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8.14: Statistical Interpretation of Entropy and the Second Law of Thermodynamics-
The Underlying Explanation

Identify probabilities in entropy.
Analyze statistical probabilities in entropic systems.

Figure : When you toss a coin a large number of times, heads and tails tend to come up in roughly equal numbers. Why
doesn’t heads come up 100, 90, or even 80% of the time? (credit: Jon Sullivan, PDPhoto.org)

The various ways of formulating the second law of thermodynamics tell what happens rather than why it happens. Why should heat
transfer occur only from hot to cold? Why should energy become ever less available to do work? Why should the universe become
increasingly disorderly? The answer is that it is a matter of overwhelming probability. Disorder is simply vastly more likely than
order.

When you watch an emerging rain storm begin to wet the ground, you will notice that the drops fall in a disorganized manner both
in time and in space. Some fall close together, some far apart, but they never fall in straight, orderly rows. It is not impossible for
rain to fall in an orderly pattern, just highly unlikely, because there are many more disorderly ways than orderly ones. To illustrate
this fact, we will examine some random processes, starting with coin tosses.

Coin Tosses

What are the possible outcomes of tossing 5 coins? Each coin can land either heads or tails. On the large scale, we are concerned
only with the total heads and tails and not with the order in which heads and tails appear. The following possibilities exist:

Table : Possible Outcomes of 5 Coin Tosses

Combination of Heads and Tails

5 heads 0 tails

4 heads 1 tails

3 heads 2 tails

2 heads 3 tails

1 heads 4 tails

0 heads 5 tails

These are what we call macrostates. A macrostate is an overall property of a system. It does not specify the details of the system,
such as the order in which heads and tails occur or which coins are heads or tails.

Using this nomenclature, a system of 5 coins has the 6 possible macrostates just listed. Some macrostates are more likely to occur
than others. For instance, there is only one way to get 5 heads, but there are several ways to get 3 heads and 2 tails, making the
latter macrostate more probable. Table  lists of all the ways in which 5 coins can be tossed, taking into account the order in
which heads and tails occur. Each sequence is called a microstate—a detailed description of every element of a system.

Table : 5-Coin Toss
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Combinations Individual microstates Number of microstatesCombinations Individual microstates Number of microstates

5 heads, 0 tails HHHHH 1

4 heads, 1 tail
HHHHT, HHHTH, HHTHH, HTHHH,
THHHH

5

3 heads, 2 tails
HTHTH, THTHH, HTHHT, THHTH,
THHHT HTHTH, THTHH, HTHHT,
THHTH, THHHT

10

2 heads, 3 tails
TTTHH, TTHHT, THHTT, HHTTT,
TTHTH, THTHT, HTHTT, THTTH,
HTTHT, HTTTH

10

1 head, 4 tails
TTTTH, TTTHT, TTHTT, THTTT,
HTTTT

5

0 heads, 5 tails TTTTT 1

  Total: 32

The macrostate of 3 heads and 2 tails can be achieved in 10 ways and is thus 10 times more probable than the one having 5 heads.
Not surprisingly, it is equally probable to have the reverse, 2 heads and 3 tails. Similarly, it is equally probable to get 5 tails as it is
to get 5 heads. Note that all of these conclusions are based on the crucial assumption that each microstate is equally probable. With
coin tosses, this requires that the coins not be asymmetric in a way that favors one side over the other, as with loaded dice. With
any system, the assumption that all microstates are equally probable must be valid, or the analysis will be erroneous.

The two most orderly possibilities are 5 heads or 5 tails. (They are more structured than the others.) They are also the least likely,
only 2 out of 32 possibilities. The most disorderly possibilities are 3 heads and 2 tails and its reverse. (They are the least
structured.) The most disorderly possibilities are also the most likely, with 20 out of 32 possibilities for the 3 heads and 2 tails and
its reverse. If we start with an orderly array like 5 heads and toss the coins, it is very likely that we will get a less orderly array as a
result, since 30 out of the 32 possibilities are less orderly. So even if you start with an orderly state, there is a strong tendency to go
from order to disorder, from low entropy to high entropy. The reverse can happen, but it is unlikely.

Table : 100-Coin Toss

Macrostate Number of microstates

Heads Tails (W)

100 0 1

99 1 1.0×10

95 5 7.5×10

90 10 1.7×10

75 25 2.4×10

60 40 1.4×10

55 45 6.1×10

51 49 9.9×10

50 50 1.0×10

49 51 9.9×10

45 55 6.1×10

40 60 1.4×10
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Macrostate Number of microstates

Heads Tails (W)

25 75 2.4×10

10 90 1.7×10

5 95 7.5×10

1 99 1.0×10

0 100 1

  Total:       1.27×10

This result becomes dramatic for larger systems. Consider what happens if you have 100 coins instead of just 5. The most orderly
arrangements (most structured) are 100 heads or 100 tails. The least orderly (least structured) is that of 50 heads and 50 tails. There
is only 1 way (1 microstate) to get the most orderly arrangement of 100 heads. There are 100 ways (100 microstates) to get the next
most orderly arrangement of 99 heads and 1 tail (also 100 to get its reverse). And there are 1.0×10  ways to get 50 heads and 50
tails, the least orderly arrangement. Table  is an abbreviated list of the various macrostates and the number of microstates for
each macrostate. The total number of microstates—the total number of different ways 100 coins can be tossed—is an impressively
large 1.27×10  Now, if we start with an orderly macrostate like 100 heads and toss the coins, there is a virtual certainty that we
will get a less orderly macrostate. If we keep tossing the coins, it is possible, but exceedingly unlikely, that we will ever get back to
the most orderly macrostate. If you tossed the coins once each second, you could expect to get either 100 heads or 100 tails once
in 2×10  years! This period is 1 trillion (10 ) times longer than the age of the universe, and so the chances are essentially zero. In
contrast, there is an 8% chance of getting 50 heads, a 73% chance of getting from 45 to 55 heads, and a 96% chance of getting from
40 to 60 heads. Disorder is highly likely.

Disorder in a Gas

The fantastic growth in the odds favoring disorder that we see in going from 5 to 100 coins continues as the number of entities in
the system increases. Let us now imagine applying this approach to perhaps a small sample of gas. Because counting microstates
and macrostates involves statistics, this is called statistical analysis. The macrostates of a gas correspond to its macroscopic
properties, such as volume, temperature, and pressure; and its microstates correspond to the detailed description of the positions
and velocities of its atoms. Even a small amount of gas has a huge number of atoms: 1.0 cm  of an ideal gas at 1.0 atm
and 0º C has 2.7×10  atoms. So each macrostate has an immense number of microstates. In plain language, this means that there
are an immense number of ways in which the atoms in a gas can be arranged, while still having the same pressure, temperature, and
so on.

The most likely conditions (or macrostates) for a gas are those we see all the time—a random distribution of atoms in space with a
Maxwell-Boltzmann distribution of speeds in random directions, as predicted by kinetic theory. This is the most disorderly and
least structured condition we can imagine. In contrast, one type of very orderly and structured macrostate has all of the atoms in
one corner of a container with identical velocities. There are very few ways to accomplish this (very few microstates corresponding
to it), and so it is exceedingly unlikely ever to occur. (See Figure (b).) Indeed, it is so unlikely that we have a law saying that
it is impossible, which has never been observed to be violated—the second law of thermodynamics.
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Figure : (a) The ordinary state of gas in a container is a disorderly, random distribution of atoms or molecules with a
Maxwell-Boltzmann distribution of speeds. It is so unlikely that these atoms or molecules would ever end up in one corner of the
container that it might as well be impossible. (b) With energy transfer, the gas can be forced into one corner and its entropy greatly
reduced. But left alone, it will spontaneously increase its entropy and return to the normal conditions, because they are immensely
more likely.

The disordered condition is one of high entropy, and the ordered one has low entropy. With a transfer of energy from another
system, we could force all of the atoms into one corner and have a local decrease in entropy, but at the cost of an overall increase in
entropy of the universe. If the atoms start out in one corner, they will quickly disperse and become uniformly distributed and will
never return to the orderly original state (Figure (b)). Entropy will increase. With such a large sample of atoms, it is possible
—but unimaginably unlikely—for entropy to decrease. Disorder is vastly more likely than order.

The arguments that disorder and high entropy are the most probable states are quite convincing. The great Austrian physicist
Ludwig Boltzmann (1844–1906)—who, along with Maxwell, made so many contributions to kinetic theory—proved that the
entropy of a system in a given state (a macrostate) can be written as

where  is Boltzmann’s constant, and  is the natural logarithm of the number of microstates 
 corresponding to the given macrostate.  is proportional to the probability that the macrostate will occur. Thus entropy is

directly related to the probability of a state—the more likely the state, the greater its entropy. Boltzmann proved that this expression
for  is equivalent to the definition , which we have used extensively.

Thus the second law of thermodynamics is explained on a very basic level: entropy either remains the same or increases in every
process. This phenomenon is due to the extraordinarily small probability of a decrease, based on the extraordinarily larger number
of microstates in systems with greater entropy. Entropy can decrease, but for any macroscopic system, this outcome is so unlikely
that it will never be observed.
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S = k lnW ,

k = 1.38 ×  J/K10−23 lnW
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Suppose you toss 100 coins starting with 60 heads and 40 tails, and you get the most likely result, 50 heads and 50 tails. What
is the change in entropy?

Strategy

Noting that the number of microstates is labeled  in Table  for the 100-coin toss, we can use 
 to calculate the change in entropy.

Solution

The change in entropy is

where the subscript i stands for the initial 60 heads and 40 tails state, and the subscript f for the final 50 heads and 50 tails state.
Substituting the values for  from Table  gives

Discussion

This increase in entropy means we have moved to a less orderly situation. It is not impossible for further tosses to produce the
initial state of 60 heads and 40 tails, but it is less likely. There is about a 1 in 90 chance for that decrease in entropy (–2.7×10
J/K) to occur. If we calculate the decrease in entropy to move to the most orderly state, we get .
There is about a 1 in 10  chance of this change occurring. So while very small decreases in entropy are unlikely, slightly
greater decreases are impossibly unlikely. These probabilities imply, again, that for a macroscopic system, a decrease in
entropy is impossible. For example, for heat transfer to occur spontaneously from 1.00 kg of 0ºC ice to its 0ºC environment,
there would be a decrease in entropy of 1.22×10  J/K. Given that a  corresponds to about a 1 in 1030 chance,
a decrease of this size (10  J/K) is an utter impossibility. Even for a milligram of melted ice to spontaneously refreeze is
impossible.

1. Examine the situation to determine if entropy is involved.
2. Identify the system of interest and draw a labeled diagram of the system showing energy flow.
3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.
4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). You must carefully identify

the heat transfer, if any, and the temperature at which the process takes place. It is also important to identify the initial and
final states.

5. Solve the appropriate equation for the quantity to be determined (the unknown). Note that the change in entropy can be
determined between any states by calculating it for a reversible process.

6. Substitute the known value along with their units into the appropriate equation, and obtain numerical solutions complete
with units.

7. To see if it is reasonable: Does it make sense? For example, total entropy should increase for any real process or be
constant for a reversible process. Disordered states should be more probable and have greater entropy than ordered states.

Section Summary
Disorder is far more likely than order, which can be seen statistically.
The entropy of a system in a given state (a macrostate) can be written as

where k=1.38×10  J/K is Boltzmann’s constant, and  is the natural logarithm of the number of microstates 
 corresponding to the given macrostate.

Example : Entropy Increases in a Coin Toss8.14.1
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PROBLEM-SOLVING STRATEGIES FOR ENTROPY
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Glossary

macrostate
an overall property of a system

microstate
each sequence within a larger macrostate

statistical analysis
using statistics to examine data, such as counting microstates and macrostates
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