
4.4.1 https://phys.libretexts.org/@go/page/34651

4.4: Quantum Field Theory

Field operators

So far, we have been agnostic about the nature of the single-particle states  used to construct the creation and
annihilation operators. Let us now consider the special case where these quantum states are representable by wavefunctions. Let 
denote a position eigenstate for a -dimensional space. A single-particle state  has a wavefunction

Due to the completeness and orthonormality of the basis, these wavefunctions satisfy

We can use the wavefunctions and the creation/annihilation operators to construct a new and interesting set of operators. For
simplicity, suppose the particles are bosons, and let

Using the aforementioned wavefunction properties, we can derive the inverse relations

From the commutation relations for the bosonic  and  operators, we can show that

In the original commutation relations, the operators for different single-particle states commute; now, the operators for different

positions commute. A straightforward interpretion for the operators  and  is that they respectively create and annihilate
one particle at a point  (rather than one particle in a given eigenstate).

It is important to note that  here does not play the role of an observable. It is an index, in the sense that each  is associated with

distinct  and  operators. These -dependent operators serve to generalize the classical concept of a field. In a classical
field theory, each point  is assigned a set of numbers corresponding to physical quantities, such as the electric field components 

, , and . In the present case, each  is assigned a set of quantum operators. This kind of quantum theory is called
a quantum field theory.

We can use the  and  operators to write second quantized observables in a way that is independent of the choice of
single-particle basis wavefunctions. As discussed in the previous section, given a Hermitian single-particle operator  we can
define a multi-particle observable , where . This multi-particle observable can be re-written
as

which makes no explicit reference to the single-particle basis states.

For example, consider the familiar single-particle Hamiltonian describing a particle in a potential :

where  and  are position and momentum operators (single-particle observables). The corresponding second quantized operators
for the kinetic energy and potential energy are
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=Â ∑μν â
†
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(In going from the first to the second line, we performed integrations by parts.) This result is strongly reminiscent of the expression
for the expected kinetic and potential energies in single-particle quantum mechanics:

where  is the single-particle wavefunction.

How are the particle creation and annihilation operators related to the classical notion of “the value of a field at point ”, like an
electric field  or magnetic field ? Field variables are measurable quantities, and should be described by Hermitian
operators. As we have just seen, Hermitian operators corresponding to the kinetic and potential energy can be constructed via

products of  with . But there is another type of Hermitian operator that we can construct by taking linear combinations

of of  with . One example is

Other possible Hermitian operators have the form

where  is some complex function. As we shall see, it is this type of Hermitian operator that corresponds to the classical
notion of a field variable like an electric or magnetic field.

In the next two sections, we will try to get a better understanding of the relationship between classical fields and bosonic quantum
fields. (For fermionic quantum fields, the situation is more complicated; they cannot be related to classical fields of the sort we are
familiar with, for reasons that lie outside the scope of this course.)

Revisiting the harmonic oscillator

Before delving into the links between classical fields and bosonic quantum fields, it is first necessary to revisit the harmonic
oscillator, to see how the concept of a mode of oscillation carries over from classical to quantum mechanics.

A classical harmonic oscillator is described by the Hamiltonian

where  is the “position” of the oscillator, which we call the oscillator variable;  is the corresponding momentum variable;  is
the mass; and  is the natural frequency of oscillation. We know that the classical equation of motion has the general form

This describes an oscillation of frequency . It is parameterized by the mode amplitude , a complex number that determines the
magnitude and phase of the oscillation.

For the quantum harmonic oscillator,  and  are replaced by the Hermitian operators  and . From these, the operators  and 
can be defined:
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We can then show that

and from these the energy spectrum of the quantum harmonic oscillator can be derived. These facts should have been covered in an
earlier course.

Here, we are interested in how the creation and annihilation operators relate to the dynamics of the quantum harmonic oscillator. In
the Heisenberg picture, with  as the reference time, we define the time-dependent operator

We will adopt the convention that all operators written with an explicit time dependence are Heisenberg picture operators, while
operators without an explicit time dependence are Schrödinger picture operators; hence, . The Heisenberg picture creation
and annihilation operators,  and , are related to  by

The Heisenberg equation for the annihilation operator is

Hence, the solution for this differential equation is

and Equation  becomes

This has exactly the same form as the classical oscillatory solution ! Comparing the two, we see that  times the scale
factor  plays the role of the mode amplitude .

Now, suppose we come at things from the opposite end. Let’s say we start with creation and annihilation operators satisfying
Equation , from which Equations –  follow. Using the creation and annihilation operators, we would like
to construct an observable that corresponds to a classical oscillator variable. A natural Hermitian ansatz is

where  is a constant that is conventionally taken to be real.

How might  be chosen? A convenient way is to study the behavior of the oscillator variable in the classical limit. The classical
limit of a quantum harmonic oscillator is described by a coherent state. The details of how this state is defined need not concern us
for now (see Appendix E). The most important things to know are that (i) it can be denoted by  where , (ii) it is an
eigenstate of the annihilation operator:

And (iii) its energy expectation value is
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Û

†
â Û
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When the system is in a coherent state, we can effectively substitute the  and  operators in Equation  with the complex
numbers  and , which gives a classical trajectory

This trajectory has amplitude . At maximum displacement, the classical momentum is zero, so the total energy of the classical
oscillator must be

Equating the classical energy  to the coherent state energy  gives

which is precisely the scale factor found in Equation .

A scalar boson field

We now have the tools available to understand the connection between a very simple classical field and its quantum counterpart.
Consider a classical scalar field variable , defined in one spatial dimension, whose classical equation of motion is the wave
equation:

The constant  is a wave speed. This sort of classical field arises in many physical contexts, including the propagation of sound
through air, in which case  is the speed of sound.

For simplicity, let us first assume that the field is defined within a finite interval of length , with periodic boundary conditions: 
. Solutions to the wave equation can be described by the following ansatz:

This ansatz describes a superposition of normal modes. Each normal mode (labelled ) varies harmonically in time with a mode
frequency , and varies in space according to a complex mode profile ; its overall magnitude and phase is specified by the
mode amplitude . The mode profiles are normalized according to some fixed convention, e.g.

Substituting Equation  into Equation , and using the periodic boundary conditions, gives

These mode profiles are orthonormal:

Each normal mode carries energy. By analogy with the classical harmonic oscillator—see Equations – —we
assume that the energy density (i.e., energy per unit length) is proportional to the square of the field variable. Let it have the form

where  is some parameter that has to be derived from the underlying physical context. For example, for acoustic modes,  is the
mass density of the underlying acoustic medium; in the next chapter, we will see a concrete example involving the energy density
of an electromagnetic mode. From Equation , the total energy is
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To quantize the classical field, we treat each normal mode as an independent oscillator, with creation and annihilation operators 
and  satisfying

We then take the Hamiltonian to be that of a set of independent harmonic oscillators:

where  is the ground-state energy. Just like in the previous section, we can define a Heisenberg-picture annihilation operator, and
solving its Heisenberg equation yields

We then define a Schrödinger picture Hermitian operator of the form

where  is a real constant (one for each normal mode). The corresponding Heisenberg picture operator is

which is the quantum version of the classical solution .

To determine the  scale factors, we consider the classical limit. The procedure is a straightforward generalization of the harmonic
oscillator case discussed in Section 4.4. We introduce a state  that is a coherent state for all the normal modes; i.e., for any given

,

for some . The energy expectation value is

In the coherent state, the  and  operators in Equation  can be replaced with  and  respectively. Hence, we
identify  as the classical mode amplitude  in Equation . In order for the classical energy  to match the
coherent state energy , we need

Hence, the appropriate field operator is

Returning to the Schrödinger picture, and using the explicit mode profiles from Equation , we get

Finally, if we are interested in the infinite-  limit, we can convert the sum over  into an integral. The result is
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ne
−i xkn (4.4.43)

L n

(x) = ∫ dk ( (k) + (k) ),f̂
ℏω(k)

4πρ

− −−−−
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where  denotes a rescaled annihilation operator defined by , satisfying

Looking ahead
In the next chapter, we will use these ideas to formulate a quantum theory of electromagnetism. This is a bosonic quantum field
theory in which the creation and annihilation operators act upon particles called photons—the elementary particles of light. Linear
combinations of these photon operators can be used to define Hermitian field operators that correspond to the classical
electromagnetic field variables. In the classical limit, the quantum field theory reduces to Maxwell’s theory of the electromagnetic
field.

It is hard to overstate the importance of quantum field theories in physics. At a fundamental level, all elementary particles currently
known to humanity can be described using a quantum field theory called the Standard Model. These particles are roughly divided
into two categories. The first consists of “force-carrying” particles: photons (which carry the electromagnetic force), gluons (which
carry the strong nuclear force), and the  bosons (which carry the weak nuclear force); these particles are excitations of
bosonic quantum fields, similar to the one described in the previous section. The second category consists of “particles of matter”,
such as electrons, quarks, and neutrinos; these are excitations of fermionic quantum fields, whose creation and annihilation
operators obey anticommutation relations.

As Wilczek (1999) has pointed out, the modern picture of fundamental physics bears a striking resemblance to the old idea of
“luminiferous ether”: a medium filling all of space and time, whose vibrations are physically-observable light waves. The key
difference, as we now understand, is that the ether is not a classical medium, but one obeying the rules of quantum mechanics.
(Another difference, which we have not discussed so far, is that modern field theories can be made compatible with relativity.)

It is quite compelling to think of fields, not individual particles, as the fundamental objects in the universe. This point of view
“explains”, in a sense, why all particles of the same type have the same properties (e.g., why all electrons in the universe have
exactly the same mass). The particles themselves are not fundamental; they are excitations of deeper, more fundamental entities—
quantum fields!

This page titled 4.4: Quantum Field Theory is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong
via source content that was edited to the style and standards of the LibreTexts platform.
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