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14.6: Half-Life and Activity

Define half-life.
Define dating.
Calculate age of old objects by radioactive dating.

Unstable nuclei decay. However, some nuclides decay faster than others. For example, radium and polonium, discovered by the
Curies, decay faster than uranium. This means they have shorter lifetimes, producing a greater rate of decay. In this section we
explore half-life and activity, the quantitative terms for lifetime and rate of decay.

Half-Life

Why use a term like half-life rather than lifetime? The answer can be found by examining Figure   , which shows how the
number of radioactive nuclei in a sample decreases with time. The time in which half of the original number of nuclei decay is
defined as the half-life, . Half of the remaining nuclei decay in the next half-life. Further, half of that amount decays in the
following half-life. Therefore, the number of radioactive nuclei decreases from  to  in one half-life, then to  in the next,
and to  in the next, and so on. If  is a large number, then many half-lives (not just two) pass before all of the nuclei decay.
Nuclear decay is an example of a purely statistical process. A more precise definition of half-life is that each nucleus has a 50%
chance of living for a time equal to one half-life . Thus, if  is reasonably large, half of the original nuclei decay in a time of
one half-life. If an individual nucleus makes it through that time, it still has a 50% chance of surviving through another half-life.
Even if it happens to make it through hundreds of half-lives, it still has a 50% chance of surviving through one more. The
probability of decay is the same no matter when you start counting. This is like random coin flipping. The chance of heads is 50%,
no matter what has happened before.

Figure : Radioactive decay reduces the number of radioactive nuclei over time. In one half-life , the number decreases to
half of its original value. Half of what remains decay in the next half-life, and half of those in the next, and so on. This is an
exponential decay, as seen in the graph of the number of nuclei present as a function of time.

There is a tremendous range in the half-lives of various nuclides, from as short as  s for the most unstable, to more than 
 y for the least unstable, or about 46 orders of magnitude. Nuclides with the shortest half-lives are those for which the nuclear

forces are least attractive, an indication of the extent to which the nuclear force can depend on the particular combination of
neutrons and protons. The concept of half-life is applicable to other subatomic particles. It is also applicable to the decay of excited
states in atoms and nuclei.

For simple multiples of half-life , the following intuitive expression relates original  and
future  amounts.

This expression shows that the amount is reduced by half during each half-life. For example, using the data in Figure 1, after three
half-lives we see that one-eighth of the original number remains.
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And after ten half-lives 1/1024 of the original remains.

For an arbitrary time, not just a multiple of the half-life, the exponential relationship shown below is generally used. The following
equation gives the quantitative relationship between the original number of nuclei present at time zero  and the number  at a
later time t:

where  is the base of the natural logarithm, and  is the decay constant for the nuclide. The shorter the half-life,
the larger is the value of , and the faster the exponential  decreases with time. The relationship between the decay constant 

 and the half-life  is

To see how the number of nuclei declines to half its original value in one half-life, let  in the exponential in the equation 
. This gives .

Radioactive dating is a clever use of naturally occurring radioactivity. Its most famous application is carbon-14 dating. Carbon-
14 has a half-life of 5730 years and is produced in a nuclear reaction induced when solar neutrinos strike  in the atmosphere.
Radioactive carbon has the same chemistry as stable carbon, and so it mixes into the ecosphere, where it is consumed and becomes
part of every living organism. Carbon-14 has an abundance of 1.3 parts per trillion of normal carbon. Thus, if you know the number
of carbon nuclei in an object (perhaps determined by mass and Avogadro’s number), you multiply that number by 1.3×10  to find
the number of  nuclei in the object. When an organism dies, carbon exchange with the environment ceases, and  is not
replenished as it decays. By comparing the abundance of  in an artifact, such as mummy wrappings, with the normal abundance
in living tissue, it is possible to determine the artifact’s age (or time since death). Carbon-14 dating can be used for biological
tissues as old as 50 or 60 thousand years, but is most accurate for younger samples, since the abundance of  nuclei in them is
greater. Very old biological materials contain no  at all. There are instances in which the date of an artifact can be determined by
other means, such as historical knowledge or tree-ring counting. These cross-references have confirmed the validity of carbon-14
dating and permitted us to calibrate the technique as well. Carbon-14 dating revolutionized parts of archaeology and is of such
importance that it earned the 1960 Nobel Prize in chemistry for its developer, the American chemist Willard Libby (1908–1980).

One of the most famous cases of carbon-14 dating involves the Shroud of Turin, a long piece of fabric purported to be the burial
shroud of Jesus (see Figure ). This relic was first displayed in Turin in 1354 and was denounced as a fraud at that time by a
French bishop. Its remarkable negative imprint of an apparently crucified body resembles the then-accepted image of Jesus, and so
the shroud was never disregarded completely and remained controversial over the centuries. Carbon-14 dating was not performed
on the shroud until 1988, when the process had been refined to the point where only a small amount of material needed to be
destroyed. Samples were tested at three independent laboratories, each being given four pieces of cloth, with only one unidentified
piece from the shroud, to avoid prejudice. All three laboratories found samples of the shroud contain 92% of the  found in
living tissues, allowing the shroud to be dated (see Example ).
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Figure : Part of the Shroud of Turin, which shows a remarkable negative imprint likeness of Jesus complete with evidence
of crucifixion wounds. The shroud first surfaced in the 14th century and was only recently carbon-14 dated. It has not been
determined how the image was placed on the material. (credit: Butko, Wikimedia Commons)

Calculate the age of the Shroud of Turin given that the amount of  found in it is 92% of that in living tissue.

Strategy

Knowing that 92% of the  remains means that . Therefore, the equation  can be used to find .
We also know that the half-life of  is 5730 y, and so once  is known, we can use the equation  to find  and

then find  as requested. Here, we postulate that the decrease in  is solely due to nuclear decay.

Solution

Solving the equation  for  gives

Thus,

Taking the natural logarithm of both sides of the equation yields

so that

Rearranging to isolate  gives

Now, the equation  can be used to find  for . Solving for  and substituting the known half-life gives

We enter this value into the previous equation to find :

Discussion

This dates the material in the shroud to 1988–690 = a.d. 1300. Our calculation is only accurate to two digits, so that the year is
rounded to 1300. The values obtained at the three independent laboratories gave a weighted average date of a.d. .
The uncertainty is typical of carbon-14 dating and is due to the small amount of  in living tissues, the amount of material
available, and experimental uncertainties (reduced by having three independent measurements). It is meaningful that the date
of the shroud is consistent with the first record of its existence and inconsistent with the period in which Jesus lived.
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There are other forms of radioactive dating. Rocks, for example, can sometimes be dated based on the decay of . The decay
series for  ends with , so that the ratio of these nuclides in a rock is an indication of how long it has been since the rock
solidified. The original composition of the rock, such as the absence of lead, must be known with some confidence. However, as
with carbon-14 dating, the technique can be verified by a consistent body of knowledge. Since  has a half-life of  y,
it is useful for dating only very old materials, showing, for example, that the oldest rocks on Earth solidified about  years
ago.

Activity, the Rate of Decay

What do we mean when we say a source is highly radioactive? Generally, this means the number of decays per unit time is very
high. We define activity  to be the rate of decay expressed in decays per unit time. In equation form, this is

where  is the number of decays that occur in time . The SI unit for activity is one decay per second and is given the
name becquerel (Bq) in honor of the discoverer of radioactivity. That is,

Activity  is often expressed in other units, such as decays per minute or decays per year. One of the most common units for
activity is the curie (Ci), defined to be the activity of 1 g of , in honor of Marie Curie’s work with radium. The definition of
curie is

or  decays per second. A curie is a large unit of activity, while a becquerel is a relatively small unit. 
. In countries like Australia and New Zealand that adhere more to SI units, most radioactive

sources, such as those used in medical diagnostics or in physics laboratories, are labeled in Bq or megabecquerel (MBq).

Intuitively, you would expect the activity of a source to depend on two things: the amount of the radioactive substance present, and
its half-life. The greater the number of radioactive nuclei present in the sample, the more will decay per unit of time. The shorter
the half-life, the more decays per unit time, for a given number of nuclei. So activity  should be proportional to the number of
radioactive nuclei, , and inversely proportional to their half-life, . In fact, your intuition is correct. It can be shown that the
activity of a source is

where  is the number of radioactive nuclei present, having half-life . This relationship is useful in a variety of calculations, as
the next two examples illustrate.

Calculate the activity due to  in 1.00 kg of carbon found in a living organism. Express the activity in units of Bq and Ci.

Strategy

To find the activity  using the equation , we must know  and . The half-life of  can be found in

Appendix B, and was stated above as 5730 y. To find , we first find the number of  nuclei in 1.00 kg of carbon using the
concept of a mole. As indicated, we then multiply by  (the abundance of  in a carbon sample from a living
organism) to get the number of  nuclei in a living organism.

Solution

One mole of carbon has a mass of 12.0 g, since it is nearly pure . (A mole has a mass in grams equal in magnitude to 
 found in the periodic table.) Thus the number of carbon nuclei in a kilogram is

N(12C)=6.02×1023mol–112.0 g/mol×(1000 g)=5.02×1025.

So the number of  nuclei in 1 kg of carbon is
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Now the activity  is found using the equation .

Entering known values gives

or  decays per year. To convert this to the unit Bq, we simply convert years to seconds. Thus,

or 250 decays per second. To express  in curies, we use the definition of a curie,

Thus,

Discussion

Our own bodies contain kilograms of carbon, and it is intriguing to think there are hundreds of  decays per second taking
place in us. Carbon-14 and other naturally occurring radioactive substances in our bodies contribute to the background
radiation we receive. The small number of decays per second found for a kilogram of carbon in this example gives you some
idea of how difficult it is to detect  in a small sample of material. If there are 250 decays per second in a kilogram, then
there are 0.25 decays per second in a gram of carbon in living tissue. To observe this, you must be able to distinguish decays
from other forms of radiation, in order to reduce background noise. This becomes more difficult with an old tissue sample,
since it contains less , and for samples more than 50 thousand years old, it is impossible.

Human-made (or artificial) radioactivity has been produced for decades and has many uses. Some of these include medical therapy
for cancer, medical imaging and diagnostics, and food preservation by irradiation. It is clear that radiation is hazardous. A number
of tragic examples of this exist, one of the most disastrous being the meltdown and fire at the Chernobyl reactor complex in the
Ukraine (see Figure ). Several radioactive isotopes were released in huge quantities, contaminating many thousands of
square kilometers and directly affecting hundreds of thousands of people. The most significant releases were of ,  

, 239Pu, , and . Estimates are that the total amount of radiation released was about 100 million curies.

Human and Medical Applications

Figure : The Chernobyl reactor. More than 100 people died soon after its meltdown, and there will be thousands of deaths
from radiation-induced cancer in the future. While the accident was due to a series of human errors, the cleanup efforts were heroic.
Most of the immediate fatalities were firefighters and reactor personnel. (credit: Elena Filatova)

It is estimated that the Chernobyl disaster released 6.0 MCi of  into the environment. Calculate the mass of 
 released.

Strategy

N ( C) = ×(1000 g) = 5.02 × .12 6.02 ×1023 mol−1
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We can calculate the mass released using Avogadro’s number and the concept of a mole if we can first find the number of
nuclei  released. Since the activity  is given, and the half-life of  is found in Appendix B to be 30.2 y, we can use the
equation  to find .

Solution

Solving the equation  for  gives

Entering the given values yields

Converting curies to becquerels and years to seconds, we get

One mole of a nuclide  has a mass of  grams, so that one mole of  has a mass of 137 g. A mole has 
 nuclei. Thus the mass of  released was

Discussion

While 70 kg of material may not be a very large mass compared to the amount of fuel in a power plant, it is extremely
radioactive, since it only has a 30-year half-life. Six megacuries (6.0 MCi) is an extraordinary amount of activity but is only a
fraction of what is produced in nuclear reactors. Similar amounts of the other isotopes were also released at Chernobyl.
Although the chances of such a disaster may have seemed small, the consequences were extremely severe, requiring greater
caution than was used. More will be said about safe reactor design in the next chapter, but it should be noted that Western
reactors have a fundamentally safer design.

Activity  decreases in time, going to half its original value in one half-life, then to one-fourth its original value in the next half-
life, and so on. Since , the activity decreases as the number of radioactive nuclei decreases. The equation for  as a

function of time is found by combining the equations  and , yielding

where  is the activity at . This equation shows exponential decay of radioactive nuclei. For example, if a source originally
has a 1.00-mCi activity, it declines to 0.500 mCi in one half-life, to 0.250 mCi in two half-lives, to 0.125 mCi in three half-lives,
and so on. For times other than whole half-lives, the equation  must be used to find .

Section Summary
Half-life  is the time in which there is a 50% chance that a nucleus will decay. The number of nuclei  as a function of time
is

where  is the number present at , and  is the decay constant, related to the half-life by
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One of the applications of radioactive decay is radioactive dating, in which the age of a material is determined by the amount of
radioactive decay that occurs. The rate of decay is called the activity :

The SI unit for  is the becquerel (Bq), defined by

 is also expressed in terms of curies (Ci), where

The activity  of a source is related to  and  by

Since  has an exponential behavior as in the equation , the activity also has an exponential behavior, given by

where  is the activity at .

Glossary

becquerel
SI unit for rate of decay of a radioactive material

half-life
the time in which there is a 50% chance that a nucleus will decay

radioactive dating
an application of radioactive decay in which the age of a material is determined by the amount of radioactivity of a particular
type that occurs

decay constant
quantity that is inversely proportional to the half-life and that is used in equation for number of nuclei as a function of time

carbon-14 dating
a radioactive dating technique based on the radioactivity of carbon-14

activity
the rate of decay for radioactive nuclides

rate of decay
the number of radioactive events per unit time

curie
the activity of 1g of , equal to 
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