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12.5: Uncertainty Principle

Describe the position-momentum uncertainty principle.
Explain the relationship between wave-particle dual nature and the uncertainty principle

Probability Wave

The de Broglie wavelength assigns a wave nature to everything, even to the things we are used to thinking of as particles, such as
an electron. So, what kind of waves are they? As far as we know, there are not smaller parts that electron can be broken into that
can be oscillating. Furthermore, when we measure the position of the electron, each time, we find the electron at some definite
location, as we would expect for a particle. So, what kind of a wave is electron?

Figure   illustrates a result of electron interference experiment. Each dot represents the location where an electron was
detected, and you see that with few electrons, dots appear spread out more or less randomly, and it is not obvious if there is any
location where constructive interference or destructive interference is occurring. But as you continue to collect more data (more
electrons detected), a pattern begins to emerge, where there are locations where electrons are mysteriously never detected. Those
are the locations where electron waves—whatever they are—are destructively interfering.

Figure : The building up of the diffraction pattern of electrons scattered from a crystal surface. Each electron arrives at a
definite location, which cannot be precisely predicted. The overall distribution shown at the bottom can be predicted as the
diffraction of waves having the de Broglie wavelength of the electrons.

Figure : Double-slit interference for electrons (a) and protons (b) is identical for equal wavelengths and equal slit
separations. Both patterns are probability distributions in the sense that they are built up by individual particles traversing the
apparatus, the paths of which are not individually predictable.

After de Broglie proposed the wave nature of matter, many physicists, including Schrödinger and Heisenberg, explored the
consequences. The Schrödinger equation is the wave equation (a type of differential equation) which describes the behavior of
these matter waves. This still doesn't quite answer what kind of a wave an electron is—and we won't really answer it, in a similar
way as how we can say that a photon is an electromagnetic wave—so for now, we will give this wave a name: "probability wave."
The wave function which corresponds to the wave nature of electron describes the  probability  of detecting the particle at a
particular location and time. And this wave nature becomes evident experimentally only in the statistical sense. That is, after
compiling enough data, you get a distribution of the particle locations, and you can calculate a certain probability of finding the
particle at a given location. This overall pattern is called a probability distribution. Those who developed quantum mechanics
devised equations (of which the Schrödinger equation is one example) that predicted the probability distribution in various
circumstances.
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The most disquieting aspect of quantum mechanics is that the nature, at its most fundamental level, can only be described
probabilistically. In Figure   and Figure    above, for each dot representing an electron or a photon, the experimental
setup was identically. But with this identical set up, each electron (or each photon) ends up taking different paths, ending at the
location represented by the dot. In classical mechanics, we would say this was because of our incomplete knowledge of the setup
(we don't know the precise way an electron bounces off from the barriers on its way to the screen where it is detected). In quantum
mechanics, even in theory—assuming the most complete knowledge theoretically possible—we can only describe probability of
finding the electron at one location, and the theory does not allow for prediction of individual electron paths. This aspect disturbed
many physicists working on quantum mechanics, including Albert Einstein, who exclaimed, incorrectly, "God does not play dice."

Heisenberg Uncertainty Principle

If the theory does not allow prediction of individual electron path, could we simply measure the location of the electron as it travels
toward the screen? When such experiment was done, the experimenters found more than what paths the electrons took to result in
the interference pattern. They found that the interference pattern itself was gone, with the constructive and destructive interference
fringes smeared out!

The answer here is fundamentally important—measurement affects the system being observed, even in theory. Even with the most
sensitive of measurement devices, by the very act of measuring a physical observable (for example, particle position), you alter the
state of the system. So in some cases it is impossible to measure two physical quantities to exact precision at the same time (you
can measure one to exact precision and then measure the other to exact precision, but those will be two exact-precision
measurements for two different particle states).

Here is an example to consider to illuminate why this is so. Suppose you want to measure the position of a moving electron. To
"see" where the electron is, you need to scatter another particle (either light—photon—or another particle) off of it. But these
probes will have a momentum, and by scattering from the electron, they change the momentum of the electron. So, by measuring
the position of the electron, you change its momentum (and it's this change of momentum that leads to the interference pattern
being smeared out). There is a limit to absolute knowledge, even in principle.

Figure : Werner Heisenberg was one of the best of those physicists who developed early quantum mechanics. Not only did
his work enable a description of nature on the very small scale, it also changed our view of the availability of knowledge. Although
he is universally recognized for his brilliance and the importance of his work (he received the Nobel Prize in 1932, for example),
the fact that Heisenberg remained in Germany during World War II and headed the German effort to build a nuclear bomb is
sometimes held against him. (credit: Author Unknown, via Wikimedia Commons)

It was Werner Heisenberg who first stated this limit to knowledge in 1929 as a result of his work on quantum mechanics and the
wave characteristics of all particles. (See  Figure ). Specifically, consider simultaneously measuring the position and
momentum of an electron (it could be any particle). There is an uncertainty in position    that is approximately equal to the
wavelength of the particle. That is,

Unless the electron wave function is spread out as much as its average wavelength, the meaning of wavelength itself becomes
unclear (what is the wavelength of something that exists only at one point?). To detect the position of the particle, we must interact
with it, such as having it collide with a detector. In the collision, the particle will lose momentum. This change in momentum could
be anywhere from close to zero to the total momentum of the particle,  . It is not possible to tell how much momentum will
be transferred to a detector, and so there is an uncertainty in momentum  , too. In fact, with these subatomic particles, the
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uncertainty in momentum may be as large as the momentum itself, which in equation form means (using the de Broglie
relationship) that

The uncertainty in position can be reduced by using a shorter-wavelength electron, since . But shortening the wavelength
increases the uncertainty in momentum, since . Conversely, the uncertainty in momentum can be reduced by using a
longer-wavelength electron, but this increases the uncertainty in position. Mathematically, you can express this trade-off by
multiplying the uncertainties. The wavelength cancels, leaving

So if one uncertainty is reduced, the other must increase so that their product is .

With the use of advanced mathematics (with uncertainties being precisely defined using statistical concepts such as standard
deviation), Heisenberg showed that the best that can be done in a simultaneous measurement of position and momentum is

This is known as the Heisenberg uncertainty principle. It is impossible to measure position   and momentum   simultaneously
with uncertainties   and   that multiply to be less than  . Neither uncertainty can be zero. Neither uncertainty can become
small without the other becoming large.

A small wavelength allows accurate position measurement, but it increases the momentum of the probe to the point that it further
disturbs the momentum of a system being measured. For example, if an electron is scattered from an atom and has a wavelength
small enough to detect the position of electrons in the atom, its momentum can knock the electrons from their orbits in a manner
that loses information about their original motion. It is therefore impossible to follow an electron in its orbit around an atom. If you
measure the electron’s position, you will find it in a definite location at that moment, but with the uncertain amount of momentum
transferred, you will not know where that electron will be in the next moment.

(a) If the position of an electron in an atom is measured to an accuracy of 0.0100 nm, what is the electron’s uncertainty in
velocity? (b) If the electron has this velocity, what is its kinetic energy in eV?

Strategy

The uncertainty in position is the accuracy of the measurement, or . Thus the smallest uncertainty in
momentum   can be calculated using . Once the uncertainty in momentum   is found, the uncertainty in
velocity can be found from .

Solution for (a)

Using the equals sign in the uncertainty principle to express the minimum uncertainty, we have

Solving for   and substituting known values gives

Thus,

Solving for   and substituting the mass of an electron gives
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Example : Heisenberg Uncertainty Principle in Position and Momentum for an Atom12.5.1

Δx = 0.0100 nm

Δp ΔxΔp ≥ h/4π Δp

Δp = mΔv

ΔxΔp = .
h

4π

Δp

Δp = = = 5.28 ×  kg ⋅ m/s.
h

4πΔx

6.63 ×  J ⋅ s10−34

4π (1.00 ×  m)10−11
10−24

Δp = 5.28 ×  kg ⋅ m/s = mΔv.10−24

Δv

Δv = = = 5.79 ×  m/s.
Δp

m

5.28 ×  kg ⋅ m/s10−24

9.11 ×  kg10−31
106
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Solution for (b)

Although large, this velocity is not highly relativistic, and so the electron’s kinetic energy is

Discussion

Since atoms are roughly 0.1 nm in size, knowing the position of an electron to 0.0100 nm localizes it reasonably well inside the
atom. This would be like being able to see details one-tenth the size of the atom. But the consequent uncertainty in velocity is
large. You certainly could not follow it very well if its velocity is so uncertain. To get a further idea of how large the
uncertainty in velocity is, we assumed the velocity of the electron was equal to its uncertainty and found this gave a kinetic
energy of 95.5 eV. This is significantly greater than the typical energy difference between levels in atoms, so that it is
impossible to get a meaningful energy for the electron if we know its position even moderately well.

Why don’t we notice Heisenberg’s uncertainty principle in everyday life? The answer is that Planck’s constant is very small. Thus
the lower limit in the uncertainty of measuring the position and momentum of large objects is negligible. We can detect sunlight
reflected from Jupiter and follow the planet in its orbit around the Sun. The reflected sunlight alters the momentum of Jupiter and
creates an uncertainty in its momentum, but this is totally negligible compared with Jupiter’s huge momentum. The correspondence
principle tells us that the predictions of quantum mechanics become indistinguishable from classical physics for large objects,
which is the case here.

Finally, note that in the discussion of particles and waves, we have stated that individual measurements produce precise or particle-
like results. A definite position is determined each time we observe an electron, for example (represented as dots). But repeated
measurements produce a spread in values consistent with wave characteristics, illustrating the underlying probability density. The
great theoretical physicist Richard Feynman (1918–1988) commented, “What there are, are particles.” When you observe enough
of them, they distribute themselves as you would expect for a wave phenomenon. However, what there are as they travel we cannot
tell because, when we do try to measure, we affect the traveling.

Section Summary
Matter is found to have the same interference characteristics as any other wave.
There is now a probability distribution for the location of a particle rather than a definite position.
Another consequence of the wave character of all particles is the Heisenberg uncertainty principle, which limits the precision
with which certain physical quantities can be known simultaneously. For position and momentum, the uncertainty principle is 

, where   is the uncertainty in position and   is the uncertainty in momentum.
These small limits are fundamentally important on the quantum-mechanical scale.

Glossary

Heisenberg’s uncertainty principle
a fundamental limit to the precision with which pairs of quantities (momentum and position, and energy and time) can be
measured

uncertainty in momentum
lack of precision or lack of knowledge of precise results in measurements of momentum

uncertainty in position
lack of precision or lack of knowledge of precise results in measurements of position

probability wave
the description of wave characteristic of matter, as revealed by probability distribution experimentally
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probability distribution
the overall spatial distribution of probabilities to find a particle at a given location
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