
Nanyang Technological University

Computational Physics

Y. D. Chong

This text is disseminated via the Open Education Resource (OER) LibreTexts Project (https://LibreTexts.org) and like the hundreds
of other texts available within this powerful platform, it is freely available for reading, printing and "consuming." Most, but not all,
pages in the library have licenses that may allow individuals to make changes, save, and print this book. Carefully
consult the applicable license(s) before pursuing such effects.

Instructors can adopt existing LibreTexts texts or Remix them to quickly build course-specific resources to meet the needs of their
students. Unlike traditional textbooks, LibreTexts’ web based origins allow powerful integration of advanced features and new
technologies to support learning.

The LibreTexts mission is to unite students, faculty and scholars in a cooperative effort to develop an easy-to-use online platform
for the construction, customization, and dissemination of OER content to reduce the burdens of unreasonable textbook costs to our
students and society. The LibreTexts project is a multi-institutional collaborative venture to develop the next generation of open-
access texts to improve postsecondary education at all levels of higher learning by developing an Open Access Resource
environment. The project currently consists of 14 independently operating and interconnected libraries that are constantly being
optimized by students, faculty, and outside experts to supplant conventional paper-based books. These free textbook alternatives are
organized within a central environment that is both vertically (from advance to basic level) and horizontally (across different fields)
integrated.

The LibreTexts libraries are Powered by NICE CXOne and are supported by the Department of Education Open Textbook Pilot
Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions
Program, and Merlot. This material is based upon work supported by the National Science Foundation under Grant No. 1246120,
1525057, and 1413739.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation nor the US Department of Education.

Have questions or comments? For information about adoptions or adaptions contact info@LibreTexts.org. More information on our
activities can be found via Facebook (https://facebook.com/Libretexts), Twitter (https://twitter.com/libretexts), or our blog
(http://Blog.Libretexts.org).

This text was compiled on 04/15/2025

https://libretexts.org/
https://www.nice.com/products
mailto:info@LibreTexts.org
https://facebook.com/Libretexts
https://twitter.com/libretexts
http://blog.libretexts.org/

1 https://phys.libretexts.org/@go/page/34938

TABLE OF CONTENTS

Licensing

1: Scipy Tutorial
1.1: Preliminaries
1.2: Getting Started
1.3: Modularizing the Code

2: Scipy Tutorial (Part 2)
2.1: Sequential Data Structures
2.2: Improving the Program

3: Numbers, Arrays, and Scaling
3.1: A Model of Computing
3.2: Integers and Floating-Point Numbers
3.3: Arrays
3.4: Exercises

4: Numerical Linear Algebra
4.1: Array Representations of Vectors, Matrices, and Tensors
4.2: Linear Equations
4.3: Exercises

5: Gaussian Elimination
5.1: The Basic Algorithm
5.2: Matrix Generalization
5.3: Pivoting
5.4: LU Decomposition

6: Eigenvalue Problems
6.1: Basic Facts about Eigenvalue Problems
6.2: Numerical Eigensolvers

7: Finite-Difference Equations
7.1: Derivatives
7.2: Discretizing Partial Differential Equations
7.3: Higher Dimensions

8: Sparse Matrices
8.1: Sparse Matrix Algebra
8.2: Sparse Matrix Formats
8.3: Using Sparse Matrices
8.4: Example- Particle-in-a-Box Problem

https://libretexts.org/
https://phys.libretexts.org/@go/page/34938?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/00:_Front_Matter/04:_Licensing
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01:_Scipy_Tutorial
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01:_Scipy_Tutorial/1.01:_Preliminaries
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01:_Scipy_Tutorial/1.02:_Getting_Started
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01:_Scipy_Tutorial/1.03:_Modularizing_the_Code
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/02:_Scipy_Tutorial_(Part_2)
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/02:_Scipy_Tutorial_(Part_2)/2.01:_Sequential_Data_Structures
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/02:_Scipy_Tutorial_(Part_2)/2.02:_Improving_the_Program
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03:_Numbers_Arrays_and_Scaling
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03:_Numbers_Arrays_and_Scaling/3.01:_A_Model_of_Computing
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03:_Numbers_Arrays_and_Scaling/3.02:_Integers_and_Floating-Point_Numbers
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03:_Numbers_Arrays_and_Scaling/3.03:_Arrays
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03:_Numbers_Arrays_and_Scaling/3.04:_Exercises
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04:_Numerical_Linear_Algebra
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04:_Numerical_Linear_Algebra/4.01:_Array_Representations_of_Vectors_Matrices_and_Tensors
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04:_Numerical_Linear_Algebra/4.02:_Linear_Equations
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04:_Numerical_Linear_Algebra/4.03:_Exercises
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05:_Gaussian_Elimination
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05:_Gaussian_Elimination/5.01:_The_Basic_Algorithm
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05:_Gaussian_Elimination/5.02:_Matrix_Generalization
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05:_Gaussian_Elimination/5.03:_Pivoting
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05:_Gaussian_Elimination/5.04:_LU_Decomposition
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06:_Eigenvalue_Problems
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06:_Eigenvalue_Problems/6.01:_Basic_Facts_about_Eigenvalue_Problems
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06:_Eigenvalue_Problems/6.02:_Numerical_Eigensolvers
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07:_Finite-Difference_Equations
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07:_Finite-Difference_Equations/7.01:_Derivatives
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07:_Finite-Difference_Equations/7.02:_Discretizing_Partial_Differential_Equations
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07:_Finite-Difference_Equations/7.03:_Higher_Dimensions
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08:_Sparse_Matrices
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08:_Sparse_Matrices/8.01:_Sparse_Matrix_Algebra
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08:_Sparse_Matrices/8.02:_Sparse_Matrix_Formats
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08:_Sparse_Matrices/8.03:_Using_Sparse_Matrices
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08:_Sparse_Matrices/8.04:_Example-_Particle-in-a-Box_Problem

2 https://phys.libretexts.org/@go/page/34938

9: Numerical Integration
9.1: Mid-Point Rule
9.2: Trapezium Rule
9.3: Simpson's Rule
9.4: Gaussian Quadratures
9.5: Monte Carlo Integration

10: Numerical Integration of ODEs
10.1: Example- Equations of Motion in Classical Mechanics
10.2: Forward Euler Method
10.3: Backward Euler Method
10.4: Adams-Moulton Method
10.5: Runge-Kutta Methods
10.6: Integrating ODEs with Scipy

11: Discrete Fourier Transforms
11.1: Conversion of Continuous Fourier Transform to DFT
11.2: Spectral Resolution and Range
11.3: The Split-Step Fourier Method

12: Markov Chains
12.1: The Simplest Markov Chain- The Coin-Flipping Game
12.2: General Description
12.3: The Ehrenfest Model

13: The Markov Chain Monte Carlo Method
13.1: Basic Formulation
13.2: The Ising Model

Index

Glossary

Detailed Licensing

https://libretexts.org/
https://phys.libretexts.org/@go/page/34938?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09:_Numerical_Integration
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09:_Numerical_Integration/9.01:_Mid-Point_Rule
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09:_Numerical_Integration/9.02:_Trapezium_Rule
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09:_Numerical_Integration/9.03:_Simpson's_Rule
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09:_Numerical_Integration/9.04:_Gaussian_Quadratures
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09:_Numerical_Integration/9.05:_Monte_Carlo_Integration
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10:_Numerical_Integration_of_ODEs
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10:_Numerical_Integration_of_ODEs/10.01:_Example-_Equations_of_Motion_in_Classical_Mechanics
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10:_Numerical_Integration_of_ODEs/10.02:_Forward_Euler_Method
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10:_Numerical_Integration_of_ODEs/10.03:_Backward_Euler_Method
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10:_Numerical_Integration_of_ODEs/10.04:_Adams-Moulton_Method
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10:_Numerical_Integration_of_ODEs/10.05:_Runge-Kutta_Methods
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10:_Numerical_Integration_of_ODEs/10.06:_Integrating_ODEs_with_Scipy
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11:_Discrete_Fourier_Transforms
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11:_Discrete_Fourier_Transforms/11.01:_Conversion_of_Continuous_Fourier_Transform_to_DFT
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11:_Discrete_Fourier_Transforms/11.02:_Spectral_Resolution_and_Range
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11:_Discrete_Fourier_Transforms/11.03:_The_Split-Step_Fourier_Method
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12:_Markov_Chains
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12:_Markov_Chains/12.01:_The_Simplest_Markov_Chain-_The_Coin-Flipping_Game
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12:_Markov_Chains/12.02:_General_Description
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12:_Markov_Chains/12.03:_The_Ehrenfest_Model
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/13:_The_Markov_Chain_Monte_Carlo_Method
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/13:_The_Markov_Chain_Monte_Carlo_Method/13.01:_Basic_Formulation
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/13:_The_Markov_Chain_Monte_Carlo_Method/13.02:_The_Ising_Model
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/zz:_Back_Matter/10:_Index
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/zz:_Back_Matter/20:_Glossary
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/zz:_Back_Matter/30:_Detailed_Licensing

1 https://phys.libretexts.org/@go/page/65371

Licensing
A detailed breakdown of this resource's licensing can be found in Back Matter/Detailed Licensing.

https://libretexts.org/
https://phys.libretexts.org/@go/page/65371?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/00%3A_Front_Matter/04%3A_Licensing
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/zz%3A_Back_Matter/30%3A_Detailed_Licensing

1

CHAPTER OVERVIEW

1: Scipy Tutorial
This is a tutorial for Scientific Python (Scipy), a scientific computing module for the Python programming language. There are a
couple of other introductions to Scipy online, which are of excellent quality:

Scipy Tutorial: the official tutorial.
More Python Scientific Lecture Notes: a textbook which goes in-depth into using Scipy.

The present tutorial serves a slightly different purpose. It acts as a "walkthrough", guiding you through each step of writing a basic
but complete Scipy program. You can use this as the basis for a more complete exploration of Scipy, possibly using the above
online resources.

I will assume no pre-existing knowledge of the Python programming language. Programming language constructs are explained as
they appear. But if you need more an even more basic tutorial on Python, feel free to consult any of the dozens available online.

1.1: Preliminaries
1.2: Getting Started
1.3: Modularizing the Code

This page titled 1: Scipy Tutorial is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source
content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
http://python.org/
http://docs.scipy.org/doc/scipy/reference/tutorial/general.html
http://scipy-lectures.github.io/
https://www.google.com.sg/search?q=python+tutorial
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01%3A_Scipy_Tutorial/1.01%3A_Preliminaries
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01%3A_Scipy_Tutorial/1.02%3A_Getting_Started
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01%3A_Scipy_Tutorial/1.03%3A_Modularizing_the_Code
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01%3A_Scipy_Tutorial
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

1.1.1 https://phys.libretexts.org/@go/page/34816

1.1: Preliminaries

1.1.1 Installing Python and Scipy
If you don't have Scipy installed yet, there are plenty of installation options, detailed here.

If you are using GNU/Linux, Python is probably already installed, so just install Scipy using your distribution's package
manager (e.g. apt-get install python3-scipy for Debian or Ubuntu).
If you are using Windows or Mac OS, the easiest installation method is to use the Anaconda distribution, which bundles Python
with Scipy and other packages you might need. Pick the 64-bit Python 3.5 version.

From now on, I'll assume that you have installed Python 3, which is the newest version of the Python programming language. The
old version, Python 2, also supports Scipy, but it brings along lots of little differences, too many and annoying to enumerate. All
new (non-legacy) Python code ought to be written in Python 3.

1.1.2 Verify the Installation
If you are using GNU/Linux, open up a text terminal and type python . If you are using Windows, launch the program
Python 3.3 → IDLE (Python GUI) . In each case, this will open up a text terminal with contents like this:

Python 3.3.3 (default, Nov 26 2013, 13:33:18)
[GCC 4.8.2] on linux
Type "copyright", "credits" or "license()" for more information.
>>>

The >>> part is a command prompt. Type the following:

>>> from scipy import *

After pressing Enter, there should be a brief pause, after which you get back to the prompt. (If you see a message like
ImportError: No module named 'scipy' , then Scipy was not installed correctly.) Next, type

>>> import matplotlib.pyplot as plt

Again, there should be no error message. These two commands initialize the Scipy scientific computing module, and the Matplotlib
plotting module, so that they are now available for use in Python. Note: in the future, you don't have to type these lines in by hand
when starting up Python; we'll do all the necessary "importing" commands in our program source code.

Now let's do a simple plot of :

>>> x = linspace(0, 10, 100)
>>> y = sin(x)
>>> plt.plot(x,y)
>>> plt.show()

This should pop up a graph showing a sine function, in a window titled "Figure 1". Here's what these four lines of code did:

1. Create an array (a sequence of numbers), consisting of numbers between and , inclusive; then give this array the name
x .

2. Create an array whose elements are the sines of the elements in x ; i.e., a sequence of numbers, the first of which is
 and the last of which is . Then, give this array the name y .

3. Set up an plot, using the x array as the set of coordinates, and the y array as the set of coordinates.
4. Show the plot on-screen.

If you don't understand why the above lines do what they do, don't worry. Let's just keep going for now.

y = sin(x)

100 0 10

100

sin(0) sin(10)

x −y x y

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34816?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01%3A_Scipy_Tutorial/1.01%3A_Preliminaries

1.1.2 https://phys.libretexts.org/@go/page/34816

This page titled 1.1: Preliminaries is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source
content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34816?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01%3A_Scipy_Tutorial/1.01%3A_Preliminaries
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

1.2.1 https://phys.libretexts.org/@go/page/34817

1.2: Getting Started

1.2.1: Problem Statement: Computing Electric Potentials
Let's now walk through the steps of writing a program to perform a simple task: computing and plotting the electric potential of a
set of point charges located in a one-dimensional (1D) space.

Suppose we have a set of point charges distributed in 1D. Let us denote the positions of the particles by ,
and their electric charges by . Notice that we have chosen to start counting from zero, so that is the first
position and is the last position. This practice is called "zero-based indexing"; more on it later.

Knowing and , we can calculate at any arbitrary point , by using the formula

The factor of in the denominator is annoying to keep around, so we will adopt "computational units". This means that we'll
rescale the potential, positions and/or the charges so that, in the new units of measurement, . Then the formula for the
potential simplifies to

Our goal now is to write a computer program which takes a set of positions and charges as its input, and plots the resulting electric
potential.

1.2.2: Writing into a Python Source Code File
Before writing any Python code, we should create a file to put the code in. On GNU/Linux, fire up your preferred text editor and
open an empty file, naming it potentials.py . On Windows, in the window that was opened up by the
IDLE (Python GUI) program, click on the menu-bar item File → New File ; then type Ctrl-s (or click on
File → New File) and save the empty file as potentials.py .

The file extension .py denotes it as a Python source code file. You should save the file in an appropriate directory.

Now let's do a very crude "first pass" at the program. Instead of handling an arbitrary number of particles, let's assume there's a
single particle with some position and charge . Then we'll plot its potential. Type the following into the file:

from scipy import *
import matplotlib.pyplot as plt

x0 = 1.5
q0 = 1.0

X = linspace(-5, 5, 500)
phi = q0 / abs(X - x0)

plt.plot(X, phi)
plt.show()

Save the file. Now we will run the program. On GNU/Linux, open a text terminal and cd to the directory where you file is, then
type python -i potentials.py . On Windows, while in file-editing window type F5 (or click on Run →
Run Module). In either case, you should see a figure pop up:

N { , , ⋯ , }x0 x1 xN−1

{ , , ⋯ ,q0 q1 qN−1 x0

xN−1

{ }xj { }qj ϕ(x) x

ϕ(x) =∑
j=0

N−1 qj

4π |x − |ϵ0 xj

(1.2.1)

4πϵ0

4π = 1ϵ0

ϕ(x) =∑
j=0

N−1 qj

|x − |xj

(1.2.2)

x0 q0

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34817?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01%3A_Scipy_Tutorial/1.02%3A_Getting_Started
http://www.gnu.org/software/emacs/

1.2.2 https://phys.libretexts.org/@go/page/34817

Figure

That's pretty much what we expect: the potential is peaked at , which is the position of the particle we specified in the
program (via the variable named x0). The charge of the particle is given by the variable named q0 , and we have assigned that
the value . Hence, the potential is positive.

Now close the figure, and return to the Python command prompt. Note that Python is still running, even though your program has
finished. From the command line, you can also examine the values of the variables which have been created by your program,
simply by typing their names into the command prompt:

>>> x0
1.5
>>> phi
array([0.15384615 0.15432194 0.15480068 0.1552824
 0.28902404 0.28735963 0.28571429])

The value of x0 is a number, , which was assigned to it when our program ran. The value of phi is more complicated: it is
an array, which is a special data structure containing a sequence of numbers. From the command line, you can inspect the
individual elements of this array. For example, to see the value of the array's first element, type this:

>>> phi[0]
0.153846153846

As we've mentioned, index 0 refers to the first element of the array. This so-called zero-based indexing is a common practice in
computing. Similarly, index 1 refers to the second element of the array, index 2 refers to the third element, etc.

You can also look at the length of the array, by calling the function len . This function accepts an array input and returns its
length, as an integer.

>>> len(phi)
500

You can exit the Python command line at any time by typing Ctrl-d or exit() .

This page titled 1.2: Getting Started is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

1.2.1

X = 1.5

1.0

1.5

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34817?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01%3A_Scipy_Tutorial/1.02%3A_Getting_Started
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

1.3.1 https://phys.libretexts.org/@go/page/34818

1.3: Modularizing the Code

1.3.1: Designing a Potential Function
We could continue altering the above code in a straightforward way. For example, we could add more particles by adding variables
x1 , x2 , q1 , q2 , and so forth, and altering our formula for computing phi . However, this is not very satisfactory: each

time we want to consider a new collection of particle positions or charges, or change the number of particles, we would have to re-
write the program's internal "logic"—i.e., the part that computes the potentials. In programming terminology, our program is
insufficiently "modular". Ideally, we want to isolate the part of the program that computes the potential from the part that specifies
the numerical inputs to the calculation, like the positions and charges.

To modularize the code, let's define a function that computes the potential of an arbitrary set of charged particles, sampled at an
arbitrary set of positions. Such a function would need three sets of inputs:

An array of particle positions . (Don't get confused, by the way: we are using these numbers to refer to
the positions of particles in a 1D space, not the position of a single particle in an -dimensional space.)
An array of particle charges .
An array of sampling points , which are the points where we want to know .

The number of particles, , and the number of sampling points, , should be arbitrary positive integers. Furthermore, and
need not be equal.

The function we intend to write must compute the array

which contains the value of the total electric potential at each of the sampling points. The total potential can be written as the sum
of contributions from all particles. Let us define as the potential produced by particle :

Then the total potential is

1.3.2 Writing the Program
Let's code this up. Return to the file potentials.py , and delete the entire contents of the file. Then replace it with the
following:

from scipy import *
import matplotlib.pyplot as plt

Return the potential at measurement points X, due to particles
at positions xc and charges qc. xc, qc, and X must be 1D arrays,
with xc and qc of equal length. The return value is an array
of the same length as X, containing the potentials at each X point.
def potential(xc, qc, X):
 M = len(X)

≡ [, ⋯ ,]x⃗ x0 xN−1 N

N N

≡ [, ⋯ ,]q ⃗ q0 qN−1

≡ [, ⋯ ,]X⃗ X0 XM−1 ϕ(X)

N M N M

⎡

⎣

⎢⎢⎢⎢⎢

ϕ()X0

ϕ()X1

⋮
ϕ()XM−1

⎤

⎦

⎥⎥⎥⎥⎥
(1.3.1)

(x)ϕj j

≡ϕj(x)
qj

|x − |xj

(1.3.2)

= + +⋯ + .

⎡

⎣

⎢⎢⎢⎢⎢

ϕ()X0

ϕ()X1

⋮
ϕ()XM−1

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

()ϕ0 X0

()ϕ0 X1

⋮
()ϕ0 XM−1

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

()ϕ1 X0

()ϕ1 X1

⋮
()ϕ1 XM−1

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

()ϕN−1 X0

()ϕN−1 X1

⋮
()ϕN−1 XM−1

⎤

⎦

⎥⎥⎥⎥⎥
(1.3.3)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34818?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01%3A_Scipy_Tutorial/1.03%3A_Modularizing_the_Code

1.3.2 https://phys.libretexts.org/@go/page/34818

 N = len(xc)
 phi = zeros(M)
 for j in range(N):
 phi += qc[j] / abs(X - xc[j])
 return phi

charges_x = array([0.2, -0.2])
charges_q = array([1.5, -0.1])
xplot = linspace(-3, 3, 500)

phi = potential(charges_x, charges_q, xplot)

plt.plot(xplot, phi)
pmin, pmax = -50, 50
plt.ylim(pmin, pmax)
plt.show()

Figure

When typing or pasting the above into your file, be sure to preserve the indentation (i.e., the number of spaces at the beginning of
each line). Indentation is important in Python; as we'll see, it's used to determine program structure. Now save and run the program
again:

In the Windows GUI, type F5 in the editing window showing potentials.py .
On GNU/Linux, type python -i potentials.py from the command line.
Alternatively, from the Python command line, type import potentials , which will load and run your
potentials.py file.

You should now see a figure like the one on the right, showing the electric potential produced by two particles, one at position
 with charge and the other at position with charge .

There are less than lines of actual code in the above program, but they do quite a lot of things. Let's go through them in turn:

Module Imports

The first two lines import the Scipy and Matplotlib modules, for use in our program. We have not yet explained how importing
works, so let's do that now.

from scipy import *
import matplotlib.pyplot as plt

1.3.1

= 0.2x0 = 1.5q0 = −0.2x1 = −0.1q1

20

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34818?pdf
http://docs.python.org/3/tutorial/modules.html

1.3.3 https://phys.libretexts.org/@go/page/34818

Each Python module, including Scipy and Matplotlib, defines a variety of functions and variables. If you use multiple modules, you
might have a situation where, say, two different modules each define a function with the same name, but doing entirely different
things. That would be Very Bad. To help avoid this, Python implements a concept called a namespace. Suppose you import a
module (say Scipy) like this:

import scipy

One of the functions defined by Scipy is linspace , which we have already seen. This function was defined by the scipy
module, and lies inside the scipy namespace. As a result, when you import the Scipy module using the import scipy
line, you have to call the linspace function like this:

x = scipy.linspace(-3, 3, 500)

The scipy. in front says that you're referring to the linspace function that was defined in the scipy namespace.
(Note: the online documentation for linspace refers to it as numpy.linspace , but the exact same function is also
present in the scipy namespace. In fact, all numpy.* functions are replicated in the scipy namespace. So unless stated
otherwise, we only have to import scipy .)

We will be using a lot of functions that are defined in the scipy namespace. Since it would be annoying to have to keep typing
scipy. all over the place, we opt to use a slightly different import statement:

from scipy import *

This imports all the functions and variables in the scipy namespace directly into your program's namespace. Therefore, you
can just call linspace , without the scipy. prefix. Obviously, you don't want to do this for every module you use,
otherwise you'll end up with the name-clashing problem we alluded to earlier! The only module we'll use this shortcut with is
scipy .

Another way to avoid having to type long prefixes is shown by this line:

import matplotlib.pyplot as plt

This imports the matplotlib.pyplot module (i.e., the pyplot module which is nested inside the matplotlib
module). That's where plot , show , and other plotting functions are defined. The as plt in the above line says that we
will refer to the matplotlib.pyplot namespace as the short form plt instead. Hence, instead of calling the plot
function like this:

matplotlib.pyplot.plot(x, y)

we will call it like this:

plt.plot(x, y)

Comments

Let's return to the program we were looking at earlier. The next few lines, beginning with # , are "comments". Python ignores the
character and everything that follows it, up to the end of the line. Comments are very important, even in simple programs like

this.

When you write your own programs, please remember to include comments. You don't need a comment for every line of code—
that would be excessive—but at a minimum, each function should have a comment explaining what it does, and what the inputs
and return values are.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34818?pdf

1.3.4 https://phys.libretexts.org/@go/page/34818

Function Definition
Now we get to the function definition for the function named potential , which is the function that computes the potential:

def potential(xc, qc, X):
 M = len(X)
 N = len(xc)
 phi = zeros(M)
 for j in range(N):
 phi += qc[j] / abs(X - xc[j])
 return phi

The first line, beginning with def , is a function header. This function header states that the function is named potential ,
and that it has three inputs. In computing terminology, the inputs that a function accepts are called parameters. Here, the
parameters are named xc , qc and X . As explained by the comments, we intend to use these for the positions of the
particles, the charges of the particles, and the positions at which to measure the potential, respectively.

The function definition consists of the function header, together the rest of the indented lines below it. The function definition
terminates once we get to a line which is at the same indentation level as the function header. (That terminating line is considered a
separate line of code, which is not part of the function definition).

By convention, you should use 4 spaces per indentation level.

The indented lines below the function header are called the function body. This is the code that is run each time the function is
called. In this case, the function body consists of six lines of code, which are intended to compute the total electric potential,
according to the procedure that we have outlined in the preceding section:

The first two lines define two helpful variables, M and N . Their values are set to the lengths of the X and xc arrays,
respectively.
The next line calls the zeros function. The input to zeros is M , the length of the X array (i.e., our function's third
parameter). Therefore, zeros returns an array, of the same same length as X , with every element set to 0.0. For now, this
represents the electric potential in the absence of any charges. We give this array the name phi .
The function then iterates over each of the particles and add up its contribution to the potential, using a construct known as a
for loop. The code for j in range(N): is the loop's "header line", and the next line, indented 4 spaces deeper than

the header line, is the "body" of the loop.

The header line states that we should run the loop body several times, with the variable j set to different values during each
run. The values of j to loop over are given by range(N) . This is a function call to the range function, with N (the
number of electric charges) as the input. The range(N) function call returns a sequence specifying N successive integers,
from 0 to N-1 , inclusive. (Note that the last value in the sequence is N-1 , not N . Because we start from 0, this means
that there is a total of N integers in the sequence. Also, calling range(N) is the same as calling range(0,N) .)

For each j , we compute qc[j] / abs(X - xc[j]) . This is an array whose elements are the values of the electric
potential at the set of positions X , arising from the individual particle . In mathematical terms, we are calculating

using the array of positions X . We then add this array to phi . Once this is done for all j , the array phi will contain
the desired total potential,

Finally, we call return to specify the function's output, or return value. This is the array phi .

j

(X) ≡ϕj

qj

|X − |xj

(1.3.4)

ϕ(X) = (X).∑
j=0

N−1

ϕj (1.3.5)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34818?pdf
http://docs.python.org/3/tutorial/controlflow.html#for-statements
http://docs.python.org/3/tutorial/controlflow.html#the-range-function

1.3.5 https://phys.libretexts.org/@go/page/34818

Top-Level Code: Numerical Constants

After the function definition comes the code to use the function:

charges_x = array([0.2, -0.2])
charges_q = array([1.5, -0.1])
xplot = linspace(-3, 3, 500)

Like the import statements at the beginning of the program, these lines of code lie at top level, i.e., they are not indented. The
function header which defines the potential function is also at top level. Running a Python program consists of running its
top level code, in sequence.

The above lines define variables to store some numerical constants. In the first two lines, charges_x and charges_q
variables store the numerical values of the positions and charges we are interested in. These are initialized using the array
function. You may be wondering why the array function call has square brackets nested in commas. We'll explain later, in part
2 of the tutorial.

On the third line, the linspace function call returns an array, whose contents are initialized to the 500 numbers between -3 and
3 (inclusive).

Next, we call the potential function, passing charges_x , charges_q and xplot as the inputs:

phi = potential(charges_x, charges_q, xplot)

These inputs provide the values of the function definition's parameters xc , qc , and X respectively. The return value of the
function call is an array containing the total potential, evaluated at each of the positions specified in xplot . This return value is
stored as the variable named phi .

Plotting

Finally, we create the plot:

plt.plot(xplot, phi)
pmin, pmax = -50, 50
plt.ylim(pmin, pmax)
plt.show()

We have already seen how the plot and show functions work. Here, prior to calling plt.show , we have added two extra
lines to make the potential curve is more legible, by adjust the plot's y-axis bounds. The ylim function accepts two parameters, the
lower and upper bounds of the y-axis. In this case, we set the bounds to -50 and 50 respectively. There is an xlim function to do the
same for the x-axis.

Notice that in the line pmin, pmax = -50, 50 , we set two variables (pmin and pmax) on the same line. This is a
little "syntactic sugar" to make the code a little easier to read. It's equivalent to having two separate lines, like this:

pmin = -50
pmax = 50

We'll explain how this construct works in the next part of the tutorial.

This page titled 1.3: Modularizing the Code is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong
via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34818?pdf
http://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.show
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.ylim
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.xlim
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01%3A_Scipy_Tutorial/1.03%3A_Modularizing_the_Code
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

1

CHAPTER OVERVIEW

2: Scipy Tutorial (Part 2)
This is part 2 of the Scientific Python tutorial.

2.1: Sequential Data Structures
2.2: Improving the Program

This page titled 2: Scipy Tutorial (Part 2) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/02%3A_Scipy_Tutorial_(Part_2)/2.01%3A_Sequential_Data_Structures
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/02%3A_Scipy_Tutorial_(Part_2)/2.02%3A_Improving_the_Program
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/02%3A_Scipy_Tutorial_(Part_2)
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

2.1.1 https://phys.libretexts.org/@go/page/34822

2.1: Sequential Data Structures
In the previous part of the tutorial, we worked through a simple example of a Scipy program which calculates the electric potential
produced by a collection of charges in 1D. At the time, we did not explain much about the data structures that we were using to
store numerical information (such as the values of the electric potential at various points). Let's do that now.

There are three common data structures that will be used in a Scipy program for scientific computing: arrays, lists, and tuples.
These structures store linear sequences of Python objects, similar to the concept of "vectors" in physics and mathematics. However,
these three types of data structures all have slightly different properties, which you should be aware of.

2.1.1 Arrays
An array is a data structure that contains a sequence of numbers. Let's do a quick recap. From a fresh Python command prompt,
type the following:

>>> from scipy import *
>>> x = linspace(-0.5, 0.5, 9)
>>> x
array([-0.5 , -0.375, -0.25 , -0.125, 0. , 0.125, 0.25 , 0.375, 0.5])

The first line, as usual, is used to import the scipy module. The second line creates an array named x by calling linspace,
which is a function defined by scipy . With the given inputs, the function returns an array of 9 numbers between -0.5 and 0.5,
inclusive. The third line shows the resulting value of x .

The array data structure is provided specifically by the Scipy scientific computing module. Arrays can only contain numbers
(furthermore, each individual array can only contain numbers of one type, e.g. integers or complex numbers; we'll discuss this in
the next article). Arrays also support special facilities for doing numerical linear algebra. They are commonly created using one of
these functions from the scipy module:

linspace, which creates an array of evenly-spaced values between two endpoints.
arange, which creates an array of integers in a specified range.
zeros, which creates an array whose elements are all .
ones, which creates an array whose elements are all .
empty, which creates an array whose elements are uninitialized (this is usually used when you want to set the elements later).

Of these, we've previously seen examples of the linspace and zeros functions being used. As another example, to create
an array of 500 elements all containing the number , you can use the ones function and a multiplication operation:

x = -1.2 * ones(500)

An alternative method, which is slightly faster, is to generate the array using empty and then use the fill method to
populate it:

x = empty(500); x.fill(-1.2)

One of the most important things to know about an array is that its size is fixed at the moment of its creation. When creating an
array, you need to specify exactly how many numbers you want to store. If you ever need to revise this size, you must create a new
array, and transfer the contents over from the old array. (For very big arrays, this might be a slow operation, because it involves
copying a lot of numbers between different parts of the computer memory.)

You can pass arrays as inputs to functions in the usual way (e.g., by supplying its name as the argument to a function call). We have
already encountered the len function, which takes an array input and returns the array's length (an integer). We have also
encountered the abs function, which accepts an array input and returns a new array containing the corresponding absolute
values. Similar to abs , many mathematical functions and operations accept arrays as inputs; usually, this has the effect of
applying the function or operation to each element of the input array, and returning the result as another array. The returned array

0.0

1.0

−1.2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34822?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/02%3A_Scipy_Tutorial_(Part_2)/2.01%3A_Sequential_Data_Structures
http://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching/PH4505-03.htm
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.empty.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.fill.html

2.1.2 https://phys.libretexts.org/@go/page/34822

has the same size as the input array. For example, the sin function with an array input x returns another array whose elements
are the sines of the elements of x :

>>> y = sin(x)
>>> y
array([-0.47942554, -0.36627253, -0.24740396, -0.12467473, 0. ,
 0.12467473, 0.24740396, 0.36627253, 0.47942554])

You can access individual elements of an array with the notation a[j] , where a is the variable name and j is an integer
index (where the first element has index 0, the second element has index 1, etc.). For example, the following code sets the first
element of the y array to the value of its second element:

>>> y[0] = y[1]
>>> y
array([-0.36627253, -0.36627253, -0.24740396, -0.12467473, 0. ,
 0.12467473, 0.24740396, 0.36627253, 0.47942554])

Negative indices count backward from the end of the array. For example:

>>> y[-1]
0.47942553860420301

Instead of setting or retrieving individual values of an array, you can also set or retrieve a sequence of values. This is referred to as
slicing, and is described in detail in the Scipy documentation. The basic idea can be demonstrated with a few examples:

>>> x[0:3] = 2.0
>>> x
array([2. , 2. , 2. , -0.125, 0. , 0.125, 0.25 , 0.375, 0.5])

The above code accesses the elements in array x , starting from index 0 up to but not including 3 (i.e. indices 0, 1, and 2), and
assigns them the value of 2.0 . This changes the contents of the array x .

>>> z = x[0:5:2]
>>> z
array([2., 2., 0.])

The above code retrieves a subset of the elements in array x , starting from index 0 up to but not including 5, and stepping by 2
(i.e., the indices 0, 2, and 4), and then groups those elements into an array named z . Thereafter, z can be treated as an array.

Finally, arrays can also be multidimensional. If we think of an ordinary (1D) array as a vector, then a 2D array is equivalent to a
matrix, and higher-dimensional arrays are like tensors. We will see practical examples of higher-dimensional arrays later. For now,
here is a simple example:

>>> y = zeros((4,2)) # Create a 2D array of size 4x2
>>> y[2,0] = 1.0
>>> y[0,1] = 2.0
>>> y
array([[0., 2.],
 [0., 0.],

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34822?pdf
http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

2.1.3 https://phys.libretexts.org/@go/page/34822

 [1., 0.],
 [0., 0.]])

2.1.2: Lists
There is another type of data structure called a list. Unlike arrays, lists are built into the Python programming language itself, and
are not specific to the Scipy module. Lists are general-purpose data structures which are not optimized for scientific computing (for
example, we will need to use arrays, not lists, when we want to do linear algebra).

The most convenient thing about Python lists is that you can specify them explicitly, using [...] notation. For example, the
following code creates a list named u , containing the integers and :

>>> u = [1, 1, 2, 3, 5]
>>> u
[1, 1, 2, 3, 5]

This way of creating lists is also useful for creating Scipy arrays. The array function accepts a list as an input, and returns an array
containing the same elements as the input list. For example, to create an array containing the numbers and :

>>> x = array([0.2, 0.1, 0.0])
>>> x
array([0.2, 0.1, 0.])

In the first line, the square brackets create a list object containing the numbers and , then passes that list directly as the
input to the array function. The above code is therefore equivalent to the following:

>>> inputlist = [0.2, 0.1, 0.0]
>>> inputlist
[0.2, 0.1, 0.0]
>>> x = array(inputlist)
>>> x
array([0.2, 0.1, 0.])

Usually, we will do number crunching using arrays rather than lists. However, sometimes it is useful to work directly with lists.
One convenient thing about lists is that they can contain arbitrary Python objects, of any data type; by contrast, arrays are allowed
only to contain numerical data.

For example, a Python list can store character strings:

>>> u = [1, 2, 'abracadabra', 3]
>>> u
[1, 2, 'abracadabra', 3]

And you can set or retrieve individual elements of a Python list in the same way as an array:

>>> u[1] = 0
>>> u
[1, 0, 'abracadabra', 3]

Another great advantage of lists is that, unlike arrays, you can dynamically increase or decrease the size of a list:

1, 1, 2, 3, 5

0.2, 0.1, 0.0

0.2, 0.1, 0.0

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34822?pdf
http://docs.python.org/3/tutorial/introduction.html#lists
http://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html

2.1.4 https://phys.libretexts.org/@go/page/34822

Aside: About Methods
In the above example, append , insert , and pop are called methods. You can think of a method as a special kind of
function which is "attached" to an object and relies upon it in some way. Just like a function, a method can accept inputs, and give a
return value. For example, when u is a list, the code

z = u.pop(3)

means to take the list u , find element index 3 (specified by the input to the method), remove it from the list, and return the
removed list element. In this case, the returned element is named z . See here for a summary of Python list methods. We'll see
more examples of methods as we go along.

2.1.3 Tuples
Apart from lists, Python provides another kind of data structure called a tuple. Whereas lists can be constructed using square
bracket [...] notation, tuples can be constructed using parenthetical (...) notation:

>>> v = (1, 2, 'abracadabra', 3)
>>> v
(1, 2, 'abracadabra', 3)

Like lists, tuples can contain any kind of data type. But whereas the size of a list can be changed (using methods like append ,
insert , and pop , as described in the previous subsection), the size of a tuple is fixed once it's created, just like an array.

Tuples are mainly used as a convenient way to "group" or "ungroup" named variables. Suppose we want to split the contents of
v into four separate named variables. We could do it like this:

>>> dog, cat, apple, banana = v
>>> dog
1
>>> cat
2
>>> apple
'abracadabra'
>>> banana
3

On the left-hand side of the = sign, we're actually specifying a tuple of four variables, named dog , cat , apple , and
banana . In cases like this, it is OK to omit the parentheses; when Python sees a group of variable names separated by commas,

it automatically treats that group as a tuple. Thus, the above line is equivalent to

>>> u.append(99) # Add 99 to the end of the list u
>>> u.insert(0, -99) # Insert -99 at the front (index 0) of the list u
>>> u
[-99, 1, 0, 'abracadabra', 3, 99]
>>> z = u.pop(3) # Remove element 3 from list u, and name it z
>>> u
[-99, 1, 0, 3, 99]
>>> z
'abracadabra'

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34822?pdf
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

2.1.5 https://phys.libretexts.org/@go/page/34822

>>> (dog, cat, apple, banana) = v

We saw a similar example in the previous part of the tutorial, where there was a line of code like this:

pmin, pmax = -50, 50

This assigns the value to the variable named pmin , and to the variable named pmax . We'll see more examples of
tuple usage as we go along.

This page titled 2.1: Sequential Data Structures is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D.
Chong via source content that was edited to the style and standards of the LibreTexts platform.

−50 50

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34822?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/02%3A_Scipy_Tutorial_(Part_2)/2.01%3A_Sequential_Data_Structures
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

2.2.1 https://phys.libretexts.org/@go/page/34823

2.2: Improving the Program
Let's return to the program for calculating the electric potential, which we discussed in the previous part of the tutorial, and
improve it further. These improvements will show off some more advanced features of Python and Scipy which are good to know
about.

We'll also make one substantive change in the physics: instead of treating the particles as point-like objects, we'll assume that they
have a finite radius , with all the charge concentrated at the surface. Hence, the potential produced by a particle of total charge
and position will have the form

Open a few Python file, and call it potentials2.py . Write the following into it:

from scipy import *
import matplotlib.pyplot as plt

Return the potential at measurement points X, due to particles
at positions xc and charges qc. xc, qc, and X must be 1D arrays,
with xc and qc of equal length. The return value is an array
of the same length as X, containing the potentials at each X point.
def potential(xc, qc, X, radius=5e-2):
 assert xc.ndim == qc.ndim == X.ndim == 1
 assert len(xc) == len(qc)
 assert radius > 0.

 phi = zeros(len(X))
 for j in range(len(xc)):
 dphi = qc[j] / abs(X - xc[j])
 dphi[abs(X - xc[j]) < radius] = qc[j] / radius
 phi += dphi
 return phi

Plot the potential produced by N particles of charge 1, distributed
randomly between x=-1 and x=1.
def potential_demo(N=20):
 X = linspace(-2.0, 2.0, 200)
 qc = ones(N)

 from scipy.stats import uniform
 xc = uniform(loc=-1.0, scale=2.0).rvs(size=N)

 phi = potential(xc, qc, X)

 fig_label = 'Potential from ' + str(N) + ' particles'
 plt.plot(X, phi, 'ro', label=fig_label)
 plt.ylim(0, 1.25 * max(phi))

R q0

x0

ϕ(X) =

⎧

⎩
⎨
⎪⎪

⎪⎪

,
q0

|X − |x0

q0

R

if |X − | ≥ Rx0

if |X − | < R.x0

(2.2.1)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34823?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/02%3A_Scipy_Tutorial_(Part_2)/2.02%3A_Improving_the_Program
http://www1.spms.ntu.edu.sg/~ydchong/teaching/PH4505-00.htm#Modularizing_the_code

2.2.2 https://phys.libretexts.org/@go/page/34823

 plt.legend()
 plt.xlabel('r')
 plt.ylabel('phi')
 plt.show()

potential_demo(100)

We will now go through the changes that we've made in the program.

2.2.1 Optional Function Parameters
As before, we define a function named potential , whose job is to compute the electric potential produced by a collection of
particles in 1D. However, you might notice a change in the function header:

def potential(xc, qc, X, radius=5e-2):

We have added an optional parameter, specified as radius=5e-2 . An optional parameter is a parameter which has a default
value. In this case, the optional parameter is named radius , and its default value is 5e-2 (which means ; you can
also write it as 0.05 , which is equivalent). If you call the function omitting the last input, the value will be assumed to be 0.05.
If you supply an explicit value for the last input, that overrides the default.

If a function call omits a non-optional parameter (which as xc), that is a fatal error: Python will stop the program with an error
message.

2.2.2 Assert Statements
In the function body, we have added the following three lines:

 assert xc.ndim == qc.ndim == X.ndim == 1
 assert len(xc) == len(qc)
 assert radius > 0.

The assert statement is a special Python statement which checks for the truth value of the following expression; if that
expression is false, the program will stop and an informative error message will be displayed.

Here, we use the assert statements to check that

xc , qc , and X are all 1D arrays (note: the == Python operator checks for numerical equality)
xc has the same length as qc
radius has a positive value (note: 0. is Python short-hand for the number 0.0).

Similar to writing comments, adding assert statements to your program is good programming practice. They are used to
verify that the assumptions made by the rest of the code (e.g., that the xc and qc arrays have equal length) are indeed met.
This ensures that if we make a programming mistake (e.g., supplying arrays of incompatible size as inputs), the problem will
surface as soon as possible, rather than letting the program continue to run and causing a more subtle error later on.

2.2.3 Advanced Slicing
Inside the for loop, we have changed the way the potential is computed:

 for j in range(len(xc)):
 dphi = qc[j] / abs(X - xc[j])
 dphi[abs(X - xc[j]) < radius] = qc[j] / radius
 phi += dphi

5 ×10−2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34823?pdf
http://docs.python.org/3/reference/simple_stmts.html#the-assert-statement

2.2.3 https://phys.libretexts.org/@go/page/34823

As discussed above, we are now considering particles of finite size rather than point particles, so the potential is constant at
distances below the particle radius. This is accomplished using an advanced array slicing technique.

For each particle , the potential is computed in three steps:

Calculate the potential using the regular formula , and save those values into an array, one for each value of .
Find the indices of that array which correspond to values with , and overwrite those elements with the constant
value . To find the relevant indices, we make use of the following slicing feature: if a comparison expression is supplied as
an index, that refers to those indices for which the comparison is true. In this case, the comparison expression is
abs(X-xc[j]) < radius , which refers to the indices of which are below the minimum radius. These indices are the

ones in the dphi array that we want to overwrite.
Add the result to the total potential.

Demo Function

Finally, we have a "demo" or ("demonstration") function to make the appropriate plots:

Plot the potential produced by N particles of charge 1, distributed
randomly between x=-1 and x=1.
def potential_demo(N=20):
 X = linspace(-2.0, 2.0, 200)
 qc = ones(N)

 from scipy.stats import uniform
 xc = uniform(loc=-1.0, scale=2.0).rvs(size=N)

 phi = potential(xc, qc, X)

 fig_label = 'Potential from ' + str(N) + ' particles'
 plt.plot(X, phi, 'ro', label=fig_label)
 plt.ylim(0, 1.25 * max(phi))
 plt.legend()
 plt.xlabel('r')
 plt.ylabel('phi')
 plt.show()

potential_demo(100)

Whereas our previous program put the plotting stuff at "top level", here we encapsulate the plotting code in a
potential_demo() function. This function is called by the top-level statement potential_demo(100) , which occurs

at the very end of the program.

It is useful to do this because if, in the future, you want the program demonstrate something else (e.g. producing a different kind of
plot), it won't be necessary to delete the potential_demo function (and risk having to rewrite it if you change your mind).
Instead, you can write another demo function, and revise that single top-level statement to call the new demo function instead.

The potential_demo function provides another example of using optional parameters. It accepts a parameter N=20 ,
specifying the number of particles to place. When the program runs, however, the function is invoked through the top-level
statement potential_demo(100) , i.e. with an actual input of which overrides the default value of . If the top-level
statement had instead been potential_demo() , then the default value of would be used.

Sampling Random Variables

The demo function generates N particles with random positions. This is done using this code:

j

/|X − |qj xj X

|X − | < Rxj

/Rqj

X

100 20

20

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34823?pdf
http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

2.2.4 https://phys.libretexts.org/@go/page/34823

 from scipy.stats import uniform
 xc = uniform(loc=-1.0, scale=2.0).rvs(size=N)

The first line imports a function named uniform from the scipy.stats module, which is a module that implements
random number distributions. As this example shows, import statements don't have to be top-level statements. In some cases, we
might choose to perform an import only when a particular function runs (usually, this is done if that function is the only one in the
program relying on that module).

The uniform function returns an object which corresponds to a particular uniform distribution. One of the methods of this
object, named rvs , generates an array of random numbers drawn from that distribution.

Plotting

After computing the total potential using a call to the potential function, we plot it:

 fig_label = 'Potential from ' + str(N) + ' particles'
 plt.plot(X, phi, 'ro', label=fig_label)

To begin with, concentrate on the second line. This is a slightly more sophisticated use of Matplotlib's plot function than what
we had the last time.

The first two arguments, as before, are the x and y coordinates for the plot. The next argument, 'ro' , specifies that we want to
plot using red circles, rather than using lines with the default color.

The fourth argument, label=fig_label , specifies some text with which to label the plotted curve. It is often useful to
associate each curve in a figure with a label (though, in this case, the figure contains only one curve).

This way of specifying a function input, which has the form FOO=BAR , is something we have not previously seen. It relies on a
feature known as keyword arguments. In this case, label is the keyword (the name of the parameter we're specifying), and
fig_label is the value (which is a string object; we'll discuss this below). Keyword arguments allow the caller of a function

to specify optional parameters in any order. For example,

 plt.plot(X, phi, 'ro', label=fig_label, linewidth=2)

is equivalent to

 plt.plot(X, phi, 'ro', linewidth=2, label=fig_label)

The full list of keywords for the plot function is given is its documentation.

Constructing a Label String

Next, we turn to the line

 fig_label = 'Potential from ' + str(N) + ' particles'

which creates a Python object named fig_label , which is used for labeling the curve. This kind of object is called a
character string (or just string for short).

On the right-hand side of the above statement, we build the contents of the string from several pieces. This is done in order to get a
different string for each value of N . The + operator "concatenates" strings, joining the strings to its left and right into a longer
string. In this case, the string fig_label consists of the following shofter strings, concatenated together:

A string containing the text 'Potential from ' .
A string containing the numerical value of N , in text form. This is computed using the str function, which converts
numbers into their corresponding string representations.
A string containing the text ' particles' .

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34823?pdf
http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.uniform.html#scipy.stats.uniform
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
http://docs.python.org/3/tutorial/controlflow.html#keyword-arguments
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
http://docs.python.org/3/library/stdtypes.html#textseq
http://docs.python.org/3/library/stdtypes.html#textseq

2.2.5 https://phys.libretexts.org/@go/page/34823

The rest of the potential_demo function is relatively self-explanatory. The ylim function specifies the lower and upper
limits of the plot's -axis (there is a similar xlim function, which we didn't use). The plt.legend() statement causes the
curve label to be shown in a legend included in the plot. Finally, the xlabel and ylabel functions add string labels to the
and axes.

Running the Program

Now save your potential2.py program, and run it. (Reminder: you can do this by typing
python -i potential2.py from the command line on GNU/Linux, or F5 in the Windows GUI, or
import potential2 from the Python command line). The resulting figure looks like this:

Figure

This page titled 2.2: Improving the Program is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong
via source content that was edited to the style and standards of the LibreTexts platform.

y

x

y

2.2.1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34823?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/02%3A_Scipy_Tutorial_(Part_2)/2.02%3A_Improving_the_Program
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

1

CHAPTER OVERVIEW

3: Numbers, Arrays, and Scaling
In this article, we will cover the basic concepts of computation, and explain how they relate to writing programs for scientific
computing.

3.1: A Model of Computing
3.2: Integers and Floating-Point Numbers
3.3: Arrays
3.4: Exercises

This page titled 3: Numbers, Arrays, and Scaling is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D.
Chong via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling/3.01%3A_A_Model_of_Computing
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling/3.02%3A_Integers_and_Floating-Point_Numbers
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling/3.03%3A_Arrays
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling/3.04%3A_Exercises
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

3.1.1 https://phys.libretexts.org/@go/page/34825

3.1: A Model of Computing
A modern computer is a tremendously complex system, with many things to understand at the level of the hardware, the operating
system, and the programming software (e.g. Python). It is helpful to consider a simplified computing model, which is basically a
"cartoon" representation of a computer that omits the unimportant facts about how it operates, and focuses on the most important
aspects of what a computer program does.

The standard paradigm of computing that we use today is the Von Neumann architecture, which divides a computer into three inter-
connected units: processor, memory, and input/output devices. We'll use this as the basis of our simplified model, with an emphasis
on the processor and memory parts.

A computer's memory is essentially a chunk of space where we can store numbers. For now, we won't concern ourselves with how
the contents of memory are organized or formatted. The processor can read one or more numbers from any locations (or
addresses) in memory, perform some basic operations on them, and then write the results into any other addresses. We also make
three other important assumptions:

1. The capacity is effectively infinite; we don't worry about running out.
2. The memory is random-access memory (RAM), meaning that the processor can access any addresses in memory, one after

another, with the same speed. (In real life, not all types of memory are random-access. Disk drives, for instance, are not,
because the scanning head must physically move to different positions in order to read different parts of memory. However,
ordinary computer programs can ignore such details, which are left to the operating system to manage.)

3. The processor can only do one thing at a time. For example, if you ask it to read two numbers from memory, that takes twice as
long as reading a single number from memory. (Again, real computers violate this assumption to some extent; computers now
commonly have multiple processors that can performs multiple operations simultaneously. Our present simple model ignores
these complications.)

A program is a set of instructions for the processor. For example, the following line of code is a program (or part of a program)
that tells the processor to add up four numbers that are currently stored in memory, and save the result to another memory address
labeled x :

x = a + b + c + d

Because the processor can only do one thing at a time, even a simple line of code like this involves several sequential steps. The
processor can't simultaneously read all four memory addresses (corresponding to a through d); it must read them one at a
time. The following figure shows how the processor might carry out the above addition program:

Figure : A sequence of steps for adding up four numbers, x = a + b + c + d . The computer's memory is visualized
as a blue box; the variables x and a through d correspond to addresses in memory, shown as smaller green boxes containing
numbers. The processor performs the additions one at a time.

This page titled 3.1: A Model of Computing is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong
via source content that was edited to the style and standards of the LibreTexts platform.

3.1.1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34825?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling/3.01%3A_A_Model_of_Computing
http://en.wikipedia.org/wiki/Von_Neumann_architecture
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling/3.01%3A_A_Model_of_Computing
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

3.2.1 https://phys.libretexts.org/@go/page/34826

3.2: Integers and Floating-Point Numbers
Digital computers store all data in the form of bits (ones and zeros), and a number is typically stored as a sequence of bits of fixed
length. For example, a number labeled x might refer to a sequence of eight bits starting from some specific address, as shown in
the following figure:

Figure : An eight-bit number stored in a variable x .

The green box indicates the set of memory addresses, eight bits long, where the number is stored. (The other bits, to the left and
right of this box, might be used by the computer for other purposes, or simply unused.) What actual number does this sequence of
eight bits represent? It depends: there are two types of formats for storing numbers, called integers and floating-point numbers.

3.2.1 Integers
In integer format, one of the bits is used to denote the sign of the number (positive or negative), and the remaining bits specify an
integer in a binary representation. Because only a fixed number of bits is available, only a finite range of integers can be
represented. On modern 64-bit computers, integers are typically stored using 64 bits, so only distinct integers can be
represented. The minimum and maximum integers are

Python is somewhat able to conceal this limitation through a "variable-width integer" feature. If the numbers you're dealing with
exceed the above limits, it can convert the numbers to a different format, in which the number of bits can be arbitrarily larger than
64 bits. However, these variable-width integers have various limitations. For one thing, they cannot be stored in a Scipy array
meant for storing standard fixed-width integers:

Moreover, performing arithmetic operations on variable-width integers is much slower than standard fixed-width arithmetic.
Therefore, it's generally best to avoid dealing with integers that are too large or too small.

3.2.2 Floating-Point Numbers
Floating-point numbers (sometimes called floats) are a format for approximately representing "real numbers"—numbers that are
not necessarily integers. Each number is broken up into three components: the "sign", "fraction", and "exponent". For example, the
charge of an electron can be represented as

>>> n = array([-2**63]) # Create an integer array.
>>> n # Check the array's contents.
array([-9223372036854775808])
>>> n.dtype # Check the array's data type: it should store
dtype('int64')
>>> m = -2**63 - 1 # If we specify an integer that's too negative
>>> m
-9223372036854775809
>>> n[0] = m # What if we try to store it in a 64-bit integ
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
OverflowError: Python int too large to convert to C long

3.2.1

264

= − = −9223372036854775808nmin 263 (3.2.1)

= −1 = +9223372036854775807nmax 263 (3.2.2)

q ≈ −1.60217657 × = (−)(160217657)×10−19 10−27 (3.2.3)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34826?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling/3.02%3A_Integers_and_Floating-Point_Numbers

3.2.2 https://phys.libretexts.org/@go/page/34826

This number can thus be stored as one bit (the sign), and two integers (the fraction and the exponent). The two
integers are stored in fixed-width format, so the overall floating-point number also has fixed width (64 bits in modern computers).
The actual implementation details of floating-point numbers differs from the above example in a few ways—notably, the numbers
are represented using powers of rather than powers of —but this is the basic idea.

In Python code, floating-point numbers are specified in decimal notation (e.g. 0.000001) or exponential notation (e.g. 1e-6
). If you want to represent an integer in floating-point format, give it a trailing decimal point, like this: 3. (or, equivalently,
3.0). If you perform arithmetic between an integer and a floating-point number, like 2 + 3.0 , the result is a floating-point

number. And if you divide two integers, the result is a floating-point number:

>>> a, b = 6, 3 # a and b are both integers
>>> a/b # a/b is in floating-point format
2.0

In Python 2, dividing two integers yielded a rounded integer. This is a frequent source of bugs, so be aware of this behavior if
you ever use Python 2.

Numerical Imprecision

Because floating-point numbers use a finite number of bits, the vast majority of real numbers cannot be exactly represented in
floating-point format. They can only be approximated. This gives rise to interesting quirks, like this:

>>> 0.1 + 0.1 + 0.1
0.30000000000000004

The reason is that the decimal number does not correspond exactly to a floating-point representation, so when you tell the
computer to create a number "0.1", it instead approximates that number using a floating-point number whose decimal value is

Because of this lack of precision, you should not compare floating-point numbers using Python's equality operator == :

>>> x = 0.1 + 0.1 + 0.1
>>> y = 0.3
>>> x == y
False

Instead of using == , you can compare x and y by checking if they're closer than a certain amount:

>>> epsilon = 1e-6
>>> abs(x-y) < epsilon
True

The "density" of real numbers represented exactly floating point numbers decreases exponentially with the magnitude of the
number. Hence, large floating-point numbers are less precise than small ones. For this reason, numerical algorithms (such as
Gaussian elimination) often try to avoid multiplying by very large numbers, or dividing by very small numbers.

Special Values
Like integers, floating-point numbers have a maximum and minimum number that can be represented (this is unavoidable, since
they have only a finite number of bits). Any number above the maximum is assigned a special value, inf (infinity):

− 160217646 −27

2 10

Note

0.1

0.1000000000000000055511512...

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34826?pdf

3.2.3 https://phys.libretexts.org/@go/page/34826

>>> 1e308
1e+308
>>> 1e309
inf

Similarly, any number below the floating-point minimum is represented by -inf . There is another special value called nan
(not-a-number), which represents the results of calculations which don't make sense, like "infinity minus infinity":

>>> x = 1e310
>>> x
inf
>>> y = x - x
>>> y
nan

If you ever need to check if a number is inf , you can use Scipy's isinf function. You can check for nan using Scipy's
isnan function:

>>> isinf(x)
True
>>> isnan(y)
True
>>> isnan(x)
False

3.2.3 Complex Numbers
Complex numbers are not a fundamental data type. Python implements each complex number as a composite of two floating-point
numbers (the real and imaginary parts). You can specify a complex number using the notation X+Yj :

>>> z = 2+1j
>>> z
(2+1j)

Python's arithmetic operations can handle arithmetic operations on complex numbers:

>>> u = 3.4-1.2j
>>> z * u
(8+1j)
>>> z/u
(0.4307692307692308+0.44615384615384623j)

You can retrieve the real and imaginary parts of a complex number using the .real and .imag slots:

>>> z.real
2.0
>>> z.imag
1.0

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34826?pdf
http://docs.scipy.org/doc/numpy/reference/generated/numpy.isinf.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html

3.2.4 https://phys.libretexts.org/@go/page/34826

Alternatively, you can use Scipy's real and imag functions (which also work on arrays). Similarly, the absolute (or
abs) and angle functions return the magnitude and argument of a complex number:

>>> z = 2+1j
>>> real(z)
array(2.0)
>>> imag(z)
array(1.0)
>>> absolute(z)
2.2360679774997898
>>> angle(z)
0.46364760900080609

This page titled 3.2: Integers and Floating-Point Numbers is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34826?pdf
http://docs.scipy.org/doc/numpy/reference/generated/numpy.real.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.imag.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.absolute.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.angle.html
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling/3.02%3A_Integers_and_Floating-Point_Numbers
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

3.3.1 https://phys.libretexts.org/@go/page/34827

3.3: Arrays
We will often have to deal with collections of several numbers, which requires organizing them into data structures. One of the
data structures that we will use most frequently is the array, which is a fixed-size linear sequence of numbers. We have already
discussed the basic usage of Scipy arrays in the previous article.

The memory layout of an array is shown schematically in Fig. . It consists of two separate regions of memory:

Figure : Schematic of how an array is laid out in memory. The book-keeping block (upper left box) records the array size, the
address of the storage blocks (indicated by an arrow), etc. The storage blocks (lower right boxes) contain the array contents, in
sequential order.

1. One region, which we call the book-keeping block, stores summary information about the array, including (i) the total number
of elements, (ii) the memory address where the array contents are stored (specifically, the address of element 0), and (iii) the
type of numbers stored in the array. The first two pieces of information are recorded in the form of integers, while the last piece
is recorded in some other format that we don't need to worry about (it's managed by Python).

2. The second region, which we call the data block, stores the actual contents of the array, laid out sequentially. For example, for
an array containing seven 64-bit integers, this block will consist of bits of memory, storing the integers one after
the other.

The book-keeping block and the data block aren't necessarily kept next to each other in memory. When a piece of Python code acts
upon an array x , the information in the array's book-keeping block is used to locate the data block, and then access/alter its data
as necessary.

3.3.1 Basic Array Operations
Let's take detailed look at what happens when we read or write an individual element of an array, say x[2] : the third element
(index) stored in the array x .

From the array name, x , Python knows the address of the relevant book-keeping block (this is handled internally by Python, and
takes negligible time). The book-keeping block records the address of element , i.e. the start of the data block. Because we want
index of the array, the processor jumps to the memory address that is blocks past the recorded address. Since the data block is
laid out sequentially, that is precisely the address where the number x[2] is stored. This number can now be read or
overwritten, as desired by the Python code.

Under this scheme, the reading/writing of individual array elements is independent of the size of the array. Accessing an element in
a size- array takes the same time as accessing an element in a size- array. This is because the memory is random-access—
the processor can jump to any address in memory once you tell it where to go. The memory layout of an array is designed so that
one can always work out the relevant address in a single step.

We describe the speed of this operation using big-O notation. If is the size of the array, reading/writing individual array
elements is said to take time, or "order- time" (i.e., independent of). By contrast, a statement like

x.fill(3.3)

takes time, i.e. time proportional to the array size . That's because the fill method assign values to each of the
elements of the array. Similarly, the statement

x += 1.0

takes time. This += operation adds 1.0 to each of the elements of the array, which requires arithmetic operations.

3.3.1

3.3.1

7 ×64 = 448

2

0

2 2

1 100000

N

O(1) 1 N

O(N) N N

O(N) N

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34827?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling/3.03%3A_Arrays
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.fill.html

3.3.2 https://phys.libretexts.org/@go/page/34827

3.3.2 Array Data Type
We have noted that the book-keeping block of each array records the type of number, or data type, kept in the storage blocks.
Thus, each individual array is able to store only one type of number. When you create an array with the array function, Scipy
infers the data type based on the specified array contents. For example, if the input contains only integers, an integer array is
created; if you then try to store a floating-point number, it will be rounded down to an integer:

>>> a = array([1,2,3,4])
>>> a[1] = 3.14159
>>> a
array([1, 3, 3, 4])

In the above situation, if our intention was to create an array of floating point numbers, that can be done by giving the array
function an input containing at least one floating-point number. For example,

>>> a = array([1,2,3,4.])
>>> a[1] = 3.14159
>>> a
array([1. , 3.14159, 3. , 4.])

Alternatively, the array function accepts a parameter named dtype , which can be used to specify the data type directly:

>>> a = array([1,2,3,4], dtype=float)
>>> a[1] = 3.14159
>>> a
array([1. , 3.14159, 3. , 4.])

The dtype parameter accepts several possible values, but most of time you will choose one of these three:

float
complex
integer

The common functions for creating new arrays, zeros ones , and linspace , create arrays with the float data type
by default. They also accept dtype parameters, in case you want a different data type. For example:

>>> a = zeros(4, dtype=complex)
>>> a[1] = 2.5+1j
>>> a
array([0.0+0.j, 2.5+1.j, 0.0+0.j, 0.0+0.j])

3.3.3 Vectorization
We have previously discussed the code x += 1.0 , which adds 1.0 to every element on the array x . It has runtime ,
where is the array length. We could also have done the same thing by looping over the array, as follows:

for n in range(len(x)):
 x[n] += 1.0

This, too, has runtime. But it is not a good way to do the job, for two reasons. Firstly, it's obviously much more cumbersome
to write. Secondly, and more importantly, it is much more inefficient, because it involves more "high-level" Python operations. To

O(N)

N

O(N)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34827?pdf
http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html

3.3.3 https://phys.libretexts.org/@go/page/34827

run this code, Python has to create an index variable n , increment that index variable times, and increment x[n] for each
separate value of n .

By contrast, when you write x += 1.0 , Python uses "low-level" code to increment each element in the array, which does not
require introducing and managing any "high-level" Python objects. The practice of using array operations, instead of performing
explicit loops over an array, is called vectorization. You should always strive to vectorize your code; it is generally good
programming practice, and leads to extreme performance gains for large array sizes.

Vectorization does not change the runtime scaling of the operation. The vectorized code x += 1.0 , and the explicit loop, both
run in time. What changes is the coefficient of the scaling: the runtime has the form , and the value of the coefficient is
much smaller for vectorized code.

Here is another example of vectorization. Suppose we have a variable y whose value is a number, and an array x containing a
collection of numbers; we want to find the element of x closest to y . Here is non-vectorized code for doing this:

idx, distance = 0, abs(x[0] - y)
for n in range(1, len(x)):
 new_dist = abs(x[n] - y)
 if new_dist < distance:
 idx, distance = n, new_dist

z = x[idx]

The vectorized approach would simply make use of the argmin function:

idx = argmin(abs(x - y))
z = x[idx]

The way this works is to create a new array, whose values are the distances between each element of x and the target number
y ; then, argmin searches for the array index corresponding to the smallest element (which is also the index of the element of
x closest to y). We could write this code even more compactly as

z = x[argmin(abs(x - y))]

3.3.4 Array Slicing
We have emphasized that an array is laid out in memory in two pieces: a book-keeping block, and a sequence of storage blocks
containing the elements of the array. Sometimes, it is possible for two arrays to share storage blocks. For instance, this happens
when you perform array slicing:

>>> x = array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
>>> y = x[2:5]
>>> y
array([2., 3., 4.])

The statement y = x[2:5] creates an array named y , containing a subset of the elements of x (i.e., the elements at
indices , , and). However, Python does not accomplish this by copying the affected elements of x into a new array with new
storage blocks. Instead, it creates a new book-keeping block for y , and points it towards the existing storage blocks of x :

Figure : Two arrays, x and y , sharing the same storage blocks.

Because the storage blocks are shared between two arrays, if we change an element in x , that effectively changes the contents of
y as well:

N

O(N) T a

2 3 4

3.3.2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34827?pdf
http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.argmin.html

3.3.4 https://phys.libretexts.org/@go/page/34827

>>> x[3] = 9.
>>> y
array([2., 9., 4.])

(The situation is similar if you specify a "step" during slicing, like y = x[2:5:2] . What happens in that case is that the data
block keeps track of the step size, and Python can use this to figure out exactly which address to jump for accessing any given
element.)

The neat thing about this method of sharing storage blocks is that slicing is an operation, independent of the array size.
Python does not need to do any copying on the stored elements; it merely needs to create a new book-keeping block. Therefore,
slicing is a very "cheap" and efficient operation.

The downside is that it can lead to strange bugs. For example, this is a common mistake:

>>> x = y = linspace(0, 1, 100)

The above statement creates two arrays, x and y , pointing to the same storage blocks. This is almost definitely not what we
intend! The correct way is to write two separate array initialization statements.

Whenever you intend to copy an array and change its contents freely without affecting the original array, you must remember to use
the copy function:

>>> x = array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
>>> y = copy(x[2:5])
>>> x[3] = 9.
>>> y
array([2., 3., 4.])

In the above example, the statement y = copy(x[2:5]) explicitly copies out the storage blocks of x . Therefore, when we
change the contents of x , the contents of y are unaffected.

Do not call copy too liberally! It is an operation, so unnecessary copying hurts performance. In particular, the basic
arithmetic operations don't affect the contents of arrays, so it is always safe to write

>>> y = x + 4

rather than y = copy(x) + 4 .

This page titled 3.3: Arrays is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source content
that was edited to the style and standards of the LibreTexts platform.

O(1)

O(N)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34827?pdf
http://docs.scipy.org/doc/numpy/reference/generated/numpy.copy.html
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling/3.03%3A_Arrays
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

3.4.1 https://phys.libretexts.org/@go/page/34828

3.4: Exercises

Traditionally, computers keep track of the time/date using a format known as Unix time, which counts the number of seconds
that have elapsed since 00:00:00 UTC on Thursday, 1 January 1970. But there's a problem if we track Unix time using a fixed-
width integer, since that has a maximum value. Beyond this date, the Unix time counter will roll-over, wreaking havoc on
computer systems. Calculate the roll-over date for:

1. Ordinary (signed) 32-bit integers
2. Unsigned 32-bit integers, which do not reserve a bit for the sign (and thus store only non-negative numbers).
3. Signed 64-bit integers
4. Unsigned 64-bit integers

Find the runtime of each of the following Python code samples (e.g. or). Assume that the arrays x and y are
of size :

a. z = x + y
b. x[5] = x[4]
c. z = conj(x)
d. z = angle(x)
e. x = x[::-1] (this reverses the order of elements).

Write a Python function uniquify_floats(x, epsilon) , which accepts a list (or array) of floats x , and deletes all
"duplicate" elements that are separated from another element by a distance of less than epsilon . The return value should
be a list (or array) of floats that differ from each other by at least eps .

(Hard) Suppose a floating-point representation uses one sign bit, fraction bits, and exponent bits. Find the density of real
numbers which can be represented exactly by a floating-point number. Hence, show that floating-point precision decreases
exponentially with the magnitude of the number.

This page titled 3.4: Exercises is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source
content that was edited to the style and standards of the LibreTexts platform.

Exercise 3.4.1

Exercise 3.4.2

O(1) O(N)

N

Exercise 3.4.3

Exercise 3.4.4

N M

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34828?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling/3.04%3A_Exercises
http://en.wikipedia.org/wiki/Unix_time
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling/3.04%3A_Exercises
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

1

CHAPTER OVERVIEW

4: Numerical Linear Algebra
Much of scientific programming involves handling numerical linear algebra. This is because a huge number of numerical problems
which occur in science can be reduced to linear algebra problems. It is very important to know how to formulate these linear
algebra problems, and how to solve them numerically.

4.1: Array Representations of Vectors, Matrices, and Tensors
4.2: Linear Equations
4.3: Exercises

This page titled 4: Numerical Linear Algebra is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong
via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04%3A_Numerical_Linear_Algebra/4.01%3A_Array_Representations_of_Vectors_Matrices_and_Tensors
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04%3A_Numerical_Linear_Algebra/4.02%3A_Linear_Equations
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04%3A_Numerical_Linear_Algebra/4.03%3A_Exercises
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04%3A_Numerical_Linear_Algebra
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

4.1.1 https://phys.libretexts.org/@go/page/34830

4.1: Array Representations of Vectors, Matrices, and Tensors
Thus far, we have discussed simple "one-dimensional" (1D) arrays, which are linear sequences of numbers. In linear algebra terms,
1D arrays represent vectors. The array length corresponds to the "vector dimension" (e.g., a 1D array of length 3 corresponds to a
3-vector). In accordance with Scipy terminology, we will use the work "dimension" to refer to the dimensionality of the array
(called the rank in linear algebra), and not the vector dimension.

You are probably familiar with the fact that vectors can be represented using index notation, which is pretty similar to Python's
notation for addressing 1D arrays. Consider a length- vector

The th element can be written as

where . The notation on the left is mathematical index notation, and the notation on the right is Python's array
notation. Note that we are using -based indexing, so that the first element has index and the last element has index .

A matrix is a collection of numbers organized using two indices, rather than a single index like a vector. Under -based indexing,
the elements of an matrix are:

More generally, numbers that are organized using multiple indices are collectively referred to as tensors. Tensors can have more
than two indices. For example, vector cross products are computed using the Levi-Civita tensor , which has three indices:

4.1.1 Multi-Dimensional Arrays
In Python, tensors are represented by multi-dimensional arrays, which are similar to 1D arrays except that they are addressed
using more than one index. For example, matrices are represented by 2D arrays, and the th component of an matrix is
written in Python notation as follows:

Figure : Memory model of a 2D array.

The way multi-dimensional arrays are laid out in memory is very similar to the memory layout of 1D arrays. There is a book-
keeping block, which is associated with the array name, and which stores information about the array size (including the number of
indices and the size of each index), as well as the memory location of the array contents. The elements lie in a sequence of storage
blocks, in a specific order (depending on the array size). This arrangement is shown schematically in Fig. .

d

= .x⃗

⎡

⎣

⎢⎢⎢⎢

x0

x1

⋮
xd−1

⎤

⎦

⎥⎥⎥⎥
(4.1.1)

j

↔ x[j],xj (4.1.2)

j= 0, 1, … , d−1
0 0 d−1

0
m×n

M = .

⎡

⎣

⎢⎢⎢⎢⎢

M00

M10

⋮
Mm−1,0

M01

M11

⋮
Mm−1,1

⋯
⋯

⋱
⋯

M0,n−1

M1,n−1

⋮
Mm−1,n−1

⎤

⎦

⎥⎥⎥⎥⎥
(4.1.3)

ε

= .(×)A ⃗ B⃗
i

∑
jk

εijkAjBk (4.1.4)

(i, j) m×n

↔ M[i,j] for i = 0, … ,m−1, j= 0, … ,n−1.Mij (4.1.5)

4.1.1

4.1.1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34830?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04%3A_Numerical_Linear_Algebra/4.01%3A_Array_Representations_of_Vectors_Matrices_and_Tensors
http://en.wikipedia.org/wiki/Levi-Civita_symbol

4.1.2 https://phys.libretexts.org/@go/page/34830

When Python needs to access any element of of a multi-dimensional array, it knows exactly which memory location the element is
stored in. The location can be worked out from the size of the multi-dimensional array, and the memory location of the first
element. In Fig. , for example, M is a array, containing storage blocks laid out in a specific sequence. If we need to
access M[1,1] , Python knows that it needs to jump to the storage block four blocks down from the block. Hence,
reading/writing the elements of a multi-dimensional array is an operation, just like for 1D arrays.

In the following subsections, we will describe how multi-dimensional arrays can be created and manipulated in Python code.

There is also a special Scipy class called matrix which can be used to represent matrices. Don't use this. It's a layer on top
of Scipy's multi-dimensional array facilities, mostly intended as a crutch for programmers transitioning from Matlab. Arrays
are better to use, and more consistent with the rest of Scipy.

4.1.2 Creating Multi-Dimensional Arrays
You can create a 2D array with specific elements using the array command, with an input consisting of a list of lists:

>>> x = array([[1., 2., 3.], [4., 5., 6.]])
>>> x
array([[1., 2., 3.],
 [4., 5., 6.]])

The above code creates a 2D array (i.e. a matrix) named x . It is a array, containing the elements , ,
, etc. Similarly, you can create a 3D array by supplying an input consisting of a list of lists of lists; and so forth.

It is more common, however, to create multi-dimensional arrays using ones or zeros . These functions return arrays whose
elements are all initialized to and , respectively. (You can then assign values to the elements as desired.) To do this, instead
of specifying a number as the input (which would create a 1D array of that size), you should specify a tuple as the input. For
example,

>>> x = zeros((2,3))
>>> x
array([[0., 0., 0.],
 [0., 0., 0.]])
>>>
>>> y = ones((3,2))
>>> y
array([[1., 1.],
 [1., 1.],
 [1., 1.]])

There are many more ways to create multi-dimensional arrays, which we'll discuss when needed.

4.1.3 Basic Array Operations
To check on the dimension of an array, consult its ndim slot:

>>> x = zeros((5,4))
>>> x.ndim
2

To determine the exact shape of the array, use the shape slot (the shape is stored in the form of a tuple):

4.1.1 2 ×3 6
(0, 0)

O(1)

Note

2 ×3 = 1x00 = 2x01

= 3x02

0.0 1.0

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34830?pdf
http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html

4.1.3 https://phys.libretexts.org/@go/page/34830

>>> x.shape
(3, 5)

To access the elements of a multi-dimensional array, use square-bracket notation: M[2,3] , T[0,4,2] , etc. Just remember
that each component is zero-indexed.

Multi-dimensional arrays can be sliced, similar to 1D arrays. There is one important feature of multi-dimensional slicing: if you
specify a single value as one of the indices, the slice results in an array of smaller dimensionality. For example:

>>> x = array([[1., 2., 3.], [4., 5., 6.]])
>>> x[:,0]
array([1., 4.])

In the above code, x is a 2D array of size . The slice specifies the value for index , so the result is a 1D array
containing the elements .

If you don't specify all the indices of a multi-dimensional array, the omitted indices implicitly included, and run over their entire
range. For example, for the above x array,

>>> x[1]
array([4., 5., 6.])

This is also equivalent to x[1,:] .

4.1.4 Arithmetic Operations
The basic arithmetic operations can all be performed on multi-dimensional arrays, and act on the arrays element-by-element. For
example,

>>> x = ones((2,3))
>>> y = ones((2,3))
>>> z = x + y
>>> z
array([[2., 2., 2.],
 [2., 2., 2.]])

You can think of this in terms of index notation:

What is the runtime for performing such arithmetic operations on multi-dimensional arrays? With a bit of thinking, we can
convince ourselves that the runtime scales linearly with the number of elements in the multi-dimensional array, because the
arithmetic operation is performed on each individual index. For example, the runtime for adding a pair of matrices scales
as .

The multiplication operator * also acts element-by-element. It does not refer to matrix multiplication!

For example,

>>> x = ones((2,3))
>>> y = ones((2,3))
>>> z = x * y

2 ×3 x[:, 0] 0 1
[,]x00 x10

= + .zij xij yij (4.1.6)

M ×N

(O(MN)

Note

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34830?pdf

4.1.4 https://phys.libretexts.org/@go/page/34830

>>> z
array([[1., 1., 1.],
 [1., 1., 1.]])

In index notation, we can think of the * operator as doing this:

By contrast, matrix multiplication is . We'll see how this is accomplished in the next subsection.

4.1.5 The Dot Operation
The most commonly-used function for array multiplication is the dot function, which takes two array inputs x and y and
returns their "dot product". It constructs a product by summing over the last index of array x , and over the next-to-last index of
array y (or over its last index, if y is a 1D array). This may sound like a complicated rule, but you should be able to convince
yourself that it corresponds to the appropriate type of multiplication operation for the most common cases encountered in linear
algebra:

If x and y are both 1D arrays (vectors), then dot corresponds to the usual dot product between two vectors:

If x is a 2D array and y is a 1D array, then dot corresponds to right-multiplying a matrix by a vector:

If x is a 1D array and y is a 2D array, then dot corresponds to left-multiplication:

If x and y are both 2D arrays, dot corresponds to matrix multiplication:

The rule applies to higher-dimensional arrays as well. For example, two rank-3 tensors are multiplied together in this way:

Should you need to perform more general products than what the dot function provides, you can use the tensordot
function. This takes two array inputs, x and y , and a tuple of two integers specifying which components of x and y to
sum over. For example, if x and y are 2D arrays,

What is the runtime for dot and tensordot ? Consider a simple case: matrix multiplication of an matrix with an
 matrix. In index notation, this has the form

The resulting matrix has a total of indices to be computed. Each of these calculations requires a sum involving
arithmetic operations. Hence, the total runtime scales as . By similar reasoning, we can figure out the runtime scaling for
any tensor product between two tensors: it is the product of the sizes of the unsummed indices, times the size of the summed index.
For example, for a tensordot product between an tensor and a tensor, summing over the last index
of each tensor, the runtime would scale as .

= .zij xijyij (4.1.7)

=zij ∑k xikykj

z = dot(x,y) ↔ z =∑
k

xk yk (4.1.8)

z = dot(x,y) ↔ =zi ∑
k

xik yk (4.1.9)

z = dot(x,y) ↔ =zi ∑
k

xk yki (4.1.10)

z = dot(x,y) ↔ =zij ∑
k

xik ykj (4.1.11)

z = dot(x,y) ↔ =zijpq ∑
k

xijk ypkq (4.1.12)

z = tensordot(x, y, (0,1)) ↔ =zij ∑
k

xki yjk (4.1.13)

M ×N

N ×P

= , for i ∈ {0, … ,M −1}, j∈ {0, … ,P −1}.Cij ∑
k=0

N−1

Aik Bkj (4.1.14)

(M ×P) O(N)
O(MNP)

M ×N ×P Q×S×P

O(MNPQS)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34830?pdf
http://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.tensordot.html

4.1.5 https://phys.libretexts.org/@go/page/34830

This page titled 4.1: Array Representations of Vectors, Matrices, and Tensors is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34830?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04%3A_Numerical_Linear_Algebra/4.01%3A_Array_Representations_of_Vectors_Matrices_and_Tensors
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

4.2.1 https://phys.libretexts.org/@go/page/34831

4.2: Linear Equations
In physics, we are often called upon to solve linear equations of the form

where is some matrix, and both and are vectors for length . Given and , the goal is to solve for .

It's an important and useful skill to recognize linear systems of equations when they arise in physics problems. Such equations can
arise in many diverse contexts; we will give a couple of simple examples below.

Suppose there is a set of electrically charged point particles at positions . We do not know the value of
the electric charges, but we able to measure the electric potential at any point . The electric potential is given by

If we measure the potential at positions, , how can the charges be deduced?

Solution

To do this, let us write the equation for the electric potential at point as:

This has the form , where , , and the unknowns are .

Linear systems of equations commonly appear in circuit theory. For example, consider the following parallel circuit of
power supplies and resistances:

Figure

Assume the voltage on the right-hand side of the circuit is . Given the resistances and the EMFs
, how do we find the left-hand voltage and the currents ?

Solution

We follow the usual laws of circuit theory. Each branch of the parallel circuit obeys Ohm's law,

Furthermore, the currents obey Kirchoff's law (conservation of current), so

A = ,x⃗ b ⃗ (4.2.1)

A N ×N x⃗ b ⃗ N A b ⃗ x⃗

Example 4.2.1

N { , , … , }R⃗
0 R⃗

1 R⃗
N−1

r ⃗

ϕ() = .r ⃗ ∑
j=0

N−1 qj

| − |r ⃗ R⃗
j

(4.2.2)

N { , , … , }r ⃗ 0 r ⃗ 1 r ⃗ N−1 { , … , }q0 qN−1

r ⃗ i

ϕ() = [] .r ⃗ i ∑
j=0

N−1 1

| − |r ⃗ i R⃗
j

qj (4.2.3)

A =x⃗ b ⃗ ≡Aij
1

| − |r ⃗ i R⃗
j

≡ ϕ()b ⃗
i r ⃗ i =x⃗ j qj

Example 4.2.2

N

4.2.1

= 0V0 { , … , }R0 RN−1

{ , … , }E0 EN−1 V { , … , }I0 IN−1

+V = .IjRj Ej (4.2.4)

= 0.∑
j=0

N−1

Ij (4.2.5)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34831?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04%3A_Numerical_Linear_Algebra/4.02%3A_Linear_Equations

4.2.2 https://phys.libretexts.org/@go/page/34831

We can combine these equations into a matrix equation of the form

Here, the unknown vector consists of the currents passing through the branches of the circuit, and the potential .

4.2.1 Direct Solution
Faced with a system of linear equations, one's first instinct is usually to solve for by inverting the matrix :

Don't do this. It is mathematically correct, but numerically inefficient. As we'll see, computing the matrix inverse , and then
right-multiplying by , involves more steps than simply solving the equation directly

To solve a system of linear equations, use the solve function from the scipy.linalg module. (You will need to import
scipy.linalg explicitly, because it is a submodule of scipy and does not get imported by our usual
from scipy import * statement.) Here is an example:

>>> A = array([[1., 2., 3.], [2., 4., 0.], [1., 3., 9.]])
>>> b = array([6., 6., 9.])
>>>
>>> import scipy.linalg as lin
>>> x = lin.solve(A, b)
>>> x
array([9., -3., 1.])

We can verify that this is indeed the solution:

>>> dot(A, x) # This should equal b.
array([6., 6., 9.])

The direct solver uses an algorithm known as Gaussian elimination, which we'll discuss in the next article. The runtime of Gaussian
elimination is , where is the size of the linear algebra problem.

The reason we avoid solving linear equations by inverting the matrix is that the matrix inverse is itself calculated using the
Gaussian elimination algorithm! If you are going to use Gaussian elimination anyway, it is far better to apply the algorithm directly
on the desired and . Solving by calculating involves about twice as many computational steps.

This page titled 4.2: Linear Equations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

N +1 A =x⃗ b ⃗

=

⎡

⎣

⎢⎢
⎢⎢⎢⎢
⎢

R0

0

⋮
0
1

0
R1

⋮
0
1

⋯
⋯

⋱
⋯
⋯

0
0

⋮
RN−1

1

1
1

⋮
1
0

⎤

⎦

⎥⎥
⎥⎥⎥⎥
⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

I0

I1

⋮
IN−1

V

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

E0

E1

⋮
EN−1

0

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

(4.2.6)

x⃗ N V

x⃗ A

A = ⇒ = .x⃗ b ⃗ x⃗ A
−1 b ⃗ (4.2.7)

A
−1

b ⃗

O()N 3 N

A

A b A
−1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34831?pdf
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.solve.html
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04%3A_Numerical_Linear_Algebra/4.02%3A_Linear_Equations
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

4.3.1 https://phys.libretexts.org/@go/page/34832

4.3: Exercises

Write Python code to construct a 3D array of size corresponding to the Levi-Civita tensor,

Then, using the tensordot function, verify the identity .

This page titled 4.3: Exercises is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source
content that was edited to the style and standards of the LibreTexts platform.

Exercise 4.3.1

3 ×3 ×3

=εijk

⎧

⎩
⎨

+1

−1
0

if (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2),

if (i, j, k) is (3, 2, 1), (1, 3, 2) or (2, 1, 3),
if i = j or j = k or k = i

(4.3.1)

= −∑i εijkεimn δjmδkn δjnδkm

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34832?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04%3A_Numerical_Linear_Algebra/4.03%3A_Exercises
http://en.wikipedia.org/wiki/Levi-Civita_symbol
http://docs.scipy.org/doc/numpy/reference/generated/numpy.tensordot.html
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04%3A_Numerical_Linear_Algebra/4.03%3A_Exercises
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

1

CHAPTER OVERVIEW

5: Gaussian Elimination
This article discusses the Gaussian elimination algorithm, one of the most fundamental and important numerical algorithms of all
time. It is used to solve linear equations of the form

where is a known matrix, is a known vector of length , and is an unknown vector of length . The goal is to find
. The Gaussian elimination algorithm is implemented by Scipy's scipy.linalg.solve function.

5.1: The Basic Algorithm
5.2: Matrix Generalization
5.3: Pivoting
5.4: LU Decomposition

This page titled 5: Gaussian Elimination is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

A = ,x⃗ b ⃗ (5.1)

A N ×N b ⃗ N x⃗ N

x⃗

https://libretexts.org/
https://math.libretexts.org/Bookshelves/Linear_Algebra/Book%3A_A_First_Course_in_Linear_Algebra_(Kuttler)/01%3A_Systems_of_Equations/1.03%3A_Gaussian_Elimination
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.solve.html
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination/5.01%3A_The_Basic_Algorithm
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination/5.02%3A_Matrix_Generalization
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination/5.03%3A_Pivoting
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination/5.04%3A_LU_Decomposition
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

5.1.1 https://phys.libretexts.org/@go/page/34834

5.1: The Basic Algorithm
The best way to understand how Gaussian elimination works is to work through a concrete example. Consider the following

 problem:

The Gaussian elimination algorithm consists of two distinct phases: row reduction and back-substitution.

5.1.1 Row Reduction
In the row reduction phase of the algorithm, we manipulate the matrix equation so that the matrix becomes upper triangular (i.e., all
the entries below the diagonal are zero). To achieve this, we note that we can subtract one row from another row, without altering
the solution. In fact, we can subtract any multiple of a row.

We will eliminate (zero out) the elements below the diagonal in a specific order: from top to bottom along each column, then from
left to right for successive columns. For our example, the elements that we intend to eliminate, and the order in which we
will eliminate them, are indicated by the colored numbers , , and in the following figure:

Figure

The first matrix element we want to eliminate is at (orange circle). To eliminate it, we subtract, from this row, a multiple of
row . We will use a factor of :

The factor of we used is determined as follows: we divide the matrix element at (which is the one we intend to eliminate)
by the element at (which is the one along the diagonal in the same column). As a result, the term proportional to
disappears, and we obtain the following modified linear equations, which possess the same solution:

Figure

(Note that we have changed the entry in the vector on the right-hand side as well, not just the matrix on the left-hand side!) Next,
we eliminate the element at (green circle). To do this, we subtract, from this row, a multiple of row . The factor to use is

, which is the element at divided by the (diagonal) element:

The result is

Figure

Next, we eliminate the element (blue circle). This element lies in column , so we eliminate it by subtracting a multiple of
row . The factor to use is , which is the element divided by the (diagonal) element:

N = 3

= .
⎡

⎣
⎢

1

3

2

2

2

6

3

2

2

⎤

⎦
⎥
⎡

⎣
⎢

x0

x1

x2

⎤

⎦
⎥

⎡

⎣
⎢

3

4

4

⎤

⎦
⎥ (5.1.1)

3 ×3

0 1 2

5.1.1

(1, 0)

0 3/1 = 3

(3 +2 +2) −(3/1)(1 +2 +3) = 4 −(3/1)3x0 x1 x2 x0 x1 x2 (5.1.2)

3 (1, 0)

(0, 0) x0

5.1.2

(2, 0) 0

2/1 = 2 (2, 0) (0, 0)

(2 +6 +2) −(2/1)(1 +2 +3) = 4 −(2/1)3x0 x1 x2 x0 x1 x2 (5.1.3)

5.1.3

(2, 1) 1

1 2/(−4) = −0.5 (2, 1) (1, 1)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34834?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination/5.01%3A_The_Basic_Algorithm

5.1.2 https://phys.libretexts.org/@go/page/34834

The result is

Figure

We have now completed the row reduction phase, since the matrix on the left-hand side is upper-triangular (i.e., all the entries
below the diagonal have been set to zero).

5.1.2 Back-Substitution
In the back-substitution phase, we read off the solution from the bottom-most row to the top-most row. First, we examine the
bottom row:

Figure

Thanks to row reduction, all the matrix elements on this row are zero except for the last one. Hence, we can read off the solution

Next, we look at the row above:

Figure

This is an equation involving and . But from the previous back-substitution step, we know . Hence, we can solve for

Finally, we look at the row above:

Figure

This involves all three variables , , and . But we already know and , so we can read off the solution for . The final
result is

5.1.3 Runtime
Let's summarize the components of the Gaussian elimination algorithm, and analyze how many steps each part takes:

Row reduction

(0 +2 −4) −(2/(−4))(0 −4 −7) = −5 −(2/(−4))(−2)x0 x1 x2 x0 x1 x2 (5.1.4)

5.1.4

5.1.5

= (−4.5)/(−7.5) = 0.6.x2 (5.1.5)

5.1.6

x1 x2 x2

= [−5 −(−7)(0.6)]/(−4) = 0.2.x1 (5.1.6)

5.1.7

x0 x1 x2 x1 x2 x0

= .
⎡

⎣
⎢

x0

x1

x2

⎤

⎦
⎥

⎡

⎣
⎢

0.8

0.2

0.6

⎤

⎦
⎥ (5.1.7)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34834?pdf

5.1.3 https://phys.libretexts.org/@go/page/34834

• Step forwards through the rows. For each row , steps

• Perform pivoting (to be discussed below). steps

•
Step forwards through the rows larger than . For
each such row ,

 steps

•

Subtract
times row from the
row (where is the
current matrix). This
eliminates the matrix
element at .

 arithmetic
operations

Back-substitution

• Step backwards through the rows. For each row , steps

•
Substitute in the solutions for (which are
already found). Hence, find . arithmetic operations

(The "pivoting" procedure hasn't been discussed yet; we'll do that in a later section.)

We conclude that the runtime of the row reduction phase scales as , and the runtime of the back-substitution phase scales as
. The algorithm's overall runtime therefore scales as .

This page titled 5.1: The Basic Algorithm is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

n N

N − n + 1 ∼ N

n

m
N − n ∼ N

(/)A′
mn A′

nn

n

m A
′

(m, n)

O(N)

n N

xm m > n

xn

N − n ∼ O(N)

O()N
3

O()N
2

O()N
3

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34834?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination/5.01%3A_The_Basic_Algorithm
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

5.2.1 https://phys.libretexts.org/@go/page/34835

5.2: Matrix Generalization
We can generalize the Gaussian elimination algorithm described in the previous section, to solve matrix problems of the form

where and are matrices, not merely vectors. An example, for , is

It can get a bit tedious to keep writing out the elements in the system of equations, particularly when becomes a matrix. For
this reason, we switch to a notation known as the augmented matrix:

Here, the entries to the left of the vertical separator denote the left-hand side of the system of equations, and the entries to the right
of the separator denote the right-hand side of the system of equations.

The Gaussian elimination algorithm can now be performed directly on the augmented matrix. We will walk through the steps for
the above example. First, row reduction:

Eliminate the element at :

Eliminate the element at :

Eliminate the element at :

The back-substitution step converts the left-hand portion of the augmented matrix to the identity matrix:

Solve for row :

Solve for row :

Solve for row :

A x = b, (5.2.1)

x b N ×M M = 2

= .
⎡

⎣
⎢

1

3

2

2

2

6

3

2

2

⎤

⎦
⎥
⎡

⎣
⎢

x00

x10

x20

x01

x11

x21

⎤

⎦
⎥

⎡

⎣
⎢

3

4

4

6

8

2

⎤

⎦
⎥ (5.2.2)

x x

.

⎡

⎣
⎢⎢

1

3

2

2

2

6

3

2

2

3

4

4

6

8

2

⎤

⎦
⎥⎥ (5.2.3)

(1, 0)

⎡

⎣

⎢⎢

1

0

2

2

−4

6

3

−7

2

3

−5

4

6

−10

2

⎤

⎦

⎥⎥ (5.2.4)

(2, 0)

⎡

⎣
⎢⎢

1

0

0

2

−4

2

3

−7

−4

3

−5

−2

6

−10

−10

⎤

⎦
⎥⎥ (5.2.5)

(2, 1)

⎡

⎣
⎢⎢

1

0

0

2

−4

0

3

−7

−7.5

3

−5

−4.5

6

−10

−15

⎤

⎦
⎥⎥ (5.2.6)

2

⎡

⎣

⎢⎢

1

0

0

2

−4

0

3

−7

1

3

−5

0.6

3

−10

2

⎤

⎦

⎥⎥ (5.2.7)

1

⎡

⎣

⎢⎢

1

0

0

2

1

0

3

0

1

3

0.2

0.6

3

−1

2

⎤

⎦

⎥⎥ (5.2.8)

0

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34835?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination/5.02%3A_Matrix_Generalization

5.2.2 https://phys.libretexts.org/@go/page/34835

After the algorithm finishes, the right-hand side of the augmented matrix contains the result for . Analyzing the runtime using the

same reasoning as before, we find that the row reduction step scales as , and the back-substitution step scales as

.

This matrix form of the Gaussian elimination algorithm is the standard method for computing matrix inverses. If is the
identity matrix, then the solution will be the inverse of . Thus, the runtime for calculating a matrix inverse scales as .

This page titled 5.2: Matrix Generalization is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

⎡

⎣
⎢⎢

1

0

0

0

1

0

0

0

1

0.8

0.2

0.6

2

−1

2

⎤

⎦
⎥⎥ (5.2.9)

x

O((N +M))N
2

O(N(N +M))

b N ×N

x A O()N
3

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34835?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination/5.02%3A_Matrix_Generalization
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

5.3.1 https://phys.libretexts.org/@go/page/34836

5.3: Pivoting
In our description of the Gaussian elimination algorithm so far, you may have noticed a problem. During the row reduction process,
we have to multiply rows by a factor of (where denotes the current matrix). If happens to be zero, the factor
blows up, and the algorithm fails.

To bypass this difficulty, we add an extra step to the row reduction procedure. As we step forward through row numbers
, we do the following for each :

Pivoting: search through the matrix elements on and below the diagonal element at , and find the row with the largest
value of . Then, swap row and row .
Continue with the rest of the algorithm, eliminating the elements below the diagonal.

You should be able to convince yourself that (i) pivoting does not alter the solution, and (ii) it does not alter the runtime scaling of
the row reduction phase, which remains .

Apart from preventing the algorithm from failing unnecessarily, pivoting improves its numerical stability. If is non-zero but
very small in magnitude, dividing by it will produce a very large result, which brings about a loss of floating-point numerical
precision. Hence, it is advantageous to swap rows around to ensure that the magnitude of is as large as possible.

When trying to pivot, it might happen that all the values of , on and below the diagonal, are zero (or close enough to zero
within our floating-point tolerance). If this happens, it indicates that our original matrix is singular, i.e., it has no inverse. Hence,
the pivoting procedure has the additional benefit of helping us catch the cases where there is no valid solution to the system of
equations; in such cases, the Gaussian elimination algorithm should abort.

5.3.1 Example
Let's work through an example of Gaussian elimination with pivoting, using the problem in the previous section:

The row reduction phase goes as follows:

(): Pivot, swapping row and row :

(): Eliminate the element at :

(): Eliminate the element at :

(): Pivot, swapping row and row :

/A
′
mn A

′
nn A

′
A

′
nn

n = 0, 1, ⋯ , N −1 n

(n, n) n′

| |A′
nn′ n n′

A′
mn

O()N
3

A′
nn

A′
nn

| |A
′

nn′

A

.
⎡

⎣

⎢⎢

1

3

2

2

2

6

3

2

2

3

4

4

6

8

2

⎤

⎦

⎥⎥ (5.3.1)

n = 0 0 1

.

⎡

⎣
⎢⎢

3

1

2

2

2

6

2

3

2

4

3

4

8

6

2

⎤

⎦
⎥⎥ (5.3.2)

n = 0 (1, 0)

.

⎡

⎣
⎢⎢

3

0

2

2

4/3

6

2

7/3

2

4

5/3

4

8

10/3

2

⎤

⎦
⎥⎥ (5.3.3)

n = 0 (2, 0)

.

⎡

⎣

⎢⎢

3

0

0

2

4/3

14/3

2

7/3

2/3

4

5/3

4/3

8

10/3

−10/3

⎤

⎦

⎥⎥ (5.3.4)

n = 1 1 2

.

⎡

⎣

⎢⎢

3

0

0

2

14/3

4/3

2

2/3

7/3

4

4/3

5/3

8

−10/3

10/3

⎤

⎦

⎥⎥ (5.3.5)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34836?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination/5.03%3A_Pivoting

5.3.2 https://phys.libretexts.org/@go/page/34836

(): Eliminate the element at :

The back-substitution phase then proceeds as usual. You can check that it gives the same results we obtained before.

This page titled 5.3: Pivoting is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source
content that was edited to the style and standards of the LibreTexts platform.

n = 1 (2, 1)

.

⎡

⎣

⎢⎢

3

0

0

2

14/3

0

2

2/3

15/7

4

4/3

9/7

8

−10/3

30/7

⎤

⎦

⎥⎥ (5.3.6)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34836?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination/5.03%3A_Pivoting
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

5.4.1 https://phys.libretexts.org/@go/page/34837

5.4: LU Decomposition
A variant of the Gaussian elimination algorithm can be used to compute the LU decomposition of a matrix. This procedure was
invented by Alan Turing, the British mathematician considered the "father of computer science". The LU decomposition of a
square matrix consists of a lower-triangular matrix and an upper-triangular matrix , such that

In certain special circumstances, LU decompositions provide a very efficient method for solving linear equations. Suppose that we
have to solve a set of linear equations many times, using the same but an indefinite number of 's which might not be
known in advance. For example, the 's might represent an endless series of measurement outcomes, with representing some
fixed experimental configuration. We would like to efficiently calculate for each that arrives. If this is done with Gaussian
elimination, each calculation would take time.

However, if we can perform an LU decomposition ahead of time, then the calculations can be performed much more quickly. The
linear equations are

This can be broken up into two separate equations:

Because is lower-triangular, we can solve the first equation by forward-substitution (similar to back-substitution, except that it
goes from the first row to last) to find . Then we can solve the second equation by back-substitution, to find . The whole process
takes time, which is a tremendous improvement over performing a wholesale Gaussian elimination.

However, finding the LU decomposition takes time (we won't go into details here, but it's basically a variant of the row
reduction phase of the Gaussian elimination algorithm). Therefore, if we are interested in solving the linear equations only once, or
a handful of times, the LU decomposition method does not improve performance. It's useful in situations where the LU
decomposition is performed ahead of time. You can think of the LU decomposition as a way of re-arranging the Gaussian
elimination algorithm, so that we don't need to know during in the first, expensive phase.

In Python, you can perform the LU decomposition using the scipy.linalg.lu function. The forward-substitution and back-
substitution steps can be performed using scipy.linalg.solve_triangular .

This page titled 5.4: LU Decomposition is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

A L U

A = L U. (5.4.1)

A =x⃗ b ⃗ A b ⃗

b ⃗ A

x⃗ b ⃗

O()N 3

L U = .x⃗ b ⃗ (5.4.2)

L = , and U = .y ⃗ b ⃗ x⃗ y ⃗ (5.4.3)

L

y ⃗ x⃗

O()N 2

O()N 3

b ⃗ O()N 3

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34837?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination/5.04%3A_LU_Decomposition
http://en.wikipedia.org/wiki/Alan_Turing
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.lu.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_triangular.html
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination/5.04%3A_LU_Decomposition
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

1

CHAPTER OVERVIEW

6: Eigenvalue Problems
An eigenvalue problem is a matrix equation of the form

where is a known matrix. The problem is to find one (or more than one) non-zero vector , which is called an
eigenvector, and the associated , which is called an eigenvalue. Eigenvalue problems are ubiquitous in practically all fields
of physics. Most prominently, they are used to describe the "modes" of a physical system, such as the modes of a classical
mechanical oscillator, or the energy states of an atom.

Before discussing numerical solutions to the eigenvalue problem, let us quickly review the relevant mathematical facts.

6.1: Basic Facts about Eigenvalue Problems
6.2: Numerical Eigensolvers

This page titled 6: Eigenvalue Problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

A = λ ,x⃗ x⃗ (6.1)

A N ×N x⃗

λ ∈ C

https://libretexts.org/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06%3A_Eigenvalue_Problems/6.01%3A_Basic_Facts_about_Eigenvalue_Problems
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06%3A_Eigenvalue_Problems/6.02%3A_Numerical_Eigensolvers
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06%3A_Eigenvalue_Problems
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

6.1.1 https://phys.libretexts.org/@go/page/34839

6.1: Basic Facts about Eigenvalue Problems
Even if a matrix is real, its eigenvectors and eigenvalues can be complex. For example,

Eigenvectors are not uniquely defined. Given an eigenvector , any nonzero complex multiple of that vector is also an eigenvector
of the same matrix, with the same eigenvalue. We can reduce this ambiguity by normalizing eigenvectors to a fixed unit length:

Note, however, that even after normalization, there is still an inherent ambiguity in the overall complex phase. Multiplying a
normalized eigenvector by any phase factor gives another normalized eigenvector with the same eigenvalue.

6.1.1 Matrix Diagonalization
Most matrices are diagonalizable, meaning that their eigenvectors span the -dimensional complex space (where is the matrix
size). Matrices which are not diagonalizable are called defective. Many classes of matrices that are relevant to physics (such as
Hermitian matrices) are always diagonalizable; i.e., never defective.

The reason for the term "diagonalizable" is as follows. A diagonalizable matrix has eigenvectors that span the -
dimensional space, meaning that we can choose linearly independent eigenvectors, , with eigenvalues

. We refer to such a set of eigenvalues as the "eigenvalues of ". If we group the eigenvectors into an
 matrix

then, since the eigenvectors are linearly independent, is guaranteed to be invertible. Using the eigenvalue equation, we can then
show that

In other words, there exists a similarity transformation which converts into a diagonal matrix. The numbers along the
diagonal are precisely the eigenvalues of .

6.1.2 The Characteristic Polynomial
One of the most important consequences of diagonalizability is that the determinant of a diagonalizable matrix is the product of
its eigenvalues:

This can be proven by taking the determinant of the similarity transformation equation, and using (i) the property of the
determinant that , and (ii) the fact that the determinant of a diagonal matrix is the product of the
elements along the diagonal.

In particular, the determinant of is zero if one of its eigenvalues is zero. This fact can be further applied to the following re-
arrangement of the eigenvalue equation:

where is the identity matrix. This says that the matrix has an eigenvalue of zero, meaning that for any
eigenvalue ,

A

[][] = (1 + i)[] .
1

−1
1
1

1
i

1
i

(6.1.1)

x⃗

| = 1.∑
n=0

N−1

xn|2 (6.1.2)

eiϕ

N N

N ×N A N

N { , , ⋯ }x⃗ 0 x⃗ 1 x⃗ N−1

{ , , ⋯ }λ0 λ1 λN−1 N A

N ×N

Q = [, , ⋯],x⃗ 0 x⃗ 1 x⃗ N−1 (6.1.3)

Q

A Q = .Q
−1

⎡

⎣

⎢⎢⎢⎢⎢

λ0

0

⋮
0

0
λ1

⋮
0

⋯
⋯

⋱
⋯

0
0

⋮
λN−1

⎤

⎦

⎥⎥⎥⎥⎥
(6.1.4)

A N

A

A

det(A) = ∏
n=0

N−1

λn (6.1.5)

det(UV) = det(U) det(V)

A

(A −λI) = 0,x⃗ (6.1.6)

I N ×N A −λI

λ

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34839?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06%3A_Eigenvalue_Problems/6.01%3A_Basic_Facts_about_Eigenvalue_Problems

6.1.2 https://phys.libretexts.org/@go/page/34839

The left-hand side of the above equation is a polynomial in the variable , of degree . This is called the characteristic
polynomial of the matrix . Its roots are eigenvalues of , and vice versa.

For matrices, the standard way of calculating the eigenvalues is to find the roots of the characteristic polynomial. However,
this is not a reliable method for finding the eigenvalues of larger matrices. There is a well-known and important result in
mathematics, known as Abel's impossibility theorem, which states that polynomials of degree and higher have no general
algebraic solution. (By comparison, degree-2 polynomials have a general algebraic solution, which is the familiar quadratic
formula, and similar formulas exist for degree-3 and degree-4 polynomials.) A matrix of size has a characteristic
polynomial of degree , and Abel's impossibility theorem tells us that we can't calculate the roots of that characteristic
polynomial by ordinary arithmetic.

In fact, Abel's impossibility theorem leads to an even stronger conclusion: there is no general algebraic method for finding the
eigenvalues of a matrix of size , whether using the characteristic polynomial or any other method. For suppose we had such
a method for finding the eigenvalues of a matrix. Then, for any polynomial equation of degree , of the form

we can construct an "companion matrix" of the form

As you can check for yourself, each root of the polynomial is also an eigenvalue of the companion matrix, with corresponding
eigenvector

Hence, if there exists a general algebraic method for finding the eigenvalues of a large matrix, that would allow us to find solve
polynomial equations of high degree. Abel's impossibility theorem tells us that no such solution method can exist.

This might seem like a terrible problem, but in fact there's a way around it, as we'll shortly see.

6.1.3 Hermitian Matrices
A Hermitian matrix is a matrix which has the property

where denotes the "Hermitian conjugate", which is matrix transposition accompanied by complex conjugation:

Hermitian matrices have the nice property that all their eigenvalues are real. This can be easily proven using index notation:

det (A −λI) = 0. (6.1.7)

λ N

A A

2 ×2

5

N ≥ 5
N ≥ 5

N ≥ 5
N ≥ 5

+ λ +⋯ + + = 0,a0 a1 aN−1λN−1 λN (6.1.8)

N ×N

A = .

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

0
0

⋮

0
−a0

1
0

⋮

0
−a1

0
1

⋱

0
−a2

⋯
⋯

⋱

⋱
⋯

0
0

⋮

1
−aN−1

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

(6.1.9)

λ

= .x⃗

⎡

⎣

⎢⎢⎢⎢

1
λ

⋮
λN−1

⎤

⎦

⎥⎥⎥⎥
(6.1.10)

H

= H,H† (6.1.11)

H†

≡ , i. e. = .H† ()HT ∗
()H †

ij
H ∗

ji (6.1.12)

= λ∑
j

Hijxj xi ⇒ =∑
j

x∗
j Hji λ∗x∗

i

⇒ = λ | = |∑
ij

x∗
i Hijxj ∑

i

xi|
2

λ
∗∑

j

xj|2

⇒ λ = .λ
∗

(6.1.13)

(6.1.14)

(6.1.15)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34839?pdf
http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem
http://en.wikipedia.org/wiki/Cubic_function

6.1.3 https://phys.libretexts.org/@go/page/34839

In quantum mechanics, Hermitian matrices play a special role: they represent measurement operators, and their eigenvalues (which
are restricted to the real numbers) are the set of possible measurement outcomes.

This page titled 6.1: Basic Facts about Eigenvalue Problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34839?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06%3A_Eigenvalue_Problems/6.01%3A_Basic_Facts_about_Eigenvalue_Problems
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

6.2.1 https://phys.libretexts.org/@go/page/34840

6.2: Numerical Eigensolvers
As discussed above, Abel's impossibility theory tells us that there is no general algebraic formula for calculating the eigenvalues of
an matrix, for . In practice, however, there exist numerical methods, called eigensolvers, which can compute
eigenvalues (and eigenvectors) even for very large matrices, with hundreds of rows/columns, or larger. How could this be?

The answer is that numerical eigensolvers are approximate, not exact. But even though their results are not exact, they are very
precise—they can approach the exact eigenvalues to within the fundamental precision limits of floating-point arithmetic. Since
we're limited by those floating-point precision limits anyway, that's good enough!

6.2.1 Sketch of the Eigensolver Method
We will not go into detail about how numerical eigensolvers work, as that would involve a rather long digression. For those
interested, the following paper provides a good pedagogical presentation of the subject:

Bruno Lang, Direct Solvers for Symmetric Eigenvalue Problems. Modern Methods and Algorithms of Quantum Chemistry,
Proceedings, Second Ed. (2000). PDF download link

Here is a very brief sketch of the basic method. Similar to Gaussian elimination, the algorithm contains two phases, a relatively
costly/slow initial phase and a relatively fast second phase. The first phase, which is called Householder reduction, applies a
carefully-chosen set of similarity transformations to the input matrix :

The end result is a matrix which is in Hessenberg form: the elements below the first subdiagonal are all zero (the elements
immediately below the main diagonal, i.e. along the first subdiagonal, are allowed to be nonzero). The entire Householder
reduction phase requires arithmetic operations, where is the size of the matrix.

The second phase of the algorithm is called QR iteration. Using a different type of similarity transformation, the elements along the
subdiagonal of the Hessenberg matrix are reduced in magnitude. When these elements become negligible, the matrix becomes
upper-triangular; in that case, the eigenvalues are simply the elements along the diagonal.

The QR process is iterative, in that it progressively reduces the magnitude of the matrix elements along the subdiagonal. Formally,
an infinite number of iterations would be required to reduce these elements to zero—that's why Abel's impossibility theorem isn't
violated! In practice, however, QR iteration converges extremely quickly, so this phase ends up taking only time.

Hence, the overall runtime for finding the eigenvalues of a matrix scales as . The eigenvectors can also be computed as a
side-effect of the algorithm, with no extra increase in the runtime scaling.

6.2.2 Python Implementation
There are four main numerical eigensolvers implemented in Scipy, which are all found in the scipy.linalg package:

scipy.linalg.eig returns the eigenvalues and eigenvectors of a matrix.
scipy.linalg.eigvals returns the eigenvalues (only) of a matrix.
scipy.linalg.eigh returns the eigenvalues and eigenvectors of a Hermitian matrix.
scipy.linalg.eigvalsh returns the eigenvalues (only) of a Hermitian matrix.

The reason for having four separate functions is efficiency. The runtimes of all four functions scale as , but for each the
actual runtimes of eigvals and eigvalsh will be shorter than eig and eigh , because the eigensolver is only asked
to find the eigenvalues and need not construct the eigenvectors. Furthermore, eigvalsh is faster than eigvals , and
eigh is faster than eig , because the eigensolver algorithm can make use of certain numerical shortcuts which are valid only

for Hermitian matrices.

If you pass eigvalsh or eigh a matrix that is not actually Hermitian, the results are unpredictable; the function may return
a wrong value without signaling any error. Therefore, you should only use these functions if you are sure that the input matrix is
definitely Hermitian (which is usually because you constructed the matrix that way); if the mtrix is Hermitian, eigvalsh or
eigh are certainly preferable to use, because they run faster than their non-Hermitian counterparts.

Here is a short program that uses eigvals to find the eigenvalues of a matrix:

N ×N N ≥ 5

A0

→ = → = , etc.A0 A1 X
−1
1 A0X1 A2 X

−1
2 A1X2 (6.2.1)

Ak

O()N
3

N

O()N
2

O()N
3

O()N 3 N

3 ×3

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34840?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06%3A_Eigenvalue_Problems/6.02%3A_Numerical_Eigensolvers
http://juser.fz-juelich.de/record/152455/files/FZJ-2014-02056.pdf
http://en.wikipedia.org/wiki/Householder_transformation
http://docs.scipy.org/doc/scipy-0.14.0/reference/linalg.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.eig.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.eigvals.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.eigh.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.eigvalsh.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.eigvals.html

6.2.2 https://phys.libretexts.org/@go/page/34840

from scipy import *
import scipy.linalg as lin

A = array([[1,3,1],[1, 3, 4],[2, 4, 2]])
lambd = lin.eigvals(A)

print(lambd)

Running the program outputs:

[7.45031849+0.j -0.72515925+0.52865751j -0.72515925-0.52865751j]

The return value of eigvals is a 1D array of complex numbers, storing the eigenvalues of the input. The eigvalsh
function behaves similarly, except that a real array is returned (since Hermitian matrices have real eigenvalues). Note: we cannot
use lambda as the name of a variable, because lambda is reserved as a special keyword in Python.

Here is an example of using eig :

The eig function returns a pair of values; the first is a 1D array of eigenvalues (which we name lambd in the above
example), and the second is a 2D array containing the corresponding eigenvectors in each column (which we name Q). For
example, the first eigenvector can be accessed with Q[:,0] . We can verify that this is indeed an eigenvector:

>>> dot(A, Q[:,0])
array([3.01747903+0.j, 4.91615298+0.j, 4.71524187+0.j])
>>> lambd[0] * Q[:,0]
array([3.01747903+0.j, 4.91615298+0.j, 4.71524187+0.j])

The eigh function behaves similarly, except that the 1D array of eigenvalues is real.

6.2.3 Generalized Eigenvalue Problem
Sometimes, you might also come across generalized eigenvalue problems, which have the form

for known equal-sized square matrices and . We call a "generalized eigenvalue", and a "generalized eigenvector", for the
pair of matrices . The generalized eigenvalue problem reduces to the ordinary eigenvalue problem when is the identity
matrix.

The naive way to solve the generalized eigenvalue problem would be to compute the inverse of , and then solve the eigenvalue
problem for . However, it turns out that the generalized eigenvalue problem can be solved directly with only slight
modifications to the usual numerical eigensolver algorithm. In fact, the Scipy eigensolvers described in the previous section will
solve the generalized eigenvalue problem if you pass a 2D array as the second input (if that second input is omitted, the
eigensolvers solve the ordinary eigenvalue problem, as described above).

>>> A = array([[1,3,1],[1, 3, 4],[2, 4, 2]])
>>> lambd, Q = lin.eig(A)
>>> lambd
array([7.45031849+0.j , -0.72515925+0.52865751j, -0.72515925-0.52865751j])
>>> Q
array([[0.40501343+0.j , 0.73795979+0.j , 0.73795979-0.j],
 [0.65985810+0.j , -0.51208724+0.22130102j, -0.51208724-0.22130102j],
 [0.63289132+0.j , 0.26316357-0.27377508j, 0.26316357+0.27377508j]])

A = λ B ,x⃗ x⃗ (6.2.2)

A B λ x⃗

(A, B) B

B
−1

AB
−1

B

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34840?pdf
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.eigvalsh.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.eig.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.eigh.html

6.2.3 https://phys.libretexts.org/@go/page/34840

Here is an example program for solving a generalized eigenvalue problem:

from scipy import *
import scipy.linalg as lin

A = array([[1,3,1],[1, 3, 4],[2, 4, 2]])
B = array([[0,2,1], [0, 1, 1], [2, 0, 1]])

lambd, Q = lin.eig(A, B)

Verify the solution for first generalized eigenvector:
lhs = dot(A,Q[:,0]) # A . x
rhs = lambd[0] * dot(B, Q[:,0]) # lambda B . x

print(lhs)
print(rhs)

Running the above program prints:

[-0.16078694+0.j -0.07726949+0.j 0.42268561+0.j]
[-0.16078694+0.j -0.07726949+0.j 0.42268561+0.j]

The Hermitian eigensolvers, eigh and eigvalsh , can be used to solve the generalized eigenvalue problem only if both the
 and matrices are Hermitian.

This page titled 6.2: Numerical Eigensolvers is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong
via source content that was edited to the style and standards of the LibreTexts platform.

A B

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34840?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06%3A_Eigenvalue_Problems/6.02%3A_Numerical_Eigensolvers
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

1

CHAPTER OVERVIEW

7: Finite-Difference Equations
One of the most common tasks in scientific computing is finding solutions to differential equations, because most physical theories
are formulated using differential equations. In classical mechanics, for example, a mechanical system is described by a second-
order differential equation in time (Newton's second law); and in classical electromagnetism, the electromagnetic fields are
described by first-order partial differential equations in space and time (Maxwell's equations).

In order to describe continuous functions (and the differential equations that act on them), computational schemes usually adopt the
strategy of discretization. Consider a general mathematical function of one real variable, , where the domain of the input is ,
or some finite interval. In principle, in order to fully specify the function, we have to enumerate its values for all possible inputs ;
but since can vary continuously, the set is uncountably infinite, so such an enumeration is impossible on a digital computer with
finite discrete memory. What we can do, instead, is to enumerate the function's values at a finite and discrete set of points,

We define the values at these points as

If is appropriately chosen, the set of values ought to describe quite accurately. One reason for this is that physical
theories typically involve differential equations of low order (e.g., first, second, or third order, rather than, say, order).
Hence, if the discretization points are sufficiently finely-spaced, the value of the function, and all its higher-order derivatives, will
vary only slightly between discretization points.

As we shall see, discretization converts differential equations into discrete systems of equations, called finite-difference
equations. These can then be solved using the standard methods of numerical linear algebra.

7.1: Derivatives
7.2: Discretizing Partial Differential Equations
7.3: Higher Dimensions

This page titled 7: Finite-Difference Equations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D.
Chong via source content that was edited to the style and standards of the LibreTexts platform.

ψ(x) R

x

x

{ | n = 0, 1, 2, … , N −1}.xn (7.1)

≡ ψ().ψn xn (7.2)

xn { }ψn ψ(x)

1, 000, 000

https://libretexts.org/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07%3A_Finite-Difference_Equations/7.01%3A_Derivatives
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07%3A_Finite-Difference_Equations/7.02%3A_Discretizing_Partial_Differential_Equations
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07%3A_Finite-Difference_Equations/7.03%3A_Higher_Dimensions
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07%3A_Finite-Difference_Equations
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

7.1.1 https://phys.libretexts.org/@go/page/34842

7.1: Derivatives
Suppose we have discretized a function of one variable, obtaining a set of as described above. For simplicity, we
assume that the discretization points are evenly-spaced and arranged in increasing order (this is the simplest and most common
discretization scheme). The spacing between points is defined as

Let us discuss how the first and higher-order derivatives of can be represented under discretization.

7.1.1 First Derivative
The most straightforward representation of the first derivative is the forward-difference formula:

This is inspired by the usual definition of the derivative of a function, and approaches the true derivative as . However, it is
not a very good approximation. To see why, let's analyze the error in the formula, which is defined as the absolute value of the
difference between the formula and the exact value of the derivative:

We can expand in a Taylor series around :

Plugging this into the error formula, we find that the error decreases linearly with the spacing:

There is a better alternative, called the mid-point formula. This approximates the first derivative by sampling the points to the left
and right of the desired position:

To see why this is better, let us write down the Taylor series for :

Note that the two series have the same terms involving even powers of , whereas the terms involving odd powers of have
opposite signs. Hence, if we subtract the second series from the first, the result is

Because the terms are equal in the two series, they cancel out under subtraction, and only the and higher terms
survive. After re-arranging the above equation, we get

Hence, the error of the mid-point formula scales as , which is a good improvement over the error of the forward-
difference formula. What's especially nice is that the mid-point formula requires the same number of arithmetic operations to
calculate as the forward-difference formula, so this is a free lunch!

≡ ψ()ψn xn

h ≡ − .xn+1 xn (7.1.1)

ψ(x)

() ≈ψ′ xn

−ψn+1 ψn

h
(7.1.2)

h → 0

E = () −
∣

∣
∣ψ′ xn

−ψn+1 ψn

h

∣

∣
∣ (7.1.3)

ψn+1 xn

= +h () + () + () +O()ψn+1 ψn ψ′ xn

h2

2
ψ′′ xn

h3

6
ψ′′′ xn h4 (7.1.4)

E = () +O() ∼ O(h).
∣

∣
∣
h

2
ψ′′ xn h2 ∣

∣
∣ (7.1.5)

() ≈ .ψ′ xn

−ψn+1 ψn−1

2h
(7.1.6)

ψn±1

= + h () + () + () + () +O()ψn+1 ψn ψ′ xn

h2

2
ψ′′ xn

h3

6
ψ′′′ xn

h4

24
ψ′′′′ xn h5 (7.1.7)

= − h () + () − () + () + O()ψn−1 ψn ψ′ xn

h2

2
ψ′′ xn

h3

6
ψ′′′ xn

h4

24
ψ′′′′ xn h5 (7.1.8)

h h

− = 2h () +2 () +O()ψn+1 ψn−1 ψ′ xn

h3

6
ψ′′′ xn h5 (7.1.9)

O()h2 O()h3

() = +O().ψ′ xn

−ψn+1 ψn−1

2h
h2 (7.1.10)

O()h2 O(h)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34842?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07%3A_Finite-Difference_Equations/7.01%3A_Derivatives

7.1.2 https://phys.libretexts.org/@go/page/34842

It is possible to come up with better approximation formulas for the first derivative by including terms involving etc., with
the goal of canceling the or higher terms in the Taylor series. For most practical purposes, however, the mid-point rule is
sufficient.

7.1.2 Second Derivative
The discretization of the second derivative is easy to figure out too. We again write down the Taylor series for :

When we add the two series together, the terms involving odd powers of cancel, and the result is

A minor rearrangement of the equation then gives

This is called the three-point rule for the second derivative, because it involves the value of the function at the three points ,
, and .

This page titled 7.1: Derivatives is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source
content that was edited to the style and standards of the LibreTexts platform.

ψn±2

O()h3

ψn±1

= + h () + () + () + () + O()ψn+1 ψn ψ′ xn

h2

2
ψ′′ xn

h3

6
ψ′′′ xn

h4

24
ψ′′′′ xn h5 (7.1.11)

= − h () + () − () + () + O()ψn−1 ψn ψ′ xn

h2

2
ψ′′ xn

h3

6
ψ′′′ xn

h4

24
ψ′′′′ xn h5 (7.1.12)

h

+ = 2 + () + () +O().ψn+1 ψn−1 ψn h2ψ′′ xn

h4

12
ψ′′′′ xn h5 (7.1.13)

() ≈ +O().ψ′′ xn

−2 +ψn+1 ψn ψn−1

h2
h2 (7.1.14)

xn+1

xn xn−1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34842?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07%3A_Finite-Difference_Equations/7.01%3A_Derivatives
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

7.2.1 https://phys.libretexts.org/@go/page/34843

7.2: Discretizing Partial Differential Equations
With discretized derivatives, differential equations can be formulated as discrete systems of equations. We will discuss this using a
specific example: the discretization of the time-independent Schrödinger wave equation in 1D.

7.2.1 Deriving a Finite-Difference Equation
The 1D time-independent Schrödinger wave equation is the second-order ordinary differential equation

where is Planck's constant divided by , is the mass of the particle, is the potential, is the quantum wavefunction
of an energy eigenstate of the particle, and is the corresponding energy. The differential equation is usually treated as an
eigenproblem, in the sense that we are given and seek to find the possible values of the eigenfunction and the energy
eigenvalue . For convenience, we will adopt units where :

To discretize this differential equation, we simply evaluate it at :

where, for conciseness, we denote

We then replace the second derivative with a discrete approximation, specifically the three-point rule:

This result is called a finite-difference equation, and it would be valid for all if the number of discretization points is infinite.
However, if there is a finite number of discretization points, , then the finite-difference formula fails at the
boundary points, and , where it involves the value of the function at the "non-existent" points and . We'll
see how to handle this problem in the next section.

Boundaries aside, the finite-difference equation describes a matrix equation:

The second-derivative operator is represented by a tridiagonal matrix with in each diagonal element, and in the elements
directly above and below the diagonal. The potential operator is represented by a diagonal matrix, where the elements along the
diagonal are the values of the potential at each discretization point. In this way, the Schrödinger wave equation is reduced to a
discrete eigenvalue problem.

7.2.2 Boundary Conditions
We now have to figure out how to handle the boundaries. Let us suppose is defined over a finite interval, . As we
recall from the theory of differential equations, the solution to a differential equation is not wholly determined by the differential
equation itself, but also by the boundary conditions that are imposed. Thus, we have to specify how behaves at the end-points
of the interval. We will show how this is done for a couple of the most common boundary conditions; other choices of boundary
conditions can be handled using the same kind of reasoning.

− +V (x)ψ(x) = Eψ(x),
ℏ2

2m
ψd2

dx2
(7.2.1)

ℏ 2π m V (x) ψ(x)
E

V (x) ψ(x)
E ℏ = m = 1

− +V (x)ψ(x) = Eψ(x).
1
2

ψd2

dx2
(7.2.2)

x = xn

− () + = E ,
1
2
ψ′′ xn Vnψn ψn (7.2.3)

≡ V ().Vn xn (7.2.4)

()ψ′′ xn

− [−2 +]+ = E .
1

2h2
ψn+1 ψn ψn−1 Vnψn ψn (7.2.5)

n

{ , , … , }x0 x1 xN−1

n = 0 n = N −1 x−1 xN

− + = E .

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

1
2h2

⎡

⎣

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢

⋱

⋱

⋱

−2
1

1
−2

1

1

−2

⋱

⋱

⋱

⎤

⎦

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⋱
Vn−1

Vn

Vn+1

⋱

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⋮
ψn−1

ψn

ψn+1

⋮

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⋮
ψn−1

ψn

ψn+1

⋮

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

(7.2.6)

−2 1

ψ(x) a ≤ x ≤ b

ψ(x)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34843?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07%3A_Finite-Difference_Equations/7.02%3A_Discretizing_Partial_Differential_Equations

7.2.2 https://phys.libretexts.org/@go/page/34843

Dirichlet Boundary Conditions
Under Dirichlet boundary conditions, the wavefunction vanishes at the boundaries:

Physically, these boundary conditions apply if we let the potential blow up in the external regions, and , thus forcing
the wavefunction to be strictly confined to the interval .

We have not yet stated how the discretization points are distributed within the interval; we will make this decision
in tandem with the implementation of the boundary conditions. Consider the first discretization point, , wherever it is. The finite-
difference equation at this point is

This involves the wavefunction at , which lies just outside our set of discretization points. But if we choose the discretization
points so that , then under Dirichlet boundary conditions, so the above finite-difference formula reduces to

As for the other boundary, the finite-difference equation at involves . If we choose the discretization points so that
, then the finite-difference formula becomes

From this, we conclude that the discretization points ought to be equally spaced, with at a distance to the right of the left
boundary and a distance to the left of the right boundary . This is shown in the following figure:

Figure : Position of discretization points for Dirichlet boundary conditions at and .

Since there are discretization points, the interval should contain multiples of . Hence,

Having made the above choices, the matrix equation becomes

You can check for yourself that the first and last rows of this equation are the correct finite-difference equations at the boundary
points, corresponding to Dirichlet boundary conditions.

Neuman boundary conditions
Neumann boundary conditions are another common choice of boundary conditions. They state that the first derivatives vanish at
the boundaries:

An example of such a boundary condition is encountered in electrostatics, where the first derivative of the electric potential goes to
zero at the surface of a charged metallic surface.

ψ(a) = ψ(b) = 0. (7.2.7)

x > b x < a

a ≤ x ≤ b

{ , … , }x0 xN−1

x0

− [−2 +]+ = E .
1

2h2
ψ−1 ψ0 ψ1 V0ψ0 ψ0 (7.2.8)

x−1

= ax−1 = 0ψ−1

− [−2 +]+ = E .
1

2h2
ψ0 ψ1 V0ψ0 ψ0 (7.2.9)

xN−1 ψN

= bxN

− [−2]+ = E .
1

2h2
ψN−2 ψN−1 VN−1ψN−1 ψN−1 (7.2.10)

x0 h

a xN−1 h b

7.2.1 x = a x = b

N (N +1) h

h = ⇒ = a+h(n+1) = .
b−a

N +1
xn

a(N −n) +b(n+1)
N +1

(7.2.11)

− + = E .

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪

1
2h2

⎡

⎣

⎢⎢⎢⎢⎢⎢

−2

1

1

−2

⋱

⋱

⋱
1

1
−2

⎤

⎦

⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

V0

V1

⋱
VN−1

⎤

⎦

⎥⎥⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪

⎡

⎣

⎢⎢⎢⎢

ψ0

ψ1

⋮
ψN−1

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

ψ0

ψ1

⋮
ψN−1

⎤

⎦

⎥⎥⎥⎥
(7.2.12)

(a) = (b) = 0.ψ
′

ψ
′ (7.2.13)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34843?pdf

7.2.3 https://phys.libretexts.org/@go/page/34843

We follow the same strategy as before, figuring out the discretization points in tandem with the boundary conditions. Consider
again the finite-difference equation at the first discretization point:

To implement the condition that first derivative vanishes at the boundary, we invoke the mid-point rule. Suppose the boundary
point falls in between the points and . Then, according to the mid-point rule,

With this choice, therefore, we can make the replacement in the finite-difference equation, which then becomes

Similarly, to apply the Neumann boundary condition at , we let the boundary fall between and , so that the finite-
difference equation becomes

The resulting distribution of discretization points is shown in the following figure:

Figure : Position of discretization points for Neumann boundary conditions at and .

Unlike the Dirichlet case, the interval contains multiples of . Hence, we get a different formula for the positions of the
discretization points

The matrix equation is:

Due to the Neumann boundary conditions and the mid-point rule, the tridiagonal matrix has instead of on its corner entries.
Again, you can verify that the first and last rows of this matrix equation correspond to the correct finite-difference equations for the
boundary points.

This page titled 7.2: Discretizing Partial Differential Equations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform.

− [−2 +]+ = E .
1

2h2 ψ−1 ψ0 ψ1 V0ψ0 ψ0 (7.2.14)

x = a x−1 x0

≈ (a) = 0.
−ψ0 ψ−1

h
ψ

′ (7.2.15)

=ψ−1 ψ0

− [− +]+ = E .
1

2h2
ψ0 ψ1 V0ψ0 ψ0 (7.2.16)

x = b xN−1 xN

− [−]+ = E .
1

2h2
ψN−2 ψN−1 VN−1ψN−1 ψN−1 (7.2.17)

7.2.2 x = a x = b

N h

h = ⇒ = a+h(n+) = .
b−a

N
xn

1
2

a(N −n−) +b(n+)1
2

1
2

N
(7.2.18)

− + = E .

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

1
2h2

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

−1

1

1

−2

⋱

⋱

⋱

⋱

⋱

−2
1

1
−1

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

V0

V1

⋱
VN−1

⎤

⎦

⎥⎥⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎡

⎣

⎢
⎢⎢⎢

ψ0

ψ1

⋮
ψN−1

⎤

⎦

⎥
⎥⎥⎥

⎡

⎣

⎢
⎢⎢⎢

ψ0

ψ1

⋮
ψN−1

⎤

⎦

⎥
⎥⎥⎥

(7.2.19)

−1 −2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34843?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07%3A_Finite-Difference_Equations/7.02%3A_Discretizing_Partial_Differential_Equations
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

7.3.1 https://phys.libretexts.org/@go/page/34844

7.3: Higher Dimensions
We can work out the finite-difference equations for higher dimensions in a similar manner. In two dimensions, for example, the
wavefunction is described with two indices:

The discretization of the derivatives is carried out in the same way, using the mid-point rule for first partial derivatives in each
direction, and the three-point rule for the second partial derivative in each direction. Let us suppose that the discretization spacing
is equal in both directions:

Then, for the second derivative, the Laplacian operator

can be approximated by a five-point rule, which involves the value of the function at and its four nearest neighbors:

For instance, the finite-difference equations for the 2D Schrödinger wave equation is

7.3.1 Matrix Reshaping
Higher-dimensional differential equations introduce one annoying complication: in order to convert between the finite-difference
equation and the matrix equation, the indices have to be re-organized. For instance, the matrix form of the 2D Schrödinger wave
equation should have the form

where the wavefunctions are organized into a 1D array labeled by a "point index" . Each point index corresponds to a pair of
"grid indices", , representing spatial coordinates on a 2D grid. We have to be careful not to mix up the two types of indices.

We will adopt the following conversion scheme between point indices and grid indices:

One good thing about this conversion scheme is that Scipy provides a reshape function which can convert a 2D array with
grid indices into a 1D array with the point index :

>>> a = array([[0,1,2],[3,4,5],[6,7,8]])
>>> a
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])
>>> b = reshape(a, (9)) # Reshape a into a 1D array of size 9
>>> b
array([0, 1, 2, 3, 4, 5, 6, 7, 8])

The reshape function can also convert a 1D back into the 2D array, in the right order:

>>> c = reshape(b, (3,3)) # Reshape b into a 2D array of size 3x3
>>> c

ψ(x, y)

≡ ψ(,).ψmn xm yn (7.3.1)

h = − = − .xm+1 xm yn+1 yn (7.3.2)

ψ(x, y) ≡ +∇2 ψ∂2

∂x2

ψ∂2

∂y2
(7.3.3)

(m, n)

ψ(,) ≈ +O().∇2 xm yn

+ −4 + +ψm+1,n ψm,n+1 ψmn ψm−1,n ψm,n−1

h2
h2 (7.3.4)

− [+ −4 + +]+ = E .
1

2h2
ψm+1,n ψm,n+1 ψmn ψm−1,n ψm,n−1 Vmnψmn ψmn (7.3.5)

= E ,∑
ν

Hμνψν ψμ (7.3.6)

μ

(m, n)

μ(m, n) = mN +n, where m ∈ {0, … , M −1}, n ∈ {0, … , N −1}. (7.3.7)

(m, n) μ

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34844?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07%3A_Finite-Difference_Equations/7.03%3A_Higher_Dimensions
http://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html

7.3.2 https://phys.libretexts.org/@go/page/34844

array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])

Under point indices, the discretized derivatives take the following forms:

The role of boundary conditions is left as an exercise. There are now two sets of boundaries, at and
. By examining the finite-difference equations along each boundary, we can (i) assign the right discretization

coordinates and (ii) modify the finite-difference matrix elements to fit the boundary conditions. The details are slightly tedious to
work out, but the logic is essentially the same as in the previously-discussed 1D cases.

This page titled 7.3: Higher Dimensions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

() ≈ (−)
∂ψ

∂x
r ⃗ μ

1

2h
ψμ+N ψμ−N (7.3.8)

() ≈ (−)
∂ψ

∂y
r ⃗ μ

1

2h
ψμ+1 ψμ−1 (7.3.9)

ψ() ≈ (+ −4 + +) .∇2 r ⃗ μ
1

h2
ψμ+N ψμ+1 ψμ ψμ−N ψμ−1 (7.3.10)

m ∈ {0, M −1}

n ∈ {0, N −1}

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34844?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07%3A_Finite-Difference_Equations/7.03%3A_Higher_Dimensions
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

1

CHAPTER OVERVIEW

8: Sparse Matrices
A sparse matrix is a matrix in which most of the entries are zero. Such matrices are very commonly encountered in finite-
difference equations. For example, when we discretized the 1D Schrödinger wave equation with Dirichlet boundary conditions, we
saw that the Hamiltonian matrix had the tridiagonal form

Hence, if there are diagonalization points, the Hamiltonian matrix has a total of entries, but only of these entries are
non-zero.

8.1: Sparse Matrix Algebra
8.2: Sparse Matrix Formats
8.3: Using Sparse Matrices
8.4: Example- Particle-in-a-Box Problem

This page titled 8: Sparse Matrices is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source
content that was edited to the style and standards of the LibreTexts platform.

H = − + .
1

2h2

⎡

⎣

⎢⎢⎢⎢⎢⎢

−2

1

1

−2

⋱

⋱

⋱

1

1

−2

⎤

⎦

⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

V0

V1

⋱

VN−1

⎤

⎦

⎥⎥⎥⎥⎥
(8.1)

N N 2 O(N)

https://libretexts.org/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.01%3A_Sparse_Matrix_Algebra
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.02%3A_Sparse_Matrix_Formats
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.03%3A_Using_Sparse_Matrices
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.04%3A_Example-_Particle-in-a-Box_Problem
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

8.1.1 https://phys.libretexts.org/@go/page/34846

8.1: Sparse Matrix Algebra
When matrices are sparse, ordinary approaches to matrix arithmetic are wasteful, since a lot of time is spent adding/subtracting or
multiplying by zero. For instance, consider the tridiagonal matrix discussed above. To perform the matrix-vector product in the
usual way, for each row we must compute

The sum involves arithmetic operations, so the overall runtime for all rows is . Clearly, however, most of this time
is spent multiplying zero elements of with elements of , which doesn't contribute to the final result. If we could omit these
terms from each sum, the overall runtime for the product would be only .

However, such savings cannot be achieved with the array data structures we have been using so far. To calculate the matrix-vector
product efficiently, the processor needs to know which elements on each row of are non-zero, so that it can skip the rest.
However, arrays do not provide a fast way to identify which elements are non-zero; the only way to find out is to search the storage
blocks one by one, which takes time on each row. That would wipe out the runtime savings.

Scipy provides special data structures for storing sparse matrices. Unlike ordinary arrays, these data structures are designed so that
zero elements are omitted, which not only saves memory, but also allows certain matrix operations to be greatly sped up. Unlike
arrays, which can represent not just matrices (2D arrays) but also vectors (1D arrays) and higher-rank tensors (arrays with
dimension higher than 2), these sparse data structures are specifically restricted to matrices.

But here's an important catch: there is no single sparse matrix data structure that is ideal for every scenario. Instead, there are
multiple sparse matrix formats, and each format is only effective for a certain subset of matrix operations, or for certain kinds of
sparse matrices. Therefore, we need to know how the different sparse matrix formats are implemented, as well as their benefits and
limitations. Of the many sparse matrix formats offered by Scipy, we will discuss four: List of Lists (LIL), Diagonal Storage (DIA),
Compressed Sparse Row (CSR), and Compressed Sparse Column (CSC).

This page titled 8.1: Sparse Matrix Algebra is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong
via source content that was edited to the style and standards of the LibreTexts platform.

Hψ ⃗

i

(H)ψ ⃗
i

=∑
j=0

N−1

Hijψj

= ⋯ +(0 ⋅) +(⋅) +(⋅) +(⋅) +(0 ⋅) +⋯ψi−2 Hi,i−1 ψi−1 Hii ψi Hi,i+1 ψi+1 ψi+2

(8.1.1)

(8.1.2)

O(N) N O()N 2

H ψ ⃗

O(N)

H

O(N)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34846?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.01%3A_Sparse_Matrix_Algebra
http://docs.scipy.org/doc/scipy-0.14.0/reference/sparse.html
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.01%3A_Sparse_Matrix_Algebra
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

8.2.1 https://phys.libretexts.org/@go/page/34847

8.2: Sparse Matrix Formats

8.2.1 List of Lists (LIL)
The List of Lists sparse matrix format (which is, for some unknown reason, abbreviated as LIL rather than LOL) is one of the
simplest sparse matrix formats. It is shown schematically in the figure below. Each non-zero matrix row is represented by an
element in a kind of list structure called a "linked list". Each element in the linked list records the row number, and the column data
for the matrix entries in that row. The column data consists of a list, where each list element corresponds to a non-zero matrix
element, and stores information about (i) the column number, and (ii) the value of the matrix element.

Figure : A sparse matrix and its representation in List-of-Lists (LIL) format.

Evidently, this format is pretty memory-efficient. The list of rows only needs to be as long as the number of non-zero matrix rows;
the rest are omitted. Likewise, each list of column data only needs to be as long as the number of non-zero elements on that row.
The total amount of memory required is proportional to the number of non-zero elements, regardless of the size of the matrix itself.

Compared to the other sparse matrix formats which we'll discuss, accessing an individual matrix element in LIL format is relatively
slow. This is because looking up a given matrix index requires stepping through the row list to find an element with row
index ; and if one is found, stepping through the column row to find index . Thus, for example, looking up an element in a
diagonal matrix in the LIL format takes time! As we'll see, the CSR and CSC formats are much more efficient at
element access. For the same reason, matrix arithmetic in the LIL format is very inefficient.

One advantage of the LIL format, however, is that it is relatively easy to alter the "sparsity structure" of the matrix. To add a new
non-zero element, one simply has to step through the row list, and either (i) insert a new element into the linked list if the row was
not previously on the list (this insertion takes time), or (ii) modify the column list (which is usually very short if the matrix is
very sparse).

For this reason, the LIL format is preferred if you need to construct a sparse matrix where the non-zero elements are not distributed
in any useful pattern. One way is to create an empty matrix, then fill in the elements one by one, as shown in the following
example. The LIL matrix is created by the lil_matrix function, which is provided by the scipy.sparse module.

Here is an example program which constructs a LIL matrix, and prints it:

from scipy import *
import scipy.sparse as sp

A = sp.lil_matrix((4,5)) # Create empty 4x5 LIL matrix
A[0,1] = 1.0
A[1,1] = 2.0
A[1,2] = -1.0
A[3,0] = 6.6
A[3,4] = 1.4

Verify the matrix contents by printing it
print(A)

When we run the above program, it displays the non-zero elements of the sparse matrix:

8.2.1

(i, j)

i j

N ×N O(N)

O(1)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34847?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.02%3A_Sparse_Matrix_Formats
http://www1.spms.ntu.edu.sg/~ydchong/teaching/PH4505-07.htm#Compressed_Sparse_Row_.28CSR.29
http://www1.spms.ntu.edu.sg/~ydchong/teaching/PH4505-07.htm#Compressed_Sparse_Column_.28CSC.29
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.lil_matrix.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/sparse.html

8.2.2 https://phys.libretexts.org/@go/page/34847

 (0, 1) 1.0
 (1, 1) 2.0
 (1, 2) -1.0
 (3, 0) 6.6
 (3, 4) 1.4

You can also convert the sparse matrix into a conventional 2D array, using the toarray method. Suppose we replace the line
print(A) in the above program with

B = A.toarray()
print(B)

The result is:

[[0. 1. 0. 0. 0.]
 [0. 2. -1. 0. 0.]
 [0. 0. 0. 0. 0.]
 [6.6 0. 0. 0. 1.4]]

Note: be careful when calling toarray in actual code. If the matrix is huge, the 2D array will eat up unreasonable amounts of
memory. It is not uncommon to work with sparse matrices with sizes on the order of , which can take up less an 1MB of
memory in a sparse format, but around 80 GB of memory in array format!

8.2.2 Diagonal Storage (DIA)
The Diagonal Storage (DIA) format stores the contents of a sparse matrix along its diagonals. It makes use of a 2D array, which we
denote by data , and a 1D integer array, which we denote by offsets . A typical example is shown in the following figure:

Figure : A sparse matrix and its representation in Diagonal Storage (DIA) format.

Each row of the data array stores one of the diagonals of the matrix, and offsets[i] records which diagonal that row of
the data corresponds to, with "offset 0" corresponding to the main diagonal. For instance, in the above example, row of
data contains the entries [6.6,0,0,0,0]), and offsets[0] contains the value , indicating that the entry

occurs along the subdiagonal, in column . (The extra elements in that row of data lie outside the bounds of the matrix, and
are ignored.) Diagonals containing only zero are omitted.

For sparse matrices with very few non-zero diagonals, such as diagonal or tridiagonal matrices, the DIA format allows for very
quick arithmetic operations. Its main limitation is that looking up each matrix element requires performing a blind search through
the offsets array. That's fine if there are very few non-zero diagonals, as offsets will be small. But if the number of
non-zero diagonals becomes large, performance becomes very poor. In the worst-case scenario of an anti-diagonal matrix, element
lookup takes time!

You can create a sparse matrix in the DIA format, using the dia_matrix function, which is provided by the
scipy.sparse module. Here is an example program:

from scipy import *
import scipy.sparse as sp

8.2.2

0

−3 6.6

−3 0

O(N)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34847?pdf
http://en.wikipedia.org/wiki/Anti-diagonal_matrix
http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.html
http://docs.scipy.org/doc/scipy/reference/sparse.html

8.2.3 https://phys.libretexts.org/@go/page/34847

N = 6 # Matrix size

diag0 = -2 * ones(N)
diag1 = ones(N)

A = sp.dia_matrix(([diag1, diag0, diag1], [-1,0,1]), shape=(N,N))

Verify the matrix contents by printing it
print(A.toarray())

Here, the first input to dia_matrix is a tuple of the form (data, offsets) , where data and offsets are
arrays of the sort described above. This returns a sparse matrix in the DIA format, with the specified contents (the elements in
data which lie outside the bounds of the matrix are ignored). In this example, the matrix is tridiagonal with -2 along the main

diagonal and 1 along the +1 and -1 diagonals. Running the above program prints the following:

[[-2. 1. 0. 0. 0. 0.]
 [1. -2. 1. 0. 0. 0.]
 [0. 1. -2. 1. 0. 0.]
 [0. 0. 1. -2. 1. 0.]
 [0. 0. 0. 1. -2. 1.]
 [0. 0. 0. 0. 1. -2.]]

Another way to create a DIA matrix is to first create a matrix in another format (e.g. a conventional 2D array), and provide that as
the input to dia_matrix . This returns a sparse matrix with the same contents, in DIA format.

8.2.3 Compressed Sparse Row (CSR)
The Compressed Sparse Row (CSR) format represents a sparse matrix using three arrays, which we denote by data ,
indices , and indptr . An example is shown in the following figure:

Figure : A sparse matrix and its representation in Compressed Sparse Row (CSR) format.

The array denoted data stores the values of the non-zero elements of the matrix, in sequential order from left to right along
each row, then from the top row to the bottom. The array denoted indices records the column index for each of these
elements. In the above example, data[3] stores a value of , and indices[3] has a value of , indicating that a matrix
element with value occurs in column . These two arrays have the same length, equal to the number of non-zero elements in the
sparse matrix.

The array denoted indptr (which stands for "index pointer") provides an association between the row indices and the matrix
elements, but in an indirect manner. Its length is equal to the number of matrix rows (including zero rows). For each row , if the
row is non-zero, indptr[i] records the index in the data and indices arrays corresponding to the first non-zero
element on row . (For a zero row, indptr records the index of the next non-zero element occurring in the matrix.)

For example, consider looking up index in the above figure. The row index is 1, so we examine indptr[1] (whose
value is) and indptr[2] (whose value is). This means that the non-zero elements for matrix row correspond to indices

 of the data and indices arrays. We search indices[1] and indices[2] , looking for a column index
of . This is found in indices[2] , so we look in data[2] for the value of the matrix element, which is .

It is clear that looking up an individual matrix element is very efficient. Unlike the LIL format, where we need to step through a
linked list, in the CSR format the indptr array lets us to jump straight to the data for the relevant row. For the same reason, the

8.2.3

6.6 0

6.6 0

i

i

(1, 2)

1 3 1

1 ≤ n < 3

2 −1.0

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34847?pdf

8.2.4 https://phys.libretexts.org/@go/page/34847

CSR format is efficient for row slicing operations (e.g., A[4,:]), and for matrix-vector products like (which involves
taking the product of each matrix row with the vector).

The CSR format does have several downsides. Column slicing (e.g. A[:,4]) is inefficient, since it requires searching through
all elements of the indices array for the relevant column index. Changes to the sparsity structure (e.g., inserting new
elements) are also very inefficient, since all three arrays need to be re-arranged.

To create a sparse matrix in the CSR format, we use the csr_matrix function, which is provided by the scipy.sparse
module. Here is an example program:

from scipy import *
import scipy.sparse as sp

data = [1.0, 2.0, -1.0, 6.6, 1.4]
rows = [0, 1, 1, 3, 3]
cols = [1, 1, 2, 0, 4]

A = sp.csr_matrix((data, [rows, cols]), shape=(4,5))
print(A)

Here, the first input to csr_matrix is a tuple of the form (data, idx) , where data is a 1D array specifying the non-
zero matrix elements, idx[0,:] specifies the row indices, and idx[1,:] specifies the column indices. Running the
program produces the expected results:

 (0, 1) 1.0
 (1, 1) 2.0
 (1, 2) -1.0
 (3, 0) 6.6
 (3, 4) 1.4

The csr_matrix function figures out and generates the three CSR arrays automatically; you don't need to work them out
yourself. But if you like, you can inspect the contents of the CSR arrays directly:

>>> A.data
array([1. , 2. , -1. , 6.6, 1.4])
>>> A.indices
array([1, 1, 2, 0, 4], dtype=int32)
>>> A.indptr
array([0, 1, 3, 3, 5], dtype=int32)

(There is an extra trailing element of in the indptr array. For simplicity, we didn't mention this in the above discussion, but
you should be able to figure out why it's there.)

Another way to create a CSR matrix is to first create a matrix in another format (e.g. a conventional 2D array, or a sparse matrix in
LIL format), and provide that as the input to csr_matrix . This returns the specified matrix in CSR format. For example:

>>> A = sp.lil_matrix((6,6))
>>> A[0,1] = 4.0
>>> A[2,0] = 5.0
>>> B = sp.csr_matrix(A)

Ax⃗

x⃗

5

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34847?pdf
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.csr_matrix.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/sparse.html

8.2.5 https://phys.libretexts.org/@go/page/34847

8.2.4 Compressed Sparse Column (CSC)
The Compressed Sparse Column (CSC) format is very similar to the CSR format, except that the role of rows and columns is
swapped. The data array stores non-zero matrix elements in sequential order from top to bottom along each column, then from
the left-most column to the right-most. The indices array stores row indices, and each element of the indptr array
corresponds to one column of the matrix. An example is shown below:

Figure : A sparse matrix and its representation in Compressed Sparse Column (CSC) format.

The CSC format is efficient at matrix lookup, column slicing operations (e.g., A[:,4]), and vector-matrix products like
(which involves taking the product of the vector with each matrix column). However, it is inefficient for row slicing (e.g.
A[4,:]), and for changes to the sparsity structure.

To create a sparse matrix in the CSC format, we use the csc_matrix function. This is analogous to the csr_matrix
function for CSR matrices. For example,

>>> from scipy import *
>>> import scipy.sparse as sp
>>> data = [1.0, 2.0, -1.0, 6.6, 1.4]
>>> rows = [0, 1, 1, 3, 3]
>>> cols = [1, 1, 2, 0, 4]
>>>
>>> A = sp.csc_matrix((data, [rows, cols]), shape=(4,5))
>>> A
<4x5 sparse matrix of type '<class 'numpy.float64'>'
 with 5 stored elements in Compressed Sparse Column format>

This page titled 8.2: Sparse Matrix Formats is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong
via source content that was edited to the style and standards of the LibreTexts platform.

8.2.4

Ax⃗ T

x⃗

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34847?pdf
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.csc_matrix.html
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.02%3A_Sparse_Matrix_Formats
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

8.3.1 https://phys.libretexts.org/@go/page/34848

8.3: Using Sparse Matrices
Sparse matrix formats should be used, instead of conventional 2D arrays, when dealing sparse matrices of size or larger.
(For matrices of size or less, the differences in performance and memory usage are usually negligible.)

Usually, it is good to choose either the CSR or CSC format, depending on what mathematical operations you intend to perform.
You can construct the matrix either (i) directly, by means of a (data, idx) tuple as described above, or (ii) by creating an
LIL matrix, filling in the desired elements, and then converting it to CSR or CSC format.

If you are dealing with a sparse matrix that is "strongly diagonal" (i.e., the non-zero elements occupy a very small number of
diagonals, such as a tridiagonal matrix), then you can consider using the DIA format. The main advantage of the DIA format is that
it is very easy to construct, by supplying a (data, offsets) input to the dia_matrix function, as described above.
However, the format usually does not perform significantly better than CSR/CSC; and if the matrix is not strongly diagonal, its
performance is much worse.

Another common way to construct a sparse matrix is to use the scipy.sparse.diags or scipy.sparse.spdiags
functions. These functions let you specify the contents of the matrix in terms of its diagonals, as well as which sparse format to use.
The two functions have slightly different calling conventions; see the documentation for details.

8.3.1 The dot method
Each sparse matrix has a dot method, which calculates the product of the matrix with an input (in the form of a 1D or 2D array,
or sparse matrix), and returns the result. For sparse matrix products, this method should be used instead of the stand-alone function,
similarly named dot , which is used for non-sparse matrix products. The sparse matrix method makes use of matrix sparsity to
speed up the calculation of the product. Typically, the CSR format is faster at this than the other sparse formats.

For example, suppose we want to calculate the product , where

This could be accomplished with the following program:

from scipy import *
import scipy.sparse as sp

data = [1.0, 2.0, -1.0, 6.6, 1.4]
rows = [0, 1, 1, 3, 3]
cols = [1, 1, 2, 0, 4]
A = sp.csr_matrix((data, [rows, cols]), shape=(4,5))
x = array([1.,1.,2.,3.,5.])

y = A.dot(x)

print(y)

Running this program gives the expected result:

[1. 0. 0. 13.6]

×103 103

100 ×100

Ax⃗

A = , = .

⎡

⎣

⎢⎢
⎢

0

0

0

6.6

1.0

2.0

0

0

0

−1.0

0

0

0

0

0

0

0

0

0

1.4

⎤

⎦

⎥⎥
⎥

x⃗

⎡

⎣

⎢⎢⎢⎢⎢⎢

1

1

2

3

5

⎤

⎦

⎥⎥⎥⎥⎥⎥
(8.3.1)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34848?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.03%3A_Using_Sparse_Matrices
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.diags.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.spdiags.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html

8.3.2 https://phys.libretexts.org/@go/page/34848

8.3.2 spsolve

The spsolve function, provided in the scipy.sparse.linalg module, is a solver for a sparse linear system of
equations. It takes two inputs, and , where should be a sparse matrix; can be either sparse, or an ordinary 1D or 2D array.
It returns the which solves the linear equations . The return value can be either a conventional array or a sparse matrix,
depending on whether is sparse.

For sparse problems, you should always use spsolve instead of scipy.linalg.solve (the usual solver for non-sparse
problems). Here is an example program showing spsolve in action:

from scipy import *
import scipy.sparse as sp
import scipy.sparse.linalg as spl

Make a sparse matrix A and a vector x
data = [1.0, 1.0, 1.0, 1.0, 1.0]
rows = [0, 1, 1, 3, 2]
cols = [1, 1, 2, 0, 3]
A = sp.csr_matrix((data, [rows, cols]), shape=(4,4))
b = array([1.0, 5.0, 3.0, 4.0])

Solve Ax = b
x = spl.spsolve(A, b)
print(" x = ", x)

Verify the solution:
print("Ax = ", A.dot(x))
print(" b = ", b)

Running the program gives:

 x = [4. 1. 4. 3.]
Ax = [1. 5. 3. 4.]
 b = [1. 5. 3. 4.]

8.3.3 eigs

For eigenvalue problems involving sparse matrices, one typically does not attempt to find all the eigenvalues (and eigenvectors).
Sparse matrices are often so huge that solving the full eigenvalue problem would take an impractically long time, even if we
receive a speedup from sparse matrix arithmetic. Luckily, in most situations we only need to find a subset of the eigenvalues (and
eigenvectors). For example, after discretizing the 1D Schrödinger wave equation, we are normally only interested in the several
lowest energy eigenvalues.

The eigs function, provided in the scipy.sparse.linalg module, is an eigensolver for sparse matrices. Unlike the
eigensolvers we have previously discussed, such as scipy.linalg.eig , the eigs function only returns a specified subset
of the eigenvalues and eigenvectors.

The eigsh function is similar to eigs , except that it is specialized for Hermitian matrices. Both functions make use of a
low-level numerical eigensolver library named ARPACK, which is also used by GNU Octave, Matlab, and many other numerical
tools. We will not discuss how the algorithm works.

The first input to eigs or eigsh is the matrix for which we want to find the eigenvalues. Several other optional inputs are
also accepted. Here are the most commonly-used ones:

A b A b

x x

b

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34848?pdf
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.linalg.spsolve.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/sparse.linalg.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.linalg.eigs.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/sparse.linalg.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.eig.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.linalg.eigsh.html
http://en.wikipedia.org/wiki/ARPACK

8.3.3 https://phys.libretexts.org/@go/page/34848

The optional parameter named k specifies the number of eigenvalues to find (the default is 6).
The optional parameter named M , if supplied, specifies a right-hand matrix for a generalized eigenvalue problem.
The optional parameter named sigma , if supplied, should be a number; it means to find the k eigenvalues which are
closest to that number.
The optional parameter named which specifies which eigenvalues to find, using a criteria different from sigma : 'LM'
means to find the eigenvalues with the largest magnitudes, 'SM' means to find those with the smallest magnitudes, etc. You
cannot simultaneously specify both sigma and which . When finding small eigenvalues, it is usually better to use
sigma instead of which (see the discussion in the next section).

The optional parameter named return_eigenvectors , if True (the default), means to return both eigenvalues and
eigenvectors. If False , the function returns the eigenvalues only.

For the full list of inputs, see the full function documentation for eigs and eigsh .

By default, eigs and eigsh return two values: a 1D array (which is complex for eigs and real for eigsh) containing
the found eigenvalues, and a 2D array where each column is one of the corresponding eigenvectors. If the optional parameter
named return_eigenvectors is set to False , then only the 1D array of eigenvalues is returned.

In the next section, we will see an example of using eigsh .

This page titled 8.3: Using Sparse Matrices is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong
via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34848?pdf
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.linalg.eigs.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.linalg.eigsh.html
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.03%3A_Using_Sparse_Matrices
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

8.4.1 https://phys.libretexts.org/@go/page/34849

8.4: Example- Particle-in-a-Box Problem
To demonstrate the use of sparse matrices for solving finite-difference equations, we consider the 1D particle-in-a-box problem.
This consists of the 1D time-independent Schrödinger wave equation,

together with the Dirichlet boundary conditions

The analytic solution is well known to us; up to a normalization factor, the eigenstates and energy eigenvalues are

We will write a program that seeks a numerical solution. Using the three-point rule to discretize the second derivative, the finite-
difference matrix equations become

where

The following program constructs the finite-difference matrix equation, and displays the first three solutions:

from scipy import *
import scipy.sparse as sp
import scipy.sparse.linalg as spl
import matplotlib.pyplot as plt

Solve the 1D particle-in-a-box problem for box length L,
using N discretization points. The parameter nev is the
number of eigenvalues/eigenvectors to find. Return three
arrays E, psi, and x. E stores the energy eigenvalues;
psi stores the (non-normalized) eigenstates; and x stores
the discretization points.
def particle_in_a_box(L, N, nev=3):
 dx = L/(N+1.0)
 x = linspace(dx, L-dx, N)
 I = ones(N)
 ## Set up the finite-difference matrix.
 H = sp.dia_matrix(([I, -2*I, I], [-1,0,1]), shape=(N,N))
 H *= -0.5/(dx*dx)
 ## Find the lowest eigenvalues and eigenvectors.
 E, psi = spl.eigsh(H, k=nev, sigma=-1.0)
 return E, psi, x

− = Eψ(x), 0 ≤ x ≤ L,
1
2

ψd2

dx2
(8.4.1)

ψ(0) = ψ(L) = 0. (8.4.2)

(x) = sin(mπx/L), = , m = 1, 2, 3, …ψm Em

1
2
()
mπ

L

2
(8.4.3)

− = E ,
1

2h2

⎡

⎣

⎢⎢⎢⎢⎢⎢

−2

1

1

−2

⋱

⋱

⋱
1

1
−2

⎤

⎦

⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢
⎢⎢⎢

ψ0

ψ1

⋮
ψN−1

⎤

⎦

⎥
⎥⎥⎥

⎡

⎣

⎢
⎢⎢⎢

ψ0

ψ1

⋮
ψN−1

⎤

⎦

⎥
⎥⎥⎥

(8.4.4)

h = , = ψ(x = h(n+1))
L

N +1
ψn (8.4.5)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34849?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.04%3A_Example-_Particle-in-a-Box_Problem

8.4.2 https://phys.libretexts.org/@go/page/34849

def particle_in_a_box_demo():
 E, psi, x = particle_in_a_box(1.0, 1000)

 ## Print the energy eigenvalues.
 print(E)

 ## Plot |psi(x)|^2 vs x for each solution found.
 fig = plt.figure()
 axs = plt.subplot(1,1,1)
 for n in range(len(E)):
 fig_label = "State #" + str(n)
 plt.plot(x, abs(psi[:,n])**2, label=fig_label, linewidth=2)
 plt.xlabel('x')
 plt.ylabel('|psi(x)|^2')

 ## Shrink the axis by 20%, so the legend can fit.
 box = axs.get_position()
 axs.set_position([box.x0, box.y0, box.width * 0.8, box.height])
 ## Print the legend.
 plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
 plt.show()

particle_in_a_box_demo()

The Hamiltonian matrix, which is tridiagonal, is constructed in the DIA sparse matrix format. The eigenvalues and eigenvectors are
found with eigsh , which can be used because the Hamiltonian matrix is known to be Hermitian. Notice that we call eigsh
using the sigma parameter, telling the eigensolver to find the eigenvalues closest in value to :

 E, psi = spl.eigsh(H, k=nev, sigma=-1.0)

This will find the lowest energy eigenvalues because, in this case, all energy eigenvalues are positive. (We use instead of 0.0,
because the algorithm does not work well when sigma is exactly zero.) If there is a negative potential present, we would have
to find a different estimate for the lower bound of the energy eigenvalues, and pass that to sigma .

Alternatively, we could have called eigsh with an input which='SA' . This would tell the eigensolver to find the
eigenvalue with the smallest value. We avoid doing this because the ARPACK eigensolver algorithm is relatively inefficient at
finding small eigenvalues in which mode (and it can sometimes even fail to converge, if k is too small). Typically, if you are
able to deduce a lower bound for the desired eigenvalues, it is preferable to use sigma .

Running the program prints the lowest energy eigenvalues:

[4.93479815 19.73914399 44.41289171]

This agrees well with the analytical results , , and . It
also produces the plot shown below, which is likewise as expected.

−1.0

−1.0

= /2 = 4.934802E1 π2 = 2 = 19.739208E2 π2 = 9 /2 = 44.413219E3 π2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34849?pdf
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.linalg.eigsh.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.linalg.eigsh.html

8.4.3 https://phys.libretexts.org/@go/page/34849

Figure : Plots of versus for the particle-in-a-box problem.

This page titled 8.4: Example- Particle-in-a-Box Problem is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform.

8.4.1 |ψ(x)|2 x

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34849?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.04%3A_Example-_Particle-in-a-Box_Problem
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

1

CHAPTER OVERVIEW

9: Numerical Integration
In this article, we will look at some basic techniques for numerically computing definite integrals. The most common techniques
involve discretizing the integrals, which is conceptually similar to the way we discretized derivatives when studying finite-
difference equations.

9.1: Mid-Point Rule
9.2: Trapezium Rule
9.3: Simpson's Rule
9.4: Gaussian Quadratures
9.5: Monte Carlo Integration

This page titled 9: Numerical Integration is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.01%3A_Mid-Point_Rule
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.02%3A_Trapezium_Rule
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.03%3A_Simpson's_Rule
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.04%3A_Gaussian_Quadratures
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.05%3A_Monte_Carlo_Integration
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

9.1.1 https://phys.libretexts.org/@go/page/34851

9.1: Mid-Point Rule
The simplest numerical integration method is called the mid-point rule. Consider a definite 1D integral

Let us divide the range into a set of segments of equal width, as shown in Fig. for the case of . The mid-
points of these segments are a set of discrete points , where

We then estimate the integral as

Figure : Computing a definite integral using the mid-point rule.

The principle behind this formula is very simple to understand. As shown in Fig. , represents the area enclosed by a
sequence of rectangles, where the height of each rectangle is equal to the value of at its mid-point. As , the spacing
between rectangles goes to zero; hence, the total area enclosed by the rectangles becomes equal to the area under the curve of .

9.1.1 Numerical Error for the Mid-Point Rule
Let us estimate the numerical error resulting from this approximation. To do this, consider one of the individual segments, which is
centered at with length . Let us define the integral over this segment as

Now, consider the Taylor expansion of in the vicinity of :

If we integrate both sides of this equation over the segment, the result is

On the right hand side, every other term involves an integrand which is odd around . Such terms integrate to zero. From the
remaining terms, we find the following series for the integral of over the segment:

By comparison, the estimation provided by the mid-point rule is simply

I = f(x)dx.∫
b

a

(9.1.1)

a ≤ x ≤ b N 9.1.1 N = 5

N { , … }x0 xN−1

= a+(n+) Δx, Δx ≡ .xn
1

2

b−a

N
(9.1.2)

= Δx f() I.I
(mp) ∑

n=0

N−1

xn ⟶
N→∞

(9.1.3)

9.1.1

9.1.1 IN
f(x) N → ∞

f(x)

xn Δx = (b−a)/N

Δ ≡ f(x)dx.In ∫
+Δx/2xn

−Δx/2xn

(9.1.4)

f(x) xn

f(x) = f() + ()(x−) + (x− + (x− +⋯xn f ′ xn xn
()f ′′ xn

2
xn)2 ()f ′′′ xn

6
xn)3 (9.1.5)

Δ = f()ΔxIn xn + () (x−)dxf ′ xn ∫
+Δx/2xn

−Δx/2xn

xn

+ (x− dx
()f ′′ xn

2
∫

+Δx/2xn

−Δx/2xn

xn)2

+ ⋯

(9.1.6)

(9.1.7)

(9.1.8)

xn
f(x)

Δ = f()Δx + +O(Δ).In xn
()Δf ′′ xn x3

24
x5 (9.1.9)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34851?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.01%3A_Mid-Point_Rule

9.1.2 https://phys.libretexts.org/@go/page/34851

This is simply the first term in the exact series. The remaining terms constitute the numerical error in the mid-point rule integration,
over this segment. We denote this error as

The last step comes about because, by our definition, .

Now, consider the integral over the entire integration range, which consists of such segments. In general, there is no guarantee
that the numerical errors of each segment will cancel out, so the total error should be times the error from each segment. Hence,
for the mid-point rule,

This page titled 9.1: Mid-Point Rule is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

Δ = f()ΔxI
mp
n xn (9.1.10)

= |Δ −Δ | ∼ Δ ∼ O() .En In I
mp
n

| ()|f ′′ xn

24
x3 1

N 3
(9.1.11)

Δx ∼ O(1/N)

N

N

∼ O() .Etotal
1

N 2
(9.1.12)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34851?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.01%3A_Mid-Point_Rule
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

9.2.1 https://phys.libretexts.org/@go/page/34852

9.2: Trapezium Rule
The trapezium rule is a simple extension of the mid-point integration rule. Instead of calculating the area of a sequence of
rectangles, we calculate the area of a sequence of trapeziums, as shown in Fig. . As before, we divide the integration region
into equal segments; however, we now consider the end-points of these segments, rather than their mid-points. These is a set of

 positions , such that

Figure : Computing a definite integral using the trapezium rule.

Note that and . By using the familiar formula for the area of each trapezium, we can approximate the integral as

9.2.1 Python Implementation of the Trapezium Rule
In Scipy, the trapezium rule is implemented by the trapz function. It usually takes two array arguments, y and x ; then the
function call trapz(y,x) returns the trapezium rule estimate for , using the elements of x as the discretization
points, and the elements of y as the values of the integrand at those points.

Matlab compatibility note: Be careful of the order of inputs! For the Scipy function, it's trapz(y,x) . For the Matlab
function of the same name, the inputs are supplied in the opposite order, as trapz(x,y) .

Note that the discretization points in x need not be equally-spaced. Alternatively, you can call the function as

trapz(y,dx=s) ; this performs the numerical integration assuming equally-spaced discretization points, with spacing

s .

Here is an example of using trapz to evaluate the integral :

>>> from scipy import *
>>> x = linspace(0,10,25)
>>> y = exp(-x)
>>> t = trapz(y,x)
>>> print(t)
1.01437984777

9.2.1

N

N +1 { , … }x0 xN

= a+nΔx, Δx ≡ .xn
b−a

N
(9.2.1)

9.2.1

a = x0 b = xN

I
trapz = Δx()∑

n=0

N−1 f() +f()xn xn+1

2

= Δx [()+()+⋯ +()]
f() +f()x0 x1

2

f() +f()x1 x2

2

f() +f()xN−1 xN

2

= Δx [+(f())+] .
f()x0

2
∑
n=1

N−1

xn
f()xN

2

(9.2.2)

(9.2.3)

(9.2.4)

∫ y dx

Note

exp(−)dx = 1∫ ∞
0 x2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34852?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.02%3A_Trapezium_Rule
http://docs.scipy.org/doc/numpy/reference/generated/numpy.trapz.html

9.2.2 https://phys.libretexts.org/@go/page/34852

9.2.2 Numerical Error for the Trapezium Rule
From a visual comparison of Fig. 9.1.1 (for the mid-point rule) and Fig. (for the trapezium rule), we might be tempted to
conclude that the trapezium rule should be more accurate. Before jumping to that conclusion, however, let's do the actual
calculation of the numerical error. This is similar to our above calculation of the mid-point rule's numerical error. For the trapezium
rule, however, it's convenient to consider a pair of adjacent segments, which lie between the three discretization points

.

As before, we perform a Taylor expansion of in the vicinity of :

If we integrate from to , the result is

As before, every other term on the right-hand side integrates to zero. We are left with

This has to be compared to the estimate produced by the trapezium rule, which is

If we Taylor expand the first and last terms of the above expression around , the result is:

Hence, the numerical error for integrating over this pair of segments is

And the total numerical error goes as

which is the same scaling as the mid-point rule! Despite our expectations, the trapezium rule isn't actually an improvement over the
mid-point rule, as far as numerical accuracy is concerned.

This page titled 9.2: Trapezium Rule is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

9.2.1

{ , , }xn−1 xn xn+1

f(x) xn

f(x) = f() + ()(x−) + (x− + (x− +⋯xn f ′ xn xn
()f ′′ xn

2
xn)2 ()f ′′′ xn

6
xn)3 (9.2.5)

f(x) xn−1 xn+1

In ≡ f(x)dx∫
+Δxxn

−Δxxn

= 2f()Δx + () (x−)dx + (x− dx + ⋯xn f ′ xn ∫
+Δxxn

−Δxxn

xn
()f ′′ xn

2
∫

+Δxxn

−Δxxn

xn)2

(9.2.6)

(9.2.7)

= 2f()Δx + Δ +O(Δ) + ⋯In xn
()f ′′ xn

3
x3 x5 (9.2.8)

= Δx [+f() +] .I
(trapz)
n

f()xn−1

2
xn

f()xn+1

2
(9.2.9)

xn

I
(trapz)
n = [f() − ()Δx+ Δ − Δ + Δ +O(Δ)]

Δx

2
xn f ′ xn

()f ′′ xn

2
x2 ()f ′′′ xn

6
x3 ()f ′′′′ xn

24
x4 x4

+ Δx f()xn

+ [f() + ()Δx+ Δ + Δ + Δ +O(Δ)]
Δx

2
xn f ′ xn

()f ′′ xn

2
x2 ()f ′′′ xn

6
x3 ()f ′′′′ xn

24
x4 x4

= 2f()Δx+ Δ +O(Δ).xn
()f ′′ xn

2
x3 x5

(9.2.10)

(9.2.11)

(9.2.12)

(9.2.13)

≡ − = Δ ∼ O() .En ∣∣In I
trapz
n ∣∣

| ()|f ′′ xn

6
x3 1

N 3
(9.2.14)

∼ O() ,Etotal
1

N 2
(9.2.15)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34852?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.02%3A_Trapezium_Rule
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

9.3.1 https://phys.libretexts.org/@go/page/34853

9.3: Simpson's Rule
Our analysis of the mid-point rule and the trapezium rule showed that both methods have numerical error. In both cases,
the error can be traced to the same source: the fact that the integral estimate over each segment differs from the Taylor series result
in the second-order term—the term proportional to . This suggests a way to improve on the numerical integration result: we
could take a weighted average of the mid-point rule and the trapezium rule, such that the second-order numerical errors from the
two schemes cancel each other out! This is the numerical integration method known as Simpson's rule.

To be precise, let's again consider a pair of adjacent segments, which lie between the equally-spaced discretization points
. As derived above, the integral over these segments can be Taylor expanded as

By comparison, the mid-point rule and trapeium rule estimators for the integral are

Hence, we could take the following weighted average:

Such a weighted average would match the Taylor series result up to ! (You can check for yourself that the terms
differ.) In summary, Simpson's rule for this set of three points can be written as

The total numerical error, over a set of segments, is . That is an improvement of two powers of over the
trapzezium and mid-point rules! What's even better is that it involves exactly the same number of arithmetic operations as the
trapezium rule. This is as close to a free lunch as you can get in computational science.

9.3.1 Python Implementation of Simpson's Rule
In Scipy, Simpson's rule is implemented by the scipy.integrate.simps function, which is defined in the
scipy.integrate submodule. Similar to the trapz function, this can be called as either simps(y,x) or
simps(y,dx=s) to estimate the integral , using the elements of x as the discretization points, with y specifying

the set of values for the integrand.

Because Simpson's rule requires dividing the segments into pairs, if you specify an even number of discretization points in x (i.e.
an odd number of segments), the function deals with this by doing a trapezium rule estimate on the first and last segments. Usually,
the error is negligible, so don't worry about this detail

Here is an example of simps in action:

>>> from scipy import *
>>> from scipy.integrate import simps
>>> x = linspace(0,10,25)
>>> y = exp(-x)
>>> t = simps(y,x)
>>> print(t)
1.00011864276

O(1/)N 2

()f ′′ xn

{ , , }xn−1 xn xn+1

= 2f()Δx + Δ +O(Δ) + ⋯In xn
()f ′′ xn

3
x3 x5 (9.3.1)

= 2f()ΔxI
mp
n xn (9.3.2)

= 2f()Δx+ Δ +O(Δ).I
trapz
n xn

()f ′′ xn

2
x3 x5 (9.3.3)

= + = 2f()Δx+ Δ +O(Δ).I
simp
n

1

3
I

mp
n

2

3
I

trapz
n xn

()f ′′ xn

3
x3 x5 (9.3.4)

O(Δ)x4 O(Δ)x5

I
simp
n = [2f()Δx]+ Δx[+f() +]

1

3
xn

2

3

f()xn−1

2
xn

f()xn+1

2

= [f() +4f() +f()].
Δx

3
xn−1 xn xn+1

(9.3.5)

(9.3.6)

O(N) O(1/)N 4 1/N

∫ y dx

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34853?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.03%3A_Simpson's_Rule
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.integrate.simps.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/integrate.html

9.3.2 https://phys.libretexts.org/@go/page/34853

For the same number of discretization points, the trapezium rule gives ; the exact result is Clearly,
Simpson's rule is more accurate.

This page titled 9.3: Simpson's Rule is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

1.01438 0.9999546 …

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34853?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.03%3A_Simpson's_Rule
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

9.4.1 https://phys.libretexts.org/@go/page/34854

9.4: Gaussian Quadratures
Previously, we have assumed in our analysis of numerical integration schemes that the discretization points are equally-spaced.
This assumption is not strictly necessary; for instance, we can easily modify the mid-point rule and trapezium rule formulas to
work with non-equally-spaced points.

However, if we are free to choose the discretization points for performing numerical integration, and these points need not be
equally spaced, then it is possible to exploit this freedom to further improve the accuracy of the numerical integration. The idea is
to optimize the placement of the discretization points, so as to minimize the resulting numerical error. This is the basic idea behind
the method of integration by Gaussian quadratures.

We will not discuss the details of this numerical integration method. To use it, you can call the scipy.integrate.quad
function. This function uses a low-level numerical library named QUADPACK, which performs quadrature integration with
adaptive quadratures—i.e., it automatically figures out how many discretization points should be used, and where they should be
located, in order to produce a result with the desired numericaly accuracy.

Because QUADPACK figures out the discretization points for itself, you have to pass quad a function representing the
integrand, rather than an array of integrand values as with trapz or simps . The standard way to call the function is

t = quad(f, a, b)

which calculates the integral

The return value is a tuple of the form (t,err) , where t is the value of the integral and err is an estimate of the
numerical error. The quad function also accepts many other optional inputs, which can be used to specify additional inputs for
passing to the integrand function, the error tolerance, the number of subintervals to use, etc. See the documentation for details.

The choice of whether to perform numerical integration using Simpson's rule (simps) or Gaussian quadratures (quad) is
situational. If you already know the values of the integrands at a pre-determined set of discretization points (e.g., from the result of
a finite-difference calculation), then use simps . If you can define a function that can quickly calculate the value of the
integrand at any point, use quad .

Here is an example of using quad to compute the integral :

from scipy import *
from scipy.integrate import quad

def f(x):
 return 1.0 / (x*x+1)

integ, _ = quad(f, 0, 1000)
print(integ)

(Note that quad returns two values; the first is the computed value of the integral, and the other is the absolute error, which
we're not interested in, so we toss it in the "throwaway" variable named _ . See the documentation for details.) Running the above
program prints the result which differs from the exact result, by a relative error of .

Here is another example, where the integrand takes an additional parameter: :

from scipy import *
from scipy.integrate import quad

t = f(x)dx.∫
b

a

(9.4.1)

∫ ∞
0

dx

+1x2

1.569796 … , π/2 = 1.570796 … , 0.06%

x dx∫ ∞

0
e−λx

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34854?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.04%3A_Gaussian_Quadratures
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
http://en.wikipedia.org/wiki/QUADPACK
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html

9.4.2 https://phys.libretexts.org/@go/page/34854

def f(x, lambd):
 return x * exp(-lambd * x)

integ, _ = quad(f, 0, 100, args=(0.5))
print(integ)

Running the program prints the result , which agrees with the exact result of for the chosen value of the parameter
.

This page titled 9.4: Gaussian Quadratures is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

4.0 1/λ2

λ = 0.5

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34854?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.04%3A_Gaussian_Quadratures
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

9.5.1 https://phys.libretexts.org/@go/page/34855

9.5: Monte Carlo Integration
The final numerical integration scheme that we'll discuss is Monte Carlo integration, and it is conceptually completely different
from the previous schemes. Instead of assigning a set of discretization points (either explicitly, as in the mid-
point/trapezium/Simpson's rules, or through a machine optimization procedure, as in the adaptive quadrature method), this method
randomly samples the points in the integration domain. If the sampling points are independent and there is a sufficiently large
number of them, the integral can be estimated by taking a weighted average of the integrand over the sampling points.

To be precise, consider a 1D integral over a domain . Let each sampling point be drawn independently from a distribution
. This means that the probability of drawing sample in the range is . The distribution is

normalized, so that

Let us take samples, and evaluate the integrand at those points: this gives us a set of numbers . We then compute the
quantity

Unlike the estimators that we have previously studied, is a random number (because the underlying variables are all
random). Crucially, its average value is equal to the desired integral:

For low-dimensional integrals, there is normally no reason to use the Monte Carlo integration method. It requires a much larger
number of samples in order to reach a level of numerical accuracy comparable to the other numerical integration methods. (For 1D
integrals, Monte Carlo integration typically requires millions of samples, whereas Simpson's rule only requires hundreds or
thousands of discretization points.) However, Monte Carlo integration outperforms discretization-based integration schemes when
the dimensionality of the integration becomes extremely large. Such integrals occur, for example, in quantum mechanical
calculations involving many-body systems, where the dimensionality of the Hilbert space scales exponentially with the number of
particles.

This page titled 9.5: Monte Carlo Integration is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong
via source content that was edited to the style and standards of the LibreTexts platform.

x ∈ [a, b]

p(x) xn ∈ [x, x+dx]xn p(x)dx

p(x) dx = 1.∫
b

a

(9.5.1)

N {f()}xn

= .I
mc 1

N
∑
n=0

N−1 f()xn

p()xn
(9.5.2)

I
mc { }xn

⟨ ⟩I
mc = ⟨ ⟩

1

N
∑
n=0

N−1 f()xn

p()xn

=⟨ ⟩ for each n
f()xn

p()xn

= p(x) [] dx∫
b

a

f(x)

p(x)

= f(x)dx∫
b

a

(9.5.3)

(9.5.4)

(9.5.5)

(9.5.6)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34855?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.05%3A_Monte_Carlo_Integration
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.05%3A_Monte_Carlo_Integration
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

1

CHAPTER OVERVIEW

10: Numerical Integration of ODEs
This article describes the numerical methods for solving the initial-value problem, which is a standard type of problem appearing
in many fields of physics. Suppose we have a system whose state at time is described by a vector , which obeys the first-
order ordinary differential equation (ODE) for the form:

Here, is some given vector-valued function, whose inputs are (i) the instantaneous state and (ii) the current time . Then,
given an initial time and an initial state , the goal is to find for subsequent times.

Conceptually, the initial value problem is distinct from the problem of solving an ODE discussed in the article on finite-difference
equations. There, we were given a pair of boundaries with certain boundary conditions, and the goal was to find the solution
between the two boundaries. In this case, we are given the state at an initial time , and our goal is to find for some set of
future times . This is sometimes referred to as "integrating" the ODE, because the solution has the form

However, unlike ordinary numerical integration (i.e., the computing of a definite integral), the value of the integrand is not known
in advance, because of the dependence of on the unknown .

10.1: Example- Equations of Motion in Classical Mechanics
10.2: Forward Euler Method
10.3: Backward Euler Method
10.4: Adams-Moulton Method
10.5: Runge-Kutta Methods
10.6: Integrating ODEs with Scipy

This page titled 10: Numerical Integration of ODEs is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D.
Chong via source content that was edited to the style and standards of the LibreTexts platform.

t (t)y ⃗

= ((t), t).
dy ⃗

dt
F ⃗ y ⃗ (10.1)

F ⃗ (t)y ⃗ t

t0 ()y ⃗ t0 (t)y ⃗

t0 (t)y ⃗

t > t0

(t) = () + d ((),).y ⃗ y ⃗ t0 ∫
t

t0

t′ F ⃗ y ⃗ t′ t′ (10.2)

F ⃗ (t)y ⃗

https://libretexts.org/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.01%3A_Example-_Equations_of_Motion_in_Classical_Mechanics
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.02%3A_Forward_Euler_Method
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.03%3A_Backward_Euler_Method
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.04%3A_Adams-Moulton_Method
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.05%3A_Runge-Kutta_Methods
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.06%3A_Integrating_ODEs_with_Scipy
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

10.1.1 https://phys.libretexts.org/@go/page/34857

10.1: Example- Equations of Motion in Classical Mechanics
The above standard formulation of the initial-value problem can be used to describe a very large class of time-dependent ODEs
found in physics. For example, suppose we have a classical mechanical particle with position , subject to an arbitrary external
space-and-time-dependent force and a friction force (where is a damping coefficient). Newton's second law
gives the following equation of motion:

This is a second-order ODE, whereas the standard initial-value problem involves a first-order ODE. However, we can turn it into a
first-order ODE with the following trick. Define the velocity vector

and define the state vector by combining the position and velocity vectors:

Then the equation of motion takes the form

which is a first-order ODE, as desired. The quantity on the right-hand side is the derivative function for the initial-value
problem. Its dependence on and is simply regarded as a dependence on the upper and lower portions of the state vector . In
particular, note that the derivative function does not need to be linear, since can have any arbitrary nonlinear dependence on ,
e.g. it could depend on the quantity .

The "initial state", , requires us to specify both the initial position and velocity of the particle, which is consistent with the fact
that the original equation of motion was a second-order equation, requiring two sets of initial values to fully specify a solution. In a
similar manner, ODEs of higher order can be converted into first-order form, by defining the higher derivatives as state variables
and increasing the size of the state vector.

This page titled 10.1: Example- Equations of Motion in Classical Mechanics is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform.

r ⃗

(, t)f ⃗ r ⃗ −λd /dtr ⃗ λ

m = −λ + (, t).
d2r ⃗

dt2

dr ⃗

dt
f ⃗ r ⃗ (10.1.1)

= ,v ⃗
dr ⃗

dt
(10.1.2)

= [] .y ⃗
r ⃗

v ⃗
(10.1.3)

= [] = [] ,
dy ⃗

dt

d

dt

r ⃗

v ⃗

v ⃗

−(λ/m) + (, t)/mv ⃗ f ⃗ r ⃗
(10.1.4)

(, t)F ⃗ y ⃗

r ⃗ v ⃗ y ⃗

f ⃗ r ⃗

| |r ⃗

()y ⃗ t0

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34857?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.01%3A_Example-_Equations_of_Motion_in_Classical_Mechanics
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.01%3A_Example-_Equations_of_Motion_in_Classical_Mechanics
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

10.2.1 https://phys.libretexts.org/@go/page/34858

10.2: Forward Euler Method
The Forward Euler Method is the conceptually simplest method for solving the initial-value problem. For simplicity, let us
discretize time, with equal spacings:

Let us denote . The Forward Euler Method consists of the approximation

Starting from the initial state and initial time , we apply this formula repeatedly to compute and so forth. The Forward
Euler Method is called an explicit method, because, at each step , all the information that you need to calculate the state at the
next time step, , is already explicitly known—i.e., you just need to plug and into the right-hand side of the above
formula.

The Forward Euler Method formula follows from the usual definition of the derivative, and becomes exactly correct as . We
can deduce the numerical error, which is called the local truncation error in this context, by Taylor expanding the left-hand side
around :

The first two terms are precisely equal to the right-hand side of the Forward Euler Method formula. The local truncation error is the
magnitude of the remaining terms, and hence it scales as .

10.2.1 Instability
For the Forward Euler Method, the local truncation error leads to a profound problem known as instability. Because the method
involves repeatedly applying a formula with a local truncation error at each step, it is possible for the errors on successive steps to
progressively accumulate, until the solution itself blows up. To see this, consider the differential equation

Given an initial state at time , the solution is . For , this decays exponentially to zero with increasing
time. However, consider the solutions produced by the Forward Euler Method:

Figure : The exact solution (blue) and Forward Euler solution (green) for , for , , and
. The numerical solution is unstable; it blows up at large times, even though the exact solution is decaying to zero.

If , then , and as a result as . Even though the actual solution decays exponentially to
zero, the numerical solution blows up, as shown in Fig. . Roughly speaking, the local truncation error causes the numerical

, , , … where h ≡ − .t0 t1 t2 tn+1 tn (10.2.1)

≡ ()y ⃗ n y ⃗ tn

= +h (,).y ⃗ n+1 y ⃗ n F ⃗ y ⃗ n tn (10.2.2)

y ⃗ 0 t0 , ,y ⃗ 1 y ⃗ 2
n

y ⃗ n+1 y ⃗ n tn

h → 0

t = tn

= +h + +⋯y ⃗ n+1 y ⃗ n
dy ⃗
dt

∣
∣
∣
tn

h2

2
d2y ⃗
dt2

∣

∣
∣
tn

(10.2.3)

O()h2

= −κy.
dy

dt
(10.2.4)

y0 = 0t0 y(t) = y0 e
−κt κ > 0

y1

y2

⋮
yn

= +h ⋅ (−κ) = (1 −hκ)y0 y0 y0

= +h ⋅ (−κ) = (1 −hκy1 y1)2 y0

= ⋮
= (1 −hκ .)n y0

(10.2.5)
(10.2.6)

(10.2.7)
(10.2.8)

10.2.1 dy/dt = −κy(t) y(0) = 1 κ = 1
h = 2.1

h > 2/κ 1 −hκ < −1 → ±∞yn n → ∞
10.2.1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34858?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.02%3A_Forward_Euler_Method

10.2.2 https://phys.libretexts.org/@go/page/34858

solution to "overshoot" the true solution; if the step size is too large, the magnitude of the overshoot keeps growing with each step,
destabilizing the numerical solution.

Stability is a fundamental problem for the integration of ODEs. The equations which tend to destabilize numerical ODE solvers are
those containing spring constants which are "large" compared to the time step; such equations are called stiff equations. At first,
you might think that it's no big deal: just make the step size sufficiently small, and the blow-up can be avoided. The trouble is
that it's often unclear how small is sufficiently small, particularly for complicated (e.g. nonlinear) ODEs, where is
something like a "black box". Unlike the above simple example, we typically don't have the exact answer to compare with, so it can
be hard to tell whether the numerical solution blows up because that's how the true solution behaves, or because the numerical
method is unstable.

This page titled 10.2: Forward Euler Method is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong
via source content that was edited to the style and standards of the LibreTexts platform.

h

F (, t)y ⃗

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34858?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.02%3A_Forward_Euler_Method
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

10.3.1 https://phys.libretexts.org/@go/page/34859

10.3: Backward Euler Method
In the Backward Euler Method, we take

Comparing this to the formula for the Forward Euler Method, we see that the inputs to the derivative function involve the solution
at step , rather than the solution at step . As , both methods clearly reach the same limit. Similar to the Forward Euler
Method, the local truncation error is .

Because the quantity appears in both the left- and right-hand sides of the above equation, the Backward Euler Method is said
to be an implicit method (as opposed to the Forward Euler Method, which is an explicit method). For general derivative functions

, the solution for cannot be found directly, but has to be obtained iteratively, using a numerical approximation technique
such as Newton's method. This makes the Backward Euler Method substantially more complicated to implement, and slower to
run.

However, implicit methods like the Backward Euler Method have a powerful advantage: it turns out that they are generally stable
regardless of step size. By contrast, explicit methods—even explicit methods that are much more sophisticated than the Forward
Euler Method, like the Runge-Kutta methods discussed below—are unstable when applied to stiff problems, if the step size is too
large. To illustrate this, let us apply the Backward Euler Method to the same ODE, , discussed previously. For this
particular ODE, the implicit equation can be solved exactly, without having to use an iterative solver:

Figure : The exact solution (blue) and Backward Euler solution (green) for the same problem as Fig. 10.2.1. The numerical
solution is stable.

From this result, we can see that the numerical solution does not blow up for large values of , as shown for example in Fig.
. Even though the numerical solution in this example isn't accurate (because of the large value of), the key point is that the

error does not accumulate and cause a blow-up at large times.

This page titled 10.3: Backward Euler Method is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong
via source content that was edited to the style and standards of the LibreTexts platform.

= +h (,).y ⃗ n+1 y ⃗ n F ⃗ y ⃗ n+1 tn+1 (10.3.1)

n+1 n h → 0

O()h2

y ⃗ n+1

F y ⃗ n+1

dy/dt = −κy(t)

= −hκ ⇒ = = .yn+1 yn yn+1 yn+1
yn

1 +hκ

y0

(1 +hκ)n
(10.3.2)

10.3.1

h

10.3.1 h

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34859?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.03%3A_Backward_Euler_Method
http://en.wikipedia.org/wiki/Newton%27s_method
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.03%3A_Backward_Euler_Method
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

10.4.1 https://phys.libretexts.org/@go/page/34860

10.4: Adams-Moulton Method
In the Second-Order Adams-Moulton (AM2) method, we take

Conceptually, the derivative term here is the average of the Forward Euler and Backward Euler derivative terms. Because
appears on the right-hand side, this is an implicit method. Thus, like the Backward Euler Method, it typically has to be solved
iteratively, but is numerically stable. The advantage of the AM2 method is that its local truncation error is substantially lower. To
see this, let us take the derivative of both sides of the ODE over one time step:

Figure : The exact solution (blue) and Second-Order Adams-Moulton (AM2) solution (green) for the same problem as Fig.
10.2.1.

The integral on the left-hand side reduces to . As for the integral on the right-hand side, if we perform this integral
numerically using the trapezium rule, then the result is the derivative term in the AM2 formula. The local truncation error is given
by the numerical error of the trapezium rule, which is . That's an improvement of one order compared to the Euler methods.
(Based on this argument, we can also see that the Forward Euler method and the Backward Euler methods involve approximating
the integral on the right-hand side using a rectangular area, with height given by the value at and respectively. From this,
it's clear why the AM2 scheme gives better results.)

There are also higher-order Adams-Moulton methods, which generate even more accurate results by also sampling the derivative
function at previous steps: , , etc.

In Fig. , we plot the AM2 solution for the problem , using the same parameters (including the same step
size) as in Fig. 10.2.1 (Forward Euler Method) and Fig. 10.3.1 (Backward Euler Method). It is clear that the AM2 results are
significantly more accurate.

This page titled 10.4: Adams-Moulton Method is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D.
Chong via source content that was edited to the style and standards of the LibreTexts platform.

= + [(,) + (,)] .y ⃗ n+1 y ⃗ n
h

2
F ⃗ y ⃗ n tn F ⃗ y ⃗ n+1 tn+1 (10.4.1)

y ⃗ n+1

dt = ((t), t) dt∫
tn+1

tn

dy ⃗

dt
∫

tn+1

tn

F ⃗ y ⃗ (10.4.2)

10.4.1

−y ⃗ n+1 y ⃗ n

O()h3

tn tn+1

F (,)y ⃗ n−1 tn−1 F (,)y ⃗ n−2 tn−2

10.4.1 dy/dt = −κy(t)

h

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34860?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.04%3A_Adams-Moulton_Method
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.04%3A_Adams-Moulton_Method
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

10.5.1 https://phys.libretexts.org/@go/page/34861

10.5: Runge-Kutta Methods
The three methods that we have surveyed thus far (Forward Euler, Backward Euler, and Adams-Moulton) have all involved
sampling the derivative function at one of the discrete time steps , and the solutions at those time steps . It is
natural to ask whether we can improve the accuracy by sampling the derivative function at "intermediate" values of and . This is
the basic idea behind a family of numerical methods known as Runge-Kutta methods.

Here is a simple version of the method, known as second-order Runge-Kutta (RK2). Our goal is to replace the derivative term
with a pair of terms, of the form

where

The coefficients are adjustable parameters whose values we'll shortly choose, so as to minimize the local truncation
error.

During each time step, we start out knowing the solution at time , we first calculate (which is the derivative term that
goes into the Forward Euler method); then we use that to calculate an "intermediate" derivative term . Finally, we use a
weighted average of and as the derivative term for calculating . From this, it is evident that this is an explicit method:
for each of the sub-equations, the "right-hand sides" contain known quantities.

We now have to determine the appropriate values of the parameters . First, we Taylor expand around , using
the chain rule:

In the same way, we Taylor expand the intermediate derivative term , whose formula was given above:

If we compare these Taylor expansions to the RK2 formula, then it can be seen that the terms can be made to match up to (and
including) , if the parameters are chosen to obey the equations

One possible set of solutions is and . With these conditions met, the RK2 method has local truncation
error of , one order better than the Forward Euler Method (which is likewise an explicit method), and comparable to the
Adams-Moulton Method (which is an implicit method).

The local truncation error can be further reduced by taking more intermediate samples of the derivative function. The most
commonly-used Runge-Kutta method is the fourth-order Runge Kutta method (RK4), which is given by

F (y, t) { }tn { }y ⃗ n
t y ⃗

= +Ah +Bh ,y ⃗ n+1 y ⃗ n F ⃗
A F ⃗

B (10.5.1)

F ⃗
A

F ⃗
B

= (,)F ⃗ y ⃗ n tn

= (+β , +α).F ⃗ y ⃗ n F ⃗
A tn

(10.5.2)

(10.5.3)

{A,B,α, β}

y ⃗ n tn F ⃗
A

F ⃗
B

F ⃗
A F ⃗

B y ⃗ n+1

{A,B,α, β} y ⃗ n+1 tn

y ⃗ n+1 = +h + +O()y ⃗ n
dy ⃗

dt

∣

∣
∣
tn

h2

2

d2y ⃗

dt2

∣

∣
∣
tn

h3

= +h (,) + +O()y ⃗ n F ⃗ y ⃗ n tn
h2

2
[((t), t)]
d

dt
F ⃗ y ⃗

tn

h3

= +h (,) + +O()y ⃗ n F ⃗ y ⃗ n tn
h2

2
[+]∑

j

∂F ⃗

∂yj

dyj

dt

∂F ⃗

∂t
tn

h3

= +h + { + }+O()y ⃗ n F ⃗
A

h2

2
∑
j

[]
∂F ⃗

∂yj
tn

FAj []
∂F ⃗

∂t
tn

h3

(10.5.4)

(10.5.5)

(10.5.6)

(10.5.7)

FB

= +β +α .FB FA ∑
j

FAj[]
∂F

∂yj tn

[]
∂F

∂t tn

(10.5.8)

O()h2

A+B = 1, α = β = .
h

2B
(10.5.9)

A = B = 1/2 α = β = h

O()h3

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34861?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.05%3A_Runge-Kutta_Methods

10.5.2 https://phys.libretexts.org/@go/page/34861

This has local truncation error of . It is an explicit method, and therefore has the disadvantage of being unstable if the
problem is stiff and is sufficiently large.

This page titled 10.5: Runge-Kutta Methods is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong
via source content that was edited to the style and standards of the LibreTexts platform.

y ⃗ n+1

F ⃗
A

F ⃗
B

F ⃗
C

F ⃗
D

= + (+2 +2 +)y ⃗ n
h

6
F ⃗

A F ⃗
B F ⃗

C F ⃗
D

= (,),F ⃗ y ⃗ n tn

= (+ , +),F ⃗ y ⃗ n
h

2
F ⃗

A tn
h

2

= (+ , +),F ⃗ y ⃗
n

h
2
F ⃗

B tn
h
2

= (+h , +h).F ⃗ yn F ⃗
C tn

(10.5.10)

(10.5.11)

(10.5.12)

(10.5.13)

(10.5.14)

O()h5

h

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34861?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.05%3A_Runge-Kutta_Methods
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

10.6.1 https://phys.libretexts.org/@go/page/34862

10.6: Integrating ODEs with Scipy
Except for educational purposes, it is almost always a bad idea to implement your own ODE solver; instead, you should use a pre-
written solver.

10.6.1 The scipy.integrate.odeint Solver
In Scipy, the simplest ODE solver to use is the scipy.integrate.odeint function, which is in the
scipy.integrate module. This is actually a wrapper around a low-level numerical library known as LSODE (the

Livermore Solver for ODEs"), which is part of a widely-used ODE solver library known as ODEPACK. The most important
feature of this solver is that it is "adaptive": it can automatically figure out (i) which integration scheme to use (choosing between
either a high-order Adams-Moulton method, or another implicit method known as the Backward Differentiation Formula which we
haven't described), and (ii) the size of the discrete time steps, based on the behavior of the solutions as they are being worked out.
In other words, the user only needs to specify the derivative function, the initial state, and the desired output times, without having
to worry about the internal details of the solution method.

The function takes several inputs, of which the most important ones are:

1. func , a function corresponding to the derivative function .
2. y0 , either a number or 1D array, corresponding to the initial state .
3. t , an array of times at which to output the ODE solution. The first element corresponding to the initial time . Note that

these are the "output" times only—they do not specify the actual time steps which the solver uses for finding the solutions;
those are automatically determined by the solver.

4. (optional) args , a tuple of extra inputs to pass to the derivative function func . For example, if args=(2,3) , then
func should accept four inputs, and it will be passed 2 and 3 as the last two inputs.

The function then returns an array y , where y[n] contains the solution at time t[n] . Note that y[0] will be exactly the
same as the input y0 , the initial state which you specified.

Here is an example of using odeint to solve the damped harmonic oscillator problem , using the
previously-mentioned vectorization trick to cast it into a first-order ODE:

from scipy import *

import matplotlib.pyplot as plt

from scipy.integrate import odeint

def ydot(y, t, m, lambd, k):

 x, v = y[0], y[1]

 return array([v, -(lambd/m) * v - k * x / m])

m, lambd, k = 1.0, 0.1, 1.0 # Oscillator parameters

y0 = array([1.0, 5.0]) # Initial conditions [x, v]

t = linspace(0.0, 50.0, 100) # Output times

y = odeint(ydot, y0, t, args=(m, lambd, k))

Plot x versus t

plt.plot(t, y[:,0], 'b-')

plt.xlabel('t')

plt.ylabel('x')

plt.show()

(, t)F ⃗ y ⃗

()y ⃗ t0

t0

m = −λ −kx(t)ẍ ẋ

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34862?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.06%3A_Integrating_ODEs_with_Scipy
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
http://docs.scipy.org/doc/scipy/reference/integrate.html
http://www.netlib.org/odepack/opkd-sum
http://en.wikipedia.org/wiki/Backward_differentiation_formula

10.6.2 https://phys.libretexts.org/@go/page/34862

There is an important limitation of odeint : it does not handle complex ODEs, and always assumes that and are real.
However, this is not a problem in practice, because you can always convert a complex first-order ODE into a real one, by replacing
the complex vectors and with double-length real vectors:

10.6.2 The scipy.integrate.ode Solvers

Apart from odeint , Scipy provides a more general interface to a variety of ODE solvers, in the form of the
scipy.integrate.ode class. This is a much more low-level interface; instead of calling a single function, you have to

create an ODE "object", then use the methods of this object to specify the type of ODE solver to use, the initial conditions, etc.;
then you have to repeatedly call the ODE object's integrate method, to integrate the solution up to each desired output time
step.

The is an extremely aggravating inconsistency between the odeint function and this ode class: the expected order of inputs
for the derivative functions are reversed! The odeint function assumes the derivative function has the form F(y,t) , but
the ode class assumes it has the form F(t,y) . Watch out for this!

Here is an example of using ode class with the damped harmonic oscillator problem , using a Runge-Kutta
solver:

from scipy import *

import matplotlib.pyplot as plt

from scipy.integrate import ode

Note the order of inputs (different from odeint)!

def ydot(t, y, m, lambd, k):

 x, v = y[0], y[1]

 return array([v, -(lambd/m) * v - k * x / m])

m, lambd, k = 1.0, 0.1, 1.0 # Oscillator parameters

y0 = array([1.0, 5.0]) # Initial conditions [x, v]

t = linspace(0.0, 50.0, 100) # Output times

Set up the ODE object

r = ode(ydot)

r.set_integrator('dopri5') # A Runge-Kutta solver

r.set_initial_value(y0)

r.set_f_params(m, lambd, k)

Perform the integration. Note that the "integrate" method only integrates

up to one single final time point, rather than an array of times.

x = zeros(len(t))

x[0] = y0[0]

for n in range(1,len(t)):

 r.integrate(t[n])

 assert r.successful()

 x[n] = (r.y)[0]

Plot x versus t

y ⃗ F ⃗

y ⃗ F ⃗

≡ [] , ≡ [] .y ⃗ ′
Re()y ⃗

Im()y ⃗
F ⃗ ′ Re()F ⃗

Im()F ⃗
(10.6.1)

m = −λ −kx(t)ẍ ẋ

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34862?pdf
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html

10.6.3 https://phys.libretexts.org/@go/page/34862

plt.plot(t, x, 'b-')

plt.xlabel('t')

plt.ylabel('x')

plt.show()

See the documentation for a more detailed list of options, including the list of ODE solvers that you can choose from.

This page titled 10.6: Integrating ODEs with Scipy is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D.
Chong via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34862?pdf
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.06%3A_Integrating_ODEs_with_Scipy
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

1

CHAPTER OVERVIEW

11: Discrete Fourier Transforms
The Discrete Fourier Transform (DFT) is a discretized version of the Fourier transform, which is widely used in numerical
simulation and analysis. Given a set of numbers , the DFT produces another set of numbers numbers

, defined as follows:

The inverse of this transformation is the Inverse Discrete Fourier Transform (IDFT):

The inverse relationship between the DFT and the IDFT is straightforward to prove, by using the identity

where denotes the Kronecker delta. This identity is derived from the geometric series formula.

11.1: Conversion of Continuous Fourier Transform to DFT
11.2: Spectral Resolution and Range
11.3: The Split-Step Fourier Method

This page titled 11: Discrete Fourier Transforms is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D.
Chong via source content that was edited to the style and standards of the LibreTexts platform.

N { , , … , }f0 f1 fN−1 N N

{ , , … , }F0 F1 FN−1

DFT{ , , … , } ={ , , … , } where = .f0 f1 fN−1 F0 F1 FN−1 Fn ∑
m=0

N−1

e−2πi
mn

N fm (11.1)

IDFT{ , , … , } ={ , , … , } where = .F0 F1 FN−1 f0 f1 fN−1 fm

1

N
∑
n=0

N−1

e2πi mn

N Fn (11.2)

= N ,∑
m=0

N−1

e±2πi
m(n−)n′

N δnn′ (11.3)

δnn′

https://libretexts.org/
https://en.wikipedia.org/wiki/Fourier_transform
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11%3A_Discrete_Fourier_Transforms/11.01%3A_Conversion_of_Continuous_Fourier_Transform_to_DFT
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11%3A_Discrete_Fourier_Transforms/11.02%3A_Spectral_Resolution_and_Range
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11%3A_Discrete_Fourier_Transforms/11.03%3A_The_Split-Step_Fourier_Method
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11%3A_Discrete_Fourier_Transforms
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

11.1.1 https://phys.libretexts.org/@go/page/34864

11.1: Conversion of Continuous Fourier Transform to DFT
The DFT is commonly encountered when discretizing formulas involving Fourier integrals. Recall the definition of the Fourier
transform: given a function , where , the Fourier transform is a function , where , and these
two functions are related by a pair of integral formulas:

Typically, a computer simulation or experimental measurement will produce values of at certain values of that are discrete
and evenly-spaced. Suppose these points are , where the spacing is ; the corresponding data
points are . We are then interested in finding the Fourier spectrum, i.e. plotting either or
versus . To do this, we can approximate the Fourier integral by using the mid-point rule:

Note that this necessitates a truncation of the Fourier integral. The Fourier integral ran over , but our numerical
integral runs over a finite range . This truncation will have important consequences later. Now, we have to decide
the values of at which to find . Let us choose a set of equally-spaced points,

At these points, the discretized Fourier integral takes the form

Here denotes the -th element of the Discrete Fourier Transform (DFT). The index inside the curly brackets is
a dummy index, indicating that the DFT involves an internal sum over this index (we're slightly abusing mathematical notation
here). The phase factor, , is determined by the choice of "origin" for the spatial coordinates; it does not affect

 (which is what's used to plot the Fourier spectrum).

The DFT and IDFT can be computed very efficiently, in time, using an algorithm called the Fast Fourier Transform
(FFT). We will not discuss the FFT algorithm in this article, but many good explanations can be found elsewhere online. In Python,
you can perform an FFT (fast DFT) by calling fft , and an inverse FFT (fast IDFT) by calling ifft

This page titled 11.1: Conversion of Continuous Fourier Transform to DFT is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform.

f(x) x ∈ (−∞, ∞) F (k) k ∈ (−∞, ∞)

F (k)

f(x)

= dx f(x)∫
∞

−∞

e−ikx

= F (k).∫
∞

−∞

dk

2π
eikx

(11.1.1)

(11.1.2)

f(x) x

{ , , … , }x0 x1 xN−1 Δx = −xm+1 xm

{f(), … , f()}x0 xN−1 |F (k)| |F (k)|
2

k

F (k) ≈ Δx f().∑
m=0

N−1

e−ikxm xm (11.1.3)

−∞ < x < ∞

≲ x ≲x0 xN−1

k F (k) N

≡ .kn
2πn

NΔx
(11.1.4)

F ()kn ≈ Δx exp[−] f()∑
m=0

N−1 2πin(+mΔx)x0

NΔx
xm

= Δx exp[−] f()
2πinx0

NΔx
∑
m=0

N−1

e−i2πnm/N xm

= Δx exp[−]DFT{f() .
2πinx0

NΔx
xm }n

(11.1.5)

(11.1.6)

(11.1.7)

DFT{f()xm }n n m

exp[−2πin /NΔx]x0

|F ()kn |2

O(N logN)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34864?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11%3A_Discrete_Fourier_Transforms/11.01%3A_Conversion_of_Continuous_Fourier_Transform_to_DFT
http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fft.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ifft.html
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11%3A_Discrete_Fourier_Transforms/11.01%3A_Conversion_of_Continuous_Fourier_Transform_to_DFT
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

11.2.1 https://phys.libretexts.org/@go/page/34865

11.2: Spectral Resolution and Range
In the previous section, we showed how a continuous Fourier integral is converted into a DFT. This process involved two distinct
approximations. Firstly, the Fourier integral is truncated from its original range, , to a finite interval of length .
Secondly, the integral is discretized by reducing the continuous variable to a set of discrete points . Both of these
approximations have important consequences for the accuracy of our numerical Fourier spectrum, which we will examine in turn.

11.2.1 Spectral Resolution
The truncation of the Fourier integral limits the spectral resolution of the Fourier spectrum. To see this, suppose we perform
truncation without discretization, by taking a continuous Fourier integral and truncating it to a finite range :

Consider a harmonic function . The exact Fourier transform can be shown to be a delta function,
, i.e. an infinitely sharp peak centered at . With the above truncation, however, the resulting integral is

Figure : Fourier power spectrum from a truncated Fourier transform of , with and sampling
interval (about periods).

For , the above formula approaches a delta function (an infinitesimally-thin peak) centered at . But for finite , the
plot of versus behaves as shown in Fig . Evidently, truncating the Fourier integral has "smeared out" the Fourier
spectrum, broadening the infinitesimally-thin delta function peak into a finite-width peak. The peak width, , limits the
"resolution" of our Fourier analysis.

In the discretized Fourier transform, the truncation of the Fourier integral has essentially the same effect. As discussed in the
previous section, the DFT is defined at ; hence, the resolution of the Fourier spectrum is .

11.2.2 Spectral Range
The other approximation which we made in going from a continuous Fourier transform to the DFT involved sampling at
discrete values of . This discretization has the effect of limiting the spectral range. To see this, let us look again at the DFT
formula, which is dimensionless:

x ∈ (−∞, ∞) NΔx

x { , … , }x0 xN−1

x ∈ [0,X]

F (k) ≈ dx f(x).∫
X

0
e−ikx (11.2.1)

f(x) = ei xk0

F (k) = 2π δ(k−)k0 k = k0

F (k) ≈ dx = ⋅ .∫
X

0
e−i(k−)xk0

2 sin[(k−)X/2]k0

k−k0
e−i(k−)X/2k0 (11.2.2)

11.2.1 f(x) = exp(i x)k0 = 1k0

k ∈ [0, 300] 48

X → ∞ k = k0 X

|F (k)|
2

ω 11.2.1

Δk ∼ 1/X

≡ 2πn/Xkn Δk = 2π/X

f(x)

x

= .Fn ∑
m=0

N−1

e−2πi mn

N fm (11.2.3)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34865?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11%3A_Discrete_Fourier_Transforms/11.02%3A_Spectral_Resolution_and_Range
https://en.wikipedia.org/wiki/Dirac_delta_function

11.2.2 https://phys.libretexts.org/@go/page/34865

Normally, we consider only the indices However, if we replace with in the right-hand side, the
result would be the same:

We can hence regard as a periodic discrete function of , with period . Next, consider how the DFT is related to the physical
and variables. Taking for simplicity,

If we perform the replacement

then evidently is left unchanged. Indeed, we could add any integer multiple of without altering the result. This means that
the DFT spectrum is only defined under modulo , by contrast with the continuous Fourier transform which is defined over the
entire interval .

The default definition of the DFT gives the integer indices , which corresponds to . However,
when plotting the DFT spectrum, we usually adjust the range of to . This is done by taking the "upper half"
of the DFT spectrum, , and translating it via the replacement . Due to the periodicity of the DFT, the
upper half of the DFT spectrum becomes the negative part of the spectrum. In terms of the integer indices , the process is
depicted in the figure below:

Figure : A DFT spectrum, , is periodic with period . By default, the DFT is reported in the spectral range
 (red curve in the upper plot). To relate this to the continuous Fourier transform, we re-center the spectrum at ,

which is equivalent to translating the upper half of the spectrum to negative values (red curve in the lower plot).

The reason for this adjustment is that, intuitively, the discretized Fourier spectrum contains information about the "low-frequency"
part of the spectrum, , including both positive and negative values of . On the other hand, the discretized Fourier
spectrum lacks information about the "high frequency" part of the spectrum, which correspond to harmonics with periods shorter
than the discretization step . Hence, it makes sense to "center" our Fourier spectrum around the origin. It can then be shown that
as the discretization step approaches zero (and hence), the part of the adjusted DFT spectrum
converges to the exact (continuous) Fourier spectrum.

The corollary to the above discussion is that if we have a function which has no frequency components larger than , then it is
sufficient to use a sampling interval . This is called the Nyquist-Shannon sampling theorem.

11.2.3 Summary of Spectral Relations
The results of the previous sections can be summarized in this way:

The total range of , which is denoted by , limits the resolution of the spectrum to .

n = 0, 1, … ,N −1. n n+N

= = = .Fn+N ∑
m=0

N−1

e−2πi
m(n+N)

N fm ∑
m=0

N−1

e−2πi −2πim
mn)

N fm Fn (11.2.4)

F n N x

k = 0x0

F () = f() = f().kn ∑
m=0

N−1

e−2πi
mn

N xm ∑
m=0

N−1

e−i ⋅ mΔxkn xm (11.2.5)

→ +K, where K ≡ ,kn kn
2π

Δx
(11.2.6)

F ()kn K

k K

−∞ < k < ∞

n = 0, 1, … ,N −1 0 ≤ k ≲ K

k −K/2 ≲ k ≲ K/2

K/2 ≲ k ≲ K k → k−K

k n

11.2.2 Fn N
n ∈ [0,N − 1] n = 0

|k| < K/2 k

Δx

K = 2π/Δx → ∞ |k| ≪ K

kmax

Δx = π/kmax

x X Δk = 2π/X

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34865?pdf
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

11.2.3 https://phys.libretexts.org/@go/page/34865

The resolution of , which is the discretization step , limits the range of the spectrum to .

These relations are easy to remember, because the "interval length" in the one domain places a limit on the "discretization step" in
the other domain. It is very important to keep these relations in mind when working with discrete Fourier transforms! For example,
a common mistake that people make is to try to improve the resolution of a Fourier spectrum by increasing the number of
discretization steps, , while keeping the total interval fixed. This doesn't work; it leaves the spectral resolution unchanged! In
order to improve the spectral resolution, one has to increase the total interval instead.

This page titled 11.2: Spectral Resolution and Range is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D.
Chong via source content that was edited to the style and standards of the LibreTexts platform.

x Δx K = 2π/Δx

N X

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34865?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11%3A_Discrete_Fourier_Transforms/11.02%3A_Spectral_Resolution_and_Range
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

11.3.1 https://phys.libretexts.org/@go/page/34866

11.3: The Split-Step Fourier Method
As an example of the usefulness of the DFT, let us discuss a DFT-based method for performing numerical integration of a partial
differential equation, known as the split-step Fourier method. Here, the method will be presented in the context of the time-
dependent Schrödinger equation in 1D space:

We have taken for simplicity. At each time, the wavefunction is a continuous function of . Let us truncate and
discretize this spatial coordinate, by defining a computational domain of length containing discretization points:

Thus, the wavefunction at each time is represented by a complex vector, which we call a "state vector":

Given an initial state vector , the problem is to compute at a later time . Note that this differs from previously-studied
numerical ODE problems in one important respect: evolving in time involves taking second-order spatial derivatives. We won't go
into the details, but it turns out that standard methods for time-stepping and discretizing space don't work very well here, because
the errors from time-stepping and spatial discretization interact badly with one another. The split-step Fourier method provides a
better way to solve the problem.

11.3.1 Factorizing the Time-Evolution Operator
The split-step Fourier method is based on the concept of the time-evolution operator. Given a wavefunction , the
wavefunction after a small time step is

Here, the refers to the exponential of an operator (one involving spatial derivatives). We call the time-evolution
operator, which evolves the system from time to . The exponential of any operator is defined as the infinite series

In this case, the exponential contains the Hamiltonian, which consists of a kinetic energy term and a potential energy term that do
not generally commute. Due to this non-commutivity, the exponential cannot be simplified by factorization:

However, we can obtain an approximate factorization by making use of the series definition of the exponential of an operator. One
can show that

which is a variant of an important formula known as the Baker–Campbell–Hausdorff formula. On the right-hand side, note that
 is sandwiched "symmetrically" between two copies of . This symmetric arrangement reduces the approximation

error to third order, by the cancellation of lower-order errors (in a manner similar to the mid-point formula for the discretized
derivative). Applying this factorization to the time-evolution operator gives

i = [− +V (x, t)]ψ(x, t)
dψ(x, t)

dt

1
2

∂2

∂x2
(11.3.1)

ℏ =m = 1 x

L N

(t) = ψ(, t), where =− +nΔx, Δx = .ψn xn xn
L

2
L

N
(11.3.2)

(t) = .ψ ⃗

⎛

⎝

⎜⎜
⎜⎜

(t)ψ0

(t)ψ1

⋮
(t)ψN−1

⎞

⎠

⎟⎟
⎟⎟

(11.3.3)

()ψ ⃗ ta ()ψ ⃗ tb tb

ψ(x,)tj
τ

ψ(x, +τ) =U(+τ |)ψ(x,), where U(+τ |) ≈ exp{−iτ [− +V (x, +τ/2)]} .tj tj tj tj tj tj
1
2

∂2

∂x2
tj (11.3.4)

exp(⋯) U(|)tb ta
ta tb A

exp(A) = I+A + + +⋯
1
2

A
2 1

6
A

3 (11.3.5)

exp{−iτ [− +V (x, +τ/2)]} ≠ exp{ []} exp{− iτV (x, +τ/2)}.
1
2

∂2

∂x2
tj

iτ

2
∂2

∂x2
tj (11.3.6)

exp(A +B) = exp(A/2) exp(B) exp(A/2)+O((A,B),)3 (11.3.7)

exp(B) exp(A/2)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34866?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11%3A_Discrete_Fourier_Transforms/11.03%3A_The_Split-Step_Fourier_Method
https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula

11.3.2 https://phys.libretexts.org/@go/page/34866

In other words, the time-evolution operator decomposes into three pieces. That's why we call this a "split-step" algorithm: each
time step from to consists of applying a kinetic step, then applying a potential step, then applying another kinetic step, in
sequence. As previously noted, we'll be working with state vectors (complex -component vectors), defined through spatial
discretization of the wavefunction. So we need to figure out how the above stepping operators act on these state vectors:

The potential stepping operator is simple to deal with. Since the state vector represents the wavefunction at different points in
space, the potential operator is represented by a diagonal matrix, and its exponential is also diagonal:

11.3.2 Kinetic Step

The kinetic stepping operator, , is less obvious. It contains spatial derivatives and is thus not diagonal in the current basis. The
key thing to realize, however, is that this operator is diagonal in wavenumber space. Let us return to the continuous wavefunction,
and write its Fourier representation:

Then

Let us discretize space in steps of , as discussed earlier, and also discretize the Fourier integrals by steps of :

The values of and will be chosen shortly. The discretized integrals become

Let us now choose the -space discretization parameters to be

With this choice, we can show with a bit of algebra that the integral for reduces to an IDFT:

U(+τ |) ≈ ⋅ (+τ/2) ⋅ , where {tj tj UK UV tj UK

UK

(t)UV

= exp[]iτ

4
d2

dx2

= exp[− iτ V (x, t)]
(11.3.8)

tj +τtj
N

= ??, = ??UK ψ ⃗ UV ψ ⃗ (11.3.9)

=UV

⎛

⎝

⎜⎜

ψ0

⋮
ψN−1

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜⎜

exp[−iτV (, t+)]x0
τ
2

⋱
exp[−iτV (, t+)]xN−1

τ
2

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜

ψ0

⋮
ψN−1

⎞

⎠

⎟⎟ (11.3.10)

UK

ψ(x) = .∫
∞

−∞

dk

2π
eikx Ψk (11.3.11)

ψ(x) = exp(−) .UK ∫
∞

−∞

dk

2π
iτ

4
k2 eikx Ψk (11.3.12)

Δx Δk

xn

kn

=− +nΔx,
L

2

=− +nΔk
K

2

(11.3.13)

(11.3.14)

K Δk

ψm

(ψ)UK m

≈ ,∑
n=0

N−1 Δk

2π
eiknxm Ψkn

≈ .∑
n=0

N−1 Δk

2π
e−

iτ

4
k2n eiknxm Ψkn

(11.3.15)

(11.3.16)

k

Δk= = , K =NΔk= ⇒ =− + .
2π

NΔx

2π
L

2π
Δx

kn
π

Δx

2πn
NΔx

(11.3.17)

ψm

ψm

⇒Ψkn

= (−1 ())m
1
N
∑
n=0

N−1 1
Δx

eiNπ/2 e−inπ Ψkn e
2πimn

N

= (−1 IDFT)m { (−1 }
1
Δx

eiNπ/2)n Ψkn
m

=Δx (−1 DFT{(−1e−iNπ/2)n)m ψm}
n

(11.3.18)

(11.3.19)

(11.3.20)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34866?pdf

11.3.3 https://phys.libretexts.org/@go/page/34866

Likewise,

Putting these results together, we get

Hence, the kinetic stepping operator can be implemented by taking a DFT, multiplying the resulting vector elements by
 phase factors, and taking an IDFT. The runtime of the stepping process is . The , , and indices

all run over the range , consistent with the standard definition of the DFT and IDFT.

This page titled 11.3: The Split-Step Fourier Method is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D.
Chong via source content that was edited to the style and standards of the LibreTexts platform.

(ψ = (−1 IDFTUK)m)m { (−1 }
1
Δx

eiNπ/2)ne−
iτ

4
k2n Ψkn

m

(11.3.21)

(ψ = (−1 IDFT{ DFT{(−1UK)m)m e−
iτ

4
k2n)p ψp}

n
}

m

where =− +kn
πN

L

2πn
L

(11.3.22)

(11.3.23)

UK

exp(−iτ /4)k2n O(N log(N)) m n p

[0, 1,⋯ ,N −1]

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34866?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11%3A_Discrete_Fourier_Transforms/11.03%3A_The_Split-Step_Fourier_Method
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

1

CHAPTER OVERVIEW

12: Markov Chains
A Markov chain refers to a sequence (or "chain") of discrete events, generated according to a fixed set of probabilistic rules. The
most important property of these rules is that they can only refer to the current state of the system, and cannot depend on the past
states of the system. Markov chains have numerous applications in physics, mathematics, and computing. In statistical mechanics,
for instance, Markov chains are used to describe the random sequence of micro-states visited by a system undergoing thermal
fluctuations.

12.1: The Simplest Markov Chain- The Coin-Flipping Game
12.2: General Description
12.3: The Ehrenfest Model

This page titled 12: Markov Chains is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source
content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12%3A_Markov_Chains/12.01%3A_The_Simplest_Markov_Chain-_The_Coin-Flipping_Game
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12%3A_Markov_Chains/12.02%3A_General_Description
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12%3A_Markov_Chains/12.03%3A_The_Ehrenfest_Model
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12%3A_Markov_Chains
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

12.1.1 https://phys.libretexts.org/@go/page/34868

12.1: The Simplest Markov Chain- The Coin-Flipping Game

12.1.1 Game Description
Before giving the general description of a Markov chain, let us study a few specific examples of simple Markov chains. One of the
simplest is a "coin-flip" game. Suppose we have a coin which can be in one of two "states": heads (H) or tails (T). At each step, we
flip the coin, producing a new state which is H or T with equal probability. In this way, we generate a sequence like
"HTTHTHTTHH..." If we run the game again, we would generate another different sequence, like "HTTTTHHTTH..." Each of
these sequences is a Markov chain.

This process can be visualized using a "state diagram":

Figure : State diagram for a fair coin-flipping game.

Here, the two circles represent the two possible states of the system, "H" and "T", at any step in the coin-flip game. The arrows
indicate the possible states that the system could transition into, during the next step of the game. Attached to each arrow is a
number giving the probability of that transition. For example, if we are in the state "H", there are two possible states we could
transition into during the next step: "T" (with probability), or "H" (with probability). By conservation of probability, the
transition probabilities coming out of each state must sum up to one.

Next, suppose the coin-flipping game is unfair. The coin might be heavier on one side, so that it is overall more likely to land on H
than T. It might also be slightly more likely to land on the same face that it was flipped from (real coins actually do behave this
way). The resulting state diagram can look like this:

Figure : State diagram for a (particular) unfair coin-flipping game.

Notice that the individual transition probabilities are no longer , reflecting the aforementioned unfair effects. However, the
transition probabilities coming out of each state still sum to (coming out of "H", and coming out of
"T").

12.1.2 State Probabilities
If we play the above unfair game many times, H and T will tend to occur with slightly different probabilities, not exactly equal to

. At a given step, let denote the probability to be in state H, and the probability to be in state T. Let denote the
transition probability for going from H to T, during the next step; and similarly for the other three possible transitions. According to
Bayes' rule, we can write the probability to get H on the next step as

Similarly, the probability to get T on the next step is

We can combine these into a single matrix equation:

12.1.1

0.5 0.5

12.1.2

0.5

1 0.52 +0.48 0.51 +0.49

0.5 pH pT P (T |H)

= P (H|H) +P (H|T) .p′
H

pH pT (12.1.1)

= P (T |H) +P (T |T) .p′
T pH pT (12.1.2)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34868?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12%3A_Markov_Chains/12.01%3A_The_Simplest_Markov_Chain-_The_Coin-Flipping_Game
http://statweb.stanford.edu/~susan/papers/headswithJ.pdf
http://en.wikipedia.org/wiki/Bayes%27_theorem

12.1.2 https://phys.libretexts.org/@go/page/34868

The matrix of transition probabilities is called the transition matrix. At the beginning of the game, we can specify the coin state to
be (say) H, so that and . If we multiply the vector of state probabilities by the transition matrix, that gives the state
probabilities for the next step. Multiplying by the transition matrix times gives the state probabilities after steps.

After a large number of steps, the states probabilities might converge to a "stationary" distribution, such that they no longer change
significantly on subsequent steps. Let these stationary probabilities be denoted by . According to the above equation for
transition probabilities, the stationary probabilities must satisfy

This system of linear equations can be solved by brute force (we'll discuss a more systematic approach later). The result is

Plugging in the numerical values for the transition probabilities, we end up with .

This page titled 12.1: The Simplest Markov Chain- The Coin-Flipping Game is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform.

[] = [][] = [][] .
p′

H

p′
T

P (H|H)

P (T |H)

P (H|T)

P (T |T)

pH

pT

0.52

0.48

0.49

0.51

pH

pT

(12.1.3)

= 1pH = 0pT

K K

{ , }πH πT

[] = [][] .
πH

πT

P (H|H)

P (T |H)

P (H|T)

P (T |T)

πH

πT

(12.1.4)

= , = (stationary distribution).πH

P (H|T)

P (T |H) +P (H|T)
πT

P (T |H)

P (T |H) +P (H|T)
(12.1.5)

= 0.50515, = 0.49485πH πT

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34868?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12%3A_Markov_Chains/12.01%3A_The_Simplest_Markov_Chain-_The_Coin-Flipping_Game
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

12.2.1 https://phys.libretexts.org/@go/page/34869

12.2: General Description

12.2.1 Markov Processes
More generally, suppose we have a system possessing a discrete set of states, which can be labeled by an integer A
Markov process is a set of probabilistic rules that tell us how to choose a new state of the system, based on the system's current
state. If the system is currently in state , then the probability of choosing state on the next step is denoted by . We call
this the "transition probability" from state to state . By repeatedly applying the Markov process, we move the system through a
random sequence of states, , where denotes the state on step . This kind of random sequence is
called a Markov chain.

There is an important constraint on the transition probabilities of the Markov process. Because the system must transition to some
state on each step,

Next, we introduce the idea of state probabilities. Suppose we look at the ensemble of all possible Markov chains which can be
generated by a given Markov process. Let denote the probabilities for the various states, , on
step . Given these, what are the probabilities for the various states on step ? According to Bayes' theorem, we can write

 as a sum over conditional probabilities:

This has the form of a matrix equation:

where the matrix on the right-hand side is called the transition matrix. Each element of this matrix is a real number between and
; furthermore, because of the aforementioned conservation of transition probabilities, each column of the matrix sums to . In

mathematics, matrices of this type are called "left stochastic matrices".

12.2.2 Stationary Distribution
A stationary distribution is a set of state probabilities , such that passing through one step of the Markov process
leaves the probabilities unchanged:

By looking at the equivalent matrix equation, we see the vector must be an eigenvector of the transition matrix,
with eigenvalue 1. It turns out that there is a mathematical theorem (the Perron–Frobenius theorem) which states every left
stochastic matrix has an eigenvector of this sort. Hence, every Markov process possesses a stationary distribution. Stationary
distributions are the main reasons we are interested in Markov processes. In physics, we are often interested in using Markov
processes to model thermodynamic systems, such that a stationary distribution represents the distribution of thermodynamic micro-
states under thermal equilibrium. (We'll see an example in the next section.) Knowing the stationary distribution, we can figure out
all the thermodynamic properties of the system, such as its average energy.

In principle, one way to figure out the stationary distribution is to construct the transition matrix, solve the eigenvalue problem, and
pick out the eigenvector with eigenvalue 1. The trouble is that we are often interested in systems where the number of possible
states is huge—in some cases, larger than the number of atoms in the universe! In such cases, it is not possible to explicitly
generate the transition matrix, let alone solve the eigenvalue problem.

We now come upon a happy and important fact: for a huge class of Markov processes, the distribution of states within a sufficiently
long Markov chain will converge to the stationary distribution. Hence, in order to find out about the stationary distribution, we

0, 1, 2, …

n m P (m|n)
n m

{ , , , , …}n(0) n(1) n(2) n(3) n(k) k

P (m|n) = 1 for all n ∈ {0, 1, …}.∑
m

(12.2.1)

{ , , , …}p
(k)
0 p

(k)
1 p

(k)
2 n = 0, 1, 2, …

k k +1

p
(k+1)
m

= P (m|n) .p
(k+1)
m ∑

n

p
(k)
n (12.2.2)

= ,

⎡

⎣

⎢⎢⎢

p
(k+1)
0

p
(k+1)
1

⋮

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢

P (0|0)

P (1|0)

⋮

P (0|1)

P (1|1)

⋮

⋯

⋯
⎤

⎦

⎥⎥

⎡

⎣

⎢⎢⎢

p
(k)
0

p
(k)
1

⋮

⎤

⎦

⎥⎥⎥
(12.2.3)

0
1 1

{ , , , …}π0 π1 π2

= P (m|n) .πm ∑
n

πn (12.2.4)

[; ; ; …]π0 π1 π2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34869?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12%3A_Markov_Chains/12.02%3A_General_Description
http://en.wikipedia.org/wiki/Perron%E2%80%93Frobenius_theorem

12.2.2 https://phys.libretexts.org/@go/page/34869

simply need to generate a long Markov chain, and study its statistical properties.

This page titled 12.2: General Description is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34869?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12%3A_Markov_Chains/12.02%3A_General_Description
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

12.3.1 https://phys.libretexts.org/@go/page/34870

12.3: The Ehrenfest Model

12.3.1 Model Description
The coin-flipping game is a "two-state" Markov chain. For physics applications, we're often interested in Markov chains where the
number of possible states is huge (e.g. thermodynamic microstates). The Ehrenfest model is a nice and simple example which
illustrates many of the properties of such Markov chains. This model was introduced by the husband-and-wife physicist team of
Paul and Tatyana Ehrenfest in 1907, in order to study the physics of diffusion.

Suppose we have two boxes, labeled A and B, and a total of distinguishable particles to distribute between the two boxes. At a
given point in time, let there be particles in box A, and hence particles in box B. Now, we repeatedly apply the following
procedure:

1. Randomly choose one of the particles (with equal probability).
2. With probability , move the chosen particle from whichever box it happens to be into the other box. Otherwise (with

probability), leave the particle in its current box.

Figure : Schematic of the Ehrenfest model.

If there are particles in box A, then we have probability of choosing a particle in box A, followed by a probability of to
move that particle into box B. Following similar logic for all the other possibilities, we arrive at three possible outcomes:

Move a particle from A to B: probability
Move a particle from B to A: probability
Leave the system unchanged: probability

You can check that (i) the probabilities sum up to , and (ii) this summary holds true for the end-cases and .

12.3.2 Markov Chain Description
We can label the states of the system using an integer , corresponding to the number of particles in box A. There
are possible states, and the state diagram is as follows:

Figure : State diagram for the Ehrenfest model.

Suppose we start out in state , by putting all the particles in box A. As we repeatedly apply the Ehrenfest procedure, the
system goes through a sequence of states, , which can be described as a Markov chain. Plotting the state

 versus the step number , we see a random trajectory like the one below:

N

n N −n

N

q

1 −q

12.3.1

n n/N q

nq/N

(N −n)q/N

1 −q

1 n = N n = 0

n ∈ {0, 1, … , N}

N +1

12.3.2

= Nn0

{ = N , , , , …}n0 n1 n2 n3

nk k

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34870?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12%3A_Markov_Chains/12.03%3A_The_Ehrenfest_Model

12.3.2 https://phys.libretexts.org/@go/page/34870

Figure : Sample trajectory of an Ehrenfest model with and .

Notice that the system moves rapidly away from its initial state, , and settles into a behavior where it fluctuates around the
mid-point state . Let us look for the stationary distribution, in which the probability of being in each state is unchanged on
subsequent steps. Let denote the stationary probability for being in state . According to Bayes' rule, this probability
distribution needs to satisfy

We can figure out using two different methods. The first method is to use our knowledge of statistical mechanics. In the
stationary distribution, each individual particle should have an equal chance of being in box A or box B. There are possible box
assignments, each of which is energetically equivalent and hence have equal probabilities. Hence, the probability of finding
particles in box A is the number of ways of picking particles, which is , divided by the number of possible box assignments.
This gives

Substituting into the Bayes' rule formula, we can verify that this distribution is indeed stationary. Note that turns out to be
independent of (the probability of transferring a chosen particle to the other box). Intuitively, governs how "quickly" we are
transferring particles from one box to the other. Therefore, it should affect how quickly the system reaches its stationary or
"equilibrium" behavior, but not the stationary distribution itself.

12.3.3 Detailed Balance
There is another way to figure out , which doesn't rely on guessing the answer in one shot. Suppose we pick a pair of
neighboring states, and , and assume that the rate at which the transition occurs is the same as the rate at which
the opposite transition, , occurs. Such a condition is not guaranteed to hold, but if it holds for every pair of states, then
the probability distribution is necessarily stationary. This situation is called detailed balance. In terms of the state probabilities and
transition probabilities, detailed balance requires

for this Markov chain. Plugging in the transition probabilities, we obtain the recursion relation

What's convenient about this recursion relation is that it only involves and , unlike the Bayes' rule relation which also
included . By induction, we can now easily show that

By conservation of probability, , we can show that . This leads to

12.3.3 N = 50 q = 0.5

n = 50

n = 25

πn n

πn = P (n|n −1) +P (n|n) +P (n|n +1)πn−1 πn πn+1

= q +(1 −q) + q .
N −n +1

N
πn−1 πn

n +1

N
πn+1

(12.3.1)

(12.3.2)

πn

2N

n

n ()N

n

=() .πn

N

n
2−N (12.3.3)

πn

q q

πn

n n +1 n → n +1

n → n +1

P (n +1|n) = P (n|n +1) ∀n ∈ {0, … , N},πn πn+1 (12.3.4)

= .πn+1
N −n

n +1
πn (12.3.5)

πn πn+1

πn−1

=() .πn

N

n
π0 (12.3.6)

= 1∑n πn =π0 2−N

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34870?pdf

12.3.3 https://phys.libretexts.org/@go/page/34870

which is the result that we'd previously guessed using purely statistical arguments.

For more complicated Markov chains, it may not be possible to guess the stationary distribution; in such cases, the detailed balance
argument is often the best approach. Note, however, that the detailed balance condition is not guaranteed to occur. There are some
Markov chains which do not obey detailed balance, so we always need to verify that the detailed balance condition's result is self-
consistent (i.e., that it can indeed be obeyed for every pair of states).

This page titled 12.3: The Ehrenfest Model is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong
via source content that was edited to the style and standards of the LibreTexts platform.

=() ,πn

N

n
2−N (12.3.7)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34870?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12%3A_Markov_Chains/12.03%3A_The_Ehrenfest_Model
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

1

CHAPTER OVERVIEW

13: The Markov Chain Monte Carlo Method
The Markov Chain Monte Carlo (MCMC) method is a powerful computational technique based on Markov chains, which has
numerous applications in physics as well as computer science.

13.1: Basic Formulation
13.2: The Ising Model

This page titled 13: The Markov Chain Monte Carlo Method is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/13%3A_The_Markov_Chain_Monte_Carlo_Method/13.01%3A_Basic_Formulation
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/13%3A_The_Markov_Chain_Monte_Carlo_Method/13.02%3A_The_Ising_Model
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/13%3A_The_Markov_Chain_Monte_Carlo_Method
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

13.1.1 https://phys.libretexts.org/@go/page/34872

13.1: Basic Formulation
The basic idea behind the MCMC method is simple. Suppose we have a set of states labeled by an integer index ,
where each state is associated with a probability . For example, in statistical mechanics, for a system maintained at a constant
temperature , each state occurs with probability

where is the energy of the state, is Boltzmann's constant, and is the partition function

From , we would like to calculate various expectation values, which describe the thermodynamic properties of the system. For
example, we might be interested in the average energy, which is defined as

The most straightforward way to find is to explicitly calculate the above sum. But if the number of states is very large, this is
prohibitively time-consuming (unless there is a tractable analytic solution, and frequently there isn't). For example, if we are
interested in describing distinct atoms each having possible energy levels, the total number of states is .
Trying to calculate a sum over this mind-boggingly many terms would take longer than the age of the universe.

The MCMC method gets around this problem by selectively sampling the states. To accomplish this, we design a Markov process
whose stationary distribution is identically equal to the given probabilities . We will discuss how to design the Markov process
in the next section. Once we have an appropriate Markov process, we can use it to generate a long Markov chain, and use that chain
to calculate moving averages of our desired quantities, like . If the Markov chain is sufficiently long, the average calculated this
way will converge to the true expectation value .

The key fact which makes all this work is that the required length of the Markov chain is usually much less than the total number of
possible states. For the above-mentioned problem of distinct two-level atoms, there are states, but a Markov chain of as
few as steps can get within several percent of the true value of . (The actual accuracy will vary from system to system.)
The reason for this is that the vast majority of states are extremely unlikely, and their contributions to the sum leading to are
very small. A Markov chain can get a good estimate for by sampling the states that have the highest probabilities, without
spending much time on low-probability states.

13.1.1 The Metropolis Algorithm
The MCMC method requires us to design a Markov process to match a given stationary distribution . This is an open-ended
problem, and generally there are many good ways to accomplish this goal. The most common method, called the Metropolis
algorithm, is based on the principle of detailed balance, which we discussed in the article on Markov chains. To recap, the
principle of detailed balance states that under generic circumstances (which are frequently met in physics), a Markov process's
transition probabilities are related to the stationary distribution by

The Metropolis algorithm specifies the following Markov process:

1. Suppose that on step , the system is in state . Randomly choose a candidate state, , by making an unbiased random step
through the space of possible states. (Just how this choice is made is system-dependent, and we'll discuss this below.)

2. Compare the probabilities and :

If , accept the candidate.
If , accept the candidate with probability . Otherwise, reject the candidate.

3. If the candidate is accepted, the state on step is . Otherwise, the state on step remains .
4. Repeat.

n ∈ {0, 1, 2, …}

πn

T

= ,πn

exp(−)En

kT

Z
(13.1.1)

En k Z

Z = exp(−).∑
n

En

kT
(13.1.2)

{ }πn

⟨E⟩= .∑
n

Enπn (13.1.3)

⟨E⟩

1000 2 ≈21000 10301

πn

⟨E⟩

⟨E⟩

1000 10301

106 ⟨E⟩

⟨E⟩

⟨E⟩

{ }πn

P (n|m) = P (m|n) for all m, n.πm πn (13.1.4)

k n m

πn πm

≥πm πn

<πm πn /πm πn

k +1 m k +1 n

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34872?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/13%3A_The_Markov_Chain_Monte_Carlo_Method/13.01%3A_Basic_Formulation
http://en.wikipedia.org/wiki/Boltzmann_constant
http://en.wikipedia.org/wiki/Moving_average

13.1.2 https://phys.libretexts.org/@go/page/34872

Based on the above description, let us verify that the stationary distribution of the Markov process satisfies the desired detailed-
balance condition. Consider any two states , and assume without loss of generality that . If we start from , suppose
we choose a candidate step with some probability . Then, according to the Metropolis rules, the probability of actually
making this transition, , is times the acceptance probability . On the other hand, suppose we start from instead. Because
the candidate choice is unbiased, we will choose a candidate step with the same probability as in the previous case. Hence,
the transition probability for is times the acceptance probability of . As a result,

Since this reasoning holds for arbitrary , the principle of detailed balance implies that the stationary distribution of our Markov
process follows the desired distribution .

Expression in Terms of Energies
In physics, the MCMC method is commonly applied to thermodynamic states, for which

In such cases, the Metropolis algorithm can be equivalently expressed in terms of the state energies:

1. Suppose that on step , the system is in state . Randomly choose a candidate state, , by making an unbiased random step
through the space of possible states.

2. Compare the energies and :
If , accept the candidate.
If , accept the candidate with probability . Otherwise, reject the candidate.

3. If the candidate is accepted, the state on step is . Otherwise, the state on step remains .
4. Repeat.

13.1.2 Stepping Through State Space
One way of thinking about the Metropolis algorithm is that it takes a scheme for performing an unbiased random walk through the
space of possible states (represented by our candidate choices), and converts it into a scheme for performing a biased random walk.
The biased random walk corresponds to a Markov process with the stationary distribution we are interested in.

The way the Metropolis candidates are chosen (i.e., the "unbiased random walk" part) varies from system to system, and once again
there are multiple valid schemes that we could employ. For example, suppose we have a collection of 6 atoms, where each atom
can be in the level labeled or the level labeled . Each state of the overall system is described by a list of symbols, e.g. .
Then we can make an unbiased walk through the "state space" by randomly choosing one of the atoms (with equal probability),
and flipping it. For example, we might choose to flip the second atom:

If we start from the other state, the reverse process has the same probability:

Hence, this scheme for walking through the "state space" is said to be unbiased. Note that, for a given walking scheme, it is not
always possible to connect every two states by a single step; for example, in this case we can't go from to in one
step.

There is more than one possible walking scheme; for instance, a different scheme could involve randomly choosing two atoms and
flipping them. Whatever scheme we choose, however, the most important thing is that the walk must be unbiased: each possible
step must occur with the same probability as the reverse step. Otherwise, the above proof that the Metropolis algorithm satisfies
detailed balance would not work.

a, b ≤πa πb a

a → b q

a → b q 1 b

b → a q

b → a q /πa πb

{ ⇒ P (a|b) = P (b|a)
P (b|a)

P (a|b)

= q ×1

= q × .
πa

πb

πb πa (13.1.5)

a, b

{ }πn

= .πn

exp(−)En

kT

Z
(13.1.6)

k n m

En Em

≤Em En

>Em En exp[(−)/kT]En Em

k +1 m k +1 n

0 1 6 011001

6

011001 001001 (q = 1/6).⟶
flip second atom

(13.1.7)

001001 011001 (q = 1/6).⟶
flip second atom

(13.1.8)

000000 111111

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34872?pdf

13.1.3 https://phys.libretexts.org/@go/page/34872

This page titled 13.1: Basic Formulation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34872?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/13%3A_The_Markov_Chain_Monte_Carlo_Method/13.01%3A_Basic_Formulation
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

13.2.1 https://phys.libretexts.org/@go/page/34873

13.2: The Ising Model

13.2.1 Problem Statement
To better understand the above general formulation of the MCMC method, let us apply it to the 2D Ising model, a simple and
instructive model which is commonly used to teach statistical mechanics concepts. The system is described by a set of N "spins",
arranged in a 2D square lattice, where the value of each spin is either (spin up) or (spin down). This describes a
hypothetical two-dimensional magnetic material, where the magnetization of each atom is constrained to point either up or down.

Each state can be described by a grid of values. For example, for a grid, a typical state can be represented as

and the total number of possible states is .

The energy of each state is given by

where denotes pairs of spins, on adjacent sites labeled and , which are adjacent to each other on the grid (without double-
counting). We'll assume periodic boundary conditions at the edges of the lattice. Thus, for example,

For each state, we can compute various quantities of interest, such as the mean spin

Here, denotes the average over the lattice, for a given spin configuration. We are then interested in the thermodynamic average
, which is obtained by averaging over a thermodynamic ensemble of spin configurations:

where denotes the probability of a spin configuration:

13.2.2 Metropolis Monte Carlo Simulation
To apply the MCMC method, we design a Markov process using the Metropolis algorithm discussed above. In the context of the
Ising model, the steps are as follows:

1. On step , randomly choose one of the spins, , and consider a candidate move which consists of flipping that spin: .
2. Calculate the change in energy that would result from flipping spin , relative to , i.e. the quantity:

Sn +1 −1

+1/ = 1 4 ×4

{S} = ,

⎧

⎩
⎨

⎪⎪⎪

⎪⎪⎪

+1 +1 +1 −1

+1 −1 −1 +1

−1 +1 +1 −1

−1 +1 −1 −1

⎫

⎭
⎬

⎪⎪⎪

⎪⎪⎪
(13.2.1)

= 65536216

E({S}) = −J ,∑
⟨ij⟩

SiSj (13.2.2)

⟨ij⟩ i j

E = −32J.

⎧

⎩
⎨

⎪⎪⎪

⎪⎪⎪

+1 +1 +1 +1

+1 +1 +1 +1

+1 +1 +1 +1

+1 +1 +1 +1

⎫

⎭
⎬

⎪⎪⎪

⎪⎪⎪
(13.2.3)

E = −24J.

⎧

⎩
⎨

⎪⎪⎪

⎪⎪⎪

+1 +1 −1 +1

+1 +1 +1 +1

+1 +1 +1 +1

+1 +1 +1 +1

⎫

⎭
⎬

⎪⎪⎪

⎪⎪⎪
(13.2.4)

({S}) = .Savg
1

N
∑

i

Si (13.2.5)

avg

⟨ ⟩Savg Savg

⟨ ⟩ = ({S}) π({S}),Savg ∑
possible states {S}

Savg (13.2.6)

π({S})

π({S}) = exp(−).
1

Z

E({S})

kT
(13.2.7)

k i → −Si Si

i kT

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34873?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/13%3A_The_Markov_Chain_Monte_Carlo_Method/13.02%3A_The_Ising_Model

13.2.2 https://phys.libretexts.org/@go/page/34873

where is the change in due to the spin-flip, which is if currently, and if currently. (The reason
we calculate , rather than , is to keep the quantities in our program dimensionless, and to avoid dealing with
very large or very small floating-point numbers. Note also that we can do this calculation without summing over the entire
lattice; we only need to find the values of the spins adjacent to the spin we are considering flipping.)

If , accept the spin-flip.
If , accept the spin-flip with probability . Otherwise, reject the flip.

3. This tells us the state on step of the Markov chain (whether the spin was flipped, or remained as it was). Use this to
update our moving average of (or whatever other average we're interested in).

4. Repeat.

The MCMC method consists of repeatedly applying the above Markov process, starting from some initial state. We can choose
either a "perfectly ordered" initial state, where for all spins, or a "perfectly disordered" state, where each is assigned
either or randomly.

In some systems, the choice of initial state is relatively unimportant; you can choose whatever you want, and leave it to the Markov
chain to reach the stationary distribution. For the Ising model, however, there is a practical reason to prefer a "perfectly ordered"
initial state, for the following reason. Depending on the value of , the Ising model either settles into a "ferromagnetic" phase
where the spins are mostly aligned, or a "paramagnetic" phase where the spins are mostly random. If the model is in the
paramagnetic phase and you start with an ordered (ferromagnetic) initial state, it is easy for the spin lattice to "melt" into disordered
states by flipping individual spins, as shown in Figure :

Figure : Progress of a Monte Carlo simulation of an Ising model with an ordered initial state, for a lattice with
. The ordered spin lattice "melts" into a disordered configuration, which is the thermodynamic equilibrium for this

value of .

In the ferromagnetic phase, however, if you start with a disordered initial state, the spin lattice will "freeze" by aligning adjacent
spins. When this happens, large domains with opposite spins will form, as shown in Figure . These separate domains cannot
be easily aligned by flipping individual spins, and as a result the Markov chain gets "trapped" in this part of the state space for a
long time, failing to access the more energetically favorable set of states where most of the spins form a single aligned domain.
(The simulation will eventually get unstuck, but only if you wait a very long time.) The presence of domains will bias the
calculation of , because the spins in different domains will cancel out. Hence, in this situation is better to start the MCMC
simulation in an ordered state.

Q ≡ = −[]Δ ,
ΔE

kT

J

kT
∑

j next to i

Sj Si (13.2.8)

ΔSi Si −2 = 1Si +2 = −1Si

Q ≡ ΔE/kT ΔE

Q ≤ 0

Q > 0 exp(−Q)

k +1

Savg

= +1Si Si

+1 −1

J/kT

13.2.1

13.2.1 30 × 30
J/kT = 0.25

J/kT = 0.25

13.2.2

Savg

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34873?pdf

13.2.3 https://phys.libretexts.org/@go/page/34873

Figure : Progress of a Monte Carlo simulation of an Ising model with a disordered initial configuration, for a lattice
with . As the disordered spin lattice "freezes", it forms long-lasting domains which can interfere with calculations of

.

This page titled 13.2: The Ising Model is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via
source content that was edited to the style and standards of the LibreTexts platform.

13.2.2 30 × 30
J/kT = 1

Savg

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/34873?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/13%3A_The_Markov_Chain_Monte_Carlo_Method/13.02%3A_The_Ising_Model
https://creativecommons.org/licenses/by-sa/4.0
http://www1.spms.ntu.edu.sg/~ydchong/index.html
http://www1.spms.ntu.edu.sg/~ydchong/teaching.html

1 https://phys.libretexts.org/@go/page/34936

Index
C
characteristic polynomial

6.1: Basic Facts about Eigenvalue Problems

D
defective matrix

6.1: Basic Facts about Eigenvalue Problems
diagonalization

6.1: Basic Facts about Eigenvalue Problems
discrete Fourier transform

11: Discrete Fourier Transforms

E
eigensolvers

6.2: Numerical Eigensolvers
eigenvalue problem

6: Eigenvalue Problems

G
Gaussian elimination

5: Gaussian Elimination
generalized eigenvalue problem

6.2: Numerical Eigensolvers

H
Hermitian

6.1: Basic Facts about Eigenvalue Problems

M
Markov Chain Monte Carlo

13: The Markov Chain Monte Carlo Method

https://libretexts.org/
https://phys.libretexts.org/@go/page/34936?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/zz%3A_Back_Matter/10%3A_Index
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06%3A_Eigenvalue_Problems/6.01%3A_Basic_Facts_about_Eigenvalue_Problems
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06%3A_Eigenvalue_Problems/6.01%3A_Basic_Facts_about_Eigenvalue_Problems
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06%3A_Eigenvalue_Problems/6.01%3A_Basic_Facts_about_Eigenvalue_Problems
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11%3A_Discrete_Fourier_Transforms
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06%3A_Eigenvalue_Problems/6.02%3A_Numerical_Eigensolvers
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06%3A_Eigenvalue_Problems
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06%3A_Eigenvalue_Problems/6.02%3A_Numerical_Eigensolvers
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06%3A_Eigenvalue_Problems/6.01%3A_Basic_Facts_about_Eigenvalue_Problems
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/13%3A_The_Markov_Chain_Monte_Carlo_Method

1 https://phys.libretexts.org/@go/page/34937

Glossary
Sample Word 1 | Sample Definition 1

https://libretexts.org/
https://phys.libretexts.org/@go/page/34937?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/zz%3A_Back_Matter/20%3A_Glossary

1 https://phys.libretexts.org/@go/page/65372

Detailed Licensing

Overview
Title: Computational Physics (Chong)

Webpages: 67

All licenses found:

CC BY-SA 4.0: 86.6% (58 pages)
Undeclared: 13.4% (9 pages)

By Page

Computational Physics (Chong) - CC BY-SA 4.0
Front Matter - Undeclared

TitlePage - Undeclared
InfoPage - Undeclared
Table of Contents - Undeclared
Licensing - Undeclared

1: Scipy Tutorial - CC BY-SA 4.0
1.1: Preliminaries - CC BY-SA 4.0
1.2: Getting Started - CC BY-SA 4.0
1.3: Modularizing the Code - CC BY-SA 4.0

2: Scipy Tutorial (Part 2) - CC BY-SA 4.0

2.1: Sequential Data Structures - CC BY-SA 4.0
2.2: Improving the Program - CC BY-SA 4.0

3: Numbers, Arrays, and Scaling - CC BY-SA 4.0
3.1: A Model of Computing - CC BY-SA 4.0
3.2: Integers and Floating-Point Numbers - CC BY-SA
4.0
3.3: Arrays - CC BY-SA 4.0
3.4: Exercises - CC BY-SA 4.0

4: Numerical Linear Algebra - CC BY-SA 4.0
4.1: Array Representations of Vectors, Matrices, and
Tensors - CC BY-SA 4.0
4.2: Linear Equations - CC BY-SA 4.0
4.3: Exercises - CC BY-SA 4.0

5: Gaussian Elimination - CC BY-SA 4.0
5.1: The Basic Algorithm - CC BY-SA 4.0
5.2: Matrix Generalization - CC BY-SA 4.0
5.3: Pivoting - CC BY-SA 4.0
5.4: LU Decomposition - CC BY-SA 4.0

6: Eigenvalue Problems - CC BY-SA 4.0
6.1: Basic Facts about Eigenvalue Problems - CC BY-
SA 4.0
6.2: Numerical Eigensolvers - CC BY-SA 4.0

7: Finite-Difference Equations - CC BY-SA 4.0

7.1: Derivatives - CC BY-SA 4.0
7.2: Discretizing Partial Differential Equations - CC
BY-SA 4.0

7.3: Higher Dimensions - CC BY-SA 4.0
8: Sparse Matrices - CC BY-SA 4.0

8.1: Sparse Matrix Algebra - CC BY-SA 4.0
8.2: Sparse Matrix Formats - CC BY-SA 4.0
8.3: Using Sparse Matrices - CC BY-SA 4.0
8.4: Example- Particle-in-a-Box Problem - CC BY-SA
4.0

9: Numerical Integration - CC BY-SA 4.0
9.1: Mid-Point Rule - CC BY-SA 4.0
9.2: Trapezium Rule - CC BY-SA 4.0
9.3: Simpson's Rule - CC BY-SA 4.0
9.4: Gaussian Quadratures - CC BY-SA 4.0
9.5: Monte Carlo Integration - CC BY-SA 4.0

10: Numerical Integration of ODEs - CC BY-SA 4.0

10.1: Example- Equations of Motion in Classical
Mechanics - CC BY-SA 4.0
10.2: Forward Euler Method - CC BY-SA 4.0
10.3: Backward Euler Method - CC BY-SA 4.0
10.4: Adams-Moulton Method - CC BY-SA 4.0
10.5: Runge-Kutta Methods - CC BY-SA 4.0
10.6: Integrating ODEs with Scipy - CC BY-SA 4.0

11: Discrete Fourier Transforms - CC BY-SA 4.0
11.1: Conversion of Continuous Fourier Transform to
DFT - CC BY-SA 4.0
11.2: Spectral Resolution and Range - CC BY-SA 4.0
11.3: The Split-Step Fourier Method - CC BY-SA 4.0

12: Markov Chains - CC BY-SA 4.0
12.1: The Simplest Markov Chain- The Coin-
Flipping Game - CC BY-SA 4.0
12.2: General Description - CC BY-SA 4.0
12.3: The Ehrenfest Model - CC BY-SA 4.0

13: The Markov Chain Monte Carlo Method - CC BY-SA
4.0

13.1: Basic Formulation - CC BY-SA 4.0
13.2: The Ising Model - CC BY-SA 4.0

Back Matter - Undeclared
Index - Undeclared

https://libretexts.org/
https://phys.libretexts.org/@go/page/65372?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/zz%3A_Back_Matter/30%3A_Detailed_Licensing
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/00%3A_Front_Matter
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/00%3A_Front_Matter/01%3A_TitlePage
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/00%3A_Front_Matter/02%3A_InfoPage
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/00%3A_Front_Matter/03%3A_Table_of_Contents
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/00%3A_Front_Matter/04%3A_Licensing
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01%3A_Scipy_Tutorial
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01%3A_Scipy_Tutorial/1.01%3A_Preliminaries
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01%3A_Scipy_Tutorial/1.02%3A_Getting_Started
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/01%3A_Scipy_Tutorial/1.03%3A_Modularizing_the_Code
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/02%3A_Scipy_Tutorial_(Part_2)
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/02%3A_Scipy_Tutorial_(Part_2)/2.01%3A_Sequential_Data_Structures
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/02%3A_Scipy_Tutorial_(Part_2)/2.02%3A_Improving_the_Program
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling/3.01%3A_A_Model_of_Computing
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling/3.02%3A_Integers_and_Floating-Point_Numbers
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling/3.03%3A_Arrays
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/03%3A_Numbers_Arrays_and_Scaling/3.04%3A_Exercises
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04%3A_Numerical_Linear_Algebra
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04%3A_Numerical_Linear_Algebra/4.01%3A_Array_Representations_of_Vectors_Matrices_and_Tensors
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04%3A_Numerical_Linear_Algebra/4.02%3A_Linear_Equations
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/04%3A_Numerical_Linear_Algebra/4.03%3A_Exercises
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination/5.01%3A_The_Basic_Algorithm
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination/5.02%3A_Matrix_Generalization
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination/5.03%3A_Pivoting
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/05%3A_Gaussian_Elimination/5.04%3A_LU_Decomposition
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06%3A_Eigenvalue_Problems
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06%3A_Eigenvalue_Problems/6.01%3A_Basic_Facts_about_Eigenvalue_Problems
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/06%3A_Eigenvalue_Problems/6.02%3A_Numerical_Eigensolvers
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07%3A_Finite-Difference_Equations
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07%3A_Finite-Difference_Equations/7.01%3A_Derivatives
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07%3A_Finite-Difference_Equations/7.02%3A_Discretizing_Partial_Differential_Equations
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/07%3A_Finite-Difference_Equations/7.03%3A_Higher_Dimensions
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.01%3A_Sparse_Matrix_Algebra
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.02%3A_Sparse_Matrix_Formats
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.03%3A_Using_Sparse_Matrices
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.04%3A_Example-_Particle-in-a-Box_Problem
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.01%3A_Mid-Point_Rule
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.02%3A_Trapezium_Rule
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.03%3A_Simpson's_Rule
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.04%3A_Gaussian_Quadratures
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/09%3A_Numerical_Integration/9.05%3A_Monte_Carlo_Integration
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.01%3A_Example-_Equations_of_Motion_in_Classical_Mechanics
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.02%3A_Forward_Euler_Method
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.03%3A_Backward_Euler_Method
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.04%3A_Adams-Moulton_Method
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.05%3A_Runge-Kutta_Methods
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/10%3A_Numerical_Integration_of_ODEs/10.06%3A_Integrating_ODEs_with_Scipy
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11%3A_Discrete_Fourier_Transforms
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11%3A_Discrete_Fourier_Transforms/11.01%3A_Conversion_of_Continuous_Fourier_Transform_to_DFT
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11%3A_Discrete_Fourier_Transforms/11.02%3A_Spectral_Resolution_and_Range
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11%3A_Discrete_Fourier_Transforms/11.03%3A_The_Split-Step_Fourier_Method
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12%3A_Markov_Chains
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12%3A_Markov_Chains/12.01%3A_The_Simplest_Markov_Chain-_The_Coin-Flipping_Game
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12%3A_Markov_Chains/12.02%3A_General_Description
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/12%3A_Markov_Chains/12.03%3A_The_Ehrenfest_Model
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/13%3A_The_Markov_Chain_Monte_Carlo_Method
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/13%3A_The_Markov_Chain_Monte_Carlo_Method/13.01%3A_Basic_Formulation
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/13%3A_The_Markov_Chain_Monte_Carlo_Method/13.02%3A_The_Ising_Model
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/zz%3A_Back_Matter
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/zz%3A_Back_Matter/10%3A_Index

2 https://phys.libretexts.org/@go/page/65372

Glossary - Undeclared
Detailed Licensing - Undeclared

https://libretexts.org/
https://phys.libretexts.org/@go/page/65372?pdf
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/zz%3A_Back_Matter/20%3A_Glossary
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/zz%3A_Back_Matter/30%3A_Detailed_Licensing

