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7.4: Exercises

For each of the following functions , find the real and imaginary component functions  and , and hence
verify whether they satisfy the Cauchy-Riemann equations.

a. 

b. 

c. 

d. 

e. 

f. 

g. 

Suppose a function  is well-defined and obeys the Cauchy-Riemann equations at a point , and the partial derivatives in
the Cauchy-Riemann equations are continuous at that point. Show that the function is complex differentiable at that point.
Hint: consider an arbitary displacement .

Prove that products of analytic functions are analytic: if  and  are analytic in , then  is analytic in .

Answer

We will use the Cauchy-Riemann equations. Decompose , , and  into real and imaginary parts as follows: , 
, and . Since  and  are analytic in , they satisfy

This holds for all . Next, expand the product  into real and imaginary parts:

Our goal is to prove that  and  satisfy the Cauchy-Riemann equations for , which would then imply that 
is analytic in . Using the product rule for derivatives:

By direct comparison, we see that the two expressions are equal. Similarly,

Exercise 7.4.1

f(z) u(x, y) v(x, y)

f(z) = z

f(z) = z2

f(z) = |z|

f(z) = |z|
2

f(z) = exp(z)

f(z) = cos(z)

f(z) = 1/z

Exercise 7.4.2

f(z) z

Δz = Δx + iΔy

Exercise 7.4.3

f(z) g(z) D ⊂ C f(z)g(z) D

z f g z = x + iy

f = u + iv g = p + iq f(z) g(z) D
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z ∈ D f(z) g(z)

f(z) g(z) = A(x, y) + iB(x, y), where { A = up −vq

B = uq +vp.
(7.4.3)
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These two are the negatives of each other. Q.E.D.

Prove that compositions of analytic functions are analytic: if  is analytic in  and  is analytic in the range of ,
then  is analytic in .

Prove that reciprocals of analytic functions are analytic away from poles: if  is analytic in , then  is analytic
everywhere in  except where .

Show that if  satisfies the Cauchy-Riemann equations, then the real functions  and  each
obey Laplace’s equation:

(Such functions are called “harmonic functions”.)

We can write the real and imaginary parts of a function in terms of polar coordinates: , where 
. Show that the Cauchy-Riemann equations can be re-written in polar form as
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Exercise 7.4.4

f(z) D ⊂ C g(z) f

g(f(z)) D

Exercise 7.4.5

f(z) D ⊂ C 1/f(z)

D f(z) = 0

Exercise 7.4.6

f(z = x + iy) = u(x, y) + iv(x, y) u v

+ = + = 0.
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Exercise 7.4.7

f(z) = u(r, θ) + iv(r, θ)
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