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4.1: Complex Algebra
Any complex number  can be written as

where  and  are real numbers that are respectively called the real part and the imaginary part of . The real and imaginary
parts are also denoted as  and , where  and  can be regarded as functions mapping a complex number to a real
number.

The set of complex numbers is denoted by . We can define algebraic operations on complex numbers (addition, subtraction,
products, etc.) by following the usual rules of algebra and setting  whenever it shows up.

Let , where . 
What are the real and imaginary parts of ?

Hence,

We can also perform power operations on complex numbers, with one caveat: for now, we’ll only consider integer powers like 
or . Non-integer powers, such as , introduce vexatious complications which we’ll postpone for now (we will figure
out how to deal with them when studying branch points and branch cuts in Chapter 7).

Another useful fact: real coefficients (and only real coefficients) can be freely moved into or out of  and 
operations:

As a consequence, if we have a complex function of a real variable, the derivative of that function can be calculated from the
derivatives of the real and imaginary parts, as shown in the following example:

If  is a complex function of a real input , then

This can be proven using the definition of the derivative:

The  case works out similarly. Note that the infinitesimal quantity  is real; otherwise, this wouldn’t work.
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z = x+ iy, (4.1.1)
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Example 4.1.1

z = x+ iy x, y ∈ R

z2

z2 = (x+ iy)2

= +2x(iy) +(iyx2 )2

= − +2ixyx2 y2

(4.1.2)

(4.1.3)

(4.1.4)

Re( ) = − , Im( ) = 2xy.z2 x2 y2 z2 (4.1.5)

z2

= 1/zz−1 z1/3

Re(⋯) Im(⋯)

{ for α, β ∈ R.
Re(αz+β ) = α Re(z) +β Re( )z′ z′

Im(αz+β ) = α Im(z) +β Im( )z′ z′
(4.1.6)

Example 4.1.2

z(t) t

Re[ ] = Re [z(t)] , and Im[ ] = Im [z(t)] .
dz

dt
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(4.1.7)

Re[ ]
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= Re[ ]lim

δt→0

z(t+δt) −z(t)

δt

= [ ]lim
δt→0

Re[z(t+δt)] −Re[z(t)]

δt

= Re [z(t)] .
d

dt
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Im[⋯] δt
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