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6.3: Explaining Gauss’s Law

By the end of this section, you will be able to:

State Gauss’s law
Explain the conditions under which Gauss’s law may be used
Apply Gauss’s law in appropriate systems

We can now determine the electric flux through an arbitrary closed surface due to an arbitrary charge distribution. We found that if
a closed surface does not have any charge inside where an electric field line can terminate, then any electric field line entering the
surface at one point must necessarily exit at some other point of the surface. Therefore, if a closed surface does not have any
charges inside the enclosed volume, then the electric flux through the surface is zero. Now, what happens to the electric flux if there
are some charges inside the enclosed volume? Gauss’s law gives a quantitative answer to this question.

To get a feel for what to expect, let’s calculate the electric flux through a spherical surface around a positive point charge , since
we already know the electric field in such a situation. Recall that when we place the point charge at the origin of a coordinate
system, the electric field at a point  that is at a distance  from the charge at the origin is given by

where  is the radial vector from the charge at the origin to the point . We can use this electric field to find the flux through the
spherical surface of radius , as shown in Figure .

Figure : A closed spherical surface surrounding a point charge .

Then we apply  to this system and substitute known values. On the sphere,  and  so for an infinitesimal
area ,

We now find the net flux by integrating this flux over the surface of the sphere:

where the total surface area of the spherical surface is . This gives the flux through the closed spherical surface at radius  as
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A remarkable fact about this equation is that the flux is independent of the size of the spherical surface. This can be directly
attributed to the fact that the electric field of a point charge decreases as  with distance, which just cancels the  rate of
increase of the surface area.

Electric Field Lines Picture
An alternative way to see why the flux through a closed spherical surface is independent of the radius of the surface is to look at the
electric field lines. Note that every field line from  that pierces the surface at radius  also pierces the surface at  (Figure 

).

Figure : Flux through spherical surfaces of radii  and  enclosing a charge  are equal, independent of the size of the
surface, since all -field lines that pierce one surface from the inside to outside direction also pierce the other surface in the same
direction.

Therefore, the net number of electric field lines passing through the two surfaces from the inside to outside direction is equal. This
net number of electric field lines, which is obtained by subtracting the number of lines in the direction from outside to inside from
the number of lines in the direction from inside to outside gives a visual measure of the electric flux through the surfaces.

You can see that if no charges are included within a closed surface, then the electric flux through it must be zero. A typical field
line enters the surface at  and leaves at . Every line that enters the surface must also leave that surface. Hence the net
“flow” of the field lines into or out of the surface is zero (Figure ). The same thing happens if charges of equal and opposite
sign are included inside the closed surface, so that the total charge included is zero (Figure ). A surface that includes the
same amount of charge has the same number of field lines crossing it, regardless of the shape or size of the surface, as long as the
surface encloses the same amount of charge (Figure ).

Figure : Understanding the flux in terms of field lines. (a) The electric flux through a closed surface due to a charge outside
that surface is zero. (b) Charges are enclosed, but because the net charge included is zero, the net flux through the closed surface is
also zero. (c) The shape and size of the surfaces that enclose a charge does not matter because all surfaces enclosing the same
charge have the same flux.
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Statement of Gauss’s Law
Gauss’s law generalizes this result to the case of any number of charges and any location of the charges in the space inside the
closed surface. According to Gauss’s law, the flux of the electric field  through any closed surface, also called a Gaussian
surface, is equal to the net charge enclosed  divided by the permittivity of free space :

This equation holds for charges of either sign, because we define the area vector of a closed surface to point outward. If the
enclosed charge is negative (Figure ), then the flux through either  or  is negative.

Figure : The electric flux through any closed surface surrounding a point charge  is given by Gauss’s law. (a) Enclosed
charge is positive. (b) Enclosed charge is negative.

The Gaussian surface does not need to correspond to a real, physical object; indeed, it rarely will. It is a mathematical construct that
may be of any shape, provided that it is closed. However, since our goal is to integrate the flux over it, we tend to choose shapes
that are highly symmetrical.

If the charges are discrete point charges, then we just add them. If the charge is described by a continuous distribution, then we
need to integrate appropriately to find the total charge that resides inside the enclosed volume. For example, the flux through the
Gaussian surface  of Figure  is

Note that  is simply the sum of the point charges. If the charge distribution were continuous, we would need to integrate
appropriately to compute the total charge within the Gaussian surface.

Figure : The flux through the Gaussian surface shown, due to the charge distribution, is .

Recall that the principle of superposition holds for the electric field. Therefore, the total electric field at any point, including those
on the chosen Gaussian surface, is the sum of all the electric fields present at this point. This allows us to write Gauss’s law in
terms of the total electric field.
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The flux  of the electric field  through any closed surface S (a Gaussian surface) is equal to the net charge enclosed 
divided by the permittivity of free space :

To use Gauss’s law effectively, you must have a clear understanding of what each term in the equation represents. The field  is
the total electric field at every point on the Gaussian surface. This total field includes contributions from charges both inside and
outside the Gaussian surface. However,  is just the charge inside the Gaussian surface. Finally, the Gaussian surface is any
closed surface in space. That surface can coincide with the actual surface of a conductor, or it can be an imaginary geometric
surface. The only requirement imposed on a Gaussian surface is that it be closed (Figure ).

Figure : A Klein bottle partially filled with a liquid. Could the Klein bottle be used as a Gaussian surface?

Calculate the electric flux through each Gaussian surface shown in Figure .
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Figure : Various Gaussian surfaces and charges.

Strategy

From Gauss’s law, the flux through each surface is given by , where  is the charge enclosed by that surface.

Solution
For the surfaces and charges shown, we find

a. .

b. .

c. .

d. .

e. .

Significance
In the special case of a closed surface, the flux calculations become a sum of charges. In the next section, this will allow us to
work with more complex systems.

Calculate the electric flux through the closed cubical surface for each charge distribution shown in Figure .
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Figure : A cubical Gaussian surface with various charge distributions.

Answer a

Answer b

Answer c

Answer d

0

Use this simulation to adjust the magnitude of the charge and the radius of the Gaussian surface around it. See how this affects
the total flux and the magnitude of the electric field at the Gaussian surface.

This page titled 6.3: Explaining Gauss’s Law is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.
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