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5.3: General Solution for the Damped Harmonic Oscillator

For now, suppose wy # . In the previous section, we found two classes of specific solutions, with complex frequencies w, and
w_:

2 (t)=e ™" and z_(t)=e ™', where w.=—iy+, /w7 (5.3.1)

A general solution can be found by constructing a linear superposition of these solutions:

2(t) =1p et fop_e Wt (5.3.2)

=1y exp[(—'y—i w%—'y2) t] + Y- exp[(—’y—ki,/wg—'f) t}. (5.3.3)

This contains two undetermined complex parameters, ¥, and t_. These are independent parameters since they are coefficients
multiplying different functions (the functions are different because wg # -y implies that w; # w_).

To obtain the general solution to the real damped harmonic oscillator equation, we must take the real part of the complex solution.
The result can be further simplified depending on whether wg —~? is positive or negative. This leads to under-damped solutions
or over-damped solutions, as discussed in the following subsections.

What if wg =? In this instance, w. = w_, which means that ¥, and 1_ aren’t independent parameters. Therefore, the above
equation for z(¢) isn’t a valid general solution! We will discuss how to handle this case Section 5.3.
Under-damped motion

For wy > 7, let us define, for convenience,

Q=,/wi -~ (5.3.4)
Then we can simplify the real solution as follows:
z(t) = Re|z(¢)] (5.3.5)
=e " Re [y, e ™ 4 ¢p_ ] (5.3.6)
=e " [Acos(Qt) + Bsin(Qt)], where A,BER (5.3.7)
With a bit of algebra, we can show that
A=Relys +9_], B=Im[¢, —y_]. (5.3.8)

This is called an under-damped solution. The coefficients A and B act as two independent real parameters, so this is a valid
general solution for the real damped harmonic oscillator equation. Using the trigonometric formulas, the solution can be
equivalently written as

z(t) = Ce " cos[Qt + @], (5.3.9)
with the parameters C' = v/ A2+ B2 and ® = —tan![B/A].

As shown below, the trajectory is an oscillation whose amplitude decreases with time. The decrease in the amplitude can be
visualized using a smooth “envelope” given by +Ce ™, which is drawn with dashes in the figure. Inside this envelope, the

trajectory oscillates with frequency 2 = 4 /wg —~2 , which is slightly less than the natural frequency of oscillation wy.
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Over-damped motion

For wy < 7y, the square root term is imaginary. It is convenient to define

P=,/v-w? = /w27 =il (5.3.10)

Then the real solution simplifies in a different way:

z(t) =Re[2(t)] =Re [¢+e(‘””)t +¢—e(‘”‘r>t} (5.3.11)
=Cie 0Nt L O_e 0Dt (5.3.12)

where
C. =Re[y,]. (5.3.13)

This is called an over-damped solution. It consists of two terms, both exponentially decaying in time, with (y —T') and (y+T")
serving as the decay rates. Note that both decay rates are positive real numbers, because I' < v from the definition of I". Also, note
that (Y —T') decreases with -y, whereas (y+T') increases with -, as shown below:
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The plot below shows trajectory of the over-damped oscillator:
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Figure 5.3.3

The red dashes show the limiting curve determined by the decay rate (y—T"). The other decay rate, (y+T"), corresponds to a
faster-decaying exponential, so at long times the second term in Eq. (5.3.12) becomes negligible compared to the first term. Then
the solution approaches the limit

z(t)~ C e 0D (for large t). (5.3.14)

Interestingly, since (v —T") is a decreasing function of +, the stronger the damping, the slower the decay rate at long times. This is
the opposite of what happens in the under-damped regime!

Why does this happen? In the over-damped regime, the motion of the oscillator is dominated by the damping force rather than the
spring force; as the oscillator tries to return to its equilibrium position = 0, the damping acts against this motion. Hence, the
stronger the damping, the slower the decay to equilibrium. This contrasts sharply with the Section 5.3, where the spring force
dominates the damping force. In that case, stronger damping speeds up the decay to equilibrium, by causing the kinetic energy of
the oscillation to dissipate more rapidly.

Critical damping

Critical damping occurs when wy = . Under this special condition, Eq. (5.3.3) reduces to

2(t) = (Y +_)e . (5.3.15)
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This has only one independent complex parameter, i.e. the parameter (1. +1_) . Therefore, it cannot be a general solution for the
complex damped harmonic oscillator equation, which is still a second-order ODE.

We will not go into detail here regarding the procedure for finding the general solution for the critically-damped oscillator, leaving
it as an Section 5.5 for the interested reader. Basically, the procedure is to Taylor expand the solution on either side of the critical
point, and then show that there is a solution of the form

2(t) = (A+Bt) e, (5.3.16)
which contains the desired two independent parameters.

The critically-damped solution contains an exponential decay constant of 7, which is the same as the decay constant for the
envelope function in the under-damped regime [Eq. (5.3.7)], and smaller than the long-time decay constants in the over-damped
regime [Eq. (5.3.14)]. Hence, we can regard the critically-damped solution as the fastest-decaying non-oscillatory solution.

This feature of critical damping is employed in many engineering contexts, the most familiar being automatic door closers. If the
damping is too weak or the spring force is too strong (under-damped), the door will slam shut, whereas if the damping is too strong
or the spring force is too weak (under-damping), the door takes unnecessarily long to close. Hence, door closers must be tuned to a
“sweet spot” corresponding to the critical damping point.

This page titled 5.3: General Solution for the Damped Harmonic Oscillator is shared under a CC BY-SA 4.0 license and was authored, remixed,
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