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6.4: Applying Gauss’s Law

By the end of this section, you will be able to:

Explain what spherical, cylindrical, and planar symmetry are
Recognize whether or not a given system possesses one of these symmetries
Apply Gauss’s law to determine the electric field of a system with one of these symmetries

Gauss’s law is very helpful in determining expressions for the electric field, even though the law is not directly about the electric
field; it is about the electric flux. It turns out that in situations that have certain symmetries (spherical, cylindrical, or planar) in the
charge distribution, we can deduce the electric field based on knowledge of the electric flux. In these systems, we can find a
Gaussian surface  over which the electric field has constant magnitude. Furthermore, if  is parallel to  everywhere on the
surface, then . (If  and  are antiparallel everywhere on the surface, .) Gauss’s law then simplifies to

where  is the area of the surface. Note that these symmetries lead to the transformation of the flux integral into a product of the
magnitude of the electric field and an appropriate area. When you use this flux in the expression for Gauss’s law, you obtain an
algebraic equation that you can solve for the magnitude of the electric field, which looks like

The direction of the electric field at point  is obtained from the symmetry of the charge distribution and the type of charge in the
distribution. Therefore, Gauss’s law can be used to determine . Here is a summary of the steps we will follow:

1. Identify the spatial symmetry of the charge distribution. This is an important first step that allows us to choose the
appropriate Gaussian surface. As examples, an isolated point charge has spherical symmetry, and an infinite line of charge
has cylindrical symmetry.

2. Choose a Gaussian surface with the same symmetry as the charge distribution and identify its consequences. With this
choice,  is easily determined over the Gaussian surface.

3. Evaluate the integral  over the Gaussian surface, that is, calculate the flux through the surface. The symmetry
of the Gaussian surface allows us to factor  outside the integral.

4. Determine the amount of charge enclosed by the Gaussian surface. This is an evaluation of the right-hand side of the
equation representing Gauss’s law. It is often necessary to perform an integration to obtain the net enclosed charge.

5. Evaluate the electric field of the charge distribution. The field may now be found using the results of steps 3 and 4.

Basically, there are only three types of symmetry that allow Gauss’s law to be used to deduce the electric field. They are

A charge distribution with spherical symmetry
A charge distribution with cylindrical symmetry
A charge distribution with planar symmetry

To exploit the symmetry, we perform the calculations in appropriate coordinate systems and use the right kind of Gaussian surface
for that symmetry, applying the remaining four steps.

Charge Distribution with Spherical Symmetry

A charge distribution has spherical symmetry if the density of charge depends only on the distance from a point in space and not
on the direction. In other words, if you rotate the system, it doesn’t look different. For instance, if a sphere of radius  is uniformly
charged with charge density  then the distribution has spherical symmetry (Figure ). On the other hand, if a sphere of
radius  is charged so that the top half of the sphere has uniform charge density  and the bottom half has a uniform charge
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density  then the sphere does not have spherical symmetry because the charge density depends on the direction (Figure 
). Thus, it is not the shape of the object but rather the shape of the charge distribution that determines whether or not a system

has spherical symmetry.

Figure  shows a sphere with four different shells, each with its own uniform charge density. Although this is a situation
where charge density in the full sphere is not uniform, the charge density function depends only on the distance from the center and
not on the direction. Therefore, this charge distribution does have spherical symmetry.

Figure : Illustrations of spherically symmetrical and nonsymmetrical systems. Different shadings indicate different charge
densities. Charges on spherically shaped objects do not necessarily mean the charges are distributed with spherical symmetry. The
spherical symmetry occurs only when the charge density does not depend on the direction. In (a), charges are distributed uniformly
in a sphere. In (b), the upper half of the sphere has a different charge density from the lower half; therefore, (b) does not have
spherical symmetry. In (c), the charges are in spherical shells of different charge densities, which means that charge density is only
a function of the radial distance from the center; therefore, the system has spherical symmetry.

One good way to determine whether or not your problem has spherical symmetry is to look at the charge density function in
spherical coordinates, . If the charge density is only a function of , that is , then you have spherical symmetry. If
the density depends on  or , you could change it by rotation; hence, you would not have spherical symmetry.

Consequences of symmetry

In all spherically symmetrical cases, the electric field at any point must be radially directed, because the charge and, hence, the field
must be invariant under rotation. Therefore, using spherical coordinates with their origins at the center of the spherical charge
distribution, we can write down the expected form of the electric field at a point  located at a distance  from the center:

where  is the unit vector pointed in the direction from the origin to the field point . The radial component  of the electric field
can be positive or negative. When , the electric field at  points away from the origin, and when , the electric field
at  points toward the origin.

Gaussian surface and flux calculations

We can now use this form of the electric field to obtain the flux of the electric field through the Gaussian surface. For spherical
symmetry, the Gaussian surface is a closed spherical surface that has the same center as the center of the charge distribution. Thus,
the direction of the area vector of an area element on the Gaussian surface at any point is parallel to the direction of the electric
field at that point, since they are both radially directed outward (Figure ).
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Figure : The electric field at any point of the spherical Gaussian surface for a spherically symmetrical charge distribution is
parallel to the area element vector at that point, giving flux as the product of the magnitude of electric field and the value of the
area. Note that the radius  of the charge distribution and the radius  of the Gaussian surface are different quantities.

The magnitude of the electric field  must be the same everywhere on a spherical Gaussian surface concentric with the
distribution. For a spherical surface of radius :

Using Gauss’s law

According to Gauss’s law, the flux through a closed surface is equal to the total charge enclosed within the closed surface divided
by the permittivity of vacuum . Let  be the total charge enclosed inside the distancer  from the origin, which is the space
inside the Gaussian spherical surface of radius . This gives the following relation for Gauss’s law:

Hence, the electric field at point  that is a distance  from the center of a spherically symmetrical charge distribution has the
following magnitude and direction:

Direction: radial from  to  or from  to .

The direction of the field at point  depends on whether the charge in the sphere is positive or negative. For a net positive charge
enclosed within the Gaussian surface, the direction is from  to , and for a net negative charge, the direction is from  to .
This is all we need for a point charge, and you will notice that the result above is identical to that for a point charge. However,
Gauss’s law becomes truly useful in cases where the charge occupies a finite volume.

Computing Enclosed Charge

The more interesting case is when a spherical charge distribution occupies a volume, and asking what the electric field inside the
charge distribution is thus becomes relevant. In this case, the charge enclosed depends on the distance  of the field point relative to
the radius of the charge distribution , such as that shown in Figure .

6.4.2

R r

E ⃗ 

r

Φ = ⋅ dA = dA = 4π .∮
S

E ⃗ 
p n̂ Ep ∮

S

Ep r2

ϵ0 qenc S

r

4π E = .r2 qenc

ϵ0

P r

Magnitude:  E(r) =
1

4πϵ0

qenc

r2

O P P O

P

O P P O

r

R 6.4.3

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/4381?pdf


6.4.4 https://phys.libretexts.org/@go/page/4381

Figure : A spherically symmetrical charge distribution and the Gaussian surface used for finding the field (a) inside and (b)
outside the distribution.

If point  is located outside the charge distribution—that is, if  —then the Gaussian surface containing  encloses all
charges in the sphere. In this case,  equals the total charge in the sphere. On the other hand, if point  is within the spherical
charge distribution, that is, if , then the Gaussian surface encloses a smaller sphere than the sphere of charge distribution. In
this case,  is less than the total charge present in the sphere. Referring to Figure , we can write  as

The field at a point outside the charge distribution is also called , and the field at a point inside the charge distribution is called 
. Focusing on the two types of field points, either inside or outside the charge distribution, we can now write the magnitude of

the electric field as

Note that the electric field outside a spherically symmetrical charge distribution is identical to that of a point charge at the center
that has a charge equal to the total charge of the spherical charge distribution. This is remarkable since the charges are not located
at the center only. We now work out specific examples of spherical charge distributions, starting with the case of a uniformly
charged sphere.

A sphere of radius , such as that shown in Figure , has a uniform volume charge density . Find the electric field at a
point outside the sphere and at a point inside the sphere.

Strategy
Apply the Gauss’s law problem-solving strategy, where we have already worked out the flux calculation.

Solution
The charge enclosed by the Gaussian surface is given by

The answer for electric field amplitude can then be written down immediately for a point outside the sphere, labeled  and a
point inside the sphere, labeled .

6.4.3

P r ≥ R P

qenc P

r < R

qenc 6.4.3 qenc

=  (total charge) if r ≥ Rqenc qtot

=  (only charge within r < R) if r < Rqenc qwithin r<R

E ⃗ 
out

E ⃗ 
in

P  outside sphere =Eout

1

4πϵ0

qtot

r2

P  inside sphere = .Ein

1

4πϵ0

qwithin r<R

r2

 Uniformly Charged Sphere

R 6.4.3 ρ0

= ∫ dV = 4π d = ρ( π ) .qenc ρ0 ∫
r

0

ρ0 r′2 r′ 4

3
r3

Eout

Ein

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/4381?pdf


6.4.5 https://phys.libretexts.org/@go/page/4381

It is interesting to note that the magnitude of the electric field increases inside the material as you go out, since the amount of
charge enclosed by the Gaussian surface increases with the volume. Specifically, the charge enclosed grows , whereas the
field from each infinitesimal element of charge drops off  with the net result that the electric field within the distribution
increases in strength linearly with the radius. The magnitude of the electric field outside the sphere decreases as you go away
from the charges, because the included charge remains the same but the distance increases. Figure  displays the variation
of the magnitude of the electric field with distance from the center of a uniformly charged sphere.

Figure : Electric field of a uniformly charged, non-conducting sphere increases inside the sphere to a maximum at the
surface and then decreases as . Here, . The electric field is due to a spherical charge distribution of uniform
charge density and total charge  as a function of distance from the center of the distribution.

The direction of the electric field at any point  is radially outward from the origin if  is positive, and inward (i.e., toward
the center) if  is negative. The electric field at some representative space points are displayed in Figure  whose radial
coordinates r are  and .

Figure : Electric field vectors inside and outside a uniformly charged sphere.
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Notice that  has the same form as the equation of the electric field of an isolated point charge. In determining the electric
field of a uniform spherical charge distribution, we can therefore assume that all of the charge inside the appropriate spherical
Gaussian surface is located at the center of the distribution.

A non-conducting sphere of radius  has a non-uniform charge density that varies with the distance from its center as given by

where  is a constant. We require  so that the charge density is not undefined at . Find the electric field at a point
outside the sphere and at a point inside the sphere.

Strategy
Apply the Gauss’s law strategy given above, where we work out the enclosed charge integrals separately for cases inside and
outside the sphere.

Solution
Since the given charge density function has only a radial dependence and no dependence on direction, we have a spherically
symmetrical situation. Therefore, the magnitude of the electric field at any point is given above and the direction is radial. We
just need to find the enclosed charge , which depends on the location of the field point.

A note about symbols: We use  for locating charges in the charge distribution and r for locating the field point(s) at the
Gaussian surface(s). The letter  is used for the radius of the charge distribution.

As charge density is not constant here, we need to integrate the charge density function over the volume enclosed by the
Gaussian surface. Therefore, we set up the problem for charges in one spherical shell, say between  and  as shown in
Figure . The volume of charges in the shell of infinitesimal width is equal to the product of the area of surface  and
the thickness . Multiplying the volume with the density at this location, which is , gives the charge in the shell:

Figure : Spherical symmetry with non-uniform charge distribution. In this type of problem, we need four radii: R is the
radius of the charge distribution, r is the radius of the Gaussian surface,  is the inner radius of the spherical shell, and 
is the outer radius of the spherical shell. The spherical shell is used to calculate the charge enclosed within the Gaussian
surface. The range for  is from 0 to r for the field at a point inside the charge distribution and from 0 to R for the field at a
point outside the charge distribution. If , then the Gaussian surface encloses more volume than the charge distribution,
but the additional volume does not contribute to .

(a) Field at a point outside the charge distribution. In this case, the Gaussian surface, which contains the field point , has a
radius  that is greater than the radius  of the charge distribution, . Therefore, all charges of the charge distribution are
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enclosed within the Gaussian surface. Note that the space between  and  is empty of charges and therefore does
not contribute to the integral over the volume enclosed by the Gaussian surface:

This is used in the general result for  above to obtain the electric field at a point outside the charge distribution as

where  is a unit vector in the direction from the origin to the field point at the Gaussian surface.

(b) Field at a point inside the charge distribution. The Gaussian surface is now buried inside the charge distribution, with 
. Therefore, only those charges in the distribution that are within a distance  of the center of the spherical charge

distribution count in :

Now, using the general result above for , we find the electric field at a point that is a distance  from the center and lies
within the charge distribution as

where the direction information is included by using the unit radial vector.

Check that the electric fields for the sphere reduce to the correct values for a point charge.

Answer

In this case, there is only . So, yes.

Charge Distribution with Cylindrical Symmetry

A charge distribution has cylindrical symmetry if the charge density depends only upon the distance  from the axis of a cylinder
and must not vary along the axis or with direction about the axis. In other words, if your system varies if you rotate it around the
axis, or shift it along the axis, you do not have cylindrical symmetry.

Figure  shows four situations in which charges are distributed in a cylinder. A uniform charge density  in an infinite straight
wire has a cylindrical symmetry, and so does an infinitely long cylinder with constant charge density . An infinitely long cylinder
that has different charge densities along its length, such as a charge density  for  and  for , does not have a
usable cylindrical symmetry for this course. Neither does a cylinder in which charge density varies with the direction, such as a
charge density  for  and  for . A system with concentric cylindrical shells, each with uniform
charge densities, albeit different in different shells, as in FiFigure , does have cylindrical symmetry if they are infinitely long.
The infinite length requirement is due to the charge density changing along the axis of a finite cylinder. In real systems, we don’t
have infinite cylinders; however, if the cylindrical object is considerably longer than the radius from it that we are interested in,
then the approximation of an infinite cylinder becomes useful.
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Figure : To determine whether a given charge distribution has cylindrical symmetry, look at the cross-section of an “infinitely
long” cylinder. If the charge density does not depend on the polar angle of the cross-section or along the axis, then you have
cylindrical symmetry. (a) Charge density is constant in the cylinder; (b) upper half of the cylinder has a different charge density
from the lower half; (c) left half of the cylinder has a different charge density from the right half; (d) charges are constant in
different cylindrical rings, but the density does not depend on the polar angle. Cases (a) and (d) have cylindrical symmetry, whereas
(b) and (c) do not.

Consequences of symmetry

In all cylindrically symmetrical cases, the electric field  at any point  must also display cylindrical symmetry.

Cylindrical symmetry: , where  is the distance from the axis and  is a unit vector directed perpendicularly away
from the axis (Figure ).

Figure : The electric field in a cylindrically symmetrical situation depends only on the distance from the axis. The direction of
the electric field is pointed away from the axis for positive charges and toward the axis for negative charges.

Gaussian surface and flux calculation

To make use of the direction and functional dependence of the electric field, we choose a closed Gaussian surface in the shape of a
cylinder with the same axis as the axis of the charge distribution. The flux through this surface of radius  and height  is easy to
compute if we divide our task into two parts: (a) a flux through the flat ends and (b) a flux through the curved surface (Figure 

).
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Figure : The Gaussian surface in the case of cylindrical symmetry. The electric field at a patch is either parallel or
perpendicular to the normal to the patch of the Gaussian surface.

The electric field is perpendicular to the cylindrical side and parallel to the planar end caps of the surface. The flux through the
cylindrical part is

whereas the flux through the end caps is zero because  there. Thus, the flux is

Using Gauss’s law

According to Gauss’s law, the flux must equal the amount of charge within the volume enclosed by this surface, divided by the
permittivity of free space. When you do the calculation for a cylinder of length , you find that  of Gauss’s law is directly
proportional to . Let us write it as charge per unit length ( ) times length :

Hence, Gauss’s law for any cylindrically symmetrical charge distribution yields the following magnitude of the electric field a
distance  away from the axis:

The charge per unit length  depends on whether the field point is inside or outside the cylinder of charge distribution, just as we
have seen for the spherical distribution.

Computing enclosed charge

Let  be the radius of the cylinder within which charges are distributed in a cylindrically symmetrical way. Let the field point  be
at a distance  from the axis. (The side of the Gaussian surface includes the field point .) When  (that is, when  is outside
the charge distribution), the Gaussian surface includes all the charge in the cylinder of radius  and length . When  (  is
located inside the charge distribution), then only the charge within a cylinder of radius  and length  is enclosed by the Gaussian
surface:

A very long non-conducting cylindrical shell of radius  has a uniform surface charge density  Find the electric field (a) at a
point outside the shell and (b) at a point inside the shell.

Strategy
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Apply the Gauss’s law strategy given earlier, where we treat the cases inside and outside the shell separately.

Solution
a. Electric field at a point outside the shell. For a point outside the cylindrical shell, the Gaussian surface is the surface of a
cylinder of radius  and length , as shown in Figure . The charge enclosed by the Gaussian cylinder is equal to the
charge on the cylindrical shell of length . Therefore,  is given by

Figure : A Gaussian surface surrounding a cylindrical shell.

Hence, the electric field at a point  outside the shell at a distance  away from the axis is

where  is a unit vector, perpendicular to the axis and pointing away from it, as shown in the figure. The electric field at 
points in the direction of  given in Figure  if  and in the opposite direction to  if .

b. Electric field at a point inside the shell. For a point inside the cylindrical shell, the Gaussian surface is a cylinder whose
radius  is less than  (Figure ). This means no charges are included inside the Gaussian surface:

Figure : A Gaussian surface within a cylindrical shell.

This gives the following equation for the magnitude of the electric field  at a point whose  is less than  of the shell of
charges.

This gives us
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Significance
Notice that the result inside the shell is exactly what we should expect: No enclosed charge means zero electric field. Outside
the shell, the result becomes identical to a wire with uniform charge .

A thin straight wire has a uniform linear charge density . Find the electric field at a distance  from the wire, where  is
much less than the length of the wire.

Answer

; This agrees with the calculation of Calculating Electric Fields of Charge Distributions where we found the
electric field by integrating over the charged wire. Notice how much simpler the calculation of this electric field is with
Gauss’s law.

Charge Distribution with Planar Symmetry

A planar symmetry of charge density is obtained when charges are uniformly spread over a large flat surface. In planar symmetry,
all points in a plane parallel to the plane of charge are identical with respect to the charges.

Consequences of symmetry

We take the plane of the charge distribution to be the -plane and we find the electric field at a space point  with coordinates 
. Since the charge density is the same at all -coordinates in the  plane, by symmetry, the electric field at 

cannot depend on the - or -coordinates of point , as shown in Figure . Therefore, the electric field at  can only depend
on the distance from the plane and has a direction either toward the plane or away from the plane. That is, the electric field at  has
only a nonzero -component.

Uniform charges in  plane:  where  is the distance from the plane and  is the unit vector normal to the plane. Note
that in this system, , although of course they point in opposite directions.

Figure : The components of the electric field parallel to a plane of charges cancel out the two charges located symmetrically
from the field point . Therefore, the field at any point is pointed vertically from the plane of charges. For any point  and charge 

, we can always find a  with this effect.

Gaussian surface and flux calculation

In the present case, a convenient Gaussian surface is a box, since the expected electric field points in one direction only. To keep
the Gaussian box symmetrical about the plane of charges, we take it to straddle the plane of the charges, such that one face
containing the field point  is taken parallel to the plane of the charges. In Figure , sides I and II of the Gaussian surface (the
box) that are parallel to the infinite plane have been shaded. They are the only surfaces that give rise to nonzero flux because the
electric field and the area vectors of the other faces are perpendicular to each other.
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Figure : A thin charged sheet and the Gaussian box for finding the electric field at the field point . The normal to each face
of the box is from inside the box to outside. On two faces of the box, the electric fields are parallel to the area vectors, and on the
other four faces, the electric fields are perpendicular to the area vectors.

Let  be the area of the shaded surface on each side of the plane and  be the magnitude of the electric field at point . Since
sides I and II are at the same distance from the plane, the electric field has the same magnitude at points in these planes, although
the directions of the electric field at these points in the two planes are opposite to each other.

Magnitude at I or II: .

If the charge on the plane is positive, then the direction of the electric field and the area vectors are as shown in Figure .
Therefore, we find for the flux of electric field through the box

where the zeros are for the flux through the other sides of the box. Note that if the charge on the plane is negative, the directions of
electric field and area vectors for planes I and II are opposite to each other, and we get a negative sign for the flux. According to
Gauss’s law, the flux must equal . From Figure , we see that the charges inside the volume enclosed by the Gaussian
box reside on an area  of the -plane. Hence,

Using the equations for the flux and enclosed charge in Gauss’s law, we can immediately determine the electric field at a point at
height  from a uniformly charged plane in the -plane:

The direction of the field depends on the sign of the charge on the plane and the side of the plane where the field point  is located.
Note that above the plane, , while below the plane, .

You may be surprised to note that the electric field does not actually depend on the distance from the plane; this is an effect of the
assumption that the plane is infinite. In practical terms, the result given above is still a useful approximation for finite planes near
the center.

This page titled 6.4: Applying Gauss’s Law is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.
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