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2.2: Quasi-Bound States and Resonances
For the 1D finite square well, there is a clear distinction between bound and free states. Certain potentials, however, can host a
special class of states called “quasi-bound states”. Like a bound state, a quasi-bound state is localized in one region of space.
However, it is an approximate eigenstate of the Hamiltonian that lies in the energy range of the free state continuum. As we shall
see, quasi-bound states play an important important role in scattering experiments.

The figure below shows an example of a potential function that gives rise to quasi-bound states. In the exterior region, , the
potential is zero. Between  and , there is a “barrier” of positive potential . Embedded in the middle of this barrier,
for , is a central well of depth , where .
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This potential is purely repulsive (  everywhere), so there are no true bound states. The only exact eigenstates of the
Hamiltonian are free states.

However, there is something intriguing about the central well. Consider an alternative scenario where the potential in the exterior
region is  rather than ; i.e., the potential function is a finite square well:

In this case, there would be one or more bound states, in the energy range . These bound states’ wavefunctions
diminish exponentially away from the well, and are thus close to zero for . Since  and  differ only in the region 

, these wavefunctions ought to be approximate solutions to the Schrödinger wave equation for the original potential ,
which does not support bound states! Such approximate solutions are called quasi-bound states.

Let us analyze the potential  using the scattering experiment framework from the previous chapter. Consider an incident
particle of energy  whose wavefunction is

This produces a scattered wavefunction  that is outgoing (as discussed in the previous chapter). In the exterior region, the
scattered wavefunction takes the form

The scattering amplitudes  and  can be found by solving the Schrödinger wave equation using the transfer matrix method (see
Appendix B). The figure below shows numerical results obtained for , and  or , with 

.
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The vertical axis shows , which is called the “transmittance” and corresponds to the probability for the incident particle to
pass through the potential. The horizontal axis is the particle energy . For , the transmittance approaches zero, and
for , the transmittance approaches unity, as expected. In the energy range , the transmittance forms a
series of narrow peaks. For larger  (i.e., when the central well is more isolated from the exterior space), the peaks are narrower. At
the top of the figure, we have also plotted the bound state energies for the square well potential . These energies closely
match the locations of the transmittance peaks!

Upon examining the total wavefunction  at these special energies, we find other interesting features. The figure below plots 
 versus  at the energies of the first three transmittance peaks, along with the corresponding bound state wavefunctions for

the square well . At each transmittance peak,  is much larger within the potential region, and its shape is very similar to
a square well bound state.
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The enhancement of  is called a resonance. It happens because of the existence of a quasi-bound state—an approximate
energy eigenstate localized in the scattering region. When an incident particle enters the scattering region with the right energy, it
spends a long time trapped in the quasi-bound state, before eventually escaping back to infinity.

This is analogous to the phenomenon of resonance in a classical harmonic oscillator. When a damped harmonic oscillator is
subjected to an oscillatory driving force, it settles into a steady-state oscillatory motion at the driving frequency. If the driving
frequency matches the oscillator’s natural frequency, the amplitude of the oscillation becomes large, and the system is said to be
“resonant”. In the quantum mechanical context, the incident wavefunction plays the role of a driving force, the incident particle
energy is like the driving frequency, and the energy of a quasi-bound state is like a natural frequency of oscillation.

Resonances play a critical role throughout experimental physics. Experiments are often conducted for the express purpose of
locating and studying resonances. When a resonance peak is found, its location and shape can be used to deduce various features of
the quasi-bound state, which in turn supplies important information about the underlying system.
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