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2.4: Fermi's Golden Rule
We have seen that the width of a resonance is determined by the imaginary part of the self-energy, . In this section, we will
show that  has a physical meaning: it represents the decay rate of a quasi-bound state. Moreover, it can be approximated
using a simple but important formula known as Fermi’s Golden Rule.

Suppose we set the quantum state of a particle to a quasi-bound state  at some initial time . Since  is not an exact
eigenstate of the Hamiltonian, the particle will not remain in that state under time evolution. For , its wavefunction should
become less and less localized, which can be interpreted as the escape of the particle to infinity or the “decay” of the quasi-bound
state into the free state continuum.

The decay process can be described by

which is the probability for the system to continue occupying state  after time . In order to calculate , let us define the
function

where . For  and , we see that . The reason we deal with  is that it is more well-behaved
than the actual amplitude . The function is designed so that firstly, it vanishes at negative times prior to start
of our thought experiment; and secondly, it vanishes as  due to the “regulator” . The latter enforces the idea that the bound
state decays permanently into the continuum of free states, and is never re-populated by waves “bouncing back” from infinity.

We can determine  by first studying its Fourier transform,

Now insert a resolution of the identity, , where  denotes the exact eigenstates of  (for free states, the sum
goes to an integral in the usual way):

In the third line, the regulator  removes any contribution from the  limit of the integral, in accordance with our requirement
that the decay of the bound state is permanent. Hence, we obtain

where  is our old friend the causal Green’s function. The fact that the causal Green’s function shows up is due to our definition of
, which vanishes for .

As discussed in the previous section, when the resonance condition is satisfied,

where  is the resonance energy and  is the self-energy of the quasi-bound state. We can now perform the inverse Fourier
transform
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In deriving the last line, we performed a contour integration assuming that ; this assumption will be proven shortly. The
final result is

Let us now take a closer look at the self-energy. From our earlier definition,

where  and  are the bound and free states of the model in the absence of , and  is the energy of the -th free state.
The imaginary part is

The quantity inside the square brackets is a Lorentzian function, which is always positive; hence, , as previously
asserted. The Lorentzian function has the limiting form

This comes from the fact that as , the Lorentzian curve describes a sharper and sharper peak, but the area under the curve is
fixed as . Hence,

Because of the delta function, we see that the only non-vanishing contributions to the integral come from the parts of -space
where .

We can further simplify the result by defining the density of states,

Roughly speaking, this measures the number of free states that exist at energy . The -space volume  is proportional to the
number of free states at each , while the delta function restricts the contributions to only those free states with energy . (In the
next section, we’ll see an explicit example of how to calculate .) Now, for any function ,

where  denotes the mean value of  for the free states satisfying . Applying this to the imaginary part of the
self-energy gives

Hence, the quasi-bound state’s decay rate is
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This extremely important result is called Fermi’s golden rule. It says that the decay rate of a quasi-bound mode is directly
proportional to two factors. The first factor describes how strongly  couples the quasi-bound state and the free states, as
determined by the quantity , called the transition amplitude. It goes to zero when , which is the case where 
is a true bound state that does not decay. The second factor is the density of free states, and describes how many free states are
available for  to decay into. Both factors depend on energy, and must be evaluated at the resonance energy .

This page titled 2.4: Fermi's Golden Rule is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

Definition: Fermi's Golden Rule
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