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5.1: Quantization of the Lorentz Force Law

Non-relativistic electrons in an electromagnetic field
Consider a non-relativistic charged particle in an electromagnetic field. As we are mainly interested in the physics of electrons
interacting with electromagnetic fields, we henceforth take the electric charge of the particle to be , where 
is the elementary charge. To describe particles with an arbitrary electric charge , simply perform the substitution  in the
formulas you will subsequently encounter.

We wish to formulate the Hamiltonian governing the quantum dynamics of such a particle, subject to two simplifying assumptions:
(i) the particle has charge and mass but is otherwise “featureless” (i.e., we ignore the spin angular momentum and magnetic dipole
moment that real electrons possess), and (ii) the electromagnetic field is treated as a classical field, meaning that the electric and
magnetic fields are definite quantities rather than operators. (We will see how to go beyond these simplifications later.)

Classically, the electromagnetic field acts on the particle via the Lorentz force law,

where  and  denote the position and velocity of the particle,  is the time, and  and  are the electric and magnetic fields. If no
other forces are present, Newton’s second law yields the equation of motion

where  is the particle’s mass. To quantize this, we must first convert the equation of motion into the form of Hamilton’s equations
of motion.

Let us introduce the electromagnetic scalar and vector potentials  and :

We now postulate that the equation of motion  can be described by the Lagrangian

This follows the usual prescription for the Lagrangian as kinetic energy minus potential energy, with  serving as the potential
energy function, except for the  term. To see if this Lagrangian works, plug it into the Euler-Lagrange equations

The partial derivatives of the Lagrangian are:

Now we want to take the total time derivative of . In doing so, note that the  field has its own -dependence, as well as
varying with the particle’s -dependent position. Thus,

(In the above equations, , where  is the -th component of the position vector, while .) Plugging these
expressions into the Euler-Lagrange equations  gives
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(The last step can be derived by expressing the cross product using the Levi-Cevita symbol, and using the identity 
.) This exactly matches Equation , as desired.

We now use the Lagrangian to derive the Hamiltonian. The canonical momentum is

The Hamiltonian is defined as . Using Equation , we express it in terms of  rather than :

After cancelling various terms, we obtain

This looks a lot like the Hamiltonian for a non-relativistic particle in a scalar potential,

In Equation , the  term acts like a potential energy, which is no surprise. More interestingly, the vector potential
appears via the substitution

What does this mean? Think about what “momentum” means for a charged particle in an electromagnetic field. Noether’s theorem
states that each symmetry of a system (whether classical or quantum) is associated with a conservation law. Momentum is the
quantity conserved when the system is symmetric under spatial translations. One of Hamilton’s equations states that

which implies that if  is -independent, then . But when the electromagnetic potentials are -independent, the
quantity  (which we usually call momentum) is not necessarily conserved! Take the potentials

where  is some constant. These potentials are -independent, but the vector potential is time-dependent, so the  term in
Equation  gives a non-vanishing electric field:

The Lorentz force law then says that

and thus  is not conserved. On the other hand, the quantity  is conserved:

Hence, this is the appropriate canonical momentum for a particle in an electromagnetic field.
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= −e[ (r, t) +( ×B(r, t) ].Ei ṙ )
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(5.1.4)

E(r, t) = −C , B(r, t) = 0.ẑ (5.1.17)
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We are now ready to go from classical to quantum mechanics. Replace  with the position operator , and  with the momentum
operator . The resulting quantum Hamiltonian is

The momentum operator is  in the wavefunction representation, as usual.

Gauge symmetry
The Hamiltonian  possesses a subtle property known as gauge symmetry. Suppose we modify the scalar and vector
potentials via the substitutions

where  is an arbitrary scalar field called a gauge field. This is the gauge transformation of classical electromagnetism,
which as we know leaves the electric and magnetic fields unchanged. When applied to the Hamiltonian , it generates a new
Hamiltonian

Now suppose  is a wavefunction obeying the Schrödinger equation for the original Hamiltonian :

Then it can be shown that the wavefunction  automatically satisfies the Schrödinger equation for the transformed
Hamiltonian :

To prove this, observe how time and space derivatives act on the new wavefunction:

When the extra terms generated by the  factor are slotted into the Schrödinger equation, they cancel the gauge terms in
the scalar and vector potentials. For example,

If we apply the  operator a second time, it has a similar effect but with the quantity in square brackets on the
right-hand side of  taking the place of :

The remainder of the proof for Equation  can be carried out straightforwardly.

The above result can be stated in a simpler form if the electromagnetic fields are static. In this case, the time-independent
electromagnetic Hamiltonian is
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Suppose  has eigenenergies  and energy eigenfunctions . Then the gauge-transformed Hamiltonian

has the same energy spectrum , with eigenfunctions .

The Aharonov-Bohm effect
In quantum electrodynamics, it is the electromagnetic scalar and vector potentials that appear directly in the Hamiltonian, not the
electric and magnetic fields. This has profound consequences. For example, even if a charged quantum particle resides in a region
with zero magnetic field, it can feel the effect of nonzero vector potentials produced by magnetic fluxes elsewhere in space, a
phenomenon called the Aharonov-Bohm effect.

A simple setting for observing the Aharonov-Bohm effect is shown in the figure below. A particle is trapped in a ring-shaped
region (an “annulus”), of radius  and width . Outside the annulus, we set  so that the wavefunction vanishes;
inside the annulus, we set . We ignore the -dependence of all fields and wavefunctions, so that the problem is two-
dimensional. We define polar coordinates  with the origin at the ring’s center.

Figure 

Now, suppose we thread magnetic flux (e.g., using a solenoid) through the origin, which lies in the region enclosed by the annulus.
This flux can be described via the vector potential

where  is the unit vector pointing in the azimuthal direction. We can verify from Equation  that the total magnetic flux
through any loop of radius  enclosing the origin is . The fact that this is independent of  implies that the
magnetic flux density is concentrated in an infintesimal area surrounding the origin, and zero everywhere else. However, the vector
potential  is nonzero everywhere.

The time-independent Schrödinger equation is

with the boundary conditions . For sufficiently large , we can guess that the eigenfunctions have the form

This describes a “waveguide mode” with a half-wavelength wave profile in the  direction (so as to vanish at ),
traveling in the azimuthal direction with wavenumber . The normalization constant  is unimportant. We need the wavefunction
to be single-valued under a  variation in the azimuthal coordinate, so

Plugging this into Equation  yields the energy levels
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| +eA( )p̂ r̂ |2

2m
r̂ (5.1.29)
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These energy levels are sketched versus the magnetic flux  in the figure below:

Figure 

Each energy level has a quadratic dependence on . Variations in  affect the energy levels despite the fact that  in the
annular region where the electron resides. This is a manifestation of the Aharonov-Bohm effect.

It is noteworthy that the curves of different  are centered at different values of  corresponding to multiples of 
, a fundamental unit of magnetic flux called the magnetic flux quantum. In other words, changing 

 by an exact multiple of  leaves the energy spectrum unchanged! This invariance property, which does not depend on the
width of the annulus or any other geometrical parameters of the system, can be explained using gauge symmetry. When an extra
flux of  (where ) is threaded through the annulus, Equation  tells us that the change in vector potential is 

. But we can undo the effects of this via the gauge field

Note that this  is not single-valued, but that’s not a problem! Both  and the phase factor  are single-valued, and
those are the quantities that enter into the gauge symmetry relations – .
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