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1.29: The First Few Hundred Thousand Years- The Dynamics of the Primordial
Plasma

Introduction

**This chapter is Under Construction** You probably noticed in the previous chapter that the power spectrum of the CMB has a
series of peaks in it. In this chapter we will explain the origin of those peaks as arising from the acoustic dynamics in the primordial
plasma.

Waves in the Plasma
The microphysical composition of the plasma is not too important for our presentation here. What is important is that we can model
it as a fluid. We can model a system of particles as a fluid when they rapidly scatter off of each other. The validity of the fluid
approximation is a matter of length scale, becoming valid on scales that are large compared to the mean free path, the typical
distance traveled by a particle before being scattered by another particle. On sufficiently large scales we can ignore the details of
the trajectories of individual particles and model the system as being completely defined everywhere by a density, pressure, and
velocity at every point in space and time. When we do so, we say we are modeling the medium as a fluid. Another example of a
system of particles that can be well-approximated as a fluid is the air in the room you are in, where the mean free path of a nitrogen
molecule is about \(10A{-5}\) cm.

The primordial plasma was extremely uniform, with density varying from one place to another by as little as about 0.001%. That’s
what we meant earlier by ‘gently disturbed away from equilibrium.” Very gently! Associated with these small variations in density
are both variations in the pressure and gravitational potential. Gradients in the pressure and gravitational potential result in forces
on the plasma that drive the evolution of its density and velocity. If we ignore gravity (and the expansion of space), the dynamics of
the plasma are governed by a simple wave equation:

\[\frac{\partialA2 \Psi}{ \partial tA\2} = c_s/2 \nabla’2 \Psi \]

where \(\Psi = \delta \rho\) is the plasma density minus the spatially averaged plasma density, \(c_s"2 = \partial P/\partial \rho\) is
the square of the sound speed in the plasma, and \(P\) is the pressure of the plasma. Recall also that \(\nabla’r2 \Psi =
\frac{\partial"2 \Psi} {\partial xA\2} + \frac{\partialA2 \Psi} {\partial yA2} + \frac{\partialA2 \Psi} {\partial zA\2}\).

Although gravity and expansion do play very important roles in the behavior of the plasma, we postpone the discussion of these
complications until later. For now, this simple equation is sufficient for a qualitative understanding of the dynamics of the plasma
and the origin of the acoustic peaks.

To give you some feel for how the density evolves under this wave equation, we show here how a localized spherical
overdensity evolves in time, assuming the fluid initially has zero velocity. The pressure gradients drive the fluid outward in a shell -
- seen here in this 2-dimensional slice as a ring.

Acoustic Oscillations in a Guitar String

Before further discussion of the ancient plasma that filled the infant universe, let's consider a system that's a bit closer to home:
guitar strings. Although these two systems may seem very different, they have similar dynamics. Both are governed by the same
wave equation.
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Introducing the Wave Equation

For the guitar string, in just one dimension:

\[\frac{\partialA2 \Psi (x, t)} { \partial t"2} = vA2 \frac{\partialA2 \Psi (X, t)} {\partial xA2} \]

Here, \(\Psi (X, t) \) is the displacement of the guitar string at a given point along the string and \( v \) is the velocity of a wave
traveling on the guitar string (determined by the tension and density of the string).

We won't take the time to derive the wave equation, but instead we'd like to give some intuition for where it comes from. Consider
the segment at the center of the guitar string, \( x = \frac{1}{2} L\), where L is the length of the string. Then, \( \frac{\partialA2 \Psi
(L/2, t)} { \partial tA2} \) is the acceleration of that segment, which is proportional to the force on that segment. Recall that the
second derivative with respect to space, \( \frac{\partialA2 \Psi (x, t)} {\partial xA2} \) is related to the concavity of the segment.
That is, if \( \frac{\partial*2 \Psi (L/2, t)} {\partial xA2} \) is large, the string is very bent at the center. If \( \frac{\partial2 \Psi
(L/2, t)} {\partial xA2} \) is zero, then the string is straight. The wave equation states that the force on a segment of string is
proportional to the curvature of the string at that point. To make this more clear, watch the following animation. Does the idea that
force is proportional to curvature match your intuition?

There are two important takeaways from the video. First, we see that the force on the string at a given x is proportional to the
curvature at that point. This makes intuitive sense! Second, we notice that since the force is higher, strings with higher curvatures
oscillate faster. Also notice that the curves with high curvature have smaller features. As the width of the bump shrinks, the
curvature and force increase. Likewise, the sine wave with a smaller wavelength has greater curvatures and forces. This is
important to understanding the power spectrum of the CMB, as features of the CMB with smaller angular scale oscillate faster.

Acoustic Oscillations in the Primordial Plasma
Here we explain the existence of the bumps and wiggles in the power spectrum.

Simplified Evolution Equation

The photon background at any point in the sky has some temperature; we call this the temperature monopole, the \(\ell = 0\) mode,
and denote its fractional departure from the mean temperature as \(\Theta_0 \equiv (T - \bar T)/\bar T\) where the bar here indicates
an average over all space. Note that \(\Theta_0\) is a function of time and space and the zero subscript refers to the monopole
aspect; it is not indicating the current epoch. Here we are going to write down a simplified equation for the evolution of this
monopole field under the influence of pressure gradients.

Since the photons have a black body distribution, there is a relationship between temperature and density, \(\rho_\gamma \propto
TA4\), which leads to \(\delta\rho_\gamma/\rho_\gamma = 4 \Theta_0\). The main thing to note is that the the density and
temperature of the plasma are proportional. More dense plasma is hotter, whereas less dense regions will be cooler. So as we are
evolving the temperature \(\Theta_0\) we are also evolving the plasma density.

Like the guitar string, the temperature perturbations obey the wave equation. Moving to Fourier space and using the notation \(
\tilde \Theta_0 = \mathcal{F} (\Theta_0 )\), we have the same equation we found previously:

\[ \frac{ dA2 \tilde \Theta_0 } { dtA2 } = - kA2 c_sA2 \tilde \Theta_0\]

where \(c_s \) is the speed of sound in the plasma. The speed of sound in the plasma is related to properties of the medium it travels
through: \(c_s”2 \equiv \partial P/\partial \rho \).

So in Fourier space, the plasma dynamics are given by:

\[ \tilde \Theta_0 = \mathcal{F} \bigg ( \Psi (x, t = 0) \bigg ) \cos{ (kc_st) } \]
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Moving from One to Three Dimensions

The guitar string was a great starting point, because it was a one-dimensional case (the string's displacement is a function only of
x). On the other hand, the primordial plasma filled the entire universe, so \( \Theta_0 \) is a function of X, y, and z. Luckily, the
same tools we used before easily extend to more dimensions.

Now, let \( \vec{x} =\langle x, y, z \rangle \) and \( \vec{k} =\langle k_x, k_y, k_z \rangle \).

The Fourier transform is now defined as:

\[ \mathcal{F} (h(\vec{x} )) = g(\vec{k}) =\int_{-\infty }A{\infty} eA{i \vec{k} \cdot \vec{x} } h( \vec{x} ) dx dy dz \]

and the inverse Fourier transform likewise:

\[ \mathcal{F}* -1} (g( \vec{k} )) = h(\vec{x} ) = \int_{-\infty}*{\infty} er{-i \vec{k} \cdot \vec{x} } g( \vec{k} ) dk_x dk_y
dk_z\]

Notice that to extend to more dimensions, we simply use vectors and dot products instead of scalars and multiplication.

You might be a little uncertain what it means for k, the 'wave number’, to be a vector. In multiple dimensions, the magnitude of \(
\vec{k} \) determines the wavelength and the direction of \( \vec{k} \) is the direction of propagation of the wave. The example
below shows the wave \( \sin( \vec{k} \cdot \vec{x} ) \) (in red checkerboard) for many different values of \( \vec{k} \) (the white
arrow).

Initial Conditions of the Plasma
The last key to understanding the evolution of the primordial plasma is the initial conditions. The initial power spectrum was

random noise with a power spectrum of \( 1/kA3 \). The random noise came from quantum fluctuations that were amplified and
'baked-in' to the plasma during inflation. The power spectrum was initially \( 1/kA3 \) because the plasma was scale invariant. A
scale invariant plasma has the following property: imagine taking a snapshot of a 1 Mpc by 1 Mpc area of plasma and another
snapshot of a 1,000 Mpc by 1,000 Mpc area; the two snapshots would be indistinguishable.
Using this information, we can now make artificial initial conditions for the primordial plasma in 3-dimensions. The procedure is
as follows:

1. Create a 3D grid of white noise. These are the random fluctuations in the plasma.

2. Fourier transform the white noise to move to Fourier space.

3. Multiply the grid by \(1/ kA{3/2}\) to get the right power spectrum. Note that \( k =\| \vec{k} \| = \sqrt{k_x/A2+k_yA2+k_z/2} \)

4. Inverse Fourier transform the grid to move back to real space. We now have some artificial initial conditions for the plasma

density.

A Python script that does this procedure in two dimensions is shown below. Try running it a few times to see several different
initial conditions. Notice that while they are each unique, they all have the same statistical properties.

import numpy as np
import matplotlib.pyplot as plt

resolution = 2**8 # Number of pixels on each side of map

# Creates a 2D grid of noise in Fourier space
noise = np.random.normal(0,1, size = (resolution,resolution))
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noise ft = np.fft.fft2(noise)

# Defines K-vector over the grid
KX, KY = np.meshgrid(np.linspace(-1, 1, resolution), np.linspace(-1, 1, resolution))
K magnitude = np.sqrt(KX**2 + KY**2)

# Give the noise the power spectrum we want
fourier space grid = K magnitude**(-3/2) * noise ft

# Use the inverse Fourier transform to create a CMB map in real space
CMB map = np.fft.ifftn( np.fft.fftshift(fourier _space grid)).real

# Plots and displays CMB map
plt.axis('off")
plt.imshow(CMB map, cmap = 'plasma')

run restart restart & run all

<matplotlib.image.AxesImage at Ox7faffbd78690>

Evolving the Plasma

We have both initial conditions and a solution to the wave equation. Our last step is to tie everything together so we can see the
plasma evolve. This is actually quite simple. Using the same technique as the previous section, we generate initial conditions. Then,
in Fourier space we multiply our initial conditions by \( \cos( \| \vec{k} \| c_s t) \) to get \( \tilde \Theta_0 \). Finally, we inverse
Fourier transform \( \tilde \Theta_0 \) so that we have a solution in real space, \( \Theta_0\).

Using this technique, we've created an animation of the primordial plasma evolving below. In order to visualize the opaque plasma,
we've removed all but a cube of plasma with side lengths of 1024 Mpc. It is amazing that the simple wave equation can lead to
such complexity and beauty.

Evolution of the Power Spectrum

Below, we show an animation of the same cube of plasma, but now the power spectrum is also shown on the right side. We can see
that lower frequencies (on the left side of the x-axis) oscillate more slowly, whereas higher frequencies (on the right side) oscillate
more quickly. Over time, this creates the peaks and dips that we see in the power spectrum. (Note, the video loops several times)
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In this chapter, we've come all the way from the simple wave equation to an understanding of the mechanism which created the
peaks and troughs in the power spectrum of the cosmic microwave background. Also, we know how to use Fourier methods to

solve linear partial differential equations.

This page titled 1.29: The First Few Hundred Thousand Years- The Dynamics of the Primordial Plasma is shared under a CC BY 4.0 license and

was authored, remixed, and/or curated by Lloyd Knox.
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