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5.1: Quantization of the Lorentz Force Law

Non-relativistic electrons in an electromagnetic field

Consider a non-relativistic charged particle in an electromagnetic field. As we are mainly interested in the physics of electrons
interacting with electromagnetic fields, we henceforth take the electric charge of the particle to be —e, where e = 1.602 x 1071° C
is the elementary charge. To describe particles with an arbitrary electric charge g, simply perform the substitution e — —¢ in the
formulas you will subsequently encounter.

We wish to formulate the Hamiltonian governing the quantum dynamics of such a particle, subject to two simplifying assumptions:
(i) the particle has charge and mass but is otherwise “featureless” (i.e., we ignore the spin angular momentum and magnetic dipole
moment that real electrons possess), and (ii) the electromagnetic field is treated as a classical field, meaning that the electric and
magnetic fields are definite quantities rather than operators. (We will see how to go beyond these simplifications later.)

Classically, the electromagnetic field acts on the particle via the Lorentz force law,
F(r,t) :—e(E(r,t)+i-><B(r,t)), (5.1.1)

where r and ¥ denote the position and velocity of the particle, ¢ is the time, and E and B are the electric and magnetic fields. If no
other forces are present, Newton’s second law yields the equation of motion

mi‘:fe(E(r,t)qLi'xB(r,t)), (5.1.2)
where m is the particle’s mass. To quantize this, we must first convert the equation of motion into the form of Hamilton’s equations
of motion.

Let us introduce the electromagnetic scalar and vector potentials ®(r, t) and A (r, t):

E(r,t) = —V&(r,t) f%—‘?, (5.1.3)

B(r,t) =V x A(r, t). (5.1.4)

We now postulate that the equation of motion (5.1.2)can be described by the Lagrangian

Definition: Lagrangian

L(x,,t) :%mfue[@(r,t)—f-A(r,t)}. (5.1.5)

This follows the usual prescription for the Lagrangian as kinetic energy minus potential energy, with —e® serving as the potential
energy function, except for the —er - A term. To see if this Lagrangian works, plug it into the Euler-Lagrange equations

OL d 0L
- _= . 5.1.6
87",- dt 87‘1 ( )
The partial derivatives of the Lagrangian are:
L
Z’I“ =€ [8@ — ’i‘j (ZAJ]
BLZ (5.1.7)
— = m’f’,’ — eAi.
Bri

Now we want to take the total time derivative of OL/0r;. In doing so, note that the A field has its own ¢-dependence, as well as
varying with the particle’s t-dependent position. Thus,

d 0L

d
2 o5 —A;i(r(t),t)

dt
= mr, —eatAi — 67"]'8]'141'.

=mfi; —e

(5.1.8)

(In the above equations, §; = d/9r; , where r; is the i-th component of the position vector, while d; = 8/9¢.) Plugging these
expressions into the Euler-Lagrange equations (5.1.6) gives
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mi; = fe[(faz@ *&Ai) +7; (3iAJ' *8in)]

= —e[Bi(r,t)+ (i x B(x,1)), |. (5.1.9)

(The last step can be derived by expressing the cross product using the Levi-Cevita symbol, and using the identity
EijkEimk = 031 0jm — dim 01 .) This exactly matches Equation (5.1.2), as desired.

We now use the Lagrangian to derive the Hamiltonian. The canonical momentum is

o OL
pl_(‘?f’i

sz’i—eAi. (5110)

The Hamiltonian is defined as H(r,p) =p - ¥ — L . Using Equation (5.1.10), we express it in terms of p rather than f:

A A
H =p- (p+e ) — ( [pteAl —I—e<I>—i(p+eA)-A>
m 2m m
| A|2 | A|2 (5.1.11)
+e e +e e
_ TR A (preA)- (p— +e<I>——(p+eA)-A) .
m m 2m m
After cancelling various terms, we obtain
+eA(r,t 2
H= %—e@(r,t) (5.1.12)
This looks a lot like the Hamiltonian for a non-relativistic particle in a scalar potential,
H:ﬂ—i-V(r t) (5.1.13)
Cy ,1). 1.

In Equation (5.1.12), the —e® term acts like a potential energy, which is no surprise. More interestingly, the vector potential
appears via the substitution

p =P teA(r,t). (5.1.14)

What does this mean? Think about what “momentum” means for a charged particle in an electromagnetic field. Noether’s theorem
states that each symmetry of a system (whether classical or quantum) is associated with a conservation law. Momentum is the
quantity conserved when the system is symmetric under spatial translations. One of Hamilton’s equations states that

dpi - OH
dt o 87“1' ’

(5.1.15)

which implies that if H is r-independent, then dp/dt =0. But when the electromagnetic potentials are r-independent, the
quantity mr (which we usually call momentum) is not necessarily conserved! Take the potentials

®(r,t) =0, A(r,t)=Ct3, (5.1.16)

where C' is some constant. These potentials are r-independent, but the vector potential is time-dependent, so the —A term in
Equation (5.1.4)gives a non-vanishing electric field:

E(r,t)=-C%, B(r,t)=0. (5.1.17)
The Lorentz force law then says that
d, . -
E(mr)zeC’z, (5.1.18)
and thus mr is not conserved. On the other hand, the quantity p = mr —eA is conserved:
%(mi‘—eA)zeCi—eC’i =0. (5.1.19)

Hence, this is the appropriate canonical momentum for a particle in an electromagnetic field.
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We are now ready to go from classical to quantum mechanics. Replace r with the position operator r, and p with the momentum
operator p. The resulting quantum Hamiltonian is

Definition: Quantum Hamiltonian

- b +eA(r, )

H(t) = - —ed(F,1). (5.1.20)

The momentum operator is p = —4AV in the wavefunction representation, as usual.

Gauge symmetry

The Hamiltonian (5.1.20) possesses a subtle property known as gauge symmetry. Suppose we modify the scalar and vector
potentials via the substitutions

B(r,t) — (r,t) — A(r, 1) (5.1.21)
A(r,t) — A(r,t) + VA(r, ), (5.1.22)
where A(r,t) is an arbitrary scalar field called a gauge field. This is the gauge transformation of classical electromagnetism,

which as we know leaves the electric and magnetic fields unchanged. When applied to the Hamiltonian (5.1.20), it generates a new
Hamiltonian

()= BHAGOTeVAGOL b0 iy, (5.1.23)

2m

Now suppose ¥ (r, t) is a wavefunction obeying the Schrodinger equation for the original Hamiltonian H:

m‘z—f = H(t)y(r,t) =

b +eA(t,t)
2m

—e@(f,t)l b(r, t). (5.1.24)

Then it can be shown that the wavefunction ¢ exp(—ieA/k) automatically satisfies the Schrodinger equation for the transformed
Hamiltonian H Al

ih% [¢(r, t) exp(@)] = H,(t) {w(r,t) exp<w>] . (5.1.25)

To prove this, observe how time and space derivatives act on the new wavefunction:
0 ieA oY ie . ieA
= il (S e L Y ==
w@“% hﬂ [m R ”“4h)

v [1/) exp(—%)] = |:V1/J—%VA’(/J:| exp(%).

When the extra terms generated by the exp(ieA/R) factor are slotted into the Schrédinger equation, they cancel the gauge terms in
the scalar and vector potentials. For example,

(5.1.26)

(—ihV+eA+eVA> [1/; exp(—%)} - {(—z‘hVHA)«p} exp(—%) (5.1.27)

If we apply the (—¢AV +eA +eVA) operator a second time, it has a similar effect but with the quantity in square brackets on the
right-hand side of (5.1.27)taking the place of ):
ieA ieA

| iRV +eA +eVA \2 [¢ exp(—?>] = [|—ihv+eA|2¢] exp(—T). (5.1.28)

The remainder of the proof for Equation (5.1.25) can be carried out straightforwardly.

The above result can be stated in a simpler form if the electromagnetic fields are static. In this case, the time-independent
electromagnetic Hamiltonian is
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A= W —ed(F). (5.1.29)

Suppose H has eigenenergies {E,,} and energy eigenfunctions {t,,(r)}. Then the gauge-transformed Hamiltonian

. |p+eA(F)+eVA(r)
Hy =

— —ed(F) (5.1.30)

has the same energy spectrum { E,, }, with eigenfunctions { ¢, (r) exp[—ieA(r)/h] }.

The Aharonov-Bohm effect

In quantum electrodynamics, it is the electromagnetic scalar and vector potentials that appear directly in the Hamiltonian, not the
electric and magnetic fields. This has profound consequences. For example, even if a charged quantum particle resides in a region
with zero magnetic field, it can feel the effect of nonzero vector potentials produced by magnetic fluxes elsewhere in space, a
phenomenon called the Aharonov-Bohm effect.

A simple setting for observing the Aharonov-Bohm effect is shown in the figure below. A particle is trapped in a ring-shaped
region (an “annulus™), of radius R and width d < R. Outside the annulus, we set —e® — oo so that the wavefunction vanishes;
inside the annulus, we set & = 0. We ignore the z-dependence of all fields and wavefunctions, so that the problem is two-
dimensional. We define polar coordinates (r, ¢) with the origin at the ring’s center.

—ldk-

—ed = 00
Figure 5.1.1

Now, suppose we thread magnetic flux (e.g., using a solenoid) through the origin, which lies in the region enclosed by the annulus.
This flux can be described via the vector potential

A(r, ) =5 (5.1.31)

where ey is the unit vector pointing in the azimuthal direction. We can verify from Equation (5.1.31) that the total magnetic flux
through any loop of radius 7 enclosing the origin is (®5/27r)(27r) = ® 5. The fact that this is independent of r implies that the
magnetic flux density is concentrated in an infintesimal area surrounding the origin, and zero everywhere else. However, the vector
potential A is nonzero everywhere.

The time-independent Schrodinger equation is

2

_itv+ 28 o | hr, 8) = Bu(r, 9), (5.1.32)

-
2m 27r

with the boundary conditions ¥)(R+d/2,0) = 0. For sufficiently large R, we can guess that the eigenfunctions have the form
Y(r, ) ~ { o cos(§(r—R)) ™™, re[R—d/2,R+d/2] (5.1.33)
0 otherwise.

This describes a “waveguide mode” with a half-wavelength wave profile in the r direction (so as to vanish at r = R4+d/2),
traveling in the azimuthal direction with wavenumber k. The normalization constant 1 is unimportant. We need the wavefunction
to be single-valued under a 27 variation in the azimuthal coordinate, so

k-2nR=2mn = k:%, where n € Z. (5.1.34)

Plugging this into Equation (5.1.32)yields the energy levels
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1 | /nh edp\? [7h\2
By =5— <E+27r_1';) +(7>] (5.1.35)
e> nh\% 72K2
iy (q>3+?> to (5.1.36)

These energy levels are sketched versus the magnetic flux ®p in the figure below:
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Figure 5.1.2

Each energy level has a quadratic dependence on ®p. Variations in ®p affect the energy levels despite the fact that B =0 in the
annular region where the electron resides. This is a manifestation of the Aharonov-Bohm effect.

It is noteworthy that the curves of different n are centered at different values of ®p corresponding to multiples of
h/e=4.13567 x 10~° T m?, a fundamental unit of magnetic flux called the magnetic flux quantum. In other words, changing
®p by an exact multiple of & /e leaves the energy spectrum unchanged! This invariance property, which does not depend on the
width of the annulus or any other geometrical parameters of the system, can be explained using gauge symmetry. When an extra
flux of nh/e (where n € Z) is threaded through the annulus, Equation (5.1.31) tells us that the change in vector potential is
AA = (nh/er)ey. But we can undo the effects of this via the gauge field

VA = (nh/er)ey

h
Alr,¢) = —% ¢ = { o-ieh/h nd (5.1.37)

2
=e"’.
Note that this A is not single-valued, but that’s not a problem! Both VA and the phase factor exp(—ieA/k) are single-valued, and
those are the quantities that enter into the gauge symmetry relations (5.1.21)-(5.1.22).

This page titled 5.1: Quantization of the Lorentz Force Law is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform.
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