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4.5: Exercises

Exercises

Consider a system of two identical particles. Each single-particle Hilbert space  is spanned by a basis . The
exchange operator is defined on  by

Prove that  is linear, unitary, and Hermitian. Moreover, prove that the operation is basis-independent: i.e., given any other
basis  that spans ,

Prove that the exchange operator commutes with the Hamiltonian

An -boson state can be written as

Prove that the normalization constant is

where  denotes the number of particles occupying the single-particle state .

 and  denote the Hilbert spaces of -particle states that are totally symmetric and totally antisymmetric under
exchange, respectively. Prove that

Prove that for boson creation and annihilation operators, .
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Let  be an observable (Hermitian operator) for single-particle states. Given a single-particle basis , define
the bosonic multi-particle observable

where  and  are creation and annihilation operators satisfying the usual bosonic commutation relations,  and 
. Prove that  commutes with the total number operator:

Next, repeat the proof for a fermionic multi-particle observable

where  and  are creation and annihilation operators satisfying the fermionic anticommutation relations,  and 
. In this case, prove that
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