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13.7: Relativistic Energy

By the end of this section, you will be able to:

o Compute total energy of a relativistic object.

o Compute the kinetic energy of a relativistic object.

o Describe rest energy, and explain how it can be converted to other forms.
o Explain why massive particles cannot reach C.

A tokamak is a form of experimental fusion reactor, which can change mass to energy. Accomplishing this requires an
understanding of relativistic energy. Nuclear reactors are proof of the conservation of relativistic energy.

Figure 13.7.1: The National Spherical Torus Experiment (NSTX) has a fusion reactor in which hydrogen isotopes undergo fusion

to produce helium. In this process, a relatively small mass of fuel is converted into a large amount of energy. (credit: Princeton

Plasma Physics Laboratory)
Conservation of energy is one of the most important laws in physics. Not only does energy have many important forms, but each
form can be converted to any other. We know that classically the total amount of energy in a system remains constant.
Relativistically, energy is still conserved, provided its definition is altered to include the possibility of mass changing to energy, as
in the reactions that occur within a nuclear reactor. Relativistic energy is intentionally defined so that it will be conserved in all
inertial frames, just as is the case for relativistic momentum. As a consequence, we learn that several fundamental quantities are
related in ways not known in classical physics. All of these relationships are verified by experiment and have fundamental
consequences. The altered definition of energy contains some of the most fundamental and spectacular new insights into nature
found in recent history.

Total Energy and Rest Energy

The first postulate of relativity states that the laws of physics are the same in all inertial frames. Einstein showed that the law of
conservation of energy is valid relativistically, if we define energy to include a relativistic factor.

Definition: Total Energy

Total energy F is defined to be
E =ymc?, (13.7.1)

1

where m is mass, c is the speed of light, v = , and v is the velocity of the mass relative to an observer.
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There are many aspects of the total energy E that we will discuss—among them are how kinetic and potential energies are included
in E, and how F is related to relativistic momentum. But first, note that at rest, total energy is not zero. Rather, when v =0, we
have v =1, and an object has rest energy.

Definition: Rest Energy

Rest energy is

Ey =mc?. (13.7.2)

This is the correct form of Einstein’s most famous equation, which for the first time showed that energy is related to the mass of an
object at rest. For example, if energy is stored in the object, its rest mass increases. This also implies that mass can be destroyed to
release energy. The implications of these first two equations regarding relativistic energy are so broad that they were not
completely recognized for some years after Einstein published them in 1907, nor was the experimental proof that they are correct
widely recognized at first. Einstein, it should be noted, did understand and describe the meanings and implications of his theory.

Example 13.7.1: Calculating Rest Energy: Rest Energy is Very Large

Calculate the rest energy of a 1.00-g mass.
Strategy

One gram is a small mass—Iess than half the mass of a penny. We can multiply this mass, in SI units, by the speed of light
squared to find the equivalent rest energy.

Solution

1. Identify the knowns: m = 1.00 x 103 kg; ¢ = 3.00 x 103 m/s
2. Identify the unknown: Ejy

3. Choose the appropriate equation: Ey = mc
4. Plug the knowns into the equation:

2

Ey =mc?
= (1.00 x 1073 kg)(3.00 x 108 m/s)?
=9.00 x 10" kg-m?/s*

5. Convert units.

Noting that \(1\, kg \cdot mA2/sA2 = 1\, J\), we see the rest mass energy is

Eo =9.00 x 10" J. (13.7.3)

Discussion

This is an enormous amount of energy for a 1.00-g mass. We do not notice this energy, because it is generally not available.
Rest energy is large because the speed of light ¢? is a very large number, so that mc? is huge for any macroscopic mass. The
9.00 x 10'3 J rest mass energy for 1.00 g is about twice the energy released by the Hiroshima atomic bomb and about 10,000
times the kinetic energy of a large aircraft carrier. If a way can be found to convert rest mass energy into some other form (and
all forms of energy can be converted into one another), then huge amounts of energy can be obtained from the destruction of
mass.

Today, the practical applications of the conversion of mass into another form of energy, such as in nuclear weapons and nuclear
power plants, are well known. But examples also existed when Einstein first proposed the correct form of relativistic energy, and he
did describe some of them. Nuclear radiation had been discovered in the previous decade, and it had been a mystery as to where its
energy originated. The explanation was that, in certain nuclear processes, a small amount of mass is destroyed and energy is
released and carried by nuclear radiation. But the amount of mass destroyed is so small that it is difficult to detect that any is
missing. Although Einstein proposed this as the source of energy in the radioactive salts then being studied, it was many years
before there was broad recognition that mass could be and, in fact, commonly is converted to energy (Figure 13.7.1).
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(b)
Figure 13.7.2: The Sun (a) and the Susquehanna Steam Electric Station (b) both convert mass into energy—the Sun via nuclear
fusion, the electric station via nuclear fission. (credits: (a) NASA/Goddard Space Flight Center, Scientific Visualization Studio; (b)
U.S. government)
Because of the relationship of rest energy to mass, we now consider mass to be a form of energy rather than something separate.
There had not even been a hint of this prior to Einstein’s work. Such conversion is now known to be the source of the Sun’s energy,
the energy of nuclear decay, and even the source of energy keeping Earth’s interior hot.

Stored Energy and Potential Energy

What happens to energy stored in an object at rest, such as the energy put into a battery by charging it, or the energy stored in a toy
gun’s compressed spring? The energy input becomes part of the total energy of the object and, thus, increases its rest mass. All
stored and potential energy becomes mass in a system. Why is it we don’t ordinarily notice this? In fact, conservation of mass
(meaning total mass is constant) was one of the great laws verified by 19th-century science. Why was it not noticed to be incorrect?
The following example helps answer these questions.

Example 13.7.2: Calculating Rest Mass: A Small Mass Increase due to Energy Input

A car battery is rated to be able to move 600 ampere-hours (-k) of charge at 12.0 V.

a. Calculate the increase in rest mass of such a battery when it is taken from being fully depleted to being fully charged.
b. What percent increase is this, given the battery’s mass is 20.0 kg?

Strategy

In part (a), we first must find the energy stored in the battery, which equals what the battery can supply in the form of electrical
potential energy. Since PE,;. = qV, we have to calculate the charge ¢ in 600 A - h, which is the product of the current I and
the time ¢t. We then multiply the result by 12.0 V. We can then calculate the battery’s increase in mass using
AE =PE .. = (Am)c?.

Part (b) is a simple ratio converted to a percentage.

Solution for (a)

1. Identify the knowns: I -t =600 A-h ; V =12.0V;c=3.00 x 10° m/s
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2. Identify the unknown: ém

3. Choose the appropriate equation: PE;.. = (Am)c?
PE,

4. Rearrange the equation to solve for the unknown: Am = C—f“

5. Plug the knowns into the equation:

 PEae vV (I)V  (6004-h)(12.0V) 13.7.4)
e @ @ Boxic)e -

Am

Write amperes A as coulombs per second (C/s), and convert hours to seconds.

600 C/s- h(25%)(12.0J/C
Am:( A TR /©) (13.7.5)
3.00 x 10% m /s)?

(2.16 x10° C)(12.0 J/C) 13.7.6
© (3.00 x 108 m/s)? o

Using the conversion 1 kg- m?/c? = 1 J , we can write the mass as dm = 2.88 x 10710 kg.
Solution for (b)

1. Identify the knowns: Am = 2.88 x 1070 kg; m =20.0 kg
2. Identify the unknown: % change

3. Choose the appropriate equation: % increase = ATm x 100%
4. Plug the knowns into the equation:

2.88 x 10" kg

1 =1.44x107° 13.7.
20.0 kg x 100% x 107" % (13.7.7)

0
% increase = Fm x 100% =

Discussion

Both the actual increase in mass and the percent increase are very small, since energy is divided by ¢?, a very large number. We
would have to be able to measure the mass of the battery to a precision of a billionth of a percent, or 1 part in 10'*, to notice
this increase. It is no wonder that the mass variation is not readily observed. In fact, this change in mass is so small that we
may question how you could verify it is real. The answer is found in nuclear processes in which the percentage of mass
destroyed is large enough to be measured. The mass of the fuel of a nuclear reactor, for example, is measurably smaller when
its energy has been used. In that case, stored energy has been released (converted mostly to heat and electricity) and the rest
mass has decreased. This is also the case when you use the energy stored in a battery, except that the stored energy is much
greater in nuclear processes, making the change in mass measurable in practice as well as in theory.

Kinetic Energy and the Ultimate Speed Limit

Kinetic energy is energy of motion. Classically, kinetic energy has the familiar expression %mv2. The relativistic expression for

kinetic energy is obtained from the work-energy theorem. This theorem states that the net work on a system goes into kinetic
energy. If our system starts from rest, then the work-energy theorem is

Whet = KE. (13.7.8)
Relativistically, at rest we have rest energy E = mc?. The work increases this to the total energy E = ymc?. Thus,
Whet = E— Ey =ymc? —mc? = (y—1)mc?. (13.7.9)

Relativistically, we have W, = KE, .

Definition: Relativistic Kinetic Energy

Relativistic kinetic energy is

KE,q = (y—1)md’. (13.7.10)

When motionless, we have v =0 and
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y=— =1, (13.7.11)

so that KE,.,; = 0 at rest, as expected. But the expression for relativistic kinetic energy (such as total energy and rest energy) does
not look much like the classical %mv2 To show that the classical expression for kinetic energy is obtained at low velocities, we
note that the binomial expansion for -y at low velocities gives

2

lwv
721_,_50_2_ (13.7.12)
Entering this into the expression for relativistic kinetic energy gives
1 22 s 1
KE,; =|=——|mc* = —mv° = KE 4. (13.7.13)
2 ¢? 2

So, in fact, relativistic kinetic energy does become the same as classical kinetic energy when v << c.

It is even more interesting to investigate what happens to kinetic energy when the velocity of an object approaches the speed of
light. We know that ¥ becomes infinite as v approaches ¢, so that K F,.; also becomes infinite as the velocity approaches the speed
of light (Figure 13.7.1). An infinite amount of work (and, hence, an infinite amount of energy input) is required to accelerate a
mass to the speed of light.

Definition: Speed of Light

No object with mass can attain the speed of light.

So the speed of light is the ultimate speed limit for any particle having mass. All of this is consistent with the fact that velocities
less than ¢ always add to less than c. Both the relativistic form for kinetic energy and the ultimate speed limit being ¢ have been
confirmed in detail in numerous experiments. No matter how much energy is put into accelerating a mass, its velocity can only
approach—not reach—the speed of light.
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Figure 13.7.3: This graph of K E;¢; versus velocity shows how kinetic energy approaches infinity as velocity approaches the speed
of light. It is thus not possible for an object having mass to reach the speed of light. Also shown is K Eciass, the classical kinetic
energy, which is similar to relativistic kinetic energy at low velocities. Note that much more energy is required to reach high
velocities than predicted classically.

Example 13.7.3: Comparing Kinetic Energy: Relativistic Energy Versus Classical Kinetic Energy

An electron has a velocity v =0.990c.

a. Calculate the kinetic energy in MeV of the electron.
b. Compare this with the classical value for kinetic energy at this velocity. (The mass of an electron is 9.11 x 1073 kg.)

Strategy

The expression for relativistic kinetic energy is always correct, but for (a) it must be used since the velocity is highly
relativistic (close to ¢). First, we will calculate the relativistic factor 7, and then use it to determine the relativistic kinetic
energy. For (b), we will calculate the classical kinetic energy (which would be close to the relativistic value if v were less than
a few percent of ¢) and see that it is not the same.
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Solution for (a)

1. Identify the knowns: v = 0.990c; m =9.11 x 1073 kg
2. Identify the unknown: K E,.

3. Choose the appropriate equation K E,; = (7 — 1)mc?
4. Plug the knowns into the equation:

First calculate . We will carry extra digits because this is an intermediate calculation.

1 1 1
y= = = —17.0888 (13.7.14)

J12 \/ oy /1 (0-990)2
: -2

C

Next, we use this value to calculate the kinetic energy.
KE,q = (y—1)mc? = (7.0888 —1)(9.11 x 10731 kg)(3.00 x 10* m/s)? =4.99 x 10713 J  (13.7.15)

5. Convert units:

1 MeV
KE,q =(4.99x107 J (—) =3.12 MeV 13.7.16
2=l N\ Teox1077 ( )
Solution for (b)
1. List the knowns: v =0.990c; m = 9.11 x 103! kg
2. List the unknown: KFE s
3. Choose the appropriate equation: K FE .55 = %mv2
4. Plug the knowns into the equation:
1
KE 45 = amv2 (13.7.17)
1
= —(9.11 x 107! k¢)(0.990)2(3.00 x 108 m /5)? 13.7.18
2
=4.02x10°1J (13.7.19)
5. Convert units:
1M
KE 45, =4.02 x 1071 (—eVlg> =0.251 MeV (13.7.20)
1.60 x 10 J

Discussion

As might be expected, since the velocity is 99.0% of the speed of light, the classical kinetic energy is significantly off from the
correct relativistic value. Note also that the classical value is much smaller than the relativistic value. In fact,
KE,;/KE4ss = 12.4 here. This is some indication of how difficult it is to get a mass moving close to the speed of light.
Much more energy is required than predicted classically. Some people interpret this extra energy as going into increasing the
mass of the system, but, as discussed in Relativistic Momentum, this cannot be verified unambiguously. What is certain is that
ever-increasing amounts of energy are needed to get the velocity of a mass a little closer to that of light. An energy of 3 MeV is
a very small amount for an electron, and it can be achieved with present-day particle accelerators. SLAC, for example, can
accelerate electrons to over 50 x 10° eV =50, 000MeV .

Is there any point in getting v a little closer to c than 99.0% or 99.9%? The answer is yes. We learn a great deal by doing this.
The energy that goes into a high-velocity mass can be converted to any other form, including into entirely new masses. (See
Figure.) Most of what we know about the substructure of matter and the collection of exotic short-lived particles in nature has
been learned this way. Particles are accelerated to extremely relativistic energies and made to collide with other particles,
producing totally new species of particles. Patterns in the characteristics of these previously unknown particles hint at a basic
substructure for all matter. These particles and some of their characteristics will be covered in Particle Physics.
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Figure 13.7.4: The Fermi National Accelerator Laboratory, near Batavia, Illinois, was a subatomic particle collider that
accelerated protons and antiprotons to attain energies up to 1 Tev (a trillion electronvolts). The circular ponds near the rings
were built to dissipate waste heat. This accelerator was shut down in September 2011. (credit: Fermilab, Reidar Hahn)

Relativistic Energy and Momentum

We know classically that kinetic energy and momentum are related to each other, since

2 2
p (mv) 1 2
KE N S SRt A— . 13.7.21
dlass = 5 5 2mv (13.7.21)

Relativistically, we can obtain a relationship between energy and momentum by algebraically manipulating their definitions. This
produces

E* = (pc)® + (mc?)?, (13.7.22)

where F is the relativistic total energy and p is the relativistic momentum. This relationship between relativistic energy and
relativistic momentum is more complicated than the classical, but we can gain some interesting new insights by examining it. First,
total energy is related to momentum and rest mass. At rest, momentum is zero, and the equation gives the total energy to be the rest
energy mc? (so this equation is consistent with the discussion of rest energy above). However, as the mass is accelerated, its
momentum p increases, thus increasing the total energy. At sufficiently high velocities, the rest energy term (mc?)? becomes
negligible compared with the momentum term (pc)?; thus, E = pc at extremely relativistic velocities.

If we consider momentum p to be distinct from mass, we can determine the implications of the equation E? = (pc)? + (mc?)?,
for a particle that has no mass. If we take m to be zero in this equation, then E = pc, or p = E/c. Massless particles have this
momentum. There are several massless particles found in nature, including photons (these are quanta of electromagnetic radiation).
Another implication is that a massless particle must travel at speed ¢ and only at speed c. While it is beyond the scope of this text
to examine the relationship in the equation E? = (pc)?+ (mc?)?, in detail, we can see that the relationship has important
implications in special relativity.
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PROBLEM-SOLVING STRATEGIES FOR RELATIVITY

1. Examine the situation to determine that it is necessary to use relativity. Relativistic effects are related to y = —=

1_i
2

quantitative relativistic factor. If +y is very close to 1, then relativistic effects are small and differ very little from the usually
easier classical calculations.

2. Identify exactly what needs to be determined in the problem (identify the unknowns).

3. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Look in particular for
information on relative velocity v.

4. Make certain you understand the conceptual aspects of the problem before making any calculations. Decide, for example,

, the

which observer sees time dilated or length contracted before plugging into equations. If you have thought about who sees
what, who is moving with the event being observed, who sees proper time, and so on, you will find it much easier to
determine if your calculation is reasonable.

5. Determine the primary type of calculation to be done to find the unknowns identified above. You will find the section
summary helpful in determining whether a length contraction, relativistic kinetic energy, or some other concept is involved.

6. Do not round off during the calculation. As noted in the text, you must often perform your calculations to many digits to
see the desired effect. You may round off at the very end of the problem, but do not use a rounded number in a subsequent
calculation.

7. Check the answer to see if it is reasonable: Does it make sense? This may be more difficult for relativity, since we do not
encounter it directly. But you can look for velocities greater than ¢ or relativistic effects that are in the wrong direction
(such as a time contraction where a dilation was expected).

Exercise 13.7.1

A photon decays into an electron-positron pair. What is the kinetic energy of the electron if its speed is 0.992¢

Answer
KE,q = (y—1)mc?
1
= | —7—- 1| me?
1-%
1
= | ————1](9.11 x107* kg)(3.00 x 10° m /s)?
(0.992¢)*
1- 2
C
=5.67x10 2 J
Summary

¢ Relativistic energy is conserved as long as we define it to include the possibility of mass changing to energy.

1

o Rest energy is Ey = mc?, meaning that mass is a form of energy. If energy is stored in an object, its mass increases. Mass can
be destroyed to release energy.

¢ We do not ordinarily notice the increase or decrease in mass of an object because the change in mass is so small for a large
increase in energy.

o The relativistic work-energy theorem is W,,o; = E — Ey = ymc? = (y—1)mc? .

o Relativistically, Wy,es = KE, , where KE,; is the relativistic kinetic energy.

« Relativistic kinetic energy is KE,q = (y—1)mc? , where 7y = —L— . At low velocities, relativistic kinetic energy reduces to

1-2
i

o Total Energy is defined as: E = ymc?, where y =

classical kinetic energy.
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o No object with mass can attain the speed of light because an infinite amount of work and an infinite amount of energy input

is required to accelerate a mass to the speed of light.
e The equation E2? = (pc)? + (mc?)? relates the relativistic total energy F and the relativistic momentum p. At extremely high

velocities, the rest energy mc? becomes negligible, and E = pc.

Glossary

total energy
defined as E = ymc? , where y = \/ L -
1_ v

rest energy
the energy stored in an object at rest: Ey = mc?

1

relativistic kinetic energy
. . . . ) . . _ 2 _
the kinetic energy of an object moving at relativistic speeds: KE,q = (7 —1)mc® , where y = \/1_ =
2

c
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