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1.3: Scattering From a 1D Delta-Function Potential

We are now ready to solve a simple scattering problem. Consider a 1D space with spatial coordinate denoted by x, and a scattering
potential that consists of a “spike” at z = 0:

V(z)= 73'2—7(5(.1') (1.3.1)
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The form of the prefactor £2+/2m is chosen for later convenience; the parameter -, which has units of [1/z], controls the strength

of the scattering potential.
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If you are disturbed by the idea of a delta function potential, just regard it as the limiting case of a family of increasingly tall and

narrow gaussian functions centered at = 0. For each non-singular potential, the applicability of the Schrédinger wave equation

implies that the wavefunction () is continuous and has well-defined first and second derivatives. In the delta function limit,

however, these conditions are relaxed: (z) remains continuous, but at z = 0 the first derivative becomes discontinuous and the

second derivative blows up. To see this, we integrate the Schrédinger wave equation over an infinitesimal range around x = 0:
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Hence,
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} =4 9(0). (1.3.3)
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To proceed, consider a particle incident from the left, with energy E. This is described by an incident state proportional to a
momentum eigenstate |k), where k= /2mFE/h%> 0. We said “proportional”, not “equal”, for it is conventional to adopt the
normalization

i) =V2r¥i|k) & i) = (z]y) = T; e (1.3.4)
The complex constant ¥; is called the “incident amplitude.” Plugging this into the Schrodinger wave equation gives
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5(@] (T; €% 44y (2)) = B (¥; € + 9, () . (1.3.5)

Taking E = h?k? /2m, and doing a bit of algebra, simplifies this to
d’ .
[E +k2] Vs (z) =78(z) (¥; €™ +9,(2)), (1.3.6)

which is an inhomogenous ordinary differential equation for 1)s(x), with the potential on the right hand side acting as a “driving
term”.

To find the solution, consider the two regions < 0 and > 0. Since §(x) — 0 for z # 0, the equation in each half-space reduces
to

{j—; +k2] s(z) = 0. (1.3.7)

This is the Helmheoltz equation, whose general solution may be written as
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Ps(z) = U; (fre™ + fre™). (1.3.8)
Here, f; and f, are complex numbers that can take on different values in the two different regions z < 0 and = > 0.

We want ), () to describe an outgoing wave, moving away from the scatterer towards infinity. So it should be purely left-moving
for z < 0, and purely right-moving for > 0. To achieve this, let f; =0 for z <0, and fo =0 for > 0, so that ¥(x) has the
form

foek <0

. 1.3.9
f+ ezk:c, z>0. ( )

’ll)s (215 ) = \Ili X {
The complex numbers f_ and f, are called scattering amplitudes. They describe the magnitude and phase of the wavefunction
scattered backwards into the < 0 region, and scattered forward into the > 0 region, respectively.

Recall from the discussion at the beginning of this section that )(z) must be continuous everywhere, including at z = 0. Since
¥;(z) is continuous, 1s(x) must be as well, so f_ = f . Moreover, we showed in Equation (1.3.3) that the first derivative of
¥ (z) is discontinuous at the scatterer. Plugging (1.3.3)into our expression for ¢(x), at x = 0, gives

W, [ik(1+ fr) —ik(1— f)] =91+ f)y- (1.3.10)
Hence, we obtain

T
v —2ik’

fo=f = (1.3.11)

For now, let us focus on the magnitude of the scattering amplitude (in the next chapter, we will see that the phase also contains
useful information). The quantity | f |2 describes the overall strength of the scattering process:

8mE] B (1.3.12)
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Its dependence on F is plotted below:
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Figure 1.3.2

There are several notable features in this plot. First, for fixed potential strength +, the scattering strength decreases monotonically
with E—i.e., higher-energy particles are scattered less easily. Second, for given E, the scattering strength increases with ||, with
the limit |f |2 — 1 as |y| — oo. Third, an attractive potential (7 < 0) and a repulsive potential (y > 0) are equally effective at
scattering the particle.
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