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7.8: Bernoulli’s Equation

Explain the terms in Bernoulli’s equation.
Explain how Bernoulli’s equation is related to conservation of energy.
Explain how to derive Bernoulli’s principle from Bernoulli’s equation.
Calculate with Bernoulli’s principle.
List some applications of Bernoulli’s principle.

When a fluid flows into a narrower channel, its speed increases. That means its kinetic energy also increases. Where does that
change in kinetic energy come from? The increased kinetic energy comes from the net work done on the fluid to push it into the
channel and the work done on the fluid by the gravitational force, if the fluid changes vertical position. Recall the work-energy
theorem,

There is a pressure difference when the channel narrows. This pressure difference results in a net force on the fluid: recall that
pressure times area equals force. The net work done increases the fluid’s kinetic energy. As a result, the pressure will drop in a
rapidly-moving fluid, whether or not the fluid is confined to a tube.

There are a number of common examples of pressure dropping in rapidly-moving fluids. Shower curtains have a disagreeable habit
of bulging into the shower stall when the shower is on. The high-velocity stream of water and air creates a region of lower pressure
inside the shower, and standard atmospheric pressure on the other side. The pressure difference results in a net force inward
pushing the curtain in. You may also have noticed that when passing a truck on the highway, your car tends to veer toward it. The
reason is the same—the high velocity of the air between the car and the truck creates a region of lower pressure, and the vehicles
are pushed together by greater pressure on the outside. (See Figure .) This effect was observed as far back as the mid-1800s,
when it was found that trains passing in opposite directions tipped precariously toward one another.

Figure : An overhead view of a car passing a truck on a highway. Air passing between the vehicles flows in a narrower
channel and must increase its speed (  is greater than ), causing the pressure between them to drop (  is less than ). Greater
pressure on the outside pushes the car and truck together.

Hold the short edge of a sheet of paper parallel to your mouth with one hand on each side of your mouth. The page should slant
downward over your hands. Blow over the top of the page. Describe what happens and explain the reason for this behavior.

Bernoulli’s Equation

The relationship between pressure and velocity in fluids is described quantitatively by Bernoulli’s equation, named after its
discoverer, the Swiss scientist Daniel Bernoulli (1700–1782). Bernoulli’s equation states that for an incompressible, frictionless
fluid, the following sum is constant:

where  is the absolute pressure,  is the fluid density,  is the velocity of the fluid,  is the height above some reference point,
and  is the acceleration due to gravity. If we follow a small volume of fluid along its path, various quantities in the sum may
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change, but the total remains constant. Let the subscripts 1 and 2 refer to any two points along the path that the bit of fluid follows;
Bernoulli’s equation becomes

Bernoulli’s equation is a form of the conservation of energy principle. Note that the second and third terms are the kinetic and
potential energy with  replaced by . In fact, each term in the equation has units of energy per unit volume. We can prove this for
the second term by substituting  into it and gathering terms:

So  is the kinetic energy per unit volume. Making the same substitution into the third term in the equation, we find

so  is the gravitational potential energy per unit volume. Note that pressure  has units of energy per unit volume, too. Since 
, its units are . If we multiply these by m/m, we obtain , or energy per unit volume. Bernoulli’s

equation is, in fact, just a convenient statement of conservation of energy for an incompressible fluid in the absence of friction.

Conservation of energy applied to fluid flow produces Bernoulli’s equation. The net work done by the fluid’s pressure results
in changes in the fluid’s  and  per unit volume. If other forms of energy are involved in fluid flow, Bernoulli’s
equation can be modified to take these forms into account. Such forms of energy include thermal energy dissipated because of
fluid viscosity.

The general form of Bernoulli’s equation has three terms in it, and it is broadly applicable. To understand it better, we will look at a
number of specific situations that simplify and illustrate its use and meaning.

Bernoulli’s Equation for Static Fluids

Let us first consider the very simple situation where the fluid is static—that is, . Bernoulli’s equation in that case is

We can further simplify the equation by taking  (we can always choose some height to be zero, just as we often have done
for other situations involving the gravitational force, and take all other heights to be relative to this). In that case, we get

This equation tells us that, in static fluids, pressure increases with depth. As we go from point 1 to point 2 in the fluid, the depth
increases by , and consequently,  is greater than  by an amount . In the very simplest case,  is zero at the top of the
fluid, and we get the familiar relationship . (Recall that  and ) Bernoulli’s equation includes the
fact that the pressure due to the weight of a fluid is . Although we introduce Bernoulli’s equation for fluid flow, it includes
much of what we studied for static fluids in the preceding chapter.

Bernoulli’s Principle—Bernoulli’s Equation at Constant Depth

Another important situation is one in which the fluid moves but its depth is constant—that is, . Under that condition,
Bernoulli’s equation becomes

Situations in which fluid flows at a constant depth are so important that this equation is often called Bernoulli’s principle. It is
Bernoulli’s equation for fluids at constant depth. (Note again that this applies to a small volume of fluid as we follow it along its
path.) As we have just discussed, pressure drops as speed increases in a moving fluid. We can see this from Bernoulli’s principle.
For example, if  is greater than  in the equation, then  must be less than  for the equality to hold.
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In Example 8.6.2, we found that the speed of water in a hose increased from 1.96 m/s to 25.5 m/s going from the hose to the
nozzle. Calculate the pressure in the hose, given that the absolute pressure in the nozzle is  (atmospheric, as
it must be) and assuming level, frictionless flow.

Strategy

Level flow means constant depth, so Bernoulli’s principle applies. We use the subscript 1 for values in the hose and 2 for those
in the nozzle. We are thus asked to find .

Solution

Solving Bernoulli’s principle for  yields

Substituting known values,

Discussion

This absolute pressure in the hose is greater than in the nozzle, as expected since v is greater in the nozzle. The pressure  in
the nozzle must be atmospheric since it emerges into the atmosphere without other changes in conditions.

Applications of Bernoulli’s Principle

There are a number of devices and situations in which fluid flows at a constant height and, thus, can be analyzed with Bernoulli’s
principle.

Entrainment

People have long put the Bernoulli principle to work by using reduced pressure in high-velocity fluids to move things about. With a
higher pressure on the outside, the high-velocity fluid forces other fluids into the stream. This process is called entrainment.
Entrainment devices have been in use since ancient times, particularly as pumps to raise water small heights, as in draining
swamps, fields, or other low-lying areas. Some other devices that use the concept of entrainment are shown in Figure .

Figure : Examples of entrainment devices that use increased fluid speed to create low pressures, which then entrain one fluid
into another. (a) A Bunsen burner uses an adjustable gas nozzle, entraining air for proper combustion. (b) An atomizer uses a
squeeze bulb to create a jet of air that entrains drops of perfume. Paint sprayers and carburetors use very similar techniques to move
their respective liquids. (c) A common aspirator uses a high-speed stream of water to create a region of lower pressure. Aspirators
may be used as suction pumps in dental and surgical situations or for draining a flooded basement or producing a reduced pressure
in a vessel. (d) The chimney of a water heater is designed to entrain air into the pipe leading through the ceiling.

Wings and Sails

The airplane wing is a beautiful example of Bernoulli’s principle in action. Figure (a) shows the characteristic shape of a
wing. The wing is tilted upward at a small angle and the upper surface is longer, causing air to flow faster over it. The pressure on
top of the wing is therefore reduced, creating a net upward force or lift. (Wings can also gain lift by pushing air downward,
utilizing the conservation of momentum principle. The deflected air molecules result in an upward force on the wing — Newton’s
third law.) Sails also have the characteristic shape of a wing. (See Figure (b).) The pressure on the front side of the sail, 
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, is lower than the pressure on the back of the sail, . This results in a forward force and even allows you to sail into the
wind.

For a good illustration of Bernoulli’s principle, make two strips of paper, each about 15 cm long and 4 cm wide. Hold the small
end of one strip up to your lips and let it drape over your finger. Blow across the paper. What happens? Now hold two strips of
paper up to your lips, separated by your fingers. Blow between the strips. What happens?

Velocity measurement

Figure  shows two devices that measure fluid velocity based on Bernoulli’s principle. The manometer in Figure (a) is
connected to two tubes that are small enough not to appreciably disturb the flow. The tube facing the oncoming fluid creates a dead
spot having zero velocity ( ) in front of it, while fluid passing the other tube has velocity . This means that Bernoulli’s
principle as stated in  becomes

Figure : (a) The Bernoulli principle helps explain lift generated by a wing. (b) Sails use the same technique to generate part of
their thrust.

Thus pressure  over the second opening is reduced by , and so the fluid in the manometer rises by  on the side connected
to the second opening, where

(Recall that the symbol  means “proportional to.”) Solving for , we see that

Figure (b) shows a version of this device that is in common use for measuring various fluid velocities; such devices are
frequently used as air speed indicators in aircraft.

Figure : Measurement of fluid speed based on Bernoulli’s principle. (a) A manometer is connected to two tubes that are close
together and small enough not to disturb the flow. Tube 1 is open at the end facing the flow. A dead spot having zero speed is
created there. Tube 2 has an opening on the side, and so the fluid has a speed  across the opening; thus, pressure there drops. The
difference in pressure at the manometer is , and so h is proportional to . (b) This type of velocity measuring device is a
Prandtl tube, also known as a pitot tube.

Summary
Bernoulli’s equation states that the sum on each side of the following equation is constant, or the same at any two points in an
incompressible frictionless fluid:
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Bernoulli’s principle is Bernoulli’s equation applied to situations in which depth is constant. The terms involving depth (or
height h ) subtract out, yielding

Bernoulli’s principle has many applications, including entrainment, wings and sails, and velocity measurement.

Glossary

Bernoulli’s equation
the equation resulting from applying conservation of energy to an incompressible frictionless fluid: P + 1/2pv  + pgh = constant
, through the fluid

Bernoulli’s principle
Bernoulli’s equation applied at constant depth: P  + 1/2pv  = P  + 1/2pv

This page titled 7.8: Bernoulli’s Equation is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax.
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