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9.3: Gravitational Radiation (Part 2)

In this section we study several examples of exact solutions to the field equations. Each of these can readily be shown not to be a
mere coordinate wave, since in each case the Riemann tensor has nonzero elements.

Example 1: An exact solution

We’ve already seen, e.g., in the derivation of the Schwarzschild metric in section 6.2, that once we have an approximate
solution to the equations of general relativity, we may be able to find a series solution. Historically this approach was only used
as a last resort, because the lack of computers made the calculations too complex to handle, and the tendency was to look for
tricks that would make a closed-form solution possible. But today the series method has the advantage that any mere mortal
can have some reasonable hope of success with it — and there is nothing more boring (or demoralizing) than laboriously
learning someone else’s special trick that only works for a specific problem. In this example, we’ll see that such an approach
comes tantalizingly close to providing an exact, oscillatory plane wave solution to the field equations.

Our best solution so far was of the form
2 2 2 dy® 2

where f = Asin(z — t). This doesn’t seem likely to be an exact solution for large amplitudes, since the x and y coordinates are
treated asymmetrically. In the extreme case of [A| > 1, there would be singularities in gyy, but not in gxy. Clearly the metric will
have to have some kind of nonlinear dependence on f, but we just haven’t found quite the right nonlinear dependence. Suppose
we try something of this form:

ds* =dt> — (14 f +cf?)dz? — (1 — f +df?)dy® —d2* (9.2.7)

This approximately conserves volume, since (1+f +. . .)(1-f +. . .) equals unity, up to terms of order f2. The following program
tests this form.

1 load(ctensor) ;

2  ct_coords:[t,x,y,2z];

3 £ : Axexp(lixk*(z-t));

4 lg:matrix([1,0,0,0],

5 [0,-(1+f+c*£°2),0,0],

6 [0,0,-(1-f+d*f"2),0],
7 [0,0,0,-1]);

8 cmetric();

9 einstein(true);

In line 3, the motivation for using the complex exponential rather than a sine wave in f is the usual one of obtaining simpler
expressions; as we’ll see, this ends up causing problems. In lines 5 and 6, the symbols c and d have not been defined, and have
not been declared as depending on other variables, so Maxima treats them as unknown constants. The result is Gy ~ (4d + 4c —
3)A? for small A, so we can make the A2 term disappear by an appropriate choice of d and c. For symmetry, we choose ¢ = d =
%. With these values of the constants, the result for G, is of order A% This technique can be extended to higher and higher

orders of approximation, resulting in an exact series solution to the field equations.

Unfortunately, the whole story ends up being too good to be true. The resulting metric has complex-valued elements. If general
relativity were a linear field theory, then we could apply the usual technique of forming linear combinations of expressions of
the form e*~ and e7, so as to give a real result. But the field equations of general relativity are nonlinear, so the resulting
linear combination is no longer a solution. The best we can do is to make a non-oscillatory real exponential solution (problem
2).
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Example 2: An exact, oscillatory, non-monochromatic solution

Assume a metric of the form
ds* = dt* —p(z—t)*dz® —q(z—t)°dy* —d2?, ... (9.2.8)

where p and q are arbitrary functions. Such a metric would clearly represent some kind of transverse-polarized plane wave
traveling at velocity c(= 1) in the z direction. The following Maxima code calculates its Einstein tensor.

1  load(ctensor);

2  ct_coords: [t,x,y,z];

3 depends(p, [z,t]);

4  depends(q, [z,t]);

5 lg:matrix([1,0,0,0],

6 [0,-p~2,0,0],
7 [0,0,-972,0],
8 [0,0,0,-1]1);
9 cmetric();

10 einstein(true);

The result is proportional to % + % , s0 any functions p and q that satisfy the differential equation % + % = 0 will result in a
solution to the field equations. Setting p(u) = 1 + Acos u, for example, we find that q is oscillatory, but with a period longer
than 27 (problem 3).

Example 3: An exact, plane, monochromatic wave

Any metric of the form
ds® = (1 —h)dt* —da’® — dy® — (1 +h)dz* + 2hdzdt, (9.2.9)
where h = f(z — t)xy, and f is any function, is an exact solution of the field equations (problem 4).

Because h is proportional to xy, this does not appear at first glance to be a uniform plane wave. One can verify, however, that
all the components of the Riemann tensor depend only on z — t, not on x or y. Therefore there is no measurable property of this
metric that varies with x and y.

Rate of Radiation

How can we find the rate of gravitational radiation from a system such as the Hulse-Taylor pulsar?

Let’s proceed by analogy. The simplest source of sound waves is something like the cone of a stereo speaker. Since typical sound
waves have wavelengths measured in meters, the entire speaker is generally small compared to the wavelength. The speaker cone is
a surface of oscillating displacement \(x = x_,, \sin \omega t\). Idealizing such a source to a radially pulsating spherical surface, we
have an oscillating monopole that radiates sound waves uniformly in all directions. To find the power radiated, we note that the
velocity of the source-surface is proportional to x,w, so the kinetic energy of the air immediately in contact with it is proportional
to w?x2. The power radiated is therefore proportional to w?2z:2.
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Figure 9.3.7: The power emitted by a multipole source of order m is proportional to w?™*+1) | when the size of the source is small
compared to the wavelength. The main reason for the o dependence is that at low frequencies, the wavelength is long, so the
number of wavelengths traveled to a particular point in space is nearly the same from any point in the source; we therefore get
strong cancellation.
In electromagnetism, conservation of charge forbids the existence of an oscillating electric monopole. The simplest radiating source
is therefore an oscillating electric dipole D = D, sin wt. If the dipole’s physical size is small compared to a wavelength of the
radiation, then the radiation is an inefficient process; at any point in space, there is only a small difference in path length between
the positive and negative portions of the dipole, so there tends to be strong cancellation of their contributions, which were emitted
with opposite phases. The result is that the wave’s electromagnetic potential four-vector (Section 4.2) is proportional to Dw, the
fields to D,w?, and the radiated power to D?w*. The factor of w* can be broken down into (w?)(w?), where the first factor of w?
occurs for reasons similar to the ones that explain the w? factor for the monopole radiation of sound, while the second w? arises
because the smaller o is, the longer the wavelength, and the greater the inefficiency in radiation caused by the small size of the
source compared to the wavelength.

Example 4: am radio

Commercial AM radio uses wavelengths of several hundred meters, so AM dipole antennas are usually orders of magnitude
shorter than a wavelength. This causes severe attenuation in both transmission and reception. (There are theorems called
reciprocity theorems that relate efficiency of transmission to efficiency of reception.) Receivers therefore need to use of a large
amount of amplification. This doesn’t cause problems, because the ambient sources of RF noise are attenuated by the short
antenna just as severely as the signal.

Since our universe doesn’t seem to have particles with negative mass, we can’t form a gravitational dipole by putting positive and
negative masses on opposite ends of a stick — and furthermore, such a stick will not spin freely about its center, because its center
of mass does not lie at its center! In a more realistic system, such as the Hulse-Taylor pulsar, we have two unequal masses orbiting
about their common center of mass. By conservation of momentum, the mass dipole moment of such a system is constant, so we
cannot have an oscillating mass dipole. The simplest source of gravitational radiation is therefore an oscillating mass quadrupole, Q
= Qo sin wt. As in the case of the oscillating electric dipole, the radiation is suppressed if, as is usually the case, the source is small
compared to the wavelength. The suppression is even stronger in the case of a quadrupole, and the result is that the radiated power
is proportional to Q?wS.

This result has the interesting property of being invariant under a rescaling of coordinates. In geometrized units, mass, distance, and
time all have the same units, so that Q?, has units of (length®)? while w% has units of (length)™®. This is exactly what is required,
because in geometrized units, power is unitless, energy/time = length/length = 1.

We can also tie the wS dependence to our earlier argument for the dissipation of energy by gravitational waves. The argument was
that gravitating bodies are subject to time-delayed gravitational forces, with the result that orbits tend to decay. This argument only
works if the forces are time-varying; if the forces are constant over time, then the time delay has no effect. For example, in the
semi-Newtonian limit the field of a sheet of mass is independent of distance from the sheet. (The electrical analog of this fact is
easily proved using Gauss’s law.) If two parallel sheets fall toward one another, then neither is subject to a time-varying force, so
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there will be no radiation. In general, we expect that there will be no gravitational radiation from a particle unless the third
derivative of its position d3 x/ dt 3 is nonzero. (The same is true for electric quadrupole radiation.) In the special case where the
position oscillates sinusoidally, the chain rule tells us that taking the third derivative is equivalent to bringing out a factor of w3.

dz 6

3
Since the amplitude of gravitational waves is proportional to Y their energy varies as (%)z, or w’.

The general pattern we have observed is that for multipole radiation of order m (0=monopole, 1=dipole, 2=quadrupole), the
radiated power depends on w?(m 1) Since gravitational radiation must always have m = 2 or higher, we have the very steep w®
dependence of power on frequency. This demonstrates that if we want to see strong gravitational radiation, we need to look at
systems that are oscillating extremely rapidly. For a binary system with unequal masses of order m, with orbits having radii of
order r, we have Q, ~ mr? . Newton’s laws give w ~ m'?r"%2, which is essentially Kepler’s law of periods. The result is that the
radiated power should depend on (%)5. Reinserting the proper constants to give an equation that allows practical calculation in SI
units, we have

P:kG—4(ﬁ)5, (9.2.10)

where Kk is a unitless constant of order unity.

For the Hulse-Taylor pulsar,'> we have m ~ 3 x 10%° kg (about one and a half solar masses) and r ~ 10° m. The binary pulsar is
made to order our purposes, since == is extremely large compared to what one sees in almost any other astronomical system. The
resulting estimate for the power is about 10%* watts. The pulsar’s period is observed to be steadily lengthening at a rate of a =
2.418 x 107'2 seconds per second. To compare this with our crude theoretical estimate, we take the Newtonian energy of the system
ngz and multiply by we, giving 10*®> W, which checks to within an order of magnitude. A full general-relativistic calculation
reproduces the observed value of a to within the 0.1% error bars of the data.
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