
2.2.1 https://phys.libretexts.org/@go/page/4351

2.2: Molecular Model of an Ideal Gas

By the end of this section, you will be able to:

Apply the ideal gas law to situations involving the pressure, volume, temperature, and the number of molecules of a gas
Use the unit of moles in relation to numbers of molecules, and molecular and macroscopic masses
Explain the ideal gas law in terms of moles rather than numbers of molecules
Apply the van der Waals gas law to situations where the ideal gas law is inadequate

In this section, we explore the thermal behavior of gases. Our word “gas” comes from the Flemish word meaning “chaos,” first
used for vapors by the seventeenth-century chemist J. B. van Helmont. The term was more appropriate than he knew, because gases
consist of molecules moving and colliding with each other at random. This randomness makes the connection between the
microscopic and macroscopic domains simpler for gases than for liquids or solids.

How do gases differ from solids and liquids? Under ordinary conditions, such as those of the air around us, the difference is that the
molecules of gases are much farther apart than those of solids and liquids. Because the typical distances between molecules are
large compared to the size of a molecule, as illustrated in Figure , the forces between them are considered negligible, except
when they come into contact with each other during collisions. Also, at temperatures well above the boiling temperature, the
motion of molecules is fast, and the gases expand rapidly to occupy all of the accessible volume. In contrast, in liquids and solids,
molecules are closer together, and the behavior of molecules in liquids and solids is highly constrained by the molecules’
interactions with one another. The macroscopic properties of such substances depend strongly on the forces between the molecules,
and since many molecules are interacting, the resulting “many-body problems” can be extremely complicated (see section on
Condensed Matter Physics).

Figure : Atoms and molecules in a gas are typically widely separated. Because the forces between them are quite weak at
these distances, the properties of a gas depend more on the number of atoms per unit volume and on temperature than on the type
of atom.

The Gas Laws

In the previous chapter, we saw one consequence of the large intermolecular spacing in gases: Gases are easily compressed. Table
1.4.1 shows that gases have larger coefficients of volume expansion than either solids or liquids. These large coefficients mean that
gases expand and contract very rapidly with temperature changes. We also saw (in the section on thermal expansion) that most
gases expand at the same rate or have the same coefficient of volume expansion, . This raises a question: Why do all gases act in
nearly the same way, when all the various liquids and solids have widely varying expansion rates?

To study how the pressure, temperature, and volume of a gas relate to one another, consider what happens when you pump air into
a deflated car tire. The tire’s volume first increases in direct proportion to the amount of air injected, without much increase in the
tire pressure. Once the tire has expanded to nearly its full size, the tire’s walls limit its volume expansion. If we continue to pump
air into the tire, the pressure increases. When the car is driven and the tires flex, their temperature increases, and therefore the
pressure increases even further (Figure ).
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Figure : When air is pumped into a deflated tire, its volume first increases without much increase in pressure. (b) When the
tire is filled to a certain point, the tire walls resist further expansion, and the pressure increases with more air. (c) Once the tire is
inflated, its pressure increases with temperature.

Figure  shows data from the experiments of Robert Boyle (1627–1691), illustrating what is now called Boyle’s law: At
constant temperature and number of molecules, the absolute pressure of a gas and its volume are inversely proportional. (Recall
from the section on Fluid Mechanics that the absolute pressure is the true pressure and the gauge pressure is the absolute pressure
minus the ambient pressure, typically atmospheric pressure.) The graph in Figure  displays this relationship as an inverse
proportionality of volume to pressure.

Figure : Robert Boyle and his assistant found that volume and pressure are inversely proportional. Here their data are plotted
as V versus 1/p; the linearity of the graph shows the inverse proportionality. The number shown as the volume is actually the height
in inches of air in a cylindrical glass tube. The actual volume was that height multiplied by the cross-sectional area of the tube,
which Boyle did not publish. The data are from Boyle’s book A Defence of the Doctrine Touching the Spring and Weight of the
Air…, p. 60.

Figure  shows experimental data illustrating what is called Charles’s law, after Jacques Charles (1746–1823). Charles’s law
states that at constant pressure and number of molecules, the volume of a gas is proportional to its absolute temperature.
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Figure : Experimental data showing that at constant pressure, volume is approximately proportional to temperature. The best-
fit line passes approximately through the origin.

Similar is Amonton’s or Gay-Lussac’s law, which states that at constant volume and number of molecules, the pressure is
proportional to the temperature. That law is the basis of the constant-volume gas thermometer, discussed in the previous chapter.
(The histories of these laws and the appropriate credit for them are more complicated than can be discussed here.)

It is known experimentally that for gases at low density (such that their molecules occupy a negligible fraction of the total volume)
and at temperatures well above the boiling point, these proportionalities hold to a good approximation. Not surprisingly, with the
other quantities held constant, either pressure or volume is proportional to the number of molecules. More surprisingly, when the
proportionalities are combined into a single equation, the constant of proportionality is independent of the composition of the gas.
The resulting equation for all gases applies in the limit of low density and high temperature; it’s the same for oxygen as for helium
or uranium hexafluoride. A gas at that limit is called an ideal gas; it obeys the ideal gas law, which is also called the equation of
state of an ideal gas.

The ideal gas law states that

where p is the absolute pressure of a gas, V is the volume it occupies, N is the number of molecules in the gas, and T is its
absolute temperature.

The constant  is called the Boltzmann constant in honor of the Austrian physicist Ludwig Boltzmann (1844–1906) and has the
value

The ideal gas law describes the behavior of any real gas when its density is low enough or its temperature high enough that it is far
from liquefaction. This encompasses many practical situations. In the next section, we’ll see why it’s independent of the type of
gas.

In many situations, the ideal gas law is applied to a sample of gas with a constant number of molecules; for instance, the gas may
be in a sealed container. If N is constant, then solving for N shows that pV /T is constant. We can write that fact in a convenient
form:

2.2.4
2

 Ideal Gas Law

pV = N T ,kB

kB

= 1.38 × J/K.kB 10−23

= ,
p1V1

T1

p2V2

T2
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where the subscripts 1 and 2 refer to any two states of the gas at different times. Again, the temperature must be expressed in kelvin
and the pressure must be absolute pressure, which is the sum of gauge pressure and atmospheric pressure.

Suppose your bicycle tire is fully inflated, with an absolute pressure of  (a gauge pressure of just under 
.) at a temperature of . What is the pressure after its temperature has risen to  on a hot day? Assume

there are no appreciable leaks or changes in volume.

Strategy
The pressure in the tire is changing only because of changes in temperature. We know the initial pressure ,
the initial temperature , and the final temperature . We must find the final pressure . Since the
number of molecules is constant, we can use the equation

Since the volume is constant,  and  are the same and they divide out. Therefore,

We can then rearrange this to solve for :

where the temperature must be in kelvin.

Solution

1. Convert temperatures from degrees Celsius to kelvin

2. Substitute the known values into the equation,

Significance
The final temperature is about  greater than the original temperature, so the final pressure is about  greater as well. Note
that absolute pressure (see Fluid Mechanics) and absolute temperature (see Temperature and Heat) must be used in the ideal
gas law.

How many molecules are in a typical object, such as gas in a tire or water in a glass? This calculation can give us an idea of
how large N typically is. Let’s calculate the number of molecules in the air that a typical healthy young adult inhales in one
breath, with a volume of 500 mL, at standard temperature and pressure (STP), which is defined as  and atmospheric
pressure. (Our young adult is apparently outside in winter.)

Strategy
Because pressure, volume, and temperature are all specified, we can use the ideal gas law, \(pV = k_BT\}, to find N.

Solution
1. Identify the knowns.

 Example : Calculating Pressure Changes Due to Temperature Changes2.2.1

7.00 × P a105

90.0 lb/in2 C18.0o C35.0o

= 7.00 × P ap0 105

= CT0 18.0o = CTf 35.0o pf

= .
pf Vf

Tf

p0V0

T0

Vf V0

= .
pf

Tf

p0

T0

pf

= ,pf p0

Tf

T0

= (18.0 +273)K = 291 K,T0

= (35.0 +273)K = 308 K.Tf

= = 7.00 × P a( ) = 7.41 × P a.pf p0

Tf

T0
105 308 K

291 K
105

6% 6%

 Example : Calculating the Number of Molecules in a Cubic Meter of Gas2.2.2

C0o

T = C = 273 K, p = 1.01 × P a, V = 500 mL = 5 × , = 1.38 × J/K0o 105 10−4 m3 kB 10−23
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2. Substitute the known values into the equation and solve for N.

Significance N is huge, even in small volumes. For example,  of a gas at STP contains  molecules. Once
again, note that our result for N is the same for all types of gases, including mixtures.

As we observed in the chapter on fluid mechanics, pascals are , so . Thus, our result for N is
dimensionless, a pure number that could be obtained by counting (in principle) rather than measuring. As it is the number of
molecules, we put “molecules” after the number, keeping in mind that it is an aid to communication rather than a unit.

Moles and Avogadro’s Number

It is often convenient to measure the amount of substance with a unit on a more human scale than molecules. The SI unit for this
purpose was developed by the Italian scientist Amedeo Avogadro (1776–1856). (He worked from the hypothesis that equal
volumes of gas at equal pressure and temperature contain equal numbers of molecules, independent of the type of gas. As
mentioned above, this hypothesis has been confirmed when the ideal gas approximation applies.) A mole (abbreviated mol) is
defined as the amount of any substance that contains as many molecules as there are atoms in exactly 12 grams (0.012 kg) of
carbon-12. (Technically, we should say “formula units,” not “molecules,” but this distinction is irrelevant for our purposes.) The
number of molecules in one mole is called Avogadro’s number ( ) and the value of Avogadro’s number is now known to be

. We can now write , where n represents the number of moles of a substance.

Avogadro’s number relates the mass of an amount of substance in grams to the number of protons and neutrons in an atom or
molecule (12 for a carbon-12 atom), which roughly determine its mass. It’s natural to define a unit of mass such that the mass of an
atom is approximately equal to its number of neutrons and protons. The unit of that kind accepted for use with the SI is the unified
atomic mass unit (u), also called the dalton. Specifically, a carbon-12 atom has a mass of exactly 12 u, so that its molar mass M in
grams per mole is numerically equal to the mass of one carbon-12 atom in u. That equality holds for any substance. In other words, 

 is not only the conversion from numbers of molecules to moles, but it is also the conversion from u to grams: 
. See Figure .

Figure : How big is a mole? On a macroscopic level, Avogadro’s number of table tennis balls would cover Earth to a depth of
about 40 km.

The recommended daily amount of vitamin  or niacin, , for women who are not pregnant or nursing, is 14 mg.
Find the number of molecules of niacin in that amount.

Answer

We first need to calculate the molar mass (the mass of one mole) of niacin. To do this, we must multiply the number of
atoms of each element in the molecule by the element’s molar mass.

(6 mol of carbon)(12.0 g/mol) + (5 mol hydrogen)(1.0 g/mol) + (1 mol of nitrogen)(14 g/mol) + (2 mol oxygen)(16.0
g/mol) = 123 g/mol

Then we need to calculate the number of moles in 14 mg.

N = = = 1.34 × molecules
pV

TkB

(1.01 × P a)(5 × )105 10−4 m3

(1.38 × J/K)(273 K)10−23
1022

1 cm3 2.68 ×1019

N/m2 P a ⋅ = N ⋅ m = Jm3

NA

= 6.02 × moNA 10−23 l−1

N = nNA

NA

6.02 × u = 1 g1023 2.2.5

2.2.5

 Exercise 2.2.1A

B3 NC6 H5O2
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Then, we use Avogadro’s number to calculate the number of molecules:

The density of air in a classroom  and ) is . At what pressure is the density 
if the temperature is kept constant?

Answer

The density of a gas is equal to a constant, the average molecular mass, times the number density N/V. From the ideal gas
law, , we see that . Therefore, at constant temperature, if the density and, consequently, the
number density are reduced by half, the pressure must also be reduced by half, and .

The Ideal Gas Law Restated using Moles

A very common expression of the ideal gas law uses the number of moles in a sample, n, rather than the number of molecules, N.
We start from the ideal gas law,

and multiply and divide the right-hand side of the equation by Avogadro’s number .This gives us

Note that  is the number of moles. We define the universal gas constant as , and obtain the ideal gas law in
terms of moles.

In terms of number of moles n, the ideal gas law is written as

In SI units,

In other units,

You can use whichever value of R is most convenient for a particular problem.

Calculate the density of dry air (a) under standard conditions and (b) in a hot air balloon at a temperature of . Dry air is
approximately  and .

Strategy and Solution

1. We are asked to find the density, or mass per cubic meter. We can begin by finding the molar mass. If we have a hundred
molecules, of which 78 are nitrogen, 21 are oxygen, and 1 is argon, the average molecular mass is 

, or the mass of each constituent multiplied by its percentage. The same applies to the
molar mass, which therefore is

( )( ) = 1.14 × mol.
14 mg

123 g/mol

1 g

1000 mg
10−4

N = n = (1.14 × mol)(6.02 × molecules/mol) = 6.85 × moleculesNA 10−4 1023 1019

 Exercise 2.2.1B

(p = 1.00 atm T = C20o 1.28 kg/m3 0.600 kg/m3

pV = N TkB N/V = p/ TkB

= 0.500 atmpf

pV = N T ,kB

NA

pV = T .
N

NA

NAkB

n = N/NA R = NAkB

 Ideal Gas Law (in terms of moles)

pV = nRT .

R = = (6.02 × mo )(1.38 × J/K) = 8.31 J/mol ⋅ KNAkB 1023 l−1 10−23

R = 1.99 = 0.0821 .
cal

mol ⋅ K

L ⋅ atm

mol ⋅ K

 Example : Density of Air at STP and in a Hot Air Balloon2.2.3

C120o

78% , 21% ,N2 O2 1% Ar

frac78 +21 + 100mN2
mO2

mAr
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Now we can find the number of moles per cubic meter. We use the ideal gas law in terms of moles, , with 
, , , and . The most convenient choice for R in this case is 

 because the known quantities are in SI units:

Then, the mass  of that air is

Finally the density of air at STP is

2. The air pressure inside the balloon is still 1 atm because the bottom of the balloon is open to the atmosphere. The
calculation is the same except that we use a temperature of , which is 393 K. We can repeat the calculation in (a), or
simply observe that the density is proportional to the number of moles, which is inversely proportional to the temperature.
Then using the subscripts 1 for air at STP and 2 for the hot air, we have

Significance
Using the methods of Archimedes’ Principle and Buoyancy, we can find that the net force on  of air at  is 

, or enough to lift about 867 kg. The mass density and molar density of
air at STP, found above, are often useful numbers. From the molar density, we can easily determine another useful number, the
volume of a mole of any ideal gas at STP, which is 22.4 L.

Liquids and solids have densities on the order of 1000 times greater than gases. Explain how this implies that the distances
between molecules in gases are on the order of 10 times greater than the size of their molecules.

Answer

Density is mass per unit volume, and volume is proportional to the size of a body (such as the radius of a sphere) cubed. So
if the distance between molecules increases by a factor of 10, then the volume occupied increases by a factor of 1000, and
the density decreases by a factor of 1000. Since we assume molecules are in contact in liquids and solids, the distance
between their centers is on the order of their typical size, so the distance in gases is on the order of 10 times as great.

The ideal gas law is closely related to energy: The units on both sides of the equation are joules. The right-hand side of the ideal
gas law equation is . This term is roughly the total translational kinetic energy (which, when discussing gases, refers to the
energy of translation of a molecule, not that of vibration of its atoms or rotation) of N molecules at an absolute temperature T, as
we will see formally in the next section. The left-hand side of the ideal gas law equation is pV. As mentioned in the example on the
number of molecules in an ideal gas, pressure multiplied by volume has units of energy. The energy of a gas can be changed when
the gas does work as it increases in volume, something we explored in the preceding chapter, and the amount of work is related to
the pressure. This is the process that occurs in gasoline or steam engines and turbines, as we’ll see in the next chapter.

Step 1. Examine the situation to determine that an ideal gas is involved. Most gases are nearly ideal unless they are close to
the boiling point or at pressures far above atmospheric pressure.
Step 2. Make a list of what quantities are given or can be inferred from the problem as stated (identify the known
quantities).

M = 0.78 +0, 21 +0.01 = 29.0 g/mol.MN2 MO2 MAr

pV = nRT

p = 1.00 atm T = 273 K V = 1 m3 R = 8.31 J/mol ⋅ K

R = 8.31 J/mol ⋅ K

n = = = 44.5 mol.
pV

RT

(1.01 × P a)(1 )105 m3

(8.31 J/mol ⋅ K)(273 K)

ms

= nM = (44.5 mol)(29.0 g/mol) = 1290 g = 1.29 kg.ms

ρ = = = 1.29 kg/ .
ms

V

1.29 kg

1 m3
m3

C120o

= = (1.29 kg/ ) = 0.896 kg/ .ρ2
T1

T2
ρ1

273 K

393 K
m3 m3

2200 m3 C120o

− = − = 8.49 × NFb Fg ρatmosphere Vg ρhot air Vg 103

 Exercise 2.2.3

N TkB

 Problem-Solving Strategy: The Ideal Gas Law
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Step 3. Identify exactly what needs to be determined in the problem (identify the unknown quantities). A written list is
useful.
Step 4. Determine whether the number of molecules or the number of moles is known or asked for to decide whether to use
the ideal gas law as , where N is the number of molecules, or , where n is the number of moles.
Step 5. Convert known values into proper SI units (K for temperature, Pa for pressure,  for volume, molecules for N,
and moles for n). If the units of the knowns are consistent with one of the non-SI values of R, you can leave them in those
units. Be sure to use absolute temperature and absolute pressure.
Step 6. Solve the ideal gas law for the quantity to be determined (the unknown quantity). You may need to take a ratio of
final states to initial states to eliminate the unknown quantities that are kept fixed.
Step 7. Substitute the known quantities, along with their units, into the appropriate equation and obtain numerical solutions
complete with units.
Step 8. Check the answer to see if it is reasonable: Does it make sense?

The Van der Waals Equation of State

We have repeatedly noted that the ideal gas law is an approximation. How can it be improved upon? The van der Waals equation
of state (named after the Dutch physicist Johannes van der Waals, 1837−1923) improves it by taking into account two factors.
First, the attractive forces between molecules, which are stronger at higher density and reduce the pressure, are taken into account
by adding to the pressure a term equal to the square of the molar density multiplied by a positive coefficient a. Second, the volume
of the molecules is represented by a positive constant b, which can be thought of as the volume of a mole of molecules. This is
subtracted from the total volume to give the remaining volume that the molecules can move in. The constants a and b are
determined experimentally for each gas. The resulting equation is

In the limit of low density (small n), the a and b terms are negligible, and we have the ideal gas law, as we should for low density.
On the other hand, if  is small, meaning that the molecules are very close together, the pressure must be higher to give the
same nRT, as we would expect in the situation of a highly compressed gas. However, the increase in pressure is less than that
argument would suggest, because at high density the  term is significant. Since it’s positive, it causes a lower pressure to
give the same nRT.

The van der Waals equation of state works well for most gases under a wide variety of conditions. As we’ll see in the next module,
it even predicts the gas-liquid transition.

pV Diagrams

We can examine aspects of the behavior of a substance by plotting a pV diagram, which is a graph of pressure versus volume.
When the substance behaves like an ideal gas, the ideal gas law  describes the relationship between its pressure and
volume. On a pV diagram, it’s common to plot an isotherm, which is a curve showing p as a function of V with the number of
molecules and the temperature fixed. Then, for an ideal gas,  For example, the volume of the gas decreases as the
pressure increases. The resulting graph is a hyperbola.

However, if we assume the van der Waals equation of state, the isotherms become more interesting, as shown in Figure . At
high temperatures, the curves are approximately hyperbolas, representing approximately ideal behavior at various fixed
temperatures. At lower temperatures, the curves look less and less like hyperbolas—that is, the gas is not behaving ideally. There is
a critical temperature  at which the curve has a point with zero slope. Below that temperature, the curves do not decrease
monotonically; instead, they each have a “hump,” meaning that for a certain range of volume, increasing the volume increases the
pressure.

pV = N TkB pV = nRT

m3

[p +a ] (V −nb) = nRT .( )
n

V

2

V −nb

(n/V )2

pV = nRT

pV = constant.

2.2.6

Tc

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/4351?pdf


2.2.9 https://phys.libretexts.org/@go/page/4351

Figure : pV diagram for a Van der Waals gas at various temperatures. The red curves are calculated at temperatures above the
critical temperature and the blue curves at temperatures below it. The blue curves have an oscillation in which volume (V)
increases with increasing temperature (T), an impossible situation, so they must be corrected as in Figure . (credit:
“Eman”/Wikimedia Commons)

Such behavior would be completely unphysical. Instead, the curves are understood as describing a liquid-gas phase transition. The
oscillating part of the curve is replaced by a horizontal line, showing that as the volume increases at constant temperature, the
pressure stays constant. That behavior corresponds to boiling and condensation; when a substance is at its boiling temperature for a
particular pressure, it can increase in volume as some of the liquid turns to gas, or decrease as some of the gas turns to liquid,
without any change in temperature or pressure.

Figure  shows similar isotherms that are more realistic than those based on the van der Waals equation. The steep parts of the
curves to the left of the transition region show the liquid phase, which is almost incompressible—a slight decrease in volume
requires a large increase in pressure. The flat parts show the liquid-gas transition; the blue regions that they define represent
combinations of pressure and volume where liquid and gas can coexist.

Figure : pV diagrams. (a) Each curve (isotherm) represents the relationship between p and V at a fixed temperature; the upper
curves are at higher temperatures. The lower curves are not hyperbolas because the gas is no longer an ideal gas. (b) An expanded
portion of the pV diagram for low temperatures, where the phase can change from a gas to a liquid. The term “vapor” refers to the
gas phase when it exists at a temperature below the boiling temperature.

2.2.6

2.2.7

2.2.7

2.2.7
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The isotherms above  do not go through the liquid-gas transition. Therefore, liquid cannot exist above that temperature, which is
the critical temperature (described in the chapter on temperature and heat). At sufficiently low pressure above that temperature, the
gas has the density of a liquid but will not condense; the gas is said to be supercritical. At higher pressure, it is solid. Carbon
dioxide, for example, has no liquid phase at a temperature above . The critical pressure is the maximum pressure at which
the liquid can exist. The point on the pV diagram at the critical pressure and temperature is the critical point (which you learned
about in the chapter on temperature and heat). Table lists representative critical temperatures and pressures.

Table : Critical Temperatures and Pressures for Various Substances

Substance Critical temperature Critical pressure

 K Pa atm

Water 647.4 374.3 219.0

Sulfur dioxide 430.7 157.6 78.0

Ammonia 405.5 132.4 111.7

Carbon dioxide 304.2 31.1 73.2

Oxygen 154.8 –118.4 50.3

Nitrogen 126.2 –146.9 33.6

Hydrogen 33.3 –239.9 12.9

Helium 5.3 –267.9 2.27
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