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6.2: B- The Transfer Matrix Method
The transfer matrix method is a numerical method for solving the 1D Schrödinger equation, and other similar equations. In this method, the wavefunction at each point is decomposed
into two complex numbers, called wave components. The wave components at any two points are related by a complex  matrix, called the transfer matrix.

B.1 Wave Components in 1D
For a 1D space with spatial coordinates , the Schrödinger wave equation is

where  is the particle mass,  is the wavefunction,  is the potential function, and  is the energy. We treat  as an adjustable parameter (e.g., the energy of the incident
particle in a scattering experiment).

Within any region of space where  is constant, the Schrödinger equation reduces to a 1D Helmholtz equation, whose general solution is

If , then the wave-number  is real and positive, and  denotes a right-moving ( ) or left-moving ( ) wave. If , then  is purely imaginary, and we choose the
branch of the square root so that it is a positive multiple of , so that  denotes a wave that decreases exponentially toward the right ( ) or toward the left ( ).

We can re-write the two terms on the right-hand side as

At each position , the complex quantities  are called the wave components .

The problem statement for the transfer matrix method is as follows. Suppose we have a piecewise-constant potential function , which takes on values  in
different regions of space, as shown in the figure below:

Figure 

Given the wave components  at one position , we seek to compute the wave components  at another position . In general, these are related by
a linear relation

where

The  matrix  is called a transfer matrix. Take note of the notation in the parentheses: we put the “start point”  in the right-hand input, and the “end point”  in the
left-hand input. We want to find  from the potential and the energy .

B.2 Constructing the Transfer Matrix

Consider the simplest possible case, where the potential has a single constant value  everywhere between two positions  and , with . Then, as we have just discussed, the
solution throughout this region takes the form

for some . The wave components at the two positions are

Each component of  is  times the corresponding component of . We can therefore eliminate  and , and write

The  matrix  is the transfer matrix across a segment of constant potential. Its first input is the wave-number within the segment (determined by the energy  and
potential ), and its second input is the segment length.

Next, consider a potential step at some position , as shown in the figure below:

Figure 

Let  and  be two points that are infinitesimally close to the potential step on either side (i.e.,  and , where  denotes a positive infinitesimal). To the left
of the step, the potential is ; to the right, the potential is . The corresponding wave-numbers are
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There are two important relations between the wavefunctions on the two sides of the step. Firstly, any quantum mechanical wavefunction must be continuous everywhere (otherwise, the
Schrödinger equation would not be well-defined); this includes the point , so

Secondly, since the potential is non-singular at  the derivative of the wavefunction should be continuous at that point (this can be shown formally by integrating the Schrödinger
across an infinitesimal interval around ). Hence,

These two equations can be combined into a single matrix equation:

After doing a matrix inversion, this becomes

The  matrix  is the transfer matrix to go rightward from a region of wave-number , to a region of wave-number . Note that when , this reduces to the
identity matrix, as expected.

Using the above results, we can find the transfer matrix for any piecewise-constant potential. Consider the potential function shown below. It consists of segments of length 
, with potential ; outside, the potential is :

Figure 

Let  and  lie right beyond the first and last segments (where ), with . We can compute  by starting with , and left-multiplying by a sequence of transfer
matrices, one after the other. These transfer matrices consist of the two types derived in the previous sections:  (to cross a uniform segment) and  (to cross a potential step). Each
matrix multiplication “transfers” us to another point to the right, until we reach .

The overall transfer matrix between the two points is

The expression for  should be read from right to left. Starting from , we cross the potential step into segment 1, then pass through segment 1, cross the potential step from
segment 1 to segment 2, pass through segment 2, and so forth. (Note that as we move left-to-right through the structure, the matrices are assembled right-to-left; a common mistake
when writing a program to implement the transfer matrix method is to assemble the matrices in the wrong order, i.e. right-multiplying instead of left-multiplying.)

B.3 Reflection and Transmission Coefficients
The transfer matrix method is typically used to study how a 1D potential scatters an incident wave. Consider a 1D scatterer that is confined within a region :

The total wavefunction consists of an incident wave and a scattered wave,

The incident wave is assumed to be incident from the left:

We have inserted the extra phase factor of  to ensure that , which will be convenient. The wave is scattered as it meets the structure, and part of it is reflected
back to the left, while another part is transmitted across to the right. Due to the linearity of the Schrödinger wave equation, the total wavefunction must be directly proportional to .
Let us write the wave components at  and  as
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The complex numbers  and  are called the reflection coefficient and the transmission coefficient, respectively. Their values do not depend on , since they specify the wave
components for the reflected and transmitted waves relative to . Note also that there is no  wave component at , as the scattered wavefunction must be purely outgoing.

Figure 

From the reflection and transmisison coefficients, we can also define the real quantities

which are called the reflectance and transmittance respectively. These are directly proportional to the total current flowing to the left and right.

According to the transfer matrix relation,

Hence,  and  can be expressed in terms of the components of the transfer matrix:
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