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8.2: Branches
We have discussed two examples of multi-valued complex operations: non-integer powers and the complex logarithm. However,
we usually prefer to deal with functions rather than multi-valued operations. One major motivating factor is that the concept of the
complex derivative was formulated in terms of functions, not multi-valued operations.

There is a standard procedure to convert multi-valued operations into functions. First, we define one or more curve(s) in the
complex plane, called branch cuts (the reason for this name will be explained later). Next, we modify the domain (i.e., the set of
permissible inputs) by excluding all values of  lying on a branch cut. Then the outputs of the multi-valued operation can be
grouped into discrete branches, with each branch behaving just like a function.

The above procedure can be understood through the example of the square root.

Branches of the complex square root

As we saw in Section 8.1, the complex square root, , has two possible values. We can define the two branches as follows:

1. Define a branch cut along the negative real axis, so that the domain excludes all values of  along the branch cut. In in other
words, we will only consider complex numbers whose polar representation can be written as

(For those unfamiliar with this notation,  refers to the interval . The parentheses indicate that the
boundary values of  and  are excluded. By contrast, we would write  to refer to the interval , with
the square brackets indicating that the boundary values are included.)

2. One branch is associated with the  root. On this branch, for , the value is

3. The other branch is associated with the root of unity . On this branch, the value is

In the following plot, you can observe how varying  affects the positions of  and  in the complex plane:

Figure 

The red dashed line in the left plot indicates the branch cut. Our definitions of  and  implicitly depend on the choice to
place the branch cut on the negative real axis, which led to the representation of the argument of  as .

In the above figure, note that  always lies in the right half of the complex plane, whereas  lies in the left half of the
complex plane. Both  and  are well-defined functions with unambiguous outputs, albeit with domains that do not cover the
entire complex plane. Moreover, they are analytic over their entire domain (i.e., all of the complex plane except the branch cut);
this can be proven using the Cauchy-Riemann equations, and is left as an exercise.
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The end-point of the branch cut is called a branch point. For , both branches give the same result: . We
will have more to say about branch points in Section 8.2.

Different branch cuts for the complex square root
In the above example, you may be wondering why the branch cut has to lie along the negative real axis. In fact, this choice is not
unique. For instance, we could place the branch cut along the positive real axis. This corresponds to specifying the input  using a
different interval for :

Next, we use the same formulas as before to define the branches of the complex square root:

But because the domain of  has been changed to , the set of inputs  now excludes the positive real axis. With this new
choice of branch cut, the branches are shown in the following figure.

Figure 

These two branch functions are different from what we had before. Now,  is always in the upper half of the complex plane,
and  in the lower half of the complex plane. However, both branches still have the same value at the branch point: 

.

The branch cut serves as a boundary where two branches are “glued” together. You can think of “crossing” a branch cut as having
the effect of moving continuously from one branch to another. In the above figure, consider the case where  is just above the
branch cut. Then  lies just above the positive real axis, and  lies just below the negative real axis. Next, consider  lying
just below the branch cut. This is equivalent to a small downwards displacement of , “crossing” the branch cut. For this case, 

 now lies just below the positive real axis, near where  was previously. Moreover,  now lies just above the
negative real axis, near where  was previously. Crossing the branch cut thus swaps the values of the positive and negative
branches.

The three-dimensional plot below provides another way to visualize the role of the branch cut. Here,the horizontal axes correspond
to  and . The vertical axis shows the arguments for the two values of the complex square root, with  plotted
in orange and  plotted in blue. If we vary the choice of the branch cut, that simply affects which values of the multi-
valued operation are assigned to the  (orange) branch, and which values are assigned to the  (blue) branch. Hence, the choice of
branch cut is just a choice about how to divide up the branches of a multi-valued operation.
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Figure 

Branch points
The tip of each branch cut is called a branch point. A branch point is a point where the multi-valued operation gives an
unambiguous answer, with different branches giving the same output. Whereas the choice of branch cuts is non-unique, the
positions of the branch points of a multi-valued operation are uniquely determined.

For the purposes of this course, you mostly only need to remember the branch points for two common cases:

The  operation (for non-integer ) has branch points at  and . For rational powers , where  and 
have no common divisor, there are  branches, one for each root of unity. At each branch point, all  branches meet.

The complex logarithm has branch points at  and . There is an infinite series of branches, separated from each
other by multiples of . At each branch point, all the branches meet.

We can easily see that  must have a branch point at : its only possible value at the origin is , regardless of which root of
unity we choose. To understand the other branch points listed above, a clearer understanding of the concept of “infinity” for
complex numbers is required, so we will discuss that now.

This page titled 8.2: Branches is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source
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