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9.5: Free Electron Model of Metals

By the end of this section, you will be able to:

Describe the classical free electron model of metals in terms of the concept electron number density
Explain the quantum free-electron model of metals in terms of Pauli’s exclusion principle
Calculate the energy levels and energy-level spacing of a free electron in a metal

Metals, such as copper and aluminum, are held together by bonds that are very different from those of molecules. Rather than
sharing and exchanging electrons, a metal is essentially held together by a system of free electrons that wander throughout the
solid. The simplest model of a metal is the free electron model. This model views electrons as a gas. We first consider the simple
one-dimensional case in which electrons move freely along a line, such as through a very thin metal rod. The potential function 

 for this case is a one-dimensional infinite square well where the walls of the well correspond to the edges of the rod. This
model ignores the interactions between the electrons but respects the exclusion principle. For the special case of , 
electrons fill up the energy levels, from lowest to highest, two at a time (spin up and spin down), until the highest energy level is
filled. The highest energy filled is called the Fermi energy.

The one-dimensional free electron model can be improved by considering the three-dimensional case: electrons moving freely in a
three-dimensional metal block. This system is modeled by a three-dimensional infinite square well. Determining the allowed
energy states requires us to solve the time-independent Schrödinger equation

where we assume that the potential energy inside the box is zero and infinity otherwise. The allowed wave functions describing the
electron’s quantum states can be written as

where  and  are positive integers representing quantum numbers corresponding to the motion in the x-, y-, and z-
directions, respectively, and ,  and  are the dimensions of the box in those directions. Equation  is simply the product
of three one-dimensional wave functions. The allowed energies of an electron in a cube ( ) are

Associated with each set of quantum numbers  are two quantum states, spin up and spin down. In a real material, the
number of filled states is enormous. For example, in a cubic centimeter of metal, this number is on the order of . Counting how
many particles are in which state is difficult work, which often requires the help of a powerful computer. The effort is worthwhile,
however, because this information is often an effective way to check the model.

Consider a solid metal cube of edge length 2.0 cm.

a. What is the lowest energy level for an electron within the metal?
b. What is the spacing between this level and the next energy level?

Strategy

An electron in a metal can be modeled as a wave. The lowest energy corresponds to the largest wavelength and smallest
quantum number: . Equation  supplies this “ground state” energy value. Since the energy of the
electron increases with the quantum number, the next highest level involves the smallest increase in the quantum numbers, or 

 or .
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The lowest energy level corresponds to the quantum numbers . From Equation , the energy of this
level is

The next-higher energy level is reached by increasing any one of the three quantum numbers by 1. Hence, there are actually
three quantum states with the same energy. Suppose we increase  by 1. Then the energy becomes

The energy spacing between the lowest energy state and the next-highest energy state is therefore

Significance
This is a very small energy difference. Compare this value to the average kinetic energy of a particle, , where  is
Boltzmann’s constant and  is the absolute temperature. The product  is about 1000 times greater than the energy spacing.

What happens to the ground state energy of an electron if the dimensions of the solid increase?

Answer

It decreases.

Often, we are not interested in the total number of particles in all states, but rather the number of particles dN with energies in a
narrow energy interval. This value can be expressed by

where  is the electron number density, or the number of electrons per unit volume;  is the density of states, or the
number of allowed quantum states per unit energy;  is the size of the energy interval; and  is the Fermi factor. The Fermi
factor is the probability that the state will be filled. For example, if  is 100 available states, but  is only 5%, then the
number of particles in this narrow energy interval is only five. Finding  requires solving Schrödinger’s equation (in three
dimensions) for the allowed energy levels (Equation ). The calculation is involved even for a crude model, but the result is
simple:

where V is the volume of the solid,  is the mass of the electron, and E is the energy of the state. Notice that the density of states
increases with the square root of the energy. More states are available at high energy than at low energy. This expression does not
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provide information of the density of the electrons in physical space, but rather the density of energy levels in “energy space.” For
example, in our study of the atomic structure, we learned that the energy levels of a hydrogen atom are much more widely spaced
for small energy values (near than ground state) than for larger values.

This equation tells us how many electron states are available in a three-dimensional metallic solid. However, it does not tell us how
likely these states will be filled. Thus, we need to determine the Fermi factor, F. Consider the simple case of . From
classical physics, we expect that all the electrons  would simply go into the ground state to achieve the lowest
possible energy. However, this violates Pauli’s exclusion principle, which states that no two electrons can be in the same quantum
state. Hence, when we begin filling the states with electrons, the states with lowest energy become occupied first, then states with
progressively higher energies. The last electron we put in has the highest energy. This energy is the Fermi energy  of the free
electron gas. A state with energy  is occupied by a single electron, and a state with energy  is unoccupied. To
describe this in terms of a probability F(E) that a state of energy E is occupied, we write for :

The density of states, Fermi factor, and electron number density are plotted against energy in Figure .

Figure : (a) Density of states for a free electron gas; (b) probability that a state is occupied at ; (c) density of
occupied states at .

A few notes are in order. First, the electron number density (last row) distribution drops off sharply at the Fermi energy. According
to the theory, this energy is given by

Fermi energies for selected materials are listed in Table . Note also that only the graph Figure , which answers the
question, “How many particles are found in the energy range?” is checked by experiment. The Fermi temperature or effective
“temperature” of an electron at the Fermi energy is

Table : Conduction Electron Densities and Fermi Energies for Some Metals

Element
Conduction Band Electron Density 

Free-Electron Model Fermi Energy ( )

Al 18.1 11.7

Ba 3.15 3.64

Cu 8.47 7.00

Au 5.90 5.53

Fe 17.0 11.1

Ag 5.86 5.49
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Metallic silver is an excellent conductor. It has  conduction electrons per cubic meter. (a) Calculate its Fermi
energy. (b) Compare this energy to the thermal energy  of the electrons at a room temperature of 300 K.

Solution
1. From Equation , the Fermi energy is

This is a typical value of the Fermi energy for metals, as can be seen from Table .
2. We can associate a Fermi temperature  with the Fermi energy by writing . We then find for the Fermi

temperature

which is much higher than room temperature and also the typical melting point ( ) of a metal. The ratio of the
Fermi energy of silver to the room-temperature thermal energy is

To visualize how the quantum states are filled, we might imagine pouring water slowly into a glass, such as that of Figure .
The first drops of water (the electrons) occupy the bottom of the glass (the states with lowest energy). As the level rises, states of
higher and higher energy are occupied. Furthermore, since the glass has a wide opening and a narrow stem, more water occupies
the top of the glass than the bottom. This reflects the fact that the density of states g(E) is proportional to , so there is a
relatively large number of higher energy electrons in a free electron gas. Finally, the level to which the glass is filled corresponds to
the Fermi energy.

Figure : An analogy of how electrons fill energy states in a metal. As electrons fill energy states, lowest to highest, the number
of available states increases. The highest energy state (corresponding to the water line) is the Fermi energy. (credit: modification of
work by “Didriks”/Flickr)

Suppose that at , the number of conduction electrons per unit volume in our sample is . Since each field state has one
electron, the number of filled states per unit volume is the same as the number of electrons per unit volume.

 Example : Fermi Energy of Silver9.5.2
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