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10.2: Fourier Transforms
The Fourier series applies to periodic functions defined over the interval . But the concept can be generalized to
functions defined over the entire real line, , if we take the limit  carefully.

Suppose we have a function  defined over the entire real line, , such that  for . Imagine there is a family
of periodic functions , such that  has periodicity , and approaches  in the limit . This is
illustrated in the figure below:

Figure 

In mathematical terms,

Since  is periodic, it can be expanded as a Fourier series:

Here,  denotes the -th complex Fourier coefficient of the function . Note that each Fourier coefficient depends implicitly
on the periodicity .

As , the wave-number quantum  goes to zero, and the set of discrete  turns into a continuum. During this process,
each individual Fourier coefficient  goes to zero, because there are more and more Fourier components in the vicinity of each 
value, and each Fourier component contributes less. This implies that we can replace the discrete sum with an integral. To
accomplish this, we first multiply the summand by a factor of :

(In case you’re wondering, the choice of  factors is essentially arbitrary; we are following the usual convention.) Moreover, we
define

In the  limit, the  in the numerator and the  in the denominator both go zero, but if their ratio remains finite, we can
turn the Fourier sum into the following integral:

The Fourier relations

The function  in Eq.  is called the Fourier transform of . Just as we have expressed  in terms of , we
can also express  in terms of . To do this, we apply the  limit to the inverse relation for the Fourier series in Eq.
(10.1.13):
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Hence, we arrive at a pair of equations called the Fourier relations:

The first equation is the Fourier transform, and the second equation is called the inverse Fourier transform.

There are notable differences between the two formulas. First, there is a factor of  appears next to , but no such factor for 
; this is a matter of convention, tied to our earlier definition of . Second, the integral over  contains a factor of  but

the integral over  contains a factor of . One way to remember which equation has the positive sign in the exponent is to
interpret the inverse Fourier transform equation (which has the form of an integral over ) as the continuum limit of a sum over
complex waves. In this sum,  plays the role of the series coefficients, and by convention the complex waves have the form 

 (see Section 6.3).

As noted in Section 10.1, all the functions we deal with are assumed to be square integrable. This includes the  functions used to
define the Fourier transform. In the  limit, this implies that we are dealing with functions such that

A simple example
Consider the function

For , this is an exponentially-decaying function, and for  it is identically zero. The real parameter  is called the decay
constant; for , the function  vanishes as  and can thus be shown to be square-integrable. Larger values of 
correspond to faster exponential decay.

The Fourier transform can be found by directly calculating the Fourier integral:

It is useful to plot the squared magnitude of the Fourier transform, , against . This is called the Fourier spectrum of 
. In this case,

F ( )kn = lim
a→∞

2π fan
Δk

= ( dx )lim
a→∞

2π

2π/a

1

a
∫

a/2

−a/2

e−i xkn

= dx f(x).∫
∞

−∞

e−ikx

(10.2.6)

(10.2.7)

(10.2.8)

Definition: Fourier relations

⎧

⎩
⎨

⎪⎪⎪

⎪⎪⎪

F (k)

f(x)

= dx f(x)∫
∞

−∞

e−ikx

= F (k)∫
∞

−∞

dk

2π
eikx

(Fourier transform)

(Inverse Fourier transform).

(10.2.9)

1/2π dk

dx F (k) x e−ikx

k eikx

k

F (k)

exp(ikx)

fa
a → ∞

dx f(x) exists and is finite.∫
∞

−∞

∣∣ ∣∣
2

(10.2.10)

f(x) ={ η ∈ .
,e−ηx

0,

x ≥ 0

x < 0,
R

+ (10.2.11)

x < 0 x < 0 η

η > 0 f(x) x → +∞ η

F (k) = dx = .∫
∞

0

e−ikx e−κx −i

k− iη
(10.2.12)

|F (k)|2 k

f(x)

F (k) = .∣∣ ∣∣
2 1

+k2 η2
(10.2.13)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34573?pdf


10.2.3 https://phys.libretexts.org/@go/page/34573

Figure 

The Fourier spectrum is shown in the right subplot above. It consists of a peak centered at , forming a curve called a
Lorentzian. The width of the Lorentzian is dependent on the original function’s decay constant . For small , i.e. weakly-
decaying , the peak is narrow; for large , i.e. rapidly-decaying , the peak is broad.

We can quantify the width of the Lorentzian by defining the full-width at half-maximum (FWHM)—the width of the curve at half
the value of its maximum. In this case, the maximum of the Lorentzian curve occurs at  and has the value of . The half-
maximum, , occurs when . Hence, the original function’s decay constant, , is directly proportional to the FWHM
of the Fourier spectrum, which is .

To wrap up this example, let’s evaluate the inverse Fourier transform:

This can be solved by contour integration. The analytic continuation of the integrand has a simple pole at . For , the
numerator  vanishes far from the origin in the lower half-plane, so we close the contour below. This encloses no pole, so
the integral is zero. For , the numerator vanishes far from the origin in the upper half-plane, so we close the contour above,
with a counter-clockwise arc, and the residue theorem gives

as expected.
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