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9.3: Poles
In the previous section, we referred to situations where  is non-analytic at discrete points. “Discrete”, in this context, means
that each point of non-analyticity is surrounded by a finite region over which  is analytic, isolating it from other points of non-
analyticity. Such situations commonly arise from functions of the form

For , the function is non-analytic because its value is singular. Such a function is said to have a pole at . The integer  is
called the order of the pole.

Residue of a simple pole

Poles of order 1 are called simple poles, and they are of special interest. Near a simple pole, the function has the form

In this case, the complex numerator  is called the residue of the pole (so-called because it’s what’s left-over if we take away the
singular factor corresponding to the pole.) The residue of a function at a point  is commonly denoted . Note that if a
function is analytic at , then .

Consider the function

To find the pole and residue, divide the numerator and denominator by :

Thus, there is a simple pole at  with residue .

Consider the function

To find the poles and residues, we factorize the denominator:

Hence, there are two simple poles, at .

To find the residue at , we separate the divergent part to obtain

Similarly, for the other pole,
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The residue theorem

In Section 9.1, we used contour parameterization to calculate

where  is a counter-clockwise circular loop centered on the origin. This holds for any (non-zero) loop radius. By combining this
with the results of Section 9.2, we can obtain the residue theorem:

For any analytic function  with a simple pole at ,

where  denotes an infinitesimal loop around . The  sign holds for a counter-clockwise loop, and the  sign for a
clockwise loop.

By combining the residue theorem with the results of the last few sections, we arrive at a technique for integrating a function 
over a loop , called the calculus of residues:

1. Identify the poles of  in the domain enclosed by .

2. Check that these are all simple poles, and that  has no other non-analytic behaviors (e.g. branch cuts) in the enclosed
region.

3. Calculate the residue, , at each pole .

4. The value of the loop integral is

The plus sign holds if  is counter-clockwise, and the minus sign if it is clockwise.

Example of the calculus of residues

Consider

This can be re-written as

By inspection, we can identify two poles: one at , with residue , and the other at , with residue . The function is
analytic everywhere else.

Suppose we integrate  around a counter-clockwise contour  that encloses only the pole at , as indicated by the blue curve
in the figure below:
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Figure 

According to the residue theorem, the result is

On the other hand, suppose we integrate around a contour  that encloses both poles, as shown by the purple curve. Then the
result is
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