w% = wg and wg = wi . This had to be the case, because the corresponding normal modes are complex conjugate pairs,
AP =AY, At=47. (4.1.47)

Any complex normal mode must be part of a pair with its complex conjugate normal mode at the same frequency, so that we can
make real normal modes out of them. This must be the case because the normal modes describe a real physical system whose
displacements are real. The real modes are linear combinations (see (1.19)) of the complex modes,

A4+ A¥ and (Ak —A’“*) Jifork=1or2. (4.1.48)

These modes can be seen in program 4-2 on the program disk. See appendix A and your program instruction manual for details.

Notice that the real solutions, (4.55), are not eigenvectors of the symmetry matrix, S. This is possible because the angular
frequencies are not all different. However, the eigenvalues of S are all different, from (4.47). Thus even though we can construct
normal modes that are not eigenvectors of S, it is still true that all the eigenvectors of S are normal modes. This is what we use
in (4.48)-(4.50) to determine the A™.

We note that (4.55) is another example of a very important principle of (3.117) that we will use many times in what follows:

If A and A’ are normal modes of a system with the same angular frequency, w, then any linear combination, bA 4 cA’, is
(4.56) also a normal mode with the same angular frequency.

Normal modes with the same frequency can be linearly combined to give new normal modes (see problem 4.3). On the other hand,
a linear combination of two normal modes with different frequencies gives nothing very simple.
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The techniques used here could have been used for any number of masses in a similar symmetrical arrangement. With N masses
and symmetry under rotation of 27/ N radians, the Nth roots of 1 would replace the 6th roots of one in our example. Symmetry
arguments can also be used to determine the normal modes in more interesting situations, for example when the masses are at the
corners of a cube. But that case is more complicated than the one we have analyzed because the order of the symmetry
transformations matters — the transformations do not commute with one another. You may want to look at it again after you have
studied some group theory.

1Two matrices, A and B, that satisfy AB = BA are said to “commute.”

2See the discussion on page 103.

3From here on, we will assume that the reader is sufficiently used to complex numbers that it is not necessary to distinguish
between a real coordinate and a complex coordinate.

4Even this is not the most general possibility. In general, we might have to consider sets of modes that go into one another under
matrix multiplication. That is not necessary here because the symmetry transformations all commute with one another.

This page titled 4.1: Symmetries is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Howard Georgi via
source content that was edited to the style and standards of the LibreTexts platform.
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4.2: Chapter Checklist

You should now be able to:

1. Apply symmetry arguments to find the normal modes of systems of coupled oscillators by finding the eigenvalues and
eigenvectors of the symmetry matrix.

4.2.1: Problems
4.1. Show explicitly that (4.7) is true for the K matrix, (4.43), of system of Figure 4.3 by finding SK and K'S.

4.2. Consider a system of six identical masses that are free to slide without friction on a circular ring of radius R and each of which
is connected to both its nearest neighbors by identical springs, shown below in equilibrium:

a. Analyze the possible motions of this system in the region in which it is linear (note that this is not quite just small oscillations).
To do this, define appropriate displacement variables (so that you can use a symmetry argument), find the form of the K matrix
and then follow the analysis in (4.37)-(4.55). If you have done this properly, you should find that one of the modes has zero
frequency. Explain the physical significance of this mode. Hint: Do not attempt to find the form of the K matrix directly from
the spring constants of the spring and the geometry. This is a mess. Instead, figure out what it has to look like on the basis of
symmetry arguments. You may want to look at appendix c.

b. If at t = 0, the masses are evenly distributed around the circle, but every other mass is moving with (counterclockwise) velocity
v while the remaining masses are at rest, find and describe in words the subsequent motion of the system.

4.3.

a. Prove (4.56).

b. Prove that if A and A’ are normal modes corresponding to different angular frequencies, w and «' respectively, where w? \neq
\omega{\prime 2}\), then bA + cA’ is not a normal mode unless b or c is zero. Hint: You will need to use the fact that both A
and A’ are nonzero vectors.

4.4. Show that (4.43) is the most general symmetric 6 X 6 matrix satisfying (4.44).

This page titled 4.2: Chapter Checklist is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Howard Georgi
via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

5: Waves

The climax of this book comes early. Here we identify the crucial features of a system that supports waves — space translation
invariance and local interactions.

5.1: Preview
We identify the space translation invariance of the class of infinite systems in which wave phenomena take place.

1. Symmetry arguments cannot be directly applied to finite systems that support waves, such as a series of coupled pendulums.
However, we show that if the couplings are only between neighboring blocks, the concept of symmetry can still be used to
understand the oscillations. In this case we say that the interactions are “local.” The idea is to take the physics apart into two
different components: the physics of the interior; and the physics of the boundaries, which is incorporated in the form of
boundary conditions. The interior can be regarded as part of an infinite system with space translation invariance, a symmetry
under translations by some distance, a. In this case the normal modes are called standing waves.

2. We then introduce a notation designed to take maximum advantage of the space translation invariance of the infinite system. We
introduce the angular wave number, k, which plays the role for the spatial dependence of the wave that the angular frequency,
w, plays for its time dependence.

3. We describe the normal modes of transverse oscillation of a beaded string. The modes are “wavy.”

4. We study the normal modes of a finite beaded string with free ends as another example of boundary conditions.

5. We study a type of forced oscillation problem that is particularly important for translation invariant systems with local
interactions. If the driving force acts only at the ends of the system, the solution can be found simply using boundary
conditions.

6. We apply the idea of space translation invariance to a system of coupled LC circuits.

5.1: Space Translation Invariance
5.2: k and Dispersion Relations
5.3: Waves
5.4: Free Ends
5.5: Forced Oscillations and Boundary Conditions
5.6: Coupled LC Circuits
7: Chapter Checklist
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5.1: Space Translation Invariance

Figure 5.1: A finite system of coupled pendulums.

The typical system of coupled oscillators that supports waves is one like the system of N identical coupled pendulums shown in
Figure 5.1. This system is a generalization of the system of two coupled pendulums that we studied in chapters 3 and 4. Suppose
that each pendulum bob has mass m, each pendulum has length £, each spring has spring constant x and the equilibrium separation
between bobs is a. Suppose further that there is no friction and that the pendulums are constrained to oscillate only in the direction
in which the springs are stretched. We are interested in the free oscillation of this system, with no external force. Such an
oscillation, when the motion is parallel to the direction in which the system is stretched in space is called a “longitudinal
oscillation”. Call the longitudinal displacement of the jth bob from equilibrium (\psi_{j}\). We can organize the displacements into
a vector, ¥ (for reasons that will become clear below, it would be confusing to use X, so we choose a different letter, the Greek
letter psi, which looks like %) in lower case and ¥ when capitalized):

()
(2
v=| ¥3 |. (5.1.1)
(Y
Then the equations of motion (for small longitudinal oscillations) are
d*v
— =-M1'KV (5.1.2)
dt?
where M is the diagonal matrix with m’s along the diagonal,
m 0 0 --- 0
0 m O 0
0 0 m 01, (5.1.3)
0 0 0 -+ m

and K has diagonal elements (mg/¢ + 2k), next-to-diagonal elements —«, and zeroes elsewhere,

mg/l+2k —K 0 0
—K mg/l+2k —K 0
0 —K mg/l+2k .- 0 . (5.1.4)
0 0 0 -oo mg/l+2k

The —« in the next-to-diagonal elements has exactly the same origin as the —« in the 2 x 2 K matrix in (3.78). It describes the
coupling of two neighboring blocks by the spring. The (mg/¢+2x) on the diagonal is analogous to the (mg/£+ k) on the
diagonal of (3.78). The difference in the factor of 2 in the coefficient of  arises because there are two springs, one on each side,
that contribute to the restoring force on each block in the system shown in Figure 5.1, while there was only one in the system
shown in Figure 3.1. Thus M ~' K has the form
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2B -C 0 --- 0
-C 2B -C --- 0
0o -¢C 2B --- 0 (5.1.5)
0 0 0 --- 2B
where
2B=g/¢{+2k/m, C=x/m. (5.1.6)

It is interesting to compare the matrix, (5.5), with the matrix, (4.43), from the previous chapter. In both cases, the diagonal elements
are all equal, because of the symmetry. The same goes for the next-to-diagonal elements. However, in (5.5), all the rest of the
elements are zero because the interactions are only between nearest neighbor blocks. We call such interactions “local.” In (4.43), on
the other hand, each of the masses interacts with all the others. We will use the local nature of the interactions below.

We could try to find normal modes of this system directly by finding the eigenvectors of M ~' K, but there is a much easier and
more generally useful technique. We can divide the physics of the system into two parts, the physics of the coupled pendulums, and
the physics of the walls. To do this, we first consider an infinite system with no walls at all.

Figure 5.2: A piece of an infinite system of coupled pendulums.

Notice that in Figure 5.2, we have not changed the interior of the system shown in Figure 5.1 at all. We have just replaced the walls
by a continuation of the interior.

Now we can find all the modes of the infinite system of Figure 5.2 very easily, making use of a symmetry argument. The infinite
system of Figure 5.2 looks the same if it is translated, moved to the left or the right by a multiple of the equilibrium
separation, a. It has the property of “space translation invariance.” Space translation invariance is the symmetry of the infinite
system under translations by multiples of a. In this example, because of the discrete blocks and finite length of the springs, the
space translation invariance is “discrete.” Only translation by integral multiples of a give the same physics. Later, we will discuss
continuous systems that have continuous space translation invariance. However, we will see that such systems can be analyzed
using the same techniques that we introduce in this chapter.

We can use the symmetry of space translation invariance, just as we used the reflection and rotation symmetries discussed in the
previous chapter, to find the normal modes of the infinite system. The discrete space translation invariance of the infinite
system (the symmetry under translations by multiples of a) allows us to find the normal modes of the infinite system in a
simple way.

Most of the modes that we find using the space translation invariance of the infinite system of Figure 5.2 will have nothing to do
with the finite system shown in Figure 5.1. But if we can find linear combinations of the normal modes of the infinite system
of Figure 5.2 in which the 0th and N + 1st blocks stay fixed, then they must be solutions to the equations of motion of the
system shown in Figure 5.1. The reason is that the interactions between the blocks are “local” — they occur only between
nearest neighbor blocks. Thus block 1 knows what block 0 is doing, but not what block -1 is doing. If block 0 is stationary it
might as well be a wall because the blocks on the other side do not affect block 1 (or any of the blocks 1 to N) in any way. The
local nature of the interaction allows us to put in the physics of the walls as a boundary condition after solving the infinite problem.
This same trick will also enable us to solve many other problems.

Let us see how it works for the system shown in Figure 5.1. First, we use the symmetry under translations to find the normal modes
of the infinite system of Figure 5.2. As in the previous two chapters, we describe the solutions in terms of a vector, A. But now A
has an infinite number of components, A; where the integer j runs from —oo to +o0. It is a little inconvenient to write this infinite
vector down, but we can represent a piece of it:
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Ay
Ay
Ay
A=| 43 |. (5.1.7)
An
AN

Likewise, the M ~! K matrix for the system is an infinite matrix, not easily written down, but any piece of it (along the diagonal)
looks like the interior of (5.5):

2B -C 0 0

-C 2B -C 0
0 -C 2B -C
0 0 —-C 2B

(5.1.8)

This system is “space translation invariant” because it looks the same if it is moved to the left a distance a. This moves block j+ 1
to where block j used to be, thus if there is a mode with components A;, there must be another mode with the same frequency,
represented by a vector, \(AA{\prime} = SA|), with components

A=A (5.1.9)
The symmetry matrix, .S, is an infinite matrix with 1s along the next-to-diagonal. These are analogous to the 1s along the next-to-
diagonal in (4.40). Now, however, the transformation never closes on itself. There is no analog of the 1 in the lower left-hand

corner of (4.40), because the infinite matrix has no corner. We want to find the eigenvalues and eigenvectors of the matrix S,
satisfying

A =SA=pBA (5.1.10)
or equivalently (from (5.9)), the modes in which A; and Az. are proportional:
A}:ﬂAj:AjH (5.1.11)
where 3 is some nonzero constant.

Equation (5.11) can be solved as follows: Choose Ay = 1. Then 4; = B, A> = 82, etc. , sothat\ (A; = (B)? for all nonnegative
j. We can also rewrite (5.11) as A;_; = B’l A;, sothat \(A_{-1} =\beta_{-1\), A_s = B_5, etc. Thus the solution is

A;=(BY (5.1.12)

Now that we know the form of the normal modes, it is easy to get the corresponding frequencies by acting on (5.12) with the
M ! K matrix, (5.8). This gives

248 B B B
w Aj = 2BAj —C’Aj+1 —CAj,l, (5.1.13)
or inserting (5.13),
w?B! =2BBI —CpIT —CpITt = (2B-CB—-CB ) B (5.1.14)

This is true for all j, which shows that (5.13) is indeed an eigenvector (we already knew this from the symmetry argument, (4.22),
but it is nice to check when possible), and the eigenvalue is

w?=2B-CB-CB . (5.1.15)
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Notice that for almost every value of w?, there are two normal modes, because we can interchange 8 and ~! without changing
(5.16). The only exceptions are

w? =2BF2C, (5.1.16)

corresponding to 3 = 4-1. The fact that there are at most two normal modes for each value of w? will have a dramatic consequence.
It means that we only have to deal with two normal modes at a time to implement the physics of the boundary. This is a special
feature of the one-dimensional system that is not shared by two- and three-dimensional systems. As we will see, it makes the one-
dimensional system very easy to handle.

5.1.1: Boundary Conditions

.Q.S_l

We have now solved the problem of the oscillation of the infinite system. Armed with this result, we can put back in the physics of
the walls. Any 3 (except 8 = +1) gives a pair of normal modes for the infinite system of Figure 5.2. But only special values of 3
will work for the finite system shown in Figure 5.1. To find the normal modes of the system shown in Figure 5.1, we use (4.56),
the fact that any linear combination of the two normal modes with the same angular frequency, w, is also a normal mode. If
we can find a linear combination that vanishes for j=0 and for j= N 41, it will be a normal mode of the system shown in
Figure 5.1. It is the vanishing of the normal mode at =0 and j= N 41 that are the “boundary conditions” for this particular
finite system.

Let us begin by trying to satisfy the boundary condition at j = 0. For each possible value of w?, we have to worry about only two
normal modes, the two solutions of (5.16) for 5. So long as 8 # 41, we can find a combination that vanishes at 7 = 0 ; just subtract

the two modes A® and A% to get a vector
A=A°— AP, (5.1.17)
or in components
Ajoc Al AP —pgi g, (5.1.18)

The first thing to notice about (5.19) is that A’ cannot vanish for any j# 0 unless || = 1. Thus if we are to have any chance of
satisfying the boundary condition at j = N +1 , we must assume that

B=e". (5.1.19)
Then from (5.19),
A; ocsin jo. (5.1.20)
Now we can satisfy the boundary condition at j = N +1 by setting Ay; = 0. This implies sin[(N +1)8] =0, or
0=nn/(N+1), forinteger n. (5.1.21)
Thus the normal modes of the system shown in Figure 5.1 are
A;sin<1\];f1>, forn=1,2,---N. (5.1.22)

Other values of n do not lead to new modes, they just repeat the N modes already shown in (5.23). The corresponding frequencies
are obtained by putting (5.20)-(5.21) into (5.16), to get

w2:2B—2C’c050:2B—2C’cos<Nn_tl). (5.1.23)

From here on, the analysis of the motion of the system is the same as for any other system of coupled oscillators. As discussed in
chapter 3, we can take a general motion apart and express it as a sum of the normal modes. This is illustrated for the system of
coupled pendulums in program 5-1 on the program disk. The new thing about this system is the way in which we obtained the
normal modes, and their peculiarly simple form, in terms of trigonometric functions. We will get more insight into the meaning of
these modes in the next section. Meanwhile, note the way in which the simple modes can be combined into the very complicated
motion of the full system.
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17ero does not work for 3 because the eigenvalue equation has no solution.
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5.2: k and Dispersion Relations

So far, the equilibrium separation between the blocks, a, has not appeared in the analysis. Everything we have said so far would be
true even if the springs had random lengths, so long as all spring constants were the same. In such a case, the “space translation
invariance” that we used to solve the problem would be a purely mathematical device, taking the original system into a different
system with the same kind of small oscillations. Usually, however, in physical applications, the space translation invariance is real
and all the inter-block distances are the same. Then it is very useful to label the blocks by their equilibrium position. Take z =0
to be the position of the left wall (or the Oth block). Then the first block is at = a, the second at = 2a, etc., as shown in Figure
5.3. We can describe the displacement of all the blocks by a function ¥ (z, t), where ¥ (ja, t) is the displacement of the jth block
(the one with equilibrium position ja). Of course, this function is not very well defined because we only care about its values at a
discrete set of points. Nevertheless, as we will see below when we discuss the beaded string, it will help us understand what is
going on if we draw a smooth curve through these points.

009 20093100 - 29[

=0 r=a r=2a r=3a o =Na z=(N+1)a

Figure 5.3: The coupled pendulums with blocks labeled by their equilibrium positions.

In the same way, we can describe a normal mode of the system shown in Figure 5.1 (or the infinite system of Figure 5.2) as a
function A(z) where

A(ja) = Aj;. (5.2.1)
In this language, space translation invariance, (5.11), becomes
Az +a) = BA(z). (5.2.2)
It is conventional to write the constant 3 as an exponential
B =eia, (5.2.3)

Any nonzero complex number can be written as a exponential in this way. In fact, we can change & by a multiple of 27 /a without
changing S, thus we can choose the real part of k to be between —m/a and 7/a

I <Rek< Z. (5.2.4)
a a
If we put (5.13) and (5.27) into (5.25), we get
AP(ja) = ettia, (5.2.5)
This suggests that we take the function describing the normal mode corresponding to (5.27) to be
Az) =", (5.2.6)
The mode is determined by the number k satisfying (5.28).

The parameter k£ (when it is real) is called the angular wave number of the mode. It measures the waviness of the normal mode, in
radians per unit distance. The “wavelength” of the mode is the smallest length, A (the Greek letter lambda), such that a change of =
by A leaves the mode unchanged,

Az +)) = Az). (5.2.7)
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In other words, the wavelength is the length of a complete cycle of the wave, 27 radians. Thus the wavelength, A, and the angular
wave number, k, are inversely related, with a factor of 2,

2

A= % (5.2.8)
In this language, the normal modes of the system shown in Figure 5.1 are described by the functions
A"(z) =sinkz, (5.2.9)
with
k="C, (5.2.10)
L

where L = (N +1)a is the total length of the system. The important thing about (5.33) and (5.34) is that they do not depend
on the details of the system. They do not even depend on N. The normal modes always have the same shape, when the system
has length L. Of course, as N increases, the number of modes increases. For fixed L, this happens because a = L/(N +1)
decreases as IV increases and thus the allowed range of k (remember (5.28)) increases.

The forms (5.33) for the normal modes of the space translation invariant system are called “standing waves.” We will see in more
detail below why the word “wave” is appropriate. The word “standing” refers to the fact that while the waves are changing with
time, they do not appear to be moving in the x direction, unlike the “traveling waves” that we will discuss in chapter 8 and beyond.

5.2.1: Dispersion Relation

In terms of the angular wave number k, the frequency of the mode is (from (5.16) and (5.27))
w? =2B—2C coska. (5.2.11)

Such a relation between k (actually k% because cos ka is an even function of k) and w? is called a “dispersion relation” (we
will learn later why the name is appropriate). The specific form (5.35) is a characteristic of the particular infinite system of Figure
5.2. Tt depends on the masses and spring constants and pendulum lengths and separations.

But it does not depend on the boundary conditions. Indeed, we will see below that (5.35) will be useful for boundary conditions
very different from those of the system shown in Figure 5.1.

The dispersion relation depends only on the physics of the infinite system.

Indeed, it is only through the dispersion relation that the details of the physics of the infinite system enters the problem. The form
of the modes, e*** | is already determined by the general properties of linearity and space translation invariance.

We will call (5.35) the dispersion relation for coupled pendulums. We have given it a special name because we will return to it
many times in what follows. The essential physics is that there are two sources of restoring force: gravity, that tends to keep all the
masses in equilibrium; and the coupling springs, that tend to keep the separations between the masses fixed, but are unaffected if all
the masses are displaced by the same distance. In (5.35), the constants always satisfy B > C, as you see from (5.6).

The limit B = C' is especially interesting. This happens when there is no gravity (or £ — c0). The dispersion relation is then
9 . o ka
w® =2B(1 —coska) =4Bsin - (5.2.12)

Note that the mode with £ = 0 now has zero frequency, because all the masses can be displaced at once with no restoring force.2

2See appendix C.
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5.3: Waves

5.3.1: Beaded String

~-O—O—0O0—0O0—0—0-

Figure 5.4: The beaded string in equilibrium.

s

Another instructive system is the beaded string, undergoing transverse oscillations. The oscillations are called “transverse” if the
motion is perpendicular to the direction in which the system is stretched. Consider a massless string with tension 7°, to which
identical beads of mass m are attached at regular intervals, a. A portion of such a system in its equilibrium configuration is
depicted in Figure 5.4. The beads cannot oscillate longitudinally, because the string would break.? However, for small transverse
oscillations, the stretching of the string is negligible, and the tension and the horizontal component of the force from the string are
approximately constant. The horizontal component of the force on each block from the string on its right is canceled by the
horizontal component from the string on the left. The total horizontal force on each block is zero (this must be, because the blocks
do not move horizontally). But the strings produces a transverse restoring force when neighboring beads do not have the same
transverse displacement, as illustrated in Figure 5.5. The force of the string on bead 1 is shown, along with the transverse
component. The dotted lines complete similar triangles, so that F'/T = (¢ — 1) /a . You can see from Figure 5.5 that the
restoring force, F' in the figure, for small transverse oscillations is linear, and corresponds to a spring constant 7'/ a.

F =~ —(¢g — 1)

I

Figure 5.5: Two neighboring beads on a beaded string.

Thus (5.37) is also the dispersion relation for the small transverse oscillations of the beaded string with

B=—, (5.3.1)
ma
where T is the string tension, m is the bead mass and a is the separation between beads. The dispersion relation for the
beaded string can thus be written as

w® = —sin® — (5.3.2)

This dispersion relation, (5.39), has the interesting property that w — 0 as k — 0. This is discussed from the point of view of
symmetry in appendix C, where we discuss the connection of this dispersion relation with what are called “Goldstone bosons.”
Here we should discuss the special properties of the K = 0 mode with exactly zero angular frequency, w = 0. This is different from
all other angular frequencies because we do not get a different time dependence by complex conjugating the irreducible complex
exponential, e ™*. But we need two solutions in order to describe the possible initial conditions of the system, because we can
specify both a displacement and a velocity for each bead. The resolution of this dilemma is similar to that discussed for critical
damping in chapter 2 (see (2.12)). If we approach w = 0 from nonzero w, we can form two independent solutions as follows:*

. efiwt + eiwt . efiwt _ eiwt
lim———— =1 lm——Fr— =t (5.3.3)

The first, for k = 0, describes a situation in which all the beads are sitting at some fixed position. The second describes a situation
in which all of the beads are moving together at constant velocity in the transverse direction.

Precisely analogous things can be said about the  dependence of the K = 0 mode. Again, approaching £ =0 from nonzero k, we
can form two modes,
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ikx —ikx ikx —ikx
e +e e —e
lim — =1, lim—— ==z 5.3.4
k—0 2 T k=0 21k ( )
The second mode here describes a situation in which each subsequent bead is more displaced. The transverse force on each bead

from the string on the left is canceled by the force from the string on the right.

5.3.2: Fixed Ends

O,

Figure 5.6: A beaded string with fixed ends.

Now suppose that we look at a finite beaded string with its ends fixed at # =0 and = L = (N +1)a , as shown in Figure 5.6.
The analysis of the normal modes of this system is exactly the same as for the coupled pendulum problem at the beginning of the
chapter. Once again, we imagine that the finite system is part of an infinite system with space translation invariance and look for
linear combinations of modes such that the beads at x =0 and ¢ = L are fixed. Again this leads to (5.33). The only differences
are:

1. the frequencies of the modes are different because the dispersion relation is now given by (5.39);
2. (5.33) describes the transverse displacements of the beads.

This is a very nice example of the standing wave normal modes, (5.33), because you can see the shapes more easily than for
longitudinal oscillations. For four beads (/N = 4), the four independent normal modes are illustrated in F'igures 5.7-5.10, where
we have made the coupling strings invisible for clarity. The fixed imaginary beads that play the role of the walls are shown
(dashed) at z =0 and = = L. Superimposed on the positions of the beads is the continuous function, sin kz, for each k value,
represented by a dotted line. Note that this function does net describe the positions of the coupling strings, which are stretched
straight between neighboring beads.

/

Figure 5.7:n=1.

Figure 5.8: n =2.

~

o~
-

Figure 5.9: n = 3.
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Figure 5.10: n =4.
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It is pictures like Figures 5.7-5.10 that justify the word “wave” for these standing wave solutions. They are, frankly, wavy,
exhibiting the sinusoidal space dependence that is the sine qua non of wave phenomena.

The transverse oscillation of a beaded string with both ends fixed is illustrated in program 5-2, where a general oscillation is shown
along with the normal modes out of which it is built. Note the different frequencies of the different normal modes, with the
frequency increasing as the modes get more wavy. We will often use the beaded string as an illustrative example because the modes
are so easy to visualize.

3More precisely, the string has a very large and nonlinear force constant for longitudinal stretching. The longitudinal oscillations
have a much higher frequency and are much more strongly damped than the transverse oscillations, so we can ignore them in the
frequency range of the transverse modes. See the discussion of the “light” massive spring in chapter 7.

“You can evaluate the limits easily, using the Taylor series for e* =14 +- - - .
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5.4: Free Ends

Let us work out an example of forced oscillation with a different kind of boundary condition. Consider the transverse oscillations
of a beaded string. For definiteness, we will take four beads so that this is a system of four coupled oscillators. However, instead of
coupling the strings at the ends to fixed walls, we will attach them to massless rings that are free to slide in the transverse direction
on frictionless rods. The string then is said to have its ends free (at least for transverse motion). Then the system looks like the
diagram in Figure 5.11, where the oscillators move up and down in the plane of the paper: Let us find its normal modes.

O—0—06—®

Figure 5.11: A beaded string with free ends.

5.4.1: Normal Modes for Free Ends

IQSS

As before, we imagine that this is part of an infinite system of beads with space translation invariance. This is shown in Figure
5.12. Here, the massless rings sliding on frictionless rods have been replaced by the imaginary (dashed) beads, 0 and 5. The
dispersion relation is just the same as for any other infinite beaded string, (5.39). The question is, then, what kind of boundary
condition on the infinite system corresponds to the physical boundary condition, that the end beads are free on one side? The
answer is that we must have the first imaginary bead on either side move up and down with the last real bead, so that the coupling
string from bead 0 is horizontal and exerts no transverse restoring force on bead 1 and the coupling string from bead 5 is horizontal
and exerts no transverse restoring force on bead 4:

Ag = Ay, (5.4.1)
A4 :A5; (542)

DO OO

Figure 5.12: Satisfying the boundary conditions in the finite system.

We will work in the notation in which the beads are labeled by their equilibrium positions. The normal modes of the infinite system
are then e****  But we haven’t yet had to decide where we will put the origin. How do we form a linear combination of the
complex exponential modes, e*** and choose k to be consistent with this boundary condition? Let us begin with (5.42). We can

write the linear combination, whatever it is, in the form

cos(kz —0). (5.4.3)

+ikz

Any real linear combination of e can be written in this way up to an overall multiplicative constant (see (1.96)). Now if

cos(kzg — 0) = cos(kz, — ), (5.4.4)

where z; is the position of the jth block, then either

. .. To+IT
1. COS(kCIJ — 0) has a maximum or minimum at % , Or

2. kx1 — kx is a multiple of 2.

Let us consider case 1. We will see that case 2 does not give any additional modes. We will zﬁ;l choose our coordinates so that

the point , midway between zy and z1, is £ = 0. We don’t care about the overall normalization, so if the function has a minimum
there, we will multiply it by —1, to make it a maximum. Thus in case 1, the function cos(kz — ) has a maximum at z = 0, which
implies that we can take # = 0. Thus the function is simply cos kx. The system with this labeling is shown in Figure 5.13. The
displacement of the jth bead is then

Aj =cos[ka(j—1/2)]. (5.4.5)

https://phys.libretexts.org/@go/page/34376


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/34376?pdf
https://phys.libretexts.org/Bookshelves/Waves_and_Acoustics/The_Physics_of_Waves_(Goergi)/05%3A_Waves/5.04%3A_New_Page

LibreTexts"

ot 08 1) IR € a0 §]
O—O—0—CE—O—3

|
T — I T2 3 Iy
a 3a ba Ta
= i s — 4
¢ 3 2 2 g

Figure 5.13: The same system of oscillators labeled more cleverly.

It should now be clear how to impose the boundary condition, (5.43), on the other end. We want to have a maximum or minimum
midway between bead 4 and bead 5, at  =4a. We get a maximum or minimum every time the argument of the cosine is an
integral multiple of 7. The argument of the cosine at  =4a is 4ka, where k is the angular wave number. Thus the boundary
condition will be satisfied if the mode has 4ka = n for integer n. Then

cos[ka(4 —1/2)] = cos[ka(5 —1/2)] = ka = % (5.4.6)
Thus the modes are
A; =cos[ka(j—1/2)] withk = Z—Z forn=0to 3. (5.4.7)

For n > 3, the modes just repeat, because k > 7/a.

In (5.48), n = 0 is the trivial mode in which all the beads move up and down together. This is possible because there is no restoring
force at all when all the beads move together. As discussed above (see (5.40)) the beads can all move with a constant velocity
because w = 0 for this mode. Note that case 2, above, gives the same mode, and nothing else, because if kz; — kzg = 2n7 , then
(5.44) has the same value for all ;. The remaining modes are shown in Figures 5.14-5.16. This system is illustrated in program
5-3 on the program disk.

@ .. _______ .{51]

Figure 5.14:n =1, Aj =cos[(j—1/2)r/4].

o (@), &S

Figure 5.15:n =2, A; = cos[(j—1/2)27/4].
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5.5: Forced Oscillations and Boundary Conditions

Forced oscillations can be analyzed using the methods of chapter 3. This always works, even for a force that acts on each of the
parts of the system independently. Very often, however, for a space translation invariant system, we are interested in a different sort
of forced oscillation problem, one in which the external force acts only at one end (or both ends). In this case, we can solve the
problem in a much simpler way using boundary conditions. An example of this sort is shown in Figure 5.17.

T T BLE

Figure 5.16: n =3, A; =cos[(j—1/2)37/4]..

1|02 0995 R 29 N R

Figure 5.17: A forced oscillation problem in a space translation invariant system.

This is the system of (5.1), except that one wall has been removed and the end of the spring is constrained by some external agency
to move back and forth with a displacement

zcoswgt. (5.5.1)

As usual, in a forced oscillation problem, we first consider the driving term, in this case the fixed displacement of the N + 1 st
block, (5.49), to be the real part of a complex exponential driving term,

ze Wt (5.5.2)
Then we look for a steady state solution in which the entire system is oscillating with the driving frequency wgy, with the irreducible
time dependence, e ~*at,

If there is damping from a frictional force, no matter how small, this will be the steady state solution that survives after all
the free oscillations have decayed away. We can find such solutions by the same sort of trick that we used to find the modes
of free oscillation of the system. We look for modes of the infinite system and put them together to satisfy boundary
conditions.

This situation is different from the free oscillation problem. In a typical free oscillation problem, the boundary conditions fix k.
Then we determine w from the dispersion relation. In this case, the boundary conditions determine w, instead. Now we must use
the dispersion relation, (5.35), to find the wave number k.

Solving (5.35) gives
1 2B—u}
k= =cos ! ——=.
5 08 50

We must combine the modes of the infinite system, e***? | to satisfy the boundary conditions at z = 0 and = = (N+1l)a=L.As
for the system (5.1), the condition that the system be stationary at z = 0 leads to a mode of the form

(5.5.3)

Y(z,t) = ysinkze “i (5.5.4)

for some amplitude y. But now the condition at z = L = (N +1)a determines not the wave number (that is already fixed by
the dispersion relation), but the amplitude y.
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Y(L,t) =ysinkLe i = ze~™it, (5.5.5)
Thus
z
= . 5.5.6
Y= SnkL ( )

Notice that if wy is a normal mode frequency of the system (5.1) with no damping, then (5.54) doesn’t make sense because sin kL
vanishes. That is as it should be. It corresponds to the infinite amplitude produced by a driving force on resonance with a normal
frequency of a frictionless system. In the presence of damping, however, as we will discuss in chapter 8, the wave number £ is
complex because the dispersion relation is complex. We will see later that if k is complex, sin kL cannot vanish. Even if the
damping is very small, of course, we do not get a real infinity in the amplitude as we go to the resonance. Eventually, nonlinear
effects take over. Whether it is nonlinearity or the damping that is more important near any given resonance depends on the details
of the physical system.”

5.5.1: Forced Oscillations with a Free End

RQQLQQQ,

—

Figure 5.18: Forced oscillation of a mass on a spring.

As another example, we will now discuss again the forced longitudinal oscillations of the simple system of a mass on a spring,
shown in Figure 5.18. The physics here is the same as that of the system in Figure 2.9, except that to begin with, we will ignore
damping. The block has mass m. The spring has spring constant K and equilibrium length a. To be specific, imagine that this
block sits on a nearly frictionless table, and that you are holding onto the other end of the spring, moving it back and forth along the
table, parallel to the direction of the spring, with displacement

dy coswgt. (5.5.7)

The question is, how does the block move? We already know how to solve this problem from chapter 2. Now we will do it in a
different way, using space translation invariance, local interactions and boundary conditions. It may seem surprising that we can
treat this problem using the techniques we have developed to deal with space translation invariant systems, because there is only
one block. Nevertheless, that is what we are going to do. Certainly nothing prevents us from extending this system to an infinite
system by repeating the block-spring combination. The infinite system then has the dispersion relation of the beaded string (or of
the coupled pendulum for £ — 00):

= —sin® - (5.5.8)

The relevant part of the infinite system is shown in Figure 5.19. The point is that we can impose boundary conditions on the
infinite system, Figure 5.19, that make it equivalent to Figure 5.18.

Figure 5.19: Part of the infinite system.

We begin by imagining that the displacement is complex, dye ™4, so that at the end, we will take the real part to recover the real
result of (5.55). Thus, we take

Pa(t) = doe ™. (5.5.9)
Then to ensure that there is no force on block 1 from the imaginary spring on the left, we must take
Yo (t) =91 (t). (5.5.10)
To satisfy (5.58), we can argue as in Figure 5.13 that
Y(z,t) = 2(t) coskz (5.5.11)
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Figure 5.20: A better definition of the zero of z.
where z is defined as shown in Figure 5.20.

Now since the equilibrium position of block 2 is 3a/2, we substitute

3k
¥a(t) = 2(t) cosTa (5.5.12)
into (5.57), to obtain
d )
2(t) = —g—e . (5.5.13)
cos =+
Then the final result is
cos % )
P1(t) = —-doe (5.5.14)
cos =%
or in real form
ka
cos 5
() = =—do coswgl. (5.5.15)
cos %5*
We can now use the dispersion relation. First use trigonometry,
cos3y = cos® y — 3 cosysin® y = cosy (1 —4sin’ y) (5.5.16)
to write
V() = —— 1 dy coswat (5.5.17)
1(t) = 0 COSWq 0.
1—4sin® &2
or substituting (5.56),
w2
0
P1(t) = ———do coswat, (5.5.18)
wp — wy
where wy is the free oscillation frequency of the system,
K
wt = poot (5.5.19)

This is exactly the same resonance formula that we got in chapter 2.

5.5.2: Generalization

The real advantage of the procedure we used to solve this problem is that it is easy to generalize it. For example, suppose we look
at the system shown in Figure 5.21.

QR 1999994,

—

Figure 5.21: A system with two blocks.
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Here we can go to the same infinite system and argue that the solution is proportional to cos kx where x is defined as shown in
Figure 5.22. Then the same argument leads to the result for the displacements of blocks 1 and 2:

cos % cos 3Tka
P1(t) = mdo coswgt, Pa(t) = mdo coswgt. (5.5.20)

COS =~

You should be able to generalize this to arbitrary numbers of blocks.

101990000 11000000[21]000000 3 -

3a S5a
2

[*]}=]

Figure 5.22: The infinite system.

>Note also that, when sin kL is complex, the parts of the system do not all oscillate in phase, even though all oscillate at the same

frequency.
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5.6: Coupled LC Circuits

We saw in chapter 1 the analogy between the LC circuit in Figure 1.10 and a corresponding system of a mass and springs in Figure
1.11. In this section, we discuss what happens when we put LC' circuits together into a space translation invariant system.

For example, consider an infinite space translation invariant circuit, a piece of which is shown in Figure 5.23. One might guess, on
the basis of the discussion in chapter 1, that the circuit in Figure 5.23 is analogous to the combination of springs and masses shown
in

L L L

L9090 000 099 _ ..
P i S S
i i S S

|~— a —]

Figure 5.23: A an infinite system of coupled LC circuits.

Figure 5.24, with the correspondence between the two systems being:

m<+ L
K+1/C
Tj < Q

where z; is the displacement of the jth block to the right and @), is the charge that has been “displaced” through the jth inductor
from the equilibrium situation with the capacitors uncharged. In fact, this is right, and we could use (5.69) to write down the
dispersion relation for the Figure 5.23. However, with our powerful tools of linearity and space translation invariance, we can solve
the problem from scratch without too much effort. The strategy will be to write down what we know the solution has to look like,
from space translation invariance, and then work backwards to find the dispersion relation.

K K K K
000/ mlogo[mlooo[mleoQ

|—a—|

Figure 5.24: A mechanical system analogous to Figure 5.23.

The starting point should be familiar by now. Because the system is linear and space translation invariant, the modes of the
infinite system are proportional to e, Therefore all physical quantities in a mode, voltages, charges, currents, whatever,
must also be proportional to e™** . In this case the variable, z, is really just a label. The electrical properties of the circuit do not
depend very much on the disposition of the elements in space.® The dispersion relation will depend only on ka, where a is the
separation between the identical parts of the system (see (5.35)). However, it is easier to think about the system if it is physically
laid out into a space translation invariant configuration, as shown in Figure 5.23.

-1 0 1

L L, L ,

I I N

Figure 5.25: A labeling for the infinite system of coupled LC circuits.

In particular, let us label the inductors and capacitors as shown in Figure 5.25. Then the charge displaced through the jth inductor
in the mode with angular wave number, k&, is

Qj(t) = gere ™! (5.6.1)
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for some constant charge, ¢q. Note that we could just as well take the time dependence to be coswt, sinwt, or \(e/{i \omega t\). It
does not matter for the argument below. What matters is that when we differentiate Q;(t) twice with respect to time, we get
—w? Q;(t). The current through the jth inductor is

d o
Ij=5Q;(t) = —iwge e ™" (5.6.2)

The charge on the jth capacitor, which we will call g;, is also proportional to ekae=it byt in fact, we can also compute it directly.
The charge, g;, is just

g =Q;—Qjn (5.6.3)

because the charge displaced through the jth inductor must either flow onto the jth capacitor or be displaced through the j+1 st
inductor, so that Q; = g; + @;+1 . Now we can compute the voltage, Vj, of each capacitor,

1 q ika\ Lijka ,—iw:
VJ‘:E(QJ'—QM):E(l_ek)eJke ', (5.6.4)
and then compute the voltage drop across the inductors,
dI;
L— =Via =V, (5.6.5)
inserting (5.71) and (5.73) into (5.74), and dividing both sides by the common factor —qLe7**e~** we get the dispersion relation,
1 ) . 4 k
w? = 7 (1 —e”m) (eilk“ -1)= L—Csin2 ?a' (5.6.6)

This corresponds to (5.37) with B=1/LC'. This is just what we expect from (5.69). We will call (5.75) the dispersion relation
for coupled LC circuits.

5.6.1: Example of Coupled LC Circuits
L

L L
_EQQﬁ_LM_L%_
T T 1

-— ¢

C

Figure 5.26: A circuit with three inductors.

Let us use the results of this section to study a finite example, with boundary conditions. Consider the circuit shown in Figure 5.26.
This circuit in Figure 5.26 is analogous to the combination of springs and masses shown in Figure 5.27.

K K K K
m 9 Q o[ m|QQ ol m

Figure 5.27: A mechanical system analogous to Figure 5.26.

We already know that this is true for the middle. It remains only to understand the boundary conditions at the ends. If we label the
inductors as shown in Figure 5.28, then we can imagine that this system is part of the infinite system shown in Figure 5.23, with
the charges constrained to satisfy

Qo =Q4=0. (5.6.7)

This must be right. No charge can be displaced through inductors 0 and 4, because in Figure 5.26, they do not exist. This is just
what we expect from the analogy to the system in (5.27), where the displacement of the 0 and 4 blocks must vanish, because they
are taking the place of the fixed walls.

Now we can immediately write down the solution for the normal modes, in analogy with (5.21) and (5.22),
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Q; ocsiann (5.6.8)
1 2 3
LY
_EQJQJQ T L QJUL_\_
I 1 1 1T

Figure 5.28: A labeling of the inductors in Figure 5.26.

forn =1to 3.

5.6.2: Forced Oscillation Problem for Coupled LC Circuits

L L L
009 009
r‘UUC?L oL C_I_O
1 T T T

Figure 5.29: A forced oscillation with three inductors.

One more somewhat more practical example may be instructive. Consider the circuit shown in Figure 5.29. The @ in Figure 5.29
stands for a source of harmonically varying voltage. We will assume that the voltage at this point in the circuit is fixed by the
source, ©, to be

V coswt. (5.6.9)
We would like to find the voltages at the other nodes of the system, as shown in Figure 5.30, with
V3 —V coswt. (5.6.10)

We could solve this problem using the displaced charges, however, it is a little easier to use the fact that all the physical quantities
in the infinite system in Figure 5.23 are proportional to €% in a mode with angular wave number k. Because this is a forced
oscillation problem (and because, as usual, we are ignoring possible free oscillations of the system and looking for the steady state
solution), k is determined from w, by the dispersion relation for the infinite system of coupled LC circuits, (5.75).

The other thing we need is that
Vo =0, (5.6.11)

Vo Vi Va Vs
FMQLMLML@
i T— T T

Figure 5.30: The voltages in the system of Figure 5.29.

+ikx

because the circuit is shorted out at the end. Thus we must combine the two modes of the infinite system, e , into sin kx, and

the solution has the form

V; o sin jka. (5.6.12)
We can satisfy the boundary condition at the other end by taking
Vi = —Y ginjkacoswt (5.6.13)
i = o ake nJkacoswt. .6.

This is the solution.
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6This is not exactly true, however. Relativity imposes constraints. See chapter 11.
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5.7: Chapter Checklist

You should now be able to:

1. Recognize a finite system as part of a space translation invariant infinite system;

2. Find the normal modes of the finite system as linear combinations of normal modes of the space translation invariant infinite
system, consistent with the physics of the boundaries, by imposing boundary conditions;

3. Describe the normal modes of a space translation invariant system in terms of an angular wave number, k;

4. Find the dispersion relation that relates the angular frequency, w, to the angular wave number, k;

5. Solve forced oscillation problems using boundary conditions;

6. Analyze space translation invariant systems of coupled LC circuits.

5.7.1: Problems

5.1. Consider the small longitudinal oscillations of the system shown below:

12002 0095 009 4 |

In the picture above, each bob has mass m, each pendulum has length £, each spring has spring constant , and the equilibrium
separation between bobs is a.

a. Find the M ~! K matrix for this system in the basis in which the displacements of the blocks from equilibrium are all measured
to the right and arranged into vector in the obvious way,

X(t) = (5.7.1)

b. Classify as TRUE or FALSE each of the following questions about the normal modes of this system. If possible, explain your
answers qualitatively, that is, in words, rather than by plugging into a formula, and discuss the generality of your results.
i. In the normal mode with the lowest frequency, all the blocks move in the same direction when they are moving at all.
ii. In the normal mode with the second lowest frequency, the 1st and 2nd blocks have the same displacement.
iii. In the normal mode with the highest frequency, neighboring blocks move in opposite directions when they are moving at all.

c. Find the angular frequencies of each of the normal modes. Hint: You may want to use the dispersion relation for coupled

pendulums,
w? =2B—2C coska (5.7.2)
where
Bzz%+%, c==. (5.7.3)

5.2
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In the system shown above, all the blocks have mass m and they are constrained to move only horizontally. The long springs with
six loops have spring constant K. The shorter springs, with three loops, have spring constant 2K. The shortest springs, with two
loops, have spring constant 3 K. As you will see in chapter 7, this is what we expect if the springs are all made out of the same
material (see Figure 7.1). Find the normal modes of the system and the corresponding frequencies. Make sure that you justify any
assumptions you make about the normal modes. Hint: Try to find an infinite system with space translation invariance that contains
this in such a way that you can put in the physics of the walls as a boundary condition. Another Hint: This works simply only if
the three loop springs have exactly twice the spring constant of the long springs. Your answer should explain why.

5.3. In the beaded string shown below, the interval between neighboring beads is a, and the distance from the end beads to the
walls is a/2. All the beads have mass m and are constrained to move only vertically, in the plane of the paper.

2]%|G|
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Show that the physics of the left-hand wall can be incorporated by going to an infinite system and requiring the boundary condition
Ay =—-A4;.

a. Easy. Find the analogous boundary condition for the right-hand wall.
b. Find the normal modes and the corresponding frequencies.

5.4. Consider the following circuit:

All the capacitors have the same capacitance, C' ~ 0.00667uF, and all the inductors have the same inductance, L ~ 150uH and
no resistance. The center wire is grounded. This circuit is an electrical analog of the space translation invariant systems of coupled
mechanical oscillators that we have discussed in this chapter.

When you apply a harmonically oscillating signal from a signal generator through a coaxial cable to Vg, different oscillating
voltages will be induced along the line. That is if

Vs(t) =V coswt, (5.7.4)
then V;(t) has the form
V;(t) = Aj coswt + Bj sinwt. (5.7.5)
Find A; and B;.

5.7: Chapter Checklist is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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CHAPTER OVERVIEW

6: Continuum Limit and Fourier Series

“Continuous” is in the eye of the beholder. Most systems that we think of as continuous are actually made up of discrete pieces. In
this chapter, we show that a discrete system can look continuous at distance scales much larger than the separation between the
parts. We will also explore the physics and mathematics of Fourier series.

6.1: Preview

In this chapter, we discuss the wave equation, the starting point for some other treatments of waves. We will get it as natural result
of our general principles of space translation invariance and local interactions applied to continuous systems.

i. We will study the discrete space translation invariant systems discussed in the previous chapter in the limit that the separation
between parts goes to zero. We will argue that the generic result is a continuous system obeying the wave equation.

ii. The continuum limit of the beaded string is a continuous string with transverse oscillations. We will discuss its normal modes
for a variety of boundary conditions. We will see that the normal modes of a continuous space translation invariant system are
the same as those of a finite system. The only difference is that there are an infinite number of them. The sum over the infinite
number of normal modes required to solve the initial value problem for such a continuous system is called a Fourier series.

6.1: The Continuum Limit
6.2: Fourier Series
6.3: Chapter Checklist

This page titled 6: Continuum Limit and Fourier Series is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Howard Georgi via source content that was edited to the style and standards of the LibreTexts platform.
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6.1: The Continuum Limit

Consider a discrete space translation invariant system in which the separation between neighboring masses is a. If a is very small,
the discrete system looks continuous. To understand this statement, consider the action of the M ~!K matrix, (5.8), in the
notation of the last chapter in which the degrees of freedom are labeled by their equilibrium positions. The matrix M ~* K acts on a
vector to produce another vector. We have replaced our vectors by functions of x, so M ! K is something that acts on a function
A(z) to give another function. Let’s call it M 1K A(z). It is easiest to see what is happening for the beaded string, for which
B=C =T/ma.Then
= T
M KA(z)= (—) (2A(z) — A(z +a) — A(z —a)). (6.1.1)

ma
So far, Equation 6.1.11is correct for any a, large or small.

Whenever you say that a dimensional quantity, like the length a, is large or small, you must specify a quantity for comparison. You
must say large or small compared to what?! In this case, the other dimensional quantity in the problem with the dimensions of
length is the wavelength of the mode that we are interested in. Now here is where small a enters. If we are interested only in modes
with a wavelength A = 2 /k that is very large compared to a, then ka is a very small dimensionless number and A(z +a) is very
close to A(z). We can expand it in a Taylor series that is rapidly convergent. Expanding Equation 6.1.1 in a Taylor series gives

Ta 02 A(z)

M 'KA(z) =
@)= o

(6.1.2)
where the - - - represent higher derivative terms that are smaller by powers of the small number ka than the first term in Equation
6.1.2. In the limit in which we take a to be really tiny (always compared to the wavelengths we want to study) we can replace m/a
by the linear mass density pr,, or mass per unit length of the now almost continuous string and ignore the higher order terms. In this
limit, we can replace the M ~! K matrix by the combination of derivatives that appear in the first surviving term of the Taylor
series (Equation 6.1.2),

T §°

MK ———. 6.1.3
-~ pr 0z ( )

Then the equation of motion for v(z, t) becomes the wave equation:

0? T 52

The dispersion relation is
T
W= p—Lk2. (6.1.5)

This can be seen directly by plugging the normal mode e** into Equation 6.1.4, or by taking the limit of (5.37)-(5.38) as a — 0.
Equation (6.5) is the dispersion relation for the ideal continuous string. The quantity, 1/7'/pr, has the dimensions of velocity.
It is called the “phase velocity”, v,. As we will discuss in much more detail in chapter 8 and following, this is the speed with
which traveling waves move on the string.

We will call the approximation of replacing a discrete system with a continuous system that looks approximately the same for
k_, > 1/a the continuum approximation. Really, all of the mechanical systems that we will consider are discrete, at least on the
atomic level. However, if we are concerned only about waves with macroscopic wavelengths, the continuum approximation is a
very good one.

6.1.1: Philosophy and Speculation

Our treatment of the wave equation in Equation 6.1.4 is a little unusual. In many treatments of wave phenomena, the wave
equation is given a place of honor. In fact, the wave equation is only a restatement of the dispersion relation, Equation 6.1.5, which
is usually just an approximation to what is really going on. Almost all of the systems that we usually treat with the wave equation
are actually discrete at very small distances. We cannot really get all the way to the continuum limit that gives Equation 6.1.5.
Light waves, which we will study in the chapters to come, for all we know, may be an exception to this rule, and be completely

@ 0 e @ 6.1.1 https://phys.libretexts.org/@go/page/34379
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continuous. However, we don’t really have the right to assume even that. It could be that at very short distances, far below anything
we can look at today, the nature of light and even of space and time changes in some way so that space and time themselves have
some tiny characteristic length scale a. The analysis above shows that this doesn’t matter! As long as we can only look at space
and time at distances much larger than a, they look continuous to us. Then because we are scientists, concerned about how the
world looks in our experiments, and not how it behaves in some ideal regime far beyond what we can probe experimentally, we
might as well treat them as continuous.

1A dimensionless quantity does not require this step. A dimensionless number is large if it is much greater than one and small if it
is much smaller than one.

This page titled 6.1: The Continuum Limit is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Howard
Georgi via source content that was edited to the style and standards of the LibreTexts platform.
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6.2: Fourier Series

6.2.1: String with Fixed Ends

If we stretch our continuous string between fixed walls so that 1(0) = 1(£) = 0, the modes are given by (5.33) and (5.34), just as
for the discrete system. The only difference is that now n runs from 1 to oo, or at least to such large n that the wavelength
27 /k =2¢/n is so small that the continuum approximation breaks down. This follows from (5.28), which because k is real here
becomes

SN

<k<

813

(6.2.1)

As a — 0 the allowed range of k increases to infinity.

These standing wave modes are animated in program 6-1 on the program disk, assuming the dispersion relation, (6.5). We can now
discuss the physical basis of the Fourier series. In (3.77) in chapter 3, we showed that the normal modes for a discrete system are
linearly independent and complete. That means that any displacement of the discrete system can be written as a unique linear
combination of the normal modes. Physically, this must be so to allow us to solve th