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11.5: The Electromagnetic Spectrum- Application Notes

Learning Objectives

e List and explain the characteristics and applications of different parts of the electromagnetic spectrum.

In this module, we look at the properties of different types of electromagnetic waves. Again, Figure 11.5.1 shows the
electromagnetic spectrum. The characteristics of the various types of electromagnetic waves you will read about below are related
to their frequencies and wavelengths.
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Figure 11.5.1: The electromagnetic spectrum, showing the major categories of electromagnetic waves. The range of frequencies
and wavelengths is remarkable. The dividing line between some categories is distinct, whereas other categories overlap.

Radio and TV Waves

The broad category of radio waves is defined to contain any electromagnetic wave produced by currents in wires and circuits. Its
name derives from their most common use as a carrier of audio information (i.e., radio). The name is applied to electromagnetic
waves of similar frequencies regardless of source. Radio waves from outer space, for example, do not come from alien radio
stations. They are created by many astronomical phenomena, and their study has revealed much about nature on the largest scales.

There are many uses for radio waves, and so the category is divided into many subcategories, including microwaves and those
electromagnetic waves used for AM and FM radio, cellular telephones, and TV.

The lowest commonly encountered radio frequencies are produced by high-voltage AC power transmission lines at frequencies of
50 or 60 Hz. (See Figure 11.5.2) These extremely long wavelength electromagnetic waves (about 6000 km!) are one means of
energy loss in long-distance power transmission.

Figure 11.5.2: This high-voltage traction power line running to Eutingen Railway Substation in Germany radiates electromagnetic

waves with very long wavelengths. (credit: Zonk43, Wikimedia Commons)
There is an ongoing controversy regarding potential health hazards associated with exposure to these electromagnetic fields (E-
fields). Some people suspect that living near such transmission lines may cause a variety of illnesses, including cancer. But
demographic data are either inconclusive or simply do not support the hazard theory. Recent reports that have looked at many
European and American epidemiological studies have found no increase in risk for cancer due to exposure to E-fields.

Extremely low frequency (ELF) radio waves of about 1 kHz are used to communicate with submerged submarines. The ability of
radio waves to penetrate salt water is related to their wavelength (much like ultrasound penetrating tissue)—the longer the
wavelength, the farther they penetrate. Since salt water is a good conductor, radio waves are strongly absorbed by it, and very long
wavelengths are needed to reach a submarine under the surface. (See Figure 11.5.3)
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ELF radio wave

Figure 11.5.3: Very long wavelength radio waves are needed to reach this submarine, requiring extremely low frequency signals
(ELF). Shorter wavelengths do not penetrate to any significant depth.
AM radio waves are used to carry commercial radio signals in the frequency range from 540 to 1600 kHz. The abbreviation AM
stands for amplitude modulation, which is the method for placing information on these waves. (See Figure 11.5.4) A carrier
wave having the basic frequency of the radio station, say 1530 kHz, is varied or modulated in amplitude by an audio signal. The
resulting wave has a constant frequency, but a varying amplitude.

A radio receiver tuned to have the same resonant frequency as the carrier wave can pick up the signal, while rejecting the many
other frequencies impinging on its antenna. The receiver’s circuitry is designed to respond to variations in amplitude of the carrier
wave to replicate the original audio signal. That audio signal is amplified to drive a speaker or perhaps to be recorded.

Carrier Audio Amplitude modulated
(a) (b) (c)

Figure 11.5.4: Amplitude modulation for AM radio. (a) A carrier wave at the station’s basic frequency. (b) An audio signal at
much lower audible frequencies. (c¢) The amplitude of the carrier is modulated by the audio signal without changing its basic
frequency.

FM Radio Waves

FM radio waves are also used for commercial radio transmission, but in the frequency range of 88 to 108 MHz. FM stands
for frequency modulation, another method of carrying information. (See Figure 11.5.5) Here a carrier wave having the basic
frequency of the radio station, perhaps 105.1 MHz, is modulated in frequency by the audio signal, producing a wave of constant
amplitude but varying frequency.
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Figure 11.5.5: Frequency modulation for FM radio. (a) A carrier wave at the station’s basic frequency. (b) An audio signal at much
lower audible frequencies. (c) The frequency of the carrier is modulated by the audio signal without changing its amplitude.
Since audible frequencies range up to 20 kHz (or 0.020 MHz) at most, the frequency of the FM radio wave can vary from the
carrier by as much as 0.020 MHz. Thus the carrier frequencies of two different radio stations cannot be closer than 0.020 MHz. An
FM receiver is tuned to resonate at the carrier frequency and has circuitry that responds to variations in frequency, reproducing the
audio information.
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FM radio is inherently less subject to noise from stray radio sources than AM radio. The reason is that amplitudes of waves add. So
an AM receiver would interpret noise added onto the amplitude of its carrier wave as part of the information. An FM receiver can
be made to reject amplitudes other than that of the basic carrier wave and only look for variations in frequency. It is thus easier to
reject noise from FM, since noise produces a variation in amplitude.

Television is also broadcast on electromagnetic waves. Since the waves must carry a great deal of visual as well as audio
information, each channel requires a larger range of frequencies than simple radio transmission. TV channels utilize frequencies in
the range of 54 to 88 MHz and 174 to 222 MHz. (The entire FM radio band lies between channels 88 MHz and 174 MHz.) These
TV channels are called VHF (for very high frequency). Other channels called UHF (for ultra high frequency) utilize an even
higher frequency range of 470 to 1000 MHz.

The TV video signal is AM, while the TV audio is FM. Note that these frequencies are those of free transmission with the user
utilizing an old-fashioned roof antenna. Satellite dishes and cable transmission of TV occurs at significantly higher frequencies and
is rapidly evolving with the use of the high-definition or HD format.

Example 11.5.1: Calculating Wavelengths of Radio Waves

Calculate the wavelengths of a 1530-kHz AM radio signal, a 105.1-MHz FM radio signal, and a 1.90-GHz cell phone signal.

Strategy

The relationship between wavelength and frequency is ¢ = f\, where ¢ = 3.00 x 10® m/s is the speed of light (the speed of
light is only very slightly smaller in air than it is in a vacuum). We can rearrange this equation to find the wavelength for all
three frequencies.

Solution

Rearranging gives

N e}

(a) For the f = 1530 kHz AM radio signal, then,

_ 3.00x 10* m/s

1530 x 103cycles/s
=196 m.

(b) For the f =105.1 MHz FM radio signal,

3.00 x 103 m/s

105.1 x 10%cycles/s
2.85 m.

(c) And for the f =1.90 GHz cell phone,

3.00 x 108 m/s

T 1.00% 10%cycles/s
=0.158 m.

Discussion

These wavelengths are consistent with the spectrum in Figure 11.5.1 The wavelengths are also related to other properties of
these electromagnetic waves, as we shall see.

The wavelengths found in the preceding example are representative of AM, FM, and cell phones, and account for some of the
differences in how they are broadcast and how well they travel. The most efficient length for a linear antenna, such as discussed in
"Production of Electromagnetic Waves", is A/2, half the wavelength of the electromagnetic wave. Thus a very large antenna is
needed to efficiently broadcast typical AM radio with its carrier wavelengths on the order of hundreds of meters.
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One benefit to these long AM wavelengths is that they can go over and around rather large obstacles (like buildings and hills), just
as ocean waves can go around large rocks. FM and TV are best received when there is a line of sight between the broadcast antenna
and receiver, and they are often sent from very tall structures. FM, TV, and mobile phone antennas themselves are much smaller
than those used for AM, but they are elevated to achieve an unobstructed line of sight. (See Figure 11.5.6)

Figure 11.5.6: (a) A large tower is used to broadcast TV signals. The actual antennas are small structures on top of the tower—
they are placed at great heights to have a clear line of sight over a large broadcast area. (credit: Ozizo, Wikimedia Commons) (b)
The NTT Dokomo mobile phone tower at Tokorozawa City, Japan. (credit: tokoroten, Wikimedia Commons)

Radio Wave Interference

Astronomers and astrophysicists collect signals from outer space using electromagnetic waves. A common problem for
astrophysicists is the “pollution” from electromagnetic radiation pervading our surroundings from communication systems in
general. Even everyday gadgets like our car keys having the facility to lock car doors remotely and being able to turn TVs on and
off using remotes involve radio-wave frequencies. In order to prevent interference between all these electromagnetic signals, strict
regulations are drawn up for different organizations to utilize different radio frequency bands.

One reason why we are sometimes asked to switch off our mobile phones (operating in the range of 1.9 GHz) on airplanes and in
hospitals is that important communications or medical equipment often uses similar radio frequencies and their operation can be
affected by frequencies used in the communication devices.

For example, radio waves used in magnetic resonance imaging (MRI) have frequencies on the order of 100 MHz, although this
varies significantly depending on the strength of the magnetic field used and the nuclear type being scanned. MRI is an important
medical imaging and research tool, producing highly detailed two- and three-dimensional images. Radio waves are broadcast,
absorbed, and reemitted in a resonance process that is sensitive to the density of nuclei (usually protons or hydrogen nuclei).

The wavelength of 100-MHz radio waves is 3 m, yet using the sensitivity of the resonant frequency to the magnetic field strength,
details smaller than a millimeter can be imaged. This is a good example of an exception to a rule of thumb (in this case, the rubric
that details much smaller than the probe’s wavelength cannot be detected). The intensity of the radio waves used in MRI presents
little or no hazard to human health.

Microwaves

Microwaves are the highest-frequency electromagnetic waves that can be produced by currents in macroscopic circuits and
devices. Microwave frequencies range from about 10° Hz to the highest practical LC resonance at nearly 10'2 Hz. Since they
have high frequencies, their wavelengths are short compared with those of other radio waves—hence the name “microwave.”

Microwaves can also be produced by atoms and molecules. They are, for example, a component of electromagnetic radiation
generated by thermal agitation. The thermal motion of atoms and molecules in any object at a temperature above absolute zero
causes them to emit and absorb radiation.

Since it is possible to carry more information per unit time on high frequencies, microwaves are quite suitable for communications.
Most satellite-transmitted information is carried on microwaves, as are land-based long-distance transmissions. A clear line of sight
between transmitter and receiver is needed because of the short wavelengths involved.

Radar is a common application of microwaves that was first developed in World War II. By detecting and timing microwave
echoes, radar systems can determine the distance to objects as diverse as clouds and aircraft. A Doppler shift in the radar echo can
be used to determine the speed of a car or the intensity of a rainstorm. Sophisticated radar systems are used to map the Earth and
other planets, with a resolution limited by wavelength. (See Figure 11.5.7) The shorter the wavelength of any probe, the smaller
the detail it is possible to observe.
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Figure 11.5.7: An image of Sif Mons with lava flows on Venus, based on Magellan synthetic aperture radar data combined with
radar altimetry to produce a three-dimensional map of the surface. The Venusian atmosphere is opaque to visible light, but not to
the microwaves that were used to create this image. (credit: NSSDC, NASA/JPL)

Heating with Microwaves

How does the ubiquitous microwave oven produce microwaves electronically, and why does food absorb them preferentially?
Microwaves at a frequency of 2.45 GHz are produced by accelerating electrons. The microwaves are then used to induce an
alternating electric field in the oven.

Water and some other constituents of food have a slightly negative charge at one end and a slightly positive charge at one end
(called polar molecules). The range of microwave frequencies is specially selected so that the polar molecules, in trying to keep
orienting themselves with the electric field, absorb these energies and increase their temperatures—called dielectric heating.

The energy thereby absorbed results in thermal agitation heating food and not the plate, which does not contain water. Hot spots in
the food are related to constructive and destructive interference patterns. Rotating antennas and food turntables help spread out the
hot spots.

Another use of microwaves for heating is within the human body. Microwaves will penetrate more than shorter wavelengths into
tissue and so can accomplish “deep heating” (called microwave diathermy). This is used for treating muscular pains, spasms,
tendonitis, and rheumatoid arthritis.

MAKING CONNECTIONS: TAKE-HOME EXPERIMENT—MICROWAVE OVENS

1. Look at the door of a microwave oven. Describe the structure of the door. Why is there a metal grid on the door? How does
the size of the holes in the grid compare with the wavelengths of microwaves used in microwave ovens? What is this
wavelength?

2. Place a glass of water (about 250 ml) in the microwave and heat it for 30 seconds. Measure the temperature gain (the AT).
Assuming that the power output of the oven is 1000 W, calculate the efficiency of the heat-transfer process.

3. Remove the rotating turntable or moving plate and place a cup of water in several places along a line parallel with the
opening. Heat for 30 seconds and measure the AT for each position. Do you see cases of destructive interference?

Microwaves generated by atoms and molecules far away in time and space can be received and detected by electronic circuits.
Deep space acts like a blackbody with a 2.7 K temperature, radiating most of its energy in the microwave frequency range. In 1964,
Penzias and Wilson detected this radiation and eventually recognized that it was the radiation of the Big Bang’s cooled remnants.

Infrared Radiation

The microwave and infrared regions of the electromagnetic spectrum overlap (see Figure 11.5.1). Infrared radiation is generally
produced by thermal motion and the vibration and rotation of atoms and molecules. Electronic transitions in atoms and molecules
can also produce infrared radiation.

The range of infrared frequencies extends up to the lower limit of visible light, just below red. In fact, infrared means “below red.”
Frequencies at its upper limit are too high to be produced by accelerating electrons in circuits, but small systems, such as atoms and
molecules, can vibrate fast enough to produce these waves.

Water molecules rotate and vibrate particularly well at infrared frequencies, emitting and absorbing them so efficiently that the
emissivity for skin is e =0.97 in the infrared. Night-vision scopes can detect the infrared emitted by various warm objects,
including humans, and convert it to visible light.
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We can examine radiant heat transfer from a house by using a camera capable of detecting infrared radiation. Reconnaissance
satellites can detect buildings, vehicles, and even individual humans by their infrared emissions, whose power radiation is
proportional to the fourth power of the absolute temperature. More mundanely, we use infrared lamps, some of which are called
quartz heaters, to preferentially warm us because we absorb infrared better than our surroundings.

The Sun radiates like a nearly perfect blackbody (that is, it has e = 1), with a 6000 K surface temperature. About half of the solar
energy arriving at the Earth is in the infrared region, with most of the rest in the visible part of the spectrum, and a relatively small
amount in the ultraviolet. On average, 50 percent of the incident solar energy is absorbed by the Earth.

The relatively constant temperature of the Earth is a result of the energy balance between the incoming solar radiation and the
energy radiated from the Earth. Most of the infrared radiation emitted from the Earth is absorbed by COy and HO in the
atmosphere and then radiated back to Earth or into outer space. This radiation back to Earth is known as the greenhouse effect, and
it maintains the surface temperature of the Earth about 40°C higher than it would be if there is no absorption. Some scientists think
that the increased concentration of COy and other greenhouse gases in the atmosphere, resulting from increases in fossil fuel
burning, has increased global average temperatures.

Visible Light

Visible light is the narrow segment of the electromagnetic spectrum to which the normal human eye responds. Visible light is
produced by vibrations and rotations of atoms and molecules, as well as by electronic transitions within atoms and molecules. The
receivers or detectors of light largely utilize electronic transitions. We say the atoms and molecules are excited when they absorb
and relax when they emit through electronic transitions.

Figure 11.5.8 shows this part of the spectrum, together with the colors associated with particular pure wavelengths. We usually
refer to visible light as having wavelengths of between 400 nm and 750 nm. (The retina of the eye actually responds to the lowest
ultraviolet frequencies, but these do not normally reach the retina because they are absorbed by the cornea and lens of the eye.)

Red light has the lowest frequencies and longest wavelengths, while violet has the highest frequencies and shortest wavelengths.
Blackbody radiation from the Sun peaks in the visible part of the spectrum but is more intense in the red than in the violet, making
the Sun yellowish in appearance.

Visible light
QOrange Green Violet
Infrared Red Yellow Blue Uttraviolet
BT T
BODO 700 600 500 400 300 A(nm)

Figure 11.5.8: A small part of the electromagnetic spectrum that includes its visible components. The divisions between infrared,
visible, and ultraviolet are not perfectly distinct, nor are those between the seven rainbow colors.
Living things—plants and animals—have evolved to utilize and respond to parts of the electromagnetic spectrum they are
embedded in. Visible light is the most predominant and we enjoy the beauty of nature through visible light. Plants are more
selective. Photosynthesis makes use of parts of the visible spectrum to make sugars.

Optics is the study of the behavior of visible light and other forms of electromagnetic waves. Optics falls into two distinct
categories. When electromagnetic radiation, such as visible light, interacts with objects that are large compared with its
wavelength, its motion can be represented by straight lines like rays. Ray optics is the study of such situations and includes lenses
and mirrors.

When electromagnetic radiation interacts with objects about the same size as the wavelength or smaller, its wave nature becomes
apparent. For example, observable detail is limited by the wavelength, and so visible light can never detect individual atoms,
because they are so much smaller than its wavelength. Physical or wave optics is the study of such situations and includes all wave
characteristics.

TAKE-HOME EXPERIMENT: COLORS THAT MATCH

When you light a match you see largely orange light; when you light a gas stove you see blue light. Why are the colors
different? What other colors are present in these?
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Ultraviolet Radiation

Ultraviolet means “above violet.” The electromagnetic frequencies of ultraviolet radiation (UV) extend upward from violet, the
highest-frequency visible light. Ultraviolet is also produced by atomic and molecular motions and electronic transitions. The
wavelengths of ultraviolet extend from 400 nm down to about 10 nm at its highest frequencies, which overlap with the lowest X-
ray frequencies. It was recognized as early as 1801 by Johann Ritter that the solar spectrum had an invisible component beyond the
violet range.

Solar UV radiation is broadly subdivided into three regions: UV-A (320-400 nm), UV-B (290-320 nm), and UV-C (220-290 nm),
ranked from long to shorter wavelengths (from smaller to larger energies). Most UV-B and all UV-C is absorbed by ozone (Os3)
molecules in the upper atmosphere. Consequently, 99% of the solar UV radiation reaching the Earth’s surface is UV-A.

Human Exposure to UV Radiation

It is largely exposure to UV-B that causes skin cancer. It is estimated that as many as 20% of adults will develop skin cancer over
the course of their lifetime. Again, treatment is often successful if caught early. Despite very little UV-B reaching the Earth’s
surface, there are substantial increases in skin-cancer rates in countries such as Australia, indicating how important it is that UV-B
and UV-C continue to be absorbed by the upper atmosphere.

All UV radiation can damage collagen fibers, resulting in an acceleration of the aging process of skin and the formation of
wrinkles. Because there is so little UV-B and UV-C reaching the Earth’s surface, sunburn is caused by large exposures, and skin
cancer from repeated exposure. Some studies indicate a link between overexposure to the Sun when young and melanoma later in
life.

The tanning response is a defense mechanism in which the body produces pigments to absorb future exposures in inert skin layers
above living cells. Basically UV-B radiation excites DNA molecules, distorting the DNA helix, leading to mutations and the
possible formation of cancerous cells.

Repeated exposure to UV-B may also lead to the formation of cataracts in the eyes—a cause of blindness among people living in
the equatorial belt where medical treatment is limited. Cataracts, clouding in the eye’s lens and a loss of vision, are age related;
60% of those between the ages of 65 and 74 will develop cataracts. However, treatment is easy and successful, as one replaces the
lens of the eye with a plastic lens. Prevention is important. Eye protection from UV is more effective with plastic sunglasses than
those made of glass.

A major acute effect of extreme UV exposure is the suppression of the immune system, both locally and throughout the body.

Low-intensity ultraviolet is used to sterilize haircutting implements, implying that the energy associated with ultraviolet is
deposited in a manner different from lower-frequency electromagnetic waves. (Actually this is true for all electromagnetic waves
with frequencies greater than visible light.)

Flash photography is generally not allowed of precious artworks and colored prints because the UV radiation from the flash can
cause photo-degradation in the artworks. Often artworks will have an extra-thick layer of glass in front of them, which is especially
designed to absorb UV radiation.

UV Light and the Ozone Layer

If all of the Sun’s ultraviolet radiation reached the Earth’s surface, there would be extremely grave effects on the biosphere from the
severe cell damage it causes. However, the layer of ozone (O3) in our upper atmosphere (10 to 50 km above the Earth) protects life
by absorbing most of the dangerous UV radiation.

Unfortunately, today we are observing a depletion in ozone concentrations in the upper atmosphere. This depletion has led to the
formation of an “ozone hole” in the upper atmosphere. The hole is more centered over the southern hemisphere, and changes with
the seasons, being largest in the spring. This depletion is attributed to the breakdown of ozone molecules by refrigerant gases called
chlorofluorocarbons (CFCs).

The UV radiation helps dissociate the CFC’s, releasing highly reactive chlorine (Cl) atoms, which catalyze the destruction of the
ozone layer. For example, the reaction of CF Cls with a photon of light (hv) can be written as:

CFCl +hv— CFCL +Cl

The Cl atom then catalyzes the breakdown of ozone as follows:
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Cl+ 03 — ClO+ 03 and C10 + O3 — C14-205.

A single chlorine atom could destroy ozone molecules for up to two years before being transported down to the surface. The CFCs
are relatively stable and will contribute to ozone depletion for years to come. CFCs are found in refrigerants, air conditioning
systems, foams, and aerosols.

International concern over this problem led to the establishment of the “Montreal Protocol” agreement (1987) to phase out CFC
production in most countries. However, developing-country participation is needed if worldwide production and elimination of
CFCs is to be achieved. Probably the largest contributor to CFC emissions today is India. But the protocol seems to be working, as
there are signs of an ozone recovery. (See Figure 11.5.9)
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Figure 11.5.9: This map of ozone concentration over Antarctica in October 2011 shows severe depletion suspected to be caused by
CFCs. Less dramatic but more general depletion has been observed over northern latitudes, suggesting the effect is global. With
less ozone, more ultraviolet radiation from the Sun reaches the surface, causing more damage. (credit: NASA Ozone Watch)

Benefits of UV Light

Besides the adverse effects of ultraviolet radiation, there are also benefits of exposure in nature and uses in technology. Vitamin D
production in the skin (epidermis) results from exposure to UVB radiation, generally from sunlight. A number of studies indicate
lack of vitamin D can result in the development of a range of cancers (prostate, breast, colon), so a certain amount of UV exposure
is helpful. Lack of vitamin D is also linked to osteoporosis. Exposures (with no sunscreen) of 10 minutes a day to arms, face, and
legs might be sufficient to provide the accepted dietary level. However, in the winter time north of about 37° latitude, most UVB
gets blocked by the atmosphere.

UV radiation is used in the treatment of infantile jaundice and in some skin conditions. It is also used in sterilizing workspaces and
tools, and killing germs in a wide range of applications. It is also used as an analytical tool to identify substances.

When exposed to ultraviolet, some substances, such as minerals, glow in characteristic visible wavelengths, a process called
fluorescence. So-called black lights emit ultraviolet to cause posters and clothing to fluoresce in the visible. Ultraviolet is also used
in special microscopes to detect details smaller than those observable with longer-wavelength visible-light microscopes.

X-Rays

In the 1850s, scientists (such as Faraday) began experimenting with high-voltage electrical discharges in tubes filled with rarefied
gases. It was later found that these discharges created an invisible, penetrating form of very high frequency electromagnetic
radiation. This radiation was called an X-ray, because its identity and nature were unknown.

THINGS GREAT AND SMALL: A SUBMICROSCOPIC VIEW OF X-RAY PRODUCTION

X-rays can be created in a high-voltage discharge. They are emitted in the material struck by electrons in the discharge current.
There are two mechanisms by which the electrons create X-rays.

The first method is illustrated in Figure 11.5.1Q An electron is accelerated in an evacuated tube by a high positive voltage. The
electron strikes a metal plate (e.g., copper) and produces X-rays. Since this is a high-voltage discharge, the electron gains
sufficient energy to ionize the atom.
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X ray

Figure 11.5.10: Artist’s conception of an electron ionizing an atom followed by the recapture of an electron and emission of an

X-ray. An energetic electron strikes an atom and knocks an electron out of one of the orbits closest to the nucleus. Later, the

atom captures another electron, and the energy released by its fall into a low orbit generates a high-energy EM wave called an

X-ray.
In the case shown, an inner-shell electron (one in an orbit relatively close to and tightly bound to the nucleus) is ejected. A
short time later, another electron is captured and falls into the orbit in a single great plunge. The energy released by this fall is
given to an EM wave known as an X-ray. Since the orbits of the atom are unique to the type of atom, the energy of the X-ray is
characteristic of the atom, hence the name characteristic X-ray.

The second method by which an energetic electron creates an X-ray when it strikes a material is illustrated in Figure 11.5.11
The electron interacts with charges in the material as it penetrates. These collisions transfer kinetic energy from the electron to
the electrons and atoms in the material.
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Figure 11.5.11: Artist’s conception of an electron being slowed by collisions in a material and emitting X-ray radiation. This
energetic electron makes numerous collisions with electrons and atoms in a material it penetrates. An accelerated charge
radiates EM waves, a second method by which X-rays are created.
A loss of kinetic energy implies an acceleration, in this case decreasing the electron’s velocity. Whenever a charge is
accelerated, it radiates EM waves. Given the high energy of the electron, these EM waves can have high energy. We call them
X-rays. Since the process is random, a broad spectrum of X-ray energy is emitted that is more characteristic of the electron
energy than the type of material the electron encounters. Such EM radiation is called “bremsstrahlung” (German for “braking
radiation”).

As described above, there are two methods by which X-rays are created—both are submicroscopic processes and can be caused by
high-voltage discharges. While the low-frequency end of the X-ray range overlaps with the ultraviolet, X-rays extend to much
higher frequencies (and energies).

X-rays have adverse effects on living cells similar to those of ultraviolet radiation, and they have the additional liability of being
more penetrating, affecting more than the surface layers of cells. Cancer and genetic defects can be induced by exposure to X-rays.
Because of their effect on rapidly dividing cells, X-rays can also be used to treat and even cure cancer.
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The widest use of X-rays is for imaging objects that are opaque to visible light, such as the human body or aircraft parts. In
humans, the risk of cell damage is weighed carefully against the benefit of the diagnostic information obtained. However, questions
have risen in recent years as to accidental overexposure of some people during CT scans—a mistake at least in part due to poor
monitoring of radiation dose.

The ability of X-rays to penetrate matter depends on density, and so an X-ray image can reveal very detailed density
information. Figure 11.5.12shows an example of the simplest type of X-ray image, an X-ray shadow on film. The amount of
information in a simple X-ray image is impressive, but more sophisticated techniques, such as CT scans, can reveal three-
dimensional information with details smaller than a millimeter.

Figure 11.5.12: This shadow X-ray image shows many interesting features, such as artificial heart valves, a pacemaker, and the

wires used to close the sternum. (credit: P. P. Urone)
The use of X-ray technology in medicine is called radiology—an established and relatively cheap tool in comparison to more
sophisticated technologies. Consequently, X-rays are widely available and used extensively in medical diagnostics. During World
War I, mobile X-ray units, advocated by Madame Marie Curie, were used to diagnose soldiers.

Because they can have wavelengths less than 0.01 nm, X-rays can be scattered (a process called X-ray diffraction) to detect the
shape of molecules and the structure of crystals. X-ray diffraction was crucial to Crick, Watson, and Wilkins in the determination of
the shape of the double-helix DNA molecule.

X-rays are also used as a precise tool for trace-metal analysis in X-ray induced fluorescence, in which the energy of the X-ray
emissions are related to the specific types of elements and amounts of materials present.

Gamma Rays

Soon after nuclear radioactivity was first detected in 1896, it was found that at least three distinct types of radiation were being
emitted. The most penetrating nuclear radiation was called a gamma ray (v ray) (again a name given because its identity and
character were unknown), and it was later found to be an extremely high frequency electromagnetic wave.

In fact, y rays are any electromagnetic radiation emitted by a nucleus. This can be from natural nuclear decay or induced nuclear
processes in nuclear reactors and weapons. The lower end of the y-ray frequency range overlaps the upper end of the X-ray range,
but « rays can have the highest frequency of any electromagnetic radiation.

Gamma rays have characteristics identical to X-rays of the same frequency—they differ only in source. At higher frequencies,
4 rays are more penetrating and more damaging to living tissue. They have many of the same uses as X-rays, including cancer
therapy. Gamma radiation from radioactive materials is used in nuclear medicine.

Figure 11.5.13 shows a medical image based on + rays. Food spoilage can be greatly inhibited by exposing it to large doses of
~ radiation, thereby obliterating responsible microorganisms. Damage to food cells through irradiation occurs as well, and the long-
term hazards of consuming radiation-preserved food are unknown and controversial for some groups. Both X-ray and
~-ray technologies are also used in scanning luggage at airports.
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Figure 11.5.13: This is an image of the v rays emitted by nuclei in a compound that is concentrated in the bones and eliminated
through the kidneys. Bone cancer is evidenced by nonuniform concentration in similar structures. For example, some ribs are
darker than others. (credit: P. P. Urone)

Detecting Electromagnetic Waves from Space

A final note on star gazing. The entire electromagnetic spectrum is used by researchers for investigating stars, space, and time. As
noted earlier, Penzias and Wilson detected microwaves to identify the background radiation originating from the Big Bang. Radio
telescopes such as the Arecibo Radio Telescope in Puerto Rico and Parkes Observatory in Australia were designed to detect radio
waves.

Infrared telescopes need to have their detectors cooled by liquid nitrogen to be able to gather useful signals. Since infrared radiation
is predominantly from thermal agitation, if the detectors were not cooled, the vibrations of the molecules in the antenna would be
stronger than the signal being collected.

The most famous of these infrared sensitive telescopes is the James Clerk Maxwell Telescope in Hawaii. The earliest telescopes,
developed in the seventeenth century, were optical telescopes, collecting visible light. Telescopes in the ultraviolet, X-ray, and ~-
ray regions are placed outside the atmosphere on satellites orbiting the Earth.

The Hubble Space Telescope (launched in 1990) gathers ultraviolet radiation as well as visible light. In the X-ray region, there is
the Chandra X-ray Observatory (launched in 1999), and in the ~-ray region, there is the new Fermi Gamma-ray Space Telescope
(launched in 2008—taking the place of the Compton Gamma Ray Observatory, 1991-2000.).

Section Summary

o The electromagnetic spectrum is separated into many categories and subcategories, based on the frequency and wavelength,
source, and uses of the electromagnetic waves.

¢ Any electromagnetic wave produced by currents in wires is classified as a radio wave, the lowest frequency electromagnetic
waves. Radio waves are divided into many types, depending on their applications, ranging up to microwaves at their highest
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frequencies.

o Infrared radiation lies below visible light in frequency and is produced by thermal motion and the vibration and rotation of
atoms and molecules. Infrared’s lower frequencies overlap with the highest-frequency microwaves.

o Visible light is largely produced by electronic transitions in atoms and molecules, and is defined as being detectable by the
human eye. Its colors vary with frequency, from red at the lowest to violet at the highest.

o Ultraviolet radiation starts with frequencies just above violet in the visible range and is produced primarily by electronic
transitions in atoms and molecules.

o X-rays are created in high-voltage discharges and by electron bombardment of metal targets. Their lowest frequencies overlap
the ultraviolet range but extend to much higher values, overlapping at the high end with gamma rays.

e Gamma rays are nuclear in origin and are defined to include the highest-frequency electromagnetic radiation of any type.

Glossary

electromagnetic spectrum
the full range of wavelengths or frequencies of electromagnetic radiation

radio waves
electromagnetic waves with wavelengths in the range from 1 mm to 100 km; they are produced by currents in wires and circuits
and by astronomical phenomena

microwaves
electromagnetic waves with wavelengths in the range from 1 mm to 1 m; they can be produced by currents in macroscopic
circuits and devices

thermal agitation
the thermal motion of atoms and molecules in any object at a temperature above absolute zero, which causes them to emit and
absorb radiation

radar
a common application of microwaves. Radar can determine the distance to objects as diverse as clouds and aircraft, as well as
determine the speed of a car or the intensity of a rainstorm

infrared radiation (IR)
aregion of the electromagnetic spectrum with a frequency range that extends from just below the red region of the visible light
spectrum up to the microwave region, or from 0.74 pm to 300 pm

ultraviolet radiation (UV)
electromagnetic radiation in the range extending upward in frequency from violet light and overlapping with the lowest X-ray
frequencies, with wavelengths from 400 nm down to about 10 nm

visible light
the narrow segment of the electromagnetic spectrum to which the normal human eye responds

amplitude modulation (AM)
a method for placing information on electromagnetic waves by modulating the amplitude of a carrier wave with an audio signal,
resulting in a wave with constant frequency but varying amplitude

extremely low frequency (ELF)
electromagnetic radiation with wavelengths usually in the range of 0 to 300 Hz, but also about 1kHz

carrier wave
an electromagnetic wave that carries a signal by modulation of its amplitude or frequency

frequency modulation (FM)
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a method of placing information on electromagnetic waves by modulating the frequency of a carrier wave with an audio signal,
producing a wave of constant amplitude but varying frequency

TV

video and audio signals broadcast on electromagnetic waves

very high frequency (VHF)
TV channels utilizing frequencies in the two ranges of 54 to 88 MHz and 174 to 222 MHz

ultra-high frequency (UHF)
TV channels in an even higher frequency range than VHF, of 470 to 1000 MHz

X-ray
invisible, penetrating form of very high frequency electromagnetic radiation, overlapping both the ultraviolet range and the -
ray range

gamma ray
(y ray); extremely high frequency electromagnetic radiation emitted by the nucleus of an atom, either from natural nuclear
decay or induced nuclear processes in nuclear reactors and weapons. The lower end of the y-ray frequency range overlaps the
upper end of the X-ray range, but - rays can have the highest frequency of any electromagnetic radiation

This page titled 11.5: The Electromagnetic Spectrum- Application Notes is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by OpenStax.
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