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1.4: Scattering in 2D and 3D
We now wish to consider scattering experiments in spatial dimension , which have a new and important feature. For ,
the particle can only scatter forward or backward, but for  it can be scattered to the side.

Far from the scatterer, where , the scattered wavefunction  satisfies

where  denotes the -dimensional Laplacian. Let , where  is the wave-number in free space. Then the
above equation can be written as

which is the Helmholtz equation in -dimensional space.

One set of elementary solutions to the Helmholtz equation are the plane waves

But we’re looking for an outgoing solution, and a plane wave can’t be said to be “outgoing”.

Therefore, we turn to curvilinear coordinates. In 2D, we use the polar coordinates . We will skip the mathematical details of
how to solve the 2D Helmholtz equation in these coordinates; the result is that the general solution can be written as a linear
combination

This is a superposition of circular waves , with coefficients . Each circular wave is a solution to the 2D Helmholtz
equation with angular momentum quantum number . Its -dependence is given by , called a Hankel function of the
“first kind” ( ) or “second kind” ( ). Some Hankel functions of the first kind are plotted below:

Figure 

The  functions are the complex conjugates of . For large values of the input,

Therefore, the  index specifies whether the circular wave is an outgoing wave directed outward from the origin ( ), or an
incoming wave directed toward the origin ( ).

The 3D case is treated similarly. We use spherical coordinates , and the solutions of the 3D Helmholtz equation are
superpositions of incoming and outgoing spherical waves:
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The  factors are complex coefficients. Each  is a spherical Hankel function, and each  is a spherical harmonic. The 
and  indices specify the angular momentum of the spherical wave. For large inputs, the spherical Hankel functions have the
limiting form

Hence, the  index specifies whether the spherical wave is outgoing ( ) or incoming ( ). More discussion about these spherical
waves can be found in Appendix A.

It is now clear what we need to do to get a scattered wavefunction  that is outgoing at infinity. We take a superposition with
only outgoing ( ) wave components:

For large , the outgoing wavefunction has the -dependence

For , the magnitude of the wavefunction decreases with distance from the origin. This is as expected, because with increasing
 each outgoing wave spreads out over a wider area. The probability current density is , and its -

component is

In  dimensions, the area of a wave-front scales as , so the probability flux goes as , which is positive and
independent of . This describes a constant probability flux flowing outward from the origin. Note that if we plug  into the
above formula, we find that  scales as  (i.e., a constant), consistent with the results of the previous section: waves in 1D do not
spread out with distance as there is no transverse dimension.
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