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7.4: Exercises

Exercise 7.4.1

For each of the following functions f(z), find the real and imaginary component functions u(z,y) and v(z,y), and hence

verify whether they satisfy the Cauchy-Riemann equations.

a f(z)==2

Exercise 7.4.2

Suppose a function f(z) is well-defined and obeys the Cauchy-Riemann equations at a point z, and the partial derivatives in
the Cauchy-Riemann equations are continuous at that point. Show that the function is complex differentiable at that point.

Hint: consider an arbitary displacement Az = Az +iAy.

Exercise 7.4.3

Prove that products of analytic functions are analytic: if f(2) and g(z) are analytic in D C C, then f(2)g(z) is analytic in D.

Answer
We will use the Cauchy-Riemann equations. Decompose z, f, and g into real and imaginary parts as follows: z =x +1iy ,
f=u+iv,and g=p+iq . Since f(z) and g(z) are analytic in D, they satisfy
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This holds for all z € D. Next, expand the product f(z) g(z) into real and imaginary parts:

7()9(2) = A(z,y) +iB(z,y), where { L= (7.4.3)

Our goal is to prove that A and B satisfy the Cauchy-Riemann equations for « + iy € D, which would then imply that fg

is analytic in D. Using the product rule for derivatives:
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By direct comparison, we see that the two expressions are equal. Similarly,
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These two are the negatives of each other. Q.E.D.

Exercise 7.4.4

Prove that compositions of analytic functions are analytic: if f(2) is analytic in D C C and g(2) is analytic in the range of f,
then g(f(z)) is analytic in D.

Exercise 7.4.5

Prove that reciprocals of analytic functions are analytic away from poles: if f() is analytic in D C C, then 1/ f(z) is analytic
everywhere in D except where f(z) =0.

Exercise 7.4.6

Show that if f(z =z +1iy) = u(z,y) +iv(z,y) satisfies the Cauchy-Riemann equations, then the real functions v and v each
obey Laplace’s equation:
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(Such functions are called “harmonic functions”.)

Exercise 7.4.7

We can write the real and imaginary parts of a function in terms of polar coordinates: f(z)=wu(r,6)+iv(r,0) , where
z=re” . Show that the Cauchy-Riemann equations can be re-written in polar form as
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