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8.3: Orbital Magnetic Dipole Moment of the Electron

By the end of this section, you will be able to:

Explain why the hydrogen atom has magnetic properties
Explain why the energy levels of a hydrogen atom associated with orbital angular momentum are split by an external
magnetic field
Use quantum numbers to calculate the magnitude and direction of the orbital magnetic dipole moment of a hydrogen atom

In Bohr’s model of the hydrogen atom, the electron moves in a circular orbit around the proton. The electron passes by a particular
point on the loop in a certain time, so we can calculate a current . An electron that orbits a proton in a hydrogen atom is
therefore analogous to current flowing through a circular wire (Figure ). In the study of magnetism, we saw that a current-
carrying wire produces magnetic fields. It is therefore reasonable to conclude that the hydrogen atom produces a magnetic field and
interacts with other magnetic fields.

Figure : (a) Current flowing through a circular wire is analogous to (b) an electron that orbits a proton in a hydrogen atom.

The orbital magnetic dipole moment is a measure of the strength of the magnetic field produced by the orbital angular momentum
of an electron. From Force and Torque on a Current Loop, the magnitude of the orbital magnetic dipole moment for a current loop
is

where  is the current and  is the area of the loop. (For brevity, we refer to this as the magnetic moment.) The current  associated
with an electron in orbit about a proton in a hydrogen atom is

where e is the magnitude of the electron charge and  is its orbital period. If we assume that the electron travels in a perfectly
circular orbit, the orbital period is

where r is the radius of the orbit and v is the speed of the electron in its orbit. Given that the area of a circle is , the absolute
magnetic moment is

It is helpful to express the magnetic momentum μμ in terms of the orbital angular momentum ( ). Because the electron
orbits in a circle, the position vector  and the momentum vector  form a right angle. Thus, the magnitude of the orbital angular
momentum is

Combining these two equations, we have
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In full vector form, this expression is written as

The negative sign appears because the electron has a negative charge. Notice that the direction of the magnetic moment of the
electron is antiparallel to the orbital angular momentum, as shown in Figure    . In the Bohr model of the atom, the relationship
between  and  in Equation  is independent of the radius of the orbit.

The magnetic moment  can also be expressed in terms of the orbital angular quantum number . Combining Equation  and
Equation , the magnitude of the magnetic moment is

The z-component of the magnetic moment is

The quantity  is a fundamental unit of magnetism called the Bohr magneton, which has the value 
(J/T) or . Quantization of the magnetic moment is the result of quantization of the orbital angular momentum.

As we will see in the next section, the total magnetic dipole moment of the hydrogen atom is due to both the orbital motion of the
electron and its intrinsic spin. For now, we ignore the effect of electron spin.

What is the magnitude of the orbital dipole magnetic moment μ of an electron in the hydrogen atom in the (a) s state, (b) p
state, and (c) d state? (Assume that the spin of the electron is zero.)

Strategy

The magnetic momentum of the electron is related to its orbital angular momentum L. For the hydrogen atom, this quantity is
related to the orbital angular quantum number l. The states are given in spectroscopic notation, which relates a letter (s, p, d,
etc.) to a quantum number.

Solution
The magnitude of the magnetic moment is given in Equation :

1. For the s state,  so we have  and .
2. For the p state,  and we have
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μB 9.3 × Joule/T esla10−24

5.8 × eV /T10−5
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where  so

3. For the d state,  and we obtain

where  so

Significance
In the s state, there is no orbital angular momentum and therefore no magnetic moment. This does not mean that the electron is
at rest, just that the overall motion of the electron does not produce a magnetic field. In the p state, the electron has a magnetic
moment with three possible values for the z-component of this magnetic moment; this means that magnetic moment can point
in three different polar directions—each antiparallel to the orbital angular momentum vector. In the d state, the electron has a
magnetic moment with five possible values for the z-component of this magnetic moment. In this case, the magnetic moment
can point in five different polar directions.

A hydrogen atom has a magnetic field, so we expect the hydrogen atom to interact with an external magnetic field—such as the
push and pull between two bar magnets. From Force and Torque on a Current Loop, we know that when a current loop interacts
with an external magnetic field , it experiences a torque given by

where I is the current,  is the area of the loop,  is the magnetic moment, and  is the external magnetic field. This torque acts to
rotate the magnetic moment vector of the hydrogen atom to align with the external magnetic field. Because mechanical work is
done by the external magnetic field on the hydrogen atom, we can talk about energy transformations in the atom. The potential
energy of the hydrogen atom associated with this magnetic interaction is given by Equation :

If the magnetic moment is antiparallel to the external magnetic field, the potential energy is large, but if the magnetic moment is
parallel to the field, the potential energy is small. Work done on the hydrogen atom to rotate the atom’s magnetic moment vector in
the direction of the external magnetic field is therefore associated with a drop in potential energy. The energy of the system is
conserved, however, because a drop in potential energy produces radiation (the emission of a photon). These energy transitions are
quantized because the magnetic moment can point in only certain directions.

If the external magnetic field points in the positive z-direction, the potential energy associated with the orbital magnetic dipole
moment is

where  is the Bohr magneton and m is the angular momentum projection quantum number (or magnetic orbital quantum
number), which has the values

For example, in the  electron state, the total energy of the electron is split into three distinct energy levels corresponding to 
.
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Figure : The Zeeman effect refers to the splitting of spectral lines by an external magnetic field. In the left column, the energy
splitting occurs due to transitions from the state ( ) to a lower energy state; and in the right column, energy splitting
occurs due to transitions from the state ( ) to a lower-energy state. The separation of these lines is proportional to the
strength of the external magnetic field.

The splitting of energy levels by an external magnetic field is called the Zeeman effect. Ignoring the effects of electron spin,
transitions from the  state to a common lower energy state produce three closely spaced spectral lines (Figure , left
column). Likewise, transitions from the  state produce five closely spaced spectral lines (right column). The separation of
these lines is proportional to the strength of the external magnetic field. This effect has many applications. For example, the
splitting of lines in the hydrogen spectrum of the Sun is used to determine the strength of the Sun’s magnetic field. Many such
magnetic field measurements can be used to make a map of the magnetic activity at the Sun’s surface called a magnetogram
(Figure ).

Figure : A magnetogram of the Sun. The bright and dark spots show significant magnetic activity at the surface of the Sun.
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