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12.7: Solenoids and Toroids

&b Learning Objectives

By the end of this section, you will be able to:

o Establish a relationship for how the magnetic field of a solenoid varies with distance and current by using both the Biot-
Savart law and Ampére’s law
o Establish a relationship for how the magnetic field of a toroid varies with distance and current by using Ampere’s law

Two of the most common and useful electromagnetic devices are called solenoids and toroids. In one form or another, they are part
of numerous instruments, both large and small. In this section, we examine the magnetic field typical of these devices.

Solenoids

A long wire wound in the form of a helical coil is known as a solenoid. Solenoids are commonly used in experimental research
requiring magnetic fields. A solenoid is generally easy to wind, and near its center, its magnetic field is quite uniform and directly
proportional to the current in the wire.

Figure 12.7.1shows a solenoid consisting of N turns of wire tightly wound over a length L. A current I is flowing along the wire
of the solenoid. The number of turns per unit length is N/L; therefore, the number of turns in an infinitesimal length dy are (N/L)dy
turns. This produces a current

NI
dl = Tdy. (12.7.1)

We first calculate the magnetic field at the point P of Figure 12.7.1 This point is on the central axis of the solenoid. We are
basically cutting the solenoid into thin slices that are dy thick and treating each as a current loop. Thus, dI is the current through
each slice. The magnetic field dB due to the current dI in dy can be found with the help of Equation 12.5.3 and Equation 12.7.1:

2 . 2N -
poRdI - (uoIRN.)( dy (12.7.2)

dB = -
2(y? +R2)3/2 J 2L y? +R2)3/2

where we used Equation 12.7.1to replace dI. The resultant field at P is found by integrating dB along the entire length of the
solenoid. It’s easiest to evaluate this integral by changing the independent variable from y to 8. From inspection of Figure 12.7.1,
we have:

sinf=—2— (12.7.3)
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Figure 12.7.1: (a) A solenoid is a long wire wound in the shape of a helix. (b) The magnetic field at the point P on the axis of the
solenoid is the net field due to all of the current loops.

Taking the differential of both sides of this equation, we obtain

2
Y 1
cosfdf=|— + d
l WP R
_ R%dy
(yz + R2)3/2 ’
When this is substituted into the equation for dé, we have
- IN . % IN .
B= M;L j/g1 cos0df = ,u(;L (sinfy —sinby)j, (12.7.4)

which is the magnetic field along the central axis of a finite solenoid.

Of special interest is the infinitely long solenoid, for which L — oo. From a practical point of view, the infinite solenoid is one
whose length is much larger than its radius (L >> R). In this case, 6; = %’r and 6y = % Then from Equation 12.7.4 the
magnetic field along the central axis of an infinite solenoid is

,LLOI N ~ - ,LtoI N

7 Jlsin(m/2) —sin(—m/2)] = = j

_é:

or

B = ponlj, (12.7.5)

where n is the number of turns per unit length. You can find the direction of B with a right-hand rule: Curl your fingers in the
direction of the current, and your thumb points along the magnetic field in the interior of the solenoid.
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We now use these properties, along with Ampeére’s law, to calculate the magnitude of the magnetic field at any location inside the
infinite solenoid. Consider the closed path of Figure 12.7.2 Along segment 1, B is uniform and parallel to the path. Along
segments 2 and 4, Bis perpendicular to part of the path and vanishes over the rest of it. Therefore, segments 2 and 4 do not
contribute to the line integral in Ampeére’s law. Along segment 3, B =0 because the magnetic field is zero outside the solenoid. If
you consider an Ampére’s law loop outside of the solenoid, the current flows in opposite directions on different segments of wire.
Therefore, there is no enclosed current and no magnetic field according to Ampeére’s law. Thus, there is no contribution to the line
integral from segment 3. As a result, we find

]{é-dfz B-dl =Bl (12.7.6)
1
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Figure 12.7.2: The path of integration used in Ampére’s law to evaluate the magnetic field of an infinite solenoid.

The solenoid has n turns per unit length, so the current that passes through the surface enclosed by the path is nlI. Therefore, from
Ampére’s law,

Bl = pgnll

and

B = pgnl (12.7.7)

within the solenoid. This agrees with what we found earlier for B on the central axis of the solenoid. Here, however, the location of
segment 1 is arbitrary, so we have found that this equation gives the magnetic field everywhere inside the infinite solenoid.

Outside the solenoid, one can draw an Ampeére’s law loop around the entire solenoid. This would enclose current flowing in both
directions. Therefore, the net current inside the loop is zero. According to Ampére’s law, if the net current is zero, the magnetic
field must be zero. Therefore, for locations outside of the solenoid’s radius, the magnetic field is zero.

When a patient undergoes a magnetic resonance imaging (MRI) scan, the person lies down on a table that is moved into the center
of a large solenoid that can generate very large magnetic fields. The solenoid is capable of these high fields from high currents
flowing through superconducting wires. The large magnetic field is used to change the spin of protons in the patient’s body. The
time it takes for the spins to align or relax (return to original orientation) is a signature of different tissues that can be analyzed to
see if the structures of the tissues is normal (Figure 12.7.3).
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Figure 12.7.3: . In an MRI machine, a large magnetic field is generated by the cylindrical solenoid surrounding the patient. (credit:
Liz West)

v/ Example 12.7.1: Magnetic Field Inside a SOlenoid

A solenoid has 300 turns wound around a cylinder of diameter 1.20 cm and length 14.0 cm. If the current through the coils is
0.410 A, what is the magnitude of the magnetic field inside and near the middle of the solenoid?

Strategy

We are given the number of turns and the length of the solenoid so we can find the number of turns per unit length. Therefore,
the magnetic field inside and near the middle of the solenoid is given by Equation 12.7.7. Outside the solenoid, the magnetic
field is zero.

Solution
The number of turns per unit length is

_ 300 turns
©0.140m

The magnetic field produced inside the solenoid is

=2.14 x 10° turns/m.

B=ponl = (47 x1077T-m/A)(2.14 x 103turns/m)(0.410 A)
B=1.10x10"°T.

Significance
This solution is valid only if the length of the solenoid is reasonably large compared with its diameter. This example is a case
where this is valid.

? Exercise 12.7.1

What is the ratio of the magnetic field produced from using a finite formula over the infinite approximation for an angle 6 of
(a) 85°? (b) 89°? The solenoid has 1000 turns in 50 cm with a current of 1.0 A flowing through the coils

Solution
a. 1.00382; b. 1.00015

Toroids

A toroid is a donut-shaped coil closely wound with one continuous wire, as illustrated in part (a) of Figure 12.7.4 If the toroid has
N windings and the current in the wire is I, what is the magnetic field both inside and outside the toroid?
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Figure 12.7.4: (a) A toroid is a coil wound into a donut-shaped object. (b) A loosely wound toroid does not have cylindrical
symmetry. (c) In a tightly wound toroid, cylindrical symmetry is a very good approximation. (d) Several paths of integration for
Ampere’s law.

We begin by assuming cylindrical symmetry around the axis OO’. Actually, this assumption is not precisely correct, for as part (b)
of Figure 12.7.4 shows, the view of the toroidal coil varies from point to point (for example, P;, P5 and P3) on a circular path
centered around OQ’. However, if the toroid is tightly wound, all points on the circle become essentially equivalent [part (c) of
Figure 12.7.4], and cylindrical symmetry is an accurate approximation.

With this symmetry, the magnetic field must be tangent to and constant in magnitude along any circular path centered on OO’. This
allows us to write for each of the paths Dy, Dy and D3 shown in part (d) of Figure 12.7.4

fé-di:B(zm). (12.7.8)

Ampére’s law relates this integral to the net current passing through any surface bounded by the path of integration. For a path that
is external to the toroid, either no current passes through the enclosing surface (path D;), or the current passing through the surface
in one direction is exactly balanced by the current passing through it in the opposite direction (path Ds3). In either case, there is no
net current passing through the surface, so

7{ B(2rr) =0
and

B =0 (outsidethetoroid). (12.7.9)

The turns of a toroid form a helix, rather than circular loops. As a result, there is a small field external to the coil; however, the
derivation above holds if the coils were circular.

For a circular path within the toroid (path D5), the current in the wire cuts the surface N times, resulting in a net current NI through
the surface. We now find with Ampére’s law,

B(2nr) =puyNI

and
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NI
B= “; — (within thetoroid). (12.7.10)
T

The magnetic field is directed in the counterclockwise direction for the windings shown. When the current in the coils is reversed,
the direction of the magnetic field also reverses.

The magnetic field inside a toroid is not uniform, as it varies inversely with the distance r from the axis OO’. However, if the
central radius R (the radius midway between the inner and outer radii of the toroid) is much larger than the cross-sectional diameter
of the coils r, the variation is fairly small, and the magnitude of the magnetic field may be calculated by Equation 12.7.10 where
r=R.

This page titled 12.7: Solenoids and Toroids is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.
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