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1.14: Pressure and Energy Density Evolution
There is a sense in which energy is conserved in general relativity. We say it is locally conserved, which effectively means that in a
sufficiently small region of spacetime, the change in energy is equal to the flux of energy across the boundary of the region,
including that via any work being done on the region. From this principle, or from the Einstein equations themselves, someone with
some skill in general relativity can derive for a homogeneous expanding universe that:

where  is the energy in some volume . This looks a lot like conservation of energy as we are used to seeing it. Indeed it is the
first law of thermodynamics, in the special case of no heat flow across the boundary. If you have a gas in a volume  and you
squeeze it down by , the work you do ( ), increases the kinetic energy (and hence total energy) of the gas particles by

Since  is negative, this is an increase in energy, assuming .

But the simplicity of the result is deceptive. As soon as one starts to ask some obvious questions about it, things can become
confusing. In a homogeneous expanding universe, how is the work being done? There are no pressure gradients to push things
around. Then is it somehow being done by gravitational potential energy? That is a reasonable guess, since the expansion of space
is a gravitational effect.

These questions implicitly assume energy is globally conserved, when that is not actually the case in general relativity. We can,
however, use our Newtonian intuition to guide us about how the gas will behave given that the region it occupies is expanding. If
the volume slowly increases that is containing a gas (with ), then the energy of that gas will decrease no matter if it's because
of the expansion of space or the expansion of the walls that contain the gas.

From  we can derive how energy density evolves as the scale factor evolves. Gas comoving with the expansion and
in a region with comoving volume , occupies a physical volume of . The energy content of this homogeneous gas is 

. Thus Equation  leads to

or

Exercise 14.1.1: Use Equation  to find  for non-relativistic matter, given that .

Exercise 14.1.2: Use Equation  to find  for relativistic matter, given that .

Exercise 14.1.3: Use Equation  to find  for a cosmological constant, given that .

Answer

The equation is

Plugging in  we get . Solving for  for  we find , , and 
 respectively.

For Exercise 15.1.1 you should find that . This might be surprising since non-relativistic matter in general has non-zero
pressure. Remember though that our  result came from neglecting all kinetic energy of the gas, because it was so small
compared to the kinetic energy. Of course it is not exactly zero so the pressure is also not exactly zero. For 15.1.2 you should find 
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Perhaps most surprisingly, for 15.1.3 you should find that the pressure is negative. More precisely, you should find that 
. How can this be? What does it mean to have negative pressure? We will explore these questions in a homework

problem.

We now have a closed set of equations that we can use to solve for the evolution of the scale factor. Given the mass-energy density
of all the components of the universe at one time and their equations of state , and given the expansion rate at that same time,
we can find how these densities evolve and how the scale factor does as well. We summarize the key equations here, as well as
writing them out with explicit sums over components for the first time.

and

where the subscript  enumerates the different contributors to the energy density.

Definitions of some prevalent notation

Densities are often expressed in units of the critical density, with the critical density defined as the total density of a zero-mean-
curvature universe with expansion parameter . Since the Friedmann equation is  this means that the
critical density, , is such that . More explicitly

The symbol used for the density of component  in units of the critical density is . Often when cosmologists write
densities out in terms of  they implicitly mean the value in the current epoch. Ideally, we would use a 0 subscript in such cases, in
order to explicitly denote the current epoch, but we don't usually do that. So, for example, the Friedmann equation for a universe
with pressureless matter, a cosmological constant, radiation, and zero mean curvaturecan be rewritten as

We also sometimes use .

Exercise 14.2.1: Show that 

Answer

We have , , and the critical density today,  defined indirectly via .
Recall that  in the Friedmann equation is the total density so .

Let's take the Friedmann equation, evaluated today (so  and divide each term by either  or .
We can divide by either because they are equal. We get 

if we also use the given definition of . 

 

Another notational convenience sometimes uses is to define  as a way of quantifying the Hubble constant. This "little h" is
defined such that

Saying " " is the same as saying  72 km/sec/Mpc. I mention this notation because it leads to yet another common
way of talking about densities. Sometimes we run across use of, for example, , or even  which is the same thing by
definition. Why would we do this? It's a convenient way of writing out the density, but with no actual dependence on the critical
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density. In a homework problem you will show how to take a density in units of grams per cubic centimeter and find out what this
corresponds to in terms of . You will see it has no dependence on the value of the expansion rate because the  in  cancels
the  in the critical density.

Homework
14.1: Imagine you have a box of volume V full of a substance with energy density . Outside the box the energy density is zero.
Imagine that if you expanded the box by some amount  that the energy density inside would not drop, but would stay constant.

A) By how much would the energy inside the box increase if this expansion occurred?

B) Imagine you are pulling on the walls of the box to make this increase in volume happen. Would it be hard to do? Would it
require work? How much work? Articulate why ascribing  to the material inside the box makes sense.

14.2: For a substance with  with  a constant, find  such that . Explicitly write out how  depends on  for
these cases: . For example, for  write, "For  we find ."

14.3: According to multiple lines of argument (one of which we will learn about when we study big bang nucleosynthesis), the
mean density of baryonic matter in the universe (matter whose mass comes from protons and neutrons and nuclei made out of
protons and neutrons) is such that  is about 0.022. What is the mean density of baryons in the universe in grams per cubic
centimeter? If  km/sec/Mpc, what is ?
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