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3.6: Density Operators
We now introduce the density operator, which helps to streamline many calculations in multi-particle quantum mechanics.

Consider a quantum system with a -dimensional Hilbert space . Given an arbitrary state , define

This is just the projection operator for , but in this context we call it a “density operator”. Some other authors call it a density
matrix, based on the fact that linear operators can be represented as matrices. It has the following noteworthy features:

1. It is Hermitian.

2. Suppose  is an observable with eigenvalues  and eigenstates  (where  is some label that enumerates the
eigenstates. If we do a  measurement on , the probability of obtaining  is

3. Moreover, the expectation value of the observable is

In the last equality,  denotes the trace, which is the sum of the diagonal elements of the matrix representation of the
operator. The value of the trace is basis-independent.

Now consider, once again, a composite system consisting of two subsystems  and , with Hilbert spaces  and . Let’s say
we are interested in the physical behavior of , that is to say the outcome probabilities and expectation values of any
measurements performed on . These can be calculated from , the state of the combined system; however,  also carries
information about , which is not relevant to us as we only care about .

There is a more economical way to encode just the information about . We can define the density operator for subsystem 
(sometimes called the reduced density operator):

Here,  refers to a partial trace. This means tracing over the  part of the Hilbert space , which yields
an operator acting on .

To better understand Equation , let us go to an explicit basis. Let  be an observable for  with eigenbasis , and
let  be an observable for  with eigenbasis . If the density operator of the combined system is , then

This is a Hermitian operator acting on the  space. In the  basis, its diagonal matrix elements are

According to the rules of partial measurements discussed in Section 3.2, this is precisely the probability of obtaining  when
measuring  on subsystem :

It follows that the expectation value for observable  is
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These results hold for any choice of basis. Hence, knowing the density operator for , we can determine the outcome probabilities
of any partial measurement performed on .

To better understand the properties of , let us write  explicitly as

where . Then

But  is not necessarily normalized to unity: . Let us define

Note that each  is a non-negative real number in the range . Then

In general, we can define a density operator as any operator that has the form of Equation , regardless of whether or not it
was formally derived via a partial trace. We can interpret it as describing a ensemble of quantum states weighted by a set of
classical probabilities. Each term in the sum consists of (i) a weighting coefficient  which can be regarded as a probability (the
coefficients are all real numbers in the range , and sum to 1), and (ii) a projection operator associated with some normalized
state vector . Note that the states in the ensemble do not have to be orthogonal to each other.

From this point of view, a density operator of the form  corresponds to the special case of an ensemble containing only one
quantum state . Such an ensemble is called a pure state, and describes a quantum system that is not entangled with any other
system. If an ensemble is not a pure state, we call it a mixed state; it describes a system that is entangled with some other system.

We can show that any linear operator  obeying Equation  has the following properties:

1.  is Hermitian.

2.  for any  (i.e., the operator is positive semidefinite).

3. For any observable  acting on ,
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This property can be used to deduce the probability of obtaining any measurement outcome: if  is the eigenstate associated
with the outcome, the outcome probability is , consistent with Equation . To see this, take  in
Equation .

4. The eigenvalues of , denoted by , satisfy

In other words, the eigenvalues can be interpreted as probabilities. This also implies that .

This property follows from Property 3 by taking , where  is any eigenvector of , and then taking .

This page titled 3.6: Density Operators is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

|μ⟩

⟨μ| |μ⟩ρ̂A (3.6.7) = |μ⟩⟨μ|Q̂

(3.6.13)

ρ̂A { , , … , }p1 p2 pdA

∈ R and 0 ≤ ≤ 1 for j= 1, … , , with = 1.pj pj dA ∑
j=1

dA

pj (3.6.14)

Tr[ ] = 1ρ̂A

= |φ⟩⟨φ|Q̂ |φ⟩ ρ̂A =Q̂ Î A
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