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4.2: Symmetric and Antisymmetric States

Bosons

A state of  bosons must be symmetric under every possible exchange operator:

There is a standard way to construct multi-particle states obeying this symmetry condition. First, consider a two-boson system (
). If both bosons occupy the same single-particle state, , the two-boson state is simply

This evidently satisfies the required symmetry condition . Next, suppose the two bosons occupy different single-particle
states,  and , which are orthonormal vectors in . It would be wrong to write the two-boson state as , because the
particles would not be symmetric under exchange. Instead, we construct the multi-particle state

This has the appropriate exchange symmetry:

The  factor in Equation  ensures that the state is normalized (check for yourself that this is true—it requires  and 
 to be orthonormal to work out).

The above construction can be generalized to arbitrary numbers of bosons. Suppose we have  bosons occupying single-particle
states enumerated by

Each of the states  is drawn from an orthonormal basis set  for . We use the  labels to indicate that the listed states
can overlap. For example, we could have , meaning that the single-particle state  is occupied by two particles.

The -boson state can now be written as

The sum is taken over each of the  permutations acting on . For each permutation , we let  denote the integer
that  is permuted into.

The prefactor  is a normalization constant, and it can be shown that its appropriate value is

where  denotes the number of particles in each distinct state , and  is the total number of particles. The
proof of this is left as an exercise (Exercise 4.5.3).

To see that the above -particle state is symmetric under exchange, apply an arbitrary exchange operator :

In each term of the sum, two states  and  are interchanged. Since the sum runs through all permutations of the states, the result is
the same with or without the exchange, so we still end up with . Therefore, the multi-particle state is symmetric
under every possible exchange operation.
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A three-boson system has two particles in a state , and one particle in a different state . To express the three-particle
state, define  where  and . Then

The exchange symmetry operators have the expected effects:

Fermions

A state of  fermions must be antisymmetric under every possible exchange operator:

Similar to the bosonic case, we can explicitly construct multi-fermion states based on the occupancy of single-particle state.

First consider , with the fermions occupying the single-particle states  and  (which, once again, we assume to be
orthonormal). The appropriate two-particle state is

We can easily check that this is antisymmetric:

Note that if  and  are the same single-particle state, Equation  doesn’t work, since the two terms would cancel to give
the zero vector, which is not a valid quantum state. This is a manifestation of the Pauli exclusion principle, which states that two
fermions cannot occupy the same single-particle state. Thus, each single-particle state is either unoccupied or occupied by one
fermion.

For general , let the occupied single-particle states be , , , each drawn from some orthonormal basis  for 
, and each distinct. Then the appropriate -fermion state is

It is up to you to verify that the  prefactor is the right normalization constant. The sum is taken over every permutation  of
the sequence , and each term in the sum has a coefficient  denoting the parity of the permutation. The parity of
any permutation  is defined as  if  is constructed from an even number of transpositions (i.e., exchanges of adjacent elements)
starting from the sequence , and  if  involves an odd number of transpositions.

Let’s look at a couple of concrete examples.
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For , the sequence  has two permutations:

Plugging these into Equation  yields the previously-discussed two-fermion state .

For , the sequence  has  permutations:

The permutations can be generated by consecutive transpositions of elements. Each time we perform a transposition, the sign
of  is reversed. Hence, the three-fermion state is

We now see why Equation  describes the -fermion state. Let us apply  to it:

Within each term in the above sum, the single-particle states for  and  have exchanged places. The resulting term must be
an exact match for another term in the original expression for , since the sum runs over all possible permutations,
except for one difference: the coefficient  must have an opposite sign, since the two permutations are related by an exchange. It
follows that  for any choice of .

Distinguishing particles
When studying the phenomenon of entanglement in the previous chapter, we implicitly assumed that the particles are
distinguishable. For example, in the EPR thought experiment, we started with the two-particle state

which appears to be antisymmetric. Does this mean that we cannot prepare  using photons (which are bosons)? More
disturbingly, we discussed how measuring  on particle , and obtaining the result , causes the two-particle state to collapse
into , which is neither symmetric nor antisymmetric. Is this result invalidated if the particles are identical?

The answer to each question is no. The confusion arises because the particle exchange symmetry has to involve an exchange of all
the degrees of freedom of each particle, and Equation  only shows the spin degree of freedom.

To unpack the above statement, let us suppose the two particles in the EPR experiment are identical bosons. We have focused on
each particle’s spin degree of freedom, but they must also have a position degree of freedom—that’s how we can have a particle at

Example 4.2.2

N = 2 {1, 2}

: {1, 2}p1

: {1, 2}p2

→ {1, 2}, s( ) = +1p1

→ {2, 1}, s( ) = −1.p2
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Example 4.2.3

N = 3 {1, 2, 3} 3! = 6
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→ {3, 2, 1}, s( ) = −1p4

→ {3, 1, 2}, s( ) = +1p5

→ {1, 3, 2}, s( ) = −1.p6
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Alpha Centauri ( ) and another at Betelgeuse ( ). If we explicitly account for this position degree of freedom, the single-particle
Hilbert space should be

For simplicity, let us treat position as a twofold degree of freedom, treating  as a 2D space spanned by the basis 
.

Now consider the state we previously denoted by , which refers to a spin-up particle at  and a spin-down particle at .
In our previous notation, it was implicitly assumed that  refers to the left-hand slot of the tensor product, and  refers to the
right-hand slot. If we account for the position degrees of freedom, the state is written as

where the kets are written in the following order:

The exchange operator  swaps the two particles’ Hilbert spaces—which includes both the position and the spin part. Hence,
Equation  is explicitly symmetric:

Likewise, if there is a spin-down particle at  and a spin-up particle at , the bosonic two-particle state is

Using Equations  and , we can rewrite the EPR singlet state  as

This state looks like a mess, but it turns out that we can clarify it with some careful re-ordering. Instead of the ordering ,
order by spins and then positions:

Then Equation  can be rewritten as

Evidently, even though the spin degrees of freedom form an antisymmetric combination, as described by Equation , the
position degrees of freedom in Equation  also have an antisymmetric form, and this allows the two-particle state to meet
the bosonic symmetry condition.

Suppose we perform a measurement on , and find that the particle at position  has spin . As usual, a measurement
outcome can be associated with a projection operator. Using the ordering , we can write the relevant projection operator as

This accounts for the fact that the observed phenomenon—spin  at position —may refer to either particle. Applying  to the
EPR state  yields

A B

= ⊗ .H
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Apart from a change in normalization, this is precisely the fermionic state  defined in Equation . In our
earlier notation, this state was simply written as . This goes to show that particle exchange symmetry is fully compatible
with the concepts of partial measurements, entanglement, etc., discussed in the previous chapter.
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