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3.9: Exercises

Exercises

Exercise 3.9.1

Let 5%y and 3 denote single-particle Hilbert spaces with well-defined inner products. That is to say, for all vectors
|w), |1y, |y € H#4, that Hilbert space’s inner product satisfies the inner product axioms

pl) = W lm”

plp) € Ry, and (u|p) = 0 if and only if |u) =0.
(1) +10")) = Gl + (ul )

(c|p')) = c{u|p') forall c € C,

and likewise for vectors from %% with that Hilbert space’s inner product.
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In Section 3.1, we defined a tensor product space 4 ® % as the space spanned by the basis vectors {|u) ® |v)}, where the
|£)’s are basis vectors for £ and the |v)’s are basis vectors for 5. Prove that we can define an inner product using

(e @) (I 81) = (ulu) ') = byueun (3.9.1)

which satisfies the inner product axioms.

Exercise 3.9.2

Consider the density operator

1 1
p= 5|+z>(+z| + §|+w)<+:c| (3.9.2)

where |+z) = ﬁ (|[+2)+|—2)) . This can be viewed as an equal-probability sum of two different pure states. However, the

density matrix can also be written as

p = p1|V1)(W1] + P2 |h2) (2| (3.9.3)

where |17) and |15) are the eigenvectors of p. Show that p; and ps are not 1/2.

Exercise 3.9.3

Consider two distinguishable particles, A and B. The 2D Hilbert space of A is spanned by {|m}, |n)}, and the 3D Hilbert
space of B is spanned by {|p), |g), |7)} The two-particle state is

m)la) + —= [m)Ir) + %2 mlp)

L 1
% /18 [m)la) + 3 [m)7).- (3.9.4)
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Find the entanglement entropy.
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