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3.5: Quantum Cryptogaphy
One of the most remarkable consequences of Bell’s thought experiment is that it provides a way to perform cryptography that is
more secure, in certain respects, than conventional cryptography. This possibility was first raised by Ekert, and it has led to a huge
amount of research into quantum cryptography, which is poised to be one of the most important technological applications of
quantum mechanics.

Ekert’s quantum cryptography scheme allows two participants, Alice and Bob, to share with each other a string of random binary
digits (0 or 1), called a “key”, in such a manner that no one else can learn the key by eavesdropping on their communications. Once
Alice and Bob have established a secret shared key, it can be used to encrypt subsequent messages between them, which nobody
else can decipher (e.g., by using one-time pads).

The scheme follows almost immediately from the Bell thought experiment of Section 3.4. In each round, a pair of spin-
particles is prepared in the singlet state, with particle  sent to Alice and  sent to Bob. Alice and Bob each randomly choose a
measurement axis ( , , or ), and measure the spin of their particle along that axis.

After an appropriate number of rounds, Alice and Bob publicly announce their choices of measurement axes. These announcements
are assumed to take place over a classical communication channel that cannot be jammed or manipulated by any hostile party
(though it can be eavesdropped upon). From the announcements, Alice and Bob determine the rounds in which they happened to
pick the same axes. Their measurement results during these rounds are guaranteed to be the opposites of each other. Hence, they
have established a random binary string known to each other but to no one else.

How might an eavesdropper, Eve, attempt to foil this scheme? Suppose Eve can intercept some or all of the particles  destined for
Bob. She might try to substitute her own measurements, in a manner that could let her work out the secret key. However, Eve is
hampered by the fact that she is unable to predict or influence Bob’s choices of measurement axes (i.e., Bob’s choices are truly
random), nor is she able to impersonate Bob during the announcements of the axis choices (i.e., the classical communication
channel is unjammable). Under these assumptions, it can be shown that any attempt by Eve to substitute her own measurements can
be detected by Alice and Bob, by performing a statistical analysis of their measurement results in the rounds with different different
axis choices. The detection of the eavesdropper turns out to be essentially the same as checking for Bell’s inequality. For details,
refer to Ref.

Alternatively, Eve might try to “clone” the quantum state of particle  before passing it along to Bob. If this can be done, Eve can
retain the cloned quantum state, wait for Bob to announce his choice of measurement axis for that round, and then perform the
corresponding measurement to reproduce Bob’s result. Though plausible at first glance, this turns out to be fundamentally
unworkable, as it is incompatible with the laws of quantum mechanics.

The so-called no-cloning theorem can be proven as follows. Eve desires to clone an arbitrary state of a spin-half particle  onto
another spin-half particle . The two-particle Hilbert space is . With particle  initially prepared in some state , Eve
must devise a unitary operation , representing the cloning process, such that

for all , and for some phase factor  that could depend on . Note that the value of  does not affect the outcomes of
measurements.

Now replace  in the above equation with two arbitrary states denoted by  and , and take their inner product. According
to Equation ,

Here,  and  are the phase factors from Equation  for the two chosen states. On the other hand, since  is unitary,

Here we have used the fact that . Comparing the magnitudes of  and ,
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But aside from the trivial case of a one-dimensional Hilbert space, this cannot be true for arbitrary  and . For instance, for
a two-dimensional space spanned by an orthonormal basis , we can pick
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