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10.6: Common Fourier Transforms

To accumulate more intuition about Fourier transforms, let us examine the Fourier transforms of some interesting functions. We
will just state the results; the calculations are left as exercises.

Damped waves

We saw in Section 10.2 that an exponentially decay function with decay constant 7 € R™ has the following Fourier transform:
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Observe that F'(k) is given by a simple algebraic formula. If we “extend” the domain of k to complex values, F'(k) corresponds to
an analytic function with a simple pole in the upper half of the complex plane, at k = i7.

Next, consider a decaying wave with wave-number ¢ € R and decay constant € R™ . The Fourier transform is a function with a
simple pole at g +i7:
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On the other hand, consider a wave that grows exponentially with z for < 0, and is zero for £ > 0. The Fourier transform is a
function with a simple pole in the lower half-plane:
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From these examples, we see that oscillations and amplification/decay in f(x) are related to the existence of poles in the algebraic
expression for F'(k). The real part of the pole position gives the wave-number of the oscillation, and the distance from the pole to
the real axis gives the amplification or decay constant. A decaying signal produces a pole in the upper half-plane, while a signal
that is increasing exponentially with z produces a pole in the lower half-plane. In both cases, if we plot the Fourier spectrum of
| F(k)|? versus real k, the result is a Lorentzian peak centered at k = ¢, with width 27).

Gaussian wave-packets

Consider a function with a decay envelope given by a Gaussian function:
f(@) =€ e where g C, y€R. (10.6.4)

This is called a Gaussian wave-packet. The width of the envelope is usually characterized by the Gaussian function’s standard
deviation, which is where the curve reaches e~1/2 times its peak value. In this case, the standard deviation is Az =1 / \/27.

We will show that f(z) has the following Fourier transform:
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To derive this result, we perform the Fourier integral as follows:
F(k) = / dze ™ f(z) (10.6.6)
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In the integrand, the expression inside the exponential is quadratic in . We complete the square:
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The remaining integral is the Gaussian integral with a constant imaginary shift in . By shifting the integration variable, one can
show that this is equal the standard Gaussian integral, //~; the details are left as an exercise. We thus arrive at the result stated
above.

The Fourier spectrum, | F/(k)|?, is a Gaussian function with standard deviation
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Figure 10.6.1

Once again, the Fourier spectrum is peaked at a value of k corresponding to the wave-number of the underlying sinusoidal wave in
f(z), and a stronger (weaker) decay in f(z) leads to a broader (narrower) Fourier spectrum. These features can be observed in the
plot above.
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