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1.15: Distance and Magnitude

Distances

We have the invariant distance equation for a homogeneous and isotropic universe (an FRW spacetime):

Here we introduce several distance definitions, and how they are related to the coordinate system that leads to the above invariant
distance expresson.

Luminosity distance: By definition of luminosity distance ,

which is the relationship we expect in a Euclidean geometry with no expansion, assuming an isotropic emitter. We also calculated
the relationship between flux and luminosity in an FRW spacetime and found

so we conclude that in an FRW spacetime, .

Angular diameter distance: By definition of angular-diameter distance, ,

where  is the angle subtended by an arc of a circle with length , as it would be measured with measuring tape. By the angle
subtended, we mean the angle between two light rays, one coming from one end of the arc, and the other from the other end of the
arc. If we place ourselves in the center of the coordinate system we can work out what this means in terms of coordinates. Place the
observer at the spatial origin  and at time equals today. Place one end of the arc at  and the other at 

. Light will travel from both of these points to the origin along purely radial paths; i.e., with no change in 
. So the angle they subtend upon arrival is . We can use the invariant distance expression to work out that  where 

 is the scale factor at the time the light we are receiving today is emitted from the object. Thus  where 
 is the radial coordinate separation between the object and the observer.

Comoving angular diameter distance: This is simply the angular diameter distance divided by the scale factor. We will reserve 
 for comoving angular diameter distance. The comoving angular diameter distance between  and  is .

Exercise 15.1.1: In an FRW spacetime, how are  and  related?

Exercise 15.2.1: What is the comoving distance, , from the origin to some point with radial coordinate value , along a path
of constant  and ?

Curvature integrals: Although we've made use of a first order Taylor expansion to analytically solve the above integral, the exact
integral does have an analytic solution. For , . For , .

To work out how the comoving angular diameter distance  is related to the scale factor at the time light was emitted, , we look
at how light travels from coordinate value  to the origin. Light has , and from that we get
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where, except for the first line, we have assumed . I leave it to the student to work out the  case. The  case should
also be clear.

Exercise 15.3.1: In calculating  vs. , what are the two different ways curvature makes a difference?

We have defined the density parameters  where  is the critical density, defined to be the total
density for which the curvature,  is zero.

Exercise 15.4.1: Using the Friedmann equation, convince yourself that if , then .

With this notation we can write

where .

Exercise 15.4.2: Show that Eq.  can be derived from the Friedmann equation and the fact that  and .

Exercise 15.4.3: Further, show that .

Apparent and Absolute Magnitudes and the Distance Modulus

Magnitudes are absurd but useful if you want to use data from astronomers. They are a means
of expressing luminosity and flux.
Luminosity: The luminosity of an object, , is its power output. Usually its total electromagnetic power output, sometimes
referred to as bolometric luminosity. Typical units for luminosity are ergs/sec (  erg = 1 Joule, 1 Watt = 1 Joule/sec) or solar
luminosity, . The Sun, by definition has a luminosity of one solar luminosity and  erg/sec = more than 

 100 Watt light bulbs. (You can remember this if you remember it's about as luminous as 7 Avogadro's number of 100 Watt
light bulbs).

Flux: The flux, , from an object is not an intrinsic property of the object, but also depends on the distance to the object. It is the
amount of energy passing through a unit area, per unit of time. For an isotropic emitter in a non-expanding, Euclidean three-
dimensional space,  where  is the distance between source and observer. This equation just follows from energy
conservation; note that the total power flowing through a spherical shell of radius  completely surrounding the emitter at its center
is .

Spectral Flux density: We usually do not measure the total flux from an object, but instead measure the flux in a manner that
depends on how the flux is spread out in frequency. Thus a useful concept is the spectral flux density, , that quantifies how much
flux there is per unit frequency. The units of spectral flux density are erg/s/m /Hz. Where Hz is the unit of frequency called Hertz,
equal to 1/s.
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Apparent magnitude: Astronomers often use apparent magnitude, , instead of flux. The apparent magnitude has a logarithmic
dependence on flux; the reason for this is historical, and is fundamentally due to the logarithmic sensitivity of our eyes to flux. Not
only is it logarithmic instead of linear, but brighter objects have smaller magnitudes. This is because the Greeks defined the
brightest stars as stars of the first magnitude, and next brightest as stars of the 2nd magnitude, down to the stars we could just
barely see at all, which are stars of the 6th magnitude. This ancient system, updated with precise definitions related to flux is still in
use today (otherwise I would not bother telling you about it). One way of relating apparent magnitude to flux is the following:

where  is the absolute magnitude of the Sun (see next definition) and  is the flux we would get from the Sun if
it were 10pc away. Since  erg/sec and 1pc =  cm we get  erg/cm /sec.

Note that because of the -2.5 factor in front of the , if the flux increases by a factor of 10, the apparent magnitude decreases by
-2.5. Conversely, if the magnitude increases by 1, the flux decreases by a factor of .

Absolute Magnitude: The absolute magnitude of an object, denoted by , is another way of expressing its luminosity. One way
of defining it is via:

Putting this together with the apparent magnitude-flux relationship above, one can show that this means  for an object at
10pc. 

Distance Modulus: The distance modulus is defined as . Note that as a difference between apparent and absolute
magnitudes, this is equal to a log of the ratio of flux and luminosity. By plugging in the definitions above of  and  one finds
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