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7: Molecular structure and spectra

In this chapter we shall discuss the question about the internal structure and the energy of molecules, which depend not only on
the distribution of the electrons like in atoms, but also on the location and motion of atomic nuclei. Although the different
possible mechanisms responsible for the molecular spectra are interrelated, there are three kinds of motions that can be
distinguished in practice, because the differences in their typical energies allow their characterization to be examined
independently. The three main mechanisms determining the spectra of the molecules are their electronic, vibrational and
rotational excitations.

Chapters 2, 4-5-6. Molecules and valence in chemistry. Rotation of rigid bodies, the harmonic oscillator.

Introduction

For simplicity, and in order to grasp the essence of this topic, we shall consider diatomic molecules. In particular, the interaction
between two neutral atoms and its dependence on their distance RR from each other will give us better insight into the nature of
chemical bond. Also, the model of atomic orbitals, which gives an intuitive picture of the spatial electron distribution and plays an
important role in chemistry, can be explained more readily for diatomic molecules. Since the energy levels of molecules are not
only determined by electronic excitation but also by vibrations of the nuclei, or the rotation of the whole molecule around an axis
through its centre of mass, the spectra of molecules are much more complex than those of atoms, but on the other hand they also
give more detailed information about the internal structure and dynamics of molecules. First we come to the simplest discussion of
the electronic states, and explain why two neutral atoms tend to form a molecule.

Molecular orbitals of diatomic molecules.

We shall consider a specific problem, the neutral  molecule, where electron-electron interaction is also present, and this example
explains also why two electrically neutral H atoms tend to form a stable molecule, instead of remaining separated. This is the long
standing problem of valence, that can be explained only by quantum theory. In considering the  molecule we shall assume in this
section that the two protons are at fixed positions in space, and we will try to determine the two-electron wavefunction of the
system in its ground state. The resulting energy will depend on the distance between the nuclei, and then the dynamics of that
degree of freedom can be investigated further.

Figure 7.1:  molecule.

The Hamiltonian of the system, which does not contain nuclear motion (with ) is

 (7.1)
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Explain the terms in this Hamiltonian.

One of the methods to find the energy eigenvalues is the following. We try to build a molecular wave function, called a molecular
orbital as a linear combination of atomic orbitals, abbreviated as the MO LCAO method. Let us assume that in the ground state of
the molecule the molecular orbital of one of the electrons can be written as the linear combination of normalized  ground state
hydrogenic orbitals, which are centered at the nuclear positions:

 (7.2)

where

 (7.3)

Due to the symmetry of the problem we choose  which leads after normalization to the following two wavefunctions for
a single electron in the field of the two nuclei:

 (7.4)

where  is a real constant, as the  functions above are real.  is called the overlap integral of the
functions centred at the two nuclei. It will be a function of the distance  between the nuclei, and it is diminishing
with increasing R. Note that  in (7.4) is a symmetric while  is an antisymmetric function with respect to the exchange
of the two identical nuclei. The question which of the two is to be used to describe the electrons will be discussed below, when also
the electron spin is to be taken into account.

Figure 7.2: Wavefunctions and their absolute value square for a single electron in the field of the two nuclei. See Eqn.(7.4).

Now we assume that each of the two electrons is in one of the states , or  above, and look for the two-particle wave
function as their product.

The singlet state

First we consider the possibility, when both of the electrons are in the  states:

 (7.5)

Obviously this is symmetric with respect to the exchange of the two electrons, and therefore according to the postulate that requires
the antisymmetry of the wave functions for fermions, it cannot be a true wave function. But as we know, this is not the total state,
because the electrons possess a the spin degree of freedom, which – though not contained in the Hamiltonian – influences the
symmetry properties of the state. We can complete the symmetric spatial wave function by an antisymmetric spin part by forming
the Slater determinant:

 (7.6)
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where  and  are the two different and orthogonal eigenstates of the  operator (spin up , spin down , according to
the common usage (5.2)) for the i-th particle.

By expanding the determinant we get

 (7.7)

In view of the last, spin dependent factor in (7.7) one sometimes simply says that in this state the two electrons have antiparallel
spins. As the antisymmetric spin state  is called a spin singlet, the more correct statement is
that the total  state is a spin singlet state.

The triplet state

From (7.4) we can also construct a spatial wave function which is antisymmetric with respect to the interchange of the electrons. In
contrast to the symmetric  we take the combination

 (7.8)

which is antisymmetric if we change the electrons. This must be again completed by spin dependent parts, which must be then
symmetric, so that the total state is antisymmetric. There are three different and orthogonal symmetric spin functions of the two
particles, which are the following:

 (7.9)

Multiplying  with any of these we get again an allowed wave function . One loosely says, that the two spins
are parallel in these states. As there are three of them, we call these three spin states, as well as the total wave function as a triplet.

Multiply  by the second of these symmetric spin states and write the result as a Slater determinant.

The energy expectation values of the states

One can now find the energies in the states  and  by calculating  and ,
where H is the Hamilton operator (7.1). In the calculations there appears the ground state energy  of an isolated H: 

. In addition the result will contain the Coulomb energy

 (7.10)

and the so called exchange energy A:

 (7.11)

which is the measure of the overlap of the two electronic wave functions weighted by the potential energy, and results from the
interplay of the Pauli principle and the Coulomb interaction. The result is

 (7.12)

Here both Q and A depend on the nuclear distance R. The Coulomb energy Q is positive, while apart from very small R-s A is
negative and . This results in the dependence of the energy values of εsεs as shown in Fig. 7.3
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Figure 7.3: Dependence of the energy values of  on the nuclear distance R.

This means that the singlet state (antiparallel spins in the sense of the last factor in (7.7)) is stable around an equilibrium distance 
. The calculated value from this simple model is , while the measured value is . The state  is called

therefore a bonding state, and it is denoted by . The other, triplet state, which is antisymmetric in space but the spins of the two
electrons are parallel in the sense of (7.9) is not stable, there is no minimum in the energy, it is called an antibonding state, and it is
denoted by . See figure 7.4 and the animation below.

Figure 7.4: Schematic drawing of bonding and antibonding states. 
http://www.sparknotes.com/chemistry/bonding/molecularorbital/section1.rhtml

The lowest-energy bonding and antibonding molecular orbitals (MO) for a homonuclear diatomic molecule are shown, as the
internuclear distance is varied. The red contours designate negative values of the wavefunction.

http://demonstrations.wolfram.com/BondingAndAntibondingMolecularOrbitals/

The  molecule is a homonuclear diatomic molecule, where homonuclear means that the two nuclei are identical. In some of the
heteronuclear diatomic molecules (different atoms) there is another effect besides the one we discussed here. In HCl for instance
the electron cloud will be asymmetric along the molecular axis, the electron from the H atom tends to get closer to the Cl and
simply the attraction of the proton by the negatively charged Cl ion will stabilize this molecule.

The example we considered above was one of the simplest ones. The calculation of the electronic structure of very complicated
large molecules have become possible in the second half of the 20th century due to the technical development of fast electronic
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computers, as well as to the evolution of sophisticated algorithms and program packages, which are the subject of the science called
quantum chemistry.

Molecular spectra

In the atomic system, our consideration of radiative transitions was limited to the problem of electronic transitions between states.
In the molecules, the internal structure allows also for transitions involving rotational and vibrational excitations of the
constituent nuclei. As with atoms, electronic transitions are typically of the order of eV, corresponding to wavelengths in or near
the optical region. However, it is unlikely that an electronic transition will occur without inducing motion of the nuclei, as well,
because the equilibrium distances between the nuclei will be different in the initial and final electron states. The typical energies of
rotational states of molecules are much smaller than those of electronic excited states, of order , where  is the molecular
moment of inertia. Substituting typical values for the interatomic spacing and atomic masses, one finds that rotational energies are
of the order of  corresponding to the far infra-red or microwave regions. Typical energies for vibrational excitations of
molecules are around  corresponding to the infra-red waveband. All of these types of transitions can occur
radiatively, i.e. through the emission or absorption of a photon of the appropriate frequency . As in the case of atoms, the
most probable radiative transitions are usually electric dipole transitions. In an electric dipole transition, the photon carries away or
brings in one unit of angular momentum and negative parity, so there will be the usual selection rule for the change in the total
angular momentum quantum number of the molecule: , but not , accompanied by a change in the parity of the
molecular state (which may impose further restrictions on ).

Figure 7.5: This figure visualizes the difference in orders of magnitude for the different type of transitions (electronic, vibrational
and rotational). 
http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/molec.html

In a gas or a liquid, transitions can also be produced by collisions between their molecules. The appropriate energy change can be
provided by excitation or de-excitation of the other molecule, or as part of the kinetic energy of the collision. Such non-radiative
transitions do not have to obey the selection rules above. Thus, for example, a molecule in a metastable state, i.e. one that cannot
return to the ground state via an allowed radiative transition, can be de-excited by a collision. In the absence of any incident
radiation or other non-thermal sources of excitation, collisions will bring about a thermal distribution of molecular energy levels,
with the number of molecules in state ii being given by , where  is the degeneracy and  the energy. At room temperature 

, so typically many rotational states of molecules are excited, but not electronic or vibrational.

In a rotating and vibrating molecule the kinetic energy of the nuclei is small compared to the energy of the molecular state. This is
because the nuclear masses are large, and therefore their motion is slow compared to the motion of the electrons. This allows the
separation of the total wave function  into a product  of a nuclear wave function  and an
electronic function  which depends on the electron coordinates  and contains the nuclear positions  as parameters. This
approximation is called the adiabatic or Born-Oppenheimer approximation. Within this approximation the total energy of a
molecular level can be written as a sum of the electronic, vibrational and rotational energies.
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Shown here is the thermal motion of a segment of protein alpha helix. Molecules have various internal vibrational and
rotational degrees of freedom. This is because molecules are complex objects; they are a population of atoms that can move
about within a molecule in different ways. This makes molecules distinct from the noble gases such as helium and argon,
which are monatomic (consisting of individual atoms).

http://upload.wikimedia.org/Wikipedia/commons/2/23/Thermally_Agitated_Molecule.gif

Molecular rotation

The model of a rigid diatomic molecule

In general, the Schrödinger equation for the nuclear motion has many solutions, which give the various molecular energy levels for
a given electronic configuration. The simplest case is that of a diatomic molecule where the molecule can be characterized by its
moment of inertia with respect to its centre of mass. If we assume in the first approximation that the molecule is rigid, and we
consider the problem in the system fixed to the centre of mass of the molecule, then the translational kinetic energy can be
separated. From the point of view of rotations, the molecule is characterized by its moment of inertia  about an axis
through the centre of mass orthogonal to the bond, where  is the equilibrium bond length, and  is the reduced mass of the two
atoms. The rotational kinetic energy can be expressed by the angular momentum  as

 (7.13)

and if we replace the classical  by the operator of the angular momentum we get the Hamilton operator of the pure rotational
motion:

 (7.14)

The stationary states are the solutions of the eigenvalue equation

 (7.15)

As  is a square of an angular momentum belonging to an orbital motion its eigenvalues are of the form , (in
molecular spectroscopy instead of the notation , we use ) where , and its projection  takes the values 

). The rotational energy eigenvalues are therefore

 (7.16)

while the eigenfunctions will be the spherical harmonic functions . As mentioned earlier, the typical energies of
rotational states of molecules are much smaller than those of electronic excited states. Since molecular dimensions are determined
by the electronic wavefunction, their scale is set by the Bohr radius . Thus moments of inertia are of order  and the scale of
rotational energies is . For the electronic states, the Heisenberg inequality implies momenta of order  and hence
electron energies around , a factor of  greater. To bring about a radiative rotational transition, an
emitted or absorbed photon must interact with the electric dipole moment of the molecule. In a pure rotational transition the initial
and final electronic states are the same, therefore the state needs to have a permanent electric dipole moment. Thus we can have
purely rotational radiative transitions in heteronuclear diatomic molecules like HCl and CO, which have permanent dipole
moments, but not in homonuclear ones like  and .

The usual electric dipole selection rules apply:  with a parity change. In a rotational state with angular momentum
quantum numbers  and , the nuclear wavefunction is proportional to the spherical harmonic , which has parity .
(For simplicity, we consider only molecular states in which the electronic wavefunction has zero angular momentum and even
parity). Then the fact that the parity must change in a radiative transition excludes the possibility . Therefore the possible
energy changes in emission ( ) are given by:

 (7.17)
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Accordingly the spectrum is expected to consist of lines with increasing frequencies.

To specify a spectral line in practical molecular spectroscopy one uses the wavenumber , which is obtained
according the Bohr rule ( ) as a difference of terms:

 (7.18)

Here the word term is the standard terminology for the expression in (7.18). So the wavenumbers corresponding to the energy
differences, i. e. to the transition, are obtained from (7.17) as:

 (7.19)

where the rotational constant , is expressed here with the reduced mass . Rotational transitions fall into the
THz-GHz domain, i.e. in the far infrared or microwave range. In fact, the rate for spontaneous emission between rotational states is
very small, because of the small energy release. The spontaneous emission rate varies as , and so rotational transitions are more
conveniently studied by absorption spectroscopy. The same formula for the transition energies clearly applies to the 
absorption case, as well. Observation of this spacing can be used to determine the moment of inertia and hence the bond length of
the molecule.

The intensities of rotational spectral lines show some interesting features. Although the transition matrix element depends on the
quantum numbers, the dominant factor is usually the population of the initial state. As mentioned earlier, non-radiative transitions
due to molecular collisions bring about a thermal distribution,

 (7.20)

This increases with  up to some value, which depends on the temperature, and then decreases. Thus successive spectral lines
increase and then decrease in intensity.

Centrifugal Distortion

A real molecule is not rigid. When it rotates, the centrifugal force acts on the atoms and the internuclear distance increases to a
value R where this force  is compensated by the restoring force  holding the two atoms
together, which depends on the slope of the potential energy function . In the vicinity of the equilibrium distance  the
potential can be approximated by a parabolic function. This leads to a linear restoring force

 (7.21)

From the relation  we obtain:

 (7.22)

which leads to

 (7.23)

This means that the internuclear distance R is increased by the molecular rotation. Since the potential energy  has a
minimum for , in case of  we have an additional energy  in the case of a nonrigid rotor. The
total energy of the nonrigid rotor is then

 (7.24)

If we express RR on the right side of (7.23) by  and k with the help of (7.22) we obtain

 (7.25)

where the second term is . This allows us to expand  into the power series

 (7.26)

and the rotational energy becomes up to third order in 
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This means that for a given value of the rotational quantum number J the centrifugal force makes the moment of inertia larger and
therefore the rotational energy smaller. This effect overcompensates the increase in potential energy.

Using the term-values again instead of the energies, (7.27) becomes

 (7.28)

with the rotational constants:

\(\F_{r o t}(J)=B_{e} J(J+1)-D_{e} J^{2}(J+1)^{2}+H_{e} J^{3}(J+1)^{3}) (7.29)

The experimental spectroscopic accuracy is nowadays sufficiently high to measure even the higher order constant .

Vibrational transitions

Harmonic approximation

Another important type of molecular motion is vibration, in which the nuclei oscillate around their equilibrium positions. For a
diatomic molecule, we can make a Taylor expansion of the molecular potential  around the equilibrium nuclear separation 

 to obtain

 (7.30)

The first derivative vanishes, because  has a minimum at .  is a constant, and the second term on the right-hand
side can be written as , which is the potential for a simple linear harmonic oscillator with , and classical frequency

 (7.31)

where  is the reduced mass. According to the quantum theory of the harmonic oscillator the energy levels including nuclear
vibration is given by

 (7.32)

The excitation energies of molecular vibrational states are typically larger than those of rotational states by a factor of about 
 and smaller than electronic excitation energies by a factor of about . As we discussed earlier, 

will be of the same order of magnitude as atomic energies, i.e. of the order of , where  is the Bohr radius. Thus, on
dimensional grounds,  will be of order , and . Therefore the vibrational energy is smaller
than the electronic by a factor of order . This puts vibrational spectra in the wavelength region around , which is
in the infra-red.
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Figure 7.6: Generally vibrational transitions occur in conjunction with rotational transitions. Consequently, it is possible to observe
both rotational and vibrational transitions in the vibrational spectrum. The top figure shows an energy level diagram demonstrating
some of the transitions involved in the IR vibrational-rotational spectrum of a linear molecule: P branch (where ), Q
branch (not always allowed, ) and R branch ( ). 
http://en.Wikipedia.org/wiki/File:Vibrationrotationenergy.svg

Figure 7.7: The vibration-rotation spectrum of HCl. The left hand branch of the spectrum represents the P branch and the right the
R. The Q branch is not allowed. The splitting of the lines is associated with the two isotopes  and .

We can now check explicitly that the Born-Oppenheimer approximation is valid for nuclear vibrational states, as follows. The mean
square nuclear vibrational momentum is of order , which means that ,
where  is the nuclear part of the wavefunction. On the other hand , where  is the electronic part. Thus  is
smaller than  by a factor of , and it is legitimate to neglect the former.

For vibrational transitions we have the selection rule . This implies only a single energy in the spectrum

 (7.33)

corresponding to the classical frequency of oscillation.

Anharmonic effects

In practice the Taylor expansion around  has non-negligible terms of higher than second order and the harmonic oscillator
approximation is not very reliable: there is anharmonicity. The flattening of the molecular potential energy curve at larger
separations has the effect of bringing the energy levels closer together. Thus transitions at larger vv have lower energies than that
given above. Also, since the true stationary state wavefunctions are not precisely harmonic oscillator eigenfunctions, our selection
rule is not exactly valid, and transitions with  become possible. A good approximation of the potential that includes
anharmonic effects is the so called Morse potential having the form:
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 (7.34)

where  is the dissociation energy, the limit to which the potential converges at . The minimum of the potential is at the
equilibrium value  of the distance between the atoms. The definition in (7.31) yields:

 (7.35)

Figure 7.8: The Morse potential (blue) and harmonic oscillator potential (green). Unlike the energy levels of the harmonic
oscillator potential, which are evenly spaced by |(ℏω\), the Morse potential level spacing decreases as the energy approaches the
dissociation energy. 
http://en.Wikipedia.org/wiki/File:Morse-potential.png

The eigenvalue equation of the corresponding vibrational Hamiltonian  in one dimension can be solved
in closed form yielding the exact eigenvalues:

 (7.36)

This provides the energy separation

 (7.37)

which means that the transition frequencies are decreasing, with increasing vibrational quantum numbers. In contrast to the

harmonic case the number of bound states is finite , where , and  denotes the integer part of s.

Vibrational modes for polyatomic molecules can be quite complicated. If there are N atoms, in general there are  normal
modes (  coordinates minus 3 to define the overall position of the centre of mass, and minus 3 to define the overall orientation of
the molecule) or  in the case of a diatomic molecule. Thus, in the simple case of the linear  molecule, there are four
modes, two with the atoms remaining collinear (one with the two O atoms moving in antiphase with the C stationary, and one with
the O atoms moving in phase in the opposite direction to the C atom) and two degenerate orthogonal bending modes. The more
detailed classification of the possible vibrational modes of polyatomic molecules relies strongly on their symmetry properties and
needs the mathematical method called group theory.
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Figure 7.9: The combined electronic vibrational and rotational levels of a molecule. We see that the largest energy difference is
between the electronic states. The electronic spectrum consists of a system of vibrational bands, while each vibrational band
includes many rotational lines.
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