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5.7: Angular Momentum and Its Conservation

By the end of this section, you will be able to:

Understand the analogy between angular momentum and linear momentum.
Observe the relationship between torque and angular momentum.
Apply the law of conservation of angular momentum.

Why does Earth keep on spinning? What started it spinning to begin with? And how does an ice skater manage to spin faster and
faster simply by pulling her arms in? Why does she not have to exert a torque to spin faster? Questions like these have answers
based in angular momentum, the rotational analog to linear momentum.

By now the pattern is clear—every rotational phenomenon has a direct translational analog. It seems quite reasonable, then, to
define angular momentum  as

This equation is an analog to the definition of linear momentum as

Units for linear momentum are , while units for angular momentum are . As we would expect, an object that
has a large moment of inertia , such as Earth, has a very large angular momentum. An object that has a large angular velocity ,
such as a centrifuge, also has a rather large angular momentum.

Angular momentum is completely analogous to linear momentum, first presented in Uniform Circular Motion and Gravitation.
It has the same implications in terms of carrying rotation forward, and it is conserved when the net external torque is zero.
Angular momentum, like linear momentum, is also a property of the atoms and subatomic particles.

What is the angular momentum of the earth?

Strategy

No information is given in the statement of the problem; so we must look up pertinent data before we can calculate 
First, the formula for the moment of inertia of a sphere is

so that

Earth's mass  is  and its radius  is . The Earth’s angular velocity  is, of course, exactly
one revolution per day, but we must covert  to radians per second to do the calculation in SI units.

Solution

Substituting known information into the expression for  and converting  to radians per second gives

Substituting  for 1 rev and  for 1 day gives

Learning Objectives

L

L = Iω (5.7.1)

p = mv (5.7.2)
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Example : Calculating Angular Momentum of the Earth5.7.1

L = Iω

I =
2MR2

5
(5.7.3)

L = Iω = .
2M ωR2

5
(5.7.4)

M 5.979 × kg1024 R 6.376 × m106 ω

ω

L ω

L = 0.4(5.979 × kg)(6.376 × m)( )1024 106 1 rev

d
(5.7.5)

= 9.72 × kg ⋅ ⋅ rev/d1037 m2 (5.7.6)

2π 8.64 × s104
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Discussion

This number is large, demonstrating that Earth, as expected, has a tremendous angular momentum. The answer is approximate,
because we have assumed a constant density for Earth in order to estimate its moment of inertia.

When you push a merry-go-round, spin a bike wheel, or open a door, you exert a torque. If the torque you exert is greater than
opposing torques, then the rotation accelerates, and angular momentum increases. The greater the net torque, the more rapid the
increase in . The relationship between torque and angular momentum is

This expression is exactly analogous to the relationship between force and linear momentum, . The equation 
 is very fundamental and broadly applicable. It is, in fact, the rotational form of Newton’s second law.

Figure  shows a Lazy Susan food tray being rotated by a person in quest of sustenance. Suppose the person exerts a 2.50
N force perpendicular to the lazy Susan’s 0.260-m radius for 0.150 s.

a. What is the final angular momentum of the lazy Susan if it starts from rest, assuming friction is negligible?
b. What is the final angular velocity of the lazy Susan, given that its mass is 4.00 kg and assuming its moment of inertia is that

of a disk?

Figure : A partygoer exerts a torque on a lazy Susan to make it rotate. The equation  gives the relationship

between torque and the angular momentum produced.

Strategy

We can find the angular momentum by solving  for , and using the given information to calculate the torque.

The final angular momentum equals the change in angular momentum, because the lazy Susan starts from rest. That is, 
 To find the final velocity, we must calculate  from the definition of  in .

Solution for (a)

Solving  for  gives

Because the force is perpendicular to , we see that  so that

L = (9.72 × kg ⋅ )( ) (1 rev/d)1037 m2
2π rad/rev

8.64 × s/d104
(5.7.7)

= 7.07 × kg ⋅ /s.1033 m2 (5.7.8)

L

net τ = .
ΔL

Δt
(5.7.9)

F = Δp/Δt

net τ = ΔL/Δt

Example : Calculating the Torque Putting Angular Momentum Into a Lazy Susan5.7.1

5.7.1

5.7.1 net τ =
ΔL

Δt

net τ =
ΔL

Δt
ΔL

ΔL = L ω L L = Iω

net τ =
ΔL

Δt
ΔL

ΔL = (net τ)Δt. (5.7.10)

r net τ = rF

L = rFΔt = (0.260 m)(2.50 N)(0.150 s) (5.7.11)

= 9.75 × kg ⋅ /s.10−2 m2 (5.7.12)
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Solution for (b)

The final angular velocity can be calculated from the definition of angular momentum,

Solving for  and substituting the formula for the moment of inertia of a disk into the resulting equation gives

And substituting known values into the preceding equation yields

Discussion

Note that the imparted angular momentum does not depend on any property of the object but only on torque and time. The
final angular velocity is equivalent to one revolution in 8.71 s (determination of the time period is left as an exercise for the
reader), which is about right for a lazy Susan.

The person whose leg is shown in  kicks his leg by exerting a 2000-N force with his upper leg muscle. The effective
perpendicular lever arm is 2.20 cm. Given the moment of inertia of the lower leg is .

a. find the angular acceleration of the leg.
b. Neglecting the gravitational force, what is the rotational kinetic energy of the leg after it has rotated through  (1.00

rad)?

Figure : The muscle in the upper leg gives the lower leg an angular acceleration and imparts rotational kinetic energy to it
by exerting a torque about the knee.  is a vector that is perpendicular to . This example examines the situation.

Strategy

The angular acceleration can be found using the rotational analog to Newton’s second law, or . The moment of
inertia  is given and the torque can be found easily from the given force and perpendicular lever arm. Once the angular
acceleration  is known, the final angular velocity and rotational kinetic energy can be calculated.

Solution to (a)

From the rotational analog to Newton’s second law, the angular acceleration  is

Because the force and the perpendicular lever arm are given and the leg is vertical so that its weight does not create a torque,
the net torque is thus

L = Iω. (5.7.13)

ω

ω = = .
L

I

L

M
1

2
R2

(5.7.14)

ω = = 0.721 rad/s.
9.75 × kg ⋅ /s10−2 m2

(0.500)(4.00 kg)(0.260 m)
(5.7.15)

Example : Calculating the Torque in a Kick5.7.3

5.7.1

1.25 kg ⋅m2

57.30

5.7.2
F r

α = net τ/I

I

α

α

α = .
net τ

I
(5.7.16)

net τ = Fr⊥ (5.7.17)
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Substituting this value for the torque and the given value for the moment of inertia into the expression for  gives

Solution to (b)

The final angular velocity can be calculated from the kinematic expression

or

because the initial angular velocity is zero. The kinetic energy of rotation is

so it is most convenient to use the value of  just found and the given value for the moment of inertia. The kinetic energy is
then

Discussion

These values are reasonable for a person kicking his leg starting from the position shown. The weight of the leg can be
neglected in part (a) because it exerts no torque when the center of gravity of the lower leg is directly beneath the pivot in the
knee. In part (b), the force exerted by the upper leg is so large that its torque is much greater than that created by the weight of
the lower leg as it rotates. The rotational kinetic energy given to the lower leg is enough that it could give a ball a significant
velocity by transferring some of this energy in a kick.

Angular momentum, like energy and linear momentum, is conserved. This universally applicable law is another sign of
underlying unity in physical laws. Angular momentum is conserved when net external torque is zero, just as linear momentum
is conserved when the net external force is zero.

Conservation of Angular Momentum
We can now understand why Earth keeps on spinning. As we saw in the previous example, . This equation means
that, to change angular momentum, a torque must act over some period of time. Because Earth has a large angular momentum, a
large torque acting over a long time is needed to change its rate of spin. So what external torques are there? Tidal friction exerts
torque that is slowing Earth’s rotation, but tens of millions of years must pass before the change is very significant. Recent research
indicates the length of the day was 18 h some 900 million years ago. Only the tides exert significant retarding torques on Earth, and
so it will continue to spin, although ever more slowly, for many billions of years.

What we have here is, in fact, another conservation law. If the net torque is zero, then angular momentum is constant or conserved.

We can see this rigorously by considering  for the situation in which the net torque is zero. In that case,

implying that

If the change in angular momentum  is zero, then the angular momentum is constant; thus,

= (0.0220 m)(2000 N) (5.7.18)

= 44.0 N ⋅m (5.7.19)

α

α = = 35.2 rad/
44.0 N ⋅m

1.25 kg ⋅m2
s2 (5.7.20)

= +2αθω2 ω2
0 (5.7.21)

= 2αθω2 (5.7.22)

K = IErot

1

2
ω2 (5.7.23)

ω2

K = 0.5(1.25 kg ⋅ )(70.4 ra / )Erot m2 d2 s2 (5.7.24)

= 44 J (5.7.25)

ΔL = (net τ)Δt

net τ =
ΔL

Δt

net τ = 0 (5.7.26)

= 0.
ΔL

Δt
(5.7.27)

ΔL
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or

These expressions are the law of conservation of angular momentum. Conservation laws are as scarce as they are important.

Figure : (a) An ice skater is spinning on the tip of her skate with her arms extended. Her angular momentum is conserved
because the net torque on her is negligibly small. In the next image, her rate of spin increases greatly when she pulls in her arms,
decreasing her moment of inertia. The work she does to pull in her arms results in an increase in rotational kinetic energy.

An example of conservation of angular momentum is seen in Figure , in which an ice skater is executing a spin. The net
torque on her is very close to zero, because there is relatively little friction between her skates and the ice and because the friction
is exerted very close to the pivot point. (Both  and  are small, and so  is negligibly small.) Consequently, she can spin for quite
some time. She can do something else, too. She can increase her rate of spin by pulling her arms and legs in. Why does pulling her
arms and legs in increase her rate of spin? The answer is that her angular momentum is constant, so that

Expressing this equation in terms of the moment of inertia,

where the primed quantities refer to conditions after she has pulled in her arms and reduced her moment of inertia. Because  is
smaller, the angular velocity  must increase to keep the angular momentum constant. The change can be dramatic, as the
following example shows.

Suppose an ice skater, such as the one in Figure , is spinning at 0.800 rev/ s with her arms extended. She has a moment of
inertia of  with her arms extended and of  with her arms close to her body. (These moments of
inertia are based on reasonable assumptions about a 60.0-kg skater.) (a) What is her angular velocity in revolutions per second
after she pulls in her arms? (b) What is her rotational kinetic energy before and after she does this?

Strategy

In the first part of the problem, we are looking for the skater’s angular velocity  after she has pulled in her arms. To find this
quantity, we use the conservation of angular momentum and note that the moments of inertia and initial angular velocity are
given. To find the initial and final kinetic energies, we use the definition of rotational kinetic energy given by

Solution for (a)

Because torque is negligible (as discussed above), the conservation of angular momentum given in  is applicable.
Thus,

or

L = constant (net τ = 0) (5.7.28)

L = (net τ = 0).L′ (5.7.29)

5.7.3

5.7.3

F τ τ

L = .L′ (5.7.30)

Iω = I ′ω′ (5.7.31)

I ′

ω′

Example : Calculating the Angular Momentum of a Spinning Skater5.7.4

5.7.3

2.34 kg ⋅m2 0.363 kg ⋅m2

ω′

K = IErot

1

2
ω2 (5.7.32)

Iω = I ′ω′

L = L′ (5.7.33)

I =ω2 I ′ω′ (5.7.34)
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Solving for  and substituting known values into the resulting equation gives

Solution for (b)

Rotational kinetic energy is given by

The initial value is found by substituting known values into the equation and converting the angular velocity to rad/s:

The final rotational kinetic energy is

Substituting known values into this equation gives

Discussion

In both parts, there is an impressive increase. First, the final angular velocity is large, although most world-class skaters can
achieve spin rates about this great. Second, the final kinetic energy is much greater than the initial kinetic energy. The increase
in rotational kinetic energy comes from work done by the skater in pulling in her arms. This work is internal work that depletes
some of the skater’s food energy.

There are several other examples of objects that increase their rate of spin because something reduced their moment of inertia.
Tornadoes are one example. Storm systems that create tornadoes are slowly rotating. When the radius of rotation narrows, even in a
local region, angular velocity increases, sometimes to the furious level of a tornado. Earth is another example. Our planet was born
from a huge cloud of gas and dust, the rotation of which came from turbulence in an even larger cloud. Gravitational forces caused
the cloud to contract, and the rotation rate increased as a result (Figure ).

Figure : The Solar System coalesced from a cloud of gas and dust that was originally rotating. The orbital motions and spins
of the planets are in the same direction as the original spin and conserve the angular momentum of the parent cloud.

Is angular momentum completely analogous to linear momentum? What, if any, are their differences?

Solution

ω′

= ω =( ) (0.800 rev/s)ω′ I

I ′

2.34 kg ⋅m2

0.363 kg ⋅m2
(5.7.35)

= 5.16rev/s. (5.7.36)

K = IErot

1

2
ω2 (5.7.37)

K = (0.5)(2.34 kg ⋅ )((0.800 rev/s)(2π rad/rev)Erot m2 )2 (5.7.38)

= 29.6 J. (5.7.39)

K =E ′
rot

1

2
I ′ω 2′ (5.7.40)

K = (0.5)(0.363 kg ⋅ )[(5.16 rev/s)((2π rad/rev)E ′
rot m2 ]2 (5.7.41)

= 191 J. (5.7.42)

5.7.3

5.7.4

Exercise : Check Your Undestanding5.7.1
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Yes, angular and linear momenta are completely analogous. While they are exact analogs they have different units and are not
directly inter-convertible like forms of energy are.

Summary
Every rotational phenomenon has a direct translational analog , likewise angular momentum  can be defined as .
This equation is an analog to the definition of linear momentum as . The relationship between torque and angular
momentum is .
Angular momentum, like energy and linear momentum, is conserved. This universally applicable law is another sign of
underlying unity in physical laws. Angular momentum is conserved when net external torque is zero, just as linear momentum
is conserved when the net external force is zero.

Glossary

angular momentum
the product of moment of inertia and angular velocity

law of conservation of angular momentum
angular momentum is conserved, i.e., the initial angular momentum is equal to the final angular momentum when no external
torque is applied to the system
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