
INTRODUCTION TO 
THE PHYSICS OF 
ATOMS, MOLECULES 
AND PHOTONS 
(BENEDICT)

Mihály Benedict
University of Szeged



Introduction to the Physics of Atoms,
Molecules and Photons



This text is disseminated via the Open Education Resource (OER) LibreTexts Project (https://LibreTexts.org) and like the hundreds
of other texts available within this powerful platform, it is freely available for reading, printing and "consuming." Most, but not all,
pages  in the library have  licenses that may allow individuals to make changes, save, and print this book. Carefully
consult the applicable license(s) before pursuing such effects.

Instructors can adopt existing LibreTexts texts or Remix them to quickly build course-specific resources to meet the needs of their
students. Unlike traditional textbooks, LibreTexts’ web based origins allow powerful integration of advanced features and new
technologies to support learning. 

The LibreTexts mission is to unite students, faculty and scholars in a cooperative effort to develop an easy-to-use online platform
for the construction, customization, and dissemination of OER content to reduce the burdens of unreasonable textbook costs to our
students and society. The LibreTexts project is a multi-institutional collaborative venture to develop the next generation of open-
access texts to improve postsecondary education at all levels of higher learning by developing an Open Access Resource
environment. The project currently consists of 14 independently operating and interconnected libraries that are constantly being
optimized by students, faculty, and outside experts to supplant conventional paper-based books. These free textbook alternatives are
organized within a central environment that is both vertically (from advance to basic level) and horizontally (across different fields)
integrated.

The LibreTexts libraries are Powered by NICE CXOne and are supported by the Department of Education Open Textbook Pilot
Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions
Program, and Merlot. This material is based upon work supported by the National Science Foundation under Grant No. 1246120,
1525057, and 1413739.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation nor the US Department of Education.

Have questions or comments? For information about adoptions or adaptions contact info@LibreTexts.org. More information on our
activities can be found via Facebook (https://facebook.com/Libretexts), Twitter (https://twitter.com/libretexts), or our blog
(http://Blog.Libretexts.org).

This text was compiled on 04/15/2025

https://libretexts.org/
https://www.nice.com/products
mailto:info@LibreTexts.org
https://facebook.com/Libretexts
https://twitter.com/libretexts
http://blog.libretexts.org/


1 https://phys.libretexts.org/@go/page/52608

TABLE OF CONTENTS

Licensing

Introduction
1: Wave-corpuscular duality of photons and massive particles
2: Basic concepts of quantum mechanics
3: Angular momentum in quantum mechanics
4: Atomic spectra, simple models of atoms
5: Spin and the fine structure
6: Many-body problems, systems of identical particles
7: Molecular structure and spectra
8: Bose Einstein Condensation
9: Elements of Coherent atom field interactions
10: Atoms in Strong Fields
11: Photons: quantization of a single electromagnetic field mode
12: A quantum paradox and the experiments

Index

Glossary

Detailed Licensing

Bibliography

https://libretexts.org/
https://phys.libretexts.org/@go/page/52608?pdf
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/00:_Front_Matter/04:_Licensing
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/01:_Chapters
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/01:_Chapters/1.01:_New_Page
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/01:_Chapters/1.02:_New_Page
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/01:_Chapters/1.03:_New_Page
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/01:_Chapters/1.04:_New_Page
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/01:_Chapters/1.05:_New_Page
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/01:_Chapters/1.06:_New_Page
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/01:_Chapters/1.07:_New_Page
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/01:_Chapters/1.08:_New_Page
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/01:_Chapters/1.09:_New_Page
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/01:_Chapters/10:_Atoms_in_Strong_Fields
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/01:_Chapters/11:_Photons:_quantization_of_a_single_electromagnetic_field_mode
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/01:_Chapters/12:_A_quantum_paradox_and_the_experiments
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/zz:_Back_Matter/10:_Index
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/zz:_Back_Matter/20:_Glossary
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/zz:_Back_Matter/30:_Detailed_Licensing
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/zz:_Back_Matter/Bibliography


1 https://phys.libretexts.org/@go/page/65389

Licensing
A detailed breakdown of this resource's licensing can be found in Back Matter/Detailed Licensing.

https://libretexts.org/
https://phys.libretexts.org/@go/page/65389?pdf
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/00%3A_Front_Matter/04%3A_Licensing
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/zz%3A_Back_Matter/30%3A_Detailed_Licensing


1

CHAPTER OVERVIEW

Introduction
These lecture notes have been prepared to give an introduction into the foundations of atomic and molecular physics with an
emphasis on the interaction of these atomic systems with light, and in more general, with electromagnetic fields. The character of
the material is theoretical, and wishes to rely on theoretical mechanical and electrodynamical studies of the students, which is a
prerequisite of being able to follow the material presented here. This is an advanced course for BSc students. In spite of the
theoretical approach based on mathematical argumentations, we tried to connect the material with experimental observations.
These short notes, however cannot be considered as a replacement of courses where deeper experimental insight should be
gathered.

There are several problems ( ~50) embedded in the text, and their solution is strongly recommended for the students. In view of the
author this is a necessary condition for getting a reliable knowledge of the subject, as is the case with any other physics subject.
The electronic form made it possible to include animations which may significantly improve the level of understanding, as it
enabled us to couple demonstrations and interactive animations to the material which should make more easy the understanding of
the rather abstract notions and laws of atomic physics. These are – as it is usual in physics – quantitative relations, the true depth
and content of which can only be understood in the language of mathematics. This difficult task is intended to be promoted by the
included multimedia materials. The animations can be started by clicking on the links in the tables, which visualize the problems in
question.

The theory of atomic and molecular physics is not an easy subject, but modern technology is based more and more on the laws and
properties of micro-world, so it seems necessary to understand the most important rules and methods of this field of a physics
student.

1: Wave-corpuscular duality of photons and massive particles
2: Basic concepts of quantum mechanics
3: Angular momentum in quantum mechanics
4: Atomic spectra, simple models of atoms
5: Spin and the fine structure
6: Many-body problems, systems of identical particles
7: Molecular structure and spectra
8: Bose Einstein Condensation
9: Elements of Coherent atom field interactions
10: Atoms in Strong Fields
11: Photons: quantization of a single electromagnetic field mode
12: A quantum paradox and the experiments

This page titled Introduction is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Mihály Benedict via source
content that was edited to the style and standards of the LibreTexts platform.
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1: Wave-corpuscular duality of photons and massive particles

In this chapter we review the main experimental results showing the dual behaviour of light. In the last section the concept of
probability amplitude playing a keyrole in quantummechanics is introduced

Elements of classical mechanics, interference of light. Elements of calculus and probability theory. The concept of probability
distribution.

The double slit experiment with light
The nature of light, whether it consists of corpuscles or is it a wave of an unidentified medium, called ether, intrigued scientists for
a long time before the beginning of the 20th century, and there was a long standing dispute between the two views. A seemingly
final solution came along with the numerous interference experiments in the beginning of the 19th century performed by Thomas
Young, Augustine Fresnel and others, which had shown the wave nature of light. Here we present the double slit experiment of
Young. It is interesting that about a 100 years later in 1909 Geoffrey Taylor repeated the experiment with a very weak beam that
resulted in the same fringes after a sufficiently long time.

Figure 1.1: The double slit experiment of Young. Secondary light waves emerging from the two slits show interference fringes on
the screen along the x direction. This was considered for a long time as the proof of the wave nature of light.

The photon hypothesis
It turned out however, that nature is more complicated than simple man’s imagination. The first step towards a deeper
understanding of what light is was done by Max Planck in 1900. In order to explain correctly the spectral distribution of radiation
emitted from a hot body like the sun, or a heated piece of iron, he had to assume that light waves emerging from the body took up
energy from it in quanta. The smallest amount of quantum is determined by the frequency  of the emitted light and a universal
constant h so that a single quantum has

 (1.1)

energy, where the requirement to be in agreement with the experimental observations determined the value of

 (1.2)

 Objectives

 Prerequisites

ν

ε = hν

h = 6.63 × Js10−34
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called the Planck constant. This is an extremely small value therefore even for visible light the energy of a single quantum is only
of the order of 10 J, that is why we do not observe this granular property of light.

Figure 1.2: Schematic drawing demonstrating the photoelectric effect. http://hyperphysics.phy-astr.gsu.edu/hbase/mod1.html

The next fundamental step was when A. Einstein extended Planck’s ideas to the explanation of the photoelectric effect discovered
by Hallwachs and Stoletov and studied in detail by P. Lenard and Herz. If light falls on the surface of a metal, it becomes positively
charged. The reason for this is that electrons i.e. negatively charged particles called photoelectrons are emitted from the surface of
the metal. On the details of this phenomenon we refer here to courses of experimental physics. The observations were explained by
Einstein, by the assumption that the electrons in the metal absorb the energy of the light field in quanta. Following the idea of
Planck, Einstein assumed that the energy of a single light quantum is

 (1.3)

where  is the frequency of the light, h is Planck’s constant. A frequently used notation is

 (1.4)

and with the angular frequency  we can write Einstein’s relation as

ε = ℏω (1.5)

which is used more often is theoretical physics. The energy quantum of light obtained the name photon. The kinetic energy of the
emitted electrons is given by the following equation:

 (1.6)

where W  – called “work function” – is the energy needed to extract the electron from the metal, which is characteristic for the
metal. If  is smaller than W , there is no electron emission. For alkaline metals Na, Cs even visible light shows the effect, while
for most metals the threshold frequency determined by  falls into the ultraviolet region.

The assumptions of Einstein were proven exactly later by experiments of Millikan in the photoelectric effect. The value of E  can
be determined by the countervoltage U  given to the electrode registering the electrons. The value of q U  – where q  is the
electron’s charge – that stops the electrons gives W . Eq. (1.6) is Einstein’s photoelectric equation, which can be proven plotting U
versus the light frequency .

−19

ε = hν

ν

ℏ = h

2π

ω = 2πν

= hν −Ekin Wa

a
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ν
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Figure 1.3: Plotting countervoltage U  versus the light frequency .

The photoelectric effect can be investigated with this simulation. A virtual experiment can be performed to determine the
Planck-constant and the “work function” W .

http://www.walter-fendt.de/ph14e/photoeffect.htm

Photon momentum
According to Einstein the photons must posses not only energy but momentum, as well: A light quantum with frequency , whose
wavelength in vacuum is , has momentum

 (1.7)

where k̂ is a unit vector pointing in the direction of the propagation of light field which is assumed to be a monochromatic plane
wave,  is the vector called wave-number with absolute value . This value of p is in accordance with the
fundamental relation of relativity, valid for any particle of rest mass m :

 (1.8)

assuming that the photon’s rest mass is m =0.

The Compton effect
Among the several evidences of the photon hypothesis a very important one is the Compton effect, which is seen in figure 1.4. In
this experiment, performed by Arthur Compton, an X ray of wavelength  falls on a sample and ejects electrons from it. There
appear also a secondary X ray, whose wavelength  and direction, given by the angle φ is different from the original one. These
can be measured by the experiment shown in the figure 1.4.

0 ν

 Animation
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Figure 1.4: Experimental setup for the Compton scattering experiment.

We can consider the effect as the scattering of the photon on the electron where both of them are classical point-like objects. The
conservation of energy and momentum requires:

 (1.9)

Here  is the rest energy of the electron,  and  are the energy and momentum of the electron after the collision

 (1.10)

according to the relativistic formulas.

Figure 1.5: The X ray photon approaching from the left is scattered on the electron.

Both of them are treated as classical point-like objects From the three equations above, and using  we get with some
algebra the result

 (1.11)

(Strictly speaking the result is valid for free electrons in rest. In the experiments the electrons are set free from atoms, where they
have some negative binding energy, but this can be neglected compared to other energies occurring here.) The expression above
connects the change of the wavelength of the X ray photon during the scattering and the scattering angle φ. Compton’s experiments
approved the theoretical result. The length

 (1.12)

is called the Compton wavelength of the electron. Note that sometimes the value  is called the Compton
wavelength.

h +ν0 E0

hν0

c

0

= h +νs Ee

= cosφ+ cosϑ
hνs

c
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= sinφ− sinϑ
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=E0 mec
2 Ee pe

= , =Ee
mec2

1− /v2 c2√
pe

vme

1− /v2 c2√

ν = c/λ
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Study the Compton effect with the animation on the page and answer the questions appearing there.

http://physics.bu.edu/~duffy/semeste...5_compton.html

According to these experiments the electromagnetic field can manifest itself of being of discrete nature, and for a given frequency
and direction of propagation, it interacts as a particle with atomic matter with the corresponding energy and momentum.

Probability waves for massive particles
After the photon hypothesis had proven to be true, many physicists tried to reconcile the two views, how it is possible that light
behaves as a kind of a wave, whereas it consists of quanta or particles that have energy and momentum. While these attempts were
not successful, another view emerged. L. de Broglie a French physicist set up the hypothesis that perhaps the behaviour of the
electrons in atoms can be explained, if one assumes that electrons – that were known to be massive particles and possessing well
defined negative charge – might also behave like waves. Later on, this assumption was proven experimentally by G. P. Thomson,
and independently by Davisson. The property that an electron just like photons can behave either as a particle or as a wave is called
duality. This very unexpected property was resolved by Max Born in 1926 by purely theoretical arguments. But before explaining
Born’s idea, let us turn to an experiment revealing explicitly the duality property. This is the famous double slit experiment – one of
the most interesting experiments in physics – first performed with electrons by Clauss Jönsson in 1961 and popularized later by
Akira Tonomura.

The experiment seen in Fig. 1.6 was first performed by Clauss Jönsson in 1961. A famous variant of the experiment was done
by Akira Tonomura, he made the result visibly available, the video of which is shown here.

http://titan.physx.u-szeged.hu/~mmqu...eslitTono.mpeg

Looking at the experiment in more detail, it turns out that the picture is formed by individual pointlike impacts of particles, as it is
seen in the sequence of figure 1.6. A result definitely different from the case of water waves.

 Animation

 Animation
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Figure 1.6: Result of the double slit experiment with electrons. Sequence of figures a, b, c, d, e shows the electrons reaching the
screen with increasing exposition time. The interference pattern is formed by individual pointlike impacts of the particles. To
understand the wavelike behaviour of quantum particles it is necessary to introduce a probabilistic
interpretation.http://commons.wikimedia.org/wiki/Fi...Tanamura_2.jp

This extraordinarily surprising phenomenon can be explained with the fundamental concept of quantum mechanics: called the
probability amplitude. We shall consider only one of the coordinates, the x coordinate which is perpendicular to the fringes seen
on the screen where the particles are detected. We do not know exactly what was the state of the particle before arriving at the
screen. This state will be denoted by . But we know that after falling on the screen we realize that it is at a place say x . This event
will be characterized by a complex number to be denoted by . So to each x we attribute a complex number .
Considering all the possible x values we get a function of x, which is a complex valued function of the real variable – the position
of the particle – x:

 (1.13)

This function will be used to characterize the state of the particle, and this function is called the coordinate wave function. The
important law of quantum mechanics is that the probability of finding the particle around x in a small interval dx is . In
the language of probability theory,  is the probability density function of the coordinate of the particle which is a random
variable. So we have

 (1.14)

In quantum mechanics we use the notation  for the probability distribution. The probability of finding it at a point x in the
interval  is given by:

 (1.15)

which is valid for arbitrary . The probability of finding the particle somewhere on the real axis must be 1, therefore:

ψ 1
⟨ ∣ ψ⟩x1 ⟨x ∣ ψ⟩

⟨x ∣ ψ⟩ = ψ(x)

|ψ(x) dx|2

|ψ(x)|
2

|⟨x ∣ ψ⟩ = |ψ(x) = (x)ψ(x) =: ρ(x) ≥ 0|2 |2 ψ∗

ρ(x)

< x <x1 x2

P ( < x < ) = |ψ(x) dx = ρ(x)dxx1 x2 ∫ x2

x1
|2 ∫ x2

x1

<x1 x2
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 (1.16)

Accordingly the wave function describing a particle must be such that the integral of its absolute value square between −∞ and ∞
should give 1.

The interference pattern seen in Fig 1.6 can be explained by the rules of quantum mechanics, as we shall do it in the following. The
particle which was assumed to be in a state ψψ can arrive to the first slit on the screen, and this state, i.e. particle in the first slit will
be denoted by . The corresponding amplitude is then . Continuing its path it arrives somewhere to the second screen,
where it is registered at the point x. The amplitude corresponding to this second part of its way is . The total amplitude
belonging to the process that the particle arrives at xx through slit 1 is the product of the two amplitudes .
Similarly, the amplitude of the other possible path of the particle, that it went through slit 2 before arriving at x is ,
where  is the state of the particle, when it is at the second slit. The total amplitude is the sum of the amplitudes of the two
possible paths.

 (1.17)

where , . These latter amplitudes have been set to be two (complex) numbers instead of functions,
because we have assumed here that the slits are small, and we need not distinguish between the different positions within the slits.
What small means, will become more definite a little later. The sum of the amplitudes above is the superposition of the two
possibilities. The probability of finding the particle at position xx is the absolute value square of the sum of the two possible
amplitudes:

 (1.18)

The interference appears because of the last term. There will be places where the particles arrive with a small probability, these will
be the dark fringes, whereas there will be places where the detection probabilities are large. Quantum mechanics gives the explicit
form of the two functions  and , but we will not deal with this here.

We cannot tell which of the slits the particle went through, the interference pattern is the witness that it went simultaneously
through both. It can be shown, that if we try to detect somehow which path the particle has taken, then a successful detection will
destroy the interference pattern, so we cannot see simultaneously the interference pattern and distinguish between the two ways the
particle went along. The same experiment has been performed with particles larger than electrons, like neutrons, atoms, small
molecules. More recently the effect was demonstrated with the molecular object called fullerene, consisting of 60 Carbon atoms.

We did not emphasize so far, but it is important that the amplitude, i.e. the wave function depends also on time. If we wish to make
use of time dependent wave functions we will denote it by a capital Greek letter: . How does such a function look in any
concrete case? This depends on the physical situation in question, and one of the important problems of quantum mechanics is to
find the form of this function. In general we have to prescribe the property of square integrability with respect to x, because for any
fixed value of the time variable t  is the probability density of the coordinate of the particle. This interpretation of the
wave function was first given by Max Born. Accordingly:

 (1.19)

at any time instant. We say then that  is normalized to unity. This requirement will be (i) refined later and (ii) will
necessitate certain prescriptions on how the wave function should depend on the time variable.

If we wish to give the position of the particle in three dimensional space, instead of the line, then the wave function shall depend on
all three coordinates of the points in space: . Here the random variable will be the position vector of the
particle. The probability density is then the function , for which the normalization is prescribed in three dimensions.
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Figure 1.7:

Coming back to one dimension, a frequently used wave function (real in this specific case) for a particle localized more or less
around the origin is  at a given instant, where σ  is a constant independent of x, while  is a normalization
factor. The corresponding probability density is . Its integral along the real axis must give 1, this is
the condition that determines the factor . As it is known from probability theory, this is the probability density of the so called
standard normal, or Gaussian distribution function, if .

Show that the normalization factor in .

According to what we said before, the function can depend on time as well, so that instead of σ  we can have a time dependent
σ(t) in it, and then of course (\mathcal{N}\) will be also time dependent. Besides the Gaussian wave function above there are
many other possibilities depending on the physical problem in question.

Later on, we shall consider in detail the problem of the dynamics of the state, which means we shall consider how the state, i.e.
the wave function changes with time given a force or a potential acting on the particle.

Investigating the photoeffect with a photocell where the cathode is covered by Cesium the electrons are stopped if the voltage
is larger than 0.33V for a light wave of wavelength 546nm, while the corresponding value for 365nm is 1.46V. Derive the
value of Planck’s constant from these results. What is the work function of Cesium? How much is the stopping voltage using
light of 436nm? What is the threshold wavelength producing electron emission?

Estimate the cost of one green photon in the case of a traditional 100W light bulb working with 5% efficiency, and switched on
for 1 second.

Derive the result

 (1.20)

for Compton scattering using the equations expressing conservation of energy and momentum:

ψ(x) = N e− /4x2 σ2
0 0 N

|ψ(x) =: ρ(x) =|2 N
2
e− /2x2 σ2

0

N

N = (2π )σ2 −1/4

 Problem 1.1

|ψ(x) =: ρ(x) =  is N =|2 N
2
e− /2x2 σ2

0 (2π )σ2 −1/4

0

 Problem 1.2

 Problem 1.3

 Problem 1.4
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 (1.21)
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2: Basic concepts of quantum mechanics

In this chapter we introduce the Schrödinger equation, the dynamic equation describing a quantummechanical system. We
discuss the role of energy eigenvalues and eigenfunctions in the process of finding it’s solutions. Through the problem of linear
harmonic oscillator the way one solves quantum mechanical problems is demonstrated. Finally the expectation value and the
variance of an operator is discussed.

Elements of differential equations, and the material of Chapter 1. The classical equations of motions. The classical harmonic
oscillator.

The Schrödinger equation
As we have seen in the previous section, the state of a particle in position space is described by a wave function  in one, or 

 in three dimensions. This is a probability amplitude, and  is the probability density of finding the particle
somewhere in space around the position given by the vector r. It was Erwin Schrödinger who wrote up the equation, the solutions
of which gives us the concrete form of the function. His fundamental equation is called the time dependent Schrödinger equation,
or dynamical equation, and has the form:

 (2.1)

To simplify the treatment we consider in this subsection the one dimensional motion along the x axis:

 (2.2)

Figure 2.1:

In quantum mechanics the right hand side of the Schrödinger equation is written shortly as , so (2.2) can be written as

 (2.3)

This notation has a deeper reason, which is explained here shortly. The operation  can be considered
as a transformation of the function , and the result is a another function of x and t. This means that the right hand side is a
(specific) mapping from the set of functions to give again a function. The mapping is linear, and

 (2.4)

is a linear transformation or linear operator, as it is called in quantum mechanics. The operator in question  is called the
operator of the energy, that bears the name the Hamilton operator or the Hamiltonian for short. Later on, besides  we shall
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encounter other types of linear operators, corresponding to physical quantities other than the energy. The form (2.4) of the
Hamiltonian is used for the specific problem of a particle moving in one dimension x, where the external force field given by the
potential energy function . For other problems the expression of the Hamiltonian is different, but the dynamical equation in
the form (2.3) is the same. This is like in classical mechanics where the equation of motion for one particle is always  but ,
the force depends on the physical situation in question. In quantum mechanics the Schrödinger equation replaces Newton’s
equation of motion of classical mechanics which shows its fundamental significance.

We enumerate here a few important properties of the equation (2.2), or equivalently those of eq. (2.3):

It is a linear equation, which means that if  and  are solutions of the equation, then linear combinations of the
form  will be also a solution, where  and  are complex constants. The summation can be extended to infinite
sums, (with certain mathematical restrictions). Linearity is valid, because on both sides of the equation we have linear
operations, derivations and multiplication with the given function .
Another important property is that the equation is of first order in time. Therefore if we give an initial function at 
depending only on x: , then by solving the equation we can find – in principle – a unique solution that
satisfies this initial condition. There are of course infinitely many possible solutions, but they correspond to different initial
conditions. The time dependence of the wave function from a given initial condition is called time evolution.
The equation conserves the norm of the wave function, which means that if  obeys (2.2), then the integral of the position
probability density with respect to x is constant independently of t. Specifically, if this integral is equal to 1 at t , then it remains
so for all times.

 (2.5)

In other words the normalization property remains valid for all times. This property is called unitarity of the time evolution. The
proof of this statement is left as a problem.

Using (2.2) prove that the time derivative of the normalization condition is zero, which means the validity of (2.5).

Stationary states

Specific solutions of eq. (2.2) can be found by making the "ansatz" (this German word used also in English math texts, and means
educated guess), that the solution is a product of two functions

 (2.6)

where  depends only on time, while  is a space dependent function. This procedure is called separation. Not all the
solutions of Eq. (2.2) have this separated form, but it is useful to find first these kind of solutions. Substituting back the product
(2.6) into (2.2), we find

 (2.7)

Dividing by , we get:

 (2.8)

As the function on the left hand side depends only on time, while the one on the right hand side depends only on xx, and they must
be equal for all values of these variables, this is possible only if both sides are equal to a constant independent of x and t. It is easy
to check that the constant has to be of dimension of energy, and will be denoted by ε. We get then two equations. One of them is

 (2.9)

with the solution

 (2.10)

where C is an integration constant.

The other equation takes the form:
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 (2.11)

We recognize that on the left hand side we have now again the operator  acting this time on :

 (2.12)

This is a so called eigenvalue problem: the effect of the operator is such that it gives back the function itself multiplied by a
constant. As the operator here is the Hamiltonian, i.e. the energy operator, (2.12) is an energy eigenvalue equation. Sometimes it
is also called the (time independent) Schrödinger equation, but we shall not use this terminology.

This simple gif animation tries to visualize the concepts of eigenvectors.

http://upload.wikimedia.org/Wikipedia/commons/0/06/Eigenvectors.gif

Drag each vector until the coloured parallelogram vanishes. If you can do this for two independent vectors, they form a basis of
eigenvectors and the matrix of the linear map becomes diagonal, that is, nondiagonal terms are zero. This is impossible for
some of the initial matrices—try them all. When you have found an eigenvector, check that it can be prolonged in its own
direction while remaining an eigenvector; it is interesting to keep an eye on the matrix at the same time.

http://demonstrations.wolfram.com/EigenvectorsByHand/

It is important to stress here that Eq. (2.11) must be considered together with certain boundary conditions to be satisfied by the
solutions  at the boundaries of their domain. In other words the boundary conditions are parts of the notion of the differential
operator  in (2.11). The boundary conditions can be chosen in several different ways, and in general, physical considerations are
used to choose the appropriate ones. In other words among the solutions of (2.11) one has to select those special ones where 
obeys the boundary conditions which is usually possible only for certain specific values of ε. The functions  obeying the
equation with the given boundary conditions are called the eigenfunctions of  belonging to the corresponding energy eigenvalue
ε: .

According to the separation condition all the functions of the form

 (2.13)

will be the solutions of the Schrödinger equation (2.2). The allowed energy eigenvalues εε, selected by the boundary conditions can
be discrete, then they are usually labeled by integers , but they can also be continuous. In the latter case one finds
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(x, t) = (x)ψε uε e−iεt/ℏ

(n = 1, 2, ⋯)εn

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://phys.libretexts.org/@go/page/50554?pdf
http://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
http://upload.wikimedia.org/Wikipedia/commons/0/06/Eigenvectors.gif
http://upload.wikimedia.org/Wikipedia/commons/0/06/Eigenvectors.gif
http://demonstrations.wolfram.com/EigenvectorsByHand/


2.4 https://phys.libretexts.org/@go/page/50554

proper solutions for all ε-s within a certain energy interval. It can be easily shown that the physically acceptable solutions must
belong to real energy eigenvalues.

Show that the normalization condition allows only real values of ε.

In general, there are infinitely many solutions of the form (2.13), but they do not exhaust all the solutions. As the Hamiltonian, as
well as the Schrödinger-equation are linear, appropriate linear combinations of the specific solutions (2.13) also obey the
Schrödinger equation, and have the general form:

 (2.14)

Here the complex numbers cncn and the complex function  are arbitrary, the only condition is that the resulting  must
be normalizable, i.e. they must be such that the condition  must hold.

It can also be shown – although this is usually far from simple – that for physically adequate potential energy functions, or 
operators, all the solutions of (2.2) can be written in the form as given by (2.14).

The solutions  of the form (2.13) are seen to be specific in the sense that they contain only a single term from the sum or
integral in (2.14). Therefore the probability distributions corresponding to these solutions:  do not depend on
time, while the wave functions i.e. the probability amplitudes are time dependent. These wave functions, and the corresponding
physical states are called stationary states. According to (2.14) a general solution can be obtained by an expansion in terms of the
stationary states.

The set of all eigenvalues is called the spectrum of the  operator, or the energy spectrum. Note that this terminology is different
from the notion of the spectrum in experimental spectroscopy, but – as we will see – they are related to each other. In experimental
spectroscopy an energy eigenvalue is called a term, and the spectrum seen e.g. in optical spectroscopy is the frequency
corresponding to energy eigenvalue differences. The energy eigenfunctions belonging to given eigenvalues can be identified with
the stationary states (orbits) postulated by Bohr. Therefore the existence of stationary states is the quantum mechanical proof of
Bohr’s first postulate. In addition QM also gives us the method how to find the energies and wave functions of the stationary states.

Now we shall introduce the following important property of the eigenfunctions of . It can be proven, that the integral of the
product  of eigenfunctions belonging to different eigenvalues  vanishes , where the
limits of the integration is taken over the domain of the eigenfunctions, usually between  and . This property is called
orthogonality of the eigenfunctions. If we also prescribe the normalization of the eigenfunctions, which can be always achieved by
multiplying with an appropriate constant, we can write

 (2.15)

where  is Kronecker’s symbol. Both orthogonality and normalization is taken together here, and we say therefore that the
eigenfunctions are orthonormal.

There is a little more complicated but important point here. It may turn out, that one finds several linearly independent solutions
of (2.11) with one and the same ε. Let the number of these solutions belonging to ε be . We say that ε is  times degenerate. It
can also be proven that among the degenerate solutions there are orthogonal ones whose number is . We can write this in the
following way:

 (2.16)

where  means the k-th solution belonging to a given .

Show that the probability density obtained from the linear combination of two stationary states belonging to different energy
eigenvalues depends on time. What is the characteristic time dependence of this probability density?
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An example: the linear harmonic oscillator
This is a very important system both in classical and in quantum physics, so besides demonstrating the way one solves quantum
mechanical problems, it has far reaching applications in all branches of theoretical physics

The potential energy is , and the eigenvalue equation is

 (2.17)

where 

It will be useful to introduce the dimensionless coordinate ξ and the dimensionless energy ϵ by the relations:

 (2.18)

We obtain from (2.17)

 (2.19)

We first find the asymptotic solution of this equation. For large values of  we have , with the approximate

solution . (The term  will dominate over  for large ) The other possibility  must be omitted, because it
is not square integrable, so it is not an allowed function to describe a quantum state.

The exact solutions of (2.19) are to be found in the form

 (2.20)

where  is a polynomial of . Substituting this assumption into 2.19, we get the equation

 (2.21)

This is known as the differential equation for the Hermite polynomials. Looking for its solution as a power series ,
we find that the coefficients have to obey the recursion condition

 (2.22)

Derive (2.21) from the assumption (2.20) and (2.19). Derive the recursion formula, for the coefficients of the power series.

In case the series would be an infinite one, for large k-s we would have , which is obtained by keeping only the
highest order terms in k on both sides. This recursion relation is, however, the property of the series of  which would lead to a
non square integrable function as the asymptotic form of u would then be again . Therefore the sum determining 

 must remain finite, and so it has to terminate at a certain integer power, we shall denote it by . This means that all the
coefficients higher than  are zero, and in particular:

 (2.23)

In other words  is a polynomial of degree , and the condition  requires then that all the coefficients 
 so the polynomials are either even or odd, depending on . In view of 2.23 we get 2.22 that 

, or .

To summarize the result the eigenvalue equation has square integrable solutions only if

 (2.24)

where  is called the vibrational quantum number. The possible energy values of the harmonic oscillator are equidistant with the
separation . The lowest energy for ,  is not zero, but equals half of the level separation. ε  is called zero-
point energy.

The corresponding eigenfunctions are

 (2.25)
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where  -s are polynomials of degree , called Hermite polynomials, and -s are normalization coefficients. The square
integrability is ensured by the exponential factor. For the highest nonvanishing coefficient of , which is not determined by the
recursion, the convention is to set .

Figure 2.2: Energy eigenfunctions of the linear harmonic oscillator.

Determine the first 3 Hermite polynomials

It can be shown that the  eigenvalues are nondegenerate, so the eigenfunction  is unique (up to a constant factor). The
eigenfunctions have also the important property of being orthonormal:

 (2.26)

The general time dependent solutions of the problem of the harmonic oscillator are of the form:

 (2.27)

where the cvcv coefficients are complex constants, obeying the normalization condition . They are determined by
the initial condition

 (2.28)

according to the orthonormality condition.

This animation shows the time evolution of the simple harmonic oscillator if it is initially in the superposition of the ground
state  and the  state.

http://titan.physx.u-szeged.hu/~mmquantum/videok/Harmonikus_oszcillator_szuperpozicio_0_1.flv

This interactive animation gives us a tool to play with the eigenfunctions of the linear harmonic oscillator. We can construct
different linear combinations of the energy eigenfunctions and study their evolution in time.
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http://titan.physx.u-szeged.hu/~mmquantum/download.php?download_file=HarmonikusOszcillatorIdofuggoSzuperpozicio.nbp

Expectation values and operators

The wave function gives the probability distribution of the position of a particle with the property (2.5). According to probability
theory the expectation value or mean value of the position of the particle moving in one dimension is given by

 (2.29)

the reason of writing capital  will be seen below. We did not put the limits deliberately in the second definite integral. In what
follows, if the limits are not shown explicitly, then the integration always goes from  to , in one dimension, and over the
whole three dimensional space in three dimensions. Therefore in an analogous way for a three-dimensional motion we can define
the expectation value of the radius vector as

 (2.30)

which actually means three different integrals for each component of . Now assume that the particle moves in an external force
field given by the potential energy . If we know only the probability distribution and not the exact value of the particles
position we cannot speak either about the value of the potential energy but only about its probability distribution. The expectation
value of the potential energy is

 (2.31)

Note that the expectation value depends on the wave function, i. e on the physical state of the system, in which the quantities are
measured. The general expectation value of a measurable quantity,  (which is called sometimes as an observable), is defined as,

 (2.32)

where (\hat{A}\) is the operator corresponding to the physical quantity. An operator in the present context is an operation that
transforms a square integrable function to another function. According to (2.29) the  operator corresponding to the coordinate
multiplies the the wave function with the coordinate x.

 (2.33)

Or more generally in three dimensions:

 (2.34)

We may raise the question, what is the operator of the other fundamental quantity, momentum . It turns out that the corresponding
operator is the derivative of  multiplied by the factor , or equivalently by  :

 (2.35)

 (2.36)

Then according to the general rule 2.32 we have in one dimension

 (2.37)

A justification of this statement is left to the next series of problems

Using the Schrödinger equation 2.2 prove that with the definitions above one has (in one dimension)

 (2.38)

Hints:

Show that the time derivative of the expectation value of the coordinate can be calculated as

 (2.39)
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Rewrite the integrand as , and assuming that  goes to zero at  argue

that only the last term contributes to the result.

Show that the expectation value of  is real.

An operator  is called a self-adjoint or (Hermitian) if the following property holds for square integrable functions  and 

 (2.40)

Show that the components of  and  are selfadjoint.

Show that the expectation value of a selfadjoint operator is real.

Noncommutativity of  and  operators
The fact that in quantum mechanics the coordinate and momentum are represented by operators – and they have the form we have
given above – implies that their action on a wave function  will give different result if they act on it in a different order:

 (2.41)

or written in another way:

 (2.42)

for any function. This means that the action of the two operators are different, if they are taken in the reverse order, so this pair of
operators is noncommutative. It is easily seen, that the same is true for Y and  and for  and , while say  and  do
commute, because the partial derivation by y gives zero for x. Similarly the components of  among themselves as well as the
components of  among themselves commute with each other. Introducing the notation

 (2.43)

which is called the commutator of the operators  and , we see that the commutator vanishes if the operators commute, and it
is nonzero if this is not the case. To summarize we write down here the following canonical commutation relations:

 (2.44)

From the operators of the coordinate and the momentum we can build up other operators depending on these quantities. The rule is
that in the classical expression of a function of  and  we replace them by the corresponding operators. We will see for instance
that the operator of orbital angular momentum , and the operator of energy in a conservative system is 

 in agreement with the definition given in (2.4)
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Non commutativity arise also in case of matrix multiplication. This demonstration shows non commutativity in case of special
2×22×2 complex matrices, the so called Pauli matrices.

http://demonstrations.wolfram.com/PauliSpinMatrices/

Variance of an operator
There is an important number characterising a probability distribution, which is the property showing how sharp the distribution is.
A measure of this property can be obtained, if we take the measured values of the random variable in question, and consider a mean
value of certain differences between the measured values and the expectation value. As an example we consider again the one
dimensional coordinate x. Taking the expectation value of the simple differences between the measured values and the expectation
yields no information, as this gives zero in cases of all possible distributions due to the identity: 

. A good measure is therefore to take the expectation value of the square of the

differences from the expectation value, i.e. the quantity:

 (2.45)

which is called the variance of x, and which is the usual definition in probability theory, with a probability density .
We shall also call this the variance of the operator  in the state . The latter terminology is due to the reformulation of the above
definition as:

 (2.46)

or in general for any linear and selfadjoint operator (2.32).

 (2.47)

The variance is also called the second central moment of the probability distribution. The square root  is

called the root mean square deviation of the physical quantity  in the state given by . We can rewrite this formula in two
different ways. First it is simply seen that

 (2.48)

because \(\langle\hat{A}\rangle_{\psi}/) is already a number. An important statement follows if we write

 (2.49)

Based on this formula, we can simply answer the question: what kind of wave functions are those, where we can measure the
quantity corresponding to  with zero variance, i.e. with a value which is always the same? In order to have  the
integral in the last expression must be zero. But as it is an integral of a squared absolute value being nonnegative everywhere, it can

be zero if and only if , or stated otherwise, if and only if

 (2.50)

Any function obeying this equation is called the eigenfunction of the operator . In the form above this equation has only a
principal significance and in most cases knowing the operator, the eigenfunctions are not known a priori. Therefore the problem is
usually to determine the eigenvalues and the eigenfunctions of  from the equation:

 (2.51)

This was the case above, in particular, for the Hamilton operator in (2.12).
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∗
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Show that the expectation value of  in the state given by the normalized , is just α.

An important theorem shows that the product of variances of two noncommuting operators has a lower bound, which is generally
positive. In the case of the coordinate and momentum operators it takes the form

 (2.52)

for any wave function , and a similar inequality holds for the other two  components. The mathematical proof of the
inequality, which is called customarily as Heisenberg’s uncertainty relation, will not be given here

This page titled 2: Basic concepts of quantum mechanics is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Mihály Benedict via source content that was edited to the style and standards of the LibreTexts platform.

 Problem 2.10
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3: Angular momentum in quantum mechanics

In this chapter we discuss the angular momentum operator – one of several related operators – analogous to classical angular
momentum. The angular momentum operator plays a central role in the theory of atomic physics and other quantum problems
involving rotational symmetry. In both classical and quantum mechanical systems, angular momentum (together with linear
momentum and energy) is one of the three fundamental properties of motion.

Chapters 1 and 2. Angular momentum and its conservation in classical mechanics. Spherical coordinates, elements of vector
analysis. Laplace equation.

Eigenvalue equation in polar coordinates
The classical definition of the angular momentum vector is

 (3.1)

which depends on the choice of the point of origin where |r|=r=0|r|=r=0. With the definition of the position and the momentum
operators we obtain the angular momentum operator as

 (3.2)

The Cartesian components of  are then

 (3.3)

One frequently needs the components of  in spherical coordinates. In order to obtain them we have to make use of the expression
of the position vector by spherical coordinates, which are connected to the Cartesian components by

 (3.4)

Going over to the spherical components in (3.3), and using the chain rule:

 (3.5)

and similarly for  and  gives the following components

 (3.6)

One sees at once the reason and the advantage of using spherical coordinates: the operators in question do not depend on the radial

variable r. This is of course also true for  which turns out to be  times the angular part of the Laplace
operator .

 (3.7)

We shall now find the eigenfunctions of , that play a very important role in quantum mechanics, and actually in several
branches of theoretical physics. They will be functions of  and , i.e. they can be considered as complex

valued functions whose domain is the unit sphere. The eigenfunctions of  will be denoted by , and the angular
eigenvalue equation is:

 (3.8)
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One might wonder what is the reason for writing the eigenvalue in the form , but as it will turn out soon, there is no loss of
generality in this notation.

Separation of the eigenvalue equation
We try the separation of the variables:

 (3.9)

Plugging this into (3.8) and dividing by , we find

 (3.10)

The first term depends only on  while the last one is a function of only . In order to satisfy this equation for all values of  and 
these terms must be separately equal to a constant with opposite signs. This constant is traditionally denoted by  and  (note
that this is not the mass) and we have two equations: one for , and another for . We consider the second one, and have:

 (3.11)

Two linearly independent solutions are

 (3.12)

and any linear combinations of them. One can choose , and include the other one by allowing mm to be negative. As these are
functions of points in real three dimensional space, the values of  and  must be the same, as these values of the
argument correspond to identical points in space. Then , and  must hold. From this it follows that mm
must be an integer

 (3.15)

The integration constant  has been chosen here so that already  is normalized to unity when integrating with respect to 

from 0 to .

The equation for 

 (3.16)

is more complicated. With  the solution is

 (3.17)

where  is the -th Legendre polynomial, defined by the following formula, (called the Rodrigues formula):

 (3.18)

The functions  are called associated Legendre functions.
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Figure 3.1: Plot of the first six Legendre polynomials. 
http://en.Wikipedia.org/wiki/File:Legendrepolynomials6.svg

The function  is a polynomial in z only if  is even, otherwise it contains a term  which is a square root. But
when turning back to  this factor reduces to .

Find , , .

Prove that  are solutions of (3.16) for .

Prove that  are solutions of (3.16) for all  and , if .

Show that  are either even, or odd depending on the parity of .

Notice that  must be a nonnegative integer otherwise the definition (3.18) makes no sense, and in addition if |(|m|>ℓ\), then (3.17)
yields zero. Thus for any given , there are  allowed values of m:

 (3.19)

Note that equation (3.16) – as all second order differential equations – must have other linearly independent solutions different
from  for a given value of  and m. One can show however, that these latter solutions are divergent for  and ,
and therefore they are not describing physical states. The solutions

 (3.20)

where the absolute values of the constants  ensure the normalization over the unit sphere, are called spherical harmonics.
There are several different conventions for the phases of , so one has to be careful with them.

The  functions are thus the eigenfunctions of  corresponding to the eigenvalue , and they are also
eigenfunctions of , because

 (3.21)

The quantum number  is called angular momentum quantum number, or sometimes for a historical reason as azimuthal
quantum number, while m is the magnetic quantum number.
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Concluding the subsection let us note the following important fact. As none of the components of , and thus nor  depends on
the radial distance rr from the origin, then any function of the form  will be the solution of the eigenvalue equation
above, because from the point of view of the  the  function is a constant, and we can freely multiply both sides of (3.8). by 

.

Orthonormality and completeness
The spherical harmonics form an infinite system of orthonormal functions in the sense:

 (3.22)

This system is also a complete one, which means that any complex valued function  that is square integrable on the unit
sphere, i.e.  can be expanded in terms of the ):

 (3.23)

where the expansion coefficients can be obtained similarly to the case of the complex Fourier expansion by

 (3.24)

If you are interested in the topic Spherical harmonics in more details check out the Wikipedia link below: 
http://en.Wikipedia.org/wiki/Spherical_harmonics

The animation shows the time dependence of the stationary state – i.e. the one containing the time dependent factor  as
well – given by the function . The absolute value of the function in the direction given by  and  is equal to the
distance of the point from the origin, and the argument of the complex number is obtained by the colours of the surface
according to the phase code of the complex number in the chosen direction.

http://titan.physx.u-szeged.hu/~mmquantum/videok/Gombfuggveny_fazis_idofejlodes.flv
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The figures show the three-dimensional polar diagrams of the spherical harmonics. The state to be shown, can be chosen by
setting the quantum numbers  and m.

http://titan.physx.u-szeged.hu/~mmquantum/interactive/Gombfuggvenyek.nbp

Specific examples
The first few functions are the following, with one of the usual phase (sign) conventions:

 (3.25)

 (3.26)

Historically the spherical harmonics with the labels  are called  functions respectively, the
terminology is coming from spectroscopy.

If an external magnetic field  is applied, the projection of the angular momentum onto the field direction is .
Since mm can take only the integer values between  and , there are  different possible projections, corresponding to
the  different functions  with a given .

Very often the spherical harmonics are given by Cartesian coordinates by exploiting  and .
Another way of using these functions is to create linear combinations of functions with opposite m-s. This is useful for instance
when we illustrate the orientation of chemical bonds in molecules. We demonstrate this with the example of the p functions.

 (3.27)

Let us also note that the  functions do not depend on , and they are proportional to the Legendre polynomials in .

 (3.28)

Parity and angular momentum

The operator of parity  is defined in the following way:

 (3.29)

The result of acting by the parity on a function is the mirror image of the original function with respect to the origin. Looking for
the eigenvalues and eigenfunctions of , we note first that . Therefore the single eigenvalue of  is 1, and any function is
its eigenfunction. The eigenvalues of  itself are then , and we have the following two possibilities:

 (3.30)

In the first case the eigenfunctions  belonging to eigenvalue +1 are the even functions, while in the second we see that 
are the odd functions belonging to the eigenvalue −1. There are of course functions which are neither even nor odd, they do not
belong to the set of eigenfunctions of .
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Figure 3.2: Examples of even and odd functions in one and two dimensions.

The reason why we consider parity in connection with the angular momentum is that the simultaneous eigenfunctions of  and 
the spherical harmonics times any function of the radial variable r are eigenfunctions of  as well, and the corresponding
eigenvalues are . This can be formulated as:

 (3.31)

Show that the transformation  is equivalent to .
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Figure 3.3: The effect of the transformation 

By using the results of the previous subsections prove the validity of Eq. (3.31).

This page titled 3: Angular momentum in quantum mechanics is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Mihály Benedict via source content that was edited to the style and standards of the LibreTexts platform.
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4: Atomic spectra, simple models of atoms

Quantum mechanics had initially the aim to explain the line spectra of atoms seen in optical spectroscopy. The first successful
attempt was the Bohr model based on seemingly "ad hoc" postulates. These postulates are actually consequences of the elegant
mathematical treatment of the Coulomb problem based on first principles of quantum mechanics. The appearance of angular
momentum in this special case hints to its significance in quantum physics.

The Kepler-Newton problem in classical mechanics, Chapter 3.

Bohr’s postulates and the Bohr model
Quantum mechanics had initially the aim to explain the line spectra of atoms seen in optical spectroscopy. Later on it became a
fundamental theory explaining all the microscopic phenomena including molecular-, solid state-, nuclear-, and high energy particle
physics.

Figure 4.1: Emission and absorption spectra of the Balmer series of hydrogen. 
http://www.goiit.com/posts/list/community-shelf-the-bohr-atom-917720.htm

Before going into some details of the quantum mechanical explanation, first we recall how Niels Bohr explained the spectra of
atomic gases. He established two postulates.

Among the classically allowed orbits of the electron moving around the nucleus, there are certain stationary orbits or stationary
states with definite energy. The atoms do not radiate if the electron is on such a stationary orbit.
Electrons can only gain and lose energy by jumping from one allowed orbit with energy  to another, with  absorbing or
emitting electromagnetic radiation with a frequency  determined by the energy difference of the levels according to the Planck
relation:

 (4.1)

where h is Planck’s constant.

These postulates cannot be understood on the basis of classical physics. An electron moving around the nucleus has a centripetal
acceleration, and as all accelerating electric charges it is expected to radiate and lose energy. This would eventually let it fall into
the nucleus, so the atom could not be a stable object, which is in sharp contradiction with observations. Therefore the postulates
seemed to be "ad hoc". Still they were highly significant, because these statements turned out to be true in view of the "true"
quantum mechanics, as well. In that theory, however, these are not fundamental statements but consequences of the deeper general
principles and formalism of quantum mechanics.

In addition to these postulates Bohr set up a rule for the  atom how the discrete stationary energies can be obtained again by an ad
hoc quantum condition. He prescribed that on these stationary orbits the angular momentum  of the electron orbiting on a circle
can have only discrete values, namely an integer multiple of  the Planck constant divided by :

 (4.2)

This is called Bohr’s quantization condition. Combining this with the equation of motion of the electron:
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 (4.3)

i.e. (Coulomb) force equals to mass times (centripetal) acceleration, the total energy of the electron on the circular orbit, of radius r
can be calculated from the expression,

 (4.4)

where the first term is the kinetic energy while the second is the potential energy of the electron in the electric field of the point-like
nucleus, one can derive two important results. Introducing the notations

 (4.5)

first, the allowed energy values of the stationary states are obtained as

 (4.6)

Second, the allowed values of the radii of the stationary orbits are:

 (4.7)

 is called the first Bohr radius and its value is , and

 (4.8)

The negative sign means that the electron is in a bound state, as the zero level of the potential energy is at , where the
electron becomes free and has zero energy if . The state with this lowest value of energy is called the ground state of the H
atom, and  is the minimal energy to be given to a H atom in order to ionize it, i.e. to strip off the electron from the nucleus.
These results were in accordance with the experimental observations of the emission line spectrum of atomic Hydrogen, the
different series, etc. with the Rydberg formula (See Figure 4.2).

Figure 4.2: Visualization of the emission spectrum lines of atomic Hydrogen. 
http://hyperphysics.phy-astr.gsu.edu/hbase/hyde.html

Calculate the wavelengths of the first four Balmer lines which correspond to transitions arriving to the level with . What
is the limit of these lines where the continuum begins?

Be, as it is, funny, the results above did turn out to be true, although the premises we started from were definitely wrong. There is a
quantization condition for the angular momentum given but in a very different sense than that given in the Bohr model. And this
quantization condition is rather a result of the deeper principles of quantum mechanics – explained in section 2 – than an apriori
assumption. So this accidental coincidence shows that starting from start premise one can arrive to any result, including the ce
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correct one. Similar assumption did not lead however to reasonable results in the case of more complicated atoms, and had to be
abandoned in the view of quantum mechanics.

We can investigate the origin of spectral lines in several steps with this interactive shockwave animation.

http://phys.educ.ksu.edu/vqm/free/h2spec.html

The radial equation of quantum mechanics
The Schrödinger energy eigenvalue equation for any central field problem, including in particular the Coulomb potential has the
form

 (4.9)

where the potential energy depends only on the value  i.e. on the distance from a centre.

We shall now outline the procedure how the energy eigenvalues and the stationary states can be obtained mathematically,
restricting ourselves only to the bound states, that play a very important role in atomic physics, not only in the case of the H atom.
In order to find the solution of this equation one introduces spherical coordinates,  indicated by the spherical
symmetry of the potential. The eigenvalue equation takes the form

 (4.10)

where  and  are the radial and angular parts of the Laplacian, respectively. We separate the radial and angular parts of the wave
function with the ansatz (assumption)

 (4.11)

Using the results of the previous section about angular momentum we obtain the following ordinary differential equation for 

 (4.12)

This is called the radial equation, yielding

 (4.13)

for  which is also called sometimes radial equation.

Show that  obeys the equation (4.13).

The latter form for the unknown  is similar to a one dimensional eigenvalue problem, containing an effective potential 
, where the last term is a centrifugal potential, appearing also in the corresponding classical problem in the form 

.

Asymptotic behaviour of the solutions

Asymptotics in infinity

As we assume that , then for  the potential energy and the centrifugal energy are negligible and we obtain the
equation
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 (4.14)

We rewrite it as

 (4.15)

If , corresponding , the two solutions are  and . As we noted earlier these are not square integrable. The
corresponding  behave as

 (4.16)

where time dependence was included in order to see, that  describes an outgoing spherical wave, an electron with positive
total energy that can leave the atom for .  is an incoming spherical wave, and both are used for the description of
scattering processes, which we do not analyze here.

Square integrable solutions are obtained only if . Then with the notation:

 (4.17)

the two appropriate linearly independent solutions of Eq. (4.15) are  and , the first of which is not square integrable on 
 because . The second solution is proper, as it decays exponentially for , that is why it will lead to bound state,

which is square integrable. Thus we have:

 (4.18)

Asymptotics near the origin

We assume here that the potential energy  remains finite at , or even if it diverges that is not faster than . The
Coulomb potential belongs to this class, as it is divergent only as . Then in the radial equation (4.13) the potential energy and 

 can be omitted besides the dominant centrifugal term, getting to the second order equation

 (4.19)

which has a two solutions  and .

Find the solutions of (4.19) in the form .

Show that  is not square integrable on , if 

According to the solution of the problem above, the solution of the form of  will not be an appropriate one if , and by a
little more subtle argumentation it can be shown that this holds true for , as well. This means that we can afford only the
nonsingular solution  close to , i.e. the radial part of the wave function around 0 behaves as.

 (4.20)

i.e it goes to zero if , and remains constant for , ie. for s states.

The radial equation for the bound states can be written with the notation introduced in (4.17)

 (4.21)

It will be useful to write the equation in terms of dimensionless variable :

 (4.22)

where the asymptotic conditions require  and .

This radial equation is often used in atomic physics, a solution in a closed analytic form can be obtained only if the potential 
has certain special forms. Therefore one usually applies numerical methods for the solutions. For one of the most important cases:
the  Coulomb type potential the solutions can be expressed in terms of elementary analytic functions. The next section deals
with this problem.
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Eigenvalue problem of the Coulomb potential
In the case of the attractive Coulomb field the radial equation will be written for the more general case of Hydrogen-like ions,
where the number of protons in the nucleus is , which bound a single electron. Examples are the singly ionized Helium: 

, doubly ionized Lithium , etc. The potential energy is then , where the notation of Eq.

(4.5) is used. With , , and the third term in the radial equation is . where we

have introduced the notation:

 (4.1)

The radial equation itself takes the form:

 (4.2)

According to the asymptotic conditions obtained in the previous subsection we seek the solution as

 (4.3)

where the factor  takes care about the proper behaviour close to zero, the factor  at infinity, and  – which is to be
determined – should ensure that this form of  is the exact solution of equation (4.2). Putting the expression of uu given by (4.3)
into (4.2), we obtain the differential equation:

 (4.4)

The solution of the equation for  must not vitiate the prescribed asymptotic forms stipulated by (4.3), which means that 
must have a power series (with positive exponents) around zero, and for  it must grow slower than  in order to maintain
the condition  If one looks for a solution

 (4.5)

and substitutes it into (4.4), one obtains a recurrence relation between the coefficients :

 (4.6)

In addition it can be shown that if the series (4.5) were infinite, the recurrence relation would behave as the one of the power series
of  which would mean that the asymptotic condition  would be replaced by  which was not
allowed, as we required square integrability. Therefore the sum in (4.5) must remain finite. This means that there exist an integer 

, for which , but , and then, as it follows from (4.6), all , for . In other words the sum giving 
 must reduce to a polynomial of degree . This is possible, if and only if the nominator of the coefficient of  given by the

right hand side of of (4.6) vanishes, thus:

 (4.7)

The degree  of the polynomial w is called as radial quantum number. Now one introduces the principal quantum number
with the definition

 (4.8)

which is a positive integer. The name principal is given to it, because this is the quantum number that determines the energy
eigenvalues. (This statement will be refined later). In order to see this we recall the notation introduced in (4.1)

 (4.9)

and we get . From the definition of κ, namely  the eigenvalues corresponding to the Coulomb
potential are the following:

 (4.10)

This is the most important result: it turns out that the energy eigenvalue equation has square integrable solutions only if ,
and in addition only if ε equals to certain discrete numbers, which are equal to those obtained by Bohr from his (erroneous)
quantization condition.
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The energy eigenvalues of this discrete spectrum are called the bound state energies of the Coulomb potential.

The eigenvalues agree very well with the experimental values of the primary spectrum of the H atom  the Lyman, Balmer
etc. series. The result also agrees with the formula obtained from the Bohr model. But the Bohr model works only for the H atom,
i.e. for the Coulomb potential, while the quantum mechanical procedure works well with any potential.

With the procedure above, we obtained the discrete spectrum, where the role of the boundary conditions is to be remembered. It is
important, however, that there are also solutions with , where ε can be any nonnegative number. The latter part of the
eigenvalues form the continuous spectrum, and the corresponding eigenstates are the scattering states. These functions are not
square integrable, but similarly to the the De Broglie waves, continuous superpositions can be formed from them which are in turn
square integrable.

 

Figure 4.3: On the left you can see the energy diagram of the stationary states of the Hydrogen atom. While on the right figures

show the position probability densities of the electron-nucleus densities in the states . 

http://www.kutl.kyushu-u.ac.jp/seminar/MicroWorld2_E/2Part3_E/2P32_E/hydrogen_atom_E.htm

With this flash animation you can investigate the radial eigenfunctions and probability densities  for hydrogen

like atoms.

http://www.st-andrews.ac.uk/~qmanim/embed_item_3.php?anim_id=50

The explicit forms of the eigenfunctions can be found in several books, or at the url:
http://panda.unm.edu/courses/finley/P262/Hydrogen/WaveFcns.html.
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Here you find a presentation on the different possibilities of visualizing the Hydrogen atom. 
http://www.hydrogenlab.de/elektronium/HTML/einleitung_hauptseite_uk.html

isit the Grand Orbital Table: http://www.orbitals.com/orb/orbtable.htm, where all atomic orbitals till  are presented.

This page titled 4: Atomic spectra, simple models of atoms is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Mihály Benedict via source content that was edited to the style and standards of the LibreTexts platform.
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5: Spin and the fine structure

In this chapter we recall the experimental evidences of the existence of spin in atomic physics. Spin is a genuinely quantum-
mechanical concept, despite the term spin being reminiscent of classical spinning.

The fine structure of the spectrum was observed already in the beginning of the 20th century, but to explain it’s origin
theoretically, a relativistic treatment of the electron was necessary.

Magnetic moment and its connection with angular momentum. The force and energy of a current loop or a magnetic moment
in an external magnetic field. Chapter 3.

The Stern-Gerlach Experiment and the spin

This webpage offers a two word explanation of spin. Check out the spin tab with an animated video showing basic concepts of
spin. You can also find some additional information on application of spin in technology.

http://www.toutestquantique.fr

The experiment of Stern and Gerlach, performed in 1921, was intended to look at the magnetic moment of atoms. As it is known, a
magnetic momentum arises from current loops, or from charges circulating in a closed orbits, and it is still considered to be true,
that a magnetic moment of a particle or a system is always proportional to its angular momentum. The hypothesis that macroscopic
magnetism is also a consequence of microscopic circular atomic currents originates from Ampère.

Therefore the experiment was intended to investigate also the angular momentum of the atoms. Stern and Gerlach used silver
atoms, that were evaporated from a furnace then after collimating and blending slits they obtained an atomic beam, which passed
through an inhomogeneous magnetic field. The field of the specially shaped magnets was such that it pointed mainly to one
direction, let this be the z direction. Stern and Gerlach experienced that the field caused a splitting of the atomic beam traveling
originally say in the yy direction, into two beams, deviating in direction of  and . The silver atoms are electrically neutral,
therefore the bending of the atoms could not be attributed to the magnetic Lorentz force, and actually there is no such effect if the
magnetic field is homogeneous. The reason of the deviation was that the atoms possessed a magnetic dipole moment, so they
behaved like a magnetic needle, or a small coil and therefore the magnetic field acted on them by the force ,
which had predominantly a z component , as it was known from electromagnetism. We see that  i.e.
inhomogeneity is necessary for the force to appear. This force is the reason why the silver atoms deviate from their original
direction, and the amount of deviation must be proportional to the z component of the force.
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Figure 5.1: Experimental setup of the Stern-Gerlach experiment. 
http://en.Wikipedia.org/wiki/File:Stern-Gerlach_experiment.PNG

The classic Stern-Gerlach Experiment shows that atoms have a property called spin. Spin is a kind of intrinsic angular
momentum, which has no classical counterpart. When the z-component of the spin is measured, one always gets one of two
values: spin up or spin down.

http://phet.colorado.edu/en/simulation/stern-gerlach

We may think that the different atoms arriving into the interaction region have all possible directions of their magnetic moment,
and therefore the atoms deviate in several directions depending on their , and one obtains a continuous distribution of deviation
direction. As this was not the case, and only two definitely distinct directions were observed, this proved that there must have been
a kind of quantization of the direction of the magnetic momentum of the atom, and as it was supposed also in the angular
momentum of the atom, which was the reason of the magnetism in particles consisting of charged constituents. The quantization of
angular momentum was already known to a certain extent, but only an odd number of possibilities was predicted. According to A.
Sommerfeld who already extended the old quantum model of Bohr at that time, the quantum number  existed and in case of 

, the three possibilities of the magnetic quantum number:  was expected, instead of the observed two. What was
even worse, it was known already from the spectroscopy of Ag, that its ground state is an ss state with , so the electron has no
orbital angular momentum, and therefore one does not expect magnetic momentum either.
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Figure 5.2:

As it turned out a few years later, the splitting was due to a new degree of freedom of atomic particles, namely the spin, which is
the intrinsic angular momentum of particles, not connected with their motion in space, rather it is a kind of rotation of the particle
itself, like the spinning of a ball. Although there are strong arguments that this simple picture cannot be valid, one can still visualize
the spin of a particle in that way. The discovery did come from spectroscopy, S. Goudsmit and G. Uhlenbeck, the young students of
P. Ehrenfest in Leiden recognized in 1926 that the fine spectrum of the H atom can be explained if one assumes that the electron
possesses this intrinsic angular momentum, and

 (5.1)

where  is the mechanical angular momentum, which – if measured in a certain, say the z direction – can take only the two
possible values  and . This explained the result of the Stern Gerlach experiment, where only the valence electron has
angular momentum, and it is a spin momentum, the angular momenta of all the other electrons add up to zero.

In view of angular momentum theory in quantum mechanics this means that the operator  has only two eigenstates and
eigenvalues, with , and , corresponding to the two discrete eigenvalues:

 (5.2)

The quantum number characterizing the total angular momentum (corresponding to ) is denoted here by s, and from the analogy
with the theory of angular momentum one obtains that , as  or , and for the eigenvalue of  we have 

:

 (5.3)
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Figure 5.3: Schematic and the real setup of the Einstein-de-Haas experiment. 
http://www.techniklexikon.net/d/einstein-de-haas-versuch/einstein-de-haas-versuch.htm 
http://www.histodid.uni-oldenburg.de/forschung/aktuelles.htm

This was the only experiment performed by A. Einstein, and he did it in collaboration with W. J. de Haas in 1914. In the apparatus,
a cylindrical iron rod was suspended on a torsion thread. Magnetization of the rod was achieved by a coil surrounding the rod with
current in. Letting the current through the coil caused the cylinder to rotate by some small angle. The rotation was measured by
light reflection from a mirror fixed to the sample. The effect can be explained theoretically by the fact that the magnetic moments
of the atoms of the iron, being oriented in the direction of the external magnetic field, cause a change in the atomic mechanical
moments – the magnetic moment M of an atom is proportional to the resultant angular momentum J, that is, , where  is
the gyromagnetic ratio. On the basis of the law of the conservation of angular momentum, the total angular momentum of a body
must remain unchanged, and upon magnetization the body therefore acquires an angular impulse (very small in magnitude) that is
inverse with respect to the axis of magnetization.

As we know now that the orbital angular momentum of the electrons in iron is zero, the reason is spin. As it is known from
classical electrodynamics, in the case of a circular currents the coefficient between the magnetic and angular momentum is

 (5.4)

Interestingly in the case of spin angular momentum the coefficient giving the magnetic moment is twice

 (5.5)

Einstein had long contemplated Ampère’s conjecture in 1820 that magnetism is caused by circulation of electric charge. This
Demonstration describes a technologically updated version of the original Einstein–de Haas experiment. The current is large
enough to create a magnetic field strong enough to saturate the cylinder’s magnetization in either direction. If Ampère was
right, this should create an angular displacement of the magnet.

http://demonstrations.wolfram.com/EinsteinDeHaasEffect/

Spin orbit coupling and fine structure

The derivation of the energy levels for the Coulomb potential was based on the Schrödinger equation, which did not contain spin.
In reality, there exist small corrections to the level structure, due to the so called spin-orbit coupling. This leads to a fine structure
of the spectrum, which could be observed already in the beginning of the 20th century before the advent of modern quantum
mechanics. The exact formulation of how the spin and angular momenta are coupled to each other is a difficult mathematical
problem, and it necessitates a relativistic treatment of the electron. Therefore we explain here this effect by hand-waving
arguments.

In the coordinate system of the electron circulating around the nucleus the proton is moving around the electron therefore in
addition to the electric field there must be also a magnetic field. According to the Biot-Savart law, or more generally from
Ampère’s law  the field emerging from the motion of the proton is

M = γJ γ

m = L
q

2m

m = S
q

m
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 (5.6)

This magnetic field also interacts with the intrinsic magnetic moment of the electron, stemming from its spin, and causes an

additional energy shift . Going back to the laboratory frame, the rest frame of the proton, an additional
factor of  arises this is due to an effect called Thomas precession, and it’s reason is the circular motion of the two frames with
respect to each other. The result of spin-orbit interaction is an energy shift

 (5.7)

where the last equality comes from the definition  and . We note again that this result can be deduced
strictly from the relativistic quantum mechanical equation of the electron, the famous Dirac equation, which we will not considered
here. The operator product  can be calculated as follows. First, one defines the total angular momentum:

 (5.8)

which is a conserved quantity in a central field, in contrast to  or  separately. We square this sum and obtain

 (5.9)

as  and  are commuting operators. Then

 (5.10)

As the eigenvectors of the Hamilton operator are eigenvectors of all the three operators , , and , with the respective
eigenvalues , the energy correction due to the spin orbit interaction is

 (5.11)

where the spin-orbit coupling strength is given by

 (5.12)

If we want to find explicitly the effect of this term we have to calculate its expectation value in a state . In order to do so, we

have to calculate the following integral with the eigenfunctions 

 (5.13)

with the radial functions  determined in the previous section. The integration with respect to the angular variables gives
unity, in view of the normalization of the spherical harmonics. The integration can be done using the properties of the Laguerre
polynomials, or by some other tricks and yields the result  which gives

 (5.14)

Another contribution to the fine structure of the H atom comes from the relativistic correction to the kinetic energy. In relativity the
kinetic energy of a particle is

 (5.15)

where the approximation is valid up to second order in . The first term is the ordinary nonrelativistic kinetic energy, while
the second one is the correction. Now – as it is customary in quantum mechanics we – consider this term as an operator, and
calculate its expectation value in the  states. To this end we apply the operator  and calculate

 (5.16)

Here α is the fine structure constant introduced by A. Sommerfeld

 (5.17)

which is a dimensionless quantity, playing an important role in atomic physics and in quantum electrodynamics.

In order to obtain the total correction one has to add the two terms yielding
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 (5.18)

Importantly the same result is obtained from Dirac’s exact relativistic theory in second order in .

As a result the ground state energy of the H atom, where ,  is lowered by , and a similar shift is valid for all the ss
states. Additionally there is a splitting with respect to the nonrelativistic result, causing the fine structure in the observed lines.
Namely for a given ll one has two possible j-s,  and , except for . The splitting between the  and
the  levels is . Corresponding to a difference in wave number .

We can investigate the relativistic energy levels for Hydrogen atom with this interactive animation. The fine-structure constant
can be conceptually changed from 0 to its actual value, or equivalently the speed of light c from ∞ to 1 (meaning ),
to show the transition from nonrelativistic to relativistic energies for quantum numbers .

http://demonstrations.wolfram.com/RelativisticEnergyLevelsForHydrogenAtom/

Hyperfine structure
A more refined spectroscopic investigation revealed that even the fine structure components of the H atom are split into two
subcomponents and a similar doublet structure was observed in several other atoms. It turned out, that this splitting was due the
interaction of the magnetic moment of the nucleus, and the electrons.

In the case of the H atom the simple picture is the following. The proton has a magnetic moment just like the electron. If the two
magnetic momenta are antiparallel, then a magnetic attraction appears so the energy will be lower than for parallel moments. So
these two possibilities lead to an extra splitting of the  ground state, and a smaller splitting of other states, as well.
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Figure 5.4: The hierarchy of energy shifts of the spectra of hydrogen-like atoms as a result of relativistic corrections. The first
column shows the primary spectrum. The second column shows the fine structure from relativistic corrections. The third column
includes corrections due quantum electrodynamics and the fourth column includes interaction terms with nuclear spin The H-α line,
particularly important in the astronomy, is shown in red
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6: Many-body problems, systems of identical particles

So far we have considered single particle problems, a particle moving in a given potential. In the model of the H atom
considered previously the potential was given apriori by the Coulomb field of the proton. In a physical system, however, one
has usually several particles that interact with each other. In reality already the H atom consists of two particles: a proton which
is the nucleus and the electron.

Chapters 2, 4 and 5. The two-body problem in classical mechanics.

Entanglement of two particles
In order to see the peculiarities of the situation, we shall consider, as an example, the case of the H atom as a two-body problem.
The wave function of such a system should depend on the coordinates of the electron  as well as on the coordinates of the proton 

, where n refers to the nucleus. The Hamiltonian of this two particle system is

 (6.1)

and the wave function  must obey:

 (6.2)

Among all the solutions, those corresponding to stationary states of the system are specific, and have the form:

 (6.3)

where ε is one of the eigenvalues of H and the corresponding eigenfunction is 

 (6.4)

The eigenfunctions are then functions of the variables : The form of the Hamiltonian depending only on their difference
allows us a separation if one introduces new coordinates and momenta in the form:

 (6.5)

Here  is the centre of mass coordinate of the two body problem, and  is the total momentum of the electron and the nucleus.
On the other hand  is the relative coordinate and  is the relative momentum of the two particles.

Show that in these new variables the Hamiltonian takes the form:

 (6.6)

with  and .

Using the canonical commutation relations show the following results:

 (6.7)

and all the other commutators vanish.
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We see that the Hamiltonian separates into two independent parts: , where  describes a free particle,

which is the system as a whole, whereas  corresponds to the relative motion of the constituents. In such cases where

the two Hamiltonians  and  are independent the solution of the eigenvalue problem of their sum is simple. One solves
separately the two eigenvalue equations:

 (6.8)

and it is simply to see that the stationary solutions of the composite problem are

 (6.9)

If we wish to get back, however, separately the wave functions of the nucleus and the electron, we see that this is impossible.

If we substitute back into (6.9) their original coordinates, we get  and we see that the two particles

lose their individual wave functions, the energy eigenfunctions will not be products of functions of the electron coordinates and of
the nuclear coordinate. Such a state is called an entangled state, and in the case of interacting particles this is always the case, only
the system as a whole has a definite state, the constituents do not.

From the point of view of the explicit solution by the separation method the above example of the H atom can be generalized to any
two body problem, irrespective of the form of the potential. We used the fact that the interaction depended only on the difference of
the coordinates, but it could have been any other function of , the separation trick we made would have worked. This
is similar to the case of any two body problem in classical mechanics, which can always be reduced to a centre of mass and a
relative motion. However when the system consists of more than two particles, the separation is impossible in general either in
classical or in quantum mechanics. What remains specific in the quantum case is the entanglement which complicates the treatment
further.

The main conclusion of this section is that a system of several particles is in general in an entangled state which means that its
wave function  cannot be written as a product of functions of the variables of the separate constituents.

Systems of identical particles, bosons and fermions

Indistinguishable particles

In quantum mechanics the problem of several particles is even more complicated, if these are identical particles. According to our
present knowledge two electrons or two photons are indistinguishable, or in other words, they are identical. In the case of electrons
e.g. this means that the intrinsic properties: mass, electric charge, spin angular momentum are the same for all electrons in the
world. Let us note that this can be far from trivial when a new particle is discovered. When neutrinos were observed, first they were
thought to be all identical. It turned out only later, that neutrinos differ from their antiparticles from the antineutrinos, and even later
it became also clear that other kinds of neutrinos also existed e.g. the muonic neutrinos were recognized to be different from the
electron neutrinos, they took part in different reactions, etc.

The important fact is that there exist identical particles in nature, and they are indistinguishable, and this property bears very
important implications with respect to a system of such particles.

The symmetrization postulate

In quantum physics the particle can be characterized by its spatial probability amplitude and by its spin projection on a selected
axis. We know that if the particle has an intrinsic angular momentum, spin s, which can be ,depending on the sort
of the particle, then its projection on a selected axis,  to be abbreviated here simply by m. It can take the  different values 

. From now on the coordinate and the spin projection variable associated jointly with the k-th particle will
be denoted by .

One might assume that the wave function of the system of several particles, say electrons could be any square integrable function
of the , as it is the case for different particles like for the electron and the proton, in the H atom. But it turns out
that such an assumption leads to consequences that contradict experimental observations. In reality there exist a severe
restriction on the form of the possible wave functions, and this restriction depends on the spin quantum number ss of the particles
in question, and we give here these rules as postulates.
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First we state the postulate for particles with integer spin like the photon or the pions etc. and then separately for particles having
half integer spin like the electron, proton, muon etc.

The postulate for identical particles with integer intrinsic spin  states that their wave function as a whole must be
symmetric with respect to the interchange of its variables, which means that any permutation of the arguments must give one
and the same multiparticle function:

 (6.10)

where  is an arbitrary permutation of the numbers .

The postulate for identical particles which have half integer intrinsic spin:  that the wave function must be
antisymmetric with respect to the interchange of its variables. This means that the wave function must change its sign if any two
of the arguments referring to two particles are interchanged, e.g..

 (6.11)

As we know, there are  different orders (permutations) of the N variables, and it can be shown by a mathematical theorem, that a
given permutation can be achieved either by an even or by an odd number of transpositions (interchanges of two variables)
from the original order. Additionally these two cases are mutually exclusive. In other words a permutation has a well defined parity,
although the transpositions to reach a given permutation can be done in several different ways, and their number can be also
different, but their parity is always identical. A permutation of the N objects (numbers) is called even or odd, depending on the
number of transpositions to reach it from the starting order. If the order of the arguments of the function is an even permutation,
then the antisymmetric wave function does not change its sign, while in the case of an odd one, there must be a sign change of the
wave function.

These requirements restrict strongly the possible wave functions for identical particles. We say that the particles with symmetric
wave functions follow the Bose statistics, and they are called bosons, while the particles with antisymmetric wave functions
obey Fermi statistics and they are called fermions. According to what we have said above, particles with integer spin are
bosons, while those with half integer spin are fermions. The difference between the symmetric and antisymmetric states has
strong and macroscopically observed consequences. We come to these in the next sections.

Independent particles
Very often in atomic, molecular or solid state physics we treat the many particle system as if there were no interaction between the
individual particles. This is exact, for instance, in the case of the photons representing the electromagnetic field in a cavity, because
photons do not interact with each other, they are really independent. But for an atom with several electrons, these repel each other
due to their electric charge, so there is an interaction between them. Then, strictly speaking, only the wave functions of the whole
system of electrons exist in the field of the nucleus, it makes no sense to speak of the state of a single electron. In many cases,
however, even for electrons we can approximate the collective system as an ensemble of independent ones, which is a good
approximation if the volume density of the constituents is not too large. For instance a metal consists of a great number of electrons
which can be considered at least approximately as a gas of electrons, and their interaction can be neglected. This is the Drude-
Sommerfeld model, which yields already good results, if the antisymmetrization postulate for electrons is taken into account. We
shall first consider the independent particle model for bosons, and then for fermions.

System of independent bosons

A simple example for a many body problem is a system of independent bosons, e.g. of Hydrogen atoms, where the total spin is
integer, as both the proton and the electron has a spin , thus they can add up to either to 0, when they are antiparallel or to
1, when they are parallel. If we assume that the interaction between the atoms can be neglected, and we do not consider their
internal structure, then this gas of atoms can be described by a Hamilton operator

 (6.12)

where  is the identical mass of each of the particles, the summation goes over all the number of the particles, which are seen to
be independent, as the H operator is a sum of independent terms. As we see this Hamilton operator does not depend on the spin
variable.

Specific and mathematically correct solutions of the eigenvalue equation are
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 (6.13)

and can be written as a product of so called one particle eigenstates :

 (6.14)

where each factor in this product obeys:

 (6.15)

and

 (6.16)

Note that each one-particle Hamiltonian  in (6.15) has several eigenvalues and eigenstates, these are labelled by the indices :
 and , and as in our case all the particles are identical, the set of possible -s are the same for all i-s. These functions

can even be given explicitly if the boundary conditions are simple (say, if the gas is in a box), but we shall not discuss their explicit
form. Although we considered a Hamiltonian that is spin independent, in principle the one-particle wave function should be
completed by a spin factor (spinor) , and to consider the product .

For the sake of simplicity in the case of bosons we shall consider only particles with , which means that the spin does not
play any role, and the single particle states are completely determined by the coordinate wave functions .

The important fact is that the many-particle function  in (6.14) is not a symmetric function, in general, as required
by the symmetrization postulate except for the specific case, where all the indices  are identical, which means that all the
particles are in the same one-particle state. The interesting specific case, when this identical state belongs to the lowest one particle
energy will be discussed in the next subsection.

In order to see the solution in general let us see first the case of two bosons. We take two one particle functions out of the solutions,
say  and . Their product  is not symmetric: if we change  the product will be another
function of its variables. Therefore we symmetrize the product by taking the symmetric linear combination

 (6.17)

where  is an appropriate normalization constant, and which already obeys the symmetry requirement for bosons: the change 
, does not change anything . This procedure is not necessary if we choose at the beginning two

identical one particle functions for both particles, say . Then we would have , which is obviously
symmetric with respect to . This means that the two particles (bosons) can be simultaneously in the same quantum state.
As we shall see, this will be impossible for fermions.

Let  three different one particle functions. Find their symmetrized combination. Assume now that
two of them, say  and  are identical. What is the symmetrized combination? What is the result if all three functions are
identical? Assume that the one particle functions are orthogonal if they are different and normalized. Take care of the
normalization of the symmetric combination.

Show that if  is a solution of the eigenvalue problem (6.13), then so does (6.17).

The ground state of independent bosons

The quantum state of a system, which has the lowest total energy  is called the ground state. If a system has discrete energy
levels, and the lowest one is far below the next first excited energy state , then at low temperatures  the system
will be found in its ground state with a probability close to 1. The lowest energy of a system of independent bosons will be a state
where all the particles are in their identical lowest energy one-particle state  with energy . Then the N-fold product of these
states

 (6.18)

is automatically symmetric with respect to all changes in the arguments, and the total energy is

HΨ( , , … ) = ( h(i)) Ψ( , , … , ) = EΨ( , , … , )r1 r2 rN ∑i r1 r2 rN r1 r2 rN
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 (6.19)

This state of the gas of bosons is called a Bose-Einstein condensate (BEC).

There are other, less stringent, statistical definitions for this very exceptional quantum state of a bosonic system, where not all, but
only the vast majority of the atoms are found in their lowest one-particle state. When the states of the system above the ground state
form a continuous set, then it is not simple to achieve the condensation, i.e. to push the majority of the particles into the ground
state, because the temperature must be very low. We come back to a detailed discussion of producing a Bose-Einstein condensates
in chapter 8.

System of independent fermions
An important example of an independent many fermion system is the gas of the electrons in a metal, as they can be considered as
noninteracting in the first approximation. Their Hamiltonian is then again (6.12)

 (6.20)

where  is the momentum operator of the i-th electron and  is now the mass of the electron. The considerations in the
beginning of the previous section do not change, so all the formulae (6.13), (6.14), (6.15) and (6.16) remain valid in this case, as
well. The product (6.14) is however only a mathematically allowed solution. This was the case for a bosonic system where the
product had to be symmetrized. In the case of fermions the postulate requires the antisymmetrization of the product. The
Hamiltonian is not spin dependent in this case either, but the spin of the particles still plays an important role in the construction of
the total wave function. Now we have to complete the single particle functions with a spin part, as well. In the most frequent case,
e.g. for electrons, we have , and then we have two choices with  and  for short,
and the total one-electron function is , where  stands for both  and  of the spin.

We begin the antisymmetrization with two particles. Assume that we know that one of the particles is in the state given by 
while the other is in . We assume here that these one particle functions are normalized. The physical state for the two
independent fermions is given then by:

 (6.21)

where  is a normalization factor. If  and  are orthogonal, then . We see that this function is antisymmetric, as if
we change the indices , then  changes sign, i.e.  We also see, that this wave function
automatically satisfies the Pauli principle in its elementary form, as if  and  were identical then  would become zero,
thus a state, where both fermions (electrons) are in the same one-particle quantum state does not exist.

Show that (6.21) is a solution of (6.13) with .

Note that the above two particle state (6.21) can be written as a determinant:

 (6.22)

For N independent particles the antisymmetrization is a generalization of this latter form. If the one particle states are 
, then for fermions we construct the determinant.

 (6.23)

which is called a Slater-determinant. If two or more one-particle states are identical, the determinant vanishes, and it is
antisymmetric with respect of any change of two of the particles.
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The ground state of independent fermions

The lowest energy many-particle state should be also a Slater determinant (6.23) where the  functions are all different,
otherwise the determinant would vanish, but the corresponding one-particle energies  are not necessarily different as the one-
electron energies can be degenerate, and therefore particles can be "put" into different orthogonal states that have identical energies.
Let us label the one-particle eigenvalues with their increasing values as

 (6.24)

and let the corresponding degrees of degeneracies , meaning that there are  different orthogonal solutions  of 
 belonging to the same . The lowest possible energy of the N particle system is realized if one fills the states with the

lowest possible one-electron energies, but this means no more states than the degeneracy of the given energy. The total energy in
this case is

 (6.25)

where n is the smallest integer for which .

If the N particle system is in its ground state with energy , then the highest one-electron energy level which is still populated  is
called the Fermi level or Fermi energy. It plays an important role in the electronic structure of macroscopic solid bodies, in metals
or semiconductors. As in these materials  at room temperatures, only those electrons are excited thermally which possess an energy
of  or less by only about . This number is many orders of magnitude less than the number of all the electrons N, which has
important consequences from the point of view of thermal properties of solids. A more detailed discussion of these questions is the
subject of statistical physics and solid state physics.

Figure 6.1: As the temperature drops near absolute zero, the gas of bosons collapses, forming a Bose-Einstein Condensate.
Fermions cannot reach this state, since they can’t occupy the same quantum state. The total energy of the Fermi gas is then larger
than the sum of the single-particle ground state. The energy of the highest occupied quantum state is called the Fermi energy. 
http://quantum-bits.org/?p=233

This flash animation shows you some examples of the above symmetrization postulates in case of two-particle wavefunctions
for the one dimensional infinite potential well. Three different cases are demonstrated, namely two distinguishable particles,
two fermions with parallel spin and two bosons with zero spin.

http://www.st-andrews.ac.uk/~qmanim/embed_item_3.php?anim_id=3
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This flash animation guides you through the case of N non-interacting particles in an infinitely deep square well.

http://www.st-andrews.ac.uk/~qmanim/embed_item_3.php?anim_id=48

The one-electron approximation in atoms
The discussion given in the previous section can be extended to the approximate treatment of the electronic structure of atoms
consisting of a nucleus with Z protons and a number N of identical electrons. The stationary states are the eigenfunctions of the
following Hamiltonian:

 (6.26)

where we consider the nucleus fixed. In spite of the interaction described here by the third term, a surprisingly good approximation
can be obtained by an iterated independent particle model, which we shall explain here. Let us note that the form of this
Hamiltonian is a simplified one, there are in general spin dependent terms not contained in (6.26), but they can be neglected in the
first approximation. Still, as we shall see, the spin of the particles shall influence the states indirectly through the
antisymmetrization postulate given in the previous section.

It is impossible to determine the exact form of the spatial wave function  by analytic or even by numerical
methods, as it will be a function of  variables in the spin independent case. Therefore we shall use the one-electron
approximation, where we assume that if we consider a single electron separately from all the others, and the electron-electron
interaction term (the last term in (6.26)) can be approximated by a potential energy of that single electron in the field of all
the others. This potential energy function, which is to be written as  for the i-th electron, should depend only on the
coordinate of that single electron. Mathematically this means that we make the following replacement

 (6.27)

So far we do not know the explicit form of , but the procedure we explain below will also yield us the expression of this
potential energy. It may seem that we distinguish between the electrons by taking out one, but as we will see later, this will not be
the case. We have then the following approximate Hamiltonian:

 (6.28)

where now

 (6.29)

is an effective one-electron operator that depends only on the coordinates of a single electron. Assume that we can find the
solutions of the one-electron problem:

 (6.30)

then the solution of

 (6.31)

can be written as a product of so called one particle eigenstates :

 (6.32)

 (6.33)

 is a so called Hartree function, after D. Hartree, who first applied this approximation for multielectron atoms. The problem
with  is that it is not antisymmetric as prescribed by the antisymmetrization postulate, but we come soon to this point.
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Show the validity of (6.31).

The method of Hartree intended to determine the ground state energy of the composite system. To this end he had chosen an initial
set of N different wave functions, usually the well known eigenstates of lowest energy in a H-like atom with nuclear charge Z. The
potential energy of the i-th single electron in the field of all others can be expressed by the spatial charge density of the other
electrons:

 (6.34)

according to

 (6.35)

This is the Coulomb potential of the i-th electron created by the charge density of the other ones, and this is the effective one-
electron potential. Now we can add this potential to the one-electron Hamiltonian, and we can solve the eigenvalue equation:

 (6.36)

which will yield us new one-electron eigenfunctions  and energies . From these functions we select those belonging to the
lowest energy, and construct again a potential of the form (6.35), and then solve (6.36). In the k-th step of this iteration we solve
thus

 (6.37)

The procedure is to be repeated until the resulting potential differs from the one we started from by a given precision. The method
is called therefore a self consistent field (SCF) method. In this way we can determine the charge density and the total energy of
the ground state.

Figure 6.2: Simplified algorithmic flowchart illustrating the Hartree–Fock Method. 
http://en.Wikipedia.org/wiki/Hartree-Fock_method

A serious problem with the SCF method of Hartree was, however, that in (6.32) the postulate of antisymmetry of the many-electron
system was not taken into account. The Pauli principle can be satisfied only in its elementary form, which says that in the product
(6.32) above, all the one-electron states must be different and orthogonal, or rather because of spin, the spatial part of a pair of
electrons can be the same, as they can be multiplied by the two possible eigenstates of , as H is spin independent. This means
that if we wish to determine the ground state of the N electron system we can choose those one-electron states in the product which
belong to the lowest one-electron eigenvalues, where orbital and spin degeneracy must be taken into account, as well.
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Figure 6.3: Electrostatic potential maps from Hartree-Fock calculations 
http://science.csustan.edu/phillips/CHEM4610 Docs/CHEM4610_All Bonds Same.htm

In spite of satisfying the Pauli principle in its elementary form (each electron is in a different one-particle state), it does not obey
the real requirement, which states that the wave function of identical fermions must be antisymmetric. Therefore the (6.32) product
of functions must be antisymmetrized. In order to do so one has to construct the Slater determinant (6.23) out of the N functions we
have chosen, and calculate the potential energy from this multiparticle wave function. This improved method was proposed by V.
Fock and J. Slater independently and it is called the Harterre Fock (HF) method. We only quote the resulting equation here:

 (6.38)

which is called the Hartree-Fock equation. It differs from the Hartree equation by the last term on the left hand side. Due to the
Kronecker delta  it is present only for electrons with identical spin projections. Here again the left hand side contains the -s
of -th step, while on the right hand side we have already  and  in the k-th step. It is to be repeated until self-
consistency is achieved similarly to the case of the Hartree method, and it yields very good ground state energies and electronic
densities for atoms.

We note that the HF method can be extended to calculate the electronic structure of molecules and solids. It is also worth to stress
that there are many other approximate ways to find the electronic structure of atomic systems.

On this interactive animation we can investigate the lower excited states of a Helium atom. Besides the exact energy values
results of SCF calculations is also shown. The SCF energy can be optimized by variation of some parameters which can be
done by hand in the Demonstration. We can switch on and off the effect of exchange interaction to see how this interaction is
responsible for the effect of the spin degrees of freedom.

http://demonstrations.wolfram.com/LowerExcitedStatesOfHeliumAtom/

This page titled 6: Many-body problems, systems of identical particles is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Mihály Benedict via source content that was edited to the style and standards of the LibreTexts platform.
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7: Molecular structure and spectra

In this chapter we shall discuss the question about the internal structure and the energy of molecules, which depend not only on
the distribution of the electrons like in atoms, but also on the location and motion of atomic nuclei. Although the different
possible mechanisms responsible for the molecular spectra are interrelated, there are three kinds of motions that can be
distinguished in practice, because the differences in their typical energies allow their characterization to be examined
independently. The three main mechanisms determining the spectra of the molecules are their electronic, vibrational and
rotational excitations.

Chapters 2, 4-5-6. Molecules and valence in chemistry. Rotation of rigid bodies, the harmonic oscillator.

Introduction

For simplicity, and in order to grasp the essence of this topic, we shall consider diatomic molecules. In particular, the interaction
between two neutral atoms and its dependence on their distance RR from each other will give us better insight into the nature of
chemical bond. Also, the model of atomic orbitals, which gives an intuitive picture of the spatial electron distribution and plays an
important role in chemistry, can be explained more readily for diatomic molecules. Since the energy levels of molecules are not
only determined by electronic excitation but also by vibrations of the nuclei, or the rotation of the whole molecule around an axis
through its centre of mass, the spectra of molecules are much more complex than those of atoms, but on the other hand they also
give more detailed information about the internal structure and dynamics of molecules. First we come to the simplest discussion of
the electronic states, and explain why two neutral atoms tend to form a molecule.

Molecular orbitals of diatomic molecules.

We shall consider a specific problem, the neutral  molecule, where electron-electron interaction is also present, and this example
explains also why two electrically neutral H atoms tend to form a stable molecule, instead of remaining separated. This is the long
standing problem of valence, that can be explained only by quantum theory. In considering the  molecule we shall assume in this
section that the two protons are at fixed positions in space, and we will try to determine the two-electron wavefunction of the
system in its ground state. The resulting energy will depend on the distance between the nuclei, and then the dynamics of that
degree of freedom can be investigated further.

Figure 7.1:  molecule.

The Hamiltonian of the system, which does not contain nuclear motion (with ) is

 (7.1)

 Objectives

 Prerequisites

H2

H2

\mathrmH2

= /4πe2
0 q2

0 ϵ0

H = + − − − − + +
P 2

1

2m

P 2
2

2m

e2
0

| − |R1 RA

e2
0

| − |R1 RB

e2
0

| − |R2 RA

e2
0

| − |R2 RB

e2
0

| − |R1 R2

e2
0

R

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://phys.libretexts.org/@go/page/50559?pdf
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introduction_to_the_Physics_of_Atoms_Molecules_and_Photons_(Benedict)/01%3A_Chapters/1.07%3A_New_Page


7.2 https://phys.libretexts.org/@go/page/50559

Explain the terms in this Hamiltonian.

One of the methods to find the energy eigenvalues is the following. We try to build a molecular wave function, called a molecular
orbital as a linear combination of atomic orbitals, abbreviated as the MO LCAO method. Let us assume that in the ground state of
the molecule the molecular orbital of one of the electrons can be written as the linear combination of normalized  ground state
hydrogenic orbitals, which are centered at the nuclear positions:

 (7.2)

where

 (7.3)

Due to the symmetry of the problem we choose  which leads after normalization to the following two wavefunctions for
a single electron in the field of the two nuclei:

 (7.4)

where  is a real constant, as the  functions above are real.  is called the overlap integral of the
functions centred at the two nuclei. It will be a function of the distance  between the nuclei, and it is diminishing
with increasing R. Note that  in (7.4) is a symmetric while  is an antisymmetric function with respect to the exchange
of the two identical nuclei. The question which of the two is to be used to describe the electrons will be discussed below, when also
the electron spin is to be taken into account.

Figure 7.2: Wavefunctions and their absolute value square for a single electron in the field of the two nuclei. See Eqn.(7.4).

Now we assume that each of the two electrons is in one of the states , or  above, and look for the two-particle wave
function as their product.

The singlet state

First we consider the possibility, when both of the electrons are in the  states:

 (7.5)

Obviously this is symmetric with respect to the exchange of the two electrons, and therefore according to the postulate that requires
the antisymmetry of the wave functions for fermions, it cannot be a true wave function. But as we know, this is not the total state,
because the electrons possess a the spin degree of freedom, which – though not contained in the Hamiltonian – influences the
symmetry properties of the state. We can complete the symmetric spatial wave function by an antisymmetric spin part by forming
the Slater determinant:

 (7.6)
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where  and  are the two different and orthogonal eigenstates of the  operator (spin up , spin down , according to
the common usage (5.2)) for the i-th particle.

By expanding the determinant we get

 (7.7)

In view of the last, spin dependent factor in (7.7) one sometimes simply says that in this state the two electrons have antiparallel
spins. As the antisymmetric spin state  is called a spin singlet, the more correct statement is
that the total  state is a spin singlet state.

The triplet state

From (7.4) we can also construct a spatial wave function which is antisymmetric with respect to the interchange of the electrons. In
contrast to the symmetric  we take the combination

 (7.8)

which is antisymmetric if we change the electrons. This must be again completed by spin dependent parts, which must be then
symmetric, so that the total state is antisymmetric. There are three different and orthogonal symmetric spin functions of the two
particles, which are the following:

 (7.9)

Multiplying  with any of these we get again an allowed wave function . One loosely says, that the two spins
are parallel in these states. As there are three of them, we call these three spin states, as well as the total wave function as a triplet.

Multiply  by the second of these symmetric spin states and write the result as a Slater determinant.

The energy expectation values of the states

One can now find the energies in the states  and  by calculating  and ,
where H is the Hamilton operator (7.1). In the calculations there appears the ground state energy  of an isolated H: 

. In addition the result will contain the Coulomb energy

 (7.10)

and the so called exchange energy A:

 (7.11)

which is the measure of the overlap of the two electronic wave functions weighted by the potential energy, and results from the
interplay of the Pauli principle and the Coulomb interaction. The result is

 (7.12)

Here both Q and A depend on the nuclear distance R. The Coulomb energy Q is positive, while apart from very small R-s A is
negative and . This results in the dependence of the energy values of εsεs as shown in Fig. 7.3
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Figure 7.3: Dependence of the energy values of  on the nuclear distance R.

This means that the singlet state (antiparallel spins in the sense of the last factor in (7.7)) is stable around an equilibrium distance 
. The calculated value from this simple model is , while the measured value is . The state  is called

therefore a bonding state, and it is denoted by . The other, triplet state, which is antisymmetric in space but the spins of the two
electrons are parallel in the sense of (7.9) is not stable, there is no minimum in the energy, it is called an antibonding state, and it is
denoted by . See figure 7.4 and the animation below.

Figure 7.4: Schematic drawing of bonding and antibonding states. 
http://www.sparknotes.com/chemistry/bonding/molecularorbital/section1.rhtml

The lowest-energy bonding and antibonding molecular orbitals (MO) for a homonuclear diatomic molecule are shown, as the
internuclear distance is varied. The red contours designate negative values of the wavefunction.

http://demonstrations.wolfram.com/BondingAndAntibondingMolecularOrbitals/

The  molecule is a homonuclear diatomic molecule, where homonuclear means that the two nuclei are identical. In some of the
heteronuclear diatomic molecules (different atoms) there is another effect besides the one we discussed here. In HCl for instance
the electron cloud will be asymmetric along the molecular axis, the electron from the H atom tends to get closer to the Cl and
simply the attraction of the proton by the negatively charged Cl ion will stabilize this molecule.

The example we considered above was one of the simplest ones. The calculation of the electronic structure of very complicated
large molecules have become possible in the second half of the 20th century due to the technical development of fast electronic
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computers, as well as to the evolution of sophisticated algorithms and program packages, which are the subject of the science called
quantum chemistry.

Molecular spectra

In the atomic system, our consideration of radiative transitions was limited to the problem of electronic transitions between states.
In the molecules, the internal structure allows also for transitions involving rotational and vibrational excitations of the
constituent nuclei. As with atoms, electronic transitions are typically of the order of eV, corresponding to wavelengths in or near
the optical region. However, it is unlikely that an electronic transition will occur without inducing motion of the nuclei, as well,
because the equilibrium distances between the nuclei will be different in the initial and final electron states. The typical energies of
rotational states of molecules are much smaller than those of electronic excited states, of order , where  is the molecular
moment of inertia. Substituting typical values for the interatomic spacing and atomic masses, one finds that rotational energies are
of the order of  corresponding to the far infra-red or microwave regions. Typical energies for vibrational excitations of
molecules are around  corresponding to the infra-red waveband. All of these types of transitions can occur
radiatively, i.e. through the emission or absorption of a photon of the appropriate frequency . As in the case of atoms, the
most probable radiative transitions are usually electric dipole transitions. In an electric dipole transition, the photon carries away or
brings in one unit of angular momentum and negative parity, so there will be the usual selection rule for the change in the total
angular momentum quantum number of the molecule: , but not , accompanied by a change in the parity of the
molecular state (which may impose further restrictions on ).

Figure 7.5: This figure visualizes the difference in orders of magnitude for the different type of transitions (electronic, vibrational
and rotational). 
http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/molec.html

In a gas or a liquid, transitions can also be produced by collisions between their molecules. The appropriate energy change can be
provided by excitation or de-excitation of the other molecule, or as part of the kinetic energy of the collision. Such non-radiative
transitions do not have to obey the selection rules above. Thus, for example, a molecule in a metastable state, i.e. one that cannot
return to the ground state via an allowed radiative transition, can be de-excited by a collision. In the absence of any incident
radiation or other non-thermal sources of excitation, collisions will bring about a thermal distribution of molecular energy levels,
with the number of molecules in state ii being given by , where  is the degeneracy and  the energy. At room temperature 

, so typically many rotational states of molecules are excited, but not electronic or vibrational.

In a rotating and vibrating molecule the kinetic energy of the nuclei is small compared to the energy of the molecular state. This is
because the nuclear masses are large, and therefore their motion is slow compared to the motion of the electrons. This allows the
separation of the total wave function  into a product  of a nuclear wave function  and an
electronic function  which depends on the electron coordinates  and contains the nuclear positions  as parameters. This
approximation is called the adiabatic or Born-Oppenheimer approximation. Within this approximation the total energy of a
molecular level can be written as a sum of the electronic, vibrational and rotational energies.
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Shown here is the thermal motion of a segment of protein alpha helix. Molecules have various internal vibrational and
rotational degrees of freedom. This is because molecules are complex objects; they are a population of atoms that can move
about within a molecule in different ways. This makes molecules distinct from the noble gases such as helium and argon,
which are monatomic (consisting of individual atoms).

http://upload.wikimedia.org/Wikipedia/commons/2/23/Thermally_Agitated_Molecule.gif

Molecular rotation

The model of a rigid diatomic molecule

In general, the Schrödinger equation for the nuclear motion has many solutions, which give the various molecular energy levels for
a given electronic configuration. The simplest case is that of a diatomic molecule where the molecule can be characterized by its
moment of inertia with respect to its centre of mass. If we assume in the first approximation that the molecule is rigid, and we
consider the problem in the system fixed to the centre of mass of the molecule, then the translational kinetic energy can be
separated. From the point of view of rotations, the molecule is characterized by its moment of inertia  about an axis
through the centre of mass orthogonal to the bond, where  is the equilibrium bond length, and  is the reduced mass of the two
atoms. The rotational kinetic energy can be expressed by the angular momentum  as

 (7.13)

and if we replace the classical  by the operator of the angular momentum we get the Hamilton operator of the pure rotational
motion:

 (7.14)

The stationary states are the solutions of the eigenvalue equation

 (7.15)

As  is a square of an angular momentum belonging to an orbital motion its eigenvalues are of the form , (in
molecular spectroscopy instead of the notation , we use ) where , and its projection  takes the values 

). The rotational energy eigenvalues are therefore

 (7.16)

while the eigenfunctions will be the spherical harmonic functions . As mentioned earlier, the typical energies of
rotational states of molecules are much smaller than those of electronic excited states. Since molecular dimensions are determined
by the electronic wavefunction, their scale is set by the Bohr radius . Thus moments of inertia are of order  and the scale of
rotational energies is . For the electronic states, the Heisenberg inequality implies momenta of order  and hence
electron energies around , a factor of  greater. To bring about a radiative rotational transition, an
emitted or absorbed photon must interact with the electric dipole moment of the molecule. In a pure rotational transition the initial
and final electronic states are the same, therefore the state needs to have a permanent electric dipole moment. Thus we can have
purely rotational radiative transitions in heteronuclear diatomic molecules like HCl and CO, which have permanent dipole
moments, but not in homonuclear ones like  and .

The usual electric dipole selection rules apply:  with a parity change. In a rotational state with angular momentum
quantum numbers  and , the nuclear wavefunction is proportional to the spherical harmonic , which has parity .
(For simplicity, we consider only molecular states in which the electronic wavefunction has zero angular momentum and even
parity). Then the fact that the parity must change in a radiative transition excludes the possibility . Therefore the possible
energy changes in emission ( ) are given by:

 (7.17)
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Accordingly the spectrum is expected to consist of lines with increasing frequencies.

To specify a spectral line in practical molecular spectroscopy one uses the wavenumber , which is obtained
according the Bohr rule ( ) as a difference of terms:

 (7.18)

Here the word term is the standard terminology for the expression in (7.18). So the wavenumbers corresponding to the energy
differences, i. e. to the transition, are obtained from (7.17) as:

 (7.19)

where the rotational constant , is expressed here with the reduced mass . Rotational transitions fall into the
THz-GHz domain, i.e. in the far infrared or microwave range. In fact, the rate for spontaneous emission between rotational states is
very small, because of the small energy release. The spontaneous emission rate varies as , and so rotational transitions are more
conveniently studied by absorption spectroscopy. The same formula for the transition energies clearly applies to the 
absorption case, as well. Observation of this spacing can be used to determine the moment of inertia and hence the bond length of
the molecule.

The intensities of rotational spectral lines show some interesting features. Although the transition matrix element depends on the
quantum numbers, the dominant factor is usually the population of the initial state. As mentioned earlier, non-radiative transitions
due to molecular collisions bring about a thermal distribution,

 (7.20)

This increases with  up to some value, which depends on the temperature, and then decreases. Thus successive spectral lines
increase and then decrease in intensity.

Centrifugal Distortion

A real molecule is not rigid. When it rotates, the centrifugal force acts on the atoms and the internuclear distance increases to a
value R where this force  is compensated by the restoring force  holding the two atoms
together, which depends on the slope of the potential energy function . In the vicinity of the equilibrium distance  the
potential can be approximated by a parabolic function. This leads to a linear restoring force

 (7.21)

From the relation  we obtain:

 (7.22)

which leads to

 (7.23)

This means that the internuclear distance R is increased by the molecular rotation. Since the potential energy  has a
minimum for , in case of  we have an additional energy  in the case of a nonrigid rotor. The
total energy of the nonrigid rotor is then

 (7.24)

If we express RR on the right side of (7.23) by  and k with the help of (7.22) we obtain

 (7.25)

where the second term is . This allows us to expand  into the power series

 (7.26)

and the rotational energy becomes up to third order in 

 (7.27)
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This means that for a given value of the rotational quantum number J the centrifugal force makes the moment of inertia larger and
therefore the rotational energy smaller. This effect overcompensates the increase in potential energy.

Using the term-values again instead of the energies, (7.27) becomes

 (7.28)

with the rotational constants:

\(\F_{r o t}(J)=B_{e} J(J+1)-D_{e} J^{2}(J+1)^{2}+H_{e} J^{3}(J+1)^{3}) (7.29)

The experimental spectroscopic accuracy is nowadays sufficiently high to measure even the higher order constant .

Vibrational transitions

Harmonic approximation

Another important type of molecular motion is vibration, in which the nuclei oscillate around their equilibrium positions. For a
diatomic molecule, we can make a Taylor expansion of the molecular potential  around the equilibrium nuclear separation 

 to obtain

 (7.30)

The first derivative vanishes, because  has a minimum at .  is a constant, and the second term on the right-hand
side can be written as , which is the potential for a simple linear harmonic oscillator with , and classical frequency

 (7.31)

where  is the reduced mass. According to the quantum theory of the harmonic oscillator the energy levels including nuclear
vibration is given by

 (7.32)

The excitation energies of molecular vibrational states are typically larger than those of rotational states by a factor of about 
 and smaller than electronic excitation energies by a factor of about . As we discussed earlier, 

will be of the same order of magnitude as atomic energies, i.e. of the order of , where  is the Bohr radius. Thus, on
dimensional grounds,  will be of order , and . Therefore the vibrational energy is smaller
than the electronic by a factor of order . This puts vibrational spectra in the wavelength region around , which is
in the infra-red.
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Figure 7.6: Generally vibrational transitions occur in conjunction with rotational transitions. Consequently, it is possible to observe
both rotational and vibrational transitions in the vibrational spectrum. The top figure shows an energy level diagram demonstrating
some of the transitions involved in the IR vibrational-rotational spectrum of a linear molecule: P branch (where ), Q
branch (not always allowed, ) and R branch ( ). 
http://en.Wikipedia.org/wiki/File:Vibrationrotationenergy.svg

Figure 7.7: The vibration-rotation spectrum of HCl. The left hand branch of the spectrum represents the P branch and the right the
R. The Q branch is not allowed. The splitting of the lines is associated with the two isotopes  and .

We can now check explicitly that the Born-Oppenheimer approximation is valid for nuclear vibrational states, as follows. The mean
square nuclear vibrational momentum is of order , which means that ,
where  is the nuclear part of the wavefunction. On the other hand , where  is the electronic part. Thus  is
smaller than  by a factor of , and it is legitimate to neglect the former.

For vibrational transitions we have the selection rule . This implies only a single energy in the spectrum

 (7.33)

corresponding to the classical frequency of oscillation.

Anharmonic effects

In practice the Taylor expansion around  has non-negligible terms of higher than second order and the harmonic oscillator
approximation is not very reliable: there is anharmonicity. The flattening of the molecular potential energy curve at larger
separations has the effect of bringing the energy levels closer together. Thus transitions at larger vv have lower energies than that
given above. Also, since the true stationary state wavefunctions are not precisely harmonic oscillator eigenfunctions, our selection
rule is not exactly valid, and transitions with  become possible. A good approximation of the potential that includes
anharmonic effects is the so called Morse potential having the form:
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 (7.34)

where  is the dissociation energy, the limit to which the potential converges at . The minimum of the potential is at the
equilibrium value  of the distance between the atoms. The definition in (7.31) yields:

 (7.35)

Figure 7.8: The Morse potential (blue) and harmonic oscillator potential (green). Unlike the energy levels of the harmonic
oscillator potential, which are evenly spaced by |(ℏω\), the Morse potential level spacing decreases as the energy approaches the
dissociation energy. 
http://en.Wikipedia.org/wiki/File:Morse-potential.png

The eigenvalue equation of the corresponding vibrational Hamiltonian  in one dimension can be solved
in closed form yielding the exact eigenvalues:

 (7.36)

This provides the energy separation

 (7.37)

which means that the transition frequencies are decreasing, with increasing vibrational quantum numbers. In contrast to the

harmonic case the number of bound states is finite , where , and  denotes the integer part of s.

Vibrational modes for polyatomic molecules can be quite complicated. If there are N atoms, in general there are  normal
modes (  coordinates minus 3 to define the overall position of the centre of mass, and minus 3 to define the overall orientation of
the molecule) or  in the case of a diatomic molecule. Thus, in the simple case of the linear  molecule, there are four
modes, two with the atoms remaining collinear (one with the two O atoms moving in antiphase with the C stationary, and one with
the O atoms moving in phase in the opposite direction to the C atom) and two degenerate orthogonal bending modes. The more
detailed classification of the possible vibrational modes of polyatomic molecules relies strongly on their symmetry properties and
needs the mathematical method called group theory.
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Figure 7.9: The combined electronic vibrational and rotational levels of a molecule. We see that the largest energy difference is
between the electronic states. The electronic spectrum consists of a system of vibrational bands, while each vibrational band
includes many rotational lines.

This page titled 7: Molecular structure and spectra is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Mihály
Benedict via source content that was edited to the style and standards of the LibreTexts platform.
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8: Bose Einstein Condensation

In Chapter 6 we have already discussed the microscopic many body description of a Bose condensate. In this chapter we focus
on the experimental realization of this very specific, interesting and fundamental kind of matter. And we give some insight into
its genuinely quantum mechanical characteristics.

De Broglie’s hypothesis from Chapter 1. Particles with spin in magnetic fields from Chapter 5. The material on bosons in
Chapter 6.

Introduction
The Bose-Einstein condensate (BEC) is a very specific, interesting and fundamental kind of matter, actually a gas, consisting of
atomic particles. It shows up two different genuinely quantum mechanical characteristics simultaneously. One of them is the wave
like nature of massive atoms, a behaviour becoming more and more explicit at very low temperatures. The other property is
that particles with integer intrinsic angular momentum (spin) can in principle all be in the same quantum state. Photons, the
quanta of electromagnetic radiation are specific kind of bosons of spin 1, while their rest mass is zero. Satendyra Bose derived
Planck’s law by assuming this property, and sent his work to Einstein in 1924, who – recognizing the importance of the idea –
recommended the publication of the paper of Bose. Soon after this, in the same year Einstein himself discovered that the derivation
can be extended to the case when the gas consists of massive particles (unlike photons) and predicted that an ordinary gas can also
be brought in that specific state, that is why it got the name Bose-Einstein condensate. As we said, only particles with integer spin
may form a condensate, and such particles are called bosons, in honour of Bose. Electrons and other particles with half integer spin
do not show up this behaviour, unless a specific interaction couples them to pairs, so that the pair has integer spin. We come to this
point below.

Figure 8.1: Cooling rubidium atoms to less than 170 billionths of a degree above absolute zero caused the individual atoms to
condense into a "superatom" behaving as a single entity. The graphic shows three-dimensional successive snap shots in time in
which the atoms condensed from less dense red, yellow and green areas into very dense blue to white areas. 
http://en.Wikipedia.org/wiki/Bose_Einstein_condensate

Predicted 1924 …Created 1995. Check out the BEC Homepage for introductory level lessons on BEC with animations,
explaining the physics behind. 
http://www.colorado.edu/physics/2000/bec/
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In chapter 6 we have already discussed the microscopic many body description of a Bose condensate. We repeat it here shortly: The
independent particles are all in their identical lowest energy one particle state, i.e. in their ground state. The corresponding total
wave function is:

 (8.1)

In spite of its name a Bose-Einstein condensate is a dilute ideal, or almost ideal gas. While in air e.g. at atmospheric pressures and
room temperatures the number of molecules (  and ) in  is , in a condensate the density is only 

. In fluids and in solids this concentration is  whilst in atomic nuclei the nucleon
density is . Nevertheless at very low temperatures the condensate has very different properties from an
ordinary ideal gas. The energy spectrum of the gas is practically continuous, so the excitations are of very low energy, which means
that an ultralow temperature is necessary to achieve even the vicinity of the required ground state.

In the present chapter we come to the practical side of the problem and discuss the possibilities of the creation of this state of
matter. The most important characteristic is that at appropriately low temperatures atoms lose their individuality and show
collective behaviour. We can find the condition when this happens by a relatively simple calculation. The momentum p of the
atoms is connected with their de-Broglie wavelength by the formula:

 (8.2)

The velocity depends on the temperature, or more precisely, thinking of the classical ideal gas, we have from the equipartition
theorem the equation , where  is the average velocity of the particles, and  is the Boltzmann constant. Then
we get the momentum and the thermal de Broglie wavelength according to:

 (8.3)

 (8.4)

This latter length scale is where the wave-like properties of the particles do manifest. At room temperatures this length is very
small, but it increases with lowering the absolute temperature. If we consider a particle in a vessel of volume V containing 
atoms, the density of the particles is , and its inverse is the volume shared by a single particle on the average: 

. The linear size of a corresponding cube is . Assume that by cooling the gas we can achieve a 
which is of the order of the distance between the particles . At this value of the temperature we expect that the individuality
of the particles is lost, and collective quantum mechanical phenomena appear. The condition of this, with the above simple
reasoning is the fulfillment of the inequality

 (8.5)

In order to get such a gas there seem to be two possibilities. One of them is to increase n, i.e. the density of the atoms. But a simple
calculation shows that at milikelvin temperatures, attainable with traditional cooling technologies this would mean a density 

 which is the density of a fluid or a solid. Therefore the sample would be very far from an ideal gas, like the Bose
condensate, which assumes that there is no direct interaction between the particles. So the effect will certainly be masked by the
strong interaction between the constituent particles.

Calculate the number density (concentration) of the H gas and a  gas at  and atmospheric pressure. Use the universal
gas law. For an atomic gas of Hydrogen the mass of a single atom is essentially that of the proton, , the mass of
the  atom is about 23 times larger .

There is one exception, where there is some remnant trace of the quantum effect following from the Bose statistics, and this is the
isotope . This material becomes a fluid at  at normal pressures, so by no means can it be considered to be an ideal gas.
Still, when cooling it further, below  it shows strange properties, the most surprising of which is superfluidity. The effect was
discovered in 1937 by Pyotr Kapitsa in Moscow, and by John Allen and his co-worker Don Misener in Cambridge (England). In
the case of He the mass mm is relatively small, which according to (8.5) shows that in this material the unusual properties could be
connected with Bose-Einstein condensation. This was first suggested by Fritz London in 1938. By the middle of the 20th century it
became widely accepted among physicists that the very complicated phase transition of He at  is a kind of a Bose-Einstein
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condensation, which however does not appear in its clean form, because it is veiled by the weak, but still existing interaction
between the atoms of He.

Is it possible in principle to observe Bose Einstein condensation in Hydrogen? Why is that liquid He shows a somewhat related
effect, while H, which is 4 times lighter is not a superfluid?

As we have noted Bose condensation appears only for bosons which have integer spin. However at even lower temperatures
fermions can also form specific kinds of a condensates. A necessary condition for this is the formation of pairs: a pair of fermions
is a boson, as the spin of the pair is then an integer. This is the reason of superconductivity, where a pair of electrons, called a
Cooper pair is formed, and the effect of superconductivity can be considered to be a kind of superfluidity of these pairs. In the case
of superconductivity the weak attractive force between the electrons is created indirectly through their interaction with the motion
of the ions of the crystal lattice. J. Bardeen, L. Cooper and R. Schrieffer won the Nobel prize in 1972 for their microscopic
explanation of superconductivity in 1957.

Under this link you can fin the details of the 1972 Nobel Prize in Physics won by John Bardeen, Leon N. Cooper and Robert
Schrieffer for their microscopic explanation of superconductivity. 
http://www.nobelprize.org/nobel_prizes/physics/laureates/1972/

Another example is the isotope , which is a fermion, having only one neutron in its nucleus instead of two as in . It was
observed that  also shows superfluidity below at , which is three orders of magnitude lower than that of its bosonic
variant. Here again these atoms may form pairs at these very low temperatures which is necessary for the stability of the very weak
coupling of the pair. D. Lee, D. Osheroff and R. C. Richardson won the 1996 Nobel Prize in Physics for their discovery this effect,
and A. Legget in 2003 for its theoretical explanation.

Under this link you can fin the details of the 1996 Nobel Prize in Physics won by D. Lee, D. Osheroff and R. C. Richardson for
their or their discovery of superfluidity in helium-3. 
http://www.nobelprize.org/nobel_prizes/physics/laureates/1996/
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Under this link you can fin the details of the 2003 Nobel Prize in Physics won by Alexei A. Abrikosov, Vitaly L. Ginzburg and
Anthony J. Leggett for their pioneering contributions to the theory of superconductors and superfluids.
http://www.nobelprize.org/nobel_prizes/physics/laureates/2003/

Atoms that can exhibit BE Condensation
A simple rule to decide if an ordinary atom is a fermion or a boson is to count the number of its elementary fermion constituents.
The spin of all atomic constituents (electrons, protons, neutrons) is half integer so if the number of the nuclei+electrons is even then
the atom is a boson. If this number is odd then the atom is a fermion. (We note here in addition, that at a more elementary level the
spin  of the nucleons is a result of adding the spins of the three quarks each possessing a spin value .)

So one of the candidates that seemed appropriate to create a condensate was the gas of  atoms. It has 11 electrons, 11 protons
and 12 neutrons so their spin must add up to an integer. In addition, due to the large transition dipole moment of the Na D line
(doublet) of the transition around 589 nm, it can be effectively manipulated by optical methods.

In more detail: 10 of the electrons of this atom form a closed configuration filling the  and  shells, similar to the 10
electrons of Ne, and resulting in zero spin. The 11-th electron of spin  causes the half integer spin of the electron cloud of
Na, resulting in the  state. This symbol – as usual – corresponds to the notation  meaning that the highest energy
electron is on a shell with principal quantum number , the spin multiplicity is , the orbital angular momentum of
the valence electrons is a state with , i.e a centrally symmetric SS state, the total angular momentum is  that comes
from . The 23 nucleons (11 protons + 12 neutrons) in its nucleus, has each a spin of 1/2. As 23 is an odd number the
nuclear spin must add up to a half integer, and its value is actually . It turns out that the total spin of the atom is either 

 resulting from  or , resulting from . So the total spin is an integer, the  atoms are bosons.

Which of the two isotopes of  and  is a boson and which is a fermion?

Experimental observation of BEC
The main task is to achieve the low temperature necessary for the formation of a condensate. The first step is optical or Doppler
cooling of the atoms with light.

Assume that a light of frequency  is shone on a gas of atoms that is on resonance with one of the atomic
transitions. The photons have energy  and a momentum . The atom of mass mm absorbing a photon will have a
different velocity it had before the absorption, because of momentum conservation. If the atom has a momentum opposite to the
one of the photon, i.e. they move into opposite directions, then after absorption the velocity of the atom will be smaller by the very
small value  because

 (8.6)

But atoms moving in the opposite direction as the photon absorb at frequencies .

The atom absorbs the energy , gets excited, and soon after emits again the photon, which causes a recoil again. But the direction
of the emitted photon is randomly distributed in the whole  solid angle. If the atom undergoes many cycles of absorption and
emission during its interaction with the laser beam, the time average over the momentum obtained during emission will be zero
while the one obtained in the absorption process is always negative, at least for the atoms moving opposite to the laser beam.
Therefore the net result is a loss of momentum and a loss of kinetic energy of the atoms, which means that the temperature of the
gas as a whole will be lower. It can be shown by formal mathematical arguments that the effect of Doppler cooling can be
expressed as a velocity dependent friction force
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 (8.7)

where the constant aa is proportional to the absorption rate and to the detuning , where  is the laser frequency and 
is the transition frequency of the atom at rest.

Figure 8.2

Find the average thermal velocity of a Na atom in a gas at room temperature.

The optical cooling uses the  wavelength  line corresponding to the  transition
for which the spontaneous lifetime is .

How many photons are to be absorbed by a sodium atom to bring it to rest?

How long does it take?

How much is the deceleration of the atom, compared with the gravitational acceleration?

What is the deceleration path length of the atom?

During the deceleration process the frequency of the pump laser has to be tuned to , because of the Doppler shift.
Here  is the circular frequency of the absorption line for an atom at rest. The required value is achieved either by tuning the
exciting laser frequency, or by tuning  with a magnetic field via the Zeeman effect.

What we have discussed here corresponds to a one dimensional motion and a one dimensional cooling. In reality the atoms move in
all three spatial directions which makes it necessary to apply six laser fields coming from all different orthogonal directions and
achieving the deceleration of all three components of the velocity, see Fig 8.3 (b) with additional details.

Magnetooptical Trapping of Atoms

Optical cooling decreases the velocities of atoms in the atomic cloud, but that is only the initial stage of the process. In order to
achieve a sufficiently deep temperature additional tricks must be applied. This can be achieved in the device called a magneto-
optical trap (MOT), illustrated in Fig.8.3 (a). The MOT consists of a pair of so called anti-Helmholtz coils through which a
current is sent into opposite directions. With the zz-axis as the symmetry axis, the magnetic field produced by the coils in the
vicinity of the trap centre at  is  as it follows from the law of Biot and Savart.

F = −av

Δ = ω−ω0 ω ω0
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Figure 8.3:

So the magnetic field is zero at the centre , and increases linearly with increasing distance from the centre The field lines are
indicated as red curves in Fig. 8.3 (a). In the magnetic field the atomic energy levels experience a splitting into Zeeman
components with the energies

 (8.8)

Here  is the Bohr-magneton,  is the magnetic quantum number belonging to the total angular momentum  (including
nuclear spin) of the atom.

The six laser beams passing through the MOT are circularly polarized, carrying an angular momentum ±ℏ±ℏ, and therefore they
induce transitions with . If the laser frequency  is below the resonance frequency , atoms in the region 
absorb preferentially  light with negative helicity, and inducing  transitions, while for  mainly  light is
absorbed. For  the absorption rates for both polarization is equal. This pushes all atoms moving outwards back towards the
centre The gas of cold molecules is therefore compressed into a dense cloud around the centre of the MOT. It can be shown, that
the resulting force is one that pushes the atoms from all directions towards the centre of the MOT, and the potential is like a
harmonic potential trapping the atoms around the centre. Taking into account the braking force due to the Doppler effect as
discussed in the previous subsection the total force acting on the atoms will be:

 (8.9)

resulting in a damped oscillation of the atoms with mass M around the trap centre with a frequency and damping constant

 (8.10)

EXAMPLE:

For Rubidium atoms with  the absorption wavelength is , corresponding to .
With a laser detuning  and an absorption rate  one obtains . With a magnetic field gradient 

 and the magnetic moment  the constant  can be calculated. This gives the
oscillation frequency  and the damping constant . The atoms relax with a time constant of 
after about 50 oscillation periods against the trap centre. Up to now we have only regarded the movement of the atoms in the z
direction. For the x and y directions, similar considerations hold.

z = 0

ε(B) = −m ⋅ B = |B|gFμBmF

μB mF F

Δ = ±1mF ωL ω0 z > 0
σ− Δ = −1mF z < 0 σ+

z = 0

= −Dz−aFz νz

Ω = D/M , β = a/M

M = 1.4 × kg10−25 λ = 785nm k = 8 ×106m−1

δ = γ = γ/2R0 a = 4 × Ns/m10−21

b = 0.1T/m mathfrakm ≈ μB D = 2.37 ×10−18

ω = 4100s−1 β = 1.2 ×10−2s−1 12ms

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://phys.libretexts.org/@go/page/50560?pdf
http://titan.physx.u-szeged.hu/~dpiroska/atmolfiz/bose_einstein_condensation.html#MOT1


8.7 https://phys.libretexts.org/@go/page/50560

Figure 8.4: An experimental setup of a magneto-optical trap. 
http://en.Wikipedia.org/wiki/File:MOT_setup.png

Figure 8.5: A magneto-optical trap in real laboratory situation. 
http://phet.colorado.edu/hu/contributions/view/3104

Evaporation cooling

It turns out however that the temperature reached by Doppler plus magnetooptical cooling is still not low enough to reach the
critical temperature for BEC. Therefore, an additional cooling technique has to be applied. This method is called evaporation
cooling. It is in principle the same technique one uses for cooling a hot cup of coffee by blowing over the liquid surface. This
removes the fastest molecules in the vaporous phase above the surface and decreases the average kinetic energy, i.e., the
temperature of the remaining molecules.

In order to apply this technique the cold atoms are transferred from a MOT to a pure magnetic trap that has no cooling lasers, by
pushing them with a laser beam into the wanted direction. In this trap that is formed by an inhomogeneous magnetic field, they are
kept not by the recoil forces of lasers like in the MOT, but by the magnetic force  due to their magnetic moment .
Although this force is much smaller than the recoil force, the atoms, which are now already very cold, can be trapped since their
kinetic energy is small. Here they have the potential energy . Due to the distribution of their kinetic (thermal) energy
they fill the trap potential up to a certain maximal energy . Now the trap is irradiated by a radio-frequency wave that induces
flips of the atomic spin, when its frequency  matches the energy difference

 (8.11)

The atoms that have suffered a spin flip are automatically pushed out of the trap because their potential is now repulsive Choosing
the frequency in such a way that only the hottest atoms can make a spin flip, results in a decrease of the mean energy of the trapped
atoms.

F = −(m∇)B m

= −mBEpot

Emax

= ΔE/hνrf

ΔE = −E↑ E↓
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Figure 8.6: Atoms with  are bound in the trap, while those with , are not. Applying a radiofrequency magnetic
field which is resonant with the transition of the highest energy atoms, will flip the spin of these and therefore release them from
the trap. Tuning down gradually the frequency of this field, the level until the states are filled in is going down so finally only the
lowest energy particles remain in the trap, achieving thereby the temperature where the condensation takes place.

During the evaporation of atoms, the temperature drops below the critical temperature. The radial density profile of the atoms
becomes very narrow because all atoms condense into the lowest potential energy state of the magnetic trap. This can be monitored
by sending a widened weak laser beam through the condensate, which is partly absorbed. With a CCD-array, the transmitted
intensity is detected, which is a measure of the spatial dependence of the absorption and thus of the density of atoms.

Figure 8.7: Monitoring BEC by the spatial absorption profile of the transmitted probe laser. Density profiles of atomic cloud with 
 (a),  (b),  (c), and below the critical temperature of BEC (d)

By this technique the first experimental proof of Bose–Einstein condensation was reported in 1996 by E. Cornell and C. Wieman in
Boulder, Colorado and independently by W. Ketterle and his group at the MIT in Cambridge near Boston. The group leaders
received the Nobel Prize in 2001.
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Under this link you can find a lot of additional information on Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman the
Physics Nobel Prize winners of 2001, including interviews and their Nobel Lectures. 
http://www.nobelprize.org/nobel_prizes/physics/laureates/2001/

The BEC behaves in many aspects like a supraliquid with zero viscosity. Spectroscopy of atoms in a Bose–Einstein condensate
gives a lot of information on collective effects of many atoms, which are all in the same state. One of the fascinating effects is the
release of a coherent beam of atoms out of the BEC. Such a coherent beam represents a large flux of atoms that all have nearly the
same energy. Because of its resemblance to a coherent beam of photons, which is a laser beam, it is called an atom laser. Two
beams from the same BEC can interfere with each other if they are spatially overlapping.

At ultra-cold temperatures, a gas of bosons undergoes a phase transition where there is a macroscopic occupation of the ground
state. The top plot shows how the density profile of bosons in a 3D harmonic trap changes with temperature TT.

http://demonstrations.wolfram.com/BoseEinsteinCondensationInAHarmonicTrap/

This Demonstration shows the thermal population of the ground orbital and all the excited orbitals for a gas of N free bosons as
a function of temperature. The populations according to the classical Maxwell-Boltzmann statistics can also be shown. The
temperature is measured in units of Einstein’s condensation temperature.

http://demonstrations.wolfram.com/BoseEinsteinCondensationFreeBosonGas/

This page titled 8: Bose Einstein Condensation is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Mihály
Benedict via source content that was edited to the style and standards of the LibreTexts platform.
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9: Elements of Coherent atom field interactions

In this chapter we shall consider the dynamics of an atom under the action of a monochromatic or quasimonochromatic field.
We start from first principles i.e. from the Schrödinger equation. In the second part of the chapter we consider the incoherent
limit, which is important mainly in understanding the laser.

The Schrödinger equation from Chapter 2. The energy of a dipole in an external electric field. Solution of differential
equations. Dielectric susceptibility and its connection with the index of refraction and absorption.

Introduction
In this chapter we shall consider the dynamics of an atom under the influence of a given external, linearly polarized harmonic
electric field of circular frequency ωω and amplitude :

 (9.1)

We know, of course that an electromagnetic wave has a space dependence, as well, but as the size of an atom is about 10−310−3
times smaller than the wavelength of the field in the visible and even in the far UV domain, we can neglect the space dependence.
We assume here that the field induces transition between two resonant energy levels, which means that there are two atomic
stationary states with energies , such that their difference  is close to . This condition can be expressed
as:

 (9.2)

In the language of quantum mechanics the two levels belong to two stationary eigenstates  and  of the Hamiltonian  of the
isolated atom. We shall assume here that these levels are nondegenerate, i.e. there is only one stationary state belonging to them:

 (9.3)

 and  can be for instance the  and  ( ) states of a hydrogen atom, assumed to be time independent. This is the two-
level and resonant approximation.

If we include the interaction with the external electromagnetic wave, then the Hamilton operator must be modified:

 (9.4)

where K decribes the effect of the external field. From this point of view the atom is represented by a dipole moment operator D
which couples the atom to the oscillating external field, and the interaction energy is

 (9.5)

We assume here that the polarization, the direction of the electric field strength, points to the x direction, and accordingly D is the x
component of the dipole moment. Besides being a natural assumption, this form of the interaction energy can be shown to be a very
good approximation by more elaborate arguments.

Solution of the optical Rabi problem

Our task is to solve the time dependent Schrödinger equation

 (9.6)

in this two dimensional problem. According to the two level resonant approximation, we shall look for the solutions as the time
dependent linear combination of the two stationary states

 (9.7)
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In (9.7) we have only two coefficients. The explicit time dependent factors  have been separated out to make the calculations
more easy. In this section we assume that the amplitude of the linearly polarized electric field is constant at the position of the
atom, which is assumed to be in rest.. We substitute the wave function (9.7) into (9.6) and find the equation:

 (9.8)

We can now multiply this equation by , integrate with respect to the spatial coordinates of the eigenfunctions, and
make use of the orthogonality condition of the stationary states, which are assumed to be normalized, as well: 

.

Then we obtain two coupled ordinary differential equations:

 (9.9)

 (9.10)

where

 (9.11)

is the so called transition matrix element of the x component of the dipole moment operator, or transition dipole moment for
short. As the extensions of atomic wave functions are of the order of the Bohr radius,  and the charge in question is the charge of
the optically active electron, , the elementary charge, d must be of the order of . As an example we quote the value of dd for
the   line of sodium, which is . We shall assume that

 (9.12)

is a real quantity, which is very often the case. We also have taken into account here that the integrals

 (9.13)

vanish. The reason is that for atoms the functions  are always even, and therefore their products with x, which is odd, is
also an odd function. That is why atoms do not posses a permanent electric dipole moment, because these integrals are the
expectation values of the dipole moment in the stationary states .

Close to resonance on the right hand side of Eqs. (9.9), (9.10) we have two kind of exponentials. One of them which contains the
difference , is a slowly varying function of time if compared to the other oscillating with frequency 

. We can omit the latter ones, as on integration the terms  are small and rapidly oscillating relative to those
with . This is called the rotating wave approximation abbreviated as RWA.

Thus with the RWA we have:

 (9.14)

 (9.15)

It is worth to note that in the case of circulary polarized external field, when  we do not need the
RWA, we obtain exactly the above equations.

Now we introduce the notation

 (9.16)

which has the dimension of frequency, and describes the strength of the interaction between the atom of dipole moment dd, and
field, as given by .

With this notation

 (9.17)

 (9.18)

It is easily seen that the system conserves , which is set to be

 (9.19)
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dE0

2ℏ
eiωte−i tω0 b2

dE0

2ℏ
e−iΔtb2

= i = iḃ2
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as by assumption, we have only these two levels populated.

Prove that (9.19) is valid at all times , meaning that the equations conserve the probability) if this is valid at 
, i.e. .

We shall restrict ourselves to the solution of the system of equations (9.17) and (9.18) above only if , which is called the
resonant case.

 (9.20)

The solution is the following:

 (9.23)

Assume now that the system is initially in its lower stationary state . Then we can set , and , The probability
of finding the system in the upper state is then:

 (9.26)

We see that this probability oscillates with the frequency  between 0 and 1.  is called the resonant optical Rabi frequency
after I. I. Rabi, who first investigated the very similar phenomenon of magnetic resonance in 1938, and used it to determine
experimentally the magnetic moments of atomic nuclei. We note that the Rabi frequency  is usually 5 orders of magnitude smaller
than the transition (Bohr) frequency.

We can see that the system reaches the upper state exactly when . Therefore a pulse with constant amplitude and duration
of  is called a  pulse. On the other hand if , then the system returns to its initial ground state: this is a 
pulse. A pulse for which  brings the system into an equal weight superposition of the ground and excited states: this is a 

 pulse. We note that some texts use the terms for these processes as absorption till , and induced emission, between 
 and , but this is not really a good nomenclature. Absorption and induced emission, as they were originally

introduced by Einstein are incoherent processes, they manifest themselves only on longer time scales, where relaxation processes
play an important role, and can be considered a kind of a stationary limit of the process considered here. We shall come to this
point in the next section.

This shows that on exact resonance we can excite an atom or a system exactly to its upper state if this excitation is so fast, that
the atom can be described with the Schrödinger equation for all times. This is called a coherent excitation. It means that the atom
does not interact with degrees of freedom, other then the oscillating electric field. Below we shall consider circumstances when this
is not valid any more, and will complete the description with relaxation, as well as with pumping terms.

The system (9.17), (9.18) can be solved in a closed form also when , i.e. if the system is not exactly resonant. It
can be shown, that in such cases the system initially in its ground state cannot be inverted in this way any more, the probability of
finding it in the state  is

 (9.27)

So if  then the oscillation frequency is changed from  to , and more importantly the maximal value of 

is diminishing from 1 to  with increasing , i.e. with detuning the external field from the resonance condition.

As we have mentioned, the quantum theory of the resonant interaction has been derived and used first by Rabi in his molecular
beam method. In that case the levels in question were magnetic spin states in nuclei, and the transition was induced by time varying
magnetic fields.

In case of electronic levels in the atomic shell the transition comes from the electric dipole interaction with a time dependent
electric field, as we have seen in this section. In the infrared domain the validity of these results has been proved experimentally
first by G. Hocker and C. Tang in 1969, while in the visible domain by H. Gibbs with Rb atoms in 1973.
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The time dependent polarization of the atom

An important quantity that can be calculated from the dynamics of the atoms is the expectation value of their dipole moment.
According to quantum mechanics this can be found:

 (9.28)

in the time dependent state  of (9.7) as

 (9.29)

Here we exploited (9.11) and that  is the Bohr frequency of the transition. We have also introduced the definition

 (9.30)

which are the slowly varying factors (compared to ) in the atomic dipole moment. We shall give more explanation about  in
the next subsection. We have also assumed that the dipole matrix element (transition dipole momentum) is real, see (9.12), and we
have exploited once again that the static dipole moments vanish see (9.13). Note the difference between dd and : d the dipole
matrix element is a constant, while  is the time dependent dipole moment of the atom.

If the atoms constitute a gas, the macroscopic polarization density P which is an important quantity in phenomenological
electrodynamics can be calculated by multiplying the expectation value of the atomic dipole moment with , the latter being the
number of atoms per unit volume:

 (9.31)

Populations and coherences, a different formulation

Let us observe at this point that the physically interesting quantities can be expressed as products of the quantum mechanical
amplitudes  of the levels. The probabilities of finding the atom on level i is , and we shall introduce the notation for these
quantities:

 (9.32)

The number of atoms in unit volume on level i is then obtained by  which is called the population of level i, but frequently the
probabilities  are also called as populations. In case of the two-level approximation above, we have always

 (9.33)

therefore only one of the -s is an independent variable. One usually chooses the variable

 (9.34)

which then determines  and . w is called the population inversion, or simply inversion variable
varying between −1 and 1.

The other important quantity is  which is determined by the products , or by the quantities: . These are often
called as coherences between the stationary levels. They are non-zero only if the system is in state 1, as well as in state 2
simultaneously with nonvanishing amplitudes. The -s are responsible for the time varying polarization of the atom, and that is
why an atom can radiate while it is in a superposition of its stationary states, see (9.29). Because of their direct physical meaning it
is straightforward to seek the equations that determine the dynamics of  and , instead of those for the  amplitudes.

Using (9.17) and (9.18) this can be simply done and we present the result leaving the calculations as a problem.

 (9.35)

 (9.36)

Derive these equations from (9.17) and (9.18).

We note that ww is always a real number, and on exact resonance, when ,  is purely imaginary, which is written
customarily as  with real . Then the system (9.35), (9.36) takes the simple form
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 (9.37)

An important constant of motion emerging from these equations is:

 (9.38)

The value of the constant is 1, because it turns out to be equal to .

Show the validity of (9.38).

The above equality implies the following substitution

 (9.39)

the minus sign being a convention. The system (9.37) can be integrated even if the external field amplitude is time dependent 
, as from the first of the equations we have , yielding , when substituting into the second. The integral

 (9.40)

is called the pulse area. Let us note that we implicitly assumed that the time dependence of the amplitude  – called the
envelope – is much slower than that of the rapidly oscillating phase factor cosωtcos ωt, the carrier, i.e. ,
otherwise the separation (9.1) would not make sense.

The theory outlined above forms the basis of coherent atom-field interactions, and it is very important in a large class of
spectroscopic studies.

Rate equations

Relaxation terms

In the coherent interaction between atom and field considered in the previous section, we have assumed that the atom interacts
exclusively with the external field. This is valid, however only for times that are short in comparison with relaxation times. The
latter describe the time scale how fast (or slow) is the interaction of an atom with other degrees of freedom, which are always
present as an environment, even in a perfect vacuum. So we come to the point where the relaxation and possibly pumping
processes, mentioned in the introduction of this chapter must be taken into account.

The fastest of all these relaxation processes is the so called transversal relaxation, or phase relaxation which effects  because it
destroys the coherence between the levels. This is introduced here phenomenologically as an exponential decay, the time constant
of which is usually denoted by . This means that we compéete the right hand side of Eq. (9.36) with an additional term :

 (9.41)

 is characteristic of the level pair in question. In the absence of the external driving field  decays exponentially due to the
term . The new term describes the loss of the phase memory between the amplitudes of the levels. For an isolated atom
in vacuum this comes from the unavoidable quantum fluctuations of the electromagnetic vacuum causing spontaneous emission,
and it is of the order of nanoseconds. In a laser material it is due to collisions with other atoms in a gas, or with phonons in a solid
etc., and it is in the ps range, thus much faster than for an isolated atom.

If we consider only two levels and the absence of any other external agent than the coherent excitation given by , then we have
to consider also the loss of the energy of the atoms which is transferred to its environment. This is done again by adding an
additional damping term to the right hand side of (9.35) resulting also in exponential decay to the value , corresponding to
the lower state

 (9.42)

This relaxation which is usually much slower than that of  is called longitudinal relaxation, and

 (9.43)
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Stationary solution

The difference between the transversal and longitudinal relaxation times allows one to find a stationary solution for the 
variable. We can assume that due to the large value of  the time derivative of  can be set to zero, yielding

 (9.44)

Let us insert now this value in (9.42) and obtain

 (9.45)

We may introduce a dimensionless intensity

 (9.46)

and the Lorentzian factor:

 (9.47)

so the equation takes the form:

 (9.48)

This equation describes the change of the population under the effect of the field of amplitude , or intensity . It is not
difficult to solve this equation, but instead of giving its explicit solution, we note only that the value of  will go exponentially
to its equilibrium value w∞w∞, where . This can be easily seen to be

 (9.49)

which is always negative, so by incoherent excitation one cannot achieve inversion, in contrast to short time coherent excitation as
we have seen it in the case of Rabi oscillations.

The incoherent process described in this section can be considered as absorption, or as induced emission, when starting from 
, in the sense Einstein introduced them originally.

Linear and stationary limit

Let us consider now the stationary solution for weak fields, where the intensity is not too strong, and the system remains close to its
ground state  during all the process. Then the steady state solution (9.44) gives

 (9.50)

while the  dependent macroscopic polarization is according to (9.29) and (9.31)

 (9.51)

In this limiting case we have a linear relation between P and E, which we may compare with the phenomenological macroscopic
connection between P and E:

\(P=\chi \epsilon_{0} E) (9.52)

the expression

 (9.53)

can be identified with the frequency dependent susceptibility close to resonance. We see that it has a real part, \) which is known
to be connected with the index of refraction via , while its imaginary part  is known to be connected to the
linear absorption coefficient.

Essentially the same result can be obtained from the so called oscillator or Lorentz model of the atom, which is just the linear
variant of our more precise approach. In the Lorentz model the atom cannot be inverted, which corresponds to  for all
times.
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This animation shows the relevant parameters of the Lorentz model. The index of refraction is often described as an apparent
decrease in the speed of light as it passes through a dielectric medium. In fact, light photons do not actually slow down, but the
effect is simulated by a retarding phase shift in the emerging electromagnetic waves. This is caused by superposition of the
incident wave with a retarded wave produced by radiation from the electrons in the medium.

http://demonstrations.wolfram.com/LorentzOscillatorModelForRefractiveIndex/

Conclusions and outlook
We presented the action of a monochromatic or (in the case of time dependent ) a quasimonochromatic field on atoms, that were
described starting from the Schrödinger equation, i.e. from first principles. In the second part we considered the incoherent limit,
which is important mainly in understanding the laser, where one has to include the space dependence of the variables, as well,
which is a further complication.

The pioneer of the coherent quantum mechanical theory was I. Rabi, who applied it to magnetic resonance, and recived the Nobel
prize in 1944. Interestingly, after him many other physicists obtained the Nobel for different extensions and applications of this
relatively simple two-level model. Among them F. Bloch and E. Purcell (1951) for the Nuclear Magnetic Resonance (NMR) in
solids. It is worth noting here that the pair of equations (9.41), (9.42) are often called optical Bloch equations. Other Nobel prizes
went to C. Townes, N. Basov and A. Prokhorov (1964) for the laser principle, A. Kastler (1966), A. Schawlow and N.
Bloembergen (1981) for coherent spectroscopy, N. Ramsey (1989) who was a co-worker and student of Rabi for extending the Rabi
method, C. Cohen-Tannoudji, W. Phillips and S. Chu (1997) for laser cooling also based on this model, to be presented to some
extent in the next section. More recently S. Haroche and D. Wineland (2012) got the prize who did experiments with single
resonant two-level atoms.

The two-level resonant atomic model plays an important role in many other physical phenomena. As we have mentioned, it gives
the basis of the so called semiclassical laser theory. Atomic clocks, magnetic resonance experiments, and their wide applications in
chemical analysis, medical picture processing and many more are based on coherent atom field interactions.

Is it a tumor? Magnetic Resonance Imaging (MRI) can tell. Your head is full of tiny radio transmitters (the nuclear spins of the
hydrogen nuclei of your water molecules). In an MRI unit, these little radios can be made to broadcast their positions, giving a
detailed picture of the inside of your head.

http://phet.colorado.edu/en/simulation/mri

More recently this model got another emphasis with the emergence of the science of quantum informatics, where bits are replaced
by qubits. Their most important characteristic feature is that two atomic states are not mutually exclusive, but their supperpositions
can also be used for information processing, as we underscored it in this chapter.

This page titled 9: Elements of Coherent atom field interactions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated
by Mihály Benedict via source content that was edited to the style and standards of the LibreTexts platform.
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10: Atoms in Strong Fields

In this chapter the excitation of atoms by intense laser pulses is discussed. This topic has grown to be one of the most exciting
fields of research in atomic, molecular and optical (AMO) physics. Nowadays high-power lasers are accessible to many
laboratories giving the possibility to investigate the interesting nonlinear effects which may appear.

The structure of atoms. Electromagnetic field intensity, anharmonic oscillations.

Introduction

The field of research "atoms in strong laser fields" was born a few years after the invention of the laser in 1960, and has evolved
considerably during the last three decades owing to the rapid technological development of high-power short-pulse lasers. Early
experiments had shown that the response of an atomic system started to be nonlinear at around  for visible or
near-infrared laser fields, which could be characterized by second, third or fourth order nonlinear susceptibilities. Theoretically this
range can be described by the appropriate quantum mechanical method, called perturbation theory. The next important limiting
intensity is , above which the traditional quantum mechanical approaches of treating nonlinear optical processes
already fails, and the interaction becomes strongly nonlinear, necessitating new concepts.

An even higher and rather obvious new limit is, when a laser field is strong enough to overcome the Coulomb forces in the atom. In
order to see this, consider the field of the proton at the distance of the first Bohr radius , which is:

 (10.1)

The intensity of a laser field where the oscillating electric field amplitude has the same value is:

 (10.2)

The intensity can also be given by the photon flux, which is:

 (10.3)

Calculate the photon flux of a  Ti-Sapphire laser for .

Experiments with intense pulses
As the most powerful laser material namely titanium-sapphire, and a new amplification technique, chirped pulse amplification,
have become common around 1990, it made high-power lasers accessible to many laboratories. Since then this topic has grown to
be one of the most exciting fields of research in atomic, molecular and optical (AMO) physics. A typical and general experimental
setup for studying atoms in strong laser fields is shown in Figure 10.1.
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Figure 10.1: Typical schematic experimental setup in the study of atoms in strong laser fields. An intense short pulse laser is
focused into an interaction chamber, which contains a gas of atoms. Ions or electrons can be detected, e.g. with time-of-flight
techniques.

The first element is a short pulse laser. The laser pulses used are often in the femtosecond range, the shortest being sub- . High
repetition rates, today in the kHz range, allow experimentalists to get good statistics. Focused intensities needed to get into the
strong field regime are of the order of . Since about 1995 the favourite tool has become the titanium sapphire
laser, operating at  in the near-infrared, and providing very short pulse duration, high laser intensity at high repetition rate.
The second part of the experimental setup is a vacuum chamber where a gas of atoms (often rare gases) is being introduced, in a
cell or pulsed jet. One measures the energy of the ions generated or that of the emitted photoelectrons. In addition, angular
distribution of the photoelectrons can be recorded. In high-order harmonic generation experiments, the atomic density is much
higher than in ionisation experiments, pressures up to a few hundreds mbar is the usual value. The radiation emitted on axis can be
detected and analysed using a standard XUV (extreme ultraviolet) spectrometer, including a grating and a photon detector.

In order to classify the strong field effects we first introduce the important quantities that can be used to describe the processes.
One of them is the ionisation energy or (ionisation potential) denoted by , and shown in Figure 10.2

Figure 10.2: Ionization energies  of atoms, given here as the function of Z. It has the highest values for noble gas atoms, as these
are the most stable chemical elements, while it is relatively small for alkali metal atoms, which have only a single electron outside a
closed electron shell. The value of  for the H atom is , which is the negative of the ground state energy. 
https://en.Wikipedia.org/wiki/File:First_Ionization_Energy.svg

We also introduce here the important notion of the ponderomotive potential  of the exciting field. It is the energy gained by an
otherwise free electron in a harmonically oscillating field. A simple classical calculation shows that according to the equation of
motion

 (10.4)

the kinetic energy averaged over a period  is

 (10.5)

The characteristics of the response of the atom depends on the ratio of the ionisation potential  and the ponderomotive potential
through the parameter:
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 (10.6)

introduced by L.V. Keldysh in 1964, and called since then the Keldysh parameter.

Figure 10.3: The response of the atom depends on the ratio of the ionisation potential  and the ponderomotive potential through
the Keldysh parameter.

If the external field strength i.e. the square root of the incoming intensity is high enough then  and the atomic potential can
be significantly changed by that field as shown in the right hand side of the figure 10.3. The electron may then tunnel out through
the potential barrier which is now the sum of the atomic and external fields. The barrier can even become lower than the energy of
the bound state, then we can speak of over the barrier ionisation. This is valid of course for a half period of the oscillating field
since the external field changes sign in the next half period and the force on the electron will change its direction to the opposite.
For pulses with , one observes a different process called above threshold ionisation, shown in the left hand side of the
figure, and to be discussed in the next section.

Above threshold ionisation

Electrons initially in the ground state can absorb a large number of photons, many more than the minimum number required for
ionisation, thus being ionised with a high kinetic energy. This new physical effect can be observed at intensities above
(I_{s}=10^{13}\mathrm{W}/\mathrm{cm}^{2}\). When energy resolved photoelectron measurements have become possible in
the end of the 1970s, it was observed that in the photoionization process the ejected electrons could absorb photons in excess of the
minimum number required for ionisation to occur. The photoelectron spectra were seen to exhibit several peaks, separated by the
photon energy . The electron energies appear at the values

 (10.7)

where n is the minimum number of photons to exceed the ionisation potential , and  where ss is the number of
excess photons, or above threshold photons, absorbed by the electron. This process was shown for the first time in 1979 and it was
called above threshold ionization (ATI). A typical ATI spectrum shows a number of electron peaks separated by the laser photon
energy.
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Figure 10.4:

For short and intense laser pulses, the ionisation potential  is increased by the (time-dependent) ponderomotive potential, i.e. the
mean kinetic energy acquired by an electron oscillating in the laser field . The experimental precision in detecting electron
spectra increased significantly from the mid 90’s owing essentially to higher laser repetition rates. Thus ATI spectra with many
decades in number of counts could be recorded. Amazingly, the spectra were found to extend over many tens of eV, with a decrease
for the first orders, up to , followed by a large plateau extending to . In general, with linear polarisation, electrons are
generated along the polarisation’s direction. It was found that angular distributions exhibit a much more complex (off-axis)
structure at the edge of the plateau, called "scattering rings". The large plateau and the complex angular structure originate from the
rescattering of the electron wavepacket on the parent ion.

Multiple ionisation

Not only one, but many electrons can be emitted from atoms subject to strong laser fields. Double ionisation of alkaline earth atoms
was observed as early as in 1975 and the first evidence for non-sequential ionisation of rare gas atoms was first demonstrated in
1983. They can be emitted one at a time, in a sequential process, or simultaneously, a mechanism called direct, or non-sequential.
The simplest multiple ionisation mechanism for atoms in strong laser fields is the so-called sequential stripping mechanism, i.e. a
sequence of single electron ionisation acts: ionisation of the atom, then of the singly charged ion, then of the doubly charged ion
and so on. The main experimental effort during the 1980’s was to test the limits of this mechanism with the available laser powers
and to understand the process responsible for the ionisation of the different charge states (multiphoton or tunnelling). It turned out
however, that sequential ionisation is not the only mechanism responsible for multiple ionisation. Progress in experimental
techniques with, for example, recoil-ion momentum spectroscopy and electron-ion coincidence measurements allows now
scientists to record the energies and angular distributions of the electrons emitted during a multiple ionisation process, thus
providing better experimental insight.

High-order harmonic generation

Another effect also observed at sufficiently high intensities was high harmonic generation (HHG). Atoms interacting with a strong
laser field can emit radiation at frequencies that are high order multiples of the angular frequency of the pump laser. A high-order
harmonic spectrum consists of a sequence of peaks at circular frequencies which are odd multiples of the driving, or fundamental
circular frequency:

 (10.8)

Only odd orders can be observed, owing to inversion symmetry in an atomic gas. In the time domain, this means that the process is
periodic with a periodicity twice the laser period. A HHG spectrum has a characteristic behaviour: it shows a fast decrease for the
first few harmonics, followed by a long plateau of harmonics with approximately constant intensity. The plateau ends up by a sharp
cut-off. Most of the early work on harmonic generation concentrated on the extension of the plateau, i.e. the generation of
harmonics of shorter wavelength. Today, harmonic spectra produced with short and intense laser pulses extend to more than 500
eV, down to the water window below the carbon K-edge at 4.4 nm. The mechanism of the generation is shown in figure 10.5.
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Figure 10.5:

Figure 10.6: Simple illustration of the semi-classical three-step model of high-order harmonic generation. 
http://en.Wikipedia.org/wiki/File:ThreeStep.png

A large effort has been devoted to optimize and characterize the properties of this new source of XUV radiation. A milestone in the
understanding of HHG processes was the finding by Kulander and co-workers in 1992 that the cut-off position in the harmonic
spectrum follows the universal law . This result was interpreted in terms of a simplified theory, called a three step model
shown in figure 10.6. In the first step a tunnelling process takes place. In the second step the model neglects the Coulomb force of
the core, and assumes that the electron moves only under the effect of the laser field, which first pulls away the electron from the
core, but when during its oscillation it changes its sign the field may return the electron back to the core. Thirdly: when slowing
down, the electron radiates in the form of harmonics whose energy comes from the energy lost by the returning electron. A realistic
description of HHG must involve the calculation of the single atom response, and also the solution of propagation (Maxwell)
equations for the emitted radiation.

An interesting consequence of the existence of the harmonics is that among favourable circumstances they can add up and produce
a sequence of peaks of pulses in the attosecond range (duration ~200 as), to be considered in the next section.

Attosecond Pulses

Almost immediately after the first observation of the harmonic plateau at the end of the 1980’s, it was realised first by Győző
Farkas and Csaba Tóth that, if the harmonics were emitted in phase, i.e. phase-locked, then the temporal structure of the radiation
emitted from the medium would consist of a "train" of attosecond pulses separated by half the laser period. There is a clear analogy
here with mode-locked lasers, where axial modes oscillating in a laser cavity are locked in phase, leading to the production of trains
of short pulses. From a microscopic point of view, at each half-laser cycle, there is a short (attosecond) burst of light, as an electron
recombines back to the ground state. Isolated attosecond pulses can be produced if one limits these returns to single events. The
simplest idea is to use a very short (7 fs) and intense laser pulse. Such a laser source should allow one to generate single attosecond
pulses, because harmonic generation occurs during a limited time interval before the onset of ionisation. Attosecond pulses have
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remained, however, essentially a theoretical prediction, until 2002. Then an important experiment by the group of Agostini and
Muller have shown evidence for trains of  pulses, while Ferenc Krausz and coworkers were able to generate isolated
650as650as pulses.

If you are interested in this topic check out the home page of Ferenc Krausz’s group. Under the menu "Light and Matter" a lot
of interesting material can be found on attosecond physics, light matter interaction etc.. 
http://www.attoworld.de/Mainpages/Light_and_matter/index.html

Outlook

The harmonic radiation, with attosecond pulse duration, high brightness and good spatial and temporal coherence, could be used in
a growing number of applications ranging from atomic and molecular spectroscopy to solid-state and plasma physics. It has also
been proposed as an alternative source for nanolithography, in particular for metrological purposes. It opens up two new fields of
research: multiphoton processes in the XUV range, and attosecond physics, where processes in atoms and molecules can be studied
at an unprecedented time scale. Attophysics is just born, and there is already an active discussion on the possible applications of
attosecond XUV pulses. To produce routinely pulses of duration in the attosecond range is one of the main targets of the Extreme
Light Infrastructure Attosecond Light Pulse Source (ELI ALPS) facility to be built up in Szeged, Hungary within the next few
years.

This page titled 10: Atoms in Strong Fields is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Mihály Benedict
via source content that was edited to the style and standards of the LibreTexts platform.
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11: Photons: quantization of a single electromagnetic field mode

In this chapter we introduce the concept of the photon, as the quantum of a mode of the electromagnetic field. We show that the
photon number has a well defined value in an energy eigenstate of the mode. But these number states are very far from our
everyday concept of a monochromatic field. Light in a highly coherent monochromatic laser field is in a so called coherent
state, which we introduce shortly.

lements of electrodynamics, Maxwell equations. Energy density and energy of the field. Chapter 2. The classical and the
quantum harmonic oscillator (See Chapter 2).

Hamilton function of a single mode
We shall consider two perfectly reflecting parallel mirrors one at , the other at , and let their surface be F. We also
consider a single transversal electromagnetic standing wave where the linearly polarized electric field oscillates in the x
direction with the classical expression:

 (11.1)

where  is a time dependent function, to be determined. In order to satisfy the boundary condition that the parallel component of 
 must vanish on the surfaces of the mirrors, we obtain that k cannot be arbitrary, it must be of the form

 (11.2)

where . Different nn-s correspond to different k-s. Choosing one specific value of k means a specific standing wave,
which is called a mode of the field. Let us assume that  is dimensionless, then A has the dimension of the electric field.
According to the law of electrodynamics, a time dependent electric field is always accompanied with a magnetic field, as it follows
from the Maxwell equation (Faraday’s law of induction):

 (11.3)

We have then

 (11.4)

where we have assumed, that the magnetic field has no static component. Then from the other Maxwell equation:

 (11.5)

we get:

 (11.6)

where the circular frequency of the mode

 (11.7)

has been introduced. The solution for  is

 (11.8)

which is well known for the standing wave.
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We know that this is the solution for the position of the equation of motion of a classical linear harmonic oscillator of circular
frequency .

Now a crucial point comes to the play. We shall consider this solution as one corresponding to a fictitious harmonic oscillator of
mass M and circular frequency , that can be obtained from a classical Hamiltonian:

 (11.9)

where M is of dimension , and p is defined as the canonical momentum by

 (11.10)

p is of the dimension of action, .

Consider the Lagrange function defined as , and show that the canonical momentum is ,
derive the Hamilton function and the canonical equations of motion.

Let us calculate now the energy W carried by the electromagnetic field in the cavity. This will be the volume integral of the energy
density of the electromagnetic field over the cavity formed by the mirrors:

 (11.11)

where  is the volume of this cavity. If we compare this result with the form of the Hamilton function, we see that we can
identify the total energy W with the Hamilton function , if we make the following identification.

 (11.12)

We see that the dynamics of a given mode is the same as that of a harmonic oscillator. In the method we applied here it is easily
seen that the potential energy of the oscillator is that of the electric field, while the kinetic energy of the oscillator corresponds to
the energy of the magnetic field. This analogy was realized in the end of the 19th century by Lord Rayleigh and J. Jeans, and this
line of thought was also kept by M. Planck when he derived his law of the blackbody radiation. When doing so, however, he
prescribed that the many modes in the cavity exchange their energy in quanta, whose energy is . In order to come to this
point, we consider the quantum mechanics of the oscillator associated with the mode by the method above.

For sake of simplicity we have chosen here a standing wave mode, but similar considerations would hold for a running transverse
wave, where the electric field strength is of the form:

 (11.13)

Calculate the magnetic field from the Maxwell equations and derive the equation determining the time dependence of the
complex function .

Quantization of the mode
Given the Hamilton function of the field mode as an oscillator, the quantization is performed by replacing the canonical variables q
and p by linear and selfadjoint operators Q and P, and stipulating the canonical commutation relations:

 (11.14)
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where on the right hand side we have Planck’s constant , as it is required by the experimental consequences of this
prescription. This method of describing the electromagnetic field mode as a quantized harmonic oscillator was the idea of P. Dirac.
The mathematical step of introducing operators instead of the classical quantities results in the adequate and experimentally
verified description of the quantum properties of the electromagnetic field. Note that according to the previous section Q
corresponded to the electric part E, while P to the magnetic part B of the field. So the noncommutativity of these operators means
that they cannot have both a sharp value in quantum electrodynamics. The energy of a single mode will be an operator, as well, and
it is the Hamilton operator of the mode:

 (11.15)

As we know, the eigenstates of the Hamiltonian play an exceptional role in quantum theory, and we are going to determine these
states.

According to their present definition Q and P do not represent coordinate and momentum in the strict sense, therefore the
eigenstates of the H operators cannot be considered as functions of the q coordinate  in the ordinary sense. Therefore we turn
here to a more abstract point, and we shall use the notation introduced by Dirac. A state of this quantum system will be denoted in
general by the symbol  and the eigenstates of H by , called a ket. The eigenvalue equation of H can then be written as:

 (11.16)

where  is a number, while  is the eigenket of H. In order to proceed further, we introduce the following new dimensionless
operators

 (11.17)

These are not self-adjoint, they are the adjoints of each other. It is not difficult to calculate their commutator

 (11.18)

and to express the Hamiltonian in the following form:

 (11.19)

Prove (11.18) and (11.19).

The eigenvalues and the eigenfunctions of H can be found from the eigenvalues and the eigenkets of the operator

 (11.20)

It is easily seen that the eigenkets of  will be identical to that of N:

 (11.21)

and the eigenvalues are in the relation

 (11.22)

The following theorems can be proven:

The eigenvalues nn of  are the nonnegative integers:

 (11.23)

To each of the energy eigenvalues εnεn there corresponds one single eigenket , denoted often simply by . This means
that  is nondegenerate

 (11.24)

The ground state energy of the mode is  corresponding to . The other eigenstates have higher energies which differ by
integer multiples of  from each other. This is the quantization of the energy in the mode, found heuristically by Einstein in 1905,
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in one of his groundbreaking works about the photoelectric effect. If the mode is in the state , we say that there are nn
photons in the mode with energy , where the ground state energy  is often called as the zero point energy. We
see that the value of  is fixed by those measurements on black body radiation and the photoeffect, which state the discreteness of
the energy of the field, and the energy quanta are proportional to the (circular) frequency of the mode.

The set of states  are called photon number states, or simply number states of the field mode.

The effect of the operator  on the eigenkets is the following

 (11.25)

which means that  raises the state  to , which has an energy by  more. We say that  creates a photon in the
mode,  is called therefore a raising or a creation operator. The numerical factor  is introduced for convenience, it is
actually a normalization constant.

The effect of the operator aa on the eigenkets is the following

 (11.26)

which means that aa lowers the state  to , which has an energy by  less. We say that aa annihilates a photon in the
mode, a is called therefore a lowering or an annihilation operator. Once again the numerical factor  is introduced for
convenience, it is actually a normalization constant.

The state  is the lowest energy state, or ground state called often the vacuum. According to (11.26)

 (11.27)              

where the 0 on the right hand side is not a state. This just means that there are no states with energy below the vacuum.

Using (11.26) and (11.25) show the validity of the eigenvalue equation (11.21) of .

Prove that a number state can be created from the vacuum according to the formula

 (11.28)

       Other states of the field
The photon number states are very important in quantum electrodynamics, but they are only an exceptional set. There are several
other quantum states of a single mode. It can be proven, however that any state characterizing the field can be expanded in terms of
the number states, as a generally infinite linear combination of them:

 (11.29)

where we require the equality . It turns out that the actual generation of number states in a cavity mode is a very
difficult experimental task.

The time dependence of the state expanded in terms of the number state follows from the general rules of quantum mechanics, and
it is given by:

 (11.30)

where we put into the exponentials the energy eigenvalues belonging to the given stationary state .

Coherent states

We note here that the states that are most close to our everyday concept of a monochromatic field mode, are not the number states.
The light in a highly coherent monochromatic laser field, say that of a red He-Ne laser at  is in a so called coherent state
of the mode. The coherent states are labelled by a complex number, denoted usually by , the state itself is then , which has the
following expansion in terms of the number states:
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 (11.31)

We stress that  is an arbitrary complex number. The coherent states are not eigenstates of the mode Hamiltonian and of N,
therefore the number of photons has not a well defined value in them. Coherent states of an oscillator have already been introduced
by Schrödinger in the very early days of quantum mechanics. The use of the coherent states in photon optics was initiated by R.
Glauber (Nobel prize 2005).

Under this link you can find the Nobel Lecture of Roy Glauber with the title: One Hundred Years of Light Quanta. 
http://www.nobelprize.org/nobel_prizes/physics/laureates/2005/glauber-lecture.html

Prove that the coefficients in this expansion obey the condition .

The intensity of the field turns out to be proportional to , which is the expectation value of the photon number in the coherent
state: .

The operators of field strengths
Now we come back to the electric and magnetic fields in the mode. In the expression (11.1) we replace the classical amplitude qq

by its quantum counterpart, by the Q operator. Using the expression of Q by  and , and the identification (11.12): ( )
we get:

 (11.32)

In this way the electric filed strength has become an operator. Similarly the magnetic field is obtained by using the quantum variant
of 

 (11.33)

Interestingly the perpendicular components of the  and the  fields do not commute with each other, except at the points
in space where the fields are zero:

 (11.34)

Concluding remarks
We have considered in this section the simplest way to introduce the correct notion of the photon, which can be considered as the
amount of the excitation of a field mode. The photon number has a well defined value in an energy eigenstate of the mode. There
are however many more other interesting states of a mode, which could be created and detected in experiments. One of the most
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important among them is the coherent state, which we introduced shortly. Number states, coherent states, as well as other, more
complicated ones have also practical applications in high precision measurements performed by light waves and in other technical
fields, too. Another important point here is that a cavity or free space can sustain, of course, a great number of modes, instead of
one. These modes may have identical or different frequencies, and their number in a frequency interval is an important parameter
of the given physical situation. The extension of the theory to multimode fields and the discussion of other possible states is the
realm of quantum optics, which could be a subject of another full semester course.

This page titled 11: Photons: quantization of a single electromagnetic field mode is shared under a CC BY 3.0 license and was authored, remixed,
and/or curated by Mihály Benedict via source content that was edited to the style and standards of the LibreTexts platform.
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12: A quantum paradox and the experiments

Quantum mechanics makes probabilistic predictions about the possible outcomes of an experiment with microscopic objects,
particles. This is a statistical statement concerning many particles. One can assume that there exists a deeper non-statistical, i.e.
deterministic law for single particles predicting what should happen with that specific particle.

Is there any deeper theory or law determining the experimental result with certainty? There must be such a theory according to
Einstein, implying that quantum mechanics cannot be a complete theory. On the other hand, according to Bohr – who was
another founder of quantum theory – there is no place for a deeper theory, we cannot predict anything more about a single
particle, but probabilities.

Chapter 1. Polarization of plane light waves in classical optics.

The EPR-paradox, Bohm’s version
In this last section we consider certain principal questions of quantum mechanics that are connected with the very essence of the
subject, i.e. with the nature of the probabilities appearing in the theory. In classical physics a measurement makes a record of the
value of a physical quantity of a particle, a body, or a system which is assumed to be a property of the particle that existed prior to
the measurement, and independently whether we measure it or not. In contrast to this, in quantum physics – a set of particles can be
prepared to have exactly the same property from a certain point of view, still they can show up quite different measurement results,
from the point of view of another property.

The simplest example is connected with light polarization, or stated in quantum language: photon polarization. According to
quantum mechanics if a plane transversal wave is polarized, and its plane of polarization makes an angle  with another
polarization direction, then the photons in the beam are polarized also in that latter direction with a probability amplitude 

. This means, for instance, that if the polarization makes an angle  with the horizontal direction and therefore an angle 
 with the vertical direction, then the corresponding probability amplitudes are  and ,

respectively. According to the fundamental role of quantum physics the probabilities are in turn the (absolute value) squares of the
amplitudes. So the probability of finding a single photon of the original beam to be polarized horizontally is  while the
probability of being vertically polarized is . This law is easily verified already with a classical plane wave field of intensity 
which is polarized so that it makes an angle  with the horizontal direction. The beam is directed to a calcite crystal which
separates it into two beams so that one of them is polarized horizontally the other one vertically – these are the eigendirections of
the calcite – and the two beams are distinct, so that they can be checked individually. Then the intensity of the horizontally
polarized beam after the calcite will be , while that of the vertically polarized beam will be . As the intensity is
proportional to the number of photons, this is a proof of the probability law. Present day technique allows also to check the
probabilities themselves, because photons can also be detected one by one by sensitive detectors.

It will be important that we can set the calcite so that its eigendirections are not horizontal and vertical, which we shall call setting
A later on, but also in a way, say B or C, so that the two eigendirections are different from those of the setting A. Let us note,
however, that the two eigendirections are always orthogonal to each other.

The following question arises: what determines the final polarization direction of the photon. According to quantum mechanics the
photon becomes vertical, or horizontal during the interacion with the measurement apparatus. This is not encoded in the
incoming particle, therefore it is principally impossible to answer the question with certainty, most we can say are the probabilities
of the two different possible outcomes. Stated in another way, the measurement does not establish a previously existing property of
the photon, rather it is the measurement itself that creates the property with the appropriate probability.

This answer, however, does not satisfy everybody, because one can imagine a different answer, as well, namely assuming that for
each photon both properties did exist before the measurement, i.e. it was polarized in say  and at the same time it had the
property of being horizontally polarized, if we obtained the latter result during the measurement. It is another question that
quantum mechanics does not give account of both properties simultaneously, as it cannot give with unit probability – i.e. with
complete certainty – the direction of polarization of a single photon for two non-parallel or nonorthogonal directions. This would
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mean then that there exists a kind of a theory, deeper than quantum mechanics, according to which these properties are present
simultaneously and exactly in the measured object. From the point of view of quantum theory the parameter that would give the
result with certainty is not present, so it is a hidden parameter as it is called in these theories.

As quantum mechanics does not give account of these parameters, it cannot be a complete description of physical reality. This was
the point of view of A. Einstein, and this was exposed in the most perplexing way in the famous paper by A. Einstein, B. Podolsky
and N. Rosen in 1935: ‟Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” In the end of the
work they came to the conclusion that quantum mechanics is not complete, but they add that such a theory shall appear in the
future.

In the beginning the authors of the EPR paper try to give an exact definition what they consider a complete theory:

“A theory is complete if every element of physical reality has its counterpart in the
physical theory.”

But what is an element of physical reality? They give the following answer:

“If, without in any way disturbing a system, we can predict with certainty (i.e., with
probability equal to unity) the value of a physical quantity, then there exists an
element of physical reality corresponding lo this physical quantity.”

Einstein, Podolsky and Rosen (EPR) present the description and the analysis of an imagined experiment, (so called
Gedankenexperiment) performed on a pair of quantum particles, which according to the authors shows that quantum mechanics is
not a complete theory in the sense they require it. In their example they consider the measurement of the positions and the momenta
of a pair of particles, which emerge in a disintegration process. Instead of that it is simpler to consider another variant of the
experiment, when it is done with a pair of two-state systems, as there are only two possible results in a single measurement
apparatus, instead of the infinitely many possible outcomes when measuring position or/and momenta. Such a variant of the EPR
paradox was proposed by David Bohm in 1957 with pairs of spin 1/2 particles, or what we shall analyze, with photons having two
orthogonal polarization eigenstates.

You can download the original EPR paper under this link: 
http://prola.aps.org/pdf/PR/v47/i10/p777_1

The essential features of the experiment, performed many times since Bohm’s proposal, are the following. A special source
generates pairs of photons, such that the members of the pair propagate in different spatial directions, say, one to the left, the other
to the right. The polarization properties of the members are measured independently. One places two polarization measurement
devices perpendicularly to the propagation of the beams. These are e.g. calcite crystals in the paths of the two photons which pass
through them, and measure the polarization properties of the photons. The devices can be set making different angles with the
horizontal direction. The possible settings of the devices will be denoted by different capital letters  and the two
corresponding eigenstates of the devices by  and ; + and ; and  and  respectively. With an appropriate photon
source one can achieve that there is a strict anticorrelation in the measurement between the members of a pair, which means the
following. Assume that the devices are set identically, on both sides of the source. Then both photons pass through the same type of
device, say horizontal-vertical, to be denoted by A. One observes then that if one of the photons is polarized horizontally  on
the left, its pair turns always out to be vertically polarized , on the right, or vice versa. The same thing happens if both
polarizers are set in any direction say B which is different from A, but identical for both photons. If  denotes  from the
horizontal and  means  from the horizontal, then if one of the photons comes is polarized in , its pair will be , or
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the other way round. Thus the polarization states of a given member are always orthogonal to each other. Such pairs of particles are
called EPR pairs. This anticorrelation of the pair follows from the way one creates them, which will be detailed below.

An EPR state of a photon pair is:

 (12.1)

where subscript labels the particle: 1 goes to left and 2 to the right. The first term in the state above says that photon 1 is polarized
vertically, while photon 2 is polarized horizontally. The second term means all this the other way round. What is important,
quantum mechanics allows the superposition of the two possibilities. We have already encountered a similar state when we
considered the spin singlet state of the two electrons in the  molecule in Chapter 7.

Show that the state (12.1) above cannot be written as a product of two one-particle states.

Figure 12.1: Two possible eigenstates of the polarizer A are denoted by  and . The same notation is used in case of polarizer
BB, the two eigenstates are  and . There is a strict anticorrelation between the outcomes on the two sides, if the devices are
set identically

But then it is sufficient to measure only on one photon of the pair. We may think that we know the result for the other member,
even without doing the measurement, because it will be always opposite to the one for its partner. Therefore without disturbing it,
we can predict its value, thus it is the element of reality according to EPR. One has to add here, that it is impossible that we
measure a value  on the left because we measured  on the right. The propagation of this information needs time, but the two
events can have a space-like separation (in the sense of relativity theory), which means that only a signal faster than light could
influence the result of the measurement on the other side, depending on the result of one of the sides. This is the locality principle
emphasized so much by Einstein’s theory of relativity. To conclude: the polarization property of the unmeasured photon is the
element of reality, and a complete theory must assign a well defined value to it in the sense defined by EPR.

But there is even more than that: in the case of the EPR pair we can tell the state of a particle exactly even from the point of view of
two incompatible devices, what is impossible in quantum mechanics, in principle. Let us put two different devices on the two sides.
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Figure 12.2:

If we measure on the left side the property A (physical quantity), then we also know the state of its pair on the right from the point
of view of A, due to the perfect anticorrelation. It will be perpendicular to the direction measured on the left. But at the same time
on the right we may measure with another type of apparatus, that measures the property B. In this way we can state both properties
of the given particle, one of them follows from the measured value on its mate on the left, the other one is measured actually. The
same is true for its partner. This would mean that both properties are well defined in the case of a single particle, while according to
QM this is impossible, if A and B have different eigendirections as seen in figure 12.2. In quantum mechanics only the probability
amplitude and a corresponding probability is given if A and B make an angle different from  or . This reasoning led EPR to
the conclusion that QM, which does not give account for two incompatible elements of physical reality, cannot be complete. In
contrast to the statement by EPR, N. Bohr argued that the two particles are part of a single unseparable quantum system, according
to the present wording they are in an entangled state, therefore a measurement on one of its parts immediately influences its other
part, even if they are very far from each other let the two measurements two spacelike events in the sense of special relativity. But
this statement contradicted to one of the most fundamental principles of physics, locality. Therefore Einstein could not accept
Bohr’s arguments and the debate and the paradox remained unsolved for about 30 years.

Bell-inequalities with photons
In order to decide the question, John Bell proposed an explicit experimental arrangement in 1964. One has to measure not two but
three different quantities (orthogonal polarizations) A, B, and C for the photon pairs, so that the three possible settings of the
polarizers are chosen randomly and independently from each other. It turns out, that based on the experimentally measured number
of pairs one can decide whether quantum mechanics, or the Einstein hypothesis is correct, the latter saying that the particles must
have well defined polarizations in different directions simultaneously. The original idea of Bell will be presented here as it was
discussed by Eugene Wigner.

Figure 12.3:
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Assume that the members of the pair had a well defined polarization before the measurement:  or  in each of the three
directions A, B, and C. As the measurements show, in a single pair the polarization of the two particles are always orthogonal to
each other, shown up explicitly if we use the same settings on both sides. The possible 8 types of the pairs are shown in table 12.1,
and let us denote the measured number of a given type of pairs by .

Table 12.1:

Let us consider now the pairs for which the particle going to left resulted in , while the one going to right came out as .
These events will of course be present only if the device on the left was set to A while the one at right was set to C. The number of
such pairs shall be denoted here by , and according to the table above . Similarly the
number of pairs for which we got A+A+ on the left and B+B+ on the right the result is . Finally the
number of those where we had  on the left and  on the right was .

According to the simple inequality

 (12.2)

valid because by definition all the numbers  are nonnegative integers, we get:

 (12.3)

It is important that the number of pairs  can be measured, and the experimental result can
be compared with the inequality obtained above. Before going on, however, we reformulate the inequality (12.3) into probabilities,
in order to compare it with quantum mechanics, which give its results in terms of probabilities.

Let  the probability, that by choosing randomly the directions we set on the left the device to A, and it measured a
result , while the measurement on the right particle happened again by random choice in the direction C, and resulted in .
Then

 (12.4)

and similarly , if we made sufficiently many measurements. Accordingly the

inequality (12.3) can be written as

 (12.5)

This is a Bell inequality, which – as we must remember – was derived by using the assumption that the pairs had well defined
properties before the measurement was performed. There were no quantum mechanical arguments in obtaining it.

So let us look at what QM says about the probabilities occurring in (12.5) as shown in the figure below. In a real measurement one
has identical crystals on both sides, and they are rotated randomly and independently of each other in three directions A, B and C. If
on the left side we measure  for instance, then its pair should be in state . But we measure say C on it, and the result
measured on the partner can be either  or . The probability amplitude of getting the result that this other particle is polarized
in the direction  is , where  is the angle with . The corresponding probability is thus . Or we wish to express it
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with the angle made with , which is , then the probability is . Choosing randomly the possible three
directions on both sides with equal probabilities , the probability of all the possible settings of the pair of the apparatuses equals
to . The probability of obtaining say A+A+ on the left before we measured on the right is , then with a given setting of both
crystals the probability is e.g. , where  denotes here the angle between the directions 

 and .

Figure 12.4: Violation of Bell inequality

Let us choose specifically the directions shown in the figure, i.e. let the eigendirections of A, B and C be rotated consecutively by 
. In other words we choose  and . Then the quantum mechanical probabilities

give the following result:

 (12.6)

If we substitute these probabilities into (12.5) we observe that these results do not obey it, because that would require the fulfilment
of , i.e. the inequality

 (12.7)

which is obviously false.

This means that by choosing appropriate directions for the crystals the corresponding quantum mechanical probabilities violate the
Bell inequality. This turns out to be then an experimental possibility to decide whether quantum mechanics or Bell inequalities are
valid in the real physical world. According to the experiments measuring directly the numbers  etc. it turned
out that the Bell inequalities are not valid for appropriately chosen directions A, B, and C as above but the results are in
agreement with the predictions of QM.

All this should mean that in the derivation of the Bell inequalities must be something that contradicts to what is in the real physical
world. There are two possibilities of errors. One of them could have been that filling out the table 12.1 we assumed that a particle,
and its partner possessed two, (actually three) different polarization properties already before the measurement, they did exist in
them independently of the measurement that was performed on them later. The other possible error could be that there is a nonlocal
communication between the two members of a pair, i.e. the measured state of one of the particles depends on the measurement on
its distant partner. (However one can show, that information cannot be transmitted in this way with a speed faster than light,
because information transfer would necessitate an additional classical communication channel, and the speed of the transfer is
determined by the velocity of the classical signal. That means that locality is not violated in this sense). Both possibilities, as
reasons of the discrepancy, contradict to traditional concepts about the natural world. In the first case it contradicts to the
assumption that all the possible properties of a particle, including the incompatible properties, have a well defined value before and
independently of the measurement. This assumption is usually called as realism. The second possibility contradicts to locality, in
the sense that the measurement result influences instantaneously a distant, spatially separated other measurement.
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Experiments and Bell inequalities
The first experiments about validity or violation of the Bell inequalities was performed by J. F. Clauser and co-workers in 1972. A
later experiment by A. Aspect (1982) was the first, where the settings of the two crystals were made so that the separation of these
two events was space-like, i.e. a light signal imagined to start from one of the crystals at the time of its measurement could not
reach the other one before it measured the state of the other particle.

Here we show the setup of the experiment of A. Zeilinger (1995) where the pair of photons emerged from a nonlinear crystal.

Figure 12.5: Generation of an entangled photon pair. (In the figure colours are fictitious, green colour corresponds to the infrared
photons of wavelength 702 nm.)

When the photons of an UV laser of wavelength 351 nm pass through the nonlinear crystal, a small part of them are split into two
photons with smaller energy and thus with smaller frequency. This process is called parametric down conversion in nonlinear
optics. The emerging two beams leave the crystal along the superficial of two cones, satisfying the energy and momentum
conservation. Among the pairs some will share equally the original energy and momentum, their wavelength will be identically 702
nm (this is called the degenerate case). With an appropriate setting of the crystal one can achieve that the polarization of the
members are always orthogonal to each other, as assumed for the EPR pair in the discussion above. In this latter case the angle at
the apices of the two cones are identical and along their intersection – at the two green spots in the simulated figure on the right
hand side of figure 12.5 – the photon pairs will have just the required property.

Downloading and running the exe file we can chose from three simulations. The first one demonstrates the violation of Bell
inequality. The second one shows quantum teleportation, while the third is a realization of the BB84 quantum key distribution
(QKD) protocol (not discussed here).

http://titan.physx.u-szeged.hu/~mmquantum/download.php?download_file=Qmdemo.exe

Experiments unanimously proved the validity of the quantum mechanical result and the violation of the Bell inequalities.

This page titled 12: A quantum paradox and the experiments is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Mihály Benedict via source content that was edited to the style and standards of the LibreTexts platform.
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