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1.3: Scattering From a 1D Delta-Function Potential
We are now ready to solve a simple scattering problem. Consider a 1D space with spatial coordinate denoted by , and a scattering
potential that consists of a “spike” at :

The form of the prefactor  is chosen for later convenience; the parameter , which has units of , controls the strength
of the scattering potential.

Figure 

If you are disturbed by the idea of a delta function potential, just regard it as the limiting case of a family of increasingly tall and
narrow gaussian functions centered at . For each non-singular potential, the applicability of the Schrödinger wave equation
implies that the wavefunction  is continuous and has well-defined first and second derivatives. In the delta function limit,
however, these conditions are relaxed:  remains continuous, but at  the first derivative becomes discontinuous and the
second derivative blows up. To see this, we integrate the Schrödinger wave equation over an infinitesimal range around :

Hence,

To proceed, consider a particle incident from the left, with energy . This is described by an incident state proportional to a
momentum eigenstate , where . We said “proportional”, not “equal”, for it is conventional to adopt the
normalization

The complex constant  is called the “incident amplitude.” Plugging this into the Schrödinger wave equation gives

Taking , and doing a bit of algebra, simplifies this to

which is an inhomogenous ordinary differential equation for , with the potential on the right hand side acting as a “driving
term”.

To find the solution, consider the two regions  and . Since  for , the equation in each half-space reduces
to

This is the Helmholtz equation, whose general solution may be written as
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Here,  and  are complex numbers that can take on different values in the two different regions  and .

We want  to describe an outgoing wave, moving away from the scatterer towards infinity. So it should be purely left-moving
for , and purely right-moving for . To achieve this, let  for , and  for , so that  has the
form

The complex numbers  and  are called scattering amplitudes. They describe the magnitude and phase of the wavefunction
scattered backwards into the  region, and scattered forward into the  region, respectively.

Recall from the discussion at the beginning of this section that  must be continuous everywhere, including at . Since 
 is continuous,  must be as well, so . Moreover, we showed in Equation  that the first derivative of 

 is discontinuous at the scatterer. Plugging  into our expression for , at , gives

Hence, we obtain

For now, let us focus on the magnitude of the scattering amplitude (in the next chapter, we will see that the phase also contains
useful information). The quantity  describes the overall strength of the scattering process:

Its dependence on  is plotted below:
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There are several notable features in this plot. First, for fixed potential strength , the scattering strength decreases monotonically
with —i.e., higher-energy particles are scattered less easily. Second, for given , the scattering strength increases with , with
the limit  as . Third, an attractive potential ( ) and a repulsive potential ( ) are equally effective at
scattering the particle.
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