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3.6: Differentiating Under the Integral Sign
In the previous section, we noted that if an integrand contains a parameter (denoted ) which is independent of the integration
variable (denoted ), then the definite integral can itself be regarded as a function of . It can then be shown that taking the
derivative of the definite integral with respect to  is equivalent to taking the partial derivative of the integrand:

This operation, called differentiating under the integral sign, was first used by Leibniz, one of the inventors of calculus. It can be
applied as a technique for solving integrals, popularized by Richard Feynman in his book Surely You’re Joking, Mr. Feynman!.

Here is the method. Given a definite integral :

1. Come up with a way to generalize the integrand, by introducing a parameter , such that the generalized integral becomes a
function  which reduces to the original integral  for a particular parameter value, say .

2. Differentiate under the integral sign. If you have chosen the generalization right, the resulting integral will be easier to solve,
so...

3. Solve the integral to obtain .

4. Integrate  over  to obtain the desired integral , and evaluate it at  to obtain the desired integral .

An example is helpful for demonstrating this procedure. Consider the integral

First, (i) we generalize the integral as follows (we’ll soon see why):

The desired integral is . Next, (ii) differentiating under the integral gives

Taking the partial derivative of the integrand with respect to  brought down a factor of , cancelling out the troublesome
denominator. Now, (iii) we solve the new integral, which can be done by integrating by parts twice:

Hence,

Finally, (iv) we need to integrate this over . But we already saw how to do this particular integral in Section 3.4, and the result is

where  is a constant of integration. When , the integral must vanish, which implies that .
Finally, we arrive at the result

When we discuss contour integration in Chapter 9, we will see a more straightforward way to do this integral.
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