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3.2: Blackbody Radiation

By the end of this section you will be able to:

Apply Wien’s and Stefan’s laws to analyze radiation emitted by a blackbody
Explain Planck’s hypothesis of energy quanta

All bodies emit electromagnetic radiation over a range of wavelengths. In an earlier chapter, we learned that a cooler body radiates
less energy than a warmer body. We also know by observation that when a body is heated and its temperature rises, the perceived
wavelength of its emitted radiation changes from infrared to red, and then from red to orange, and so forth. As its temperature rises,
the body glows with the colors corresponding to ever-smaller wavelengths of the electromagnetic spectrum. This is the underlying
principle of the incandescent light bulb: A hot metal filament glows red, and when heating continues, its glow eventually covers the
entire visible portion of the electromagnetic spectrum. The temperature (T) of the object that emits radiation, or the emitter,
determines the wavelength at which the radiated energy is at its maximum. For example, the Sun, whose surface temperature is in
the range between 5000 K and 6000 K, radiates most strongly in a range of wavelengths about 560 nm in the visible part of the
electromagnetic spectrum. Your body, when at its normal temperature of about 300 K, radiates most strongly in the infrared part of
the spectrum.

Radiation that is incident on an object is partially absorbed and partially reflected. At thermodynamic equilibrium, the rate at which
an object absorbs radiation is the same as the rate at which it emits it. Therefore, a good absorber of radiation (any object that
absorbs radiation) is also a good emitter. A perfect absorber absorbs all electromagnetic radiation incident on it; such an object is
called a blackbody.

Figure : A blackbody is physically realized by a small hole in the wall of a cavity radiator.

Although the blackbody is an idealization, because no physical object absorbs 100% of incident radiation, we can construct a close
realization of a blackbody in the form of a small hole in the wall of a sealed enclosure known as a cavity radiator, as shown in
Figure . The inside walls of a cavity radiator are rough and blackened so that any radiation that enters through a tiny hole in
the cavity wall becomes trapped inside the cavity. At thermodynamic equilibrium (at temperature T), the cavity walls absorb
exactly as much radiation as they emit. Furthermore, inside the cavity, the radiation entering the hole is balanced by the radiation
leaving it. The emission spectrum of a blackbody can be obtained by analyzing the light radiating from the hole. Electromagnetic
waves emitted by a blackbody are called blackbody radiation.
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Figure : The intensity of blackbody radiation versus the wavelength of the emitted radiation. Each curve corresponds to a
different blackbody temperature, starting with a low temperature (the lowest curve) to a high temperature (the highest curve).

The intensity  of blackbody radiation depends on the wavelength  of the emitted radiation and on the temperature T of the
blackbody (Figure ). The function  is the power intensity that is radiated per unit wavelength; in other words, it is the
power radiated per unit area of the hole in a cavity radiator per unit wavelength. According to this definition,  is the
power per unit area that is emitted in the wavelength interval from  to . The intensity distribution among wavelengths of
radiation emitted by cavities was studied experimentally at the end of the nineteenth century. Generally, radiation emitted by
materials only approximately follows the blackbody radiation curve (Figure ); however, spectra of common stars do follow
the blackbody radiation curve very closely.

Figure : The spectrum of radiation emitted from a quartz surface (blue curve) and the blackbody radiation curve (black curve)
at 600 K.

Two important laws summarize the experimental findings of blackbody radiation: Wien’s displacement law and Stefan’s law.
Wien’s displacement law is illustrated in Figure  by the curve connecting the maxima on the intensity curves. In these curves,
we see that the hotter the body, the shorter the wavelength corresponding to the emission peak in the radiation curve.
Quantitatively, Wien’s law reads
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where  is the position of the maximum in the radiation curve. In other words,  is the wavelength at which a blackbody
radiates most strongly at a given temperature T. Note that in Equation , the temperature is in kelvins. Wien’s displacement law
allows us to estimate the temperatures of distant stars by measuring the wavelength of radiation they emit.

On a clear evening during the winter months, if you happen to be in the Northern Hemisphere and look up at the sky, you can
see the constellation Orion (The Hunter). One star in this constellation, Rigel, flickers in a blue color and another star,
Betelgeuse, has a reddish color, as shown in Figure . Which of these two stars is cooler, Betelgeuse or Rigel?

Figure : In the Orion constellation, the red star Betelgeuse, which usually takes on a yellowish tint, appears as the figure’s
right shoulder (in the upper left). The giant blue star on the bottom right is Rigel, which appears as the hunter’s left foot. (credit
left: modification of work by NASA c/o Matthew Spinelli)

Strategy

We treat each star as a blackbody. Then according to Wien’s law, its temperature is inversely proportional to the wavelength of
its peak intensity. The wavelength  of blue light is shorter than the wavelength  of red light. Even if we do not
know the precise wavelengths, we can still set up a proportion.

Solution
Writing Wien’s law for the blue star and for the red star, we have

When simplified, this gives

Therefore, Betelgeuse is cooler than Rigel.

Significance
Note that Wien’s displacement law tells us that the higher the temperature of an emitting body, the shorter the wavelength of
the radiation it emits. The qualitative analysis presented in this example is generally valid for any emitting body, whether it is a
big object such as a star or a small object such as the glowing filament in an incandescent lightbulb.

T = 2.898 × m ⋅Kλmax 10−3 (3.2.1)
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The flame of a peach-scented candle has a yellowish color and the flame of a Bunsen’s burner in a chemistry lab has a bluish
color. Which flame has a higher temperature?

Answer

Bunsen’s burner

The second experimental relation is Stefan’s law, which concerns the total power of blackbody radiation emitted across the entire
spectrum of wavelengths at a given temperature. In , this total power is represented by the area under the blackbody radiation
curve for a given T. As the temperature of a blackbody increases, the total emitted power also increases. Quantitatively, Stefan’s
law expresses this relation as

where  is the surface area of a blackbody,  is its temperature (in kelvins), and  is the Stefan–Boltzmann constant, 
. Stefan’s law enables us to estimate how much energy a star is radiating by remotely measuring

its temperature.

A star such as our Sun will eventually evolve to a “red giant” star and then to a “white dwarf” star. A typical white dwarf is
approximately the size of Earth, and its surface temperature is about . A typical red giant has a surface temperature
of  and a radius ~100,000 times larger than that of a white dwarf. What is the average radiated power per unit area
and the total power radiated by each of these types of stars? How do they compare?

Strategy

If we treat the star as a blackbody, then according to Stefan’s law, the total power that the star radiates is proportional to the
fourth power of its temperature. To find the power radiated per unit area of the surface, we do not need to make any
assumptions about the shape of the star because P/A depends only on temperature. However, to compute the total power, we
need to make an assumption that the energy radiates through a spherical surface enclosing the star, so that the surface area is 

, where R is its radius.

Solution
A simple proportion based on Stefan’s law gives

The power emitted per unit area by a white dwarf is about 5000 times that the power emitted by a red giant. Denoting this ratio
by , Equation  gives

We see that the total power emitted by a white dwarf is a tiny fraction of the total power emitted by a red giant. Despite its
relatively lower temperature, the overall power radiated by a red giant far exceeds that of the white dwarf because the red giant
has a much larger surface area. To estimate the absolute value of the emitted power per unit area, we again use Stefan’s law.
For the white dwarf, we obtain

The analogous result for the red giant is obtained by scaling the result for a white dwarf:

 Exercise 3.2.1
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Significance
To estimate the total power emitted by a white dwarf, in principle, we could use Equation . However, to find its surface
area, we need to know the average radius, which is not given in this example. Therefore, the solution stops here. The same is
also true for the red giant star.

An iron poker is being heated. As its temperature rises, the poker begins to glow—first dull red, then bright red, then orange,
and then yellow. Use either the blackbody radiation curve or Wien’s law to explain these changes in the color of the glow.

Answer

The wavelength of the radiation maximum decreases with increasing temperature.

Suppose that two stars,  and , radiate exactly the same total power. If the radius of star  is three times that of star , what is
the ratio of the surface temperatures of these stars? Which one is hotter?

Answer

, so the star  is hotter.

The term “blackbody” was coined by Gustav R. Kirchhoff in 1862. The blackbody radiation curve was known experimentally, but
its shape eluded physical explanation until the year 1900. The physical model of a blackbody at temperature T is that of the
electromagnetic waves enclosed in a cavity (Figure ) and at thermodynamic equilibrium with the cavity walls. The waves can
exchange energy with the walls. The objective here is to find the energy density distribution among various modes of vibration at
various wavelengths (or frequencies). In other words, we want to know how much energy is carried by a single wavelength or a
band of wavelengths. Once we know the energy distribution, we can use standard statistical methods (similar to those studied in a
previous chapter) to obtain the blackbody radiation curve, Stefan’s law, and Wien’s displacement law. When the physical model is
correct, the theoretical predictions should be the same as the experimental curves.

In a classical approach to the blackbody radiation problem, in which radiation is treated as waves (as you have studied in previous
chapters), the modes of electromagnetic waves trapped in the cavity are in equilibrium and continually exchange their energies with
the cavity walls. There is no physical reason why a wave should do otherwise: Any amount of energy can be exchanged, either by
being transferred from the wave to the material in the wall or by being received by the wave from the material in the wall. This
classical picture is the basis of the model developed by Lord Rayleigh and, independently, by Sir James Jeans. The result of this
classical model for blackbody radiation curves is known as the Rayleigh–Jeans law. However, as shown in Figure , the
Rayleigh–Jeans law fails to correctly reproduce experimental results. In the limit of short wavelengths, the Rayleigh–Jeans law
predicts infinite radiation intensity, which is inconsistent with the experimental results in which radiation intensity has finite values
in the ultraviolet region of the spectrum. This divergence between the results of classical theory and experiments, which came to be
called the ultraviolet catastrophe, shows how classical physics fails to explain the mechanism of blackbody radiation.
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Figure : The ultraviolet catastrophe: The Rayleigh–Jeans law does not explain the observed blackbody emission spectrum.

The blackbody radiation problem was solved in 1900 by Max Planck. Planck used the same idea as the Rayleigh–Jeans model in
the sense that he treated the electromagnetic waves between the walls inside the cavity classically, and assumed that the radiation is
in equilibrium with the cavity walls. The innovative idea that Planck introduced in his model is the assumption that the cavity
radiation originates from atomic oscillations inside the cavity walls, and that these oscillations can have only discrete values of
energy. Therefore, the radiation trapped inside the cavity walls can exchange energy with the walls only in discrete amounts.
Planck’s hypothesis of discrete energy values, which he called quanta, assumes that the oscillators inside the cavity walls have
quantized energies. This was a brand new idea that went beyond the classical physics of the nineteenth century because, as you
learned in a previous chapter, in the classical picture, the energy of an oscillator can take on any continuous value. Planck assumed
that the energy of an oscillator ( ) can have only discrete, or quantized, values:

In Equation ,  is the frequency of Planck’s oscillator. The natural number  that enumerates these discrete energies is called
a quantum number. The physical constant  is called Planck’s constant:

Each discrete energy value corresponds to a quantum state of a Planck oscillator. Quantum states are enumerated by quantum
numbers. For example, when Planck’s oscillator is in its first  quantum state, its energy is ; when it is in the 
quantum state, its energy is ; when it is in the  quantum state, ; and so on.

Note that Equation  shows that there are infinitely many quantum states, which can be represented as a sequence {hf, 2hf,
3hf,…, (n – 1)hf, nhf, (n + 1)hf,…}. Each two consecutive quantum states in this sequence are separated by an energy jump, 

. An oscillator in the wall can receive energy from the radiation in the cavity (absorption), or it can give away energy to
the radiation in the cavity (emission). The absorption process sends the oscillator to a higher quantum state, and the emission
process sends the oscillator to a lower quantum state. Whichever way this exchange of energy goes, the smallest amount of energy
that can be exchanged is hf. There is no upper limit to how much energy can be exchanged, but whatever is exchanged must be an
integer multiple of hf. If the energy packet does not have this exact amount, it is neither absorbed nor emitted at the wall of the
blackbody.

Planck’s hypothesis of energy quanta states that the amount of energy emitted by the oscillator is carried by the quantum of
radiation, :

Recall that the frequency of electromagnetic radiation is related to its wavelength and to the speed of light by the fundamental
relation . This means that we can express Equation  equivalently in terms of wavelength . When included in the
computation of the energy density of a blackbody, Planck’s hypothesis gives the following theoretical expression for the power
intensity of emitted radiation per unit wavelength:

3.2.5

En

= nhf , wheren = 1, 2, 3, …En (3.2.4)
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where c is the speed of light in vacuum and kBkB is Boltzmann’s constant, . The theoretical formula
expressed in Equation  is called Planck’s blackbody radiation law. This law is in agreement with the experimental
blackbody radiation curve (Figure ). In addition, Wien’s displacement law and Stefan’s law can both be derived from Equation

. To derive Wien’s displacement law, we use differential calculus to find the maximum of the radiation intensity curve 
. To derive Stefan’s law and find the value of the Stefan–Boltzmann constant, we use integral calculus and integrate 

to find the total power radiated by a blackbody at one temperature in the entire spectrum of wavelengths from  to .
This derivation is left as an exercise later in this chapter.

Figure : Planck’s theoretical result (continuous curve) and the experimental blackbody radiation curve (dots).

A quantum oscillator in the cavity wall in Figure  is vibrating at a frequency of . Calculate the spacing
between its energy levels.

Strategy

Energy states of a quantum oscillator are given by Equation . The energy spacing  is obtained by finding the energy
difference between two adjacent quantum states for quantum numbers n + 1 and n.

Solution
We can substitute the given frequency and Planck’s constant directly into the equation:

Significance
Note that we do not specify what kind of material was used to build the cavity. Here, a quantum oscillator is a theoretical
model of an atom or molecule of material in the wall.

A molecule is vibrating at a frequency of . What is the smallest spacing between its vibrational energy levels?

Answer
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 Example : Planck’s Quantum Oscillator3.2.3

3.2.1 5.0 × Hz1014

3.2.4 ΔE

ΔE = −En = (n+1)hf −nhfEn+1

= hf

= (6.626 × J ⋅ s)(5.0 × Hz)10−34 1014

= 3.3 × J10−19

 Exercise 3.2.3

5.0 × Hz1014

3.3 × J10−19

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/47382?pdf


3.2.8 https://phys.libretexts.org/@go/page/47382

A 1.0-kg mass oscillates at the end of a spring with a spring constant of 1000 N/m. The amplitude of these oscillations is 0.10
m. Use the concept of quantization to find the energy spacing for this classical oscillator. Is the energy quantization significant
for macroscopic systems, such as this oscillator?

Strategy

We use Equation  as though the system were a quantum oscillator, but with the frequency f of the mass vibrating on a
spring. To evaluate whether or not quantization has a significant effect, we compare the quantum energy spacing with the
macroscopic total energy of this classical oscillator.

Solution
For the spring constant, , the frequency f of the mass, , is

The energy quantum that corresponds to this frequency is

When vibrations have amplitude , the energy of oscillations is

Significance
Thus, for a classical oscillator, we have . We see that the separation of the energy levels is immeasurably
small. Therefore, for all practical purposes, the energy of a classical oscillator takes on continuous values. This is why classical
principles may be applied to macroscopic systems encountered in everyday life without loss of accuracy.

Would the result in Example  be different if the mass were not 1.0 kg but a tiny mass of 1.0 µg, and the amplitude of
vibrations were 0.10 µm?

Answer

No, because then 

When Planck first published his result, the hypothesis of energy quanta was not taken seriously by the physics community because
it did not follow from any established physics theory at that time. It was perceived, even by Planck himself, as a useful
mathematical trick that led to a good theoretical “fit” to the experimental curve. This perception was changed in 1905 when
Einstein published his explanation of the photoelectric effect, in which he gave Planck’s energy quantum a new meaning: that of a
particle of light.
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 Example : Quantum Theory Applied to a Classical Oscillator3.2.4
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 Exercise 3.2.4
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