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3.3: Work, Heat, and Internal Energy

By the end of this section, you will be able to:

Describe the work done by a system, heat transfer between objects, and internal energy change of a system
Calculate the work, heat transfer, and internal energy change in a simple process

We discussed the concepts of work and energy earlier in mechanics. Examples and related issues of heat transfer between different
objects have also been discussed in the preceding chapters. Here, we want to expand these concepts to a thermodynamic system
and its environment. Specifically, we elaborated on the concepts of heat and heat transfer in the previous two chapters. Here, we
want to understand how work is done by or to a thermodynamic system; how heat is transferred between a system and its
environment; and how the total energy of the system changes under the influence of the work done and heat transfer.

Work Done by a System
A force created from any source can do work by moving an object through a displacement. Then how does a thermodynamic
system do work? Figure  shows a gas confined to a cylinder that has a movable piston at one end. If the gas expands against
the piston, it exerts a force through a distance and does work on the piston. If the piston compresses the gas as it is moved inward,
work is also done—in this case, on the gas.

Figure : The work done by a confined gas in moving a piston a distance dx is given by .

The work associated with such volume changes can be determined as follows: Let the gas pressure on the piston face be . Then
the force on the piston due to the gas is , where  is the area of the face. When the piston is pushed outward an infinitesimal
distance , the magnitude of the work done by the gas is

Since the change in volume of the gas is , this becomes

For a finite change in volume from  to , we can integrate this equation from  to  to find the net work:

This integral is only meaningful for a quasi-static process, which means a process that takes place in infinitesimally small steps,
keeping the system at thermal equilibrium. (We examine this idea in more detail later in this chapter.) Only then does a well-
defined mathematical relationship (the equation of state) exist between the pressure and volume. This relationship can be plotted on
a pV diagram of pressure versus volume, where the curve is the change of state. We can approximate such a process as one that
occurs slowly, through a series of equilibrium states. The integral is interpreted graphically as the area under the pV curve (the
shaded area of Figure ). Work done by the gas is positive for expansion and negative for compression.
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Figure : When a gas expands slowly from  to  the work done by the system is represented by the shaded area under the
pV curve.

Consider the two processes involving an ideal gas that are represented by paths AC and ABC in Figure . The first process is
an isothermal expansion, with the volume of the gas changing its volume from  to . This isothermal process is represented by
the curve between points A and C. The gas is kept at a constant temperature  by keeping it in thermal equilibrium with a heat
reservoir at that temperature. From Equation  and the ideal gas law,

Figure : The paths ABC, AC, and ADC represent three different quasi-static transitions between the equilibrium states A and
C.

The expansion is isothermal, so  remains constant over the entire process. Since  and  are also constant, the only variable in
the integrand is , so the work done by an ideal gas in an isothermal process is

Notice that if  (expansion),  is positive, as expected.

The straight lines from A to B and then from B to C represent a different process. Here, a gas at a pressure  first expands
isobarically (constant pressure) and quasi-statically from  to , after which it cools quasi-statically at the constant volume 
until its pressure drops to . From A to B, the pressure is constant at , so the work over this part of the path is

From B to C, there is no change in volume and therefore no work is done. The net work over the path ABC is then

A comparison of the expressions for the work done by the gas in the two processes of Figure  shows that they are quite
different. This illustrates a very important property of thermodynamic work: It is path dependent. We cannot determine the work
done by a system as it goes from one equilibrium state to another unless we know its thermodynamic path. Different values of the
work are associated with different paths.
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Studies of a van der Waals gas require an adjustment to the ideal gas law that takes into consideration that gas molecules have a
definite volume (see The Kinetic Theory of Gases). One mole of a van der Waals gas has an equation of state

where \(a\) and \(b\) are two parameters for a specific gas. Suppose the gas expands isothermally and quasi-statically from
volume  to volume . How much work is done by the gas during the expansion?

Strategy
Because the equation of state is given, we can use Equation  to express the pressure in terms of  and . Furthermore,
temperature  is a constant under the isothermal condition, so  becomes the only changing variable under the integral.

Solution
To evaluate this integral, we must express  as a function of . From the given equation of state, the gas pressure is

Because  is constant under the isothermal condition, the work done by 1 mol of a van der Waals gas in expanding from a
volume  to a volume  is thus

Significance
By taking into account the volume of molecules, the expression for work is much more complex. If, however, we set 
and  we see that the expression for work matches exactly the work done by an isothermal process for one mole of an
ideal gas.

How much work is done by the gas, as given in Figure , when it expands quasi-statically along the path ADC?

Answer

Internal Energy

The internal energy  of a thermodynamic system is, by definition, the sum of the mechanical energies of all the molecules or
entities in the system. If the kinetic and potential energies of molecule i are  and  respectively, then the internal energy of the
system is the average of the total mechanical energy of all the entities:

where the summation is over all the molecules of the system, and the bars over K and U indicate average values. The kinetic
energy  of an individual molecule includes contributions due to its rotation and vibration, as well as its translational energy 

 where  is the molecule’s speed measured relative to the center of mass of the system. The potential energy  is
associated only with the interactions between molecule i and the other molecules of the system. In fact, neither the system’s

 Isothermal Expansion of a van der Waals Gas
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location nor its motion is of any consequence as far as the internal energy is concerned. The internal energy of the system is not
affected by moving it from the basement to the roof of a 100-story building or by placing it on a moving train.

In an ideal monatomic gas, each molecule is a single atom. Consequently, there is no rotational or vibrational kinetic energy and 
. Furthermore, there are no interatomic interactions (collisions notwithstanding), so , which we set to

zero. The internal energy is therefore due to translational kinetic energy only and

From the discussion in the preceding chapter, we know that the average kinetic energy of a molecule in an ideal monatomic gas is

where T is the Kelvin temperature of the gas. Consequently, the average mechanical energy per molecule of an ideal monatomic
gas is also , that is

The internal energy is just the number of molecules multiplied by the average mechanical energy per molecule. Thus for n moles of
an ideal monatomic gas,

Notice that the internal energy of a given quantity of an ideal monatomic gas depends on just the temperature and is completely
independent of the pressure and volume of the gas. For other systems, the internal energy cannot be expressed so simply. However,
an increase in internal energy can often be associated with an increase in temperature.

We know from the zeroth law of thermodynamics that when two systems are placed in thermal contact, they eventually reach
thermal equilibrium, at which point they are at the same temperature. As an example, suppose we mix two monatomic ideal gases.
Now, the energy per molecule of an ideal monatomic gas is proportional to its temperature. Thus, when the two gases are mixed,
the molecules of the hotter gas must lose energy and the molecules of the colder gas must gain energy. This continues until thermal
equilibrium is reached, at which point, the temperature, and therefore the average translational kinetic energy per molecule, is the
same for both gases. The approach to equilibrium for real systems is somewhat more complicated than for an ideal monatomic gas.
Nevertheless, we can still say that energy is exchanged between the systems until their temperatures are the same.
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