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1.36: The Simplest Expanding Spacetime

In this chapter we begin our exploration of physics in an expanding spacetime. We begin with a reminder about how coordinates
themselves are meaningless, and that physical meaning comes from the expression for the invariant distance. We start with a
spacetime with just one spatial dimension that is not expanding: a 1+1-dimensional Minkowski spacetime. I expect you are familiar
with such a spacetime from your prior study of special relativity, and from the previous chapter. We then generalize it slightly to
describe a spacetime with one spatial dimension that is expanding. With additional assumptions we then calculate the age of this
spacetime as well as the "past horizon."

We can label spacetimes with coordinates; for example, we could label every point in a 1+1-dimensional space with a ¢ value and
an x value. These coordinates are just labels, with no physical meaning, until we also say something about the "invariant distance"
between infinitesimally separated pairs of points. For example, in a 1+1-dimensional Minkowski space with which you are
familiar, it is possible to do this labeling such that the square of the invariant distance between ¢, z and t 4+ dt, z +dz is given by:

ds? = —c?dt? +dz*. (1.36.1)

The physical interpretation of ds? is as follows:

1. For time-like separations (ds®> < 0), the time elapsed on a clock that freely falls (travels with no acceleration) between the
two space-time points is y/—ds?/c?; and

2. For space-like separations (ds? > 0), the length of a ruler with an end on each of the two space-time points, at rest in the
frame in which the two events are simultaneous, is v/ds2.

Box 1.36.1

Exercise 5.1.1: For the spacetime specified by Equation 1.36.1. On a plot of « vs. ¢t (what we call a spacetime diagram) draw
the trajectory of a particle that is not moving, one that is moving slowly, and then of one that is moving at the speed of light.
Place the x-coordinate on the horizontal axis, as is the usual convention.

The invariant distance rule above (Equation 1.36.1) is for a static spacetime. Our universe is expanding. We can make a simple
alteration of the invariant distance equation to describe an expanding universe:

ds® = —c?dt? +a®(t)dz? (1.36.2)

with a(t) a function of time. If @ > 0 the universe is expanding. If @ < 0 it is contracting. We call a(t) the "scale factor."

Exercise 5.2.1: Imagine a very small ruler instantaneously at rest in the z, ¢ coordinate system of Equation 1.36.2 at time
t =t; , with one end at location £ = x; and its other end at z = 1 + dx; . How long is the ruler?

Answer
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We cheated a bit here and made a x vs. ct plot so that a particle moving at the speed of light has a slope of 1.

Exercise 5.3.1: How much time elapses on a clock on a trajectory of constant z, from ¢ =¢; to ¢ =t for a spacetime and
coordinate system with invariant distances given by Equation 1.36.2

Answer
"at time t =¢; " so dt =0, so ds = a(t)dz . Since the ruler is at rest in the given coordinate system its length is indeed
given by ds at time t; . Therefore the length of the ruler is ds = a(t; )dz; .

Exercise 5.4.1: Still assuming Equation 1.36.2, draw the paths through spacetime of a pair of particles that are separated from
each other and that are not "moving" -- that is, their z coordinate values are not changing over time. Assume a(t) is an
increasing function of time. What do you notice about the distance between them and how it evolves over time? Be careful not
to confuse "distance between them" with the difference in the values of their spatial coordinates.

Answer
"constant " so dx = 0, and then ds = cdt. Therefore the time elapsed on the clock is

1 f2
/z\/—dszz/ dt =ty —t;.
t1
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Exercise 5.4.2: Now, add in the trajectory of a light ray passing from one of these particles to the other. While sketching it out,
remember that a(t)dz is the distance traversed (as measured by an observer at rest in the ,¢ coordinate system) as the time
coordinate changes by dt, which is the time elapsed as measured by an observer at rest in the x, ¢t coordinate system. In this x
vs. t diagram, does light travel in a straight line?

You should have seen in the box above that light does not travel on a straight line in this expanding spacetime as labeled with the ¢,
z coordinates. This is kind of annoying. Often one can choose better coordinates to describe a problem in a simpler manner. For
example, for a problem with spherical symmetry one can switch from Cartesian coordinates to spherical coordinates. We will do a
similar thing here, introducing a coordinate called "conformal time."

The conformal time, 7, is defined via dr =dt/a(t). In a conformal time diagram, for the expanding spacetime with which we
have been working, light trajectories are straight lines. We will find that this is a very useful property.

Exercise 5.5.1: Given a spacetime described by Equation 1.36.2 work out the invariant distance specified for 7, = labeling
instead of ¢, z labeling. You should find ds? = a?(7)[—c?d7? + dz?] where by a(7) we just mean a(t(7).

Answer

No solution available yet

Note that, for an observer at rest in the given coordinate system, and given our physical interpretation of the invariant distance, the
equation for the invariant distance can always be written schematically as

ds? = —c*(infinitesimal time elapsed)? + (infinitesimal spatial distance traversed)?

where by "infinitesimal time elapsed" we mean as measured by a clock that is not moving in the given coordinate system and by
"infinitesimal spatial distance traveled" we mean as measured by a ruler that is not moving in the given coordinate system. All
observers see light traveling at the speed of light so for the path of a photon we have (infinitesimal spatial distance traversed) =
c x (infinitesimal time elapsed). Putting this together we can conclude that light rays travel on trajectories with ds?> = 0.

Exercise 5.6.1: Draw how light rays move on a plot of z vs. 7. Start from ds? = 0 to find the relationship between dr and dz,
then draw a trajectory consistent with that relationship.

Answer
Substituting in dt = a(t)dn to Equation 5.2 and factoring out a?(t) gives us
ds? = —c?a®(t)[dn? +dz?].

Assuming a one-to-one correspondence between ¢ and 7 (which one would have in an expanding universe given definition
of dn) we can use a(n) = a(t(n)) in its place and write

ds® = a®(n)[—c?dn? + dz?]

An interesting question to ask about an expanding spacetime is whether the universe ever had, in the past, the scale factor equal to
zero. As this would render everything currently in the observable universe all with zero separation between them, this would be
quite an extreme situation. Just to get some practice working things out in an expanding spacetime, practice that will be useful later,
let's assume @ = k/a for k some positive constant and see if such a universe ever had a = 0. Let us call the time since a =0, At.
We can then write

a(t) a(t)
At:/dt:/o da/a:/0 da(a/r) = a*(£)/(2). (1.36.3)

Since the integral converged, we find that with the assumption given, namely @ o< 1/a, the answer is yes, a finite time in the past
the scale factor had the value 0. This is the singularity of the big bang. In such spacetimes we usually choose to call the zero point
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of time (¢t =0 ), the time when @ = 0. [Note that this At is the time that would elapse on a stationary clock; i.e., a clock with a
fixed spatial coordinate.]

Also note that we made progress with this calculation by replacing dt with dt = da/a . This is a trick we will use many times to
calculate a variety of things.

Another question we can ask is, "how far has light traveled since the beginning." It's interesting because nothing travels faster than
the speed of light, so this tells us what the maximum distance is that any signal can propagate. We call this distance the "past
horizon." Let's once again assume, for definiteness, a = x/a and calculate how far light can travel. We know that for light
ds* =0 so we have c?dt? = a®(t)dz? and therefore cdt/a(t) = dz so we can write

Az :/dm :/cdt/a:c/oa(t) da/(ad) = % /Oa(t) da = %a(t) (1.36.4)

(where you'll note we used the same trick again to convert an integral over time to an integral over the scale factor). Therefore we
know the coordinate distance that light has traveled, Az. That coordinate distance corresponds to a physical distance, at time ¢, of
a(t)Az = £a®(t).

HOMEWORK Problems

Problem 1.36.1

Derive the phenomenon of Lorentz contraction using the invariance of the invariant distance. [Do not assume an expanding
universe; assume ds®> = —c?dt? +dz? 1. The trick to doing this is careful choice of the two events (points in spacetime) for
which to calculate their invariant distance. Imagine a ruler moving with respect to an observer at speed v, with the ruler
oriented so that it is parallel to the relative velocity. Take event 1 to be when/where the front end of the ruler is at the same
spacetime location as the observer, and event 2 to be when/where the back end of the ruler is at the same spacetime location as
the observer. By calculating the invariant distance in the observer's rest frame and the ruler's rest frame you should find that the
length of the ruler as determined by the observer is L' = L/~ where L is the length of the ruler in its rest frame.

Problem 1.36.2

Assume that the scale factore evolves via a = ka for k a positive constant. (Note that this is a different assumption than the
previous @ = k/a ). Show that in this spacetime the universe never has a =0. Do so by showing that the amount of time
between a = 0 and any finite a is infinite; i.e., show that the appropriate definite integral does not converge.

Problem 1.36.3

Assume ds? = —c2dt? +a*(t)dz? and once again that a = ka for k a positive constant. Our universe appears to be moving
asymptotically toward such a case (although except with a 3-dimensional space instead of a 1-dimensional space). Determine
what we call the "future horizon." If a light signal is sent out at time ¢; from 1, in the positive z direction, to what value of x
will it get given an infinite amount of time? The distance between x; and z5 at time t1, a(t;)(z2 — 1), is called the future
horizon.
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