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3.2: Partial Measurements
Let us recall how measurements work in single-particle quantum theory. Each observable  is described by some Hermitian
operator , which has an eigenbasis  such that

For simplicity, let the eigenvalues  be non-degenerate. Suppose a particle initially has quantum state . This can always be
expanded in terms of the eigenbasis of :

The measurement postulate of quantum mechanics states that if we measure , then (i) the probability of obtaining the
measurement outcome  is , the absolute square of the coefficient of  in the basis expansion; and (ii) upon obtaining
this outcome, the system instantly “collapses” into state .

Mathematically, these two rules can be summarized using the projection operator

Applying this operator to  gives the non-normalized state vector

From this, we glean two pieces of information:

1. The probability of obtaining this outcome is .

2. The post-collapse state is obtained by the re-normalization .

For multi-particle systems, there is a new complication: what if a measurement is performed on just one particle?

Consider a system of two particles A and B, with two-particle Hilbert space . We perform a measurement on particle ,
corresponding to a Hermitian operator  that acts upon  and has eigenvectors  (i.e., the eigenvectors are
enumerated by some index ). We can write any state  using the eigenbasis of  for the  part, and an arbitrary basis 
for the  part:

Unlike the single-particle case, the “coefficient” of  in this basis expansion is not a complex number, but a vector in .

Proceeding by analogy, the probability of obtaining the outcome labelled by  should be the “absolute square” of this “coefficient”,
. Let us define the partial projector

The  slot of this operator contains a projector, , while the  slot leaves the  part of the two-particle space unchanged.
Applying the partial projector to the state given in Equation  gives

Now we follow the same measurement rules as before. The outcome probability is

The post-measurement collapsed state is obtained by the re-normalization
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A system of two spin-  particles is in the “singlet state”

For each particle,  and  denote eigenstates of the operator , with eigenvalues  and  respectively.
Suppose we measure  on particle A. What are the probabilities of the possible outcomes, and the associated post-collapse
states?

First outcome: .

The partial projector is .

Applying the projection to  yields .

The outcome probability is .

The post-collapse state is 

Second outcome: .

The partial projector is .

Applying the projection to  yields .

The outcome probability is .

The post-collapse state is .

The two possible outcomes,  and , occur with equal probability. In either case, the two-particle state collapses so that 
is in the observed spin eigenstate, and  has the opposite spin. After the collapse, the two-particle state is no longer entangled.
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