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5.5: Exercises

In Section 5.2, we encountered the complex frequencies

For fixed  and  (under-damping), prove that  lie along a circular arc in the complex plane.

Derive the general solution for the critically damped harmonic oscillator, Eq. (5.3.16), by following these steps:

a. Consider the complex ODE, in the under-damped regime . We saw in Section 5.3 that the general solution has the
form

for some complex parameters  and . Define the positive parameter . Re-write  in terms of  and 

(i.e., eliminating ).

b. The expression for  is presently parameterized by the independent parameters , , , and . We are free to re-
define the parameters, by taking

Using these equations, express  using a new set of independent complex parameters, one of which is . Explicitly
identify the other independent parameters, and state whether they are real or complex.

c. Expand the exponentials in  in terms of the parameter . Then show that in the limit ,  reduces to the
critically-damped general solution (5.3.16).

Repeat the above derivation for the critically-damped solution, but starting from the over-damped regime .

Let  be a complex function of a real input , which obeys the differential equation

where  and  are real. Find the general solution for , and hence show that  satisfies the damped oscillator equation

for some . Finally, show that this harmonic oscillator is always under-damped.

Answer

The general solution is

It can be verified by direct substitution that this is a solution to the differential equation. It contains one free parameter, and
the differential equation is first-order, so it must be a general solution. Next,
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Hence,  obeys a damped harmonic oscillator equation with  This expression for the natural frequency
ensures that  (assuming the parameters  and  are both real); hence, the harmonic oscillator is always under-
damped.
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