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12.3: Supernova Observations

Learning Objectives

By the end of this section, you will be able to:

o Describe the observed features of SN 1987A both before and after the supernova
o Explain how observations of various parts of the SN 1987A event helped confirm theories about supernovae

Supernovae were discovered long before astronomers realized that these spectacular cataclysms mark the death of stars (see the
Supernovae in History box below). The word nova means “new” in Latin; before telescopes, when a star too dim to be seen with
the unaided eye suddenly flared up in a brilliant explosion, observers concluded it must be a brand-new star. Twentieth-century
astronomers reclassified the explosions with the greatest luminosity as supernovae.

From historical records of such explosions, from studies of the remnants of supernovae in our Galaxy, and from analyses of
supernovae in other galaxies, we estimate that, on average, one supernova explosion occurs somewhere in the Milky Way Galaxy
every 25 to 100 years. Unfortunately, however, no supernova explosion has been observable in our Galaxy since the invention of
the telescope. Either we have been exceptionally unlucky or, more likely, recent explosions have taken place in parts of the Galaxy
where interstellar dust blocks light from reaching us.

SUPERNOVAE IN HISTORY

Although many supernova explosions in our own Galaxy have gone unnoticed, a few were so spectacular that they were clearly
seen and recorded by sky watchers and historians at the time. We can use these records, going back two millennia, to help us
pinpoint where the exploding stars were and thus where to look for their remnants today.

The most dramatic supernova was observed in the year 1006. It appeared in May as a brilliant point of light visible during the
daytime, perhaps 100 times brighter than the planet Venus. It was bright enough to cast shadows on the ground during the night
and was recorded with awe and fear by observers all over Europe and Asia. No one had seen anything like it before; Chinese
astronomers, noting that it was a temporary spectacle, called it a “guest star.”

Astronomers David Clark and Richard Stephenson have scoured records from around the world to find more than 20 reports of
the 1006 supernova (SN 1006) (Figure 12.3.1). This has allowed them to determine with some accuracy where in the sky the
explosion occurred. They place it in the modern constellation of Lupus; at roughly the position they have determined, we find a
supernova remnant, now quite faint. From the way its filaments are expanding, it indeed appears to be about 1000 years old.

Figure 12.3.1 Supernova 1006 Remnant. This composite view of SN 1006 from the Chandra X-Ray Observatory shows the X-

rays coming from the remnant in blue, visible light in white-yellow, and radio emission in red.
Another guest star, now known as SN 1054, was clearly recorded in Chinese records in July 1054. The remnant of that star is
one of the most famous and best-studied objects in the sky, called the Crab Nebula (Figure 23.4.1in Section 23.4). It is a
marvelously complex object, which has been key to understanding the death of massive stars. When its explosion was first
seen, we estimate that it was about as bright as the planet Jupiter: nowhere near as dazzling as the 1006 event but still quite
dramatic to anyone who kept track of objects in the sky. Another fainter supernova was seen in 1181.
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The next supernova became visible in November 1572 and, being brighter than the planet Venus, was quickly spotted by a
number of observers, including the young Tycho Brahe (see Orbits and Gravity). His careful measurements of the star over a
year and a half showed that it was not a comet or something in Earth’s atmosphere since it did not move relative to the stars.
He correctly deduced that it must be a phenomenon belonging to the realm of the stars, not of the solar system. The remnant of
Tycho’s Supernova (as it is now called) can still be detected in many different bands of the electromagnetic spectrum.

Not to be outdone, Johannes Kepler, Tycho Brahe’s scientific heir, found his own supernova in 1604, now known as Kepler’s
Supernova (Figure 23.2.3in Section 23.2). Fainter than Tycho’s, it nevertheless remained visible for about a year. Kepler wrote
a book about his observations that was read by many with an interest in the heavens, including Galileo.

No supernova has been spotted in our Galaxy for the past 300 years. Since the explosion of a visible supernova is a chance
event, there is no way to say when the next one might occur. Around the world, dozens of professional and amateur
astronomers keep a sharp lookout for “new” stars that appear overnight, hoping to be the first to spot the next guest star in our
sky and make a little history themselves.

At their maximum brightness, the most luminous supernovae have about 10 billion times the luminosity of the Sun. For a brief
time, a supernova may outshine the entire galaxy in which it appears. After maximum brightness, the star’s light fades and
disappears from telescopic visibility within a few months or years. At the time of their outbursts, supernovae eject material at
typical velocities of 10,000 kilometers per second (and speeds twice that have been observed). A speed of 20,000 kilometers per
second corresponds to about 45 million miles per hour, truly an indication of great cosmic violence.

Supernovae are classified according to the appearance of their spectra, but in this chapter, we will focus on the two main causes of
supernovae. Type Ia supernovae are ignited when a lot of material is dumped on degenerate white dwarfs (Figure 12.3.2); these
supernovae will be discussed later in this chapter. For now, we will continue our story about the death of massive stars and focus on
type II supernovae, which are produced when the core of a massive star collapses.

SN 2014 January 31, 2014

Figure 12.3.2 Supernova 2014]J. This image of supernova 2014J, located in Messier 82 (M82), which is also known as the Cigar
galaxy, was taken by the Hubble Space Telescope and is superposed on a mosaic image of the galaxy also taken with Hubble. The
supernova event is indicated by the box and the inset. This explosion was produced by a type Ia supernova, which is theorized to be
triggered in binary systems consisting of a white dwarf and another star—and could be a second white dwarf, a star like our Sun, or
a giant star. This type of supernova will be discussed later in this chapter. At a distance of approximately 11.5 million light-years
from Earth, this is the closest supernova of type Ia discovered in the past few decades. In the image, you can see reddish plumes of
hydrogen coming from the central region of the galaxy, where a considerable number of young stars are being born.
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Supernova 1987A

Our most detailed information about what happens when a type II supernova occurs comes from an event that was observed in
1987. Before dawn on February 24, Ian Shelton, a Canadian astronomer working at an observatory in Chile, pulled a photographic
plate from the developer. Two nights earlier, he had begun a survey of the Large Magellanic Cloud, a small galaxy that is one of the
Milky Way’s nearest neighbors in space. Where he expected to see only faint stars, he saw a large bright spot. Concerned that his
photograph was flawed, Shelton went outside to look at the Large Magellanic Cloud . . . and saw that a new object had indeed
appeared in the sky (see Figure 12.3.3). He soon realized that he had discovered a supernova, one that could be seen with the
unaided eye even though it was about 160,000 light-years away

Figure 12.3.3 Hubble Space Telescope Image of SN 1987A.The supernova remnant with its inner and outer red rings of material is
located in the Large Magellanic Cloud. This image is a composite of several images taken in 1994, 1996, and 1997—about a
decade after supernova 1987A was first observed.
Now known as SN 1987A, since it was the first supernova discovered in 1987, this brilliant newcomer to the southern sky gave
astronomers their first opportunity to study the death of a relatively nearby star with modern instruments. It was also the first time
astronomers had observed a star before it became a supernova. The star that blew up had been included in earlier surveys of the
Large Magellanic Cloud, and as a result, we know the star was a blue supergiant just before the explosion.

By combining theory and observations at many different wavelengths, astronomers have reconstructed the life story of the star that
became SN 1987A. Formed about 10 million years ago, it originally had a mass of about 20 Mgy, . For 90% of its life, it lived
quietly on the main sequence, converting hydrogen into helium. At this time, its luminosity was about 60,000 times that of the Sun
(Lsun), and its spectral type was O. When the hydrogen in the center of the star was exhausted, the core contracted and ultimately
became hot enough to fuse helium. By this time, the star was a red supergiant, emitting about 100,000 times more energy than the
Sun. While in this stage, the star lost some of its mass.

This lost material has actually been detected by observations with the Hubble Space Telescope (Figure 12.3.4). The gas driven out
into space by the subsequent supernova explosion is currently colliding with the material the star left behind when it was a red
giant. As the two collide, we see a glowing ring.
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Figure 12.3.4 Ring around Supernova 1987A. These two images show a ring of gas expelled about 30,000 years ago when the star
that exploded in 1987 was a red giant. The supernova, which has been artificially dimmed, is located at the center of the ring. The
left-hand image was taken in 1997 and the right-hand image in 2003. Note that the number of bright spots has increased from 1 to
more than 15 over this time interval. These spots occur where high-speed gas ejected by the supernova and moving at millions of
miles per hour has reached the ring and blasted into it. The collision has heated the gas in the ring and caused it to glow more
brightly. The fact that we see individual spots suggests that material ejected by the supernova is first hitting narrow, inward-
projecting columns of gas in the clumpy ring. The hot spots are the first signs of a dramatic and violent collision between the new
and old material that will continue over the next few years. By studying these bright spots, astronomers can determine the
composition of the ring and hence learn about the nuclear processes that build heavy elements inside massive stars.
Helium fusion lasted only about 1 million years. When the helium was exhausted at the center of the star, the core contracted again,
the radius of the surface also decreased, and the star became a blue supergiant with a luminosity still about equal to 100,000 Lgyy, .
This is what it still looked like on the outside when, after brief periods of further fusion, it reached the iron crisis we discussed

earlier and exploded.

Some key stages of evolution of the star that became SN 1987A, including the ones following helium exhaustion, are listed in
Table. While we don’t expect you to remember these numbers, note the patterns in the table: each stage of evolution happens more
quickly than the preceding one, the temperature and pressure in the core increase, and progressively heavier elements are the source
of fusion energy. Once iron was created, the collapse began. It was a catastrophic collapse, lasting only a few tenths of a second;
the speed of infall in the outer portion of the iron core reached 70,000 kilometers per second, about one-fourth the speed of light.

Table 12.3.1: Evolution of the Star that Exploded as SN 1987A

Phase Central Temperature (K) Central Density (g/cm?) Time Spent in This Phase
Hydrogen fusion 40 x 108 5 8 x 106 years

Helium fusion 190 x 106 970 106 years
Carbon fusion 870 x 106 170,000 2000 years

Neon fusion 1.6 x 10° 3.0 x 106 6 months
Oxygen fusion 2.0 x 10° 5.6 x 106 1 year

Silicon fusion 3.3 x 10° 4.3 %107 Days

Core collapse 200 x 10° 2 x 104 Tenths of a second

In the meantime, as the core was experiencing its last catastrophe, the outer shells of neon, oxygen, carbon, helium, and hydrogen
in the star did not yet know about the collapse. Information about the physical movement of different layers travels through a star at
the speed of sound and cannot reach the surface in the few tenths of a second required for the core collapse to occur. Thus, the
surface layers of our star hung briefly suspended, much like a cartoon character who dashes off the edge of a cliff and hangs
momentarily in space before realizing that he is no longer held up by anything.

The collapse of the core continued until the densities rose to several times that of an atomic nucleus. The resistance to further
collapse then became so great that the core rebounded. Infalling material ran into the “brick wall” of the rebounding core and was
thrown outward with a great shock wave. Neutrinos poured out of the core, helping the shock wave blow the star apart. The shock
reached the surface of the star a few hours later, and the star began to brighten into the supernova Ian Shelton observed in 1987.
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The Synthesis of Heavy Elements

The variations in the brightness of SN 1987A in the days and months after its discovery, which are shown in Figure 12.3.5 helped
confirm our ideas about heavy element production. In a single day, the star soared in brightness by a factor of about 1000 and
became just visible without a telescope. The star then continued to increase slowly in brightness until it was about the same
apparent brightness as the stars in the Little Dipper. Up until about day 40 after the outburst, the energy being radiated away was
produced by the explosion itself. But then SN 1987A did not continue to fade away, as we might have expected the light from the
explosion to do. Instead, SN 1987A remained bright as energy from newly created radioactive elements came into play.
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Figure 12.3.5 Change in the Brightness of SN 1987A over Time. Note how the rate of decline of the supernova’s light slowed

between days 40 and 500. During this time, the brightness was mainly due to the energy emitted by newly formed (and quickly

decaying) radioactive elements. Remember that magnitudes are a backward measure of brightness: the larger the magnitude, the

dimmer the object looks.
One of the elements formed in a supernova explosion is radioactive nickel, with an atomic mass of 56 (that is, the total number of
protons plus neutrons in its nucleus is 56). Nickel-56 is unstable and changes spontaneously (with a half-life of about 6 days) to
cobalt-56. (Recall that a half-life is the time it takes for half the nuclei in a sample to undergo radioactive decay.) Cobalt-56 in turn
decays with a half-life of about 77 days to iron-56, which is stable. Energetic gamma rays are emitted when these radioactive nuclei
decay. Those gamma rays then serve as a new source of energy for the expanding layers of the supernova. The gamma rays are
absorbed in the overlying gas and re-emitted at visible wavelengths, keeping the remains of the star bright.

As you can see in Figure 12.3.5 astronomers did observe brightening due to radioactive nuclei in the first few months following
the supernova’s outburst and then saw the extra light die away as more and more of the radioactive nuclei decayed to stable iron.
The gamma-ray heating was responsible for virtually all of the radiation detected from SN 1987A after day 40. Some gamma rays
also escaped directly without being absorbed. These were detected by Earth-orbiting telescopes at the wavelengths expected for the
decay of radioactive nickel and cobalt, clearly confirming our understanding that new elements were indeed formed in the crucible
of the supernova.

Neutrinos from SN 1987A

If there had been any human observers in the Large Magellanic Cloud about 160,000 years ago, the explosion we call SN 1987A
would have been a brilliant spectacle in their skies. Yet we know that less than 1/10 of 1% of the energy of the explosion appeared
as visible light. About 1% of the energy was required to destroy the star, and the rest was carried away by neutrinos. The overall
energy in these neutrinos was truly astounding. In the initial second of the event, as we noted earlier in our general discussion of
supernovae, their total luminosity exceeded the luminosity of all the stars in over a billion galaxies. And the supernova generated
this energy in a volume less than 50 kilometers in diameter! Supernovae are one of the most violent events in the universe, and
their light turns out to be only the tip of the iceberg in revealing how much energy they produce.

In 1987, the neutrinos from SN 1987A were detected by two instruments—which might be called “neutrino telescopes”—almost a
full day before Shelton’s observations. (This is because the neutrinos get out of the exploding star more easily than light does, and
also because you don’t need to wait until nightfall to catch a “glimpse” of them.) Both neutrino telescopes, one in a deep mine in
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Japan and the other under Lake Erie, consist of several thousand tons of purified water surrounded by several hundred light-
sensitive detectors. Incoming neutrinos interact with the water to produce positrons and electrons, which move rapidly through the
water and emit deep blue light.

Altogether, 19 neutrinos were detected. Since the neutrino telescopes were in the Northern Hemisphere and the supernova occurred
in the Southern Hemisphere, the detected neutrinos had already passed through Earth and were on their way back out into space
when they were captured.

Only a few neutrinos were detected because the probability that they will interact with ordinary matter is very, very low. It is
estimated that the supernova actually released 1058 neutrinos. A tiny fraction of these, about 30 billion, eventually passed through
each square centimeter of Earth’s surface. About a million people actually experienced a neutrino interaction within their bodies as
a result of the supernova. This interaction happened to only a single nucleus in each person and thus had absolutely no biological
effect; it went completely unnoticed by everyone concerned.

Since the neutrinos come directly from the heart of the supernova, their energies provided a measure of the temperature of the core
as the star was exploding. The central temperature was about 200 billion K, a stunning figure to which no earthly analog can bring
much meaning. With neutrino telescopes, we are peering into the final moment in the life stories of massive stars and observing
conditions beyond all human experience. Yet we are also seeing the unmistakable hints of our own origins.

Key Concepts and Summary

A supernova occurs on average once every 25 to 100 years in the Milky Way Galaxy. Despite the odds, no supernova in our Galaxy
has been observed from Earth since the invention of the telescope. However, one nearby supernova (SN 1987A) has been observed
in a neighboring galaxy, the Large Magellanic Cloud. The star that evolved to become SN 1987A began its life as a blue supergiant,
evolved to become a red supergiant, and returned to being a blue supergiant at the time it exploded. Studies of SN 1987A have
detected neutrinos from the core collapse and confirmed theoretical calculations of what happens during such explosions, including
the formation of elements beyond iron. Supernovae are a main source of high-energy cosmic rays and can be dangerous for any
living organisms in nearby star systems.
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