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7.1: Complex Continuity and Differentiability
The concept of a continuous complex function makes use of an “epsilon-delta definition”, similar to the definition for functions of
real variables (see Chapter 1):

A complex function  is continuous at  if, for any , we can find a  such that

Here,  denotes the magnitude of a complex number. If you have difficulty processing this definition, don’t worry; it basically
says that as  is varied smoothly, there are no abrupt jumps in the value of .

If a function is continuous at a point , we can define its complex derivative as

This is very similar to the definition of the derivative for a function of a real variable (see Chapter 1). However, there’s a
complication which doesn’t appear in the real case: the infinitesimal  is a complex number, not just a real number, yet the above
definition does not specify the argument of . The choice of the argument of  is equivalent to the direction in the complex plane
in which  points, as shown in the following figure:

Figure 

In principle, we might get different results from the above formula when we plug in different infinitesimals , even in the limit
where  and even though  is continuous.

Consider the function . According to the formula for the complex derivative,

But if we plug in a real , we get a different result than if we plug in an imaginary :

We can deal with this complication by regarding the complex derivative as well-defined only if the above definition gives the same
answer regardless of the argument of . If a function satisfies this property at a point , we say that the function is complex-
differentiable at .

The preceding example showed that  is not complex-differentiable for any . On the other hand, the following
example shows that the function  is complex-differentiable for all :
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The function  is complex differentiable for any , since

The reason the result doesn’t depend on the argument of  is that the derivative formula simplifies to the fraction ,
which is equal to 1 for any . Note that we simplify the fraction to 1 before taking the limit . We can’t take the
limit first, because  is undefined.
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