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4.S: Quantum Mechanics (Summary)

Key Terms
anti-symmetric function odd function

Born interpretation states that the square of a wave function is the probability density

complex function function containing both real and imaginary parts

Copenhagen interpretation
states that when an observer is not looking or when a measurement

is not being made, the particle has many values of measurable
quantities, such as position

correspondence principle
in the limit of large energies, the predictions of quantum

mechanics agree with the predictions of classical mechanics

energy levels
states of definite energy, often represented by horizontal lines in an

energy “ladder” diagram

energy quantum number index that labels the allowed energy states

energy-time uncertainty principle
energy-time relation for uncertainties in the simultaneous

measurements of the energy of a quantum state and of its lifetime

even function
in one dimension, a function symmetric with the origin of the

coordinate system

expectation value
average value of the physical quantity assuming a large number of

particles with the same wave function

field emission
electron emission from conductor surfaces when a strong external
electric field is applied in normal direction to conductor’s surface

ground state energy lowest energy state in the energy spectrum

Heisenberg’s uncertainty principle

places limits on what can be known from a simultaneous
measurements of position and momentum; states that if the

uncertainty on position is small then the uncertainty on momentum
is large, and vice versa

infinite square well
potential function that is zero in a fixed range and infinitely

beyond this range

momentum operator operator that corresponds to the momentum of a particle

nanotechnology
technology that is based on manipulation of nanostructures such as

molecules or individual atoms to produce nano-devices such as
integrated circuits

normalization condition
requires that the probability density integrated over the entire

physical space results in the number one

odd function
in one dimension, a function antisymmetric with the origin of the

coordinate system

position operator operator that corresponds to the position of a particle

potential barrier
potential function that rises and falls with increasing values of

position

principal quantum number energy quantum number

probability density square of the particle’s wave function
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quantum dot
small region of a semiconductor nanocrystal embedded in another
semiconductor nanocrystal, acting as a potential well for electrons

quantum tunneling
phenomenon where particles penetrate through a potential energy
barrier with a height greater than the total energy of the particles

resonant tunneling
tunneling of electrons through a finite-height potential well that
occurs only when electron energies match an energy level in the

well, occurs in quantum dots

resonant-tunneling diode quantum dot with an applied voltage bias across it

scanning tunneling microscope (STM)
device that utilizes quantum-tunneling phenomenon at metallic

surfaces to obtain images of nanoscale structures

Schrӧdinger’s time-dependent equation
equation in space and time that allows us to determine wave

functions of a quantum particle

Schrӧdinger’s time-independent equation
equation in space that allows us to determine wave functions of a

quantum particle; this wave function must be multiplied by a time-
modulation factor to obtain the time-dependent wave function

standing wave state
stationary state for which the real and imaginary parts of

Ψ(x,t)Ψ(x,t) oscillate up and down like a standing wave (often
modeled with sine and cosine functions)

state reduction
hypothetical process in which an observed or detected particle
“jumps into” a definite state, often described in terms of the

collapse of the particle’s wave function

stationary state
state for which the probability density function, , does

not vary in time

time-modulation factor
factor  that multiplies the time-independent wave function

when the potential energy of the particle is time independent

transmission probability
also called tunneling probability, the probability that a particle will

tunnel through a potential barrier

tunnel diode electron tunneling-junction between two different semiconductors

tunneling probability
also called transmission probability, the probability that a particle

will tunnel through a potential barrier

wave function
function that represents the quantum state of a particle (quantum

system)

wave function collapse equivalent to state reduction

wave packet
superposition of many plane matter waves that can be used to

represent a localized particle

Key Equations

Normalization condition in one dimension

Probability of finding a particle in a narrow interval of position in
one dimension 

Expectation value of position in one dimension

Heisenberg’s position-momentum uncertainty principle

|Ψ(x, t)|2

e−iωt

P(x = −∞, +∞) = ∣ Ψ(x, t) dx = 1∫
∞

−∞
∣2

(x, x+ dx)
P(x, x+ dx) = (x, t)Ψ(x, t)dxΨ∗

⟨x⟩ = (x, t)xΨ(x, t)dx∫
∞

−∞
Ψ∗

ΔxΔp ≥
ℏ
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Heisenberg’s energy-time uncertainty principle

Schrӧdinger’s time-dependent equation

General form of the wave function for a time-independent
potential in one dimension

Schrӧdinger’s time-independent equation

Schrӧdinger’s equation (free particle)

Allowed energies (particle in box of length L)

Stationary states (particle in a box of length L)

Potential-energy function of a harmonic oscillator

Schrӧdinger equation (harmonic oscillator)

The energy spectrum

The energy wave functions

Potential barrier

Definition of the transmission coefficient

A parameter in the transmission coefficient

Transmission coefficient, exact

Transmission coefficient, approximate

Summary

7.1: Wavefunctions
In quantum mechanics, the state of a physical system is represented by a wave function.
In Born’s interpretation, the square of the particle’s wave function represents the probability density of finding the particle
around a specific location in space.
Wave functions must first be normalized before using them to make predictions.
The expectation value is the average value of a quantity that requires a wave function and an integration.

7.2: The Heisenberg Uncertainty Principle
The Heisenberg uncertainty principle states that it is impossible to simultaneously measure the x-components of position and of
momentum of a particle with an arbitrarily high precision. The product of experimental uncertainties is always larger than or
equal to .
The limitations of this principle have nothing to do with the quality of the experimental apparatus but originate in the wave-like
nature of matter.
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The energy-time uncertainty principle expresses the experimental observation that a quantum state that exists only for a short
time cannot have a definite energy.

7.3: The Schrӧdinger Equation
The Schrӧdinger equation is the fundamental equation of wave quantum mechanics. It allows us to make predictions about
wave functions.
When a particle moves in a time-independent potential, a solution of the time-dependent Schrӧdinger equation is a product of a
time-independent wave function and a time-modulation factor.
The Schrӧdinger equation can be applied to many physical situations.

7.4: The Quantum Particle in a Box
Energy states of a quantum particle in a box are found by solving the time-independent Schrӧdinger equation.
To solve the time-independent Schrӧdinger equation for a particle in a box and find the stationary states and allowed energies,
we require that the wave function terminate at the box wall.
Energy states of a particle in a box are quantized and indexed by principal quantum number.
The quantum picture differs significantly from the classical picture when a particle is in a low-energy state of a low quantum
number.
In the limit of high quantum numbers, when the quantum particle is in a highly excited state, the quantum description of a
particle in a box coincides with the classical description, in the spirit of Bohr’s correspondence principle.

7.5: The Quantum Harmonic Oscillator
The quantum harmonic oscillator is a model built in analogy with the model of a classical harmonic oscillator. It models the
behavior of many physical systems, such as molecular vibrations or wave packets in quantum optics.
The allowed energies of a quantum oscillator are discrete and evenly spaced. The energy spacing is equal to Planck’s energy
quantum.
The ground state energy is larger than zero. This means that, unlike a classical oscillator, a quantum oscillator is never at rest,
even at the bottom of a potential well, and undergoes quantum fluctuations.
The stationary states (states of definite energy) have nonzero values also in regions beyond classical turning points. When in the
ground state, a quantum oscillator is most likely to be found around the position of the minimum of the potential well, which is
the least-likely position for a classical oscillator.
For high quantum numbers, the motion of a quantum oscillator becomes more similar to the motion of a classical oscillator, in
accordance with Bohr’s correspondence principle.

7.6 The Quantum Tunneling of Particles through Potential Barriers
A quantum particle that is incident on a potential barrier of a finite width and height may cross the barrier and appear on its
other side. This phenomenon is called ‘quantum tunneling.’ It does not have a classical analog.
To find the probability of quantum tunneling, we assume the energy of an incident particle and solve the stationary Schrӧdinger
equation to find wave functions inside and outside the barrier. The tunneling probability is a ratio of squared amplitudes of the
wave past the barrier to the incident wave.
The tunneling probability depends on the energy of the incident particle relative to the height of the barrier and on the width of
the barrier. It is strongly affected by the width of the barrier in a nonlinear, exponential way so that a small change in the barrier
width causes a disproportionately large change in the transmission probability.
Quantum-tunneling phenomena govern radioactive nuclear decays. They are utilized in many modern technologies such as
STM and nano-electronics. STM allows us to see individual atoms on metal surfaces. Electron-tunneling devices have
revolutionized electronics and allow us to build fast electronic devices of miniature sizes.
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