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12.6: Ampere’s Law

&b Learning Objectives

By the end of this section, you will be able to:

o Explain how Ampeére’s law relates the magnetic field produced by a current to the value of the current
e Calculate the magnetic field from a long straight wire, either thin or thick, by Ampére’s law

A fundamental property of a static magnetic field is that, unlike an electrostatic field, it is not conservative. A conservative field is
one that does the same amount of work on a particle moving between two different points regardless of the path chosen. Magnetic
fields do not have such a property. Instead, there is a relationship between the magnetic field and its source, electric current. It is

expressed in terms of the line integral of B and is known as Ampére’s law. This law can also be derived directly from the Biot-
Savart law. We now consider that derivation for the special case of an infinite, straight wire.

Figure 12.6.1 shows an arbitrary plane perpendicular to an infinite, straight wire whose current I is directed out of the page. The

magnetic field lines are circles directed counterclockwise and centered on the wire. To begin, let’s consider f B-dl over the
closed paths M and N. Notice that one path (M) encloses the wire, whereas the other (N) does not. Since the field lines are circular,

B-dl is the product of B and the projection of dl onto the circle passing through dl . 1f the radius of this particular circle is r, the
projection is rd#, and

B-dl = Brde.

S =

@ (®)
Figure 12.6.1: The current I of a long, straight wire is directed out of the page. The integral 39 df equals 27 and 0, respectively, for
paths M and N.

With B given by Equation 12.4.1,

%é-di:?{(’ﬂ) rdg= oL {0
27r 2

For path M, which circulates around the wire, fM df = 2w and

}[ Bedl = ol
M

Path N, on the other hand, circulates through both positive (counterclockwise) and negative (clockwise) df (see Figure 12.6.1), and
since it is closed, fN df = 0. Thus for path N,
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The extension of this result to the general case is Ampére’s law.

& Ampere's Law

Over an arbitrary closed path,
B-dl =t

where I is the total current passing through any open surface S whose perimeter is the path of integration. Only currents inside
the path of integration need be considered.

To determine whether a specific current I is positive or negative, curl the fingers of your right hand in the direction of the path of
integration, as shown in Figure 12.6.1 If I passes through S in the same direction as your extended thumb, I is positive; if I passes
through S in the direction opposite to your extended thumb, it is negative.

X Problem-Solving Strategy: Ampére’s Law

To calculate the magnetic field created from current in wire(s), use the following steps:

1. Identify the symmetry of the current in the wire(s). If there is no symmetry, use the Biot-Savart law to determine the
magnetic field.

2. Determine the direction of the magnetic field created by the wire(s) by right-hand rule 2.

3. Chose a path loop where the magnetic field is either constant or zero.

4. Calculate the current inside the loop.

5. Calculate the line integral f B-dl around the closed loop.

6. Equate § B-dl with 1o Lone with pg I, and solve for B.

v Using Ampere’s Law to Calculate the Magnetic Field Due to a Wire

Use Ampere’s law to calculate the magnetic field due to a steady current I in an infinitely long, thin, straight wire as shown in
Figure 12.6.2
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Figure 12.6.2: The possible components of the magnetic field B due to a current I, which is directed out of the page. The radial
component is zero because the angle between the magnetic field and the path is at a right angle.

Strategy
Consider an arbitrary plane perpendicular to the wire, with the current directed out of the page. The possible magnetic field
components in this plane, B, and By are shown at arbitrary points on a circle of radius r centered on the wire. Since the field is
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cylindrically symmetric, neither B, nor By varies with the position on this circle. Also from symmetry, the radial lines, if they
exist, must be directed either all inward or all outward from the wire. This means, however, that there must be a net magnetic
flux across an arbitrary cylinder concentric with the wire. The radial component of the magnetic field must be zero because

ér dl =0. Therefore, we can apply Ampére’s law to the circular path as shown.

Solution
Over this path B is constant and parallel to dl, so

fé -dl = By fdz = By(27r).
Thus Ampére’s law reduces to
By(27r) = pol.

Finally, since By is the only component of é, we can drop the subscript and write

tol

B=—.

2mr
This agrees with the Biot-Savart calculation above.
Significance

Ampere’s law works well if you have a path to integrate over which B-dl has results that are easy to simplify. For the infinite
wire, this works easily with a path that is circular around the wire so that the magnetic field factors out of the integration. If the
path dependence looks complicated, you can always go back to the Biot-Savart law and use that to find the magnetic field.

v/ Example 12.6.2: Calculating the Magnetic Field of a Thick Wire with Ampere’s Law

The radius of the long, straight wire of Figure 12.6.3is a, and the wire carries a current I that is distributed uniformly over its
cross-section. Find the magnetic field both inside and outside the wire.

(@ (b)

Figure 12.6.3: (a) A model of a current-carrying wire of radius a and current I. (b) A cross-section of the same wire showing
the radius a and the Ampere’s loop of radius r.

Strategy
This problem has the same geometry as Example 12.6.1 but the enclosed current changes as we move the integration path
from outside the wire to inside the wire, where it doesn’t capture the entire current enclosed (see Figure 12.6.3).

Solution
For any circular path of radius r that is centered on the wire,

]{é-dz”:dezzB]{dzzB(zm).

From Ampére’s law, this equals the total current passing through any surface bounded by the path of integration.
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Consider first a circular path that is inside the wire (r < a) such as that shown in part (a) of Figure 12.6.3 We need the current
I passing through the area enclosed by the path. It’s equal to the current density J times the area enclosed. Since the current is
uniform, the current density inside the path equals the current density in the whole wire, which is I /ma?. Therefore the current
I passing through the area enclosed by the path is

2 ,,.2

r
I=—1I,=—1I,.
wa? a?
We can consider this ratio because the current density J is constant over the area of the wire. Therefore, the current density of a
part of the wire is equal to the current density in the whole area. Using Ampére’s law, we obtain

2
B(2nr) = po <—2) Iy,
a
and the magnetic field inside the wire is

wolo T
B=—""—(r<a).
27 a? =g
Outside the wire, the situation is identical to that of the infinite thin wire of the previous example; that is,
tolo
B=——(r>a).
2r ( - )

The variation of B with r is shown in Figure 12.6.4
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Figure 12.6.4: Variation of the magnetic field produced by a current I, in a long, straight wire of radius a.

Significance
The results show that as the radial distance increases inside the thick wire, the magnetic field increases from zero to a familiar
value of the magnetic field of a thin wire. Outside the wire, the field drops off regardless of whether it was a thick or thin wire.

This result is similar to how Gauss’s law for electrical charges behaves inside a uniform charge distribution, except that
Gauss’s law for electrical charges has a uniform volume distribution of charge, whereas Ampeére’s law here has a uniform area
of current distribution. Also, the drop-off outside the thick wire is similar to how an electric field drops off outside of a linear
charge distribution, since the two cases have the same geometry and neither case depends on the configuration of charges or
currents once the loop is outside the distribution.

v Using Ampeére’s Law with Arbitrary Paths

Use Ampeére’s law to evaluate ¢ B-dl for the current configurations and paths in Figure 12.6.5.

https://phys.libretexts.org/@go/page/4425


https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/4425?pdf

LibreTextsw

3A 5A
4A )
g (T
I' ]
- \__—"7
(b)
7A
3 =P~ /5A
Y 3A

-

1
%
©
Figure 12.6.5: Current configurations and paths for Example 12.6.3.

Strategy

Ampeére’s law states that f B-dl = ol where I is the total current passing through the enclosed loop. The quickest way to
evaluate the integral is to calculate uoI by finding the net current through the loop. Positive currents flow with your right-hand
thumb if your fingers wrap around in the direction of the loop. This will tell us the sign of the answer.

Solution

(a) The current going downward through the loop equals the current going out of the loop, so the net current is zero. Thus,
§B-dl =0.

(b) The only current to consider in this problem is 2A because it is the only current inside the loop. The right-hand rule shows
us the current going downward through the loop is in the positive direction. Therefore, the answer is
§B-dl = pp(2A) =2.51 x 10T - m.

(c) The right-hand rule shows us the current going downward through the loop is in the positive direction. There are
TA+5A=12A of current going downward and -3 A going upward. Therefore, the total current is 9 A and
$B-dl =pp(9A)=5.65x10°T-m .

Significance

If the currents all wrapped around so that the same current went into the loop and out of the loop, the net current would be zero
and no magnetic field would be present. This is why wires are very close to each other in an electrical cord. The currents
flowing toward a device and away from a device in a wire equal zero total current flow through an Ampeére loop around these
wires. Therefore, no stray magnetic fields can be present from cords carrying current.

? Exercise 12.6.1

Consider using Ampere’s law to calculate the magnetic fields of a finite straight wire and of a circular loop of wire. Why is it
not useful for these calculations?
Answer

In these cases the integrals around the Amperian loop are very difficult because there is no symmetry, so this method would
not be useful.

This page titled 12.6: Ampere’s Law is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.
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