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1.32: Euclidean Geometry

One of the great privileges of teaching this class is the opportunity I have to blow your minds with a radically different
understanding of the nature of space and time. The shift from a Euclidean/Newtonian understanding of space and time, to a
Riemannian/Einsteinian one is centrally important to our understanding of cosmology. This chapter is entirely focused on the
Euclidean geometry that is familiar to you, but reviewed in a language that may be unfamiliar. The new language will help us
journey into the foreign territory of Riemannian geometry where space is curved. Our exploration of that territory will then help
you to drop your pre-conceived notions about space and to begin to understand the broader possibilities -- possibilities that are not
only mathematically beautiful, but that appear to be realized in the natural world.

According to Euclidean geometry, it is possible to label all space with coordinates x, y, and z such that the square of the distance
between a point labeled by @y, y1, z1 and a point labeled by 3, ya, 2o is given by (1 — @)% + (11 — o) 2+ (21 —22) * . If
points 1 and 2 are only infinitesimally separated, and we call the square of the distance between them d¢?, then we could write this
rule, that gives the square of the distance as

df* = dz® +dy® +d2* (1.32.1)

This rule has physical significance. The physical content is that if you place a ruler between these two points, and it is a good ruler,
it will show a length of d¢ = ++/d¢2 . Since it is difficult to find rulers good at measuring infinitesimal lengths, we can turn this
into a macroscopic rule. Imagine a string following a path parameterized by A, from A =0 to A =1, then the length of the string is
fol dX(d€/d)\). That is, every infinitesimal increment dA corresponds to some length d¢. If we add them all up, that's the length of
the string.

Exercise 1.1.1: Find the distance along a path from the origin to (x,y,z) = (1,1,1) where the path is given by
z(A) =X, y(A) =X, 2(A) = A (1.32.2)

There are many ways to label the same set of points in space. For example, we could rotate our coordinate system about the z axis
by angle 6 (with positive @ taken to be in the counterclockwise direction as viewed looking down toward the origin from positive z)
to form a primed coordinate system with this transformation rule:

7=z 1.32.3

yl /B_-Ty ( )
y = —zsinf+ycosh (1.32.4)

' =z cosf+ysind (1.32.5)

Under such a re-labeling, the distance between points 1 and 2 is unchanged. Physically,
X" this has to be the case. All we've done is used a different labeling system. That can't
') o affect what a ruler would tell us about the distance between any pair of points. Further,
for this particular transformation, the equation that gives us the distance between

X infinitesimally separated points has the same form.

z=z Figure 1: A counterclockwise rotation of the coordinate system about the z axis by 6

creates a new coordinate system which we’ve labeled with primes. The z axis comes out of the screen and is identical to the 2’
axis. As is true for any point in space, point 1 can be described in either coordinate system, by specifying (x1,y1,21) or
(x},y1,z)) with the relationship between the two given by the equations to the right.

Exercise 1.2.1: Show that the distance rule of Equation 1.32.1applied to the prime coordinates,
(d¢')? = (da')* + (dy')* + (d=')?
gives the same distance; i.e, show that d¢' = d¢ . [Warning: 6 is not a coordinate here. It specifies the relationship between the

coordinate systems. So, e.g., dz’ = dz cos+ dysinf .] Because this distance is invariant under rotations of the coordinate
system, we call it the invariant distance.
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We want to emphasize that the labels themselves, x, y, z or x', y', z' have no physical meaning. All physical meaning associated with
the coordinates comes from an equation that tells us how to calculate distances along paths. To drive this point home, note that we
could also label space with a value of x, y, z at every point, but do it in such a way that we would have the distance between x, y, z
and ¢ +dz,y +dy, z+dz have a square given by

de* = da® +z° (dy” +sin® ydz®) (1.32.6)

For many readers, this result would look more familiar if we renamed the coordinates r =, # =y, and ¢ = z so that we get
another expression for the invariant distance,

de* = dr® +1* (d6® +sin® 6d¢*) (1.32.7)

This is the usual spherical coordinate labeling of a 3-dimensional Euclidean space by distance from origin, r, a latitude-like angle,
0, and a longitudinal angle, ¢. The transformation between the two coordinate systems is given by

z=rcosf (1.32.8)
y =rsinfsing (1.32.9)
x =7rsinfcos ¢ (1.32.10)

Exercise 1.3.1: Show that the invariant distance given by the equation d¢? = dx? +dy? , the 2-D version of 1.32.1, and the
invariant distance given by the equation d¢?> = dr? +r%d¢? , the 2-D version of 1.32.7, are consistent if the coordinates are
related via:

T =rcos¢

y =rsing
Hint: use the chain rule, so that, e.g., dx = dr cos ¢ — rsin ¢d¢ . (Note that the coordinate transformation equations here are
obtained from the 3-dimensional case by setting 6 = 7/2.)

In preparation for thinking about non-Euclidean spaces, we are going to go through how one could construct a labeling of a two-
dimensional Euclidean space in polar coordinates, 7, ¢. Our construction starts with what will look like an unusual way of defining
r. We define r based on the circumference of the circle rather than the distance from the origin, for reasons that will become clear
later.

First we choose a center to our coordinate system. Then we label all points with 7 that are equidistant from that center and form a
circle with circumference C' = 27rr. Thus to label space with the appropriate value of r, one takes a string, ties one end down at the
center, and marks out all the points that can be just reached by the other end of the string, when it is pulled straight. Then one
measures the circumference of the resulting circle and labels the points on this circle with a value of r given by r = C/(27). We
take strings of varying lengths and repeat again and again to figure out the value of r for every point in the plane.

Next, to label space with ¢, we take one point on one of the circles and arbitrarily label that one as ¢ = 0. We pull a string tight
from the origin out to this point and beyond, and label all the points along the string with ¢ = 0. We then march outward from the
origin and when we get to a point labeled with radial value r, we make a 90° turn to the left and advance some small distance A.
We then label this point with ¢ = A /r. Again we pull a string tight from the origin out to this point and beyond, and label all these
points along the string with the same value of ¢. We then advance another A around the circle and repeat, now labeling the nth
iteration with ¢ =nA/r. In this manner we label all points in the space with values of ¢. Note that when we have done this
27r / Atimes we will have advanced all the way around the circle (because we will have covered a distance of 27r7) and the change
in ¢ will be (27r/A) X A/r =27

In a Euclidean space, such a construction leads us to the result (unproven here) that the distance d¢ between two infinitesimally
separated points labeled by 7, ¢ and r +dr, ¢ +d¢ has a square given by

d? =dr? +r’d¢?. (1.32.11)

1.32.2 https://phys.libretexts.org/@go/page/5099



https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/5099?pdf

LibreTextsw

Note that in our construction we never made any measurement of the distance from the origin to a circle with origin as center and
with circumference C' = 27rr. All we know so far is the circumference of the circle. To calculate the distance from the origin to this
circle we can apply the above rule for a path that extends from the origin to the circle. Let's say a circle with circumference
Cl =27 T1.

Exercise 1.4.1: Calculate the distance from the origin to the circle with circumference C; = 27r;. Do so along a path of
constant ¢ using Eq. 1.32.11.

You should have got the unsurprising result that the distance from the origin to the circle with circumference Cy = 277y is 1.
In the next chapter this will get more interesting as we examine a space for which this is not the case. We'll see that the distance
to a circle with this circumference could be more than r; or less than r;.

We constructed our coordinate system so that as 6 goes from 0 to 27 at constant 7 = 7; a distance is traversed of 27rr;. Let's
now check that our rule for d/ above, Eq. 1.32.11is consistent with this construction.

Exercise 1.4.2: Show that the parameterized path r =71,0 =X as A goes from 0 to 27 covers a distance of 27r; by
integrating d/, as given by Eq. 1.32.11, along this path.

Before going on, we could take a little more care. We have shown that a particular path that takes us from the origin out to r =r;
at constant ¢ has distance r;. But how do we know this is the shortest path? Here we will demonstrate that there is not a shorter
path; the one prescribed is the shortest path possible. To do so, we use a result from the calculus of variations. That result is as
follows:

For J = ff duf(g;,q4;, 1) where g; = dg;/du, the path from point 1 to 2 that extremizes J satisfies these equations

d (0 0
—(—f) = of (1.32.12)
dp \ 9g; dg;
This is a mathematical result with more than one application. In mechanics, the action is given as an integral over the Lagrangian
so that
Sz/dtL(qi,qi,t) (1.32.13)
with ¢; = dg; /dt, and because a system passes from point 1 to point 2 along the path that minimizes the action, the path taken will
satisfy
d ( 0L oL
— = | =5 1.32.14
i (a) 7 (32.14)

which you know as the Euler-Lagrange equations.

In the case at hand we have length = f d,u;i—z where
n

_ﬂ_ 22 232
I= 0 =1/72+12¢ (1.32.15)

(note the overdot is differentiation with respect to the independent variable which here is p again) so the shortest-length path
between any two points should satisfy

d (0f\ of
@(ﬁ) -3 (1.32.16)
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d (af\ of
o <£> =5 (1.32.17)

These equations are kind of hairy, if you work them out in generality. However, we are testing to see if a particular path satisfies
them, the path from the origin to =7y, and ¢ = ¢; that proceeds at fixed ¢. We could parameterize this path with
¢ = ¢1,7(pn) = pry with g running from 0 to 1. Note that é =0 which really simplifies the evaluation of the above equations. We
will just do one term out of the first equation as an example, and leave evaluation of the rest of the terms as an exercise. In

particular, we evaluate 8f /0r = (r/ f )¢2 =0.

d (0 d [0 0
Exercise 1.5.1: Evaluate the three other terms ( — —f y = —f and —f ) in the two equations above, and verify that
dp \0r ) du \ 8¢ 0¢

the given path does indeed satisfy these equations, thereby demonstrating that it is the shortest possible path.

Summary

1. Space can be labeled with coordinates. The same space can be labeled with a variety of coordinate systems; e.g., Cartesian or
Spherical.

2. The coordinate labelings themselves have no physical meaning. Physical meaning resides in the distances between points,
which one can calculate from a rule that relates infinitesimal changes in coordinates to infinitesimal distances.

3. Paths through a space can be parameterized by a single variable; we saw several examples of this.

4. The Euler-Lagrange equations can be used to prove that a particular path is (or is not) one with an extreme value of distance
between a pair of points on the path. Usually the extreme is a minimum rather than a maximum.

Homework Problems

Problem 1.32.1

Starting from d¢? = dz? +dy? prove the Pythagorean theorem that the squares of the lengths of two sides of a right triangle
are equal to the square of the hypotenuse. Start off by proving it for a triangle with the right-angle vertex located at the origin,
so all three vertices are at (z,y) = (0,0), (z1,0), and (0, y;). Be careful to use the distance rule to determine the length of
each leg of the triangle, rather than your Euclidean intuition. Let's call the length of the side along the z-axis £, and similarly
the other lengths £, and ¢;. Parameterize each path and perform the appropriate integral over the independent variable you
used for the parametrization (like we did with A in this chapter). Doing so, you should find that 5}21 = (%2 + {2 . Having proved
the Pythagorean theorem for this specially located and oriented triangle, note that since translations and rotations of the
coordinate system leave our invariant distance rule unchanged, you have effectively proved it for all right triangles.

Problem 1.32.2

Prove that the hypotenuse, the straight line from (z1,0) to (0, y1) you described in 1.1, is the shortest path between those two
points.

Problem 1.32.3

Show that for a primed system that is rotated relative to the unprimed system so that
' =xcosf+ysinf

/

y = —xsinf+ycosf

the square of the invariant distance is unchanged; i.e., dz? +dy* = (dz')? + (dy')* .
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