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3.7: Adiabatic Processes for an Ideal Gas

By the end of this section, you will be able to:

Define adiabatic expansion of an ideal gas
Demonstrate the qualitative difference between adiabatic and isothermal expansions

When an ideal gas is compressed adiabatically , work is done on it and its temperature increases; in an adiabatic
expansion, the gas does work and its temperature drops. Adiabatic compressions actually occur in the cylinders of a car, where
the compressions of the gas-air mixture take place so quickly that there is no time for the mixture to exchange heat with its
environment. Nevertheless, because work is done on the mixture during the compression, its temperature does rise significantly. In
fact, the temperature increases can be so large that the mixture can explode without the addition of a spark. Such explosions, since
they are not timed, make a car run poorly—it usually “knocks.” Because ignition temperature rises with the octane of gasoline, one
way to overcome this problem is to use a higher-octane gasoline.

Figure : The gas in the left chamber expands freely into the right chamber when the membrane is punctured.

Another interesting adiabatic process is the free expansion of a gas. Figure  shows a gas confined by a membrane to one side
of a two-compartment, thermally insulated container. When the membrane is punctured, gas rushes into the empty side of the
container, thereby expanding freely. Because the gas expands “against a vacuum” , it does no work, and because the vessel
is thermally insulated, the expansion is adiabatic. With  and  in the first law,  so  for free
expansion.

If the gas is ideal, the internal energy depends only on the temperature. Therefore, when an ideal gas expands freely, its temperature
does not change; this is also called a Joule expansion.

Figure : When sand is removed from the piston one grain at a time, the gas expands adiabatically and quasi-statically in the
insulated vessel.

A quasi-static, adiabatic expansion of an ideal gas is represented in Figure , which shows an insulated cylinder that contains 1
mol of an ideal gas. The gas is made to expand quasi-statically by removing one grain of sand at a time from the top of the piston.
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When the gas expands by , the change in its temperature is . The work done by the gas in the expansion is ; 
 because the cylinder is insulated; and the change in the internal energy of the gas is

Therefore, from the first law,

so

Also, for 1 mol of an ideal gas,

[d(pV) = d(RnT), \nonumber \]

so

and

We now have two equations for . Upon equating them, we find that

Now, we divide this equation by  and use . We are then left with

which becomes

where we define  as the ratio of the molar heat capacities:

Thus

and

Finally, using  and , we can write this in the form

This equation is the condition that must be obeyed by an ideal gas in a quasi-static adiabatic process. For example, if an ideal gas
makes a quasi-static adiabatic transition from a state with pressure and volume  and  to a state with  and , then it must be
true that .

The adiabatic condition of Equation  can be written in terms of other pairs of thermodynamic variables by combining it with
the ideal gas law. In doing this, we find that
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and

A reversible adiabatic expansion of an ideal gas is represented on the pV diagram of Figure . The slope of the curve at any
point is

Figure : Quasi-static adiabatic and isothermal expansions of an ideal gas.

The dashed curve shown on this pV diagram represents an isothermal expansion where  (and therefore pV) is constant. The slope
of this curve is useful when we consider the second law of thermodynamics in the next chapter. This slope is

Because , the isothermal curve is not as steep as that for the adiabatic expansion.

Gasoline vapor is injected into the cylinder of an automobile engine when the piston is in its expanded position. The
temperature, pressure, and volume of the resulting gas-air mixture are , , and , respectively.
The mixture is then compressed adiabatically to a volume of . Note that in the actual operation of an automobile engine,
the compression is not quasi-static, although we are making that assumption here.

a. What are the pressure and temperature of the mixture after the compression?
b. How much work is done by the mixture during the compression?

Strategy
Because we are modeling the process as a quasi-static adiabatic compression of an ideal gas, we have  and 

. The work needed can then be evaluated with .

Solution
a. For an adiabatic compression we have

so after the compression, the pressure of the mixture is

From the ideal gas law, the temperature of the mixture after the compression is
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 Example : Compression of an Ideal Gas in an Automobile Engine3.7.1

C20o 1.00 × N/105 m2 240 cm3

40 cm3
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= (1.00 × N/ ) = 1.23 × N/ .p2 105 m2 ( )
240 ×10−6m3

40 ×10−6m3
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b. The work done by the mixture during the compression is

With the adiabatic condition of Equation , we may write p as , where . The work is
therefore

Significance

The negative sign on the work done indicates that the piston does work on the gas-air mixture. The engine would not work if
the gas-air mixture did work on the piston.

This page titled 3.7: Adiabatic Processes for an Ideal Gas is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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