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3.7: The Metric (Part 2)

Isometry, Inner Products, and the Erlangen Program

In Euclidean geometry, the dot product of vectors a and b is given by

and in the special case where a = b we have the squared magnitude. In the tensor notation,

Like magnitudes, dot products are invariant under rotations. This is because knowing the dot product of vectors a and b entails
knowing the value of

and Euclid’s E4 (equality of right angles) implies that the angle  is invariant. The same axioms also entail invariance of dot
products under translation; Euclid waits only until the second proposition of the Elements to prove that line segments can be copied
from one location to another. This seeming triviality is actually false as a description of physical space, because it amounts to a
statement that space has the same properties everywhere.

The set of all transformations that can be built out of successive translations, rotations, and reflections is called the group of
isometries. It can also be defined as the group that preserves dot products, or the group that preserves congruence of triangles.

In mathematics, a group is defined as a binary operation that has an identity, inverses, and associativity. For example, addition
of integers is a group. In the present context, the members of the group are not numbers but the transformations applied to the
Euclidean plane. The group operation on transformations T  and T  consists of finding the transformation that results from
doing one and then the other, i.e., composition of functions.

In Lorentzian geometry, we usually avoid the Euclidean term dot product and refer to the corresponding operation by the more
general term inner product. In a specific coordinate system we have

The inner product is invariant under Lorentz boosts, and also under the Euclidean isometries. The group found by making all
possible combinations of continuous transformations from these two sets is called the Poincaré group. The Poincaré group is not
the symmetry group of all of spacetime, since curved spacetime has different properties in different locations. The equivalence
principle tells us, however, that space can be approximated locally as being flat, so the Poincaré group is locally valid, just as the
Euclidean isometries are locally valid as a description of geometry on the Earth’s curved surface.

The discontinuous transformations of spatial reflection and time reversal are not included in the definition of the Poincaré
group, although they do preserve inner products. General relativity has symmetry under spatial reflection (called  for parity),
time reversal ( ), and charge inversion ( ), but the standard model of particle physics is only invariant under the composition
of all three, CPT, not under any of these symmetries individually.

In Euclidean geometry, the triangle inequality |b + c| < |b| + |c| follows from

The reason this quantity always comes out positive is that for two vectors of fixed magnitude, the greatest dot product is
always achieved in the case where they lie along the same direction.

In Lorentzian geometry, the situation is different. Let b and c be timelike vectors, so that they represent possible world-lines.
Then the relation a = b + c suggests the existence of two observers who take two different paths from one event to another. A
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Example 16: The triangle inequality

(|b| + |c| −(b +c) ⋅ (b +c) = 2(|b||c| −b ⋅ c) ≥ 0.)2 (3.7.5)
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goes by a direct route while B takes a detour. The magnitude of each timelike vector represents the time elapsed on a clock
carried by the observer moving along that vector. The triangle equality is now reversed, becoming |b + c| > |b| + |c|. The
difference from the Euclidean case arises because inner products are no longer necessarily maximized if vectors are in the same
direction. E.g., for two lightlike vectors, b c  vanishes entirely if b and c are parallel. For timelike vectors, parallelism actually
minimizes the inner product rather than maximizing it.

Let b and c be parallel and timelike, and directed forward in time. Adopt a frame of reference in which every spatial
component of each vector vanishes. This entails no loss of generality, since inner products are invariant under such a
transformation. Since the time-ordering is also preserved under transformations in the Poincaré group, each is still directed
forward in time, not backward. Now let b and c be pulled away from parallelism, like opening a pair of scissors in the x − t
plane. This reduces b c , while causing b c  to become negative. Both effects increase the inner product.

In his 1872 inaugural address at the University of Erlangen, Felix Klein used the idea of groups of transformations to lay out a
general classification scheme, known as the Erlangen program, for all the different types of geometry. Each geometry is described
by the group of transformations, called the principal group, that preserves the truth of geometrical statements. Euclidean geometry’s
principal group consists of the isometries combined with arbitrary changes of scale, since there is nothing in Euclid’s axioms that
singles out a particular distance as a unit of measurement. In other words, the principal group consists of the transformations that
preserve similarity, not just those that preserve congruence. Affine geometry’s principal group is the transformations that preserve
parallelism; it includes shear transformations, and there is therefore no invariant notion of angular measure or congruence. Unlike
Euclidean and affine geometry, elliptic geometry does not have scale invariance. This is because there is a particular unit of
distance that has special status; as we saw in example 4, a being living in an elliptic plane can determine, by entirely intrinsic
methods, a distance scale R, which we can interpret in the hemispherical model as the radius of the sphere. General relativity
breaks this symmetry even more severely. Not only is there a scale associated with curvature, but the scale is different from one
point in space to another.

Einstein's Carousel

Non-Euclidean Geometry Observed in the Rotating Frame

The following example was historically important, because Einstein used it to convince himself that general relativity should be
described by non-Euclidean geometry.  Its interpretation is also fairly subtle, and the early relativists had some trouble with it.

The example is described in Einstein’s paper “The Foundation of the General Theory of Relativity.” An excerpt, which
includes the example, is given in Appendix A.

Suppose that observer A is on a spinning carousel while observer B stands on the ground. B says that A is accelerating, but by the
equivalence principle A can say that she is at rest in a gravitational field, while B is free-falling out from under her. B measures the
radius and circumference of the carousel, and finds that their ratio is 2 . A carries out similar measurements, but when she puts her
meter-stick in the azimuthal direction it becomes Lorentz-contracted by the factor , so she finds that the ratio is
greater than 2 . In A’s coordinates, the spatial geometry is non-Euclidean, and the metric differs from the Euclidean one found in
example 8.
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Figure : Observer A, rotating with the carousel, measures an azimuthal distance with a ruler.

Observer A feels a force that B considers to be fictitious, but that, by the equivalence principle, A can say is a perfectly real
gravitational force. According to A, an observer like B is free-falling away from the center of the disk under the influence of this
gravitational field. A also observes that the spatial geometry of the carousel is non-Euclidean. Therefore it seems reasonable to
conjecture that gravity can be described by non-Euclidean geometry, rather than as a physical force in the Newtonian sense.

At this point, you know as much about this example as Einstein did in 1912, when he began using it as the seed from which general
relativity sprouted, collaborating with his old schoolmate, mathematician Marcel Grossmann, who knew about differential
geometry. The remainder of this subsection, which you may want to skip on a first reading, goes into more detail on the
interpretation and mathematical description of the rotating frame of reference. Even more detailed treatments are given by Grøn
and Dieks.

Ehrenfest’s Paradox

Ehrenfest  described the following paradox. Suppose that observer B, in the lab frame, measures the radius of the disk to be r
when the disk is at rest, and r' when the disk is spinning. B can also measure the corresponding circumferences C and C'. Because B
is in an inertial frame, the spatial geometry does not appear non-Euclidean according to measurements carried out with his meter
sticks, and therefore the Euclidean relations C = 2 r and C' = 2 r' both hold. The radial lines are perpendicular to their own
motion, and they therefore have no length contraction, r = r', implying C = C'. The outer edge of the disk, however, is everywhere
tangent to its own direction of motion, so it is Lorentz contracted, and therefore C' < C. The resolution of the paradox is that it rests
on the incorrect assumption that a rigid disk can be made to rotate. If a perfectly rigid disk was initially not rotating, one would
have to distort it in order to set it into rotation, because once it was rotating its outer edge would no longer have a length equal to 2

 times its radius. Therefore if the disk is perfectly rigid, it can never be rotated. As discussed earlier, relativity does not allow the
existence of infinitely rigid or infinitely strong materials. If it did, then one could violate causality. If a perfectly rigid disk existed,
vibrations in the disk would propagate at infinite velocity, so tapping the disk with a hammer in one place would result in the
transmission of information at v > c to other parts of the disk, and then there would exist frames of reference in which the
information was received before it was transmitted. The same applies if the hammer tap is used to impart rotational motion to the
disk.

Figure : Einstein and Ehrenfest.
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Self-check: What if we build the disk by assembling the building materials so that they are already rotating properly before
they are joined together?

The Metric in the Rotating Frame

What if we try to get around these problems by applying torque uniformly all over the disk, so that the rotation starts smoothly and
simultaneously everywhere? We then run into issues identical to the ones raised by Bell’s spaceship paradox. In fact, Ehrenfest’s
paradox is nothing more than Bell’s paradox wrapped around into a circle. The same question of time synchronization comes up.

To spell this out mathematically, let’s find the metric according to observer A by applying the change of coordinates .
First we take the Euclidean metric of example 8 and rewrite it as a (globally) Lorentzian metric in spacetime for observer B,

Applying the transformation into A’s coordinates, we find

Recognizing ωr as the velocity of one frame relative to another, and  as , we see that we do have a relativistic time
dilation effect in the  term. But the  and d  terms look Euclidean. Why don’t we see any Lorentz contraction of the length
scale in the azimuthal direction?

The answer is that coordinates in general relativity are arbitrary, and just because we can write down a certain set of coordinates,
that doesn’t mean they have any special physical interpretation. The coordinates  do not correspond physically to the
quantities that A would measure with clocks and meter-sticks. The tip-off is the d  dt cross-term. Suppose that A sends two cars
driving around the circumference of the carousel, one clockwise and one counterclockwise, from the same point. If (t, r, )
coordinates corresponded to clock and meter-stick measurements, then we would expect that when the cars met up again on the far
side of the disk, their dashboards would show equal values of the arc length r  on their odometers and equal proper times ds on
their clocks. But this is not the case, because the sign of the d  dt term is opposite for the two world-lines. The same effect occurs
if we send beams of light in both directions around the disk, and this is the Sagnac effect.

This is a symptom of the fact that the coordinate t is not properly synchronized between different places on the disk. We already
know that we should not expect to be able to find a universal time coordinate that will match up with every clock, regardless of the
clock’s state of motion. Suppose we set ourselves a more modest goal. Can we find a universal time coordinate that will match up
with every clock, provided that the clock is at rest relative to the rotating disk?

The Spatial Metric and Synchronization of Clocks

A trick for improving the situation is to eliminate the  cross-term by completing the square in the metric (Equation ).
The result is

The interpretation of the quantity in square brackets is as follows. Suppose that two observers situate themselves on the edge of the
disk, separated by an infinitesimal angle d . They then synchronize their clocks by exchanging light pulses. The time of flight,
measured in the lab frame, for each light pulse is the solution of the equation ds  = 0, and the only difference between the
clockwise result dt  and the counterclockwise one dt  arises from the sign of d . The quantity in square brackets is the same in
both cases, so the amount by which the clocks must be adjusted is

or

Substituting this into the metric, we are left with the purely spatial metric

Exercise 3.7.1
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The factor of  in the d  term is simply the expected Lorentz-contraction factor. In other words, the
circumference is, as expected, greater than 2 r by a factor of .

Does the metric (Equation ) represent the same non-Euclidean spatial geometry that , rotating with the disk, would
determine by meterstick measurements? Yes and no. It can be interpreted as the one that A would determine by radar
measurements. That is, if A measures a round-trip travel time dt for a light signal between points separated by coordinate distances
dr and d , then A can say that the spatial separation is , and such measurements will be described correctly by Equation .
Physical meter-sticks, however, present some problems. Meter-sticks rotating with the disk are subject to Coriolis and centrifugal
forces, and this problem can’t be avoided simply by making the meter-sticks infinitely rigid, because infinitely rigid objects are
forbidden by relativity. In fact, these forces will inevitably be strong enough to destroy any meter stick that is brought out to r = ,
where the speed of the disk becomes equal to the speed of light.

It might appear that we could now define a global coordinate

interpreted as a time coordinate that was synchronized in a consistent way for all points on the disk. The trouble with this
interpretation becomes evident when we imagine driving a car around the circumference of the disk, at a speed slow enough so that
there is negligible time dilation of the car’s dashboard clock relative to the clocks tied to the disk. Once the car gets back to its
original position,  has increased by , so it is no longer possible for the car’s clock to be synchronized with the clocks tied to
the disk. We conclude that it is not possible to synchronize clocks in a rotating frame of reference; if we try to do it, we will
inevitably have to have a discontinuity somewhere. This problem is present even locally, as demonstrated by the possibility of
measuring the Sagnac effect with apparatus that is small compared to the disk. The only reason we were able to get away with time
synchronization in order to establish the metric in Equation  is that all the physical manifestations of the impossibility of
synchronization, e.g., the Sagnac effect, are proportional to the area of the region in which synchronization is attempted. Since we
were only synchronizing two nearby points, the area enclosed by the light rays was zero.

As a practical example, the GPS system is designed mainly to allow people to find their positions relative to the rotating
surface of the earth (although it can also be used by space vehicles). That is, they are interested in their (r, ) coordinates.
The frame of reference defined by these coordinates is referred to as ECEF, for Earth-Centered, Earth-Fixed.

The system requires synchronization of the atomic clocks carried aboard the satellites, and this synchronization also needs to
be extended to the (less accurate) clocks built into the receiver units. It is impossible to carry out such a synchronization
globally in the rotating frame in order to create coordinates (T, r, ). If we tried, it would result in discontinuities (see
problem 8).

Instead, the GPS system handles clock synchronization in coordinates (t, r, ), as in Equation . These are known as the
Earth-Centered Inertial (ECI) coordinates. The  coordinate in this system is not the one that users at neighboring points on the
earth’s surface would establish if they carried out clock synchronization using electromagnetic signals. It is simply the time
coordinate of the nonrotating frame of reference tied to the earth’s center. Conceptually, we can imagine this time coordinate as
one that is established by sending out an electromagnetic “tick-tock” signal from the earth’s center, with each satellite
correcting the phase of the signal based on the propagation time inferred from its own r. In reality, this is accomplished by
communication with a master control station in Colorado Springs, which communicates with the satellites via relays at
Kwajalein, Ascension Island, Diego Garcia, and Cape Canaveral.

Example 10 recounted Einstein’s famous mistake in predicting that a clock at the pole would experience a time dilation relative
to a clock at the equator, and the empirical test of this fact by Alley et al. using atomic clocks. The perfect cancellation of
gravitational and kinematic time dilations might seem fortuitous, but it fact it isn’t. When we transform into the frame rotating
along with the earth, there is no longer any kinematic effect at all, because neither clock is moving. In this frame, the surface of
the earth’s oceans is an equipotential, so the gravitational time dilation vanishes as well, assuming both clocks are at sea level.
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Example 18: Einstein’s goof, in the rotating frame
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In the transformation to the rotating frame, the metric picks up a d  dt term, but since both clocks are fixed to the earth’s
surface, they have d  = 0, and there is no Sagnac effect.

Impossibility of Rigid Rotation, even with External Forces

The determination of the spatial metric with rulers at rest relative to the disk is appealing because of its conceptual simplicity
compared to complicated procedures involving radar, and this was presumably why Einstein presented the concept using ruler
measurements in his 1916 paper laying out the general theory of relativity.  In an effort to recover this simplicity, we could
propose using external forces to compensate for the centrifugal and Coriolis forces to which the rulers would be subjected, causing
them to stay straight and maintain their correct lengths. Something of this kind is carried out with the large mirrors of some
telescopes, which have active systems that compensate for gravitational deflections and other effects. The first issue to worry about
is that one would need some way to monitor a ruler’s length and straightness. The monitoring system would presumably be based
on measurements with beams of light, in which case the physical rulers themselves would become superfluous.

The paper is reproduced in the back of the book, and the relevant part is in Appendix A.

In addition, we would need to be able to manipulate the rulers in order to place them where we wanted them, and these
manipulations would include angular accelerations. If such a thing was possible, then it would also amount to a loophole in the
resolution of the Ehrenfest paradox. Could Ehrenfest’s rotating disk be accelerated and decelerated with help from external forces,
which would keep it from contorting into a potato chip? The problem we run into with such a strategy is one of clock
synchronization. When it was time to impart an angular acceleration to the disk, all of the control systems would have to be
activated simultaneously. But we have already seen that global clock synchronization cannot be realized for an object with finite
area, and therefore there is a logical contradiction in this proposal. This makes it impossible to apply rigid angular acceleration to
the disk, but not necessarily the rulers, which could in theory be one-dimensional.
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