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5.4: The Electron-Photon Interaction
Having derived quantum theories for the electron and the electromagnetic field, we can put them together to describe how electrons
interact with the electromagnetic field by absorbing and/or emitting photons. Here, we present the simplest such calculation.

Let  be the Hilbert space for one electron, and  be the Hilbert space for the electromagnetic field. The combined system is
thus described by . We seek a Hamiltonian of the form

where  is the Hamiltonian for the “bare” electron,  is the Hamiltonian for the source-free electromagnetic field, and  is
an interaction Hamiltonian describing how the electron interacts with photons.

Let us once again adopt the Coulomb gauge, so that the scalar potential is zero, and the electromagnetic field is solely described via
the vector potential. In Section 5.1, we saw that the effect of the vector potential on a charged particle can be described via the
substitution

In Section 5.2, we saw that this substitution is applicable not just to non-relativistic particles, but also to fully relativistic particles
described by the Dirac Hamiltonian. Previously, we have treated the  in this substitution as a classical object lacking quantum
dynamics of its own. Now, we replace it by the vector potential operator derived in Section 5.3:

Using this, together with either the electronic and electromagnetic Hamiltonians, we can finally describe the photon emission
process. Suppose a non-relativistic electron is orbiting an atomic nucleus in an excited state . Initially, the photon field is
in its vacuum state . Hence, the initial state of the combined system is

Let  be the Hamiltonian term responsible for photon absorption/emission. If , then  would be an energy
eigenstate. The atom would remain in its excited state forever.

In actuality,  is not zero, so  is not an energy eigenstate. As the system evolves, the excited electron may decay into its
ground state  by emitting a photon with energy , equal to the energy difference between the atom’s excited state  and
ground state . For a non-relativistic electron, the Hamiltonian (5.1.20) yields the interaction Hamiltonian

where  must now be treated as a field operator, not a classical field.

Consider the states that  can decay into. There is a continuum of possible final states, each having the form

which describes the electron being in its ground state and the electromagnetic field containing one photon, with wave-vector  and
polarization .

According to Fermi’s Golden Rule (see Chapter 2), the decay rate is

where  denotes the average over the possible decay states of energy  (i.e., equal to the energy of the initial state), and 
is the density of states.
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⎧

⎩

⎨

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

( +h. c.) ,∑
kλ

ℏ

2 Vϵ0ωk

− −−−−−−
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To calculate the matrix element , let us use the infinite-volume version of the vector field operator . (You
can check that using the finite-volume version yields the same results; see Exercise 5.5.2.) We will use the Schrödinger picture
operator, equivalent to setting  in Equation . Then

We can now use the fact that . Moreover, we approximate the  factors in the brakets
with 1; this is a good approximation since the size of a typical atomic orbital ( ) is much smaller than the optical
wavelength ( ), meaning that  does not vary appreciably over the range of positions  where the orbital
wavefunctions are significant. The above equation then simplifies to

We can make a further simplification by observing that for ,

The complex number , called the transition dipole moment, is easily calculated from the orbital wavefunctions. Thus,

(Check for yourself that Equation  should, and does, have units of .) We now need the average over the possible
photon states ( ). In taking this average, the polarization vector runs over all possible directions, and a standard angular
integration shows that

and defining  as the frequency of the emitted photon. The resulting decay rate is

The figure below compares this prediction to experimentally-determined decay rates for the simplest excited states of hydrogen,
lithium, and sodium atoms. The experimental data are derived from atomic emission line-widths, and correspond to the rate of
spontaneous emission (also called the “Einstein  coefficient”) as the excited state decays to the ground state. For the Fermi’s
Golden Rule curve, we simply approximated the transition dipole moment as  (based on the fact that  has units of
length, and the length scale of an atomic orbital is about an angstrom); to be more precise,  ought to be calculated using the actual
orbital wavefunctions. Even with the crude approximations we have made, the predictions are within striking distance of the
experimental values.
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Figure : Spontaneous emission rates (Einstein  coefficients) for the  transition in hydrogen, the  transition
in lithium, and the  transition in sodium. Data points extracted from the NIST Atomic Spectra Database
(https://www.nist.gov/pml/atomic-spectra-database). The dashed curve shows the decay rate based on Fermi’s Golden Rule, with 
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