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9.1: Contour Integrals
Recall that for a real function , the definite integral from  to  is the area under the curve between those two points.
As discussed in Chapter 3, the integral can be expressed as a limit expression: we divide the interval into  segments of width ,
take the sum of , and go to the  limit:

Now suppose  is a complex function of a complex variable. A straight-foward way to define the integral of  is to adopt an
analogous expression:

But there’s a conceptual snag: since  takes complex inputs, the values of  need not lie along the real line. In general, the
complex numbers  form a set of points in the complex plane. To accommodate this, we can imagine chaining together a sequence
of points , separated by displacements :

Figure 

Then the sum we are interested in is

In the limit , each displacement  becomes infinitesimal, and the sequence of points  becomes a
continuous trajectory in the complex plane (see Section 4.6). Such a trajectory is called a contour. Let us denote a given contour by
an abstract symbol, such as . Then the contour integral over  is defined as

The symbol  in the subscript of the integral sign indicates that the integral takes place over the contour . When defining a
contour integral, it is always necessary to specify which contour we are integrating over. This is analogous to specifying the end-
points of the interval over which to perform a definite real integral. In the complex case, the integration variable  lies in a two-
dimensional plane (the complex plane), not a line; therefore we cannot just specify two end-points, and must specify an entire
contour.

Also, note that in defining a contour  we must specify not just a curve in the complex plane, but also the direction along which to
traverse the curve. If we integrate along the same curve in the opposite direction, the value of the contour integral switches sign
(this is similar to swapping the end-points of a definite real integral).
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A contour integral generally cannot be interpreted as the area under a curve, the way a definite real integral can. In particular,
the contour should not be mistakenly interpreted the graph of the integrand! Always remember that in a contour integral, the
integrand  and the integration variable  are both complex numbers.

Moreover, the concept of an indefinite integral cannot be usefully generalized to the complex case.

Contour integral along a parametric curve

Simple contour integrals can be calculated by parameterizing the contour. Consider a contour integral

where  is a complex function of a complex variable and  is a given contour. As discussed in Section 4.6, we can describe a
trajectory in the complex plane by a complex function of a real variable, :

The real numbers  and  specify two complex numbers,  and , which are the end-points of the contour. The rest of the
contour consists of the values of  between those end-points. Provided we can parameterize  in such a manner, the complex
displacement  in the contour integral can be written as

Then we can express the contour integral over  as a definite integral over :

This can then be calculated using standard integration techniques. A simple example is given in the next section.

A contour integral over a circular arc

Let us use the method of parameterizing the contour to calculate the contour integral

where the trajectory  consists of a counter-clockwise arc of radius , from the point  to the point 
, as shown in the figure below:

Figure 

We can parameterize the contour as follows:

Then the contour integral can be converted into an integral over the real parameter :
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To proceed, there are two cases that we must treat separately. First, for ,

Second, we have the case . This cannot be handled by the above equations, since the factor of  in the denominator
would vanish. Instead,

Putting the two cases together, we arrive at the result

The case where  is of particular interest. Here,  forms a complete loop, and the result simplifies to

which is independent of  as well as the choice of  and . (Here, the special integration symbol  is used to indicate that the
contour integral is taken over a loop.) Eq.  is a very important result that we will make ample use of later.

By the way, what if  is not an integer? In that case, the integrand  is a multi-valued operation (see Chapter 8), whereas the
definition of a contour integral assumes the integrand is a well-defined function. To get around this problem, we can specify a
branch cut and perform the contour integral with any of the branches of  (this is fine since the branches are well-defined
functions). So long as the branch cut avoids intersecting with the contour , the result  remains valid. However,  cannot
properly be taken along a complete loop, as that would entail crossing the branch cut.

This page titled 9.1: Contour Integrals is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.
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