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8.1: Non-Integer Powers as Multi-Valued Operations
Given a complex number in its polar representation, , raising to the power of  could be handled this way:

Let’s take a closer look at the complex exponential term . Since  is an angle, we can change it by any integer
multiple of  without altering the value of . Taking this fact into account, we can re-write the above equation more carefully as

Thus, there is an ambiguous factor of , where  is any integer. If  is an integer, there is no problem, since  will
be an integer multiple of , so  has the same value regardless of :

But if  is not an integer, there is no unique answer, since  has different values for different . In that case, “raising to
the power of ” is a multi-valued operation. It cannot be treated as a function in the usual sense, since functions must have
unambiguous outputs (see Chapter 0).

Roots of unity
Let’s take a closer look at the problematic exponential term,

If  is irrational,  never repeats itself modulo . Thus,  has an infinite set of values, one for each integer .

More interesting is the case of a non-integer rational power, which can be written as  where  and  are integers with no
common divisor. It can be proven using modular arithmetic (though we will not go into the details) that  has exactly 
unique values modulo :

This set of values is independent of the numerator , which merely affects the sequence in which the numbers are generated. We
can clarify this using a few simple examples:

Consider the complex square root operation, . If we write  in its polar respresentation,

then

The factor of  has two possible values:  for even , and  for odd . Hence,

Consider the cube root operation . Again, we write  in its polar representation, and obtain

The factor of  has the following values for different :
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From the pattern, we see that there are three possible values of the exponential factor:

Therefore, the cube root operation has three distinct values:

Consider the operation . Again, writing  in its polar representation,

The factor of  has the following values for different :

Hence, there are three possible values of this exponential factor,

Note that this is the exact same set we obtained for  in the previous example, in agreement with the earlier assertion that
the numerator  has no effect on the set of values. Thus,

From the above examples, we deduce the following expression for rational powers:

The quantities in the curly brackets are called the roots of unity. In the complex plane, they sit at  evenly-spaced points on the
unit circle, with  as one of the values:

Figure 

Complex logarithms

Here is another way to think about non-integer powers. Recall what it means to raise a number to, say, the power of 5: we simply
multiply the number by itself five times. What about raising a number to a non-integer power ? For the real case, we used the
following definition based on a combination of exponential and logarithm functions:

This definition relies on the fact that, for real inputs, the logarithm is a well-defined function. That, in turn, comes from the
definition of the logarithm as the inverse of the exponential function. Since the real exponential is one-to-one, its inverse is also
one-to-one.

The complex exponential, however, is many-to-one, since changing its input by any multiple of  yields the same output:
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The inverse of the complex exponential is the complex logarithm. Since the complex exponential is many-to-one, the complex
logarithm does not have a unique output. Instead,  refers to an infinite discrete set of values, separated by integer multiples of 

. We can express this state of affairs in the following way:

Here,  denotes the principal value of , which refers to a reference value of the logarithm operation (which we’ll
define later). Do not think of the principal value as the "actual" result of the  operation! There are multiple values, each
equally legitimate; the principal value is merely one of these possible results.

Plugging Eq.  into the formula  gives

The final factor, which is responsible for the multi-valuedness, are the roots of unity found in Section 8.1.
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