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13.11: The Expanding Universe

By the end of this section, you will be able to:

Describe the discovery that galaxies getting farther apart as the universe evolves
Explain how to use Hubble’s law to determine distances to remote galaxies
Describe models for the nature of an expanding universe
Explain the variation in Hubble’s constant

We now come to one of the most important discoveries ever made in astronomy—the fact that the universe is expanding. Before we
describe how the discovery was made, we should point out that the first steps in the study of galaxies came at a time when the
techniques of spectroscopy were also making great strides. Astronomers using large telescopes could record the spectrum of a faint
star or galaxy on photographic plates, guiding their telescopes so they remained pointed to the same object for many hours and
collected more light. The resulting spectra of galaxies contained a wealth of information about the composition of the galaxy and
the velocities of these great star systems.

Slipher’s Pioneering Observations
Curiously, the discovery of the expansion of the universe began with the search for Martians and other solar systems. In 1894, the
controversial (and wealthy) astronomer Percival Lowell established an observatory in Flagstaff, Arizona, to study the planets and
search for life in the universe. Lowell thought that the spiral nebulae might be solar systems in the process of formation. He
therefore asked one of the observatory’s young astronomers, Vesto M. Slipher (Figure ), to photograph the spectra of some
of the spiral nebulae to see if their spectral lines might show chemical compositions like those expected for newly forming planets.

Figure  Vesto M. Slipher (1875–1969). Slipher spent his entire career at the Lowell Observatory, where he discovered the
large radial velocities of galaxies.

The Lowell Observatory’s major instrument was a 24-inch refracting telescope, which was not at all well suited to observations of
faint spiral nebulae. With the technology available in those days, photographic plates had to be exposed for 20 to 40 hours to
produce a good spectrum (in which the positions of the lines could reveal a galaxy’s motion). This often meant continuing to
expose the same photograph over several nights. Beginning in 1912, and making heroic efforts over a period of about 20 years,
Slipher managed to photograph the spectra of more than 40 of the spiral nebulae (which would all turn out to be galaxies).

To his surprise, the spectral lines of most galaxies showed an astounding redshift. By “redshift” we mean that the lines in the
spectra are displaced toward longer wavelengths (toward the red end of the visible spectrum). Recall from the chapter on Radiation
and Spectra that a redshift is seen when the source of the waves is moving away from us. Slipher’s observations showed that most
spirals are racing away at huge speeds; the highest velocity he measured was 1800 kilometers per second.

Only a few spirals—such as the Andromeda and Triangulum Galaxies and M81—all of which are now known to be our close
neighbors, turned out to be approaching us. All the other galaxies were moving away. Slipher first announced this discovery in
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1914, years before Hubble showed that these objects were other galaxies and before anyone knew how far away they were. No one
at the time quite knew what to make of this discovery.

Hubble’s Law
The profound implications of Slipher’s work became apparent only during the 1920s. Georges Lemaître was a Belgian priest and a
trained astronomer. In 1927, he published a paper in French in an obscure Belgian journal in which he suggested that we live in an
expanding universe. The title of the paper (translated into English) is “A Homogenous Universe of Constant Mass and Growing
Radius Accounting for the Radial Velocity of Extragalactic Nebulae.” Lemaître had discovered that Einstein’s equations of
relativity were consistent with an expanding universe (as had the Russian scientist Alexander Friedmann independently in 1922).
Lemaître then went on to use Slipher’s data to support the hypothesis that the universe actually is expanding and to estimate the
rate of expansion. Initially, scientists paid little attention to this paper, perhaps because the Belgian journal was not widely
available.

In the meantime, Hubble was making observations of galaxies with the 2.5-meter telescope on Mt. Wilson, which was then the
world’s largest. Hubble carried out the key observations in collaboration with a remarkable man, Milton Humason, who dropped
out of school in the eighth grade and began his astronomical career by driving a mule train up the trail on Mount Wilson to the
observatory (Figure ). In those early days, supplies had to be brought up that way; even astronomers hiked up to the
mountaintop for their turns at the telescope. Humason became interested in the work of the astronomers and, after marrying the
daughter of the observatory’s electrician, took a job as janitor there. After a time, he became a night assistant, helping the
astronomers run the telescope and record data. Eventually, he made such a mark that he became a full astronomer at the
observatory.

Figure  Milton Humason (1891–1972). Humason was Hubble’s collaborator on the great task of observing, measuring, and
classifying the characteristics of many galaxies.

By the late 1920s, Humason was collaborating with Hubble by photographing the spectra of faint galaxies with the 2.5-meter
telescope. (By then, there was no question that the spiral nebulae were in fact galaxies.) Hubble had found ways to improve the
accuracy of the estimates of distances to spiral galaxies, and he was able to measure much fainter and more distant galaxies than
Slipher could observe with his much-smaller telescope. When Hubble laid his own distance estimates next to measurements of the
recession velocities (the speed with which the galaxies were moving away), he found something stunning: there was a relationship
between distance and velocity for galaxies. The more distant the galaxy, the faster it was receding from us.

In 1931, Hubble and Humason jointly published the seminal paper where they compared distances and velocities of remote
galaxies moving away from us at speeds as high as 20,000 kilometers per second and were able to show that the recession
velocities of galaxies are directly proportional to their distances from us (Figure ), just as Lemaître had suggested.
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Figure  Hubble’s Law. (a) These data show Hubble’s original velocity-distance relation, adapted from his 1929 paper in the
Proceedings of the National Academy of Sciences. (b) These data show Hubble and Humason’s velocity-distance relation, adapted
from their 1931 paper in The Astrophysical Journal. The red dots at the lower left are the points in the diagram in the 1929 paper.
Comparison of the two graphs shows how rapidly the determination of galactic distances and redshifts progressed in the 2 years
between these publications.

We now know that this relationship holds for every galaxy except a few of the nearest ones. Nearly all of the galaxies that are
approaching us turn out to be part of the Milky Way’s own group of galaxies, which have their own individual motions, just as
birds flying in a group may fly in slightly different directions at slightly different speeds even though the entire flock travels
through space together.

Written as a formula, the relationship between velocity and distance is

where  is the recession speed,  is the distance, and  is a number called the Hubble constant. This equation is now known as
Hubble’s law.

Mathematical relationships such as Hubble’s law are pretty common in life. To take a simple example, suppose your college or
university hires you to call rich alumni and ask for donations. You are paid $2.50 for each call; the more calls you can squeeze
in between studying astronomy and other courses, the more money you take home. We can set up a formula that connects ,
your pay, and , the number of calls

where  is the alumni constant, with a value of $2.50. If you make 20 calls, you will earn $2.50 times 20, or $50.

Suppose your boss forgets to tell you what you will get paid for each call. You can calculate the alumni constant that governs
your pay by keeping track of how many calls you make and noting your gross pay each week. If you make 100 calls the first
week and are paid $250, you can deduce that the constant is $2.50 (in units of dollars per call). Hubble, of course, had no
“boss” to tell him what his constant would be—he had to calculate its value from the measurements of distance and velocity.

Astronomers express the value of Hubble’s constant in units that relate to how they measure speed and velocity for galaxies. In this
book, we will use kilometers per second per million light-years as that unit. For many years, estimates of the value of the Hubble
constant have been in the range of 15 to 30 kilometers per second per million light-years The most recent work appears to be
converging on a value near 22 kilometers per second per million light-years If  is 22 kilometers per second per million light-
years, a galaxy moves away from us at a speed of 22 kilometers per second for every million light-years of its distance. As an
example, a galaxy 100 million light-years away is moving away from us at a speed of 2200 kilometers per second.

Hubble’s law tells us something fundamental about the universe. Since all but the nearest galaxies appear to be in motion away
from us, with the most distant ones moving the fastest, we must be living in an expanding universe. We will explore the
implications of this idea shortly, as well as in the final chapters of this text. For now, we will just say that Hubble’s observation
underlies all our theories about the origin and evolution of the universe.
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Hubble’s Law and Distances
The regularity expressed in Hubble’s law has a built-in bonus: it gives us a new way to determine the distances to remote galaxies.
First, we must reliably establish Hubble’s constant by measuring both the distance and the velocity of many galaxies in many
directions to be sure Hubble’s law is truly a universal property of galaxies. But once we have calculated the value of this constant
and are satisfied that it applies everywhere, much more of the universe opens up for distance determination. Basically, if we can
obtain a spectrum of a galaxy, we can immediately tell how far away it is.

The procedure works like this. We use the spectrum to measure the speed with which the galaxy is moving away from us. If we
then put this speed and the Hubble constant into Hubble’s law equation, we can solve for the distance.

Hubble’s law ( ) allows us to calculate the distance to any galaxy. Here is how we use it in practice.

We have measured Hubble’s constant to be 22 km/s per million light-years. This means that if a galaxy is 1 million light-years
farther away, it will move away 22 km/s faster. So, if we find a galaxy that is moving away at 18,000 km/s, what does Hubble’s
law tells us about the distance to the galaxy?

Answer

Note how we handled the units here: the km/s in the numerator and denominator cancel, and the factor of million light-
years in the denominator of the constant must be divided correctly before we get our distance of 818 million light-years.

Using 22 km/s/million light-years for Hubble’s constant, what recessional velocity do we expect to find if we observe a galaxy
at 500 million light-years?

Answer

Variation of Hubble’s Constant
The use of redshift is potentially a very important technique for determining distances because as we have seen, most of our
methods for determining galaxy distances are limited to approximately the nearest few hundred million light-years (and they have
large uncertainties at these distances). The use of Hubble’s law as a distance indicator requires only a spectrum of a galaxy and a
measurement of the Doppler shift, and with large telescopes and modern spectrographs, spectra can be taken of extremely faint
galaxies.

But, as is often the case in science, things are not so simple. This technique works if, and only if, the Hubble constant has been
truly constant throughout the entire life of the universe. When we observe galaxies billions of light-years away, we are seeing them
as they were billions of years ago. What if the Hubble “constant” was different billions of years ago? Before 1998, astronomers
thought that, although the universe is expanding, the expansion should be slowing down, or decelerating, because the overall
gravitational pull of all matter in the universe would have a dominant, measureable effect. If the expansion is decelerating, then the
Hubble constant should be decreasing over time.

The discovery that type Ia supernovae are standard bulbs gave astronomers the tool they needed to observe extremely distant
galaxies and measure the rate of expansion billions of years ago. The results were completely unexpected. It turns out that the
expansion of the universe is accelerating over time! What makes this result so astounding is that there is no way that existing
physical theories can account for this observation. While a decelerating universe could easily be explained by gravity, there was no
force or property in the universe known to astronomers that could account for the acceleration. In The Big Bang chapter, we will
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look in more detail at the observations that led to this totally unexpected result and explore its implications for the ultimate fate of
the universe.

In any case, if the Hubble constant is not really a constant when we look over large spans of space and time, then the calculation of
galaxy distances using the Hubble constant won’t be accurate. As we shall see in the chapter on The Big Bang, the accurate
calculation of distances requires a model for how the Hubble constant has changed over time. The farther away a galaxy is (and the
longer ago we are seeing it), the more important it is to include the effects of the change in the Hubble constant. For galaxies within
a few billion light-years, however, the assumption that the Hubble constant is indeed constant gives good estimates of distance.

Models for an Expanding Universe
At first, thinking about Hubble’s law and being a fan of the work of Copernicus and Harlow Shapley, you might be shocked. Are all
the galaxies really moving away from us? Is there, after all, something special about our position in the universe? Worry not; the
fact that galaxies are receding from us and that more distant galaxies are moving away more rapidly than nearby ones shows only
that the universe is expanding uniformly.

A uniformly expanding universe is one that is expanding at the same rate everywhere. In such a universe, we and all other
observers, no matter where they are located, must observe a proportionality between the velocities and distances of equivalently
remote galaxies. (Here, we are ignoring the fact that the Hubble constant is not constant over all time, but if at any given time in the
evolution of the universe the Hubble constant has the same value everywhere, this argument still works.)

To see why, first imagine a ruler made of stretchable rubber, with the usual lines marked off at each centimeter. Now suppose
someone with strong arms grabs each end of the ruler and slowly stretches it so that, say, it doubles in length in 1 minute (Figure 

). Consider an intelligent ant sitting on the mark at 2 centimeters—a point that is not at either end nor in the middle of the
ruler. He measures how fast other ants, sitting at the 4-, 7-, and 12-centimeter marks, move away from him as the ruler stretches.

Figure : Stretching a Ruler. Ants on a stretching ruler see other ants move away from them. The speed with which another
ant moves away is proportional to its distance.

The ant at 4 centimeters, originally 2 centimeters away from our ant, has doubled its distance in 1 minute; it therefore moved away
at a speed of 2 centimeters per minute. The ant at the 7-centimeters mark, which was originally 5 centimeters away from our ant, is
now 10 centimeters away; it thus had to move at 5 centimeters per minute. The one that started at the 12-centimeters mark, which
was 10 centimeters away from the ant doing the counting, is now 20 centimeters away, meaning it must have raced away at a speed
of 10 centimeters per minute. Ants at different distances move away at different speeds, and their speeds are proportional to their
distances (just as Hubble’s law indicates for galaxies). Yet, notice in our example that all the ruler was doing was stretching
uniformly. Also, notice that none of the ants were actually moving of their own accord, it was the stretching of the ruler that moved
them apart.

Now let’s repeat the analysis, but put the intelligent ant on some other mark—say, on 7 or 12 centimeters. We discover that, as long
as the ruler stretches uniformly, this ant also finds every other ant moving away at a speed proportional to its distance. In other
words, the kind of relationship expressed by Hubble’s law can be explained by a uniform stretching of the “world” of the ants. And
all the ants in our simple diagram will see the other ants moving away from them as the ruler stretches.

For a three-dimensional analogy, let’s look at the loaf of raisin bread in Figure . The chef has accidentally put too much
yeast in the dough, and when she sets the bread out to rise, it doubles in size during the next hour, causing all the raisins to move
farther apart. On the figure, we again pick a representative raisin (that is not at the edge or the center of the loaf) and show the
distances from it to several others in the figure (before and after the loaf expands).
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Figure  Expanding Raisin Bread. As the raisin bread rises, the raisins “see” other raisins moving away. More distant raisins
move away faster in a uniformly expanding bread.

Measure the increases in distance and calculate the speeds for yourself on the raisin bread, just like we did for the ruler. You will
see that, since each distance doubles during the hour, each raisin moves away from our selected raisin at a speed proportional to its
distance. The same is true no matter which raisin you start with.

Our two analogies are useful for clarifying our thinking, but you must not take them literally. On both the ruler and the raisin bread,
there are points that are at the end or edge. You can use these to pinpoint the middle of the ruler and the loaf. While our models of
the universe have some resemblance to the properties of the ruler and the loaf, the universe has no boundaries, no edges, and no
center (all mind-boggling ideas that we will discuss in a later chapter).

What is useful to notice about both the ants and the raisins is that they themselves did not “cause” their motion. It isn’t as if the
raisins decided to take a trip away from each other and then hopped on a hoverboard to get away. No, in both our analogies, it was
the stretching of the medium (the ruler or the bread) that moved the ants or the raisins farther apart. In the same way, we will see in
The Big Bang chapter that the galaxies don’t have rocket motors propelling them away from each other. Instead, they are passive
participants in the expansion of space. As space stretches, the galaxies are carried farther and farther apart much as the ants and the
raisins were. (If this notion of the “stretching” of space surprises or bothers you, now would be a good time to review the
information about spacetime in Black Holes and Curved Spacetime. We will discuss these ideas further as our discussion broadens
from galaxies to the whole universe.)

The expansion of the universe, by the way, does not imply that the individual galaxies and clusters of galaxies themselves are
expanding. Neither raisins nor the ants in our analogy grow in size as the loaf expands. Similarly, gravity holds galaxies and
clusters of galaxies together, and they get farther away from each other—without themselves changing in size—as the universe
expands.

Summary
The universe is expanding. Observations show that the spectral lines of distant galaxies are redshifted, and that their recession
velocities are proportional to their distances from us, a relationship known as Hubble’s law. The rate of recession, called the Hubble
constant, is approximately 22 kilometers per second per million light-years. We are not at the center of this expansion: an observer
in any other galaxy would see the same pattern of expansion that we do. The expansion described by Hubble’s law is best
understood as a stretching of space.

Glossary

Hubble constant
a constant of proportionality in the law relating the velocities of remote galaxies to their distances

Hubble’s law
a rule that the radial velocities of remote galaxies are proportional to their distances from us

redshift
when lines in the spectra are displaced toward longer wavelengths (toward the red end of the visible spectrum)
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