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6.3: C- Entropy
“Entropy” is a concept used in multiple fields of science and mathematics to quantify one’s lack of knowledge about a complex
system. In physics, its most commonly-encountered form is thermodynamic entropy, which describes the uncertainty about the
microscopic configuration, or “microstate”, of a large physical system. In the field of mathematics known as information theory,
information entropy (also called Shannon entropy after its inventor C. Shannon) describes the uncertainty about the contents of a
transmitted message. One of the most profound developments in theoretical physics in the 20th century was the discovery by E. T.
Jaynes that statistical mechanics can be formulated in terms of information theory; hence, the thermodynamics-based and
information-based concepts of entropy are one and the same. For details about this connection, see Jaynes (1957) and Jaynes
(1957a). This appendix summarizes the definition of entropy in classical physics, and how it is related to other physical quantities.

C.1 Definition
Suppose a system has  discrete microstates labeled by integers . These microstates are associated with
probabilities , subject to the conservation of total probability

We will discuss how these microstate probabilities are chosen later (see Section 3). Given a set of these probabilities, the entropy is
defined as

Here,  is Boltzmann’s constant, which gives the entropy units of  (energy per unit temperature); this is a remnant of
entropy’s origins in 19th century thermodynamics, and is omitted by mathematicians.

It is probably not immediately obvious why Equation  is useful. To understand it better, consider its behavior under two
extreme scenarios:

Suppose the microstate is definitely known, i.e.,  for some . Then .
Suppose there are  possible microstates, each with equal probabilities

This describes a scenario of complete uncertainty between the possible choices. Then

The entropy formula is designed so that any other probability distribution—i.e., any situation of partial uncertainty—yields an
entropy  between  and .

To see that zero is the lower bound for the entropy, note that for , each term in the entropy formula  satisfies 
, and the equality holds if and only if  or . This is illustrated in the figure below:

Figure 

This implies that . Moreover,  if and only if  for some  (i.e., there is no uncertainty about which microstate
the system is in).
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Next, it can be shown that  is bounded above by , a relation known as Gibbs’ inequality. This follows from the fact that 
 for all positive , with the equality occurring if and only if . Take  where  is the number of

microstates:

Moreover, the equality holds if and only if  for all .

C.2 Extensivity
Another important feature of the entropy is that it is extensive, meaning that it scales proportionally with the size of the system.
Consider two independent systems  and , which have microstate probabilities  and . If we treat the combination of 
and  as a single system, each microstate of the combined system is specified by one microstate of  and one of , with
probability . The entropy of the combined system is

where  and  are the individual entropies of the  and  subsystems.

C.3 Entropy and Thermodynamics
The theory of statistical mechanics seeks to describe the macroscopic behavior of a large physical system by assigning some set of
probabilities  to its microstates. How are these probabilities chosen? One elegant way is to use the following
postulate:

Choose  so as to maximize , subject to constraints imposed by known facts about the macroscopic state of the
system.

The idea is that we want a probability distribution that is as “neutral” as possible, while being consistent with the available
macroscopic information about the system.

For instance, suppose the only information we have about the macroscopic state of the system is that its energy is precisely . In
this scenario, called a micro-canonical ensemble, we maximize  by assigning equal probability to every microstate of energy ,
and zero probability to all other microstates, for reasons discussed in Section 1. (In some other formulations of statistical
mechanics, this assignment of equal probabilities is treated as a postulate, called the ergodic hypothesis.)

Or suppose that only the system’s mean energy  is known, and nothing else. In this case, we can maximize  using the method
of Lagrange multipliers. The relevant constraints are the given value of  and conservation of probability:

We thus introduce two Lagrange multiplers,  and . For every microstate , we require
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Upon taking  as the definition of the temperature , we obtain the celebrated Boltzmann distribution:

Further Reading
E. T. Jaynes, Information theory and statistical mechanics, Physical Review 106, 620 (1957).
E. T. Jaynes, Information theory and statistical mechanics. ii, Physical Review 108, 171 (1957).

This page titled 6.3: C- Entropy is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source
content that was edited to the style and standards of the LibreTexts platform.

+ ( )+ ( )
∂S

∂pi

λ1
∂

∂pi

∑
j

Ejpj λ2
∂

∂pi

∑
j

pj

⇒ − (ln +1) + +kb pi λ1Ei λ2

= 0

= 0.

(6.3.8)

= −1/Tλ1 T

= , where Z = .pi

e−E/ Tkb

Z
∑

i

e−E/ Tkb (6.3.9)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34670?pdf
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_III_(Chong)/06%3A_Appendices/6.03%3A_C-_Entropy
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

