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1.20: Equilibrium Particle Abundances
At sufficiently high temperatures and densities, reactions that create and destroy particles can become sufficiently rapid that an
equilibrium abundance is achieved. In this chapter we assume that such reaction rates are sufficiently high and work out the
resulting abundances as a function of the key controlling parameter . We will thus see how equilibrium abundance changes as
the universe expands and cools. We will do so for the specific case of a fermionic particle ( ) and its anti-particle (  ) with non-
zero mass (rest mass) , and , but the generalization to zero rest mass, bosons, and/or arbitrary  is trivial.

We make a few additional assumptions:

1.  initially (perhaps because these number densities are zero initially),
2. Any production or destruction of  includes a production or destruction (respectively) of .
3. The reactions  are fast.
4. Reactions that create and destroy photons are fast, such as .

Assumption (4) allows us to determine that the photons have zero chemical potential; i.e., .

Assumption (3) provides us with a constraint on  and : .

Assumption (2) ensures that the initial equality in Assumption (1) persists over time, providing us with another constraint on the
chemical potentials. We can find this constraint with the following argument. The number density of a particle in kinetic
equilibrium is determined entirely by its number of internal degrees of freedom, , its mass, the temperature, and the chemical
potential. The particle and antiparticle are able to exchange kinetic energy (with themselves, as well as other particles) and so share
the same temperature. They also have the same mass and number of internal degrees of freedom. Therefore, the only thing left that
affects the number density that they conceivably do not have in common is their chemical potentials. Since their number densities
are equal, their chemical potentials must be equal.

So we simultaneously have  and . The only solution is .

We now have all the parameters of the phase space distribution function pinned down except for the temperature, , so we are now
ready to calculate the number density as a function of T. We have for fermions with zero chemical potential:

which we will now examine in the relativistic and then non-relativistic limits.

Relativistic Limit
Assuming  we find

The integral can be numerically evaluated, or looked up in an integral table, with the result that it is , where 
 is the Riemann zeta function and . We thus find

Exercise 20.1.1: Derive  

from 

mc2

TkB

χ χ̄

m g = 2 g

=nχ nχ̄

χ χ̄

χ+ ⇋ 2γχ̄

+ → + +γe− p+ e− p+

= 0μγ

μχ μχ̄ + = 2 = 0μχ μχ̄ μγ

g

=μχ μχ̄ + = 0μχ μχ̄ = = 0μχ μχ̄

T

= = ∫ pnχ nχ̄

g

h3
d3 [exp( )+1]

E(p)

TkB

−1

(1.20.1)

E(p) = pc

= dx .nχ

4πg

h3
( )

TkB

c

3

∫
∞

0
x2 [ +1]ex −1 (1.20.2)

×ζ(3) ≃ ×1.2023
2

3
2

ζ ζ(3) = Σ∞
1

1
n3

= 6πζ(3)g .nχ ( )
TkB

hc

3

(1.20.3)

Box 1.20.1

= dxnχ

4πg

h3
( )

TkB

c

3

∫
∞

0
x2 [ +1]ex −1 (1.20.4)

= ∫ pnχ

g

h3
d3 [exp( )+1]

E(p)

TkB

−1

(1.20.5)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/7817?pdf
https://phys.libretexts.org/Courses/University_of_California_Davis/Physics_156%3A_A_Cosmology_Workbook/01%3A_Workbook/1.20%3A_Equilibrium_Particle_Abundances


1.20.2 https://phys.libretexts.org/@go/page/7817

and . Use the transformation to spherical momentum coordinates to rewrite  as  and then transform
the integration variable via . 

 

 

It is often helpful to look at the comoving number density  because this quantity will be fixed as expansion occurs unless
there is net creation or destruction of particles. Examining the comoving number density allows us to highlight changes that are due
to effects other than simple dilution due to increased volume. Assuming  we find the comoving number density is
independent of temperature, since  is independent of temperature. Even though particles are rapidly being created and
destroyed, the net result is that the number density has the same dependence on the scale factor,  that would be the case if
there were no creation or destruction.

Non-relativistic Limit
In the non-relativisitic limit the kinetic contribution to the square of the energy  is much less than the rest-mass contribution to
the square of the energy . So we have

and therefore

In the non-relativistic regime  (since in the non-relativistic regime  is a typical particle kinetic energy), so we
can neglect the +1 in the phase-space distribution function, which allows us to pull  out of the integral, and make
the variable substitution  so that

The integral is . Using that and with some rearranging we get

Evaluation of the comoving number density brings in a factor of  that cancels out the first -dependent factor and we get:

We thus see that the abundance of the particles and antiparticles (recall ) is controlled by  and is exponentially
suppressed when this quantity is much greater than 1.

Exercise 20.2.1: Make a log-log sketch of  vs.  assuming the transition between the two regimes (relativistic
and non-relativistic) is as smooth as possible. Explicitly identify  on the -axis and the relativistic and non-
relativistic regimes. Indicate which direction along the -axis (left or right) corresponds to increasing time and scale factor.
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