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3: Angular momentum in quantum mechanics

In this chapter we discuss the angular momentum operator – one of several related operators – analogous to classical angular
momentum. The angular momentum operator plays a central role in the theory of atomic physics and other quantum problems
involving rotational symmetry. In both classical and quantum mechanical systems, angular momentum (together with linear
momentum and energy) is one of the three fundamental properties of motion.

Chapters 1 and 2. Angular momentum and its conservation in classical mechanics. Spherical coordinates, elements of vector
analysis. Laplace equation.

Eigenvalue equation in polar coordinates
The classical definition of the angular momentum vector is

 (3.1)

which depends on the choice of the point of origin where |r|=r=0|r|=r=0. With the definition of the position and the momentum
operators we obtain the angular momentum operator as

 (3.2)

The Cartesian components of  are then

 (3.3)

One frequently needs the components of  in spherical coordinates. In order to obtain them we have to make use of the expression
of the position vector by spherical coordinates, which are connected to the Cartesian components by

 (3.4)

Going over to the spherical components in (3.3), and using the chain rule:

 (3.5)

and similarly for  and  gives the following components

 (3.6)

One sees at once the reason and the advantage of using spherical coordinates: the operators in question do not depend on the radial

variable r. This is of course also true for  which turns out to be  times the angular part of the Laplace
operator .

 (3.7)

We shall now find the eigenfunctions of , that play a very important role in quantum mechanics, and actually in several
branches of theoretical physics. They will be functions of  and , i.e. they can be considered as complex

valued functions whose domain is the unit sphere. The eigenfunctions of  will be denoted by , and the angular
eigenvalue equation is:

 (3.8)

 Objectives

 Prerequisites

L= r ×p

= −iℏ(r ×∇)L̂

L̂

= −iℏ (y −z ) , = −iℏ (z −x ) , = −iℏ (x −y )L̂x ∂z ∂y L̂y ∂x ∂z L̂z ∂y ∂x

L̂

r = x +y +z = r sinθcosϕ +r sinθ sinϕ +r cosθêx êy êz êx êy êz
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One might wonder what is the reason for writing the eigenvalue in the form , but as it will turn out soon, there is no loss of
generality in this notation.

Separation of the eigenvalue equation
We try the separation of the variables:

 (3.9)

Plugging this into (3.8) and dividing by , we find

 (3.10)

The first term depends only on  while the last one is a function of only . In order to satisfy this equation for all values of  and 
these terms must be separately equal to a constant with opposite signs. This constant is traditionally denoted by  and  (note
that this is not the mass) and we have two equations: one for , and another for . We consider the second one, and have:

 (3.11)

Two linearly independent solutions are

 (3.12)

and any linear combinations of them. One can choose , and include the other one by allowing mm to be negative. As these are
functions of points in real three dimensional space, the values of  and  must be the same, as these values of the
argument correspond to identical points in space. Then , and  must hold. From this it follows that mm
must be an integer

 (3.15)

The integration constant  has been chosen here so that already  is normalized to unity when integrating with respect to 

from 0 to .

The equation for 

 (3.16)

is more complicated. With  the solution is

 (3.17)

where  is the -th Legendre polynomial, defined by the following formula, (called the Rodrigues formula):

 (3.18)

The functions  are called associated Legendre functions.

Find the first three Legendre polynomials ,  and .
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Figure 3.1: Plot of the first six Legendre polynomials. 
http://en.Wikipedia.org/wiki/File:Legendrepolynomials6.svg

The function  is a polynomial in z only if  is even, otherwise it contains a term  which is a square root. But
when turning back to  this factor reduces to .

Find , , .

Prove that  are solutions of (3.16) for .

Prove that  are solutions of (3.16) for all  and , if .

Show that  are either even, or odd depending on the parity of .

Notice that  must be a nonnegative integer otherwise the definition (3.18) makes no sense, and in addition if |(|m|>ℓ\), then (3.17)
yields zero. Thus for any given , there are  allowed values of m:

 (3.19)

Note that equation (3.16) – as all second order differential equations – must have other linearly independent solutions different
from  for a given value of  and m. One can show however, that these latter solutions are divergent for  and ,
and therefore they are not describing physical states. The solutions

 (3.20)

where the absolute values of the constants  ensure the normalization over the unit sphere, are called spherical harmonics.
There are several different conventions for the phases of , so one has to be careful with them.

The  functions are thus the eigenfunctions of  corresponding to the eigenvalue , and they are also
eigenfunctions of , because

 (3.21)

The quantum number  is called angular momentum quantum number, or sometimes for a historical reason as azimuthal
quantum number, while m is the magnetic quantum number.
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Concluding the subsection let us note the following important fact. As none of the components of , and thus nor  depends on
the radial distance rr from the origin, then any function of the form  will be the solution of the eigenvalue equation
above, because from the point of view of the  the  function is a constant, and we can freely multiply both sides of (3.8). by 

.

Orthonormality and completeness
The spherical harmonics form an infinite system of orthonormal functions in the sense:

 (3.22)

This system is also a complete one, which means that any complex valued function  that is square integrable on the unit
sphere, i.e.  can be expanded in terms of the ):

 (3.23)

where the expansion coefficients can be obtained similarly to the case of the complex Fourier expansion by

 (3.24)

If you are interested in the topic Spherical harmonics in more details check out the Wikipedia link below: 
http://en.Wikipedia.org/wiki/Spherical_harmonics

The animation shows the time dependence of the stationary state – i.e. the one containing the time dependent factor  as
well – given by the function . The absolute value of the function in the direction given by  and  is equal to the
distance of the point from the origin, and the argument of the complex number is obtained by the colours of the surface
according to the phase code of the complex number in the chosen direction.
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The figures show the three-dimensional polar diagrams of the spherical harmonics. The state to be shown, can be chosen by
setting the quantum numbers  and m.

http://titan.physx.u-szeged.hu/~mmquantum/interactive/Gombfuggvenyek.nbp

Specific examples
The first few functions are the following, with one of the usual phase (sign) conventions:

 (3.25)

 (3.26)

Historically the spherical harmonics with the labels  are called  functions respectively, the
terminology is coming from spectroscopy.

If an external magnetic field  is applied, the projection of the angular momentum onto the field direction is .
Since mm can take only the integer values between  and , there are  different possible projections, corresponding to
the  different functions  with a given .

Very often the spherical harmonics are given by Cartesian coordinates by exploiting  and .
Another way of using these functions is to create linear combinations of functions with opposite m-s. This is useful for instance
when we illustrate the orientation of chemical bonds in molecules. We demonstrate this with the example of the p functions.

 (3.27)

Let us also note that the  functions do not depend on , and they are proportional to the Legendre polynomials in .

 (3.28)

Parity and angular momentum

The operator of parity  is defined in the following way:

 (3.29)

The result of acting by the parity on a function is the mirror image of the original function with respect to the origin. Looking for
the eigenvalues and eigenfunctions of , we note first that . Therefore the single eigenvalue of  is 1, and any function is
its eigenfunction. The eigenvalues of  itself are then , and we have the following two possibilities:

 (3.30)

In the first case the eigenfunctions  belonging to eigenvalue +1 are the even functions, while in the second we see that 
are the odd functions belonging to the eigenvalue −1. There are of course functions which are neither even nor odd, they do not
belong to the set of eigenfunctions of .
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Figure 3.2: Examples of even and odd functions in one and two dimensions.

The reason why we consider parity in connection with the angular momentum is that the simultaneous eigenfunctions of  and 
the spherical harmonics times any function of the radial variable r are eigenfunctions of  as well, and the corresponding
eigenvalues are . This can be formulated as:

 (3.31)

Show that the transformation  is equivalent to .
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Figure 3.3: The effect of the transformation 

By using the results of the previous subsections prove the validity of Eq. (3.31).

This page titled 3: Angular momentum in quantum mechanics is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
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