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13.4: Motional Emf

By the end of this section, you will be able to:

Determine the magnitude of an induced emf in a wire moving at a constant speed through a magnetic field
Discuss examples that use motional emf, such as a rail gun and a tethered satellite

Magnetic flux depends on three factors: the strength of the magnetic field, the area through which the field lines pass, and the
orientation of the field with the surface area. If any of these quantities varies, a corresponding variation in magnetic flux occurs. So
far, we’ve only considered flux changes due to a changing field. Now we look at another possibility: a changing area through which
the field lines pass including a change in the orientation of the area.

Two examples of this type of flux change are represented in Figure . In part (a), the flux through the rectangular loop
increases as it moves into the magnetic field, and in part (b), the flux through the rotating coil varies with the angle .

Figure : (a) Magnetic flux changes as a loop moves into a magnetic field; (b) magnetic flux changes as a loop rotates in a
magnetic field.

It’s interesting to note that what we perceive as the cause of a particular flux change actually depends on the frame of reference we
choose. For example, if you are at rest relative to the moving coils of Figure , you would see the flux vary because of a
changing magnetic field—in part (a), the field moves from left to right in your reference frame, and in part (b), the field is rotating.
It is often possible to describe a flux change through a coil that is moving in one particular reference frame in terms of a changing
magnetic field in a second frame, where the coil is stationary. However, reference-frame questions related to magnetic flux are
beyond the level of this textbook. We’ll avoid such complexities by always working in a frame at rest relative to the laboratory and
explain flux variations as due to either a changing field or a changing area.

Now let’s look at a conducting rod pulled in a circuit, changing magnetic flux. The area enclosed by the circuit ‘MNOP’ of Figure 

 is lx and is perpendicular to the magnetic field, so we can simplify the integration of  into a
multiplication of magnetic field and area. The magnetic flux through the open surface is therefore

Since  and  are constant and the velocity of the rod is , we can now restate Faraday’s law, Equation 13.2.2, for the
magnitude of the emf in terms of the moving conducting rod as

The current induced in the circuit is the emf divided by the resistance or
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Furthermore, the direction of the induced emf satisfies Lenz’s law, as you can verify by inspection of the figure.

This calculation of motionally induced emf is not restricted to a rod moving on conducting rails. With  as the starting
point, it can be shown that  holds for any change in flux caused by the motion of a conductor. We saw in Faraday’s
Law that the emf induced by a time-varying magnetic field obeys this same relationship, which is Faraday’s law. Thus Faraday’s
law holds for all flux changes, whether they are produced by a changing magnetic field, by motion, or by a combination of the
two.

Figure : A conducting rod is pushed to the right at constant velocity. The resulting change in the magnetic flux induces a
current in the circuit.

From an energy perspective,  produces power , and the resistor dissipates power . Since the rod is moving at constant
velocity, the applied force  must balance the magnetic force  on the rod when it is carrying the induced current I. Thus
the power produced is

The power dissipated is

In satisfying the principle of energy conservation, the produced and dissipated powers are equal.

This principle can be seen in the operation of a rail gun. A rail gun is an electromagnetic projectile launcher that uses an apparatus
similar to Figure  and is shown in schematic form in Figure . The conducting rod is replaced with a projectile or
weapon to be fired. So far, we’ve only heard about how motion causes an emf. In a rail gun, the optimal shutting off/ramping down
of a magnetic field decreases the flux in between the rails, causing a current to flow in the rod (armature) that holds the projectile.
This current through the armature experiences a magnetic force and is propelled forward. Rail guns, however, are not used widely
in the military due to the high cost of production and high currents: Nearly one million amps is required to produce enough energy
for a rail gun to be an effective weapon.
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Figure : Current through two rails drives a conductive projectile forward by the magnetic force created.

We can calculate a motionally induced emf with Faraday’s law even when an actual closed circuit is not present. We simply
imagine an enclosed area whose boundary includes the moving conductor, calculate , and then find the emf from Faraday’s law.
For example, we can let the moving rod of Figure  be one side of the imaginary rectangular area represented by the dashed
lines. The area of the rectangle is lx, so the magnetic flux through it is . Differentiating this equation, we obtain

which is identical to the potential difference between the ends of the rod that we determined earlier.

Figure : With the imaginary rectangle shown, we can use Faraday’s law to calculate the induced emf in the moving rod.

Motional emfs in Earth’s weak magnetic field are not ordinarily very large, or we would notice voltage along metal rods, such as a
screwdriver, during ordinary motions. For example, a simple calculation of the motional emf of a 1.0-m rod moving at 3.0 m/s
perpendicular to the Earth’s field gives

This small value is consistent with experience. There is a spectacular exception, however. In 1992 and 1996, attempts were made
with the space shuttle to create large motional emfs. The tethered satellite was to be let out on a 20-km length of wire, as shown in
Figure , to create a 5-kV emf by moving at orbital speed through Earth’s field. This emf could be used to convert some of the
shuttle’s kinetic and potential energy into electrical energy if a complete circuit could be made. To complete the circuit, the
stationary ionosphere was to supply a return path through which current could flow. (The ionosphere is the rarefied and partially
ionized atmosphere at orbital altitudes. It conducts because of the ionization. The ionosphere serves the same function as the
stationary rails and connecting resistor in Figure , without which there would not be a complete circuit.) Drag on the current
in the cable due to the magnetic force  does the work that reduces the shuttle’s kinetic and potential energy, and
allows it to be converted into electrical energy. Both tests were unsuccessful. In the first, the cable hung up and could only be
extended a couple of hundred meters; in the second, the cable broke when almost fully extended. Example  indicates
feasibility in principle.
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Figure : Motional emf as electrical power conversion for the space shuttle was the motivation for the tethered satellite
experiment. A 5-kV emf was predicted to be induced in the 20-km tether while moving at orbital speed in Earth’s magnetic field.
The circuit is completed by a return path through the stationary ionosphere.

Calculate the motional emf induced along a 20.0-km conductor moving at an orbital speed of 7.80 km/s perpendicular to
Earth’s  magnetic field.

Strategy
This is a great example of using the equation motional .

Solution
Entering the given values into  gives

Significance
The value obtained is greater than the 5-kV measured voltage for the shuttle experiment, since the actual orbital motion of the
tether is not perpendicular to Earth’s field. The 7.80-kV value is the maximum emf obtained when  and so .

Part (a) of Figure  shows a metal rod OS that is rotating in a horizontal plane around point O. The rod slides along a
wire that forms a circular arc PST of radius . The system is in a constant magnetic field  that is directed out of the page.

a. If you rotate the rod at a constant angular velocity , what is the current  in the closed loop OPSO? Assume that the
resistor  furnishes all of the resistance in the closed loop.

b. Calculate the work per unit time that you do while rotating the rod and show that it is equal to the power dissipated in the
resistor.

13.4.5

 Example : Calculating the Large Motional Emf of an Object in Orbit13.4.1
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 Example : A Metal Rod Rotating in a Magnetic Field13.4.2
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Figure : (a) The end of a rotating metal rod slides along a circular wire in a horizontal plane. (b) The induced current in
the rod. (c) The magnetic force on an infinitesimal current segment.

Strategy
The magnetic flux is the magnetic field times the area of the quarter circle or . When finding the emf through
Faraday’s law, all variables are constant in time but , with . To calculate the work per unit time, we know this is
related to the torque times the angular velocity. The torque is calculated by knowing the force on a rod and integrating it over
the length of the rod.

Solution
1. From geometry, the area of the loop OPSO is . Hence, the magnetic flux through the loop is

Differentiating with respect to time and using , we have

When divided by the resistance R of the loop, this yields for the magnitude of the induced current

As  increases, so does the flux through the loop due to . To counteract this increase, the magnetic field due to the
induced current must be directed into the page in the region enclosed by the loop. Therefore, as part (b) of Figure 
illustrates, the current circulates clockwise.

2. You rotate the rod by exerting a torque on it. Since the rod rotates at constant angular velocity, this torque is equal and
opposite to the torque exerted on the current in the rod by the original magnetic field. The magnetic force on the
infinitesimal segment of length dx shown in part (c) of Figure  is , so the magnetic torque on this
segment is

The net magnetic torque on the rod is then

The torque  that you exert on the rod is equal and opposite to , and the work that you do when the rod rotates through
an angle  is . Hence, the work per unit time that you do on the rod is

where we have substituted for I. The power dissipated in the resister is , which can be written as
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Therefore, we see that

Hence, the power dissipated in the resistor is equal to the work per unit time done in rotating the rod.

Significance
An alternative way of looking at the induced emf from Faraday’s law is to integrate in space instead of time. The solution,
however, would be the same. The motional emf is

The velocity can be written as the angular velocity times the radius and the differential length written as . Therefore,

which is the same solution as before.

A rectangular coil of area A and N turns is placed in a uniform magnetic field , as shown in Figure . The coil is
rotated about the z-axis through its center at a constant angular velocity . Obtain an expression for the induced emf in the coil.

Figure : A rectangular coil rotating in a uniform magnetic field.

Strategy
According to the diagram, the angle between the perpendicular to the surface ( ) and the magnetic field  is . The dot
product of  simplifies to only the  component of the magnetic field, namely where the magnetic field projects onto
the unit area vector . The magnitude of the magnetic field and the area of the loop are fixed over time, which makes the
integration simplify quickly. The induced emf is written out using Faraday’s law.

Solution
When the coil is in a position such that its normal vector  makes an angle  with the magnetic field  the magnetic flux
through a single turn of the coil is
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 Example : A Rectangular Coil Rotating in a Magnetic Field13.4.3
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From Faraday’s law, the emf induced in the coil is

The constant angular velocity is . The angle  represents the time evolution of the angular velocity or . This is
changes the function to time space rather than . The induced emf therefore varies sinusoidally with time according to

where .

Significance
If the magnetic field strength or area of the loop were also changing over time, these variables wouldn’t be able to be pulled
out of the time derivative to simply the solution as shown. This example is the basis for an electric generator, as we will give a
full discussion in Applications of Newton’s Law.

Shown below is a rod of length l that is rotated counterclockwise around the axis through O by the torque due to .
Assuming that the rod is in a uniform magnetic field , what is the emf induced between the ends of the rod when its angular
velocity is ? Which end of the rod is at a higher potential?

Answer

, with O at a higher potential than S

A rod of length 10 cm moves at a speed of 10 m/s perpendicularly through a 1.5-T magnetic field. What is the potential
difference between the ends of the rod?

Answer

1.5 V

This page titled 13.4: Motional Emf is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.
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