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4.S: Quantum Mechanics (Summary)

Key Terms

anti-symmetric function
Born interpretation

complex function

Copenhagen interpretation

correspondence principle

energy levels
energy quantum number

energy-time uncertainty principle
even function
expectation value

field emission

ground state energy

Heisenberg’s uncertainty principle

infinite square well

momentum operator

nanotechnology

normalization condition

odd function
position operator
potential barrier

principal quantum number

probability density

odd function
states that the square of a wave function is the probability density
function containing both real and imaginary parts

states that when an observer is not looking or when a measurement
is not being made, the particle has many values of measurable
quantities, such as position

in the limit of large energies, the predictions of quantum
mechanics agree with the predictions of classical mechanics

states of definite energy, often represented by horizontal lines in an
energy “ladder” diagram

index that labels the allowed energy states

energy-time relation for uncertainties in the simultaneous
measurements of the energy of a quantum state and of its lifetime

in one dimension, a function symmetric with the origin of the
coordinate system

average value of the physical quantity assuming a large number of
particles with the same wave function

electron emission from conductor surfaces when a strong external
electric field is applied in normal direction to conductor’s surface

lowest energy state in the energy spectrum

places limits on what can be known from a simultaneous
measurements of position and momentum,; states that if the
uncertainty on position is small then the uncertainty on momentum
is large, and vice versa

potential function that is zero in a fixed range and infinitely
beyond this range

operator that corresponds to the momentum of a particle

technology that is based on manipulation of nanostructures such as
molecules or individual atoms to produce nano-devices such as
integrated circuits

requires that the probability density integrated over the entire
physical space results in the number one

in one dimension, a function antisymmetric with the origin of the
coordinate system

operator that corresponds to the position of a particle

potential function that rises and falls with increasing values of
position

energy quantum number

square of the particle’s wave function
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quantum dot

quantum tunneling

resonant tunneling

resonant-tunneling diode

scanning tunneling microscope (STM)

Schrddinger’s time-dependent equation

Schrddinger’s time-independent equation
standing wave state

state reduction

stationary state
time-modulation factor

transmission probability
tunnel diode

tunneling probability

wave function
wave function collapse

wave packet

Key Equations
Normalization condition in one dimension

Probability of finding a particle in a narrow interval of position in

one dimension (z, z + dz)

Expectation value of position in one dimension

Heisenberg’s position-momentum uncertainty principle

small region of a semiconductor nanocrystal embedded in another
semiconductor nanocrystal, acting as a potential well for electrons

phenomenon where particles penetrate through a potential energy
barrier with a height greater than the total energy of the particles

tunneling of electrons through a finite-height potential well that
occurs only when electron energies match an energy level in the

well, occurs in quantum dots
quantum dot with an applied voltage bias across it

device that utilizes quantum-tunneling phenomenon at metallic
surfaces to obtain images of nanoscale structures

equation in space and time that allows us to determine wave

functions of a quantum particle

equation in space that allows us to determine wave functions of a
quantum particle; this wave function must be multiplied by a time-
modulation factor to obtain the time-dependent wave function

stationary state for which the real and imaginary parts of
P(x,t)P(x,t) oscillate up and down like a standing wave (often
modeled with sine and cosine functions)

hypothetical process in which an observed or detected particle
“jumps into” a definite state, often described in terms of the

collapse of the particle’s wave function

state for which the probability density function,

¥ (z,t)|? does
not vary in time

factor e~** that multiplies the time-independent wave function

when the potential energy of the particle is time independent

also called tunneling probability, the probability that a particle will
tunnel through a potential barrier

electron tunneling-junction between two different semiconductors

also called transmission probability, the probability that a particle
will tunnel through a potential barrier

function that represents the quantum state of a particle (quantum
system)

equivalent to state reduction

superposition of many plane matter waves that can be used to
represent a localized particle
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Summary

7.1: Wavefunctions

¢ In quantum mechanics, the state of a physical system is represented by a wave function.

¢ In Born’s interpretation, the square of the particle’s wave function represents the probability density of finding the particle
around a specific location in space.

o Wave functions must first be normalized before using them to make predictions.
o The expectation value is the average value of a quantity that requires a wave function and an integration.

7.2: The Heisenberg Uncertainty Principle

o The Heisenberg uncertainty principle states that it is impossible to simultaneously measure the x-components of position and of
momentum of a particle with an arbitrarily high precision. The product of experimental uncertainties is always larger than or
equal to f/2.

o The limitations of this principle have nothing to do with the quality of the experimental apparatus but originate in the wave-like
nature of matter.
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e The energy-time uncertainty principle expresses the experimental observation that a quantum state that exists only for a short
time cannot have a definite energy.

7.3: The Schrodinger Equation

¢ The Schrédinger equation is the fundamental equation of wave quantum mechanics. It allows us to make predictions about
wave functions.

« When a particle moves in a time-independent potential, a solution of the time-dependent Schr&dinger equation is a product of a
time-independent wave function and a time-modulation factor.

e The Schrédinger equation can be applied to many physical situations.

7.4: The Quantum Particle in a Box

o Energy states of a quantum particle in a box are found by solving the time-independent Schrddinger equation.

« To solve the time-independent SchrOdinger equation for a particle in a box and find the stationary states and allowed energies,
we require that the wave function terminate at the box wall.

o Energy states of a particle in a box are quantized and indexed by principal quantum number.

e The quantum picture differs significantly from the classical picture when a particle is in a low-energy state of a low quantum
number.

o In the limit of high quantum numbers, when the quantum particle is in a highly excited state, the quantum description of a
particle in a box coincides with the classical description, in the spirit of Bohr’s correspondence principle.

7.5: The Quantum Harmonic Oscillator

e The quantum harmonic oscillator is a model built in analogy with the model of a classical harmonic oscillator. It models the
behavior of many physical systems, such as molecular vibrations or wave packets in quantum optics.

o The allowed energies of a quantum oscillator are discrete and evenly spaced. The energy spacing is equal to Planck’s energy
quantum.

o The ground state energy is larger than zero. This means that, unlike a classical oscillator, a quantum oscillator is never at rest,
even at the bottom of a potential well, and undergoes quantum fluctuations.

o The stationary states (states of definite energy) have nonzero values also in regions beyond classical turning points. When in the
ground state, a quantum oscillator is most likely to be found around the position of the minimum of the potential well, which is
the least-likely position for a classical oscillator.

o For high quantum numbers, the motion of a quantum oscillator becomes more similar to the motion of a classical oscillator, in
accordance with Bohr’s correspondence principle.

7.6 The Quantum Tunneling of Particles through Potential Barriers

e A quantum particle that is incident on a potential barrier of a finite width and height may cross the barrier and appear on its
other side. This phenomenon is called ‘quantum tunneling.’ It does not have a classical analog.

« To find the probability of quantum tunneling, we assume the energy of an incident particle and solve the stationary Schrodinger
equation to find wave functions inside and outside the barrier. The tunneling probability is a ratio of squared amplitudes of the
wave past the barrier to the incident wave.

e The tunneling probability depends on the energy of the incident particle relative to the height of the barrier and on the width of
the barrier. It is strongly affected by the width of the barrier in a nonlinear, exponential way so that a small change in the barrier
width causes a disproportionately large change in the transmission probability.

e Quantum-tunneling phenomena govern radioactive nuclear decays. They are utilized in many modern technologies such as
STM and nano-electronics. STM allows us to see individual atoms on metal surfaces. Electron-tunneling devices have
revolutionized electronics and allow us to build fast electronic devices of miniature sizes.
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