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Thumbnail: Collimated homogeneous beam of monoenergetic particles, long wavepacket which is approximately a planewave, but
strictly does not extend to infinity in all directions, is incident on a target and subsequently scattered into the detector subtending a
solid angle. The detector is assumed to be far away from the scattering center. (Department of Physics Wiki @ Florida State
University).      
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1.1: Scattering Experiments on Quantum Particles
Quantum particles exhibit a feature known as wave-particle duality, which can be summarized in the quantum double-slit
thought experiment. As shown in the figure below, a source emits electrons with energy , which travel towards a screen with a
pair of slits. A detector is positioned on the other side of the screen. By moving the detector around, we can measure the rate at
which electrons are detected at different positions.

Figure 

According to quantum theory, the experiment reveals the following: (i) the electrons arrive in discrete units—one at a time, like
classical particles; (ii) when we move the detector around to measure how the detection events are statistically distributed in space,
the resulting distribution matches an interference pattern formed by a classical wave diffracted by the slits. The wavelength  is
related to the electron energy  by

where  is Dirac’s constant, and  is the electron mass. (This also implies that we can deduce the spacing of the slits from
the diffraction pattern, if  is known.)

Wave-particle duality arises from quantum theory’s distinction between a particle’s state and the outcomes of measurements
performed on it. The state is described by a wavefunction , which can undergo diffraction like a classical wave. Measurement
outcomes, however, depend probabilistically on the wavefunction. In a position measurement, the probability of locating a particle
in a volume  around position  is .

In this chapter, we will study a generalization of the double-slit experiment called a scattering experiment. The idea is to take an
object called a scatterer, shoot quantum particles at it, and measure the resulting particle distribution. Just as the double-slit
interference pattern can be used to deduce the slit spacing, a scattering experiment can be used to deduce various facts about the
scatterer. Scattering experiments constitute a large proportion of the methods used to probe the quantum world—from electron- and
photon-based laboratory experiments for measuring the properties of materials, to huge accelerator experiments that study high-
energy phenomena like the Higgs boson.

We will focus on a simple scenario with a single non-relativistic quantum particle and a classical scatterer. Consider a continuous
and unbounded -dimensional space, describable by coordinates . Somewhere around the origin, , is a finite-sized scatterer.
An incoming quantum particle, with energy , is governed by the Hamiltonian

Here,  describes the particle’s kinetic energy,  is the particle’s mass,  and  are position and momentum operators, and  is a
scattering potential describing how the scatterer affects the quantum particle. We assume that  as , i.e., the
scattering potential becomes negligible far from the origin.

Figure 

We prepare an incoming particle state with energy , and want to see how the particle is scattered by the potential. However,
converting these words into a well-defined mathematical problem is a bit tricky! We will give the formulation first, before

E

1.1.1

λ

E

λ = , E = ,
2π

k

ℏ2k2

2m
(1.1.1)

ℏ = h/2π m

E
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dV r |ψ(r) dV|
2

d r r = 0

E

= +V ( ), = .Ĥ Ĥ0 r̂ Ĥ0
p̂

2
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discussing its meaning:

1. The particle state  obeys the time-independent Schrödinger equation

where  is the incoming particle energy.

2. This state can be decomposed into two terms,

where  is called the incident state and  is called the scattered state.

3. The incident state is described by a plane wave—a simultaneous eigenstate of  (with energy ) and  (with momentum ):

4. We require the scattered state to be an “outgoing” state. This is the most subtle of the conditions, and we will describe what it
means later.

The first condition says that the scattering process is elastic. Since the scatterer takes the form of a potential , its interaction
with the particle is conservative (i.e., the total energy  is fixed). The second condition says that the particle’s wavefunction, 

, consists of a superposition of an incoming wave and a scattered wave. The third condition defines the incoming
wave as a plane wave whose wavelength is determined by the chosen energy . The final condition says that the scattered wave
moves out toward infinity.

Note that this is not an eigenproblem! Usually, when we use the time-independent Schrödinger equation, we treat it as an
eigenproblem and solve for the energy eigenvalues and eigenstates. But in this case,  is an input to the calculation, describing the
energy assigned to the incoming quantum particle. Given , , and , we want to find .

This page titled 1.1: Scattering Experiments on Quantum Particles is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
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1.2: Recap- Position and Momentum States
Before proceeding, let us review the properties of quantum particles in free space. In a -dimensional space, a coordinate vector 
is a real vector of  components. A quantum particle can be described by the position basis—a set of quantum states , one for
each possible . If we are studying a particle trapped in a finite region (e.g., a particle in a box),  is restricted to that region;
otherwise,  is any real -dimensional vector. In either case, the ’s are continuous, so the position eigenstates form an uncountably
infinite set.

The position eigenstates are assumed to span the state space, so the identity operator can be resolved as

where the integral is taken over all allowed . It follows that

The position eigenstates are thus said to be “delta-function normalized”, rather than being normalized to unity. In the above
equation,  denotes the -dimensional delta function; for example, in 2D,

The position operator  is defined by taking  and  as its eigenstates and eigenvalues:

Momentum eigenstates are constructed from position eigenstates via Fourier transforms. First, suppose the allowed region of space
is a box of length  on each side, with periodic boundary conditions in every direction. Define the set of wave-vectors 
corresponding to plane waves satisfying the periodic boundary conditions at the box boundaries:

So long as  is finite, the  vectors are discrete. Now define

where the integral is taken over the box. These can be shown to satisfy

The momentum operator is defined so that its eigenstates are , with  as the corresponding eigenvalues:

Thus, for finite , the momentum eigenstates are discrete and normalizable to unity. The momentum component in each direction
is quantized to a multiple of .

We then take the limit of an infinite box, . In this limit, , so the momentum eigenvalues coalesce into a continuum.
It is convenient to re-normalize the momentum eigenstates by taking

In the  limit, the re-normalized momentum eigenstates satisfy

d r

d {|r⟩}

r r

r d r

= ∫ r |r⟩ ⟨r|,Î dd (1.2.1)

r

⟨r| ⟩ = (r − ).r
′ δd r

′ (1.2.2)

(⋯)δd d

⟨x, y | , ⟩ = δ(x− ) δ(y− ).x′ y′ x′ y′ (1.2.3)

r̂ |r⟩ r

|r⟩ = r |r⟩.r̂ (1.2.4)

L k
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Ld/2
dd eik⋅r (1.2.5)
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k
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Definition: Re-normalized momentum eigenstates
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The above integrals are taken over infinite space, and the position and momentum eigenstates are now on a similar footing: both are
delta-function normalized. In deriving the above equations, it is helpful to use the formula

For an arbitrary quantum state , a wavefunction is defined as the projection onto the position basis: . Using the
momentum eigenstates, we can show that

This result can also be used to prove Heisenberg’s commutation relation .

This page titled 1.2: Recap- Position and Momentum States is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform.
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(2π)d/2
eik⋅r dd

(1.2.9)

(1.2.10)

(1.2.11)

dx exp(ikx) = 2π δ(k).∫
∞

−∞

(1.2.12)

|ψ⟩ ψ(r) = ⟨r|ψ⟩

⟨r| |ψ⟩p̂ = ∫ k ⟨r|k⟩ ℏk ⟨k|ψ⟩dd

= ∫ ℏk ⟨k|ψ⟩
kdd

(2π)d/2
eik⋅r

= −iℏ∇∫ ⟨k|ψ⟩
kdd

(2π)d/2
eik⋅r

= −iℏ∇ψ(r).
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1.3: Scattering From a 1D Delta-Function Potential
We are now ready to solve a simple scattering problem. Consider a 1D space with spatial coordinate denoted by , and a scattering
potential that consists of a “spike” at :

The form of the prefactor  is chosen for later convenience; the parameter , which has units of , controls the strength
of the scattering potential.

Figure 

If you are disturbed by the idea of a delta function potential, just regard it as the limiting case of a family of increasingly tall and
narrow gaussian functions centered at . For each non-singular potential, the applicability of the Schrödinger wave equation
implies that the wavefunction  is continuous and has well-defined first and second derivatives. In the delta function limit,
however, these conditions are relaxed:  remains continuous, but at  the first derivative becomes discontinuous and the
second derivative blows up. To see this, we integrate the Schrödinger wave equation over an infinitesimal range around :

Hence,

To proceed, consider a particle incident from the left, with energy . This is described by an incident state proportional to a
momentum eigenstate , where . We said “proportional”, not “equal”, for it is conventional to adopt the
normalization

The complex constant  is called the “incident amplitude.” Plugging this into the Schrödinger wave equation gives

Taking , and doing a bit of algebra, simplifies this to

which is an inhomogenous ordinary differential equation for , with the potential on the right hand side acting as a “driving
term”.

To find the solution, consider the two regions  and . Since  for , the equation in each half-space reduces
to

This is the Helmholtz equation, whose general solution may be written as

x

x = 0

V (x) = δ(x).
γℏ2

2m
(1.3.1)

γ/2mℏ2 γ [1/x]

1.3.1

x = 0
ψ(x)

ψ(x) x = 0
x = 0

dx [− + δ(x)]ψ(x)lim
ε→0+

∫
+ε

−ε

ℏ2

2m

d2

dx2

γℏ2

2m

= {− }+ ψ(0)lim
ε→0+

ℏ2

2m
[ ]
dψ

dx

+ε

−ε

γℏ2

2m

= dx Eψ(x)lim
ε→0+

∫
+ε

−ε

= 0

(1.3.2)

{ − } = γ ψ(0).lim
ε→0+

dψ

dx

∣
∣
∣
x=+ε

dψ

dx

∣
∣
∣
x=−ε

(1.3.3)

E

|k⟩ k = > 02mE/ℏ2− −−−−−−
√

| ⟩ = |k⟩ ⇔ (x) = ⟨x|ψ⟩ = .ψi 2π
−−

√ Ψi ψi Ψi e
ikx (1.3.4)

Ψi

[− + δ(x)] ( + (x)) = E ( + (x)) .
ℏ2

2m

d2

dx2

γℏ2

2m
Ψi e

ikx ψs Ψi e
ikx ψs (1.3.5)

E = /2mℏ2k2

[ + ] (x) = γδ(x)( + (x)) ,
d2

dx2
k2 ψs Ψi e

ikx ψs (1.3.6)

(x)ψs

x < 0 x > 0 δ(x) → 0 x ≠ 0

[ + ] (x) = 0.
d2

dx2
k2 ψs (1.3.7)
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Here,  and  are complex numbers that can take on different values in the two different regions  and .

We want  to describe an outgoing wave, moving away from the scatterer towards infinity. So it should be purely left-moving
for , and purely right-moving for . To achieve this, let  for , and  for , so that  has the
form

The complex numbers  and  are called scattering amplitudes. They describe the magnitude and phase of the wavefunction
scattered backwards into the  region, and scattered forward into the  region, respectively.

Recall from the discussion at the beginning of this section that  must be continuous everywhere, including at . Since 
 is continuous,  must be as well, so . Moreover, we showed in Equation  that the first derivative of 

 is discontinuous at the scatterer. Plugging  into our expression for , at , gives

Hence, we obtain

For now, let us focus on the magnitude of the scattering amplitude (in the next chapter, we will see that the phase also contains
useful information). The quantity  describes the overall strength of the scattering process:

Its dependence on  is plotted below:

Figure 

There are several notable features in this plot. First, for fixed potential strength , the scattering strength decreases monotonically
with —i.e., higher-energy particles are scattered less easily. Second, for given , the scattering strength increases with , with
the limit  as . Third, an attractive potential ( ) and a repulsive potential ( ) are equally effective at
scattering the particle.
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(x) = ( + ) .ψs Ψi f1 e
ikx f2 e

−ikx (1.3.8)

f1 f2 x < 0 x > 0

(x)ψs

x < 0 x > 0 = 0f1 x < 0 = 0f2 x > 0 (x)ψs

(x) = ×{ψs Ψi
,f− e−ikx

,f+ eikx
x < 0
x > 0.

(1.3.9)

f− f+

x < 0 x > 0

ψ(x) x = 0
(x)ψi (x)ψs =f− f+ (1.3.3)

ψ(x) (1.3.3) ψ(x) x = 0

[ik(1 + ) − ik(1 − )] = Ψ(1 + )γ.Ψi f± f± f± (1.3.10)

= = − .f+ f−
γ

γ−2ik
(1.3.11)

|f±|2

| = .f±|
2 [1 + ]

8mE

(ℏγ)2

−1

(1.3.12)

E

1.3.2

γ

E E |γ|
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1.4: Scattering in 2D and 3D
We now wish to consider scattering experiments in spatial dimension , which have a new and important feature. For ,
the particle can only scatter forward or backward, but for  it can be scattered to the side.

Far from the scatterer, where , the scattered wavefunction  satisfies

where  denotes the -dimensional Laplacian. Let , where  is the wave-number in free space. Then the
above equation can be written as

which is the Helmholtz equation in -dimensional space.

One set of elementary solutions to the Helmholtz equation are the plane waves

But we’re looking for an outgoing solution, and a plane wave can’t be said to be “outgoing”.

Therefore, we turn to curvilinear coordinates. In 2D, we use the polar coordinates . We will skip the mathematical details of
how to solve the 2D Helmholtz equation in these coordinates; the result is that the general solution can be written as a linear
combination

This is a superposition of circular waves , with coefficients . Each circular wave is a solution to the 2D Helmholtz
equation with angular momentum quantum number . Its -dependence is given by , called a Hankel function of the
“first kind” ( ) or “second kind” ( ). Some Hankel functions of the first kind are plotted below:

Figure 

The  functions are the complex conjugates of . For large values of the input,

Therefore, the  index specifies whether the circular wave is an outgoing wave directed outward from the origin ( ), or an
incoming wave directed toward the origin ( ).

The 3D case is treated similarly. We use spherical coordinates , and the solutions of the 3D Helmholtz equation are
superpositions of incoming and outgoing spherical waves:

d ≥ 2 d = 1

d ≥ 2

V (r) → 0 (r)ψs

− (r) = E (r),
ℏ2

2m
∇2ψs ψs (1.4.1)

∇2 d E = /2mℏ2k2 k ∈ R
+

[ + ] (r) = 0,∇2 k2 ψs (1.4.2)

d

{ exp(ik ⋅ r), where |k| = k}. (1.4.3)

(r,ϕ)

ψ(r) = (r,ϕ), where (r,ϕ) = (kr) .∑
±

∑
m=−∞

∞

c±
m Ψ±

m Ψ±
m H±

m eimϕ (1.4.4)

(r,ϕ)Ψ±
m ∈ Cc±

m

m ∈ Z r H±
m

+ −

1.4.1

H−
m H+

m

(kr) exp[±i(kr− )] ∼ .H±
m ⟶

r→∞ 2

πkr

− −−−
√

(m+ )π1
2

2
r−1/2e±ikr (1.4.5)

± +

−

(r, θ,ϕ)
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The  factors are complex coefficients. Each  is a spherical Hankel function, and each  is a spherical harmonic. The 
and  indices specify the angular momentum of the spherical wave. For large inputs, the spherical Hankel functions have the
limiting form

Hence, the  index specifies whether the spherical wave is outgoing ( ) or incoming ( ). More discussion about these spherical
waves can be found in Appendix A.

It is now clear what we need to do to get a scattered wavefunction  that is outgoing at infinity. We take a superposition with
only outgoing ( ) wave components:

For large , the outgoing wavefunction has the -dependence

For , the magnitude of the wavefunction decreases with distance from the origin. This is as expected, because with increasing
 each outgoing wave spreads out over a wider area. The probability current density is , and its -

component is

In  dimensions, the area of a wave-front scales as , so the probability flux goes as , which is positive and
independent of . This describes a constant probability flux flowing outward from the origin. Note that if we plug  into the
above formula, we find that  scales as  (i.e., a constant), consistent with the results of the previous section: waves in 1D do not
spread out with distance as there is no transverse dimension.
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ψ(r) = (r, θ,ϕ) where (r, θ,ϕ) = (kr) (θ,ϕ).∑
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∑
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∞

∑
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ℓ
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ℓm Ψ±
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ℓ Yℓm (1.4.6)
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2

ikr
(1.4.7)

± + −

(r)ψs

+
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⎨
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m eimϕ
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ℓ
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d = 2
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r r

(r) exp(ikr).ψs ∼
r→∞

r
1−d

2 (1.4.9)

d > 1

r J = (ℏ/m)Im [ ∇ ]ψ∗
s ψs r

Jr Im[ ( )]∼
r→∞

r
1−d

2 e−ikr ∂

∂r
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1−d

2 eikr
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1 −d
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1.5: The Scattering Amplitude and Scattering Cross Section
We can use the results of the previous section to systematically characterize the outcomes of a scattering experiment. Let the
incident wavefunction be a plane wave,

in -dimensional space. Here,  is the incident wave amplitude, and  is the incident momentum. Let  denote its
magnitude, so that the particle energy is . We adopt coordinates , where  is the distance from the origin. For
1D,  which specifies the choice of “forward” or “backward” scattering; for 2D polar coordinates, ; and for 3D
spherical coordinates, .

Far from the origin, the scattered wavefunction reduces to the form

The complex function , called the scattering amplitude, is the fundamental quantity of interest in scattering experiments. It
describes how the particle is scattered in various directions, depending on the inputs to the problem (i.e.,  and the scattering
potential).

Sometimes, we write the scattering amplitude using the alternative notation

This emphasizes firstly that the incident wave-vector is ; and secondly that the particle is scattered in some direction which can
be specified by either the unit position vector , or equivalently by the momentum vector , or by the angular coordinates 

.

From the scattering amplitude, we define two other important quantities of interest:

In the second equation,  denotes the integral(s) over all the angle coordinates; for 1D, this is instead a discrete sum over the
two possible directions, forward and backward.

The term “cross section” comes from an analogy with the scattering of classical particles. Consider the probablity current density
associated with the scattered wavefunction:

Let us focus only on the -component of the current density, in the  limit:

The total flux of outgoing probability is obtained by integrating  over a constant-  surface:

(r) = ,ψi Ψi e
i ⋅rki (1.5.1)

d ∈ CΨi ki k = | |ki

E = /2mℏ2k2 (r, Ω) r

Ω ∈ ± Ω = ϕ

Ω = (θ,ϕ)

(r) f(Ω).ψs ⟶
r→∞

Ψi r
1−d

2 eikr (1.5.2)

f(Ω)

ki

f( → ), where = k .ki kf kf r̂ (1.5.3)

ki

r̂ = kkf r̂

Ω

Definition: Scattering Cross Sections

dσ

dΩ

σ

= f(Ω) (the differential scattering cross section)∣∣ ∣∣
2

= ∫ dΩ f(Ω) (the total scattering cross section).∣∣ ∣∣
2

(1.5.4)

(1.5.5)

∫ dΩ
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We can assign a physical interpretation to each term in this result. The first factor, , is the particle’s speed (i.e., the group
velocity of the de Broglie wave). The second factor, , is the probability density of the incident wave, which has units of 
(i.e., inverse -dimensional “volume”). The product of these two factors represents the incident flux,

This has units of  (i.e., rate per unit “area”).

Let us re-imagine this incident flux  as a stream of classical particles, and the scatterer as a “hard-body” scatterer that only
interacts with those particles striking it directly:

Figure 

In this classical picture, the rate at which the incident particles strike the scatterer is

where  is the exposed cross-sectional area of the scatterer. Comparing this expression to Equation , we see that 
plays a role analogous to the classical hard-body cross-sectional area. We hence call

the total scattering cross section. Moreover, the integrand  is called the differential scattering cross section, for it represents
the rate, per unit of solid angle, at which particles are scattered in a given direction. The total and differential scattering cross
sections are the principal observable quantities that can be obtained from scattering experiments.
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2 [ ]x−d

d

= | .Ji
ℏk

m
Ψi|

2 (1.5.9)

[ ]x1−dt−1

Ji

1.5.1

= σ,Is Ji (1.5.10)

σ (1.5.8) ∫ dΩ |f |
2

σ ≡ ∫ dΩ |f |
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1.6: The Green's Function
The scattering amplitude  can be calculated using a variety of analytical and numerical methods. We will discuss one
particularly important approach, based on a quantum variant of the Green’s function technique for solving inhomogenous
differential equations.

Let us return to the previously-discussed formulation of the scattering problem:

These equations can be combined as follows:

To proceed, we define the inverse of the operator on the left-hand side:

This operator is called the Green’s function. Using it, we get

Note that  depends on both the energy  and the scattering potential. To isolate the dependence on the scattering potential, let us
define the Green’s function for a free particle,

This will be very useful for us, for  can be calculated exactly, whereas  often has no analytic expression. We can relate  and 
 as follows:

Upon respectively right-multiplying and left-multiplying these equations by , we arrive at the following pair of equations, called
Dyson’s equations:

These equations are “implicit”, as the unknown  appears in both the left and right sides.

Applying the second Dyson equation, Equation , to the scattering problem  gives

f(Ω)

Ĥ

|ψ⟩Ĥ

|ψ⟩

| ⟩Ĥ0 ψi

= +Ĥ0 V̂

= E|ψ⟩

= | ⟩ + | ⟩ψi ψs

= E| ⟩.ψi

(1.6.1)

( + ) | ⟩+ | ⟩Ĥ0 V̂ ψi Ĥ ψs

⇒ | ⟩+ | ⟩V̂ ψi Ĥ ψs

⇒ (E− ) | ⟩Ĥ ψs

= E (| ⟩+| ⟩)ψi ψs

= E| ⟩ψs

= | ⟩V̂ ψi

(1.6.2)

= (E− .Ĝ Ĥ)−1 (1.6.3)

| ⟩ = | ⟩.ψs ĜV̂ ψi (1.6.4)

Ĝ E

= (E− .Ĝ0 Ĥ0)
−1 (1.6.5)

Ĝ0 Ĝ G
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⇒ −ĜĜ
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0 ĜV̂
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−1
0 Ĝ V̂ Ĝ

(1.6.6)

Ĝ0

Definition: Dyson's Equations
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Ĝ
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This is a useful simplification, since it involves  rather than . The downside is that the equation is still implicit: the right-hand
side involves the unknown total state , rather than the known incident state .

We can try to solve this implicit equation by using Equation  to get an expression for , then repeatedly plugging the result
back into the right-hand side of Equation . This yields an infinite series formula:

Or, equivalently,

This is called the Born series.

To understand its meaning, let us go to the position basis:

This formula can be regarded as a description of multiple scattering. Due to the presence of the scatterer, the particle
wavefunction is a quantum superposition of terms describing zero, one, two, or more scattering events, as illustrated below:

Figure 

Each successive term in the Born series involves more scattering events, i.e., higher multiples of . For example, the second-order
term is

This describes the particle undergoing the following process: (i) scattering of the incident particle at point , (ii) propagation from 
 to , (iii) scattering again at point , and (iv) propagation from  to . The scattering points  and  are integrated over, with

all possible positions contributing to the result; since the integrals are weighted by , those positions where the scattering potential
are strongest will contribute the most.

For a sufficiently weak scatterer, it can be a good approximation to retain just the first few terms in the Born series. For the rest of
this discussion, let us assume that such an approximation is valid. The question of what it means for  to be “sufficiently weak”—
i.e., the exact requirements for the Born series to converge—is a complex topic beyond the scope of our present discussion.
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ψ(r) = (r)ψi +∫ ⟨r| | ⟩V ( ) ( )ddr′ Ĝ0 r
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1.7: The Green's Function for a Free Particle
We have defined the free-particle Green’s function as the operator . Its representation in the position basis, 

, is called the propagator. As we have just seen, when the Born series is written in the position basis, the propagator
appears in the integrand and describes how the particle “propagates” between discrete scattering events.

The propagator is a solution to a partial differential equation:

As before,  where  is the energy of the incident particle. Therefore, up to a factor of , the propagator is
the Green’s function for the -dimensional Helmholtz equation (see Section 1.4). Note that the  acts upon the  coordinates, not 

.

To solve for , we can use the momentum eigenstates:

To proceed, we must specify the spatial dimension . Let us set ; the calculations for other  are fairly similar. To calculate
the integral over the 3D wave-vector space, we adopt spherical coordinates , with the coordinate axes aligned so that 

 points along the  direction. We can now do the integral:

This looks like something we can handle with contour integration techniques. But there’s a snag: the integration contour runs over
the real-  line, and since , there are two poles on the contour (at ). Hence, the value of the integral, as written, is
singular.

To make the integral non-singular, we must “regularize” it by tweaking its definition. One way is to displace the poles
infinitesimally in the complex  plane, shifting them off the contour. We have a choice of whether to move each pole upwards or
downwards; this choice turns out to be linked to whether the waves described by  are incoming, outgoing, or behave some other
way at infinity. It turns out that the right choice for us is to move the pole at  infinitesimally downwards, and the pole at 
infinitesimally upwards:

= (E−Ĝ0 Ĥ0)
−1

⟨r| | ⟩Ĝ0 r
′

⟨r|(E− ) | ⟩Ĥ0 Ĝ0 r
′
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Figure 

This means replacing the denominator of the integrand as follows:

where  is a positive infinitesimal. This is equivalent to replacing  in the definition of the Green’s function. The
integral can now be computed as follows:

Plugging this into Equation  yields the propagator . The final result is given below, along with the results for 
 and  (which are obtained in a similar fashion):

The propagator can be regarded as a function of the position , describing a wave propagating outwards from a source point .
This outgoing behavior comes from our above choice of regularization, which tweaked the definition of the Green’s function to be

This is called an outgoing or causal Green’s function. The word “causal” refers to the concept of “cause-and-effect”: i.e., a source
at one point of space (the “cause”) leads to the emission of waves that move outwards (the “effect”).

Different regularizations produce Green’s functions with alternative features. For instance, we could flip the sign of  in the
Green’s function redefinition, which displaces the -space poles in the opposite direction. The resulting propagator  is
complex-conjugated, and describes a wave moving inwards from infinity, “sinking” into the point . Such a choice of
regularization thus corresponds to an incoming Green’s function. In the scattering problem, we will always deal with the
outgoing/causal Green’s function.
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1.8: Scattering Amplitudes in 3D
The propagator can now be plugged into the scattering problem posed in Sections 1.5-1.6:

Our goal is to determine the scattering amplitude . We will focus on the 3D case; the 1D and 2D cases are handled in a similar
way.

In the  limit, the propagator can be simplified using the Taylor expansion

where  denotes the unit vector pointing parallel to . (This is the same “large- ” expansion used in deriving the electric dipole
moment in classical electromagnetism.) Applying this to the 3D outgoing propagator gives, to lowest order,

Hence, the scattered wavefunction is

We can combine this with the Green’s function relation from Section 1.6,

This yields

This can be compared to the earlier definition of the scattering amplitude,

Hence, we find that

subject to the elasticity constraint . In deriving the last line, we used the Born series formula (1.6.11).

This result is the culmination of the numerous definitions and derivations from the preceding sections. On the left side is the
scattering amplitude, the fundamental quantity of interest in scattering experiments. The right side contains quantities that are
known to us, or that can be calculated: the initial and final momenta, the scattering potential, and the Green’s function. Although

(r)ψi
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= ,Ψi e
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(1.8.8)

| | = | |ki kf

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34595?pdf
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_III_(Chong)/01%3A_Scattering_Theory/1.08%3A_Scattering_Amplitudes_in_3D


1.8.2 https://phys.libretexts.org/@go/page/34595

this result was derived for the 3D case, very similar formulas hold for other dimensions, but with the  factor replaced with other
numerical factors.
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1.9: Example- Uniform Spherical Well in 3D
Let us test the Born series against a simple example, consisting of the scattering potential

We will assume that , so that the potential is attactive and describes a uniform spherically symmetric well of depth  and
radius , surrounded by empty space. For this potential, the scattering problem can be solved exactly, using the method of partial
wave analysis described in Appendix A. The resulting scattering amplitudes are

This solution is expressed in terms of various special functions;  and  are the spherical Bessel function of the first kind and
spherical Hankel function, while  is the Legendre polynomial (which appears in the definition of the spherical harmonic
functions).

We will pit this exact solution against the results from the Born series:

The bra-kets can be evaluated in the position representation. Let us do this for just the first two terms in the series:

If we use only the first term in the Born series, the result is called the “first Born approximation”; if we use two terms, the result is
called the “second Born approximation”. Higher-order Born approximations can be derived in a similar fashion.

The most expedient way to calculate these integrals is to use Monte Carlo integration. To find an integral of the form

we randomly sample  points within a cube of volume  centered around the origin, enclosing the desired sphere of radius .
For the -th sampled point, , we compute

The ’s give the values of the integrand at the sampling points, omitting the contribution from points outside the sphere. Then we
estimate the integral as

V (r) ={
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The estimate converges to the true value as ; in practice,  yields a good result for typical 3D integrals, and can be
computed in around a second on a modern computer. Similarly, to calculate the double integral appearing in the second term of the
Born series, we sample pairs of points; the volume factor  is then replaced by .

This method for calculating the Born series can be readily generalized to more complicated scattering potentials, including
potentials for which there is no exact solution.

The figure below shows the results of the Born approximation for the uniform potential well, compared to the “exact” solution
computed from partial wave analysis. It plots  versus the scattering energy , for the case of  scattering (i.e., 
perpendicular to ), with wells of different depth  and the same radius . We adopt computational units , and
each Monte Carlo integral is computed using  samples.

Figure 

The first thing to notice in these results in that  diminishes to zero for large . This makes sense, since the scattering potential
has some energy scale ( ), so a incident particle that is too energetic ( ) will just zoom through, with little chance of being
deflected.

Looking more closely at the plots, we see that for the shallower well ( ), the first Born approximation agrees well with the
exact results, and the second Born approximation is even better, particularly for small . For the deeper well ( ), the Born
approximations do not match the exact results. Roughly speaking, for the stronger scattering potential, an incident particle has a
higher chance to undergo multiple-scattering (i.e., bouncing around the potential multiple times before escaping), which means that
higher terms in the Born series become more important. In fact, if the potential is too strong, taking the Born approximation to
higher orders might not even work, as the Born series itself can become non-convergent. In those cases, different methods must be
brought to bear. We will see an example in the next chapter, in the form of phenomena known as “scattering resonances”.
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1.10: Exercises

Exercises

In Sec. 1.2, we derived the eigenstates of a particle in an empty infinite space by considering a box of length  on each side,
applying periodic boundary conditions, and taking . Suppose we instead use Dirichlet boundary conditions (i.e., the
wavefunction vanishes on the walls of the box). Show that this gives rise to the same set of momentum eigenstates in the 

 limit.

Using the results for the 1D delta-function scattering problem described in Section 1.3, calculate the probability current

where  is the total (incident + scattered) wavefunction. Explain the relationship between the values of  on the left and
right side of the scatterer.

Derive the Green’s function for a free particle in 1D space:

In Section 1.8, the scattering amplitude  for the 3D scattering problem was derived using the Born series. Derive the
corresponding expressions for 1D and 2D.

Further Reading

[1] Bransden & Joachain, §13.1—13.3 and §13.5—13.6.

[2] Sakurai, §7.1–7.3, 7.5–7.6
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2.1: Bound States and Free States
A curious feature of wavefunctions in infinite space is that they can have two distinct forms: (i) bound states that are localized to one region, and (ii) free states that extend over the
whole space. Both kinds of states can co-exist in a single system. A simple model exhibiting this is the 1D finite square well. Consider the Hamiltonian

where  and  are 1D position and momentum operators,  is the particle mass,  and  are positive real parameters governing the potential function, and  denotes the Heaviside step
function (1 if the input is positive, and 0 otherwise). As shown below, the potential forms a well of depth  and width . Outside the well, the potential is zero.

Figure 

For such a Hamiltonian, the time-independent Schrödinger wave equation can be solved efficiently using a technique called the transfer matrix method. Here, we will describe a few
key aspects of the calculation, bypassing most of the details. For a fuller discussion of the transfer matrix method, refer to Appendix B.

We begin by noting that obtaining solutions to the Schrödinger wave equation first requires specifying the boundary conditions at infinity. The choice of boundary conditions determines
whether the solution we get is a bound state or free state.

For a bound state, we require the wavefunction to diminish exponentially as . In the exterior region ( ), the Schrödinger wave equation reduces to

subject to the boundary conditions

Therefore, in the exterior region the bound state solutions take the form

Given that  is real, it follows that  is real, so . Moreover, the variational principle implies that , so bound state energies are restricted to the range .

It is also possible to show that the bound state energies are discrete: the energy spacing decreases with , but so long as  is finite, the spacing is non-vanishing. Furthermore, the
wavefunction for a bound state can always be normalized:

The normalization integral is finite since  vanishes exponentially for . These properties follow from the analysis of the general class of “Sturm-Liouville-type”
differential equations; for details, refer to textbooks such as Courant and Hilbert (1953).

For a free state, the situation is quite different. The wavefunction does not vanish exponentially at infinity, but takes the form

Inside the potential well,  varies in some complicated way; on the outside, it consists of superpositions of left-moving and right-moving plane waves with real wavenumber . The
coefficients  and  are not independent quantities, but are linked by a linear relation (see Appendix B). To satisfy Schrödinger’s equation, we must have

which implies that free states only occur for . These solutions form a continuum: there are free states for every . Since  does not diminish at infinity, the integral 
 is divergent, so the wavefunctions have no finite normalization.

The following figure shows numerically-obtained results for a square well with  and  (in units where ). The energy spectrum is shown on the left side. There
exist five bound states; their plots of  versus  are shown on the right side. These results were computed using the transfer matrix method described in Appendix B.

Figure 

Many of the lessons drawn from the square well model can be generalized to more complicated potentials. In cases where the potential at infinity is  rather than zero, free states
occur for  and bound states occur for .
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There is an important proviso to bear in mind. If we vary the potential, the number of bound states can change: i.e., bound state solutions can either appear or disappear. A numerical
example is given below, showing the bound state energies for the square well model with fixed , as we vary the potential minimum :

Figure 

For , there are five bound states, which disappear one by one as we make the potential well shallower. Note that one bound state survives in the limit . There is a theorem
stating that any 1D attractive potential, no matter how weak, always supports at least one bound state. For details, see Exercise 2.6.1.

In 3D, it is possible for an attractive potential to be too weak to support a bound state. Intuitively, this happens when the zero-point energy of a prospective ground state exceeds the well
depth. The figure below shows a numerical example, calculated for a uniform 3D spherically symmetric well (the ’s labeling the various curves are angular momentum quantum
numbers). To learn more about this phenomenon, refer to Exercise 2.6.2.

Figure 
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2.2: Quasi-Bound States and Resonances
For the 1D finite square well, there is a clear distinction between bound and free states. Certain potentials, however, can host a
special class of states called “quasi-bound states”. Like a bound state, a quasi-bound state is localized in one region of space.
However, it is an approximate eigenstate of the Hamiltonian that lies in the energy range of the free state continuum. As we shall
see, quasi-bound states play an important important role in scattering experiments.

The figure below shows an example of a potential function that gives rise to quasi-bound states. In the exterior region, , the
potential is zero. Between  and , there is a “barrier” of positive potential . Embedded in the middle of this barrier,
for , is a central well of depth , where .

Figure 

This potential is purely repulsive (  everywhere), so there are no true bound states. The only exact eigenstates of the
Hamiltonian are free states.

However, there is something intriguing about the central well. Consider an alternative scenario where the potential in the exterior
region is  rather than ; i.e., the potential function is a finite square well:

In this case, there would be one or more bound states, in the energy range . These bound states’ wavefunctions
diminish exponentially away from the well, and are thus close to zero for . Since  and  differ only in the region 

, these wavefunctions ought to be approximate solutions to the Schrödinger wave equation for the original potential ,
which does not support bound states! Such approximate solutions are called quasi-bound states.

Let us analyze the potential  using the scattering experiment framework from the previous chapter. Consider an incident
particle of energy  whose wavefunction is

This produces a scattered wavefunction  that is outgoing (as discussed in the previous chapter). In the exterior region, the
scattered wavefunction takes the form

The scattering amplitudes  and  can be found by solving the Schrödinger wave equation using the transfer matrix method (see
Appendix B). The figure below shows numerical results obtained for , and  or , with 

.

Figure 
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The vertical axis shows , which is called the “transmittance” and corresponds to the probability for the incident particle to
pass through the potential. The horizontal axis is the particle energy . For , the transmittance approaches zero, and
for , the transmittance approaches unity, as expected. In the energy range , the transmittance forms a
series of narrow peaks. For larger  (i.e., when the central well is more isolated from the exterior space), the peaks are narrower. At
the top of the figure, we have also plotted the bound state energies for the square well potential . These energies closely
match the locations of the transmittance peaks!

Upon examining the total wavefunction  at these special energies, we find other interesting features. The figure below plots 
 versus  at the energies of the first three transmittance peaks, along with the corresponding bound state wavefunctions for

the square well . At each transmittance peak,  is much larger within the potential region, and its shape is very similar to
a square well bound state.

Figure 

The enhancement of  is called a resonance. It happens because of the existence of a quasi-bound state—an approximate
energy eigenstate localized in the scattering region. When an incident particle enters the scattering region with the right energy, it
spends a long time trapped in the quasi-bound state, before eventually escaping back to infinity.

This is analogous to the phenomenon of resonance in a classical harmonic oscillator. When a damped harmonic oscillator is
subjected to an oscillatory driving force, it settles into a steady-state oscillatory motion at the driving frequency. If the driving
frequency matches the oscillator’s natural frequency, the amplitude of the oscillation becomes large, and the system is said to be
“resonant”. In the quantum mechanical context, the incident wavefunction plays the role of a driving force, the incident particle
energy is like the driving frequency, and the energy of a quasi-bound state is like a natural frequency of oscillation.

Resonances play a critical role throughout experimental physics. Experiments are often conducted for the express purpose of
locating and studying resonances. When a resonance peak is found, its location and shape can be used to deduce various features of
the quasi-bound state, which in turn supplies important information about the underlying system.

This page titled 2.2: Quasi-Bound States and Resonances is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform.
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2.3: Green's Function Analysis of Scattering Resonances
Quasi-bound states and resonances are not limited to 1D, but are equally (or more) important in 2D and 3D. A useful and general
way to study them is the quantum Green’s function formalism developed in the previous chapter.

Let  be the Hamiltonian of a system supporting resonances, where  is the kinetic energy operator and  is the
potential operator. We decompose the potential into

where  is a “confining potential” that supports a bound state, and  is a “deconfining potential” that turns the bound state into a
quasi-bound state. The figure below shows an example of such a decomposition, for the 1D model from the previous section.

Figure 

For the potential  (in the absence of ), let there be a bound state , with energy . Furthermore, we assume that the
potential supports a continuum of free states  with energies , where  is some -dimensional continuous index for the
free states (analogous to the wave-vector for plane wave states). The bound state and free states satisfy the Schrödinger equation

along with the orthogonality and completeness relations

As described in Section 1.7, the causal Green’s function is

Now introduce the deconfining potential . According to Dyson’s equations (Section VI of the previous chapter), the Green’s
function for the full system is

We want the matrix elements of , which can then be used to find scattering amplitudes. We will calculate them by using the
states  and  as a basis—but note that this basis does not consist of energy eigenfunctions of the full Hamiltonian . In
particular,  is not an exact eigenstate of .

As usual when dealing with Dyson’s equations, we must watch out for the fact that  appears on both the left and right hand sides.
This can be dealt with by judiciously inserting a resolution of the identity:

We now compute the matrix element  for both sides of the equation:
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|φ⟩ Ĥ
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Similarly, computing the matrix element  gives:

The equations thus far have been exact (we have not used perturbation theory). Now we apply an approximation: in the last line of
the above equation, let the factor of  be large, so that the first term in the sum becomes dominant. It will be shown below
that  being large is precisely the resonance condition, so this approximation will be self-consistent. With this, we obtain

Combining this with Equation  gives

Hence,

The quantity  is called the self-energy, and we will have more to say about it shortly. It depends on , but let us assume for
now that the dependence is weak, so that  can be effectively treated as a constant. It is complex-valued, and both its real and
imaginary parts are important; we will shortly show that .

From Equation , we can see that  is large when the denominator is as close to zero as possible. This is called
the resonance condition, and is self-consistent with the approximation that we made in the above derivation. As we vary the
incident energy  over the range of real values, the resonance condition is satisfied when

We call  the resonance energy. Its first term is the energy of the original bound state, in the absence of the deconfining
potential . The second term is the energy shift induced by . The third term is equal to the real part of the self-energy , and
has a more subtle meaning. Since the definition of  involves , we can think of this term as an energy shift induced by the
continuum of free states.

In Section 1.8, we derived the following relationship between the Green’s function and the scattering amplitude :

Here,  and  are incident and scattered plane-wave states satisfying . The first term describes the lowest-order
scattering process (the first Born approximation). The second term contains all second- and higher-order scattering processes. By
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= ⟨φ| |φ⟩+∫ k ⟨φ| | ⟩ ⟨ | |φ⟩Ĝ0 dd Ĝ ψk ψk V̂ 1Ĝ0
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inserting resolutions of the identity between each  and  operator in the second term, we find that  contains a contribution of
the form

At resonance, the denominator becomes small and hence  should be the dominant contribution to . It is worth emphasizing that
 is extracted from a combination of all terms in the Born series, not just low-order terms. Intuitively, we can think of a resonant

scattering scenario as one where the particle bounces around inside the potential many times before it finally escapes—i.e., high
orders in the Born series are significant.

The figure below shows the energy dependence of , according to Equation :

Figure 

The graph of  versus  has a shape known as a Lorentzian. It has a peak centered at the resonance energy . The peak
width is characterized by the full-width at half-maximum (FWHM), the spacing between the two energies where  is at half
its maximum value:

Thus, the closer the self-energy gets to being a real quantity, the sharper the peak.

The phase  also contains useful information. As  crosses  from below, the phase increases by . The energy range
over which this phase shift occurs is .

These two signatures—peaks and phase shifts—are sought after in numerous real-world scattering experiments. In actual
experiments, the peaks and phase shifts are often overlaid on a “background” caused by non-resonant effects. For example, the plot
below was released by the CMS experiment at the Large Hadron Collider (LHC), showing a resonance peak on a large background.
This was part of the evidence for the LHC’s discovery of a new particle, the Higgs boson, in 2012.

Figure 
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V̂ Ĝ f

Δf(k → ) ∝ ⟨ | |φ⟩⟨φ| |φ⟩⟨φ| |k⟩ = .k
′

k
′ V̂ Ĝ V̂
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2.4: Fermi's Golden Rule
We have seen that the width of a resonance is determined by the imaginary part of the self-energy, . In this section, we will
show that  has a physical meaning: it represents the decay rate of a quasi-bound state. Moreover, it can be approximated
using a simple but important formula known as Fermi’s Golden Rule.

Suppose we set the quantum state of a particle to a quasi-bound state  at some initial time . Since  is not an exact
eigenstate of the Hamiltonian, the particle will not remain in that state under time evolution. For , its wavefunction should
become less and less localized, which can be interpreted as the escape of the particle to infinity or the “decay” of the quasi-bound
state into the free state continuum.

The decay process can be described by

which is the probability for the system to continue occupying state  after time . In order to calculate , let us define the
function

where . For  and , we see that . The reason we deal with  is that it is more well-behaved
than the actual amplitude . The function is designed so that firstly, it vanishes at negative times prior to start
of our thought experiment; and secondly, it vanishes as  due to the “regulator” . The latter enforces the idea that the bound
state decays permanently into the continuum of free states, and is never re-populated by waves “bouncing back” from infinity.

We can determine  by first studying its Fourier transform,

Now insert a resolution of the identity, , where  denotes the exact eigenstates of  (for free states, the sum
goes to an integral in the usual way):

In the third line, the regulator  removes any contribution from the  limit of the integral, in accordance with our requirement
that the decay of the bound state is permanent. Hence, we obtain

where  is our old friend the causal Green’s function. The fact that the causal Green’s function shows up is due to our definition of
, which vanishes for .

As discussed in the previous section, when the resonance condition is satisfied,

where  is the resonance energy and  is the self-energy of the quasi-bound state. We can now perform the inverse Fourier
transform
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⟨φ| exp(−i t/ℏ)|φ⟩Ĥ

t → ∞ ε

f(t)

F (ω) = dt f(t) = dt ⟨φ| |φ⟩.∫
∞

−∞

eiωt ∫
∞

0

ei(ω+iε)t e−i t/ℏĤ (2.4.3)

= |n⟩⟨n|Î ∑n {|n⟩} Ĥ

F (ω) = dt ⟨φ| |n⟩⟨n|φ⟩∫
∞

0

ei(ω+iε)t ∑
n

e−i t/ℏĤ

= ⟨φ|n⟩( dt exp[i(ω− + iε) t]) ⟨n|φ⟩∑
n

∫
∞

0

En

ℏ

= ⟨φ|n⟩ ⟨n|φ⟩∑
n

i

ω− + iε
En

ℏ

= iℏ ⟨φ| |φ⟩.(ℏω− + iℏε)Ĥ
−1

(2.4.4)

ε t → ∞

F (ω) = iℏ ⟨φ| (ℏω)|φ⟩,lim
ε→0+

Ĝ (2.4.5)

Ĝ

f(t) t < 0

⟨φ| (E) |φ⟩ ≈ ,Ĝ
1

E− − iIm[Σ]Eres

(2.4.6)
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In deriving the last line, we performed a contour integration assuming that ; this assumption will be proven shortly. The
final result is

Let us now take a closer look at the self-energy. From our earlier definition,

where  and  are the bound and free states of the model in the absence of , and  is the energy of the -th free state.
The imaginary part is

The quantity inside the square brackets is a Lorentzian function, which is always positive; hence, , as previously
asserted. The Lorentzian function has the limiting form

This comes from the fact that as , the Lorentzian curve describes a sharper and sharper peak, but the area under the curve is
fixed as . Hence,

Because of the delta function, we see that the only non-vanishing contributions to the integral come from the parts of -space
where .

We can further simplify the result by defining the density of states,

Roughly speaking, this measures the number of free states that exist at energy . The -space volume  is proportional to the
number of free states at each , while the delta function restricts the contributions to only those free states with energy . (In the
next section, we’ll see an explicit example of how to calculate .) Now, for any function ,

where  denotes the mean value of  for the free states satisfying . Applying this to the imaginary part of the
self-energy gives

Hence, the quasi-bound state’s decay rate is

f(t)lim
ε→0+

= F (ω)lim
ε→0+

∫
∞

−∞

dω

2π
e−iωt

= dω
i

2π
∫

∞

−∞

e−iωt

ω−( + iIm[Σ])/ℏEres

= exp(− ) exp(− t).
i tEres

ℏ

|Im[Σ]|

ℏ

(2.4.7)

Im[Σ] < 0

P (t) = , where κ = .e−κt 2|Im[Σ]|

ℏ
(2.4.8)

Σ(E) ≡ ∫ k ,lim
ε→0+

dd
|⟨ | |φ⟩ψk V̂ 1 |

2

E− + iεEk

(2.4.9)

|φ⟩ {| ⟩}ψk V̂ 1 Ek k

Im[Σ(E)] = ∫ k ⟨ | |φ⟩ Im( )lim
ε→0+

dd ∣
∣ ψk V̂ 1

∣
∣
2 1

E− + iεEk

= −∫ k ⟨ | |φ⟩ [ ] .dd ∣
∣ ψk V̂ 1

∣
∣
2

lim
ε→0+

ε

(E− +Ek)2 ε2

(2.4.10)

Im(Σ) < 0

= πδ(x).lim
ε→0+

ε

+x2 ε2
(2.4.11)

ε → 0+

π

Im[Σ(E)] = −π ∫ k ⟨ | |φ⟩ δ(E− ).dd ∣
∣ ψk V̂ 1

∣
∣
2

Ek (2.4.12)

k

E = Ek

D(E) = ∫ k δ(E− ).dd Ek (2.4.13)

E k kdd

k E

D(E) f(k)

∫ k f(k) δ(E− ) = D(E),dd Ek f(k(E))
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯

(2.4.14)

f(k(E))
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯

f(k) = EEk

Im[Σ(E)] = −π D(E).⟨ | |φ⟩∣
∣ ψk(E) V̂ 1

∣
∣
2¯ ¯¯̄¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄¯
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This extremely important result is called Fermi’s golden rule. It says that the decay rate of a quasi-bound mode is directly
proportional to two factors. The first factor describes how strongly  couples the quasi-bound state and the free states, as
determined by the quantity , called the transition amplitude. It goes to zero when , which is the case where 
is a true bound state that does not decay. The second factor is the density of free states, and describes how many free states are
available for  to decay into. Both factors depend on energy, and must be evaluated at the resonance energy .

This page titled 2.4: Fermi's Golden Rule is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

Definition: Fermi's Golden Rule
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2.5: Fermi's Golden Rule in a 1D Resonance Model
Fermi’s golden rule can be used to study a wide variety of quantum systems, and we will see examples of its usefulness in
subsequent chapters. In this section, we will apply it to the simple 1D model from Section 2.2, and evaluate how well it works. The
model potential is

The potential well  supports one or more bound states. For simplicity, we focus on the ground state, whose energy  lies in the
range . Once  is introduced, this will turn into the lowest quasi-bound state, with resonance energy .

When the potential consists only of , the ground state wavefunction can be obtained by solving the Schrödinger wave equation
for the boundary condition  as . It has the form

where  and  are constants to be determined, and

By matching both  and  across the  interface, we can derive a transcendental equation for , which can be
solved numerically. Once we know , we also know  and . We can then relate  and  by matching  across the 
interface:

Moreover, the wavefunction must be normalized to unity:

Putting the last two equations together yields

We now wish to compute the transition amplitude

where  is the wavefunction of a free state for the system with potential , which is labeled by some continuous index .
We can use a trick to avoid calculating the exact form of . Because  and  must be orthogonal,

When evaluating the free states outside the potential well, we can approximate them as the free states of the particle without the
potential well, i.e., simple plane waves:

We likewise approximate their energies by . Plugging  into the formula for the transition amplitude, and
performing the necessary integrals, yields

V (x) = (x) + (x), whereV0 V1

(x) = −U Θ(a−|x|), (x) = Θ(b−|x|), 0 < U < .V0 V1 Vb Vb
(2.5.1)

V0 E0

[−U, 0] V1 ≈ + > 0Eres E0 Vb

V0

φ(x) → 0 |x| → ∞

φ(x) ={
A cos(qx),
B exp(−η|x|),

|x| < a

|x| ≥ a,
(2.5.2)

A B

q = , η = .( +U)
2m

ℏ2
E0

− −−−−−−−−−−
√ | |

2m

ℏ2
E0

− −−−−−−
√ (2.5.3)

φ(x) dφ/dx x = a E0

E0 q η A B φ(x) x = a

A = B .
exp(−ηa)

cos(qa)
(2.5.4)

1 = (qx) +2 dx exp(−2ηx)A
2 ∫

a

−a

cos2
B

2 ∫
∞

a

= (a+ )+ .A
2 sin(2qa)

2q
B2 exp(−2ηa)

η

(2.5.5)

= .B2
exp(2ηa)

a
[ + ]

1 +sin(2qa)/2qa

(qa)cos2

1

ηa

−1

(2.5.6)

⟨ | |φ⟩ = dx (x) (x)φ(x) = dx (x)φ(x),ψk V̂ 1 ∫
∞

−∞
ψ∗
k V1 Vb ∫

b

−b
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k (2.5.7)

(x)ψk (x)V0 k

(x)ψk (x)ψk φ(x)

dx (x)φ(x) = − dx (x)φ(x).∫
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−b

ψ∗
k ∫

|x|>a

ψ∗
k (2.5.8)

(x) = , k ∈ R, |x| > a.ψk

1

2π
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√
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≈ /2mEk ℏ2k2 (x)ψk
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Within Fermi’s golden rule, we must use a value of  such that

The next thing that we need to calculate is the density of free states. This can be done by once again taking , and
performing a change of variables:

Note the factor of 2 on the second line; it is there because there is both a positive and a negative value of  for each .

Having obtained expressions for the transition amplitude and the density of states, we just have to plug them into Fermi’s golden
rule to obtain the decay rate . The figure below shows how  varies with the barrier thickness , with all other model
parameters fixed ( ):

Figure 

For comparison, the figure also plots the width of the resonant scattering peak, which according to our preceding discussion is
supposed to be equal to . To obtain these values, we use the transfer matrix method to compute the -dependent transmittance for
particles incident on one side of the potential (see Appendix B). The transmittance is peaked near , and the full-width at half-
maximum (see Section 2.3) is estimated numerically. The results are shown as blue dots in the figure.

We see that Fermi’s golden rule generally agrees well with the results from the transfer matrix method. There is some discrepancy,
notably when the barrier is thin. Remember that Fermi’s golden rule relies on the approximation that the quasi-bound state is
strongly confined (i.e., having  be large in the derivations of Sections 2.3 and 2.4). Moreover, we have approximated the
free states  using the plane wave states in the absence of any potential, which is an assumption commonly employed when
using Fermi’s golden rule.

This page titled 2.5: Fermi's Golden Rule in a 1D Resonance Model is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform.
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∞
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2.6: Exercises

Exercises

Use the variational theorem to prove that a 1D potential well has at least one bound state. Assume that the potential 
satisfies (i)  for all , and (ii)  for . The Hamiltonian is

Consider a (real) trial wavefunction

Note that this can be shown to be normalized to unity, using Gauss’ integral

Now prove that

where  and  are positive real constants to be determined. By looking at the quantity in square brackets in the limit ,
argue that  in this limit. Hence, explain why this implies the existence of a bound state.

Finally, try generalizing this approach to the case of a 2D radially-symmetric potential well , where 
. Identify which part of the argument fails in 2D. [For a discussion of certain 2D potential wells that do always

support bounds states, similar to 1D potential wells, see Simon (1976).]

In this problem, you will investigate the existence of bound states in a 3D potential well that is finite, uniform, and spherically-
symmetric. The potential function is

where  is the radius of the spherical well,  is the depth, and  are spherical coordinates defined in the usual way.

The solution involves a variant of the partial wave analysis discussed in Appendix A. For , the Schrödinger equation
reduces to

For the first equation (called the Helmholtz equation), we seek solutions of the form

where  are spherical harmonics, and the integers  and  are angular momentum quantum numbers satisfying 
and . Substituting into the Helmholtz equation yields

Exercise 2.6.1

V (x)
V (x) < 0 x V (x) → 0 x → ±∞

= − +V (x).Ĥ
ℏ2

2m

d2

dx2
(2.6.1)

ψ(x; γ) = .( )
2γ

π

1/4

e−γx2

(2.6.2)

dx = .∫
∞

−∞
e−2γx2 π

2γ

−−−
√ (2.6.3)

⟨E⟩ = dx ψ(x) ψ(x)∫
∞

−∞
Ĥ

= dx + dx V (x) (x)
ℏ2

2m
∫

∞

−∞
( )
dψ

dx

2

∫
∞

−∞
ψ2

= A [ + B dx V (x) ] ,γ−−√ γ−−√ ∫
∞

−∞
e−γx2

(2.6.4)

A B γ → 0
⟨E⟩ < 0

V (x, y) = V (r)
r = +x2 y2

− −−−−−
√

Exercise 2.6.2

V (r, θ,ϕ) = −UΘ(a−r), (2.6.5)

a U (r, θ,ϕ)

E < 0

⎧

⎩
⎨
⎪

⎪

( + )ψ(r, θ,ϕ) = 0 where q = ,∇2 q2 2m(E+U)/ℏ2− −−−−−−−−−−−
√

( − )ψ(r, θ,ϕ) = 0 where γ = ,∇2 γ2 −2mE/ℏ2
− −−−−−−−

√

for r ≤ a

for r ≥ a.
(2.6.6)

ψ(r, θ,ϕ) = f(r) (θ,ϕ),Yℓm (2.6.7)

(θ,ϕ)Yℓm l m l ≥ 0
−l ≤ m ≤ l
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which is the spherical Bessel equation. The solutions to this equation that are non-divergent at  are ,
where  is called a spherical Bessel function of the first kind. Most numerical packages provide functions to calculate these
(e.g., scipy.special.spherical_jn  in Scientific Python).

Similarly, solutions for the second equation can be written as  yielding an equation for  called
the modified spherical Bessel equation. The solutions which do not diverge as  are , where  is called
a modified spherical Bessel function of the second kind. Again, this can be computed numerically (e.g., using 
scipy.special.spherical_kn  in Scientific Python).

Using the above facts, show that the condition for a bound state to exist is

where  and  denote the derivatives of the relevant special functions, and  and  depend on  and  as described above.
Write a program to search for the bound state energies at any given  and , and hence determine the conditions under which
the potential does not support bound states.

Further Reading
[1] Bransden & Joachain, §4.4, 9.2–9.3, 13.4

[2] Sakurai, §5.6, 7.7–7.8

[3] R. Courant and D. Hilbert, Methods of Mathematical Physics vol. 1, Interscience (1953).

[4] B. Simon, The bound state of weakly coupled Schrödinger operators in one and two dimensions, Annals of Physics 97, 279
(1976).
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3: Quantum Entanglement
They don’t think it be like it is, 
but it do.
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3.1: Quantum States of Multi-Particle Systems
So far, we have studied quantum mechanical systems consisting of single particles. The next important step is to look at systems of more than one particle. We shall see that the postulates
of quantum mechanics, when applied to multi-particle systems, give rise to interesting and counterintuitive phenomena such as quantum entanglement.

Suppose we have two particles labeled  and . If each individual particle is treated as a quantum system, the postulates of quantum mechanics require that its state be described by a
vector in a Hilbert space. Let  and  denote the respective single-particle Hilbert spaces. Then the Hilbert space for the combined system of two particles is

The symbol  refers to a tensor product, a mathematical operation that combines two Hilbert spaces to form another Hilbert space. It is most easily understood in terms of explicit
basis vectors: let  be spanned by a basis , and  be spanned by . Then  is a space spanned by basis vectors consisting of
pairwise combinations of basis vectors drawn from the  and  bases:

Thus, if  has dimension  and  has dimension , then  has dimension . Any two-particle state can be written as a superposition of these basis vectors:

The inner product between the tensor product basis states is defined as follows:

In other words, the inner product is performed “slot-by-slot”. We calculate the inner product for , calculate the inner product for , and then multiply the two resulting numbers. You
can check that this satisfies all the formal requirements for an inner product in linear algebra (see Exercise 3.9.1).

For example, suppose  and  are both 2D Hilbert spaces describing spin-  degrees of freedom. Each space can be spanned by an orthonormal basis ,
representing “spin-up” and “spin-down”. Then the tensor product space  is a 4D space spanned by

We now make an important observation. If  is in state  and  is in state , then the state of the combined system is fully specified: . But the reverse is not
generally true! There exist states of the combined system that cannot be expressed in terms of definite states of the individual particles. For example, consider the following quantum
state of two spin-  particles:

This state is constructed from two of the four basis states in , and you can check that the factor of  ensures the normalization  with the inner product rule .
It is evident from looking at Equation  that neither  nor  possesses a definite  or  state. Moreover, we shall show (in Section 3.7) that there’s no choice of basis that
allows this state to be expressed in terms of definite individual-particle states; i.e.,

In such a situation, the two particles are said to be entangled.

It is cumbersome to keep writing  symbols, so we will henceforth omit the  in cases where the tensor product is obvious. For instance,

For systems of more than two particles, quantum states can be defined using multiple tensor products. Suppose a quantum system contains  particles described by the individual
Hilbert spaces  having dimensionality . Then the overall system is described by the Hilbert space

which has dimensionality . The dimensionality scales exponentially with the number of particles! For instance, if each particle has a 2D Hilbert space, a -particle
system has a Hilbert space with  dimensions. Thus, even in quantum systems with a modest number of particles, the quantum state can carry huge amounts of
information. This is one of the motivations behind the active research field of quantum computing.

Finally, a proviso: although we refer to subsystems like  and  as “particles” for narrative convenience, they need not be actual particles. All this formalism applies to general
subsystems—i.e., subsets of a large quantum system’s degrees of freedom. For instance, if a quantum system has a position eigenbasis for 3D space, the , , and  coordinates are
distinct degrees of freedom, so each position eigenstate is really a tensor product:

Also, if the subsystems really are particles, we are going to assume for now that the particles are distinguishable. There are other complications that arise if the particles are “identical”,
which will be the subject of the next chapter (if you’re unsure what this means, just read on).

This page titled 3.1: Quantum States of Multi-Particle Systems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source content that was edited to the
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3.2: Partial Measurements
Let us recall how measurements work in single-particle quantum theory. Each observable  is described by some Hermitian
operator , which has an eigenbasis  such that

For simplicity, let the eigenvalues  be non-degenerate. Suppose a particle initially has quantum state . This can always be
expanded in terms of the eigenbasis of :

The measurement postulate of quantum mechanics states that if we measure , then (i) the probability of obtaining the
measurement outcome  is , the absolute square of the coefficient of  in the basis expansion; and (ii) upon obtaining
this outcome, the system instantly “collapses” into state .

Mathematically, these two rules can be summarized using the projection operator

Applying this operator to  gives the non-normalized state vector

From this, we glean two pieces of information:

1. The probability of obtaining this outcome is .

2. The post-collapse state is obtained by the re-normalization .

For multi-particle systems, there is a new complication: what if a measurement is performed on just one particle?

Consider a system of two particles A and B, with two-particle Hilbert space . We perform a measurement on particle ,
corresponding to a Hermitian operator  that acts upon  and has eigenvectors  (i.e., the eigenvectors are
enumerated by some index ). We can write any state  using the eigenbasis of  for the  part, and an arbitrary basis 
for the  part:

Unlike the single-particle case, the “coefficient” of  in this basis expansion is not a complex number, but a vector in .

Proceeding by analogy, the probability of obtaining the outcome labelled by  should be the “absolute square” of this “coefficient”,
. Let us define the partial projector

The  slot of this operator contains a projector, , while the  slot leaves the  part of the two-particle space unchanged.
Applying the partial projector to the state given in Equation  gives

Now we follow the same measurement rules as before. The outcome probability is

The post-measurement collapsed state is obtained by the re-normalization

Q

Q̂ {| ⟩}qi

| ⟩ = | ⟩.Q̂ qi qi qi (3.2.1)

{ }qi |ψ⟩
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| ⟩qi

( ) = | ⟩⟨ |.Π̂ qi qi qi (3.2.3)

|ψ⟩

| ⟩ = | ⟩⟨ |ψ⟩.ψ′ qi qi (3.2.4)
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2
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A system of two spin-  particles is in the “singlet state”

For each particle,  and  denote eigenstates of the operator , with eigenvalues  and  respectively.
Suppose we measure  on particle A. What are the probabilities of the possible outcomes, and the associated post-collapse
states?

First outcome: .

The partial projector is .

Applying the projection to  yields .

The outcome probability is .

The post-collapse state is 

Second outcome: .

The partial projector is .

Applying the projection to  yields .

The outcome probability is .

The post-collapse state is .

The two possible outcomes,  and , occur with equal probability. In either case, the two-particle state collapses so that 
is in the observed spin eigenstate, and  has the opposite spin. After the collapse, the two-particle state is no longer entangled.
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|+z ⟩ |−z ⟩ Ŝz +ℏ/2 −ℏ/2
Sz

+ℏ/2

|+z⟩⟨+z| ⊗ Î
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3.3: The Einstein-Podolsky-Rosen "Paradox"
In 1935, Einstein, Podolsky, and Rosen (EPR) formulated a thought experiment, now known as the EPR paradox, that highlights
the counter-intuitive features of quantum entanglement. They tried to use this thought experiment to argue that quantum theory
cannot serve as a fundamental description of reality. Subsequently, however, it was shown that the EPR paradox is not an actual
paradox; physical systems really do have the strange behavior that the thought experiment highlighted.

Consider an entangled state, like the following “singlet state” of two spin-  particles:

As before, let the two particles be labeled  and . Measuring  on  collapses the system into a two-particle state that is
unentangled, where each particle has a definite spin. If the measurement outcome is , the new state is , whereas if
the outcome is , the new state is .

The postulates of quantum theory seem to indicate that the state collapse happens instantaneously, regardless of the distance
separating the particles. Imagine that we prepare the two-particle state in a laboratory on Earth. Particle  is then transported to the
laboratory of Alice, in the Alpha Centauri star system, and particle  is transported to the laboratory of Bob, in the Betelgeuse
system, separated by  light years. In principle, this can be done carefully enough to avoid disturbing the two-particle
quantum state.

Figure 

Once ready, Alice measures  on particle , which induces an instantaneous collapse of the two-particle state. Immediately
afterwards, Bob measures  on particle , and obtains—with 100% certainty—the opposite spin. During the time interval
between these two measurements, no classical signal could have traveled between the two star systems, not even at the speed of
light. Yet the state collapse induced by Alice’s measurement has a definite effect on the result of Bob’s measurement.

There are three noteworthy aspects of this phenomenon:

First, it dispels some commonsensical but mistaken “explanations” for quantum state collapse in terms of perturbative effects. For
instance, it is sometimes explained that if we want to measure a particle’s position, we need to shine a light beam on it, or disturb it
in some way, and this disturbance generates an uncertainty in the particle’s momentum. The EPR paradox shows that such stories
don’t capture the full weirdness of quantum state collapse, for we can collapse the state of a particle by doing a measurement on
another particle far away!

Second, our experimentalists have a certain amount of control over the state collapse, due to the choice of what measurement to
perform. So far, we have considered  measurements performed by Alice on particle . But Alice can choose to measure the spin
of  along another axis, say . In the basis of spin-up and spin-down states, the operator  has matrix representation

The eigenvalues and eigenvectors are

Conversely, we can write the  eigenstates in the  basis:
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This allows us to write the two-particle entangled state in the  basis:

Alice’s measurement still collapses the particles into definite spin states with opposite spins—but now spin states of  rather than 
.

Third, this ability to choose the measurement axis does not allow for superluminal communication. Alice can choose whether to (i)
measure  or (ii) measure , and this choice instantaneously affects the quantum state of particle . If Bob can find a way to
distinguish between the cases (i) and (ii), even statistically, this would serve as a method for instantaneous communication,
violating the theory of relativity! Yet this turns out to be impossible. The key problem is that quantum states themselves cannot be
measured; only observables can be measured. Suppose Alice’s measurement is , which collapses  to either  or , each
with probability . Bob must now choose which measurement to perform. If he measures , the outcome is  or  with
equal probabilities. If he measures , the probabilities are:

The probabilities are still equal! Repeating this analysis for any other choice of spin axis, we find that the two possible outcomes
always have equal probability. Thus, Bob’s measurement does not yield any information about Alice’s choice of measurement axis.

Since quantum state collapse does not allow for superluminal communication, it is consistent in practice with the theory of
relativity. However, state collapse is still nonlocal, in the sense that unobservable ingredients of the theory (quantum states) can
change faster than light can travel between two points. For this reason, EPR argued that quantum theory is philosophically
inconsistent with relativity.

EPR suggested an alternative: maybe quantum mechanics is an approximation of some deeper theory, whose details are currently
unknown, but which is deterministic and local. Such a “hidden variable theory” may give the appearance of quantum state
collapse in the following way. Suppose each particle has a definite but “hidden” value of , either  or ; let
us denote these as  or . We can hypothesize that the two-particle quantum state  is not an actual description of reality;
rather, it corresponds to a statistical distribution of “hidden variable” states, denoted by  (i.e.,  for particle  and 

 for particle ), and  (the other way around).

Figure 

When Alice measures , the value of the hidden variable is revealed. A result of  implies , whereas  implies .
When bob subsequently measures , the result obtained is the opposite of Alice’s result. But those were simply the values all
along—there is no instantaneous physical influence traveling between their two laboratories.

Clearly, there are many missing details in this hypothetical description. Any actual hidden variable theory would also need to
replicate the huge list of successful predictions made by quantum theory. Trying to come up with a suitable theory of this sort
seems difficult, but with enough hard work, one might imagine that it is doable.
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3.4: Bell's Theorem
In 1964, John S. Bell published a bombshell paper showing that the predictions of quantum theory are inherently inconsistent with
hidden variable theories. The amazing thing about this result, known as Bell’s theorem, is that it requires no knowledge about the
details of the hidden variable theory, just that it is deterministic and local. Here, we present a simplified version of Bell’s theorem
due to Mermin (1981).

We again consider spin-1/2 particle pairs, with particle  sent to Alice at Alpha Centauri, and particle  to Bob at Betelgeuse.
Each experimentalist can measure the particle’s spin along three distinct choices of spin axis. These spin observables are denoted
by , , and . We will not specify the actual directions of these spin axes until later in the proof. For now, just note that the
axes need not correspond to orthogonal spatial directions.

We repeatedly prepare the particle pairs in the singlet state

and send the respective particles to Alice and Bob. During each round of the experiment, each experimentalist randomly chooses
one of the three spin axes , , or , and performs that spin measurement. It doesn’t matter which experimentalist performs the
measurement first; the experimentalists can’t influence each other, as there is not enough time for a light-speed signal to travel
between the two locations. Many rounds of the experiment are conducted; for each round, both experimentalists’ choices of spin
axis are recorded, along with their measurement results.

Figure 

At the end, the experimental records are brought together and examined. We assume that the results are consistent with the
predictions of quantum theory. Among other things, this means that whenever the experimentalists happen to choose the same
measurement axis, they always find opposite spins. (For example, this is the case during “Experiment 4” in the above figure, where
both experimentalists happened to measure .)

Can a hidden variable theory reproduce the results predicted by quantum theory? In a hidden variable theory, each particle must
have a definite value for each spin observable. For example, particle  might have . Let us
denote this by . To be consistent with the predictions of quantum theory, the hidden spin variables for the two particles
must have opposite values along each direction. This means that there are  distinct possibilities, which we can denote as

For instance,  indicates that for particle ,  and , while particle  has the opposite
spin values,  and . So far, however, we don’t know anything about the relative probabilities of these 8
cases.

Let’s now focus on the subset of experiments in which the two experimentalists happened to choose different spin axes (e.g., Alice
chose  and Bob chose ). Within this subset, what is the probability for the two measurement results to have opposite signs (i.e.,
one  and one )? To answer this question, we first look at the following 6 cases:
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These are the cases which do not have all  or all  for each particle. Consider one of these, say . The two
experimentalists picked their measurement axes at random each time, and amongst the experiments where they picked different
axes, there are two ways for the measurement results to have opposite signs:  or . There are four ways to get the
same sign: , ,  and . Thus, for this particular set of hidden variables, the probability for
measurement results with opposite signs is 1/3. If we go through all 6 of the cases listed above, we find that in call cases, the
probability for opposite signs is 1/3.

Now look at the remaining 2 cases:

For these, Alice and Bob always obtain results with opposite signs. Combining this with the findings from the previous paragraph,
we obtain the following statement:

Given that the two experimentalists choose different spin axes, the probability that their
results have opposite signs is .

This is called Bell’s inequality. If we can arrange a situation where quantum theory predicts a probability  (i.e., a
violation of Bell’s inequality), that would mean that quantum theory is inherently inconsistent with local deterministic hidden
variables. This conclusion would hold regardless of the “inner workings” of the hidden variable theory. In particular, note that the
above derivation made no assumptions about the relative probabilities of the hidden variable states.

To complete the proof, we must find a set  such that the predictions of quantum mechanics violate Bell’s inequality.
One simple choice is to align  with the  axis, and align  and  along the -  plane at  (  radians) from , as
shown below:

Figure 

The corresponding spin operators can be written in the eigenbasis of :

Suppose Alice chooses , and obtains . Particle  collapses to state , and particle  collapses to state . Bob is
assumed to choose a different spin axis. If the choice is , the expectation value is

If  and  respectively denote the probability of measuring  and  in this measurement, the above equation implies
that . Moreover,  by probability conservation. Hence, the probability of obtaining a negative value
(the opposite sign from Alice’s measurement) is . All the other possible scenarios are worked out similarly. The result is
that the overall probability of the two experimentalists obtaining opposite results (in the cases where they choose different
measurement axis) is . Bell’s inequality is violated!

Last of all, we must consult Nature itself. Is it possible to observe, in an actual experiment, probabilities that violate Bell’s
inequality? In the decades following Bell’s 1964 paper, many experiments were performed to answer this question. These
experiments are all substantially more complicated than the simple two-particle spin-  model that we’ve studied, and they are
subject to various uncertainties and “loopholes” that are beyond the scope of our discussion. But in the end, the experimental
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ℏ

2
σ3

= [cos(2π/3) +sin(2π/3) ]
ℏ

2
σ3 σ1

= [cos(2π/3) −sin(2π/3) ] .
ℏ

2
σ3 σ1

(3.4.3)

S1 +ℏ/2 A |+z⟩ B |−z⟩

S2

⟨ −z | | −z ⟩S2 = [cos(2π/3)⟨ −z | | −z ⟩+sin(2π/3)⟨ −z | | −z ⟩]
ℏ

2
σ3 σ1

= ⋅
ℏ

2

1

2

(3.4.4)

P+ P− +ℏ/2 −ℏ/2
− = +1/2P+ P− + = 1P+ P−

= 1/4P−

1/4

1/2
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consensus appears to be a clear yes: Nature really does behave according to quantum mechanics, and in a manner that cannot be
replicated by deterministic local hidden variables! A summary of the experimental evidence is given in a review paper by Aspect
(1999).
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3.5: Quantum Cryptogaphy
One of the most remarkable consequences of Bell’s thought experiment is that it provides a way to perform cryptography that is
more secure, in certain respects, than conventional cryptography. This possibility was first raised by Ekert, and it has led to a huge
amount of research into quantum cryptography, which is poised to be one of the most important technological applications of
quantum mechanics.

Ekert’s quantum cryptography scheme allows two participants, Alice and Bob, to share with each other a string of random binary
digits (0 or 1), called a “key”, in such a manner that no one else can learn the key by eavesdropping on their communications. Once
Alice and Bob have established a secret shared key, it can be used to encrypt subsequent messages between them, which nobody
else can decipher (e.g., by using one-time pads).

The scheme follows almost immediately from the Bell thought experiment of Section 3.4. In each round, a pair of spin-
particles is prepared in the singlet state, with particle  sent to Alice and  sent to Bob. Alice and Bob each randomly choose a
measurement axis ( , , or ), and measure the spin of their particle along that axis.

After an appropriate number of rounds, Alice and Bob publicly announce their choices of measurement axes. These announcements
are assumed to take place over a classical communication channel that cannot be jammed or manipulated by any hostile party
(though it can be eavesdropped upon). From the announcements, Alice and Bob determine the rounds in which they happened to
pick the same axes. Their measurement results during these rounds are guaranteed to be the opposites of each other. Hence, they
have established a random binary string known to each other but to no one else.

How might an eavesdropper, Eve, attempt to foil this scheme? Suppose Eve can intercept some or all of the particles  destined for
Bob. She might try to substitute her own measurements, in a manner that could let her work out the secret key. However, Eve is
hampered by the fact that she is unable to predict or influence Bob’s choices of measurement axes (i.e., Bob’s choices are truly
random), nor is she able to impersonate Bob during the announcements of the axis choices (i.e., the classical communication
channel is unjammable). Under these assumptions, it can be shown that any attempt by Eve to substitute her own measurements can
be detected by Alice and Bob, by performing a statistical analysis of their measurement results in the rounds with different different
axis choices. The detection of the eavesdropper turns out to be essentially the same as checking for Bell’s inequality. For details,
refer to Ref.

Alternatively, Eve might try to “clone” the quantum state of particle  before passing it along to Bob. If this can be done, Eve can
retain the cloned quantum state, wait for Bob to announce his choice of measurement axis for that round, and then perform the
corresponding measurement to reproduce Bob’s result. Though plausible at first glance, this turns out to be fundamentally
unworkable, as it is incompatible with the laws of quantum mechanics.

The so-called no-cloning theorem can be proven as follows. Eve desires to clone an arbitrary state of a spin-half particle  onto
another spin-half particle . The two-particle Hilbert space is . With particle  initially prepared in some state , Eve
must devise a unitary operation , representing the cloning process, such that

for all , and for some phase factor  that could depend on . Note that the value of  does not affect the outcomes of
measurements.

Now replace  in the above equation with two arbitrary states denoted by  and , and take their inner product. According
to Equation ,

Here,  and  are the phase factors from Equation  for the two chosen states. On the other hand, since  is unitary,

Here we have used the fact that . Comparing the magnitudes of  and ,

1/2
A B

S1 S2 S3

B

B

B

C H ⊗H C |0⟩

Û

|ψ⟩|0⟩ = |ψ⟩|ψ⟩Û eiϕ (3.5.1)

|ψ⟩ ∈ H ϕ |ψ⟩ ϕ

|ψ⟩ | ⟩ψ1 | ⟩ψ2

(3.5.1)

(⟨ |⟨0| )( | ⟩|0⟩)ψ1 Û
†

Û ψ2 = (⟨ |⟨ | )( | ⟩| ⟩)ψ1 ψ1 e−iϕ1 eiϕ2 ψ2 ψ2

= (⟨ | ⟩ .e−i( − )ϕ1 ϕ2 ψ1 ψ2 )
2 (3.5.2)

ϕ1 ϕ2 (3.5.1) Û

⟨ |⟨0| | ⟩|0⟩ψ1 Û
†
Û ψ2 = (⟨ |⟨0|)(| ⟩|0⟩)ψ1 ψ2

= ⟨ | ⟩.ψ1 ψ2

(3.5.3)

⟨0|0⟩ = 1 (3.5.2) (3.5.3)
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But aside from the trivial case of a one-dimensional Hilbert space, this cannot be true for arbitrary  and . For instance, for
a two-dimensional space spanned by an orthonormal basis , we can pick

This page titled 3.5: Quantum Cryptogaphy is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong
via source content that was edited to the style and standards of the LibreTexts platform.

⟨ | ⟩ = ⟨ | ⟩ ⇒ ⟨ | ⟩ = 0 or 1.∣∣ ψ1 ψ2 ∣∣
2 ∣∣ ψ1 ψ2 ∣∣ ∣∣ ψ1 ψ2 ∣∣ (3.5.4)

| ⟩ψ1 | ⟩ψ2

{|0⟩, |1⟩}

| ⟩ = |0⟩, | ⟩ = (|0⟩+|1⟩) ⇒ ⟨ | ⟩ = .ψ1 ψ2
1

2
–

√
∣∣ ψ1 ψ2 ∣∣

1

2
–

√
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3.6: Density Operators
We now introduce the density operator, which helps to streamline many calculations in multi-particle quantum mechanics.

Consider a quantum system with a -dimensional Hilbert space . Given an arbitrary state , define

This is just the projection operator for , but in this context we call it a “density operator”. Some other authors call it a density
matrix, based on the fact that linear operators can be represented as matrices. It has the following noteworthy features:

1. It is Hermitian.

2. Suppose  is an observable with eigenvalues  and eigenstates  (where  is some label that enumerates the
eigenstates. If we do a  measurement on , the probability of obtaining  is

3. Moreover, the expectation value of the observable is

In the last equality,  denotes the trace, which is the sum of the diagonal elements of the matrix representation of the
operator. The value of the trace is basis-independent.

Now consider, once again, a composite system consisting of two subsystems  and , with Hilbert spaces  and . Let’s say
we are interested in the physical behavior of , that is to say the outcome probabilities and expectation values of any
measurements performed on . These can be calculated from , the state of the combined system; however,  also carries
information about , which is not relevant to us as we only care about .

There is a more economical way to encode just the information about . We can define the density operator for subsystem 
(sometimes called the reduced density operator):

Here,  refers to a partial trace. This means tracing over the  part of the Hilbert space , which yields
an operator acting on .

To better understand Equation , let us go to an explicit basis. Let  be an observable for  with eigenbasis , and
let  be an observable for  with eigenbasis . If the density operator of the combined system is , then

This is a Hermitian operator acting on the  space. In the  basis, its diagonal matrix elements are

According to the rules of partial measurements discussed in Section 3.2, this is precisely the probability of obtaining  when
measuring  on subsystem :

It follows that the expectation value for observable  is

d H |ψ⟩ ∈ H

= |ψ⟩ ⟨ψ|.ρ̂ (3.6.1)

|ψ⟩

Q̂ { }qμ {|μ⟩} μ

Q̂ |ψ⟩ qμ

= ⟨μ|ψ⟩ = ⟨μ| |μ⟩.Pμ ∣∣ ∣∣
2

ρ̂ (3.6.2)

⟨Q⟩ = = ⟨μ| |μ⟩ = Tr[ ].∑
μ

qμPμ ∑
μ

qμ ρ̂ Q̂ ρ̂ (3.6.3)

Tr[⋯]

A B HA HB

A

A |ψ⟩ |ψ⟩

B A

A A

= [ ].ρ̂A TrB ρ̂ (3.6.4)

[⋯]TrB HB H = ⊗HA HB

HA

(3.6.4) Q̂A HA {|μ⟩}

Q̂B HB {|ν⟩} = |ψ⟩⟨ψ|ρ̂

= ( ⊗ ⟨ν|) |ψ⟩⟨ψ| ( ⊗|ν⟩).ρ̂A ∑
ν

Î Î (3.6.5)

HA {|μ⟩}

⟨μ| |μ⟩ρ̂A = (⟨μ|⟨ν|) |ψ⟩⟨ψ| (|μ⟩|ν⟩)∑
ν

= ⟨ψ| [|μ⟩⟨μ| ⊗( |ν⟩⟨ν|)] |ψ⟩∑
ν

= ⟨ψ| (|μ⟩⟨μ| ⊗ )|ψ⟩.Î B

(3.6.6)

qμ

Q̂A A

= ⟨μ| |μ⟩.Pμ ρ̂A (3.6.7)

M̂
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These results hold for any choice of basis. Hence, knowing the density operator for , we can determine the outcome probabilities
of any partial measurement performed on .

To better understand the properties of , let us write  explicitly as

where . Then

But  is not necessarily normalized to unity: . Let us define

Note that each  is a non-negative real number in the range . Then

In general, we can define a density operator as any operator that has the form of Equation , regardless of whether or not it
was formally derived via a partial trace. We can interpret it as describing a ensemble of quantum states weighted by a set of
classical probabilities. Each term in the sum consists of (i) a weighting coefficient  which can be regarded as a probability (the
coefficients are all real numbers in the range , and sum to 1), and (ii) a projection operator associated with some normalized
state vector . Note that the states in the ensemble do not have to be orthogonal to each other.

From this point of view, a density operator of the form  corresponds to the special case of an ensemble containing only one
quantum state . Such an ensemble is called a pure state, and describes a quantum system that is not entangled with any other
system. If an ensemble is not a pure state, we call it a mixed state; it describes a system that is entangled with some other system.

We can show that any linear operator  obeying Equation  has the following properties:

1.  is Hermitian.

2.  for any  (i.e., the operator is positive semidefinite).

3. For any observable  acting on ,

⟨ ⟩ = ⟨μ| |μ⟩ = Tr[ ].QA ∑
μ

qμ ρ̂A Q̂A ρ̂A (3.6.8)

A

A

ρ̂A |ψ⟩

|ψ⟩ = |μ⟩|ν⟩,∑
μν

ψμν (3.6.9)

| = 1∑μν ψμν|2

ρ̂

ρ̂A

= |μ⟩|ν⟩ ⟨ |⟨ |∑
μ νμ′ ν ′

ψμνψ∗
μ′ν ′ μ′ ν ′

= |μ⟩⟨ |∑
μ νμ′

ψμνψ∗
νμ′ μ′

= ( |μ⟩) ⟨ |∑
ν

∑
μ

ψμν

⎛

⎝
∑
μ′

ψ∗
νμ′ μ′

⎞

⎠

= | ⟩⟨ |, where | ⟩ = |μ⟩.∑
ν

φν φν φν ∑
μ

ψμν

(3.6.10)

| ⟩φν ⟨ | ⟩ = | ≤ 1φν φν ∑μ ψμν|2

| ⟩ = | ⟩, where = | .φ~ν
1

Pν
−−

√
φν Pν ∑

μ

ψμν|2 (3.6.11)

Pν [0, 1]

= | ⟩⟨ |, where {ρ̂A ∑
ν

Pν φ~ν φ~ν
each   is a real number in [0, 1], andPν

each | ⟩ ∈ , with ⟨ | ⟩ = 1.φ~ν HA φ~ν φ~ν
(3.6.12)

(3.6.12)

Pν

[0, 1]
| ⟩φ~ν

|ψ⟩⟨ψ|
|ψ⟩

ρ̂A (3.6.12)

ρ̂A

⟨φ| |φ⟩ ≥ 0ρ̂A |φ⟩ ∈ HA

Q̂A HA

⟨ ⟩QA ≡ ⟨ | | ⟩∑
ν

Pν φ~ν Q̂A φ~ν

= ⟨ |μ⟩ ⟨μ| | ⟩ (using some basis {|μ⟩})∑
μν

Pν φ~ν Q̂ φ~ν

= ⟨μ| ( | ⟩⟨ |) |μ⟩∑
μ

Q̂ ∑
ν

φ~ν φ~ν

= Tr[ ] .Q̂ ρ̂A

(3.6.13)
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This property can be used to deduce the probability of obtaining any measurement outcome: if  is the eigenstate associated
with the outcome, the outcome probability is , consistent with Equation . To see this, take  in
Equation .

4. The eigenvalues of , denoted by , satisfy

In other words, the eigenvalues can be interpreted as probabilities. This also implies that .

This property follows from Property 3 by taking , where  is any eigenvector of , and then taking .

This page titled 3.6: Density Operators is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
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3.7: Entanglement Entropy
Previously, we said that a multi-particle system is entangled if the individual particles lack definite quantum states. It would be nice
to make this statement more precise, and in fact physicists have come up with several different quantitive measures of
entanglement. In this section, we will describe the most common measure, entanglement entropy, which is closely related to the
entropy concept from thermodynamics, statistical mechanics, and information theory.

We have seen from the previous section that if a subsystem  is (possibly) entangled with some other subsystem , the
information required to calculate all partial measurement outcomes on  is stored within a reduced density operator . We can
use this to define a quantity called the entanglement entropy of :

In this formula,  denotes the logarithm of an operator, which is the inverse of the exponential: .
The prefactor  is Boltzmann’s constant, and ensures that  has the same units as thermodynamic entropy.

The definition of the entanglement entropy is based on an analogy with the entropy concept from classical thermodynamics,
statistical mechanics and information theory. In those classical contexts, entropy is a quantitative measure of uncertainty (i.e, lack
of information) about a system’s underlying microscopic state, or “microstate”. Suppose a system has  possible microstates that
occur with probabilities , satisfying . Then we define the classical entropy

In a situation of complete certainty where the system is known to be in a specific microstate  ( ), the formula gives 
. (Note that  as ). In a situation of complete uncertainty where all microstates are equally probable (

), we get , the entropy of a microcanonical ensemble in statistical mechanics. For any other distribution of
probabilities, it can be shown that the entropy lies between these two extremes: . For a review of the properties
of entropy, see Appendix C.

The concept of entanglement entropy aims to quantify the uncertainty arising from a quantum (sub)system’s lack of a definite
quantum state, due to it being possibly entangled with another (sub)system. When formulating it, the key issue we need to be
careful about is how to extend classical notions of probability to quantum systems. We have seen that when performing a
measurement on  whose possible outcomes are , the probability of getting  is . However, it is problematic
to directly substitute these probabilities  into the classical entropy formula, since they are basis-dependent (i.e., the set of
probabilities is dependent on the choice of measurement). Equation  bypasses this problem by using the trace, which is
basis-independent.

In the special case where  is the eigenbasis for , the connection is easier to see. From , the eigenvalues  are all
real numbers between 0 and 1, and summing to unity, so they can be regarded as probabilities. Then the entanglement entropy is

Therefore, in this particular basis the expression for the entanglement entropy is consistent with the classical definition of entropy,
with the eigenvalues of  serving as the relevant probabilities.

By analogy with the classical entropy formula (see Appendix C), the entanglement entropy has the following bounds:

where  is the dimension of .

The lower bound  holds if and only if system  is in a pure state (i.e., it is not entangled with any other system). This is
because the bound corresponds to a situation where  has one eigenvalue that is 1, and all the other eigenvalues are 0 (see
Appendix C). If we denote the eigenvector associated with the non-vanishing eigenvalue by , then the density matrix can be
written as , which has the form of a pure state.

A B

A ρ̂A

A

= − { ln[ ]}.SA kb TrA ρ̂A ρ̂A (3.7.1)

ln[⋯] ln( ) = ⇒ exp( ) =P̂ Q̂ Q̂ P̂

kb SA

W

{ , , … , }p1 p2 pW = 1∑i pi

= − ln( ).Scl. kb∑
i=1

W

pi pi (3.7.2)

k =pi δik
= 0Scl. x ln(x) → 0 x → 0

= 1/Wpi = lnWScl. kb
0 ≤ ≤ lnWScl. kb

A { }qμ qμ = ⟨μ| |μ⟩Pμ ρ̂A

{ }Pμ

(3.7.1)

{|μ⟩} ρ̂A (3.7.2) { }pμ

SA = − ⟨μ| ln( )|μ⟩kb∑
μ

ρ̂A ρ̂A

= − ln( ).kb∑
μ

pμ pμ
(3.7.3)

ρ̂A

0 ≤ ≤ ln( ),SA kb dA (3.7.4)

dA HA

= 0SA A

ρ̂A

|ψ⟩

= |φ⟩⟨φ|ρ̂A
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As a corollary, if we find that , then  cannot be written as a pure state  for any , and hence it must describe a
mixed state.

A system is said to be maximally entangled if it saturates the upper bound of , . This occurs if and only if
the eigenvalues of the density operator are all equal: i.e.,  for all .

Consider the following state of two spin-  particles:

The density operator for the two-particle system is

Tracing over system  (the second slot) yields the reduced density operator

This can be expressed as a matrix in the  basis:

Now we can use  to compute the entanglement entropy

Hence, the particles are maximally entangled.
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≠ 0SA ρ̂A |ψ⟩⟨ψ| |ψ⟩

(3.7.4) = ln( )SA kb dA
= 1/pj dA j= 1, … , dA

Example 3.7.1

1/2

|ψ⟩ = (|+z⟩|−z⟩ − |−z⟩|+z⟩).
1

2
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√
(3.7.5)

(ψ) = (|+z⟩|−z⟩ − |−z⟩|+z⟩)(⟨+z|⟨−z| − ⟨−z|⟨+z|).ρ̂
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2
(3.7.6)
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2
(3.7.7)
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3.8: The Many Worlds Interpretation
We conclude this chapter by discussing a set of compelling but controversial ideas arising from the phenomenon of quantum
entanglement: the Many Worlds Interpretation as formulated by Hugh Everett (1956).

So far, when describing the phenomenon of state collapse, we have relied on the measurement postulate (see Section 3.2), which is
part of the Copenhagen Interpretation of quantum mechanics. This is how quantum mechanics is typically taught, and how
physicists think about the theory when doing practical, everyday calculations.

However, the measurement postulate has two bad features:

1. It stands apart from the other postulates of quantum mechanics, for it is the only place where randomness (or “indeterminism”)
creeps into quantum theory. The other postulates do not refer to probabilities. In particular, the Schrödinger equation

is completely deterministic. If you know  and are given the state  at some time , you can in principle determine 
 for all . This time-evolution consists of a smooth, non-random rotation of the state vector within its Hilbert space. A

measurement process, however, has a completely different character: it causes the state vector to jump discontinuously to a
randomly-selected value. It is strange that quantum theory contains two completely different ways for a state to change.

2. The measurement postulate is silent on what constitutes a measurement. Does measurement require a conscious observer?
Surely not: as Einstein once exasperatedly asked, are we really expected to believe that the Moon exists only when we look at
it? But if a given device interacts with a particle, what determines whether it acts via the Schrödinger equation, or performs a
measurement?

The Many Worlds Interpretation seeks to resolve these problems by positing that the measurement postulate is not a fundamental
postulate of quantum mechanics. Rather, what we call “measurement”, including state collapse and the apparent randomness of
measurement results, is an emergent phenomenon that can be derived from the behavior of complex many-particle quantum
systems obeying the Schrödinger equation. The key idea is that a measurement process can be described by applying the
Schrödinger equation to a quantum system containing both the thing being measured and the measurement apparatus itself.

We can study this using a toy model formulated by Albrecht (1993). Consider a spin-  particle, and an apparatus designed to
measure . Let  be the spin-  Hilbert space (which is 2D), and  be the Hilbert space of the apparatus (which has
dimension ). We will assume that  is very large, as actual experimental apparatuses are macroscopic objects containing  or
more atoms! The Hilbert space of the combined system is

and is -dimensional. Let us suppose the system is prepared in an initial state

where  are the quantum amplitudes for the particle to be initially spin-up or spin-down, and  is the initial state of
the apparatus.

The combined system now evolves via the Schrödinger equation. We aim to show that if the Hamiltonian has the form

where  is the operator corresponding to the observable , then time evolution has an effect equivalent to the measurement of 
.

It turns out that we can show this without making any special choices for  or . We only need , and for both  and 
to be “sufficiently complicated”. We choose  to be a random state vector, and choose random matrix components for the
operator . The precise generation procedures will be elaborated on later. Once we decide on  and , we can evolve the system
by solving the Schödinger equation

iℏ |ψ(t)⟩ = (t)|ψ(t)⟩
∂
∂t

Ĥ (3.8.1)

(t)Ĥ |ψ( )⟩t0 t0

|ψ(t)⟩ t

1/2
Sz HS 1/2 HA

d d 1023

H = ⊗ ,HS HA (3.8.2)

2d

|ψ(0)⟩ = ( |+z⟩+ |−z⟩)⊗|Ψ⟩,a+ a− (3.8.3)

∈ Ca± |Ψ⟩ ∈ HA

= ⊗ ,Ĥ Ŝz V̂ (3.8.4)

Ŝz Sz

Sz

V̂ |Ψ⟩ d ≫ 2 V̂ |Ψ⟩

|Ψ⟩

V̂ |Ψ⟩ V̂

|ψ(t)⟩ = U(t)|ψ(0)⟩, where (t) = exp[− t].Û
i

ℏ
Ĥ (3.8.5)
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Because the part of  acting on the  subspace is , the result necessarily has the following form:

Here,  and  are apparatus states that are “paired up” with the  and  states of the spin-  subsystem. At 
, both  and  are equal to ; for , they rotate into different parts of the state space . If the

dimensionality of  is sufficiently large, and both  and  are sufficiently complicated, we can guess (and we will verify
numerically) that the two state vectors rotate into completely different parts of the state space, so that

Once this is the case, the two terms in the above expression for  can be interpreted as two decoupled “worlds”. In one world,
the spin has a definite value , and the apparatus is in a state  (which might describe, for instance, a macroscopically-
sized physical pointer that is pointing to a “ ” reading). In the other world, the spin has a definite value , and the
apparatus has a different state  (which might describe a physical pointer pointing to a “ ” reading). Importantly, the

 and  states are orthogonal, so they can be rigorously distinguished from each other. The two worlds are “weighted” by 
 and , which correspond to the probabilities of the two possible measurement results.

The above description can be tested numerically. Let us use an arbitrary basis for the apparatus space ; in that basis, let the 
components of the initial apparatus state vector  be random complex numbers:

In other words, the real and imaginary parts of each complex number  are independently drawn from the the standard normal
(Gaussian) distribution, denoted by . The normalization constant  is defined so that .

Likewise, we generate the matrix elements of  according to the following random scheme:

This scheme produces a  matrix with random components, subject to the requirement that the overall matrix be Hermitian.
The factor of  is relatively unimportant; it ensures that the eigenvalues of  lie in the range , instead of scaling with 

, see Edelman and Rao (2005).

The Schrödinger equation can now be solved numerically. The results are shown below:

Figure 

In the initial state, we let , so  The upper panel plots the overlap between the two
apparatus states, , versus . In accordance with the preceding discussion, the overlap is unity at , but subsequently

Ĥ HS Ŝz

|ψ(t)⟩ = (t)( |+z⟩+ |−z⟩)⊗|Ψ⟩Û a+ a−

= |+z⟩⊗| (t)⟩ + |−z⟩⊗| (t)⟩.a+ Ψ+ a− Ψ−

(3.8.6)
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decreases to nearly zero. For comparison, the lower panel plots the entanglement entropy between the two subsystems, 
, where  is the reduced density matrix obtained by tracing over the spin subspace. We find that 

 at , due to the fact that the spin and apparatus subsystems start out with definite quantum states in . As the
system evolves, the subsystems become increasingly entangled, and  increases up to

This value is indicated in the figure by a horizontal dashed line, and corresponds to the result of the classical entropy formula for
probabilities . Moreover, we see that the entropy reaches  at around the same time that  reaches
zero. This demonstrates the close relationship between “measurement” and “entanglement”.

For details about the numerical linear algebra methods used to perform the above calculation, refer to Appendix D.

The “many worlds” concept can be generalized from the above toy model to the universe as a whole. In the viewpoint of the Many
Worlds Interpretation of quantum mechanics, the entire universe can be described by a mind-bogglingly complicated quantum
state, evolving deterministically according to the Schrödinger equation. This evolution involves repeated “branchings” of the
universal quantum state, which continuously produces more and more worlds. The classical world that we appear to inhabit is just
one of a vast multitude. It is up to you to decide whether this conception of reality seems reasonable. It is essentially a matter of
preference, because the Copenhangen Interpretation and the Many Worlds Interpretation have identical physical consequences,
which is why they are referred to as different “interpretations” of quantum mechanics, rather than different theories.

This page titled 3.8: The Many Worlds Interpretation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D.
Chong via source content that was edited to the style and standards of the LibreTexts platform.
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3.9: Exercises

Exercises

Let  and  denote single-particle Hilbert spaces with well-defined inner products. That is to say, for all vectors 
, that Hilbert space’s inner product satisfies the inner product axioms

a. 

b. , and  if and only if .

c. 

d.  for all ,

and likewise for vectors from  with that Hilbert space’s inner product.

In Section 3.1, we defined a tensor product space  as the space spanned by the basis vectors , where the 
’s are basis vectors for  and the ’s are basis vectors for . Prove that we can define an inner product using

which satisfies the inner product axioms.

Consider the density operator

where . This can be viewed as an equal-probability sum of two different pure states. However, the

density matrix can also be written as

where  and  are the eigenvectors of . Show that  and  are not 1/2.

Consider two distinguishable particles,  and . The 2D Hilbert space of  is spanned by , and the 3D Hilbert
space of  is spanned by . The two-particle state is

Find the entanglement entropy.
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Exercise 3.9.2
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CHAPTER OVERVIEW

4: Identical Particles
These our actors, 
As I foretold you, were all spirits and 
Are melted into air, into thin air: 
And, like the baseless fabric of this vision, 
The cloud-capp’d towers, the gorgeous palaces, 
The solemn temples, the great globe itself, 
Yea, all which it inherit, shall dissolve 
And, like this insubstantial pageant faded, 
Leave not a rack behind.

William Shakespeare, The Tempest

4.1: Particle Exchange Symmetry
4.2: Symmetric and Antisymmetric States
4.3: Second Quantization
4.4: Quantum Field Theory
4.5: Exercises
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4.1: Particle Exchange Symmetry
In the previous chapter, we discussed how the principles of quantum mechanics apply to systems of multiple particles. That
discussion omitted an important feature of multi-particle systems, namely the fact that particles of the same type are fundamentally
indistinguishable from each other. As it turns out, indistinguishability imposes a strong constraint on the form of the multi-particle
quantum states, and looking into this will ultimately lead us to a fundamental re-interpretation of what “particles” are.

Suppose we have two particles of the same type, e.g. two electrons. It is a fact of Nature that all electrons have identical physical
properties: the same mass, same charge, same total spin, etc. As a consequence, the single-particle Hilbert spaces of the two
electrons must be mathematically identical. Let us denote this space by . For a two-electron system, the Hilbert space is a
tensor product of two single-electron Hilbert spaces, denoted by

Moreover, any Hamiltonian must affect the two electrons in a symmetrical way. An example of such a Hamiltonian is

consisting of the non-relativistic kinetic energies and the Coulomb potential energy. Operators  and  act on electron 1, while 
 and  act on electron 2.

Evidently, this Hamiltonian is invariant under an interchange of the operators acting on the two electrons (i.e.,  and 
). This can be regarded as a kind of symmetry, called exchange symmetry. As we know, symmetries of quantum systems

can be represented by unitary operators that commute with the Hamiltonian. Exchange symmetry is represented by an operator ,
defined as follows: let  be a basis for the single-electron Hilbert space ; then  interchanges the basis vectors for the
two electrons:

The exchange operator has the following properties:

1.  where  is the identity operator.
2.  is linear, unitary, and Hermitian (see Exercise 4.5.1).
3. The effect of  does not depend on the choice of basis (see Exercise 4.5.1).
4.  commutes with the above Hamiltonian ; more generally, it commutes with any two-particle operator built out of

symmetrical combinations of single-particle operators (see Exercise 4.5.2).

According to Noether’s theorem, any symmetry implies a conservation law. In the case of exchange symmetry,  is both Hermitian
and unitary, so we can take the conserved quantity to be the eigenvalue of  itself. We call this eigenvalue, , the exchange

parity. Given that , there are just two possibilities:

Since  commutes with , if the system starts out in an eigenstate of  with parity , it retains the same parity for all subsequent
times.

The concept of exchange parity generalizes to systems of more than two particles. Given  particles, we can define a set of
exchange operators , where  and , such that  exchanges particle  and particle . If the particles are
identical, the Hamiltonian must commute with all the exchange operators, so the parities ( ) are individually conserved.

We now invoke the following postulates:

1. A multi-particle state of identical particles is an eigenstate of every .

H
(1)

= ⊗ .H
(2)

H
(1)

H
(1) (4.1.1)
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Î

|ψ⟩ = p|ψ⟩ ⇒ p = {P̂
+1

−1

("symmetric state''), or

("antisymmetric state'').
(4.1.4)
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2. For each , the exchange parity  has the same value: i.e., all  or all .
3. The exchange parity  is determined solely by the type of particle involved.

Do not think of these as statements as being derived from more fundamental facts! Rather, they are hypotheses about the way
particles behave—facts about Nature that physicists have managed to deduce through examining a wide assortment of empirical
evidence. Our task, for now, shall be to explore the consequences of these hypotheses.

Particles that have symmetric states ( ) are called bosons. It turns out that the elementary particles that “carry” the
fundamental forces are all bosons: these are the photons (elementary particles of light, which carry the electromagnetic force),
gluons (elementary particles that carry the strong nuclear force, responsible for binding protons and neutrons together), and  and 

 bosons (particles that carry the weak nuclear force responsible for beta decay). Other bosons include particles that carry non-
fundamental forces, such as phonons (particles of sound), as well as certain composite particles such as alpha particles (helium-4
nuclei).

Particles that have antisymmetric states ( ) are called fermions. All the elementary particles of “matter” are fermions:
electrons, muons, tauons, quarks, neutrinos, and their anti-particles (positrons, anti-neutrinos, etc.). Certain composite particles are
also fermions, including protons and neutrons, which are each composed of three quarks.

By the way, one might question whether particle indistinguishability invalidates the concept of assigning single-particle states to
(say) the “first slot” or “second slot” in a tensor product. It seems unsatisfactory that our mathematical framework allows us to
write down a state like  (where ), which is physically impossible since it is not symmetric or antisymmetric, and then
uses such states to define a “particle exchange” operation that has no physical meaning. To get around this, Leinaas and Myrheim
(1977) have developed an interesting formulation of particle indistinguishability that avoids the concept of particle exchange. In
this view, in a multi-particle wavefunction the coordinates  are not to be regarded as an ordinary vector, but as a
mathematical object in which interchanging entries leaves the object invariant. Bosonic or fermionic states can then be constructed
by carefully analyzing the topological structure of wavefunctions defined on such configuration spaces. For more details, the
interested reader is referred to the paper by Leinaas and Myrheim. In this course, however, we will adopt the usual formulation
based on particle exchange.

This page titled 4.1: Particle Exchange Symmetry is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D.
Chong via source content that was edited to the style and standards of the LibreTexts platform.
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4.2: Symmetric and Antisymmetric States

Bosons

A state of  bosons must be symmetric under every possible exchange operator:

There is a standard way to construct multi-particle states obeying this symmetry condition. First, consider a two-boson system (
). If both bosons occupy the same single-particle state, , the two-boson state is simply

This evidently satisfies the required symmetry condition . Next, suppose the two bosons occupy different single-particle
states,  and , which are orthonormal vectors in . It would be wrong to write the two-boson state as , because the
particles would not be symmetric under exchange. Instead, we construct the multi-particle state

This has the appropriate exchange symmetry:

The  factor in Equation  ensures that the state is normalized (check for yourself that this is true—it requires  and 
 to be orthonormal to work out).

The above construction can be generalized to arbitrary numbers of bosons. Suppose we have  bosons occupying single-particle
states enumerated by

Each of the states  is drawn from an orthonormal basis set  for . We use the  labels to indicate that the listed states
can overlap. For example, we could have , meaning that the single-particle state  is occupied by two particles.

The -boson state can now be written as

The sum is taken over each of the  permutations acting on . For each permutation , we let  denote the integer
that  is permuted into.

The prefactor  is a normalization constant, and it can be shown that its appropriate value is

where  denotes the number of particles in each distinct state , and  is the total number of particles. The
proof of this is left as an exercise (Exercise 4.5.3).

To see that the above -particle state is symmetric under exchange, apply an arbitrary exchange operator :

In each term of the sum, two states  and  are interchanged. Since the sum runs through all permutations of the states, the result is
the same with or without the exchange, so we still end up with . Therefore, the multi-particle state is symmetric
under every possible exchange operation.

N
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| , , … , ⟩ = N (| ⟩| ⟩| ⟩⋯ | ⟩).ϕ1 ϕ2 ϕN ∑
p

ϕp(1) ϕp(2) ϕp(3) ϕp(N) (4.2.6)

N ! {1, 2, … , N} p p(j)
j

N

N = ,
1

N ! ! ! ⋯na nb

− −−−−−−−−−

√ (4.2.7)

nμ | ⟩φμ N = + +⋯nα nβ

N P̂ ij

| , , … , ⟩P̂ ij ϕ1 ϕ2 ϕN = N (⋯ | ⟩⋯ | ⟩⋯ )∑
p

P̂ ij ϕp(i) ϕp(j)

= N (⋯ | ⟩⋯ | ⟩⋯ ).∑
p

ϕp(j) ϕp(i)

(4.2.8)

i j

| , , … , ⟩ϕ1 ϕ2 ϕN
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A three-boson system has two particles in a state , and one particle in a different state . To express the three-particle
state, define  where  and . Then

The exchange symmetry operators have the expected effects:

Fermions

A state of  fermions must be antisymmetric under every possible exchange operator:

Similar to the bosonic case, we can explicitly construct multi-fermion states based on the occupancy of single-particle state.

First consider , with the fermions occupying the single-particle states  and  (which, once again, we assume to be
orthonormal). The appropriate two-particle state is

We can easily check that this is antisymmetric:

Note that if  and  are the same single-particle state, Equation  doesn’t work, since the two terms would cancel to give
the zero vector, which is not a valid quantum state. This is a manifestation of the Pauli exclusion principle, which states that two
fermions cannot occupy the same single-particle state. Thus, each single-particle state is either unoccupied or occupied by one
fermion.

For general , let the occupied single-particle states be , , , each drawn from some orthonormal basis  for 
, and each distinct. Then the appropriate -fermion state is

It is up to you to verify that the  prefactor is the right normalization constant. The sum is taken over every permutation  of
the sequence , and each term in the sum has a coefficient  denoting the parity of the permutation. The parity of
any permutation  is defined as  if  is constructed from an even number of transpositions (i.e., exchanges of adjacent elements)
starting from the sequence , and  if  involves an odd number of transpositions.

Let’s look at a couple of concrete examples.

Example 4.2.1

|μ⟩ |ν⟩

{| ⟩, | ⟩, | ⟩}ϕ1 ϕ2 ϕ3 | ⟩ = | ⟩ = |μ⟩ϕ1 ϕ2 | ⟩ = |ν⟩ϕ3

| , , ⟩ϕ1 ϕ2 ϕ3 = ( | ⟩| ⟩| ⟩+| ⟩| ⟩| ⟩+| ⟩| ⟩| ⟩
1

12
−−

√
ϕ1 ϕ2 ϕ3 ϕ2 ϕ3 ϕ1 ϕ3 ϕ1 ϕ2

+| ⟩| ⟩| ⟩+| ⟩| ⟩| ⟩+| ⟩| ⟩| ⟩)ϕ1 ϕ3 ϕ2 ϕ3 ϕ2 ϕ1 ϕ2 ϕ1 ϕ3

= ( |μ⟩|μ⟩|ν⟩+|μ⟩|ν⟩|μ⟩+|ν⟩|μ⟩|μ⟩).
1

3
–

√

(4.2.9)

| , , ⟩P̂ 12 ϕ1 ϕ2 ϕ3

| , , ⟩P̂ 23 ϕ1 ϕ2 ϕ3

| , , ⟩P̂ 13 ϕ1 ϕ2 ϕ3

= (|μ⟩|μ⟩|ν⟩+|ν⟩|μ⟩|μ⟩+|μ⟩|ν⟩|μ⟩) = | , , ⟩
1

3
–

√
ϕ1 ϕ2 ϕ3

= (|μ⟩|ν⟩|μ⟩+|μ⟩|μ⟩|ν⟩+|ν⟩|μ⟩|μ⟩) = | , , ⟩
1

3
–

√
ϕ1 ϕ2 ϕ3

= (|ν⟩|μ⟩|μ⟩+|μ⟩|ν⟩|μ⟩+|μ⟩|μ⟩|ν⟩) = | , , ⟩.
1

3
–

√
ϕ1 ϕ2 ϕ3

(4.2.10)

N

|ψ⟩ = −|ψ⟩ ∀ i, j ∈ {1, … , N}, i ≠ j.P̂ ij (4.2.11)

N = 2 |μ⟩ |ν⟩

|μ, ν⟩ = (|μ⟩|ν⟩−|ν⟩|μ⟩).
1

2
–

√
(4.2.12)

|μ, ν⟩ = (|ν⟩|μ⟩−|μ⟩|ν⟩) = −|μ, ν⟩.P̂ 12
1

2
–

√
(4.2.13)

|μ⟩ |ν⟩ (4.2.12)

N | ⟩ϕ1 | ⟩ϕ2 … , | ⟩ϕN {|μ⟩}

H
(1) N

| , … , ⟩ = s(p) | ⟩| ⟩⋯ | ⟩.ϕ1 ϕN

1

N !
−−

√
∑

p

ϕp(1) ϕp(2) ϕp(N) (4.2.14)

1/ N !
−−

√ p

{1, 2, … , N} s(p)
p +1 p

{1, 2, … , N} −1 p
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For , the sequence  has two permutations:

Plugging these into Equation  yields the previously-discussed two-fermion state .

For , the sequence  has  permutations:

The permutations can be generated by consecutive transpositions of elements. Each time we perform a transposition, the sign
of  is reversed. Hence, the three-fermion state is

We now see why Equation  describes the -fermion state. Let us apply  to it:

Within each term in the above sum, the single-particle states for  and  have exchanged places. The resulting term must be
an exact match for another term in the original expression for , since the sum runs over all possible permutations,
except for one difference: the coefficient  must have an opposite sign, since the two permutations are related by an exchange. It
follows that  for any choice of .

Distinguishing particles
When studying the phenomenon of entanglement in the previous chapter, we implicitly assumed that the particles are
distinguishable. For example, in the EPR thought experiment, we started with the two-particle state

which appears to be antisymmetric. Does this mean that we cannot prepare  using photons (which are bosons)? More
disturbingly, we discussed how measuring  on particle , and obtaining the result , causes the two-particle state to collapse
into , which is neither symmetric nor antisymmetric. Is this result invalidated if the particles are identical?

The answer to each question is no. The confusion arises because the particle exchange symmetry has to involve an exchange of all
the degrees of freedom of each particle, and Equation  only shows the spin degree of freedom.

To unpack the above statement, let us suppose the two particles in the EPR experiment are identical bosons. We have focused on
each particle’s spin degree of freedom, but they must also have a position degree of freedom—that’s how we can have a particle at

Example 4.2.2

N = 2 {1, 2}

: {1, 2}p1

: {1, 2}p2

→ {1, 2}, s( ) = +1p1

→ {2, 1}, s( ) = −1.p2
(4.2.15)

(4.2.14) (4.2.12)

Example 4.2.3

N = 3 {1, 2, 3} 3! = 6

: {1, 2, 3}p1

: {1, 2, 3}p2

: {1, 2, 3}p3

: {1, 2, 3}p4

: {1, 2, 3}p5

: {1, 2, 3}p6

→ {1, 2, 3}, s( ) = +1p1

→ {2, 1, 3}, s( ) = −1p2

→ {2, 3, 1}, s( ) = +1p3

→ {3, 2, 1}, s( ) = −1p4

→ {3, 1, 2}, s( ) = +1p5

→ {1, 3, 2}, s( ) = −1.p6

(4.2.16)

s(p)

| , , ⟩ϕ1 ϕ2 ϕ3 = (| ⟩| ⟩| ⟩−| ⟩| ⟩| ⟩
1

6
–

√
ϕ1 ϕ2 ϕ3 ϕ2 ϕ1 ϕ3

+| ⟩| ⟩| ⟩−| ⟩| ⟩| ⟩ϕ2 ϕ3 ϕ1 ϕ3 ϕ2 ϕ1

+| ⟩| ⟩| ⟩−| ⟩| ⟩| ⟩).ϕ2 ϕ3 ϕ1 ϕ1 ϕ3 ϕ2

(4.2.17)

(4.2.14) N P̂ ij

| , … , ⟩P̂ ij ϕ1 ϕN = s(p) [ ⋯ | ⟩⋯ | ⟩⋯ ]
1

N !
−−

√
∑

p

P̂ ij ϕp(i) ϕp(j)

= s(p) [ ⋯ | ⟩⋯ | ⟩⋯ ].
1

N !
−−

√
∑

p

ϕp(j) ϕp(i)

(4.2.18)

p(i) p(j)
| , … , ⟩ϕ1 ϕN

s(p)

| , … , ⟩ = −| , … , ⟩P̂ ij ϕ1 ϕN ϕ1 ϕN i ≠ j

| ⟩ = (|+z⟩|−z⟩−|−z⟩|+z⟩),ψEPR
1

2
–

√
(4.2.19)

| ⟩ψEPR

Ŝz A +ℏ/2
|+z⟩|−z⟩

(4.2.19)
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Alpha Centauri ( ) and another at Betelgeuse ( ). If we explicitly account for this position degree of freedom, the single-particle
Hilbert space should be

For simplicity, let us treat position as a twofold degree of freedom, treating  as a 2D space spanned by the basis 
.

Now consider the state we previously denoted by , which refers to a spin-up particle at  and a spin-down particle at .
In our previous notation, it was implicitly assumed that  refers to the left-hand slot of the tensor product, and  refers to the
right-hand slot. If we account for the position degrees of freedom, the state is written as

where the kets are written in the following order:

The exchange operator  swaps the two particles’ Hilbert spaces—which includes both the position and the spin part. Hence,
Equation  is explicitly symmetric:

Likewise, if there is a spin-down particle at  and a spin-up particle at , the bosonic two-particle state is

Using Equations  and , we can rewrite the EPR singlet state  as

This state looks like a mess, but it turns out that we can clarify it with some careful re-ordering. Instead of the ordering ,
order by spins and then positions:

Then Equation  can be rewritten as

Evidently, even though the spin degrees of freedom form an antisymmetric combination, as described by Equation , the
position degrees of freedom in Equation  also have an antisymmetric form, and this allows the two-particle state to meet
the bosonic symmetry condition.

Suppose we perform a measurement on , and find that the particle at position  has spin . As usual, a measurement
outcome can be associated with a projection operator. Using the ordering , we can write the relevant projection operator as

This accounts for the fact that the observed phenomenon—spin  at position —may refer to either particle. Applying  to the
EPR state  yields

A B

= ⊗ .H
(1)

Hspin Hposition (4.2.20)

Hposition

{|A⟩, |B⟩}

|+z⟩|−z⟩ A B

A B

| +z, A; −z, B⟩ = (|+z⟩|A⟩|−z⟩|B⟩+|−z⟩|B⟩|+z⟩|A⟩),
1

2
–

√
(4.2.21)

[(spin 1) ⊗(position 1)]⊗[(spin 2) ⊗(position 2)]. (4.2.22)

P̂ 12

(4.2.21)

| +z, A ; −z, B⟩P̂ 12 = (|−z⟩|B⟩|+z⟩|A⟩+|+z⟩|A⟩|−z⟩|B⟩)
1

2
–

√
= | +z, A ; −z, B⟩.

(4.2.23)

A B

| −z, A ; +z, B⟩ = (|−z⟩|A⟩|+z⟩|B⟩+|+z⟩|B⟩|−z⟩|A⟩).
1

2
–

√
(4.2.24)

(4.2.21) (4.2.24) (4.2.19)

| ⟩ψEPR = (|+z, A ; −z, B⟩−| −z, A ; +z, B⟩)
1

2
–

√

= ( |+z⟩|A⟩|−z⟩|B⟩+|−z⟩|B⟩|+z⟩|A⟩
1

2

−|−z⟩|A⟩|+z⟩|B⟩−|+z⟩|B⟩|−z⟩|A⟩).

(4.2.25)

(4.2.22)

[(spin 1) ⊗(spin 2)]⊗[(position 1) ⊗(position 2)] (4.2.26)

(4.2.25)

| ⟩ = (|+z⟩|−z⟩−|−z⟩|+z⟩)⊗ (|A⟩|B⟩−|B⟩|A⟩).ψEPR
1

2
–

√

1

2
–

√
(4.2.27)

(4.2.19)
(4.2.27)

| ⟩ψEPR A +z

(4.2.22)

= (|+z⟩⟨+z| ⊗ |A⟩⟨A|)⊗( ⊗ )+( ⊗ )⊗(|+z⟩⟨+z| ⊗ |A⟩⟨A|).Π̂ Î Î Î Î (4.2.28)

+z A Π̂
(4.2.25)
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Apart from a change in normalization, this is precisely the fermionic state  defined in Equation . In our
earlier notation, this state was simply written as . This goes to show that particle exchange symmetry is fully compatible
with the concepts of partial measurements, entanglement, etc., discussed in the previous chapter.

This page titled 4.2: Symmetric and Antisymmetric States is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform.

| ⟩ = (|+z⟩|A⟩|−z⟩|B⟩+|−z⟩|B⟩|+z⟩|A⟩).ψ′ 1

2
(4.2.29)

| +z, A; −z, B⟩ (4.2.21)
|+z⟩| −z⟩
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4.3: Second Quantization
In the usual tensor product notation, symmetric and antisymmetric states become quite cumbersome to deal with when the number
of particles is large. We will now introduce a formalism called second quantization, which greatly simplifies manipulations of
such multi-particle states. (The reason for the name “second quantization” will not be apparent until later; it is a bad name, but one
we are stuck with for historical reasons.)

We start by defining a convenient way to specify states of multiple identical particles, called the occupation number
representation. Let us enumerate a set of single-particle states, , that form a complete orthonormal basis for the
single-particle Hilbert space . Then, we build multi-particle states by specifying how many particles are in state , denoted 

; how many are in state , denoted ; and so on. Thus,

is defined as the appropriate symmetric or antisymmetric multi-particle state, constructed using Equation (4.2.6) if we’re dealing
with bosons (Section 4.2), or using Equation (4.2.14) if we’re dealing with fermions (Section 4.2).

Let us run through a couple of examples:

The two-particle state  has both particles in the single-particle state . This is only possible if the particles are
bosons, since fermions cannot share the same state. Written out in tensor product form, the symmetric state is

The three-particle state  has one particle each occupying , , and . If the particles are bosons, this
corresponds to the symmetric state

And if the particles are fermions, the appropriate antisymmetric state is

Fock space
There is a subtle point that we have glossed over: what Hilbert space do these state vectors reside in? The state  is a
bosonic two-particle state, which is a vector in the two-particle Hilbert space . However,  also
contains two-particle states that are not symmetric under exchange, which is not allowed for bosons. Thus, it would be more
rigorous for us to narrow the Hilbert space to the space of state vectors that are symmetric under exchange. We denote this reduced
space by .

Likewise,  is a three-particle state lying in . If the particles are bosons, we can narrow the space to . If the
particles are fermions, we can narrow it to the space of three-particle states that are antisymmetric under exchange, denoted by 

. Thus, , where the subscript  depends on whether we are dealing with symmetric states ( ) or
antisymmetric states ( ).

We can make the occupation number representation more convenient to work with by defining an “extended” Hilbert space, called
the Fock space, that is the space of bosonic/fermionic states for arbitrary numbers of particles. In the formal language of linear
algebra, the Fock space can be written as

{|1⟩, |2⟩, |3⟩, ⋯}

H
(1) |1⟩

n1 |2⟩ n2

| , , , …⟩n1 n2 n3 (4.3.1)

Example 4.3.1

|0, 2, 0, 0, …⟩ |2⟩

|0, 2, 0, 0, …⟩ ≡ |2⟩|2⟩. (4.3.2)

Example 4.3.2

|1, 1, 1, 0, 0, …⟩ |1⟩ |2⟩ |3⟩

|1, 1, 1, 0, 0, …⟩ ≡ (|1⟩|2⟩|3⟩+|3⟩|1⟩|2⟩+|2⟩|3⟩|1⟩
1

6
–

√

+|1⟩|3⟩|2⟩+|2⟩|1⟩|3⟩+|3⟩|2⟩|1⟩).
(4.3.3)

|1, 1, 1, 0, 0, …⟩ ≡ (|1⟩|2⟩|3⟩+|3⟩|1⟩|2⟩+|2⟩|3⟩|1⟩
1

6
–

√

−|1⟩|3⟩|2⟩−|2⟩|1⟩|3⟩−|3⟩|2⟩|1⟩).

(4.3.4)

|0, 2, 0, 0, …⟩

= ⊗H
(2)

H
(1)

H
(1)

H
(2)

H
(2)

S

|1, 1, 1, 0, …⟩ H
(3)

H
(3)

S

H
(3)

A
|1, 1, 1, 0, …⟩ ∈ H

(3)
S/A

S/A S

A
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Here,  represents the direct sum operation, which combines vector spaces by directly grouping their basis vectors into a larger
basis set; if  has dimension  and  has dimension , then  has dimension . (By contrast, the space 

, defined via the tensor product, has dimension .) Once again, the subscript  depends on whether we are dealing
with bosons ( ) or fermions ( ).

The upshot is that any multi-particle state that we can write down in the occupation number representation, , is
guaranteed to lie in the Fock space . Moreover, these states form a complete basis for .

In Equation , the first term of the direct sum is , the “Hilbert space of 0 particles”. This Hilbert space contains only
one distinct state vector, denoted by

This refers to the vacuum state, a quantum state in which there are literally no particles. Note that  is not the same thing as a
zero vector; it has the standard normalization . The concept of a “state of no particles” may seem silly, but we will see
that there are very good reasons to include it in the formalism.

Another subtle consequence of introducing the Fock space concept is that it is now legitimate to write down quantum states that
lack definite particle numbers. For example,

is a valid state vector describing the superposition of a one-particle state and a three-particle state. We will revisit the phenomenon
of quantum states with indeterminate particle numbers in Section 4.3, and in the next chapter.

Second quantization for bosons

After this lengthy prelude, we are ready to introduce the formalism of second quantization. Let us concentrate on bosons first.

We define an operator called the boson creation operator, denoted by  and acting in the following way:

In this definition, there is one particle creation operator for each state in the single-particle basis . Each creation
operator is defined as an operator acting on state vectors in the Fock space , and has the effect of incrementing the occupation
number of its single-particle state by one. The prefactor of  is defined for later convenience.

Applying a creation operator to the vacuum state yields a single-particle state:

The creation operator’s Hermitian conjugate, , is the boson annihilation operator. To characterize it, first take the Hermitian
conjugate of Equation :

Right-multiplying by another occupation number state  results in

From this, we can deduce that

= ⊕ ⊕ ⊕ ⊕ ⊕⋯H
F

S/A H
(0)

H
(1)

H
(2)

S/A
H

(3)
S/A

H
(4)

S/A
(4.3.5)

⊕
H1 d1 H2 d2 ⊕H1 H2 +d1 d2

⊗H1 H2 d1d2 S/A
S A

| , , , …⟩n1 n2 n3

H
F

S/A H
F

S/A

(4.3.5) H
(0)

|∅⟩ ≡ |0, 0, 0, 0, …⟩. (4.3.6)

|∅⟩

⟨∅|∅⟩ = 1

(|1, 0, 0, 0, 0, …⟩+|1, 1, 1, 0, 0, …⟩)
1

2
–

√
(4.3.7)

â
†
μ

, , … , , … ⟩ = , , … , +1, … ⟩.â†
μ

∣∣n1 n2 nμ +1nμ
− −−−−√ ∣∣n1 n2 nμ (4.3.8)

{| ⟩, | ⟩, …}φ1 φ2

H
F

S

+1nμ
− −−−−√

|∅⟩â†
μ = |0, … , 0, 1, 0, 0, …⟩.

← μ
(4.3.9)

âμ
(4.3.8)

⟨ , , … = ⟨ , , … , +1, … .n1 n2 ∣∣âμ +1nμ
− −−−−√ n1 n2 nμ ∣∣ (4.3.10)

| , , …⟩n′
1 n′

2

⟨ , , … , , … ⟩n1 n2 ∣∣âμ∣∣n′
1 n′

2 = ⟨ … , +1, … … , , … ⟩+1nμ
− −−−−

√ nμ ∣∣ n′
μ

= ⋯ …+1nμ
− −−−−

√ δn1

n′
1
δn2

n′
2

δ
+1nμ

n′
μ

= ⋯ ⋯n′
μ

−−
√ δn1

n′
1
δn2

n′
2

δ
+1nμ

n′
μ

(4.3.11)

, , … , , … ⟩ = {âμ∣∣n′
1 n′

2 n′
μ

, , … , −1, … ⟩,n′
μ

−−√ ∣∣n′
1 n′

2 n′
μ

0,

if > 0n′
μ

if = 0.n′
μ

(4.3.12)
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In other words, the annihilation operator decrements the occupation number of a specific single-particle state by one (hence its
name). As a special exception, if the given single-particle state is unoccupied ( ), applying  results in a zero vector (note
that this is not the same thing as the vacuum state ).

The boson creation/annihilation operators obey the following commutation relations:

 

 

These can be derived by taking the matrix elements with respect to the occupation number basis. We will go through the derivation
of the last commutation relation; the others are left as an exercise (Exercise 4.5.5).

To prove that , first consider the case where the creation/annihilation operators act on the same single-particle state:

In the second equation, we were a bit sloppy in handling the  and  cases, but you can check for yourself that the
result on the last line remains correct. Upon taking the difference of the two equations, we get

Since the occupation number states form a basis for , we conclude that

Next, consider the case where :

Hence,

Combining these two results gives the desired commutation relation, .

Another useful result which emerges from the first part of this proof is that

Hence, we can define the Hermitian operator

= 0nμ âμ
|∅⟩

[ , ] = [ , ] = 0, [ , ] = .âμ âν â†
μ â†

ν âμ â†
ν δμν (4.3.13)
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†
ν
∣∣n′

1

⟨ , … , … ⟩n1 ∣∣â
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whose eigenvalue is the occupation number of single-particle state .

If you are familiar with the method of creation/annihilation operators for solving the quantum harmonic oscillator, you will have
noticed the striking similarity with the particle creation/annihilation operators for bosons. This is no mere coincidence. We will
examine the relationship between harmonic oscillators and bosons in the next chapter.

Second quantization for fermions

For fermions, the multi-particle states are antisymmetric. The fermion creation operator can be defined as follows:

In other words, if state  is unoccupied, then  increments the occupation number to 1, and multiplies the state by an overall
factor of  (i.e,  if there is an even number of occupied states preceding , and  if there is an odd number).
The role of this factor will be apparent later. Note that this definition requires the single-particle states to be ordered in some way;
otherwise, it would not make sense to speak of the states “preceding” . It does not matter which ordering we choose, so long as
we make some choice, and stick to it consistently.

If  is occupied, applying  gives the zero vector. The occupation numbers are therefore forbidden from being larger than 1,
consistent with the Pauli exclusion principle.

The conjugate operator, , is the fermion annihilation operator. To see what it does, take the Hermitian conjugate of the definition
of the creation operator:

Right-multiplying this by  gives

Hence, we deduce that

In other words, if state  is unoccupied, then applying  gives the zero vector; if state  is occupied, applying  decrements the
occupation number to , and multiplies the state by the aforementioned factor of .

With these definitions, the fermion creation/annihilation operators can be shown to obey the following anticommutation relations:

Here,  denotes an anticommutator, which is defined by

Similar to the bosonic commutation relations , the anticommutation relations  can be derived by taking matrix
elements with occupation number states. We will only go over the last one, ; the others are left for the reader to
verify.

First, consider creation/annihilation operators acting on the same single-particle state :

μ
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By a similar calculation,

By adding these two equations, and using the fact that , we get

And hence,

Next, we must prove that  for . We will show this for  (the  case follows by Hermitian

conjugation). This is, once again, by taking matrix elements:

The two equations differ by a factor of , so adding them gives zero. Putting everything together, we conclude that 
, as stated in .

As you can see, the derivation of the fermionic anticommutation relations is quite hairy, in large part due to the  factors in
the definitions of the creation and annihilation operators. But once these relations have been derived, we can deal entirely with the
creation and annihilation operators, without worrying about the underlying occupation number representation and its 
factors. By the way, if we had chosen to omit the  factors in the definitions, the creation and annihilation operators would
still satisfy the anticommutation relation , but two creation operators or two annihilation operators would commute
rather than anticommute. During subsequent calculations, the “algebra” of creation and annihilation operators ends up being much
harder to deal with.

Second-quantized operators
One of the key benefits of second quantization is that it allows us to express multi-particle quantum operators clearly and
succinctly, using the creation and annihilation operators defined in Section 4.3 as “building blocks”.

Non-interacting particles

Consider a system of non-interacting particles. When there is just one particle ( ), let the single-particle Hamiltonian be 

, which is a Hermitian operator acting on the single-particle Hilbert space . For general , the multi-particle

Hamiltonian  is a Hermitian operator acting on the Fock space . How is  related to ?

Let us take the bosonic case. Then the multi-particle Hamiltonian should be
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where  and  are the boson creation and annihilation operators, and ,  refer to single-particle state vectors drawn from
some orthonormal basis for .

To understand why Equation  is right, consider its matrix elements with respect to various states. First, for the vacuum
state ,

This makes sense. Second, consider the matrix elements between single-particle states:

This exactly matches the matrix element defined in Equation .

Finally, consider the case where  forms an eigenbasis of . Then

As previously noted,  is the number operator, an observable corresponding to the occupation number of single-particle
state . Thus, the total energy is the sum of the single-particle energies, as expected for a system of non-interacting particles.

We can also think of the Hamiltonian  as the generator of time evolution. Equation  describes an infinitesimal time step
that consists of a superposition of alternative evolution processes. Each term in the superposition, , describes a particle
being annihilated in state , and immediately re-created in state , which is equivalent to “transferring” a particle from  to . The
quantum amplitude for this process is described by the matrix element . This description of time evolution is applicable not
just to single-particle states, but also to multi-particle states containing any number of particles.

Note also that the number of particles does not change during time evolution. Whenever a particle is annihilated in a state , it is
immediately re-created in some state . This implies that the Hamiltonian commutes with the total particle number operator:

The formal proof for this is left as an exercise (see Exercise 4.5.6). It follows directly from the creation and annihilation operators’
commutation relations (for bosons) or anticommuattion relations (for fermions).

Apart from the total energy, other kinds of observables—the total momentum, total angular momentum, etc.—can be expressed in a

similar way. Let  be a single-particle observable. For a multi-particle system, the operator corresponding to the “total ” is

For fermions, everything from Equation –  also holds, but with the  operators replaced by fermionic  operators.

Change of basis

A given set of creation and annihilation operators is defined using a basis of single-particle states , but such a choice is
obviously not unique. Suppose we have a different single-particle basis , such that

= , where = ⟨μ| |ν⟩,Ĥ ∑
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where  are the elements of a unitary matrix. Let  and  denote the creation operators defined using the two different basis
(once again, we will use the notation for bosons, but the equations in this section are valid for fermions too). Writing Equation 

 in terms of the creation operators,

We therefore deduce that

Using the unitarity of , we can verify that  and  satisfy bosonic commutation relations if and only if  and  do so. For
fermions, we put  operators in place of  operators in Equation , and use anticommutation rather than commutation
relations.

To illustrate how a basis change affects a second quantized Hamiltonian, consider a system of non-interacting particles whose
single-particle Hamiltonian is diagonal in the  basis. The multi-particle Hamiltonian is

consistent with Equation . Applying Equation ,

Compare this to single-particle bracket

This precisely matches the term in parentheses in Equation . This is consistent with the general form of  for non-
interacting particles, Equation .

Particle interactions

Hermitian operators can also be constructed out of other kinds of groupings of creation and annihilation operators. For example, a
pairwise (two-particle) potential can be described with a superposition of creation and annihilation operator pairs, of the form

The prefactor of  is conventional. In terms of time evolution,  “transfers” (annihilates and then re-creates) a pair of particles
during each infinitesimal time step. Since the number of annihilated particles is always equal to the number of created particles, the
interaction conserves the total particle number. We can ensure that  is Hermitian by imposing a constraint on the coefficents:

Suppose we are given the two-particle potential as an operator  acting on the two-particle Hilbert space . We should be

able to express the second-quantized operator  in terms of , by comparing their matrix elements. For example, consider the
two-boson states
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αμâμ (4.3.39)

Uαμ âα â
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α âμ â
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where  and . The matrix elements of  are

On the other hand, the matrix elements of the second-quantized operator  are

In going from Equation  to , we use the bosonic commutation relations repeatedly to “pushing” the annihilation
operators to the right (so that they can act upon ) and the creation operators to the left (so that they can act upon ).
Comparing Equation  to Equation , we see that the matrix elements match if we take

For instance, if the bosons have a position representation, we would have something like

The appropriate coefficients for  and/or , as well as for the fermionic case, are left for the reader to work out.

Other observables?

Another way to build a Hermitian operator from creation and annihilation operators is

If such a term is added to a Hamiltonian, it breaks the conservation of total particle number. Each infinitesimal time step will
include processes that decrement the particle number (due to ), as well as processes that increment the particle number (due to 

). Even if the system starts out with a fixed number of particles, such as the vacuum state , it subsequently evolves into a
superposition of states with different particle numbers. In the theory of quantum electrodynamics, this type of operator is used to
describe the emission and absorption of photons caused by moving charges.

Incidentally, the name “second quantization” comes from this process of using creation and annihilation operators to define
Hamiltonians. The idea is that single-particle quantum mechanics is derived by “quantizing” classical Hamiltonians via the
imposition of commutation relations like . Then, we extend the theory to multi-particle systems by using the single-
particle states to define creation/annihilation operators obeying commutation or anticommutation relations. This can be viewed as a
“second” quantization step.

This page titled 4.3: Second Quantization is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.
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†
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4.4: Quantum Field Theory

Field operators

So far, we have been agnostic about the nature of the single-particle states  used to construct the creation and
annihilation operators. Let us now consider the special case where these quantum states are representable by wavefunctions. Let 
denote a position eigenstate for a -dimensional space. A single-particle state  has a wavefunction

Due to the completeness and orthonormality of the basis, these wavefunctions satisfy

We can use the wavefunctions and the creation/annihilation operators to construct a new and interesting set of operators. For
simplicity, suppose the particles are bosons, and let

Using the aforementioned wavefunction properties, we can derive the inverse relations

From the commutation relations for the bosonic  and  operators, we can show that

In the original commutation relations, the operators for different single-particle states commute; now, the operators for different

positions commute. A straightforward interpretion for the operators  and  is that they respectively create and annihilate
one particle at a point  (rather than one particle in a given eigenstate).

It is important to note that  here does not play the role of an observable. It is an index, in the sense that each  is associated with

distinct  and  operators. These -dependent operators serve to generalize the classical concept of a field. In a classical
field theory, each point  is assigned a set of numbers corresponding to physical quantities, such as the electric field components 

, , and . In the present case, each  is assigned a set of quantum operators. This kind of quantum theory is called
a quantum field theory.

We can use the  and  operators to write second quantized observables in a way that is independent of the choice of
single-particle basis wavefunctions. As discussed in the previous section, given a Hermitian single-particle operator  we can
define a multi-particle observable , where . This multi-particle observable can be re-written
as

which makes no explicit reference to the single-particle basis states.

For example, consider the familiar single-particle Hamiltonian describing a particle in a potential :

where  and  are position and momentum operators (single-particle observables). The corresponding second quantized operators
for the kinetic energy and potential energy are

{| ⟩, | ⟩, …}φ1 φ2
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(In going from the first to the second line, we performed integrations by parts.) This result is strongly reminiscent of the expression
for the expected kinetic and potential energies in single-particle quantum mechanics:

where  is the single-particle wavefunction.

How are the particle creation and annihilation operators related to the classical notion of “the value of a field at point ”, like an
electric field  or magnetic field ? Field variables are measurable quantities, and should be described by Hermitian
operators. As we have just seen, Hermitian operators corresponding to the kinetic and potential energy can be constructed via

products of  with . But there is another type of Hermitian operator that we can construct by taking linear combinations

of of  with . One example is

Other possible Hermitian operators have the form

where  is some complex function. As we shall see, it is this type of Hermitian operator that corresponds to the classical
notion of a field variable like an electric or magnetic field.

In the next two sections, we will try to get a better understanding of the relationship between classical fields and bosonic quantum
fields. (For fermionic quantum fields, the situation is more complicated; they cannot be related to classical fields of the sort we are
familiar with, for reasons that lie outside the scope of this course.)

Revisiting the harmonic oscillator

Before delving into the links between classical fields and bosonic quantum fields, it is first necessary to revisit the harmonic
oscillator, to see how the concept of a mode of oscillation carries over from classical to quantum mechanics.

A classical harmonic oscillator is described by the Hamiltonian

where  is the “position” of the oscillator, which we call the oscillator variable;  is the corresponding momentum variable;  is
the mass; and  is the natural frequency of oscillation. We know that the classical equation of motion has the general form

This describes an oscillation of frequency . It is parameterized by the mode amplitude , a complex number that determines the
magnitude and phase of the oscillation.

For the quantum harmonic oscillator,  and  are replaced by the Hermitian operators  and . From these, the operators  and 
can be defined:
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â
†

= ( + ) ,
mω

2ℏ

− −−−
√ x̂

ip̂

mω

= ( − ) .
mω

2ℏ

− −−−
√ x̂

ip̂

mω

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

x̂

p̂

= ( + )
ℏ

2mω

− −−−−
√ â â
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(4.4.14)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34651?pdf


4.4.3 https://phys.libretexts.org/@go/page/34651

We can then show that

and from these the energy spectrum of the quantum harmonic oscillator can be derived. These facts should have been covered in an
earlier course.

Here, we are interested in how the creation and annihilation operators relate to the dynamics of the quantum harmonic oscillator. In
the Heisenberg picture, with  as the reference time, we define the time-dependent operator

We will adopt the convention that all operators written with an explicit time dependence are Heisenberg picture operators, while
operators without an explicit time dependence are Schrödinger picture operators; hence, . The Heisenberg picture creation
and annihilation operators,  and , are related to  by

The Heisenberg equation for the annihilation operator is

Hence, the solution for this differential equation is

and Equation  becomes

This has exactly the same form as the classical oscillatory solution ! Comparing the two, we see that  times the scale
factor  plays the role of the mode amplitude .

Now, suppose we come at things from the opposite end. Let’s say we start with creation and annihilation operators satisfying
Equation , from which Equations –  follow. Using the creation and annihilation operators, we would like
to construct an observable that corresponds to a classical oscillator variable. A natural Hermitian ansatz is

where  is a constant that is conventionally taken to be real.

How might  be chosen? A convenient way is to study the behavior of the oscillator variable in the classical limit. The classical
limit of a quantum harmonic oscillator is described by a coherent state. The details of how this state is defined need not concern us
for now (see Appendix E). The most important things to know are that (i) it can be denoted by  where , (ii) it is an
eigenstate of the annihilation operator:

And (iii) its energy expectation value is

[ , ]= 1, = ℏω( + ) ,â â† Ĥ â†â
1

2
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When the system is in a coherent state, we can effectively substitute the  and  operators in Equation  with the complex
numbers  and , which gives a classical trajectory

This trajectory has amplitude . At maximum displacement, the classical momentum is zero, so the total energy of the classical
oscillator must be

Equating the classical energy  to the coherent state energy  gives

which is precisely the scale factor found in Equation .

A scalar boson field

We now have the tools available to understand the connection between a very simple classical field and its quantum counterpart.
Consider a classical scalar field variable , defined in one spatial dimension, whose classical equation of motion is the wave
equation:

The constant  is a wave speed. This sort of classical field arises in many physical contexts, including the propagation of sound
through air, in which case  is the speed of sound.

For simplicity, let us first assume that the field is defined within a finite interval of length , with periodic boundary conditions: 
. Solutions to the wave equation can be described by the following ansatz:

This ansatz describes a superposition of normal modes. Each normal mode (labelled ) varies harmonically in time with a mode
frequency , and varies in space according to a complex mode profile ; its overall magnitude and phase is specified by the
mode amplitude . The mode profiles are normalized according to some fixed convention, e.g.

Substituting Equation  into Equation , and using the periodic boundary conditions, gives

These mode profiles are orthonormal:

Each normal mode carries energy. By analogy with the classical harmonic oscillator—see Equations – —we
assume that the energy density (i.e., energy per unit length) is proportional to the square of the field variable. Let it have the form

where  is some parameter that has to be derived from the underlying physical context. For example, for acoustic modes,  is the
mass density of the underlying acoustic medium; in the next chapter, we will see a concrete example involving the energy density
of an electromagnetic mode. From Equation , the total energy is
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To quantize the classical field, we treat each normal mode as an independent oscillator, with creation and annihilation operators 
and  satisfying

We then take the Hamiltonian to be that of a set of independent harmonic oscillators:

where  is the ground-state energy. Just like in the previous section, we can define a Heisenberg-picture annihilation operator, and
solving its Heisenberg equation yields

We then define a Schrödinger picture Hermitian operator of the form

where  is a real constant (one for each normal mode). The corresponding Heisenberg picture operator is

which is the quantum version of the classical solution .

To determine the  scale factors, we consider the classical limit. The procedure is a straightforward generalization of the harmonic
oscillator case discussed in Section 4.4. We introduce a state  that is a coherent state for all the normal modes; i.e., for any given

,

for some . The energy expectation value is

In the coherent state, the  and  operators in Equation  can be replaced with  and  respectively. Hence, we
identify  as the classical mode amplitude  in Equation . In order for the classical energy  to match the
coherent state energy , we need

Hence, the appropriate field operator is

Returning to the Schrödinger picture, and using the explicit mode profiles from Equation , we get

Finally, if we are interested in the infinite-  limit, we can convert the sum over  into an integral. The result is
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−i tωn (4.4.36)

(x) = ( (x) + (x)),f̂ ∑
n

Cn ânφn â
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where  denotes a rescaled annihilation operator defined by , satisfying

Looking ahead
In the next chapter, we will use these ideas to formulate a quantum theory of electromagnetism. This is a bosonic quantum field
theory in which the creation and annihilation operators act upon particles called photons—the elementary particles of light. Linear
combinations of these photon operators can be used to define Hermitian field operators that correspond to the classical
electromagnetic field variables. In the classical limit, the quantum field theory reduces to Maxwell’s theory of the electromagnetic
field.

It is hard to overstate the importance of quantum field theories in physics. At a fundamental level, all elementary particles currently
known to humanity can be described using a quantum field theory called the Standard Model. These particles are roughly divided
into two categories. The first consists of “force-carrying” particles: photons (which carry the electromagnetic force), gluons (which
carry the strong nuclear force), and the  bosons (which carry the weak nuclear force); these particles are excitations of
bosonic quantum fields, similar to the one described in the previous section. The second category consists of “particles of matter”,
such as electrons, quarks, and neutrinos; these are excitations of fermionic quantum fields, whose creation and annihilation
operators obey anticommutation relations.

As Wilczek (1999) has pointed out, the modern picture of fundamental physics bears a striking resemblance to the old idea of
“luminiferous ether”: a medium filling all of space and time, whose vibrations are physically-observable light waves. The key
difference, as we now understand, is that the ether is not a classical medium, but one obeying the rules of quantum mechanics.
(Another difference, which we have not discussed so far, is that modern field theories can be made compatible with relativity.)

It is quite compelling to think of fields, not individual particles, as the fundamental objects in the universe. This point of view
“explains”, in a sense, why all particles of the same type have the same properties (e.g., why all electrons in the universe have
exactly the same mass). The particles themselves are not fundamental; they are excitations of deeper, more fundamental entities—
quantum fields!

This page titled 4.4: Quantum Field Theory is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong
via source content that was edited to the style and standards of the LibreTexts platform.

(k)â → (k)ân 2π/L
− −−−

√ â
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4.5: Exercises

Exercises

Consider a system of two identical particles. Each single-particle Hilbert space  is spanned by a basis . The
exchange operator is defined on  by

Prove that  is linear, unitary, and Hermitian. Moreover, prove that the operation is basis-independent: i.e., given any other
basis  that spans ,

Prove that the exchange operator commutes with the Hamiltonian

An -boson state can be written as

Prove that the normalization constant is

where  denotes the number of particles occupying the single-particle state .

 and  denote the Hilbert spaces of -particle states that are totally symmetric and totally antisymmetric under
exchange, respectively. Prove that

Prove that for boson creation and annihilation operators, .
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Let  be an observable (Hermitian operator) for single-particle states. Given a single-particle basis , define
the bosonic multi-particle observable

where  and  are creation and annihilation operators satisfying the usual bosonic commutation relations,  and 
. Prove that  commutes with the total number operator:

Next, repeat the proof for a fermionic multi-particle observable

where  and  are creation and annihilation operators satisfying the fermionic anticommutation relations,  and 
. In this case, prove that
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CHAPTER OVERVIEW

5: Quantum Electrodynamics
This chapter gives an introduction to quantum electrodynamics, the quantum theory of the electromagnetic field and its
interactions with electrons and other charged particles. We begin by formulating a quantum Hamiltonian for an electron in a
classical electromagnetic field. Then we study how to quantize Maxwell’s equations, arriving at a quantum field theory in which
the elementary excitations are photons—particles of light. The final step is to formulate a theory in which electrons and photons are
treated on the same quantum mechanical footing, as excitations of underlying quantum fields. Along the way, we will see how
relativity can be accommodated with quantum theory.

Quantum electrodynamics is an extremely rich and intricate theory, and we will leave out many important topics. Interested readers
are referred to are Dyson’s 1951 lecture notes on quantum electrodynamics (Dyson 1951), and Zee’s textbook Quantum Field
Theory in a Nutshell (Zee 2010).
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5.1: Quantization of the Lorentz Force Law

Non-relativistic electrons in an electromagnetic field
Consider a non-relativistic charged particle in an electromagnetic field. As we are mainly interested in the physics of electrons
interacting with electromagnetic fields, we henceforth take the electric charge of the particle to be , where 
is the elementary charge. To describe particles with an arbitrary electric charge , simply perform the substitution  in the
formulas you will subsequently encounter.

We wish to formulate the Hamiltonian governing the quantum dynamics of such a particle, subject to two simplifying assumptions:
(i) the particle has charge and mass but is otherwise “featureless” (i.e., we ignore the spin angular momentum and magnetic dipole
moment that real electrons possess), and (ii) the electromagnetic field is treated as a classical field, meaning that the electric and
magnetic fields are definite quantities rather than operators. (We will see how to go beyond these simplifications later.)

Classically, the electromagnetic field acts on the particle via the Lorentz force law,

where  and  denote the position and velocity of the particle,  is the time, and  and  are the electric and magnetic fields. If no
other forces are present, Newton’s second law yields the equation of motion

where  is the particle’s mass. To quantize this, we must first convert the equation of motion into the form of Hamilton’s equations
of motion.

Let us introduce the electromagnetic scalar and vector potentials  and :

We now postulate that the equation of motion  can be described by the Lagrangian

This follows the usual prescription for the Lagrangian as kinetic energy minus potential energy, with  serving as the potential
energy function, except for the  term. To see if this Lagrangian works, plug it into the Euler-Lagrange equations

The partial derivatives of the Lagrangian are:

Now we want to take the total time derivative of . In doing so, note that the  field has its own -dependence, as well as
varying with the particle’s -dependent position. Thus,

(In the above equations, , where  is the -th component of the position vector, while .) Plugging these
expressions into the Euler-Lagrange equations  gives

−e e = 1.602 × C10−19

q e → −q

F(r, t) = −e(E(r, t) + ×B(r, t)),ṙ (5.1.1)
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(5.1.8)

≡ ∂/∂∂i ri ri i ≡ ∂/∂t∂t

(5.1.6)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34659?pdf
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_III_(Chong)/05%3A_Quantum_Electrodynamics/5.01%3A_Quantization_of_the_Lorentz_Force_Law
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/06%3A_Lagrangian_Dynamics/6.06%3A_Applying_the_Euler-Lagrange_equations_to_classical_mechanics


5.1.2 https://phys.libretexts.org/@go/page/34659

(The last step can be derived by expressing the cross product using the Levi-Cevita symbol, and using the identity 
.) This exactly matches Equation , as desired.

We now use the Lagrangian to derive the Hamiltonian. The canonical momentum is

The Hamiltonian is defined as . Using Equation , we express it in terms of  rather than :

After cancelling various terms, we obtain

This looks a lot like the Hamiltonian for a non-relativistic particle in a scalar potential,

In Equation , the  term acts like a potential energy, which is no surprise. More interestingly, the vector potential
appears via the substitution

What does this mean? Think about what “momentum” means for a charged particle in an electromagnetic field. Noether’s theorem
states that each symmetry of a system (whether classical or quantum) is associated with a conservation law. Momentum is the
quantity conserved when the system is symmetric under spatial translations. One of Hamilton’s equations states that

which implies that if  is -independent, then . But when the electromagnetic potentials are -independent, the
quantity  (which we usually call momentum) is not necessarily conserved! Take the potentials

where  is some constant. These potentials are -independent, but the vector potential is time-dependent, so the  term in
Equation  gives a non-vanishing electric field:

The Lorentz force law then says that

and thus  is not conserved. On the other hand, the quantity  is conserved:

Hence, this is the appropriate canonical momentum for a particle in an electromagnetic field.
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C r −Ȧ
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We are now ready to go from classical to quantum mechanics. Replace  with the position operator , and  with the momentum
operator . The resulting quantum Hamiltonian is

The momentum operator is  in the wavefunction representation, as usual.

Gauge symmetry
The Hamiltonian  possesses a subtle property known as gauge symmetry. Suppose we modify the scalar and vector
potentials via the substitutions

where  is an arbitrary scalar field called a gauge field. This is the gauge transformation of classical electromagnetism,
which as we know leaves the electric and magnetic fields unchanged. When applied to the Hamiltonian , it generates a new
Hamiltonian

Now suppose  is a wavefunction obeying the Schrödinger equation for the original Hamiltonian :

Then it can be shown that the wavefunction  automatically satisfies the Schrödinger equation for the transformed
Hamiltonian :

To prove this, observe how time and space derivatives act on the new wavefunction:

When the extra terms generated by the  factor are slotted into the Schrödinger equation, they cancel the gauge terms in
the scalar and vector potentials. For example,

If we apply the  operator a second time, it has a similar effect but with the quantity in square brackets on the
right-hand side of  taking the place of :

The remainder of the proof for Equation  can be carried out straightforwardly.

The above result can be stated in a simpler form if the electromagnetic fields are static. In this case, the time-independent
electromagnetic Hamiltonian is

r r̂ p

p̂

Definition: Quantum Hamiltonian
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2
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Suppose  has eigenenergies  and energy eigenfunctions . Then the gauge-transformed Hamiltonian

has the same energy spectrum , with eigenfunctions .

The Aharonov-Bohm effect
In quantum electrodynamics, it is the electromagnetic scalar and vector potentials that appear directly in the Hamiltonian, not the
electric and magnetic fields. This has profound consequences. For example, even if a charged quantum particle resides in a region
with zero magnetic field, it can feel the effect of nonzero vector potentials produced by magnetic fluxes elsewhere in space, a
phenomenon called the Aharonov-Bohm effect.

A simple setting for observing the Aharonov-Bohm effect is shown in the figure below. A particle is trapped in a ring-shaped
region (an “annulus”), of radius  and width . Outside the annulus, we set  so that the wavefunction vanishes;
inside the annulus, we set . We ignore the -dependence of all fields and wavefunctions, so that the problem is two-
dimensional. We define polar coordinates  with the origin at the ring’s center.

Figure 

Now, suppose we thread magnetic flux (e.g., using a solenoid) through the origin, which lies in the region enclosed by the annulus.
This flux can be described via the vector potential

where  is the unit vector pointing in the azimuthal direction. We can verify from Equation  that the total magnetic flux
through any loop of radius  enclosing the origin is . The fact that this is independent of  implies that the
magnetic flux density is concentrated in an infintesimal area surrounding the origin, and zero everywhere else. However, the vector
potential  is nonzero everywhere.

The time-independent Schrödinger equation is

with the boundary conditions . For sufficiently large , we can guess that the eigenfunctions have the form

This describes a “waveguide mode” with a half-wavelength wave profile in the  direction (so as to vanish at ),
traveling in the azimuthal direction with wavenumber . The normalization constant  is unimportant. We need the wavefunction
to be single-valued under a  variation in the azimuthal coordinate, so

Plugging this into Equation  yields the energy levels

= −eΦ( ).Ĥ
| +eA( )p̂ r̂ |2

2m
r̂ (5.1.29)
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∣
∣
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These energy levels are sketched versus the magnetic flux  in the figure below:

Figure 

Each energy level has a quadratic dependence on . Variations in  affect the energy levels despite the fact that  in the
annular region where the electron resides. This is a manifestation of the Aharonov-Bohm effect.

It is noteworthy that the curves of different  are centered at different values of  corresponding to multiples of 
, a fundamental unit of magnetic flux called the magnetic flux quantum. In other words, changing 

 by an exact multiple of  leaves the energy spectrum unchanged! This invariance property, which does not depend on the
width of the annulus or any other geometrical parameters of the system, can be explained using gauge symmetry. When an extra
flux of  (where ) is threaded through the annulus, Equation  tells us that the change in vector potential is 

. But we can undo the effects of this via the gauge field

Note that this  is not single-valued, but that’s not a problem! Both  and the phase factor  are single-valued, and
those are the quantities that enter into the gauge symmetry relations – .

This page titled 5.1: Quantization of the Lorentz Force Law is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform.

En = [ + ]
1

2m
( + )
nℏ

R

eΦB

2πR

2

( )
πℏ

d

2

= + .
e2

8 mπ2 R2
( + )ΦB

nh

e

2
π2ℏ2

2md2

(5.1.35)

(5.1.36)

ΦB
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5.2: Dirac's Theory of the Electron

The Dirac Hamiltonian

So far, we have been using -type Hamiltonians, which are limited to describing non-relativistic particles. In 1928, Paul
Dirac formulated a Hamiltonian that can describe electrons moving close to the speed of light, thus successfully combining
quantum theory with special relativity. Another triumph of Dirac’s theory is that it accurately predicts the magnetic moment of the
electron.

Dirac’s theory begins from the time-dependent Schrödinger wave equation,

Note that the left side has a first-order time derivative. On the right, the Hamiltonian  contains spatial derivatives in the form of
momentum operators. We know that time and space derivatives of wavefunctions are related to energy and momentum by

We also know that the energy and momentum of a relativistic particle are related by

where  is the rest mass and  is the speed of light. Note that  and  appear to the same order in this equation. (Following the
usual practice in relativity theory, we use Roman indices  for the spatial coordinates .)

Since the left side of the Schrödinger equation  has a first-order time derivative, a relativistic Hamiltonian should involve
first-order spatial derivatives. So we make the guess

where . The  and  factors are placed for later convenience. We now need to determine the dimensionless
“coefficients” , , , and .

For a wavefunction with definite momentum  and energy ,

This is obtained by replacing the  operators with definite numbers. If  is a scalar, this would imply that 
 for certain scalar coefficients , which does not match the relativistic energy-mass-

momentum relation .

But we can get things to work if  is a multi-component wavefunction, rather than a scalar wavefunction, and the ’s are
matrices acting on those components via the matrix-vector product operation. In that case,

where the hats on  indicate that they are matrix-valued. Applying the Hamiltonian twice gives

This can be satisfied if

/2mp2

iℏ ψ(r, t) = ψ(r, t).∂t Ĥ (5.2.1)
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j=1

3

αjp̂j (5.2.4)
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where  is the identity matrix. Expanding the square (and taking care of the fact that the  matrices need not commute) yields

This reduces to Equation  if the  matrices satisfy

(We use Greek symbols for indices ranging over the four spacetime coordinates .) The above can be written more
concisely using the anticommutator:

Also, we need the  matrices to be Hermitian, so that  is Hermitian.

It turns out that the smallest possible Hermitian matrices that can satisfy Equation  are  matrices. The choice of
matrices (or “representation”) is not uniquely determined. One particularly useful choice is called the Dirac representation:

where  denote the usual Pauli matrices. Since the ’s are  matrices, it follows that  is a four-component
field.

Eigenstates of the Dirac Hamiltonian
According to Equation , the energy eigenvalues of the Dirac Hamiltonian are

This is plotted below:

Figure 

The energy spectrum forms two hyperbolic bands. For each , there are two degenerate positive energy eigenvalues, and two
degenerate negative energy eigenvalues, for a total of four eigenvalues (matching the number of wavefunction components). The
upper band matches the dispersion relation for a massive relativistic particle, as desired. But what about the negative-energy band?
Who ordered that?

It might be possible for us to ignore the existence of the negative-energy states, if we only ever consider an isolated electron; we
could just declare the positive-energy states to be the ones we are interested in, and ignore the others. However, the problem
becomes hard to dismiss once we let the electron interact with another system, such as the electromagnetic field. Under such

= ,( m + c)α̂0 c2 ∑
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3

α̂jpj

2

E2 Î (5.2.8)
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+ ( + )m + = .α̂
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circumstances, the availability of negative-energy states extending down to  would destabilize the positive-energy
electron states, since the electron can repeatedly hop to states with ever more negative energies by shedding energy (e.g., by
emitting photons). This is obviously problematic. However, let us wait for a while (till Section 5.2) to discuss how the stability
problem might be resolved.

For now, let us take a closer look at the meaning of the Dirac wavefunction. Its four components represent a four-fold “internal”
degree of freedom, distinct from the electron’s ordinary kinematic degrees of freedom. Since there are two energy bands, the
assignment of an electron to the upper or lower band (or some superposition thereof) consitutes two degrees of freedom. Each band
must then posssess a two-fold degree of freedom (so that ), which turns out to be associated with the electron’s spin.

To see explicitly how this works, let us pick a representation for the  matrices. The choice of representation determines how the
four degrees of freedom are encoded in the individual wavefunction components. We will use the Dirac representation . In
this case, it is convenient to divide the components into upper and lower parts,

where  and  have two components each. Then, for an eigenstate with energy  and momentum , applying  to the
Dirac equation  gives

Consider the non-relativistic limit, , for which  approaches either  or . For the upper band ( ), the
vanishing of the denominator in Equation  tells us that the wavefunction is dominated by . Conversely, for the lower
band ( ), Equation  tells us that the wavefunction is dominated by . We can thus associate the upper ( ) and
lower ( ) components with the band degree of freedom. Note, however, that this is only an approximate association that holds in
the non-relativistic limit! In the relativistic regime, upper-band states can have non-vanishing values in the  components, and vice
versa. (There does exist a way to make the upper/lower spinor components correspond rigorously to positive/negative energies, but
this requires a more complicated representation than the Dirac representation, for details, see Foldy and Wouthuysen (1950).)

Dirac electrons in an electromagnetic field
To continue pursuing our objective of interpreting the Dirac wavefunction, we must determine how the electron interacts with an
electromagnetic field. We introduce electromagnetism by following the same procedure as in the non-relativistic theory (Section
5.1): add  as a scalar potential function, and add the vector potential via the substitution

Applying this recipe to the Dirac Hamiltonian  yields

You can check that this has the same gauge symmetry properties as the non-relativistic theory discussed in Section 5.1.

In the Dirac representation , Equation  reduces to

where  and  are the previously-introduced two-component objects corresponding to the upper and lower halves of the Dirac
wavefunction.

In the non-relativistic limit, solutions to the above equations can be cast in the form

E → −∞

2 ×2 = 4

α̂μ

(5.2.12)

ψ(r, t) = [ ] ,
(r, t)ψA

(r, t)ψB

(5.2.14)

ψA ψB E p (5.2.12)

(5.2.6)

ψA

ψB

= ,
1

E−mc2
∑
j

σ̂jpjψB

= .
1

E+mc2
∑
j

σ̂jpjψA

(5.2.15)

(5.2.16)

|p| → 0 E mc2 −mc2 E ≳ mc2

(5.2.15) ψA

E ≲ −mc2 (5.2.16) ψB A

B

B

−eΦ(r, t)

→ +eA( , t).p̂ p̂ r̂ (5.2.17)

(5.2.6)

iℏ ψ ={ m −eΦ(r, t) + [− iℏ +e (r, t)]c}ψ(r, t).∂t α̂0 c2 ∑
j

α̂j ∂j Aj (5.2.18)

(5.2.12) (5.2.18)

iℏ ∂t ψA

iℏ ∂t ψB

= (+m −eΦ) + (− iℏ +e ) cc2 ψA ∑
j

σ̂j ∂j Aj ψB

= (−m −eΦ) + (− iℏ +e ) c ,c2 ψB ∑
j

σ̂j ∂j Aj ψA

(5.2.19)

(5.2.20)

ψA ψB
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The exponentials on the right side are the  factor corresponding to the rest energy , which dominates the electron’s
energy in the non-relativistic limit. (Note that by using  rather than , we are explicitly referencing the positive-energy
band.) If the electron is in an eigenstate with  and there are no electromagnetic fields,  and  would just be constants.
Now suppose the electron is non-relativistic but not in a  eigenstate, and the electromagnetic fields are weak but not
necessarily vanishing. In that case,  and  are functions that vary with , but slowly.

Plugging this ansatz into Equations –  gives

On the left side of Equation , the  term dominates over the other two, so

Plugging this into Equation  yields

Using the identity :

Look carefully at the last term in the curly brackets. Expanding the square yields

Due to the antisymmetry of , all terms inside the parentheses that are symmetric under  and  cancel out when summed over.
The only survivor is the second term, which gives

where  is the magnetic field. Hence,

This is an exact match for Equation (5.1.20), except that the Hamiltonian has an additional term of the form . This
additional term corresponds to the potential energy of a magnetic dipole of moment  in a magnetic field . The Dirac theory
therefore predicts the electron’s magnetic dipole moment to be

(r, t)ψA

(r, t)ψB

= (r, t) exp[−i( ) t]ΨA

mc2

ℏ

= (r, t) exp[−i( ) t].ΨB

mc2

ℏ

(5.2.21)

exp(−iωt) mc2

+mc2 −mc2

p = 0 ΨA ΨB

p = 0

ΨA ΨB t

(5.2.19) (5.2.20)

iℏ ∂t ΨA

(iℏ +2m +eΦ)∂t c2 ΨB

= −eΦ + (− iℏ +e )cΨA ∑
j

σ̂j ∂j Aj ΨB

= (− iℏ +e )c .∑
j

σ̂j ∂j Aj ΨA

(5.2.22)

(5.2.23)

(5.2.23) 2mc2

≈ (− iℏ +e ) .ΨB

1

2mc
∑
j

σ̂j ∂j Aj ΨA (5.2.24)

(5.2.22)

iℏ ={−eΦ + (− iℏ +e )(− iℏ +e )} .∂t ΨA

1

2m
∑
jk

σ̂jσ̂k ∂j Aj ∂k Ak ΨA (5.2.25)

= + iσ̂jσ̂k δjk Î ∑i εijkσi

iℏ ∂t ΨA ={−eΦ + − iℏ∇ +eA
1

2m
∣∣ ∣∣

2

+ (− iℏ +e )(− iℏ +e )} .
i

2m
∑
ijk

εijkσ̂i ∂j Aj ∂k Ak ΨA

(5.2.26)

(− − iℏe − iℏe[ + ]+ ).
i

2m
∑
ijk

εijkσ̂i ∂j∂k ∂jAk Ak∂j Aj∂k e2AjAk (5.2.27)

εijk j k

= ⋅ B(r, t),
ℏe

2m
∑
ijk

εijkσ̂i∂jAk

ℏe

2m
σ̂ (5.2.28)

B = ∇ ×A

iℏ ={−eΦ + − iℏ∇ +eA − (− ) ⋅ B} .∂t ΨA

1

2m
∣∣ ∣∣

2 ℏe

2m
σ̂ ΨA (5.2.29)

− ⋅μ̂ B̂

μ B

|μ| = .
ℏe

2m
(5.2.30)
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Remarkably, this matches the experimentally-observed magnetic dipole moment to about one part in . The residual mismatch
between Equation  and the actual magnetic dipole moment of the electron is understood to arise from quantum fluctuations
of the electronic and electromagnetic quantum fields. Using the full theory of quantum electrodynamics, that “anomalous magnetic
moment” can also be calculated and matches experiment to around one part in , making it one of the most precise theoretical
predictions in physics! For details, see Zee (2010).

It is noteworthy that we did not set out to include spin in the theory, yet it arose, seemingly unavoidably, as a by-product of
formulating a relativistic theory of the electron. This is a manifestation of the general principle that relativistic quantum theory is
more constrained than non-relativistic quantum theory Dyson (1951). Due to the demands imposed by relativistic symmetries, spin
is not allowed to be an optional part of the theory of the relativistic electron—it has to be built into the theory at a fundamental
level.

Positrons and Dirac Field Theory
As noted in Section 5.2, the stability of the quantum states described by the Dirac equation is threatened by the presence of
negative-energy solutions. To get around this problem, Dirac suggested that what we regard as the “vacuum” may actually be a
state, called the Dirac sea, in which all negative-energy states are occupied. Since electrons are fermions, the Pauli exclusion
principle would then forbid decay into the negative-energy states, stabilizing the positive-energy states.

At first blush, the idea seems ridiculous; how can the vacuum contain an infinite number of particles? However, we shall see that
the idea becomes more plausible if the Dirac equation is reinterpreted as a single-particle construction which arises from a more
fundamental quantum field theory. The Dirac sea idea is an inherently multi-particle concept, and we know from Chapter 4 that
quantum field theory is a natural framework for describing multi-particle quantum states. Let us therefore develop this theory.

Consider again the eigenstates of the single-particle Dirac Hamiltonian with definite momenta and energies. Denote the positive-
energy wavefunctions by

The negative-energy wavefunctions are

Note that  denotes a negative-energy eigenstate with momentum , not . The reason for this notation, which uses
different symbols to label the positive-energy and negative-energy states, will become clear later. Each of the  and  terms
are four-component objects (spinors), and for any given , the set

forms an orthonormal basis for the four-dimensional spinor space. Thus,

Here we use the notation where  is the -th component of the  spinor, and likewise for the ’s.

Following the second quantization procedure from Chapter 4, let us introduce a fermionic Fock space , as well as a set of
creation/annihilation operators:

These obey the fermionic anticommutation relations

The Hamiltonian is

103

(5.2.30)

109

= ⟨r|k, +, σ⟩, where |k, +, σ⟩ = |k, +, σ⟩.
ukσ e

ik⋅r

(2π)3/2
Ĥ ϵkσ (5.2.31)

= ⟨r|k, −, σ⟩, where |k, −, σ⟩ = − |k, −, σ⟩.
vkσ e

−ik⋅r

(2π)3/2
Ĥ ϵkσ (5.2.32)

|k, −, σ⟩ −ℏk ℏk

ukσ vkσ

k

{ , | σ = 1, 2}ukσ vk,σ (5.2.33)

= , = 0, etc.∑
n

( )unkσ
∗
unkσ ′ δσσ ′ ∑

n

( )unkσ
∗
vnkσ ′ (5.2.34)

unkσ n ukσ v

HF

andb̂
†

kσ b̂kσ

andd̂
†

kσ d̂ kσ

create/annihilate |k, +, σ⟩

create/annihilate |k, −, σ⟩.
(5.2.35)

{ , } = (k − ) , { , } = (k − )b̂kσ b̂
†

k′σ ′ δ3
k

′ δσσ ′ d̂ kσ d̂
†

k′σ ′ δ3
k

′ δσσ ′

{ , } = { , } = { , } = 0, etc.b̂kσ b̂k′σ ′ b̂kσ d̂ k′σ ′ d̂ kσ d̂ k′σ ′

(5.2.36)
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and applying the annihilation operators to the vacuum state  gives zero:

When formulating bosonic field theory, we defined a local field annihilation operator that annihilates a particle at a given point .
In the infinite-system limit, this took the form

and the orthonormality of the  wavefunctions implied that . Similarly, we can use the Dirac
Hamiltonian’s eigenfunctions –  to define

Note that there are two terms in the parentheses because the positive-energy and negative-energy states are denoted by differently-
labeled annihilation operators. Moreover, since the wavefunctions are four-component spinors, the field operators have a spinor
index . Using the spinor orthonormality conditions  and the anticommutation relations , we can show that

with all other anticommutators vanishing. Hence,  can be regarded as an operator that annihilates a four-component fermion
at point .

Now let us define the operators

Using these, the fermionic anticommutation relations can be re-written as

Hence  and  formally satisfy the criteria to be regarded as creation and annihilation operators. The particle created by  is
called a positron, and is equivalent to the absence of a -type particle (i.e., a negative-energy electron).

The Hamiltonian  can now be written as

which explicitly shows that the positrons have positive energies (i.e., the absence of a negative-energy particle is equivalent to the
presence of a positive-energy particle). With further analysis, which we will skip, it can be shown that the positron created by 
has positive charge  and momentum . The latter is thanks to the definition adopted in Equation ; the absence of a
momentum  particle is equivalent to the presence of a momentum  particle. As for the field annihilation operator ,
it can be written as

The -type annihilation operators do not annihilate . However, let us define

which is evidently a formal description of the Dirac sea state. Then

= ∫ k ( − ) ,Ĥ d3 ∑
σ

ϵkσ b̂
†

kσ b̂kσ d̂
†

kσd̂ kσ (5.2.37)

|∅⟩

|∅⟩ = |∅⟩ = 0.b̂kσ d̂ kσ (5.2.38)

r

(r) = ∫ k (r) ,ψ̂ d3 φk âk (5.2.39)

φk [ (r), ( )] = (r − )ψ̂ ψ̂
†

r′ δ3 r′

(5.2.31) (5.2.32)

(r) = ∫ ( + ) .ψ̂n

kd3

(2π)3/2
∑
σ

un
kσ
eik⋅r b̂kσ vn

kσ
e−ik⋅r d̂ kσ (5.2.40)

n (5.2.34) (5.2.36)

{ (r), ( )} = (r − ),ψ̂n ψ̂
†

n′ r′ δnn′ δ3 r′ (5.2.41)

(r)ψ̂n

r

= .ĉkσ d̂
†

kσ (5.2.42)

{ , } = (k − ) , { , } = (k − )b̂kσ b̂
†

k′σ ′ δ3
k

′ δσσ ′ ĉkσ ĉ
†

k′σ ′ δ3
k

′ δσσ ′

{ , } = { , } = { , } = 0, etc.b̂kσ b̂k′σ ′ b̂kσ ĉk′σ ′ ĉkσ ĉk′σ ′

(5.2.43)

ĉ
†
kσ ĉkσ ĉ

†
kσ

d

(5.2.37)

= ∫ k ( + ) + constant,Ĥ d3 ∑
σ

ϵkσ b̂
†

kσ b̂kσ ĉ
†
kσ ĉkσ (5.2.44)

ĉ
†
kσ

e ℏk (5.2.32)

−ℏk ℏk (5.2.40)

(r) = ∫ ( + ) .ψ̂n

kd3

(2π)3/2
∑
σ

unkσe
ik⋅r b̂kσ vnkσe

−ik⋅r ĉ
†
kσ (5.2.45)

c |∅⟩

| ⟩ = |∅⟩,∅′ ∏
kσ

d̂
†

kσ (5.2.46)
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At the end of the day, we can regard the quantum field theory as being defined in terms of -type and -type operators, using the
anticommutators , the Hamiltonian , and the field operator , along with the vacuum state . The
elementary particles in this theory are electrons and positrons with strictly positive energies. The single-particle Dirac theory, with
its quirky negative-energy states, can then be interpreted as a special construct that maps the quantum field theory into single-
particle language. Even though we actually started from the single-particle description, it is the quantum field theory, and its
vacuum state , that is more fundamental.

There are many more details about the Dirac theory that we will not discuss here. One particularly important issue is how the
particles transform under Lorentz boosts and other changes in coordinate system. For such details, the reader is referred to Dyson
(1951).

This page titled 5.2: Dirac's Theory of the Electron is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D.
Chong via source content that was edited to the style and standards of the LibreTexts platform.

| ⟩ = |∅⟩ = 0.ĉkσ ∅′ d̂
†
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†

k′σ ′ (5.2.47)

b c

(5.2.43) (5.2.44) (5.2.45) | ⟩∅′
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5.3: Quantizing The Electromagnetic Field
Previously (Section 4.4), we have gone through the process of quantizing a scalar boson field. The classical field is decomposed
into normal modes, and each mode is quantized by assigning it an independent set of creation and annihilation operators. By
comparing the oscillator energies in the classical and quantum regimes, we can derive the Hermitian operator corresponding to the
classical field variable, expressed using the creation and annihilation operators. We will use the same approach, with only minor
adjustments, to quantize the electromagnetic field.

First, consider a “source-free” electromagnetic field—i.e., with no electric charges and currents. Without sources, Maxwell’s
equations (in SI units, and in a vacuum) reduce to:

Once again, we introduce the scalar potential  and vector potential :

With these relations, Equations  and  are satisfied automatically via vector identities. The two remaining equations, 
 and , become:

In the next step, we choose a convenient gauge called the Coulomb gauge:

(To see that we can always make such a gauge choice, suppose we start out with a scalar potential  and vector potential  not
satisfying . Perform a gauge transformation with a gauge field . The new scalar potential is 

; moreover, the new vector potential satisfies

Upon using Equation , we find that .)

In the Coulomb gauge, Equation  is automatically satisfied. The sole remaining equation, , simplifies to

This has plane-wave solutions of the form

where  is a complex number (the mode amplitude) that specifies the magnitude and phase of the plane wave,  is a real unit
vector (the polarization vector) that specifies which direction the vector potential points along, and “c.c.” denotes the complex
conjugate of the first term. Referring to Equation , the angular frequency  must satisfy

Moreover, since , it must be the case that

∇ ⋅ E

∇ ⋅ B

∇ ×E

∇ ×B

= 0

= 0

= −
∂B

∂t

= .
1

c2

∂E

∂t

(5.3.1)

(5.3.2)

(5.3.3)

(5.3.4)

Φ A

E

B

= −∇Φ −
∂A

∂t
= ∇ ×A.

(5.3.5)

(5.3.6)

(5.3.2) (5.3.3)

(5.3.1) (5.3.4)

Φ∇2

( − )A∇2 1

c2

∂2

∂t2

= − ∇ ⋅ A
∂

∂t

= ∇[ Φ +∇ ⋅ A] .
1

c2

∂

∂t

(5.3.7)

(5.3.8)

Φ = 0, ∇ ⋅ A = 0. (5.3.9)

Φ0 A0

(5.3.9) Λ(r, t) = − d (r, )∫ t
t′ Φ0 t′

Φ = + = 0Φ0 Λ̇

∇ ⋅ A = ∇ ⋅ − Λ = ∇ ⋅ + d (r, ).A0 ∇2
A0 ∫

t

t′ ∇2Φ0 t′ (5.3.10)

(5.3.7) ∇ ⋅ A = 0

(5.3.7) (5.3.8)

( − )A = 0.∇2 1

c2

∂2

∂t2
(5.3.11)

A(r, t) = (A +c. c.) e,ei(k⋅r−ωt) (5.3.12)

A e

(5.3.11) ω

ω = c|k|. (5.3.13)

∇ ⋅ A = 0
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In other words, the polarization vector is perpendicular to the propagation direction. For any given , we can choose (arbitrarily)
two orthogonal polarization vectors.

Now suppose we put the electromagnetic field in a box of volume , with periodic boundary conditions (we will take 
 at the end). The  vectors form a discrete set:

Then the vector potential field can be decomposed as a superposition of plane waves,

Here,  is a two-fold polarization degree of freedom indexing the two possible orthogonal polarization vectors for each . (We
won’t need to specify how exactly these polarization vectors are defined, so long as the definition is used consistently.)

To convert the classical field theory into a quantum field theory, for each  we define an independent set of creation and
annihilation operators:

Then the Hamiltonian for the electromagnetic field is

The vector potential is now promoted into a Hermitian operator in the Heisenberg picture:

Here,  is a constant to be determined, and “h.c.” denotes the Hermitian conjugate. The creation and annihilation operators in this
equation are Schrödinger picture ( ) operators. The particles they create/annihilate are photons—elementary particles of light.

To find , we compare the quantum and classical energies. Suppose the electromagnetic field is in a coherent state  such that
for any  and ,

for some . From this and Equation , we identify the corresponding classical field

For each  and , Equations –  give the electric and magnetic fields

In the classical theory of electromagnetism, Poynting’s theorem tells us that the total energy carried by a classical plane
electromagnetic wave is

Here,  is the volume of the enclosing box, and we have used the fact that terms like  vanish when integrated over . Hence,
we make the correspondence

k ⋅ e = 0. (5.3.14)

k

V = L3

L → ∞ k

= , ∈ Z, for j= 1, 2, 3.kj
2πnj

L
nj (5.3.15)

A(r, t) = ( +c. c.) , where = c|k|.∑
kλ

Akλ e
i(k⋅r− t)ωk ekλ ωk (5.3.16)

λ k

(k,λ)

[ , ] = , [ , ] = [ , ] = 0.âkλ â†

k
′λ′ δkk′δλλ′ âkλ âk′λ′ â†

kλ
â†

k
′λ′ (5.3.17)

= ℏ , where = c|k|.Ĥ ∑
kλ

ωk â
†
kλ
âkλ ωk (5.3.18)

(r, t) = ( +h. c.) .Â ∑
kλ

Ckλ âkλ e
i(k⋅r− t)ωk ekλ (5.3.19)

Ckλ

t = 0

Ckλ |α⟩

k λ

|α⟩ = |α⟩âkλ αkλ (5.3.20)

∈ Cαkλ (5.3.19)

A(r, t) = ( +c. c.) , where = .∑
kλ

Akλ e
i(k⋅r− t)ωk ekλ Ckλαkλ Akλ (5.3.21)

k λ (5.3.5) (5.3.6)

Ekλ

Bkλ

= (i +c. c.)ωkAkλ e
i(k⋅r− t)ωk ekλ

= (i +c. c.) k × .Akλ e
i(k⋅r− t)ωk ekλ

(5.3.22)

(5.3.23)

E = r ( + )∫
V

d3 ϵ0

2
∣∣Ekλ∣∣

2
c2∣∣Bkλ∣∣

2

= 2 | V .ϵ0 ω
2
k

Akλ|
2

(5.3.24)

V e2ik⋅r
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We thus arrive at the result

To describe infinite free space rather than a finite-volume box, we take the  limit and re-normalize the creation and
annihilation operators by the replacement

Then the sums over  become integrals over the infinite three-dimensional space:

This page titled 5.3: Quantizing The Electromagnetic Field is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform.

2 | V = ℏ | ⇒ = .ϵ0 ω2
k
Ckλαkλ|2 ωk αkλ|2 Ckλ

ℏ

2 Vϵ0ωk

− −−−−−−

√ (5.3.25)

Ĥ

(r, t)Â

ωk

= ℏ∑
kλ

ωk â
†
kλâkλ

= ( +h. c.)∑
kλ

ℏ

2 Vϵ0ωk

− −−−−−−

√ âkλ e
i(k⋅r− t)ωk ekλ

= c|k|, [ , ] = , [ , ] = 0.âkλ â
†

k
′λ′ δkk

′δλλ′ âkλ âk
′λ′

(5.3.26)

L → ∞

→ .âkλ

(2π)3

V

− −−−−

√ âkλ (5.3.27)
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√ âkλ e
i(k⋅r− t)ωk ekλ

= c|k|, [ , ] = (k − ) , [ , ] = 0.âkλ â†
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5.4: The Electron-Photon Interaction
Having derived quantum theories for the electron and the electromagnetic field, we can put them together to describe how electrons
interact with the electromagnetic field by absorbing and/or emitting photons. Here, we present the simplest such calculation.

Let  be the Hilbert space for one electron, and  be the Hilbert space for the electromagnetic field. The combined system is
thus described by . We seek a Hamiltonian of the form

where  is the Hamiltonian for the “bare” electron,  is the Hamiltonian for the source-free electromagnetic field, and  is
an interaction Hamiltonian describing how the electron interacts with photons.

Let us once again adopt the Coulomb gauge, so that the scalar potential is zero, and the electromagnetic field is solely described via
the vector potential. In Section 5.1, we saw that the effect of the vector potential on a charged particle can be described via the
substitution

In Section 5.2, we saw that this substitution is applicable not just to non-relativistic particles, but also to fully relativistic particles
described by the Dirac Hamiltonian. Previously, we have treated the  in this substitution as a classical object lacking quantum
dynamics of its own. Now, we replace it by the vector potential operator derived in Section 5.3:

Using this, together with either the electronic and electromagnetic Hamiltonians, we can finally describe the photon emission
process. Suppose a non-relativistic electron is orbiting an atomic nucleus in an excited state . Initially, the photon field is
in its vacuum state . Hence, the initial state of the combined system is

Let  be the Hamiltonian term responsible for photon absorption/emission. If , then  would be an energy
eigenstate. The atom would remain in its excited state forever.

In actuality,  is not zero, so  is not an energy eigenstate. As the system evolves, the excited electron may decay into its
ground state  by emitting a photon with energy , equal to the energy difference between the atom’s excited state  and
ground state . For a non-relativistic electron, the Hamiltonian (5.1.20) yields the interaction Hamiltonian

where  must now be treated as a field operator, not a classical field.

Consider the states that  can decay into. There is a continuum of possible final states, each having the form

which describes the electron being in its ground state and the electromagnetic field containing one photon, with wave-vector  and
polarization .

According to Fermi’s Golden Rule (see Chapter 2), the decay rate is

where  denotes the average over the possible decay states of energy  (i.e., equal to the energy of the initial state), and 
is the density of states.

He HEM

⊗He HEM

H = + + ,He HEM Hint (5.4.1)
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To calculate the matrix element , let us use the infinite-volume version of the vector field operator . (You
can check that using the finite-volume version yields the same results; see Exercise 5.5.2.) We will use the Schrödinger picture
operator, equivalent to setting  in Equation . Then

We can now use the fact that . Moreover, we approximate the  factors in the brakets
with 1; this is a good approximation since the size of a typical atomic orbital ( ) is much smaller than the optical
wavelength ( ), meaning that  does not vary appreciably over the range of positions  where the orbital
wavefunctions are significant. The above equation then simplifies to

We can make a further simplification by observing that for ,

The complex number , called the transition dipole moment, is easily calculated from the orbital wavefunctions. Thus,

(Check for yourself that Equation  should, and does, have units of .) We now need the average over the possible
photon states ( ). In taking this average, the polarization vector runs over all possible directions, and a standard angular
integration shows that

and defining  as the frequency of the emitted photon. The resulting decay rate is

The figure below compares this prediction to experimentally-determined decay rates for the simplest excited states of hydrogen,
lithium, and sodium atoms. The experimental data are derived from atomic emission line-widths, and correspond to the rate of
spontaneous emission (also called the “Einstein  coefficient”) as the excited state decays to the ground state. For the Fermi’s
Golden Rule curve, we simply approximated the transition dipole moment as  (based on the fact that  has units of
length, and the length scale of an atomic orbital is about an angstrom); to be more precise,  ought to be calculated using the actual
orbital wavefunctions. Even with the crude approximations we have made, the predictions are within striking distance of the
experimental values.
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Figure : Spontaneous emission rates (Einstein  coefficients) for the  transition in hydrogen, the  transition
in lithium, and the  transition in sodium. Data points extracted from the NIST Atomic Spectra Database
(https://www.nist.gov/pml/atomic-spectra-database). The dashed curve shows the decay rate based on Fermi’s Golden Rule, with 

.
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5.5: Exercises

Exercises

In Section 5.3, we derived the vector potential operator, in an infinite volume, to be

Since , the creation and annihilation operators each have units of . Prove that  has the
same units as the classical vector potential.

Repeat the spontaneous decay rate calculation from Section 5.4 using the finite-volume versions of the creation/annihilation
operators and the vector potential operator (5.4.3). Show that it yields the same result (5.4.16).

The density of photon states at energy  is defined as

where . Note the factor of 2 accounting for the polarizations. Prove that

and show that  has units of .

Further Reading
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[3] L. L. Foldy and S. A. Wouthuysen, On the Dirac Theory of Spin  Particles and Its Non-Relativistic Limit, Physical Review
78, 29 (1950).
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6.1: A- Partial Wave Analysis
This Appendix describes the method of partial wave analysis, which can be used to solve 3D scattering problems with spherically
symmetric scattering potentials. Such a potential, , depends only on the radial distance  and not on
direction. This typically describes a situation where a point particle or spherically-symmetric object sits at the coordinate origin, 

, and is bombarded by incident particles.

A.1 Spherical Waves

We begin by considering “exterior” solutions to the Schrödinger wave equation. Far from the scatterer, where , the
Schrödinger wave equation can be rearranged into

This partial differential equation is called the Helmholtz equation. We emphasize that  plays the role of a tunable parameter, and
is not an eigenvalue in an eigenproblem. For the moment, we will not specify the boundary conditions, and look instead for a
general set of solutions for a given  (and hence ).

In spherical coordinates , the Helmholtz equation has the explicit form

There is a standard procedure for solving this. The first step is to perform a separation of variables, and look for solutions of the
form

where  is a function to be determined and  is a special function known as a spherical harmonic. Spherical harmonics
are functions designed specifically to represent the angular dependence of solutions with definite angular momenta. In the context
of quantum mechanics,  and  are the quantum numbers representing the total angular momentum and the -component of the
angular momentum. It can be shown that the indices  and  must be integers satisfying  and , in order for 

 to be periodic in  and regular at the poles of the spherical coordinate system.

After plugging in this form for , the Helmholtz equation reduces to the following ordinary differential equation, which is
a variant of the Bessel equation:

Note that  drops out of the equation. Thus,  depends on , but not on .

The ordinary differential equation has two linearly independent real solutions,  and , which are called spherical
Bessel functions. Most scientific computing packages provide functions to calculate these; Scientific Python, for example, has 
scipy.special.spherical_jn  and scipy.special.spherical_yn . Some spherical Bessel functions are

plotted below:

Figure 

Note that the  functions diverge at . This does not bother us, for we are interested in solutions defined in the exterior
region, away from the coordinate origin.
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For large values of the input, the spherical Bessel functions have the limiting forms

Since we are interested in incoming and outgoing spherical waves, it is convenient to define

This complex function is called a spherical Hankel function of the first kind ( ) or second kind ( ). It solves the same
differential equation, but has the limiting form

Using it, we can write down a solution to the Helmholtz equation, in the form

This describes a spherical wave that is outgoing ( ) or incoming ( ), and that has a definite angular momentum described by the
quantum numbers  and .

Because the Helmholtz equation is linear, any linear combination of spherical waves, with various values of , is also a
solution:

It can be shown that the spherical waves form a complete solution basis. In other words, any solution to the 3D Helmholtz equation
within the exterior region can be written in the above form, for some choice of complex coefficients . (By the way, these
spherical waves are appropriately normalized so that the flux associated with each term is directly proportional to .)

A.2 The Scattering Matrix
For a given scattering problem, the exterior wavefunction is described by the complex numbers  and . These two sets
of coefficients cannot, however, be independent of each other. For fixed  and , suppose there is an incoming spherical wave
with definite angular momentum, say  for some choice of . After striking the scatterer, the quantum particle bounces
back out to infinity, and the outgoing wavefunction is some superposition of outgoing spherical waves with a variety of angular
momenta, described by certain coefficients .

Thus, for each choice of incoming wave with definite angular momentum, there is a corresponding set of outgoing-wave
coefficients. Since the Schrödinger wave equation is linear, the principle of superposition states that linear combinations of
scattering solutions are also valid solutions—i.e., solutions to the Schrödinger wave equation for the same  and . So if we
supply an arbitrary set of incoming coefficients , the outgoing coefficients must be determined by a linear relation of the
form

To make the notation cleaner, we rewrite this as

where each  or  denotes a pair of angular momentum quantum numbers , called a scattering channel. The matrix  is
called a scattering matrix. Knowing  and , we can calculate , and knowing  we can determine the outgoing
wavefunction produced by any set of incoming waves.
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Thus far, we have not specified how the “incoming” and “outgoing” waves are related to the “incident” and “scattered” waves of a
scattering experiment. We now consider an incident plane wave, , where . This introduces an
important complication: relative to the coordinate origin, a plane wave is neither purely “incoming” nor “outgoing”! In fact, there is
a mathematical identity stating that

Here,  denotes the angular components (in spherical coordinates) of the incident wave-vector , while  likewise denotes the
angular components of the position vector . Equation  informs us that the incident plane wave can be decomposed into a
superposition of incoming and outgoing spherical waves, with the wave coefficients

As described in Chapter 1, the total wavefunction in a scattering problem is the sum of the incident wavefunction  and the
scattered wavefunction . The latter must be a superposition of only outgoing spherical waves; let us denote the coefficients by

. The scattering matrix relation can then be re-written as

Using this, the scattered wavefunction can be written as

Taking the large-  expansion of the spherical Hankel functions yields

The quantity in square brackets is precisely what we call the scattering amplitude:

A.3 Spherically Symmetric Scattering Potentials

Generally, the scattering matrix needs to be calculated numerically. The process is greatly simplified if the scattering potential is
spherically symmetric, i.e. . In that case, angular momentum is conserved, so an incoming spherical wave with
angular momentum quantum numbers  must scatter exclusively into an outgoing spherical wave with the same . This
means that the scattering matrix components have the form

The scattering amplitude then simplifies to

Our task is now to obtain the ’s. The procedure is very similar to what we already went through in Section A.1. The total
wavefunction satisfies the Schrödinger wave equation, which can be written in spherical coordinates as
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ℓ Yℓm r̂

= 2π( − ) ( ) (kr) ( ).Ψi∑
ℓm

∑
ℓ′m′

Sℓm,ℓ′m′ δℓℓ′δmm′ ei π/2ℓ′

Y ∗
ℓ′m′ k̂i h+

ℓ Yℓm r̂

(6.1.16)

r

(r) [ ( − ) ( ) ( )] .ψs ⟶

r→∞
Ψi

eikr

r

2π

ik
∑
ℓm

∑
ℓ

′
m′

Sℓm,ℓ′m′ δℓℓ′δmm′ e−i(ℓ− )π/2ℓ′

Y ∗
ℓ′m′ k̂i Yℓm r̂ (6.1.17)

f( → k ) = ( − ) ( ) ( ).ki r̂
2π

ik
∑
ℓm

∑
ℓ′m′

Sℓm,ℓ′m′ δℓℓ′δmm′ e−i(ℓ− )π/2ℓ
′

Y ∗
ℓ′m′ k̂i Yℓm r̂ (6.1.18)

V (r) = V (r)

(ℓ,m) (ℓ,m)

= .Sℓm,ℓ′m′ sℓm δℓℓ′ δmm′ (6.1.19)

f( → k ) = ( −1) ( ) ( ).ki r̂
2π

ik
∑
ℓm

sℓm Y ∗
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k̂i Yℓm r̂ (6.1.20)
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where

This is similar to the Helmholtz equation, but with the constant  replaced by a function . In scattering channel , the
solution has the form

Upon substitution into the Schrödinger wave equation, we find that  must satisfy

As before, the equation for  does not involve ; hence, the scattering matrix components do not depend on , and can be
written as simply

For any given , we can solve the second-order ordinary differential equation numerically by supplying two boundary
conditions at , integrating up to a large value of , and matching to the exterior solution

The value of  can then be extracted.

To simplify the problem even further, let the scattering potential take the form of a spherical potential well of radius  and depth 
:

We will take , so that the potential is attractive. (The interested reader can work through the repulsive case, . The
process is almost the same as what is presented below, except that for some values of , the wave inside the scatterer becomes
evanescent.) Now, the Schrödinger wave equation in the interior region reduces to the Helmholtz equation, but with  replaced
with

Note that  for , since we have assumed that . The elementary solutions for  in the interior region are 
 and . However, we must exclude the latter, since they diverge at . (When we got to a similar point in Section

A.1, we did not exclude the spherical Bessel functions of the second kind, because at the time we were concerned with solutions in
the exterior region.) We thus arrive at a solution of the form

So far, the values of , , and  remain unknown. To proceed, we match the wavefunction and its derivative at the boundary 
:

Here,  denotes the derivative of the spherical Bessel function, and likewise for . Taking the ratio of these two equations
eliminates  and :

( )+ (sinθ )+ + (r)ψ(r, θ,ϕ) = 0,
1

r2

∂

∂r
r2 ∂ψ

∂r

1

sinθr2

∂

∂θ

∂ψ

∂θ

1

θr2 sin2

ψ∂2

∂ϕ2
K2 (6.1.21)

(r) = .K2
2m[E−V (r)]

ℏ2

− −−−−−−−−−−−

√ (6.1.22)

k2 (r)K2 (ℓ,m)

ψ(r, θ,ϕ) = A(r) (θ,ϕ).Yℓm (6.1.23)

A(r)

( )+[ (r) −ℓ(ℓ +1)]A(r) = 0, ℓ ∈ .
d

dr
r2 dA

dr
K2 r2

Z
+
0 (6.1.24)

A(r) m m

= .sℓm sℓ (6.1.25)

V (r)

r = 0 r

A(r) (kr) + (kr) = ( (kr) + (kr)).⟶
r→∞

c−
ℓ
h−

ℓ
c+

ℓ
h+

ℓ
c−

ℓ
h−

ℓ
sℓh

+
ℓ

(6.1.26)

sℓ

R

U

V (r) ={−U

0
for r < R,
otherwise.

(6.1.27)

U > 0 U < 0

E

k

q = .2m(E+U)/ℏ2
− −−−−−−−−−−−

√ (6.1.28)

q ∈ R
+ E > 0 U > 0 A(r)

(qr)jℓ (qr)yℓ r = 0

A(r) ={
(qr),αℓ jℓ

( (kr) + (kr))c−
ℓ h−

ℓ sℓh
+
ℓ

r ≤ R

r ≥ R.
(6.1.29)

αℓ c−
ℓ

sℓ

r = R

(qR)αℓ jℓ

q (qR)αℓ j′
ℓ

= ( (kR) + (kR))c−
ℓ h−

ℓ sℓh
+
ℓ

= k( (kR) + (kR)).c−
ℓ

h−
ℓ

′
sℓh

+
ℓ

′
(6.1.30)

j′
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ℓ

′

αℓ c−
ℓ

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34666?pdf


6.1.5 https://phys.libretexts.org/@go/page/34666

With a bit of rearrangement, this becomes

The numerator and denominator are complex conjugates of one another, since  is real and . Hence,

In other words, the scattering matrix component is a pure phase factor. This is actually a consequence of energy conservation. Since
the scattering matrix does not couple different angular momentum channels (due to the spherical symmetry), the incoming flux and
outgoing flux in each channel must be equal. Hence, the only thing the scattering potential can do is to shift the phase of the
outgoing spherical wave component in each channel.

Once we find , we can compute the scattering amplitude

This can be simplified with the aid of the following addition theorem for spherical harmonics:

where  denotes a Legendre polynomial. We finally obtain

This result for the scattering amplitude depends upon two variables: (i) , the particle energy (which is conserved), and (ii) 
, the deflection angle (i.e., the angle between the direction of incidence and the direction into which the

particle is scattered).

This page titled 6.1: A- Partial Wave Analysis is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong
via source content that was edited to the style and standards of the LibreTexts platform.

= k .
q (qR)j′

ℓ

(qR)jℓ

(kR) + (kR)h−
ℓ

′
sℓh

+
ℓ

′

(kR) + (kR)h−
ℓ sℓh

+
ℓ

(6.1.31)

= − .sℓ

k (kR) (qR) −q (kR) (qR)h−
ℓ

′
jℓ h−

ℓ
j′

ℓ

k (kR) (qR) −q (kR) (qR)h+
ℓ

′
jℓ h+

ℓ
j′

ℓ

(6.1.32)

jℓ ( =h+
ℓ )∗ h−

ℓ

= , where = −arg[k (kR) (qR) −q (kR) (qR)] .sℓ e2iδℓ δℓ
π

2
h+

ℓ

′
jℓ h+

ℓ
j′

ℓ
(6.1.33)

δℓ

f( → k ) = ( −1) ( ) ( ).ki r̂
2π

ik
∑
ℓ=0

∞

e2iδℓ ∑
m=−ℓ

ℓ

Y ∗
ℓm

k̂i Yℓm r̂ (6.1.34)

( ⋅ ) = ( ) ( ).Pℓ r̂1 r̂2
4π

2ℓ +1
∑
m=−ℓ

ℓ

Y ∗
ℓm

r̂1 Yℓm r̂2 (6.1.35)

(⋯)Pℓ

Definition: Legendre Polynomial

f( → k )ki r̂

δℓ

k
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1

2ik
∑
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∞
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π
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ℓ
′
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√
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6.2: B- The Transfer Matrix Method
The transfer matrix method is a numerical method for solving the 1D Schrödinger equation, and other similar equations. In this method, the wavefunction at each point is decomposed
into two complex numbers, called wave components. The wave components at any two points are related by a complex  matrix, called the transfer matrix.

B.1 Wave Components in 1D
For a 1D space with spatial coordinates , the Schrödinger wave equation is

where  is the particle mass,  is the wavefunction,  is the potential function, and  is the energy. We treat  as an adjustable parameter (e.g., the energy of the incident
particle in a scattering experiment).

Within any region of space where  is constant, the Schrödinger equation reduces to a 1D Helmholtz equation, whose general solution is

If , then the wave-number  is real and positive, and  denotes a right-moving ( ) or left-moving ( ) wave. If , then  is purely imaginary, and we choose the
branch of the square root so that it is a positive multiple of , so that  denotes a wave that decreases exponentially toward the right ( ) or toward the left ( ).

We can re-write the two terms on the right-hand side as

At each position , the complex quantities  are called the wave components .

The problem statement for the transfer matrix method is as follows. Suppose we have a piecewise-constant potential function , which takes on values  in
different regions of space, as shown in the figure below:

Figure 

Given the wave components  at one position , we seek to compute the wave components  at another position . In general, these are related by
a linear relation

where

The  matrix  is called a transfer matrix. Take note of the notation in the parentheses: we put the “start point”  in the right-hand input, and the “end point”  in the
left-hand input. We want to find  from the potential and the energy .

B.2 Constructing the Transfer Matrix

Consider the simplest possible case, where the potential has a single constant value  everywhere between two positions  and , with . Then, as we have just discussed, the
solution throughout this region takes the form

for some . The wave components at the two positions are

Each component of  is  times the corresponding component of . We can therefore eliminate  and , and write

The  matrix  is the transfer matrix across a segment of constant potential. Its first input is the wave-number within the segment (determined by the energy  and
potential ), and its second input is the segment length.

Next, consider a potential step at some position , as shown in the figure below:

Figure 

Let  and  be two points that are infinitesimally close to the potential step on either side (i.e.,  and , where  denotes a positive infinitesimal). To the left
of the step, the potential is ; to the right, the potential is . The corresponding wave-numbers are

2 ×2

x

− +V (x)ψ(x) = Eψ(x),
ℏ2

2m

ψd2

dx2
(6.2.1)

m ψ(x) V (x) E E

V

ψ(x) = A +B , where k = .eikx e−ikx 2m[E−V (x)]

ℏ2

− −−−−−−−−−−−

√ (6.2.2)

E > V k exp(±ikx) + − E < V k

i exp(±ikx) + −

ψ(x) = (x) + (x).ψ+ ψ− (6.2.3)

x (x)ψ±

V (x) { , , , …}V1 V2 V3

6.2.1

{ ( ), ( )}ψ+ xa ψ− xa xa { ( ), ( )}ψ+ xb ψ− xb xb

= M( , ) ,Ψb xb xa Ψa (6.2.4)

= [ ] , = [ ] .Ψb

( )ψ+ xb

( )ψ− xb
Ψa

( )ψ+ xa

( )ψ− xa
(6.2.5)

2 ×2 M( , )xb xa xa xb
M( , )xb xa E

V xa xb >xb xa

ψ(x) = A +B , where k = ,eikx e−ikx
2m(E−V )

ℏ2

− −−−−−−−−−

√ (6.2.6)

A,B ∈ C

= [ ] , = [ ] .Ψa
Aeikxa

Beikxa
Ψb

Aeikxb

Beikxb
(6.2.7)

Ψb exp[ik( − )]xb xa Ψa A B

= (k, − ) , where (k,L) ≡ [ ] .Ψb M0 xb xa Ψa M0
eikL

0

0

e−ikL
(6.2.8)

2 ×2 (k,L)M0 E

V

x0

6.2.2

xa xb = −xa x0 0+ = +xb x0 0+ 0+

V− V+
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There are two important relations between the wavefunctions on the two sides of the step. Firstly, any quantum mechanical wavefunction must be continuous everywhere (otherwise, the
Schrödinger equation would not be well-defined); this includes the point , so

Secondly, since the potential is non-singular at  the derivative of the wavefunction should be continuous at that point (this can be shown formally by integrating the Schrödinger
across an infinitesimal interval around ). Hence,

These two equations can be combined into a single matrix equation:

After doing a matrix inversion, this becomes

The  matrix  is the transfer matrix to go rightward from a region of wave-number , to a region of wave-number . Note that when , this reduces to the
identity matrix, as expected.

Using the above results, we can find the transfer matrix for any piecewise-constant potential. Consider the potential function shown below. It consists of segments of length 
, with potential ; outside, the potential is :

Figure 

Let  and  lie right beyond the first and last segments (where ), with . We can compute  by starting with , and left-multiplying by a sequence of transfer
matrices, one after the other. These transfer matrices consist of the two types derived in the previous sections:  (to cross a uniform segment) and  (to cross a potential step). Each
matrix multiplication “transfers” us to another point to the right, until we reach .

The overall transfer matrix between the two points is

The expression for  should be read from right to left. Starting from , we cross the potential step into segment 1, then pass through segment 1, cross the potential step from
segment 1 to segment 2, pass through segment 2, and so forth. (Note that as we move left-to-right through the structure, the matrices are assembled right-to-left; a common mistake
when writing a program to implement the transfer matrix method is to assemble the matrices in the wrong order, i.e. right-multiplying instead of left-multiplying.)

B.3 Reflection and Transmission Coefficients
The transfer matrix method is typically used to study how a 1D potential scatters an incident wave. Consider a 1D scatterer that is confined within a region :

The total wavefunction consists of an incident wave and a scattered wave,

The incident wave is assumed to be incident from the left:

We have inserted the extra phase factor of  to ensure that , which will be convenient. The wave is scattered as it meets the structure, and part of it is reflected
back to the left, while another part is transmitted across to the right. Due to the linearity of the Schrödinger wave equation, the total wavefunction must be directly proportional to .
Let us write the wave components at  and  as

=k±

2m(E− )V±

ℏ2

− −−−−−−−−−−

√ (6.2.9)

x0

( ) + ( ) = ( ) + ( ).ψ+ xa ψ− xa ψ+ xb ψ− xb (6.2.10)

x0

x0

i [ ( ) − ( )] = i [ ( ) − ( )] .k− ψ+ xa ψ− xa k+ ψ+ xb ψ− xb (6.2.11)
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⎢
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ψ(x) = (x) + (x).ψi ψs (6.2.16)

(x) = exp[i (x− )], where = .ψi Ψi k0 xa k0
2mE

ℏ2

− −−−−
√ (6.2.17)

exp(−i )k0xa ( ) =ψi xa Ψi

Ψi
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Ψ( )xb

= [ ] = [ ]
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Ψi

1

r

= [ ] = [ ] .
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Ψi

t
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The complex numbers  and  are called the reflection coefficient and the transmission coefficient, respectively. Their values do not depend on , since they specify the wave
components for the reflected and transmitted waves relative to . Note also that there is no  wave component at , as the scattered wavefunction must be purely outgoing.

Figure 

From the reflection and transmisison coefficients, we can also define the real quantities

which are called the reflectance and transmittance respectively. These are directly proportional to the total current flowing to the left and right.

According to the transfer matrix relation,

Hence,  and  can be expressed in terms of the components of the transfer matrix:

This page titled 6.2: B- The Transfer Matrix Method is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source content that was edited to the style and
standards of the LibreTexts platform.
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6.3: C- Entropy
“Entropy” is a concept used in multiple fields of science and mathematics to quantify one’s lack of knowledge about a complex
system. In physics, its most commonly-encountered form is thermodynamic entropy, which describes the uncertainty about the
microscopic configuration, or “microstate”, of a large physical system. In the field of mathematics known as information theory,
information entropy (also called Shannon entropy after its inventor C. Shannon) describes the uncertainty about the contents of a
transmitted message. One of the most profound developments in theoretical physics in the 20th century was the discovery by E. T.
Jaynes that statistical mechanics can be formulated in terms of information theory; hence, the thermodynamics-based and
information-based concepts of entropy are one and the same. For details about this connection, see Jaynes (1957) and Jaynes
(1957a). This appendix summarizes the definition of entropy in classical physics, and how it is related to other physical quantities.

C.1 Definition
Suppose a system has  discrete microstates labeled by integers . These microstates are associated with
probabilities , subject to the conservation of total probability

We will discuss how these microstate probabilities are chosen later (see Section 3). Given a set of these probabilities, the entropy is
defined as

Here,  is Boltzmann’s constant, which gives the entropy units of  (energy per unit temperature); this is a remnant of
entropy’s origins in 19th century thermodynamics, and is omitted by mathematicians.

It is probably not immediately obvious why Equation  is useful. To understand it better, consider its behavior under two
extreme scenarios:

Suppose the microstate is definitely known, i.e.,  for some . Then .
Suppose there are  possible microstates, each with equal probabilities

This describes a scenario of complete uncertainty between the possible choices. Then

The entropy formula is designed so that any other probability distribution—i.e., any situation of partial uncertainty—yields an
entropy  between  and .

To see that zero is the lower bound for the entropy, note that for , each term in the entropy formula  satisfies 
, and the equality holds if and only if  or . This is illustrated in the figure below:

Figure 

This implies that . Moreover,  if and only if  for some  (i.e., there is no uncertainty about which microstate
the system is in).
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Next, it can be shown that  is bounded above by , a relation known as Gibbs’ inequality. This follows from the fact that 
 for all positive , with the equality occurring if and only if . Take  where  is the number of

microstates:

Moreover, the equality holds if and only if  for all .

C.2 Extensivity
Another important feature of the entropy is that it is extensive, meaning that it scales proportionally with the size of the system.
Consider two independent systems  and , which have microstate probabilities  and . If we treat the combination of 
and  as a single system, each microstate of the combined system is specified by one microstate of  and one of , with
probability . The entropy of the combined system is

where  and  are the individual entropies of the  and  subsystems.

C.3 Entropy and Thermodynamics
The theory of statistical mechanics seeks to describe the macroscopic behavior of a large physical system by assigning some set of
probabilities  to its microstates. How are these probabilities chosen? One elegant way is to use the following
postulate:

Choose  so as to maximize , subject to constraints imposed by known facts about the macroscopic state of the
system.

The idea is that we want a probability distribution that is as “neutral” as possible, while being consistent with the available
macroscopic information about the system.

For instance, suppose the only information we have about the macroscopic state of the system is that its energy is precisely . In
this scenario, called a micro-canonical ensemble, we maximize  by assigning equal probability to every microstate of energy ,
and zero probability to all other microstates, for reasons discussed in Section 1. (In some other formulations of statistical
mechanics, this assignment of equal probabilities is treated as a postulate, called the ergodic hypothesis.)

Or suppose that only the system’s mean energy  is known, and nothing else. In this case, we can maximize  using the method
of Lagrange multipliers. The relevant constraints are the given value of  and conservation of probability:

We thus introduce two Lagrange multiplers,  and . For every microstate , we require
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Upon taking  as the definition of the temperature , we obtain the celebrated Boltzmann distribution:

Further Reading
E. T. Jaynes, Information theory and statistical mechanics, Physical Review 106, 620 (1957).
E. T. Jaynes, Information theory and statistical mechanics. ii, Physical Review 108, 171 (1957).

This page titled 6.3: C- Entropy is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source
content that was edited to the style and standards of the LibreTexts platform.
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6.4: D- Numerical Tensor Products
This appendix discusses how tensor products are handled in numerical linear algebra software. We will focus on Python with the
Numeric Python (numpy) module. The discussion is also applicable, with minor modifications, to GNU Octave or Matlab. We
assume the reader is familiar with the basics of Python/Numpy, e.g. how vectors can be represented by 1D arrays, linear operators
(matrices) can be represented by 2D arrays, etc.

Tensor products are implemented by the numpy.kron  function, which performs an operation called a Kronecker product.
The function takes two inputs, which can be 1D arrays, 2D arrays, or even higher-dimensional arrays (which we won’t discuss). It
returns a new array representing the tensor product of the inputs, whose dimensionality depends on that of the inputs. The function
can be used to compute products of vectors ( ), products of operators ( ), etc. It can even compute “mixed”
products like , which is useful for calculating partial projections and partial traces.

In the next few sections, we will prove that the various tensor products of bras, kets, and operators can be represented using the
following Numpy expressions involving numpy.kron :

 

 

D.1 Products of Vectors

Suppose  and  are both 1D arrays, of length  and  respectively; let their components be  and 
. Following Numpy conventions, we do not explicitly distinguish between “row vectors” and “column vectors”,

and component indices start from 0. The Kronecker product between  and  generates the following 1D array:

We can think of this as taking each component of , and multiplying it by the entire  array:

As we shall see, this description of the Kronecker product extends to higher-dimensional arrays as well. In the present case,  and 
are both 1D, and the result is a 1D array of  components, which can be described compactly in index notation by

The index  is defined so that as we sweep through  and ,  runs through the values 
 without duplication. Note, by the way, that the order of inputs into  is important:  is not the

same as ! The asymmetry between  and  is apparent in the definitions  and .

In terms of abstract linear algebra (as used in quantum theory), let  be an -dimensional space with basis , and  be
an -dimensional space with basis . Any two vectors  and  can be written as

A natural basis for the product space  is

|a⟩⊗|b⟩ ⊗ÔA ÔB

|a⟩⊗ ÔB

Definition: Numpy Expressions

|a⟩⊗|b⟩

⊗Â B̂

|a⟩⊗ B̂

⊗|b⟩Â

↔ kron(a, b)

↔ kron(A, B)

↔ kron(a, B.T).T

↔ kron(A.T, b).T

⟨a| ⊗ ⟨b|

⟨a| ⊗ B̂

⊗ ⟨b|Â

↔ kron(a.conj(), b.conj())

↔ kron(a.conj(), B)

↔ kron(A, b.conj())

a b M N ( , , … , )a0 a1 aM−1

( , , … , )b0 b1 bN−1

a b

kron(a, b) = ( , … , , , … , , … , ).a0b0 a0bN−1 a1b0 a1bN−1 aM−1 bN−1 (6.4.1)

a b

kron(a, b) = ( b, b, … , b).a0 a1 aM−1 (6.4.2)

a b

MN

[ kron(a, b) = where μ = mN +n.]
μ

am bn (6.4.3)

μ m = 0, … , M −1 n = 0, … , N −1 μ
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HA M {|m⟩} HB

N {|n⟩} |a⟩ ∈ HA |b⟩ ∈ HB
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Using Equation , we can show that

Therefore, we need only remember that the tensor product of two kets is represented by

Likewise, for bras,

 

D.2 Products of Matrices

Let  and  be 2D arrays of size  and  respectively:

Then the Kronecker product of  and  is an  array of the form

As before, this can be interpreted as taking each component of , and multiplying it by . The result can be written using index
notation as

 

In the language of abstract linear algebra, let  and  again be spaces with bases  and . Consider two linear
operators  and  acting respectively on these spaces:

Then we can show using Equation  that

where  is the basis for  previously defined in Equation . Thus,

This result, like Equation , is nice because it means that we can relegate the handling of tensor product components entirely
to the kron  function. So long as we make a particular basis choice for the spaces  and , and keep to that choice, kron

{|μ⟩ ≡ |m⟩|n⟩} where
⎧

⎩⎨
μ

m

n

= mN +n

= 0, 1, … , M −1
= 0, 1, … , N −1.

(6.4.5)

(6.4.3)
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]
μ

(6.4.6)

|a⟩⊗|b⟩ ↔ kron(a, b). (6.4.7)

⟨a| ⊗ ⟨b| ↔ kron( , ).a∗ b∗ (6.4.8)
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will return the vector products and operator products expressed using an appropriate and natural basis for  [i.e., the basis
defined in Equation ].

D.3 Mixed Products
For “mixed” products of operators with bras or kets, the representation using kron  is more complicated, but only slightly. First,
consider the 1D array  and 2D array :

Then the Kronecker product between the two is

Note that  is explicitly treated as a row vector. In component terms,

In linear algebraic terms, let

Then

This does not quite match Equation ! The basic problem is that the Kronecker product treats  a row vector. However, we
can patch things up by massaging Equation  a bit:

This is an appropriate match for Equation , so we conclude that

To take the product using the bra , we replace Equation  by

Comparing this to Equation  yields

 

Likewise, consider the 2D array  and 1D array :

Then the Kronecker product is

⊗HA HB

(6.4.5)

a B
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a
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Similar to before,  is treated as a row vector. In component terms,

Using the same procedure as before, we can straightforwardly show that

 

This page titled 6.4: D- Numerical Tensor Products is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D.
Chong via source content that was edited to the style and standards of the LibreTexts platform.

kron(A, b) = .
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6.5: E- Coherent States
Coherent states are special states of bosonic systems (including the quantum harmonic oscillator, whose excitation quanta can be
regarded as bosonic particles) whose dynamics are highly similar to classical oscillator trajectories. They provide an important link
between quantum and classical harmonic oscillators.

E.1 Definition
The Hamiltonian of a simple harmonic oscillator (with  for simplicity) is

where  and  are the position and momentum operators. The ladder operators are

These obey the commutation relation

As a result, we can also regard these as the creation and annihilation operators for a bosonic particle that has only one single-
particle state.

The Hamiltonian for the harmonic oscillator, Equation , can be written as

The annihilation operator  kills off the ground state :

Thus,  is analogous to the “vacuum state” for a bosonic particle.

Returning to the Hamiltonian , suppose we add a term proportional to :

The coefficient of , where , is for later convenience. By completing the square, we see that this additional term
corresponds to a shift in the center of the potential, plus an energy shift:

Let  denote the ground state for the shifted harmonic oscillator.
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Figure 

By analogy with how we solved the original harmonic oscillator problem, let us define a new annihilation operator with displaced 
:

This is related to the original annihilation operator by

We can easily show that , and that . Hence,

But Equation  implies that in terms of the original annihilation operator,

In other words,  is an eigenstate of the original harmonic oscillator’s annihilation operator, with the displacement parameter 
as the corresponding eigenvalue! For reasons that will become clear later, we call  a coherent state of the original harmonic
oscillator .

E.2 Explicit Expression for the Coherent State

Let us derive an explicit expression for the coherent state in terms of  and , the creation and annihilation operators of the
original harmonic oscillator. Consider the translation operator

Since  is the ground state of a displaced harmonic oscillator, it can be generated by performing a displacement of the original
oscillator’s ground state . The displacement is :

In deriving the second line, we have used Equations –  to express  in terms of  and . We can further simplify the
result by using the Baker-Campbell-Hausdorff formula for operator exponentials:

The result is

6.5.1
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| ⟩ = | ⟩.â α1 α1 α1 (6.5.12)

| ⟩α1 α1
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Ĥ

â â†

(Δx) = exp(−i Δx).T̂ p̂ (6.5.13)

| ⟩α1
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If we write the exponential in its series form,

then we see that from the point of view of the bosonic excitations of the original Hamiltonian , the state  has an
indeterminate number of bosons. It is a superposition of the zero-boson (vacuum) state, a one-boson state, a two-boson state, etc.

We can generalize the coherent state by performing a shift not just in space, but also in momentum. Instead of Equation , let
us define

where

It can then be shown that the ground state of , which we denote by , satisfies

(Note that  is not Hermitian, so its eigenvalue  need not be real.) In explicit terms,

E.3 Basic Properties
There is one coherent state  for each complex number . They have the following properties:

1. They are normalized:

This follows from the fact that they are ground states of displaced harmonic oscillators.

2. They form a complete set, meaning that the identity operator can be resolved as

where  is some numerical constant and  denotes an integral over the complex plane. However, the coherent states do not
form an orthonormal set, as they are over-complete:  for .

3. The expected number of particles in a coherent state is

4. The probability distribution of the number of particles follows a Poisson distribution:

The mean and variance of this distribution are both .

5. The mean position and momentum are
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†
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Ĥ | ⟩α1
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â α
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†
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= C ∫ α|α⟩⟨α|,Î d2 (6.5.25)

C ∫ αd2
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†
â |

2
(6.5.26)
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E.4 Dynamical Properties
Take the harmonic oscillator Hamiltonian with zero-point energy omitted for convenience:

Suppose we initialize the system in a coherent state  for some . This is not an energy eigenstate of , so how will it
subsequently evolve?

It turns out that the dynamical state has the form

In other words, the system is always in a coherent state, but the complex parameter  varies with time. To find , plug the
ansatz into the time-dependent Schrödinger equation:

We can calculate the left-hand side using Equations , , and :

Hence,

This looks more complicated than it actually is. Dividing both sides by  gives

This reduces to

This is the equation for a complex harmonic oscillator with an arbitrary damping or amplification factor . For , the oscillator
is energy-conserving and the solutions are

Referring back to Equations – , this implies that the mean position and momentum have the following time-
dependence:

The dynamics of a coherent state therefore reproduces the motion of a classical harmonic oscillator with .
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