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1

CHAPTER OVERVIEW

1: Electric Fields
So, you might ask, if your primary interest in electricity is to understand how machines, instruments and electrical equipment work,
is there any point in studying electricity from the very “academic” and abstract approach that will be used in these notes,
completely divorced as they appear to be from the world of practical reality? The answer is that electrical engineers more than
anybody must understand the basic scientific principles before they even begin to apply them to the design of practical appliances.
So – do not even think of electrical engineering until you have a thorough understanding of the basic scientific principles of the
subject.

1.1: Prelude to Electric Fields
1.2: Triboelectric Effect
1.3: Experiments with Pith Balls
1.4: Experiments with a Gold-leaf Electroscope
1.5: Coulomb's Law
1.6: Electric Field E

1.6A: Field of a Point Charge
1.6B: Spherical Charge Distributions
1.6C: A Long, Charged Rod
1.6D: Field on the Axis of and in the Plane of a Charged Ring
1.6E: Field on the Axis of a Uniformly Charged Disc
1.6F: Field of a Uniformly Charged Infinite Plane Sheet

1.7: Electric Field D
1.8: Flux
1.9: Gauss's Theorem

Thumbnail: The electric field lines and equipotential lines for field of two point charges. (CC BY-SA 3.0; Geek3 via Wikipedia).

This page titled 1: Electric Fields is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source
content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/01%3A_Electric_Fields/1.01%3A_Prelude_to_Electric_Fields
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/01%3A_Electric_Fields/1.02%3A_Triboelectric_Effect
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/01%3A_Electric_Fields/1.03%3A_Experiments_with_Pith_Balls
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/01%3A_Electric_Fields/1.04%3A_Experiments_with_a_Gold-leaf_Electroscope
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/01%3A_Electric_Fields/1.05%3A_Coulomb's_Law
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/01%3A_Electric_Fields/1.06%3A_Electric_Field_E
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/01%3A_Electric_Fields/1.06%3A_Electric_Field_E/1.6A%3A_Field_of_a_Point_Charge
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/01%3A_Electric_Fields/1.06%3A_Electric_Field_E/1.6B%3A_Spherical_Charge_Distributions
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/01%3A_Electric_Fields/1.06%3A_Electric_Field_E/1.6C%3A_A_Long_Charged_Rod
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/01%3A_Electric_Fields/1.06%3A_Electric_Field_E/1.6D%3A_Field_on_the_Axis_of_and_in_the_Plane_of_a_Charged_Ring
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/01%3A_Electric_Fields/1.06%3A_Electric_Field_E/1.6E%3A_Field_on_the_Axis_of_a_Uniformly_Charged_Disc
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/01%3A_Electric_Fields/1.06%3A_Electric_Field_E/1.6F%3A_Field_of_a_Uniformly_Charged_Infinite_Plane_Sheet
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/01%3A_Electric_Fields/1.07%3A_Electric_Field_D
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/01%3A_Electric_Fields/1.08%3A_Flux
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/01%3A_Electric_Fields/1.09%3A_Gauss's_Theorem
https://commons.wikimedia.org/wiki/User:Geek3
https://commons.wikimedia.org/wiki/User:Geek3/VectorFieldPlot#/media/File:VFPt_charges_plus_minus_thumb.svg
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/01%3A_Electric_Fields
https://creativecommons.org/licenses/by-nc/4.0
https://www.astro.uvic.ca/~tatum/celmechs.html
http://orca.phys.uvic.ca/~tatum/elmag.html


1.1.1 https://phys.libretexts.org/@go/page/5410

1.1: Prelude to Electric Fields
This is the first in a series of chapters on electricity and magnetism. Much of it will be aimed at an introductory level suitable for
first or second year students, or perhaps some parts may also be useful at high school level. Occasionally, as I feel inclined, I shall
go a little bit further than an introductory level, though the text will not be enough for anyone pursuing electricity and magnetism in
a third or fourth year honours class. On the other hand, students embarking on such advanced classes will be well advised to know
and understand the contents of these more elementary notes before they begin.

The subject of electromagnetism is an amalgamation of what were originally studies of three apparently entirely unrelated
phenomena, namely electrostatic phenomena of the type demonstrated with pieces of amber, pith balls, and ancient devices such as
Leyden jars and Wimshurst machines; magnetism, and the phenomena associated with lodestones, compass needles and Earth’s
magnetic field; and current electricity – the sort of electricity generated by chemical cells such as Daniel and Leclanché cells.
These must have seemed at one time to be entirely different phenomena. It wasn’t until 1820 that Oersted discovered (during the
course of a university lecture, so the story goes) that an electric current is surrounded by a magnetic field, which could deflect a
compass needle. The several phenomena relating the apparently separate phenomena were discovered during the nineteenth century
by scientists whose names are immortalized in many of the units used in electromagnetism – Ampère, Ohm, Henry, and, especially,
Faraday. The basic phenomena and the connections between the three disciplines were ultimately described by Maxwell towards
the end of the nineteenth century in four famous equations. This is not a history book, and I am not qualified to write one, but I
strongly commend to anyone interested in the history of physics to learn about the history of the growth of our understanding of
electromagnetic phenomena, from Gilbert’s description of terrestrial magnetism in the reign of Queen Elizabeth I, through
Oersted’s discovery mentioned above, up to the culmination of Maxwell’s equations.

This set of notes will be concerned primarily with a description of electricity and magnetism as natural phenomena, and it will be
treated from the point of view of a “pure” scientist. It will not deal with the countless electrical devices that we use in our everyday
life – how they work, how they are designed and how they are constructed. These matters are for electrical and electronics
engineers. So, you might ask, if your primary interest in electricity is to understand how machines, instruments and electrical
equipment work, is there any point in studying electricity from the very “academic” and abstract approach that will be used in these
notes, completely divorced as they appear to be from the world of practical reality? The answer is that electrical engineers more
than anybody must understand the basic scientific principles before they even begin to apply them to the design of practical
appliances. So – do not even think of electrical engineering until you have a thorough understanding of the basic scientific
principles of the subject.

This chapter deals with the basic phenomena, definitions and equations concerning electric fields.
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1.2: Triboelectric Effect
In an introductory course, the basic phenomena of electrostatics are often demonstrated with “pith balls” and with a “gold-leaf
electroscope”. A pith ball used to be a small, light wad of pith extracted from the twig of an elder bush, suspended by a silk thread.
Today, it is more likely to be either a ping-pong ball, or a ball of styrofoam, suspended by a nylon thread – but, for want of a better
word, I’ll still call it a pith ball. I’ll describe the gold-leaf electroscope a little later.

It was long ago noticed that if a sample of amber (fossilized pine sap) is rubbed with cloth, the amber became endowed with certain
apparently wonderful properties. For example, the amber would be able to attract small particles of fluff to itself. The effect is
called the triboelectric effect. [Greek  (rubbing) + (amber)] The amber, after having been rubbed with cloth, is said
to bear an electric charge, and space in the vicinity of the charged amber within which the amber can exert its attractive properties
is called an electric field.

Amber is by no means the best material to demonstrate triboelectricity. Modern plastics (such as a comb rubbed through the hair)
become easily charged with electricity (provided that the plastic, the cloth or the hair, and the atmosphere, are dry). Glass rubbed
with silk also carries an electric charge – but, as we shall see in the next section, the charge on glass rubbed with silk seems to be
not quite the same as the charge on plastic rubbed with cloth.

This page titled 1.2: Triboelectric Effect is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
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1.3: Experiments with Pith Balls
A pith ball hangs vertically by a thread. A plastic rod is charged by rubbing with cloth. The charged rod is brought close to the pith
ball without touching it. It is observed that the charged rod weakly attracts the pith ball. This may be surprising – and you are right
to be surprised, for the pith ball carries no charge. For the time being we are going to put this observation to the back of our minds,
and we shall defer an explanation to a later chapter. Until then it will remain a small but insistent little puzzle.

We now touch the pith ball with the charged plastic rod. Immediately, some of the magical property (i.e. some of the electric
charge) of the rod is transferred to the pith ball, and we observe that thereafter the ball is strongly repelled from the rod. We
conclude that two electric charges repel each other. Let us refer to the pith ball that we have just charged as Ball A.

Now let’s do exactly the same experiment with the glass rod that has been rubbed with silk. We bring the charged glass rod close to
an uncharged Ball B. It initially attracts it weakly – but we’ll have to wait until Section 3.6 for an explanation of this unexpected
behavior. However, as soon as we touch Ball B with the glass rod, some charge is transferred to the ball, and the rod thereafter
repels it. So far, no obvious difference between the properties of the plastic and glass rods.

But... now bring the glass rod close to Ball A, and we see that Ball A is strongly attracted. And if we bring the plastic rod close to
Ball B, it, too, is strongly attracted. Furthermore, Balls A and B attract each other.

We conclude that there are two kinds of electric charge, with exactly opposite properties. We arbitrarily call the kind of charge on
the glass rod and on Ball B positive and the charge on the plastic rod and Ball A negative. We observe, then, that like charges (i.e.
those of the same sign) repel each other, and unlike charges (i.e. those of opposite sign) attract each other.
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1.4: Experiments with a Gold-leaf Electroscope
A gold-leaf electroscope has a vertical rod R attached to a flat metal plate P. Gold is a malleable metal which can be hammered into
extremely thin and light sheets. A light gold leaf G is attached to the lower end of the rod.

FIGURE 

If the electroscope is positively charged by touching the plate with a positively charged glass rod, G will be repelled from R,
because both now carry a positive charge.

You can now experiment as follows. Bring a positively charged glass rod close to P. The leaf G diverges further from R. We now
know that this is because the metal (of which P, R and G are all composed) contains electrons, which are negatively charged
particles that can move about more or less freely inside the metal. The approach of the positively charged glass rod to P attracts
electrons towards P, thus increasing the excess positive charge on G and the bottom end of R. G therefore moves away from R.

If on the other hand you were to approach P with a negatively charged plastic rod, electrons would be repelled from P down
towards the bottom of the rod, thus reducing the excess positive charge there. G therefore approaches R.

Now try another experiment. Start with the electroscope uncharged, with the gold leaf hanging limply down. (This can be achieved
by touching P briefly with your finger.) Approach P with a negatively charged plastic rod, but don’t touch. The gold leaf diverges
from R. Now, briefly touch P with a finger of your free hand. Negatively charged electrons run down through your body to ground
(or earth). Don’t worry – you won’t feel a thing. The gold leaf collapses, though by this time the electroscope bears a positive
charge, because it has lost some electrons through your body. Now remove the plastic rod. The gold leaf diverges again. By means
of the negatively charged plastic rod and some deft work with your finger, you have induced a positive charge on the electroscope.
You can verify this by approaching P alternately with a plastic (negative) or glass (positive) rod, and watch what happens to the
gold leaf.
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1.5: Coulomb's Law
If you are interested in the history of physics, it is well worth reading about the important experiments of Charles Coulomb in
1785. In these experiments he had a small fixed metal sphere which he could charge with electricity, and a second metal sphere
attached to a vane suspended from a fine torsion thread. The two spheres were charged and, because of the repulsive force between
them, the vane twisted round at the end of the torsion thread. By this means he was able to measure precisely the small forces
between the charges, and to determine how the force varied with the amount of charge and the distance between them.

From these experiments resulted what is now known as Coulomb’s Law. Two electric charges of like sign repel each other with a
force that is proportional to the product of their charges and inversely proportional to the square of the distance between them:

Here  and  are the two charges and  is the distance between them.

We could in principle use any symbol we like for the constant of proportionality, but in standard SI (Système International)
practice, the constant of proportionality is written as  so that Coulomb’s Law takes the form

Here  is called the permittivity of the medium in which the charges are situated, and it varies from medium to medium. The
permittivity of a vacuum (or of “free space”) is given the symbol . Media other than a vacuum have permittivities a little greater
than . The permittivity of air is very little different from that of free space, and, unless specified otherwise, I shall assume that all
experiments described in this chapter are done either in free space or in air, so that I shall write Coulomb’s Law as

You may wonder – why the factor 4 ? In fact it is very convenient to define the permittivity in this manner, with 4  in the
denominator, because, as we shall see, it will ensure that all formulas that describe situations of spherical symmetry will include a 4

, formulas that describe situations of cylindrical symmetry will include 2 , and no  will appear in formulas involving uniform
fields. Some writers (particularly those who favour cgs units) prefer to incorporate the 4  into the definition of the permittivity, so
that Coulomb’s law appears in the form , though it is standard SI practice to define the permittivity as in
Equation . The permittivity defined by Equation  is known as the “rationalized” definition of the permittivity, and it
results in much simpler formulas throughout electromagnetic theory than the “unrationalized” definition.

The SI unit of charge is the coulomb, C. Unfortunately at this stage I cannot give you an exact definition of the coulomb, although,
if a current of 1 amp flows for a second, the amount of electric charge that has flowed is 1 coulomb. This may at first seem to be
very clear, until you reflect that we have not yet defined what is meant by an amp, and that, I’m afraid, will have to come in a much
later chapter.

Until then, I can give you some small indications. For example, the charge on an electron is about -1.6022 X 10  C, and the
charge on a proton is about +1.6022 X 10  C. That is to say, a collection of 6.24 X 10 protons, if you could somehow bundle
them all together and stop them from flying apart, amounts to a charge of 1 C. A mole of protons (i.e. 6.022 X 10  protons) which
would have a mass of about one gram, would have a charge of 9.65 X 10  C, which is also called a faraday (which is not at all the
same thing as a farad).

[The current definition of the coulomb and the amp, which will be given in Chapter 6,
requires some knowledge of electromagnetism. However, it is likely that, in 2018, the
coulomb will be redefined in such a manner that the magnitude of the charge on a single
electron is exactly 1.60217 X 10  C.]

The charges involved in our experiments with pith balls, glass rods and gold-leaf electroscopes are very small in terms of
coulombs, and are typically of the order of nanocoulombs.

The permittivity of free space has the approximate value
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Later on, when we know what is meant by a “farad”, we shall use the units F m  to describe permittivity – but that will have to
wait until section 5.2.

You may well ask how the permittivity of free space is measured. A brief answer might be “by carrying out experiments similar to
those of Coulomb”. However – and this is rather a long story, which I shall not describe here – it turns out that since we today
define the metre by defining the speed of light, c, to be exactly 2.997 925 58 X 10  m s , the permittivity of free space has a
defined value, given, in SI units, by

It is therefore not necessary to measure  any more than it is necessary to measure c. But that, as I say, is a long story.

From the point of view of dimensional analysis, electric charge cannot be expressed in terms of M, L and T, but it has a dimension,
Q, of its own. (This assertion is challenged by some, but this is not the place to discuss the reasons. I may add a chapter, eventually,
discussing this point much later on.) We say that the dimensions of electric charge are Q.

The ratio of the permittivity of an insulating substance to the permittivity of free space is its relative permittivity, also called its
dielectric constant. The dielectric constants of many commonly-encountered insulating substances are of order “a few”. That is,
somewhere between 2 and 10. Pure water has a dielectric constant of about 80, which is quite high (but bear in mind that most
water is far from pure and is not an insulator.) Some special substances, known as ferroelectric substances, such as strontium
titanate SrTiO , have dielectric constants of a few hundred.

This page titled 1.5: Coulomb's Law is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.

= 8.8542× .ϵ

0

10

−12

 C

2

N

−1

m

−2

-1

8 -1

4π =ϵ

0

10

7

c

2

ϵ

0

I shall strongly advise the reader to work out and make a note of the dimensions of every new electric or
magnetic quantity as it is introduced.

tonnes or nearly a million tonnes.

times as strong as gravitational forces – but such a statement out of context is rather meaningless. For
example, the gravitational force between Earth and Moon is much more than the electrostatic force (if any)
between them, and cosmologists could make a good case for saying that the strongest forces in the Universe
are gravitational.
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SECTION OVERVIEW

1.6: Electric Field E
The region around a charged body within which it can exert its electrostatic influence may be called an electric field. In principle, it
extends to infinity, but in practice it falls off more or less rapidly with distance. We can define the intensity or strength  of an
electric field as follows. Suppose that we place a small test charge  in an electric field. This charge will then experience a force.
The ratio of the force to the charge is called the intensity of the electric field, or, more usually, simply the electric field. Thus I have
used the words “electric field” to mean either the region of space around a charged body, or, quantitatively, to mean its intensity.
Usually it is clear from the context which is meant, but, if you wish, you may elect to use the longer phrase “intensity of the electric
field” if you want to remove all doubt. The field and the force are in the same direction, and the electric field is a vector quantity, so
the definition of the electric field can be written as

The SI units of electric field are newtons per coulomb, or N C . A little later, however, we shall come across a unit called a volt,
and shall learn that an alternative (and more usual) unit for electric field is volts per metre, or V m . The dimensions are MLT Q .

You may have noticed that I supposed that we place a “small” test charge in the field, and you may have wondered why it had to be
small, and how small. The problem is that, if we place a large charge in an electric field, this will change the configuration of the
electric field and hence frustrate our efforts to measure it accurately. So – it has to be sufficiently small so as not to change the
configuration of the field that we are trying to measure. How small is that? Well, it will have to mean infinitesimally small. I hope
that is clear! (It is a bit like that pesky particle of negligible mass m that keeps appearing in mechanics problems!)

We now need to calculate the intensity of an electric field in the vicinity of various shapes and sizes of charged bodes, such as rods,
discs, spheres, and so on.

1.6A: Field of a Point Charge

1.6B: Spherical Charge Distributions

1.6C: A Long, Charged Rod

1.6D: Field on the Axis of and in the Plane of a Charged Ring

1.6E: Field on the Axis of a Uniformly Charged Disc

1.6F: Field of a Uniformly Charged Infinite Plane Sheet

This page titled 1.6: Electric Field E is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.
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1.6A: Field of a Point Charge
It follows from equation 1.5.3 and the definition of electric field intensity that the electric field at a distance  from a point charge 

 is of magnitude

This can be written in vector form:

Here  is a unit vector in the radial direction, and  is a vector of length  in the radial direction.

This page titled 1.6A: Field of a Point Charge is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
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1.6B: Spherical Charge Distributions
I shall not here give calculus derivations of the expressions for electric fields resulting from spherical charge distributions, since
they are identical with the derivations for the gravitational fields of spherical mass distributions in the Classical Mechanics “book”
of these physics notes, provided that you replace mass by charge and  by -1 /(4π ) . See Chapter 5, subsections 5.4.8 and 5.4.9 of
Celestial Mechanics. Also, we shall see later that they can be derived more easily from Gauss’s law than by calculus. I shall,
however, give the results here.

At a distance  from the centre of a hollow spherical shell of radius a bearing a charge , the electric field is zero at any point
inside the sphere (i.e. for ). For a point outside the sphere (i.e. ) the field intensity is

This is the same as if all the charge were concentrated at a point at the centre of the sphere.

If you have a spherically-symmetric distribution of charge  contained within a spherical volume of radius a, this can be
considered as a collection of nested hollow spheres. It follows that at a point outside a spherically-symmetric distribution of charge,
the field at a distance  from the centre is again

That is, it is the same as if all the charge were concentrated at the centre. However, at a point inside the sphere, the charge beyond
the distance  from the centre contributes zero to the electric field; the electric field at a distance  from the centre is therefore just

Here  is the charge within a radius . If the charge is uniformly distributed throughout the sphere, this is related to the total
charge by , where  is the total charge. Therefore, for a uniform spherical charge distribution the field inside the
sphere is

That is to say, it increases linearly from centre to the surface, where it reaches a value of , whereafter it decreases according
to equation 1.6.5.

It is not difficult to imagine some electric charge distributed (uniformly or otherwise) throughout a finite spherical volume, but,
because like charges repel each other, it may not be easy to realize this idealized situation in practice. In particular, if a metal sphere
is charged, since charge can flow freely through a metal, the self-repulsion of charges will result in all the charge residing on the
surface of the sphere, which then behaves as a hollow spherical charge distribution with zero electric field within.
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1.6C: A Long, Charged Rod
A long rod bears a charge of  coulombs per metre of its length. What is the strength of the electric field at a point P at a distance 
from the rod?

Consider an element  of the rod at a distance  from the rod. It bears a charge  . The contribution to the electric
field at P from this element is  in the direction shown. The radial component of this is . But 

. Therefore the radial component of the field from the element  is 
. To find the radial component of the field from the entire rod, we integrate along the length of the rod. If the rod is

infinitely long (or if its length is much greater than r), we integrate from , or, what amounts to the same thing,
from , and double it. Thus the radial component of the field is

The component of the field parallel to the rod, by considerations of symmetry, is zero, so Equation 1.6.8 gives the total field at a
distance  from the rod, and it is directed radially away from the rod.

Notice that Equation 1.6.4 for a spherical charge distribution has  in the denominator, while Equation 1.6.8, dealing with a
problem of cylindrical symmetry, has .
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1.6D: Field on the Axis of and in the Plane of a Charged Ring
Field on the axis of a charged ring.

Ring, radius , charge . Field at P from element of charge . Vertical component of this 

. Integrate for entire ring:

Field .

In terms of dimensionless variables:

where E is in units of , and  is in units of .

From calculus, we find that this reaches a maximum value of  at .
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It reaches half of its maximum value where .

That is, , where .

The two positive solution are .

That is, .

Field in the plane of a charged ring.

We suppose that we have a ring of radius  bearing a charge . We shall try to find the field at a point in the plane of the ring and
at a distance  from the centre of the ring.

Consider an element  of the ring at P. The charge on it is . The field at A from this element of charge is

where  and . The component of this toward the centre is

.

To find the field at A due to the entire ring, we must express  in terms of ,  and , and integrate with respect to 
(or from  and double it). The necessary relations are

The result of the numerical integration is shown below, in which the field is expressed in units of  and  is in units of 
.
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1.6E: Field on the Axis of a Uniformly Charged Disc

 

We suppose that we have a circular disc of radius a bearing a surface charge density of  coulombs per square metre, so that the
total charge is . We wish to calculate the field strength at a point P on the axis of the disc, at a distance  from the centre
of the disc.

Consider an elemental annulus of the disc, of radii  and . Its area is  and so it carries a charge . Using the result
of subsection 1.6.4, we see that the field at P from this charge is

But . Thus the field from the elemental annulus can be written

The field from the entire disc is found by integrating this from  to obtain

This falls off monotonically from  just above the disc to zero at infinity.
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1.6F: Field of a Uniformly Charged Infinite Plane Sheet
All we have to do is to put  in equation 1.6.10 to obtain

This is independent of the distance of P from the infinite charged sheet. The electric field lines are uniform parallel lines extending
to infinity.

Summary
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1.7: Electric Field D
We have been assuming that all “experiments” described have been carried out in a vacuum or (which is almost the same thing) in
air. But what if the point charge, the infinite rod and the infinite charged sheet of Section 1.6 are all immersed in some medium
whose permittivity is not , but is instead ? In that case, the formulas for the field become

There is an  in the denominator of each of these expressions. When dealing with media with a permittivity other than  it is often
convenient to describe the electric field by another vector, , defined simply by

In that case the above formulas for the field become just

The dimensions of  are Q L , and the SI units are C m .

This may seem to be rather trivial, but it does turn out to be more important than it may seem at the moment.

Equation  would seem to imply that the electric field vectors  and  are just vectors in the same direction, differing in
magnitude only by the scalar quantity . This is indeed the case in vacuo or in any isotropic medium – but it is more complicated in
an anisotropic medium such as, for example, an orthorhombic crystal. This is a crystal shaped like a rectangular parallelepiped. If
such a crystal is placed in an electric field, the magnitude of the permittivity depends on whether the field is applied in the - , the 

- or the -direction. For a given magnitude of , the resulting magnitude of  will be different in these three situations. And, if
the field  is not applied parallel to one of the crystallographic axes, the resulting vector  will not be parallel to . The
permittivity in Equation  is a tensor with nine components, and, when applied to  it changes its direction as well as its
magnitude.

However, we shan’t dwell on that just yet, and, unless specified otherwise, we shall always assume that we are dealing with a
vacuum (in which case  = ) or an isotropic medium (in which case  = ). In either case the permittivity is a scalar
quantity and  and  are in the same direction.
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1.8.1 https://phys.libretexts.org/@go/page/5750

1.8: Flux
The product of electric field intensity and area is the flux . Whereas  is an intensive quantity,  is an extensive quantity. It
dimensions are ML T Q  and its SI units are N m  C , although later on, after we have met the unit called the volt, we shall
prefer to express  in V m.

With increasing degrees of sophistication, flux may be defined mathematically as:

 
: Flow that is perpendicular to the surface.

: Flow that is at an angle to the surface.

Note that  is a vector, but  is a scalar.

 

We can also define a -flux by

The dimensions of  are just  and the SI units are coulombs (C).

An example is in order:
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Consider a square of side  in the xy-plane as shown. Suppose there is a positive charge  at a height  on the -axis. Calculate
the total -flux,  through the area.

Consider an elemental area  at ( ). Its distance from  is  so the magnitude of the -field there is 
. The scalar product of this with the area is . The surface

integral of  over the whole area is

Now all we have to do is the nice and easy integral. Let  and the inner integral  reduces, after

some modest algebra, to . Thus we now have

With the further substitution  this reduces, after more careful algebra, to

Two additional examples of calculating surface integrals may be found in Section 5.6, of the Celestial Mechanics section of these
notes. These deal with gravitational fields, but they are essentially the same as the electrostatic case; just substitute  for m and
-1/(4 ) for .

I urge readers actually to go through the pain and the algebra and the trigonometry of these three examples in order that they may
appreciate all the more, in the next section, the power of Gauss’s theorem.

This page titled 1.8: Flux is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content
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1.9.1 https://phys.libretexts.org/@go/page/5751

1.9: Gauss's Theorem
A point charge  is at the centre of a sphere of radius . Calculate the -flux through the sphere. Easy. The magnitude of  at a
distance  is  and the surface area of the sphere is 4 r . Therefore the flux is just . Notice that this is independent of ;
if you double , the area is four times as great, but  is only a quarter of what it was, so the total flux remains the same. You will
probably agree that if the charge is surrounded by a shape such as shown in Figure .8, which is made up of portions of spheres of
different radii, the -flux through the surface is still just . And you can distort the surface as much as you like, or you may
consider any surface to be made up of an infinite number of infinitesimal spherical caps, and you can put the charge anywhere you
like inside the surface, or indeed you can put as many charges inside as you like – you haven’t changed the total normal component
of the flux, which is still just . This is Gauss’s theorem, which is a consequence of the inverse square nature of Coulomb’s law.

 

The total normal component of the -flux through any closed surface is equal to the charge enclosed by that surface.

Examples
A long rod carries a charge of  per unit length. Construct around it a cylindrical surface of radius  and length . The charge
enclosed is , and the field is directed radially outwards, passing only through the curved surface of the cylinder. The -flux
through the cylinder is  and the area of the curved surface is 2 , so  and hence .

A flat plate carries a charge of  per unit area. Construct around it a cylindrical surface of cross-sectional area . The charge
enclosed by the cylinder is , so this is the -flux through the cylinder. It all goes through the two ends of the cylinder, which
have a total area 2 , and therefore  = /2 and /(2 ).

 

A hollow spherical shell of radius a carries a charge . Construct two gaussian spherical surfaces, one of radius less than  and the
other of radius . The smaller of these two surfaces has no charge inside it; therefore the flux through it is zero, and so  is
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zero. The charge through the larger sphere is  and is area is 4 . Therefore . (It is worth
going to Chapter 5 of Celestial Mechanics, subsection 5.4.8, to go through the calculus derivation, so that you can appreciate
Gauss’s theorem all the more.)

A point charge  is in the middle of a cylinder of radius  and length . Calculate the flux through the cylinder.

An infinite rod is charged with  coulombs per unit length. It passes centrally through a spherical surface of radius . Calculate the
flux through the spherical surface.

These problems are done by calculus in section 5.6 of Celestial Mechanics, and furnish good examples of how to do surface
integrals, and I recommend that you work through them. However, it is obvious from Gauss’s theorem that the answers are just 
and  respectively.

A point charge  is in the middle of a cube of side . The flux through the cube is, by Gauss’s theorem, , and the flux through
one face is /6. I hope you enjoyed doing this by calculus in section 1.8.

This page titled 1.9: Gauss's Theorem is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.
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1

CHAPTER OVERVIEW

2: Electrostatic Potential
All we have done so far is to define the potential difference between two points. We cannot define “the” potential at a point unless
we arbitrarily assign some reference point as having a defined potential. It is not always necessary to do this, since we are often
interested only in the potential differences between point, but in many circumstances it is customary to define the potential to be
zero at an infinite distance from any charges of interest. We can then say what “the” potential is at some nearby point. Potential and
potential difference are scalar quantities.

2.1: Introduction to Electrostatic Potentials
2.2: Potential Near Various Charged Bodies

2.2A: Point Charge
2.2B: Spherical Charge Distributions
2.2C: Long Charged Rod
2.2D: Large Plane Charged Sheet
2.2E: Potential on the Axis of a Charged Ring
2.2F: Potential in the Plane of a Charged Ring
2.2G: Potential on the Axis of a Charged Disc

2.3: Electron-volts
2.4: A Point Charge and an Infinite Conducting Plane
2.5: A Point Charge and a Conducting Sphere
2.6: Two Semicylindrical Electrodes

This page titled 2: Electrostatic Potential is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.
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2.1.1 https://phys.libretexts.org/@go/page/5417

2.1: Introduction to Electrostatic Potentials
Imagine that some region of space, such as the room you are sitting in, is permeated by an electric field. (Perhaps there are all sorts
of electrically charged bodies outside the room.) If you place a small positive test charge somewhere in the room, it will experience
a force . If you try to move the charge from point  to point  against the direction of the electric field, you will have to
do work. If work is required to move a positive charge from point  to point , there is said to be an electrical potential difference
between  and , with point  being at the lower potential. If one joule of work is required to move one coulomb of charge from 

 to , the potential difference between  and  is one volt ( ).

The dimensions of potential difference are .

All we have done so far is to define the potential difference between two points. We cannot define “the” potential at a point unless
we arbitrarily assign some reference point as having a defined potential. It is not always necessary to do this, since we are often
interested only in the potential differences between points, but in many circumstances it is customary to define the potential to be
zero at an infinite distance from any charges of interest. We can then say what “the” potential is at some nearby point. Potential and
potential difference are scalar quantities.

Suppose we have an electric field  in the positive -direction (towards the right). This means that potential is decreasing to the
right. You would have to do work to move a positive test charge  to the left, so that potential is increasing towards the left. The
force on  is , so the work you would have to do to move it a distance  to the right is , but by definition this is also
equal to , where  is the potential difference between .

Therefore

In a more general three-dimensional situation, this is written

We see that, as an alternative to expressing electric field strength in newtons per coulomb, we can equally well express it in volts
per meter (  ).

The inverse of Equation  is, of course,

This page titled 2.1: Introduction to Electrostatic Potentials is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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SECTION OVERVIEW

2.2: Potential Near Various Charged Bodies
The geometry of the system has a strong effect on the electric potential. Several geometries are discussed below.

2.2A: Point Charge

2.2B: Spherical Charge Distributions

2.2C: Long Charged Rod

2.2D: Large Plane Charged Sheet

2.2E: Potential on the Axis of a Charged Ring

2.2F: Potential in the Plane of a Charged Ring

2.2G: Potential on the Axis of a Charged Disc

This page titled 2.2: Potential Near Various Charged Bodies is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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2.2A: Point Charge
Let us arbitrarily assign the value zero to the potential at an infinite distance from a point charge . “The” potential at a distance 
from this charge is then the work required to move a unit positive charge from infinity to a distance .

At a distance x from the charge, the field strength is . The work required to move a unit charge from  is .

The work required to move unit charge from  to infinity is . The work required to move unit charge from
infinity to  is minus this.

Therefore

The mutual potential energy of two charges  separated by a distance  is the work required to bring them to this
distance apart from an original infinite separation. This is

Before proceeding, a little review is in order.

Field at a distance  from a charge :

or, in vector form,

Force between two charges, :

Potential at a distance  from a charge :

Mutual potential energy between two charges:

We couldn’t possibly go wrong with any of these, could we?

This page titled 2.2A: Point Charge is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
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2.2B: Spherical Charge Distributions
Outside any spherically-symmetric charge distribution, the field is the same as if all the charge were concentrated at a point in the
centre, and so, then, is the potential. Thus

Inside a hollow spherical shell of radius a and carrying a charge  the field is zero, and therefore the potential is uniform
throughout the interior, and equal to the potential on the surface, which is

A solid sphere of radius a bearing a charge  that is uniformly distributed throughout the sphere is easier to imagine than to
achieve in practice, but, for all we know, a proton might be like this (it might be – but it isn’t!), so let’s calculate the field at a point
P inside the sphere at a distance  from the centre. See Figure 

We can do this in two parts. First the potential from the part of the sphere “below” P. If the charge is uniformly distributed
throughout the sphere, this is just . Here  is the charge contained within radius , which, if the charge is uniformly

distributed throughout the sphere, is . Thus, that part of the potential is .

 

Next, we calculate the contribution to the potential from the charge “above” P. Consider an elemental shell of radii . The

charge held by it is . The contribution to the potential at P from the charge in this elemental shell is 

. The contribution to the potential from all the charge “above” P is . Adding together the
two parts of the potential, we obtain

This page titled 2.2B: Spherical Charge Distributions is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
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2.2C: Long Charged Rod
The field at a distance  from a long charged rod carrying a charge  coulombs per meter is . Therefore the potential
difference between two points at distances  from the rod  is

This page titled 2.2C: Long Charged Rod is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum
via source content that was edited to the style and standards of the LibreTexts platform.
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2.2D: Large Plane Charged Sheet
The field at a distance  from a large charged sheet carrying a charge  coulombs per square metre is . Therefore the potential
difference between two points at distances  from the sheet  is
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2.2E: Potential on the Axis of a Charged Ring
The field on the axis of a charged ring is given in section 1.6.4. The reader is invited to show that the potential on the axis of the
ring is

You can do this either by integrating the expression for the field or just by thinking about it for a few seconds and realizing that
potential is a scalar quantity.
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2.2F: Potential in the Plane of a Charged Ring
We suppose that we have a ring of radius a bearing a charge . We shall try to find the potential at a point in the plane of the ring and at a
distance   from the centre of the ring.

Consider an element  of the ring at P. The charge on it is . The potential at A due this element of charge is

where  and . The potential due to the charge on the entire ring is

I can’t immediately see an analytical solution to this integral, so I integrated it numerically from  to  in steps of , with the
result shown in the following graph, in which  is in units of , and  is in units of .

The field is equal to the gradient of this and is directed towards the centre of the ring. It looks as though a small positive charge would be in
stable equilibrium at the centre of the ring, and this would be so if the charge were constrained to remain in the plane of the ring. But, without
such a constraint, the charge would be pushed away from the ring if it strayed at all above or below the plane of the ring.

Some computational notes.

Any reader who has tried to reproduce these results will have discovered that rather a lot of heavy computation is required. Since there is no
simple analytical expression for the integration, each of the 100 points from which the graph was computed entailed a numerical integration of
the expression for the potential. I found that Simpson’s Rule did not give very satisfactory results, mainly because of the steep rise in the
function at large , so I used Gaussian quadrature, which proved much more satisfactory.

Can we avoid the numerical integration? One possibility is to express the integrand in equation 2.2.10 as a power series in , and then
integrate term by term.

Thus , where . And then
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We can then integrate this term by term, using  if  is even, and obviously zero if  is odd.

We finally get:

For computational purposes, this is most efficiently rendered as

I shall refer to this as Series I. It turns out that it is not a very efficient series, as it converges very slowly. This is because e is not a small
fraction, and is always greater than . Thus for .

We can do much better if we can obtain a power series in . Consider the expression , which occurs

in equation 2.2.9. This expression, and others very similar to it, occur quite frequently in various physical situations. It can be expanded by the
binomial theorem to give a power series in . (Admittedly, it is a trinomial expression, but do it in stages). The result is

where the coefficients of the powers of  are polynomials in , which have been extensively tabulated in many places, and are called
Legendre polynomials. See, for example my notes on Celestial Mechanics, http://orca.phys.uvic.ca/~tatum/celmechs.html Sections 1.1.4 and
5.11. Each term in the Legendre polynomials can then be integrated term by term, and the resulting series, after a bit of work, is

Since this is a series in  rather than in , it converges much faster than equation 2.2.13. I shall refer to it as series . Of course, for
computational purposes it should be written with nested parentheses, as we did for series I in equation 2.2.14.

Here is a table of the results using four methods. The first column gives the value of . The next four columns give the values of , in units
of a , calculated by four methods. Column 2, integration by Gaussian quadrature. Column 3, integration by Simpson’s Rule. Column 4,
approximation by Series I. Column 5, approximation by series . In each case I have given the number of digits that I believe to be reliable. It
is seen that Gaussian quadrature gives by far the best results. Series  is not very good at all, while Series  is almost as good as Simpson’s
Rule.

Of course any of these methods is completed almost instantaneously on a modern computer, so one may wonder if it is worthwhile spending
much time seeking the most efficient solution. That will depend on whether one wants to do the calculation just once, or whether one wants to
do similar calculations millions of times.
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2.2G: Potential on the Axis of a Charged Disc
The field on the axis of a charged disc is given in section 1.6.5. The reader is invited to show that the potential on the axis of the
disc is

This page titled 2.2G: Potential on the Axis of a Charged Disc is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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2.3: Electron-volts
The electron-volt is a unit of energy or work. An electron-volt (eV) is the work required to move an electron through a potential
difference of one volt. Alternatively, an electronvolt is equal to the kinetic energy acquired by an electron when it is accelerated
through a potential difference of one volt. Since the magnitude of the charge of an electron is about  C, it follows
that an electron-volt is about  J. Note also that, because the charge on an electron is negative, it requires work to
move an electron from a point of high potential to a point of low potential.

Exercise. If an electron is accelerated through a potential difference of a million volts, its kinetic energy is, of course, 1 MeV. At
what speed is it then moving?

First attempt.

(Here , written in italics, is not intended to mean the unit electron-volt, but e is the magnitude of the electron charge, and  is
the potential difference (  volts) through which it is accelerated.) Thus . With  kg, this comes
to . Oops! That looks awfully fast! We’d better do it properly this time.

Second attempt.

Some readers will know exactly what we are doing here, without explanation. Others may be completely mystified. For the latter,
the difficulty is that the speed that we had calculated was even greater than the speed of light. To do this properly we have to use
the formulas of special relativity. See, for example, Chapter 15 of the Classical Mechanics section of these notes.

At any rate, this results in , whence .

This page titled 2.3: Electron-volts is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.

1.602 ×10

−19

1.602 ×10

−19

m = eV

1

2

v

2

(2.3.1)

eV V

10

6

v= 2eV /m

− −−−−−

√ m = 9.109 ×10

−31

v= 5.9 ×10

8

m s

−1

(γ−1)m = eV .c

2

(2.3.2)

γ = 2.958 β = 0.9411 and v= 2.82 ×10

8

m s

−1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/5419?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/02%3A_Electrostatic_Potential/2.03%3A_Electron-volts
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/02%3A_Electrostatic_Potential/2.03%3A_Electron-volts
https://creativecommons.org/licenses/by-nc/4.0
https://www.astro.uvic.ca/~tatum/celmechs.html
http://orca.phys.uvic.ca/~tatum/elmag.html


2.4.1 https://phys.libretexts.org/@go/page/5420

2.4: A Point Charge and an Infinite Conducting Plane
An infinite plane metal plate is in the -plane. A point charge +  is placed on the -axis at a height  above the plate.
Consequently, electrons will be attracted to the part of the plate immediately below the charge, so that the plate will carry a
negative charge density  which is greatest at the origin and which falls off with distance  from the origin. Can we determine 

? See Figure 

 

First, note that the metal surface, being a conductor, is an equipotential surface, as is any metal surface. The potential is uniform
anywhere on the surface. Now suppose that, instead of the metal surface, we had (in addition to the charge +  at a height  above
the -plane), a second point charge, − , at a distance  below the -plane. The potential in the -plane would, by symmetry,
be uniform everywhere. That is to say that the potential in the -plane is the same as it was in the case of the single point charge
and the metal plate, and indeed the potential at any point above the plane is the same in both cases. For the purpose of calculating
the potential, we can replace the metal plate by an image of the point charge. It is easy to calculate the potential at a point . If
we suppose that the permittivity above the plate is , the potential at  is

The field strength  in the -plane is -  evaluated at , and this is

The -field is  times this, and since all the lines of force are above the metal plate, Gauss's theorem provides that the charge
density is , and hence the charge density is

This can also be written

where , with obvious geometric interpretation.

Exercise: How much charge is there on the surface of the plate within an annulus bounded by radii  and ? Integrate this
from zero to infinity to show that the total charge induced on the plate is − .
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2.5: A Point Charge and a Conducting Sphere

A point charge + is at a distance  from a metal sphere of radius . We are going to try to calculate the surface charge density
induced on the surface of the sphere, as a function of position on the surface. We shall bear in mind that the surface of the sphere is
an equipotential surface, and we shall take the potential on the surface to be zero.

Let us first construct a point I such that the triangles OPI and PQO are similar, with the lengths shown in Figure .3. The length
OI is . Then , or

This relation between the variables  is in effect the equation to the sphere expressed in these variables.

Now suppose that, instead of the metal sphere, we had (in addition to the charge +  at a distance  from O), a second point
charge − . The locus of points where the potential is zero is where

That is, the surface of our sphere. Thus, for purposes of calculating the potential, we can replace the metal sphere by an image of 
at , this image carrying a charge of .

Let us take the line OQ as the -axis of a coordinate system. Let  be some point such that OX =  and the angle XOQ= . The
potential at P from a charge +  at  and a charge −  at  is (see Figure .4)

 

The E field on the surface of the sphere is  evaluated at . The  field is  times this, and the surface charge density
is equal to . After some patience and algebra, we obtain, for a point  on the surface of the sphere
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2.6: Two Semicylindrical Electrodes
This section requires that the reader should be familiar with functions of a complex variable and conformal transformations. For
readers not familiar with these, this section can be skipped without prejudice to understanding following chapters. For readers who
are familiar, this is a nice example of conformal transformations to solve a physical problem.

 

We have two semicylindrical electrodes as shown in Figure .5. The potential of the upper one is 0 and the potential of the lower
one is . We'll suppose the radius of the circle is 1; or, what amounts to the same thing, we'll express coordinates  and  in units
of the radius. Let us represent the position of any point whose coordinates are (x , y) by a complex number .

Now let  be a complex number related to  by ; that is, . Substitute 

in each of these equations, and equate real and imaginary parts, to obtain

In that case, the upper semicircle  in the -plane maps on to the positive -axis in the -plane, and the lower semicircle 
 in the -plane maps on to the negative -axis in the -plane. (Figure .6.) Points inside the circle bounded by the

electrodes in the -plane map on to points above the -axis in the -plane.

 

In the -plane, the lines of force are semicircles, such as the one shown. The potential goes from 0 at one end of the semicircle to 
 at the other, and so equation to the semicircular line of force is

or
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The equipotentials (  = constant) are straight lines in the -plane of the form

(You would prefer me to use the symbol  for the slope of the equipotentials, but in a moment you will be glad that I chose the
symbol .)

If we now transform back to the -plane, we see that the equation to the lines of force is

and the equation to the equipotentials is

or

Now aren't you glad that I chose  ? Those who are handy with conic sections (see Chapter 2 of Celestial Mechanics) will
understand that the equipotentials in the -plane are circles of radii , whose centres are at , and which all pass
through the points . They are drawn as blue lines in Figure .7. The lines of force are the orthogonal trajectories to these,
and are of the form

These are circles of radii  and have their centres at . They are shown as dashed red lines in Figure .7.
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3.1: Introduction

 

Consider a body which is on the whole electrically neutral, but in which there is a separation of charge such that there is more
positive charge at one end and more negative charge at the other. Such a body is an electric dipole.

Provided that the body as a whole is electrically neutral, it will experience no force if it is placed in a uniform external electric
field, but it will (unless very fortuitously oriented) experience a torque. The magnitude of the torque depends on its orientation with
respect to the field, and there will be two (opposite) directions in which the torque is a maximum.

The maximum torque that the dipole experiences when placed in an external electric field is its dipole moment. This is a vector
quantity, and the torque is a maximum when the dipole moment is at right angles to the electric field. At a general angle, the torque 

, the dipole moment  and the electric field  are related by

The SI units of dipole moment can be expressed as N m (V/m) . However, work out the dimensions of  and you will find that its
dimensions are Q L. Therefore it is simpler to express the dipole moment in SI units as coulomb metre, or C m.

Other units that may be encountered for expressing dipole moment are cgs esu, debye, and atomic unit. I have also heard the dipole
moment of thunderclouds expressed in kilometre coulombs. A cgs esu is a centimetre-gram-second electrostatic unit. I shall
describe the cgs esu system in a later chapter; suffice it here to say that a cgs esu of dipole moment is about ,
and a debye (D) is  cgs esu. An atomic unit of electric dipole moment is , where  is the radius of the first Bohr orbit for
hydrogen and  is the magnitude of the electronic charge. An atomic unit of dipole moment is about  C m.

I remark in passing that I have heard, distressingly often, some such remark as “The
molecule has a dipole”. Since this sentence is not English, I do not know what it is
intended to mean. It would be English to say that a molecule is a dipole or that it has a
dipole moment.

This page titled 3.1: Introduction is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source
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3.2: Mathematical Definition of Dipole Moment
In the introductory section 3.1 we gave a physical definition of dipole moment. I am now about to give a mathematical definition.

Consider a set of charges  whose position vectors with respect to a point  are , , ... with respect to some
point O. The vector sum

is the dipole moment of the system of charges with respect to the point O. You can see immediately that the SI unit has to be C m.

This page titled 3.2: Mathematical Definition of Dipole Moment is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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 Convince yourself that if the system as a whole is electrically neutral, so that there is as much positive
charge as negative charge, the dipole moment so defined is independent of the position of the point O. One can
then talk of “the dipole moment of the system” without adding the rider “with respect to the point O”.

  the physical and the mathematical – are equivalent.

 While thinking about these two, also convince yourself (from mathematics or from physics) that the moment
of a simple dipole consisting of two charges,  and  separated by a distance  is . We have already
noted that C m is an acceptable SI unit for dipole moment.
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3.3: Oscillation of a Dipole in an Electric Field
Consider a dipole oscillating in an electric field (Figure III.3). When it is at an angle  to the field, the magnitude of the restoring
torque on it is , and therefore its equation of motion is

where  is its rotational inertia.

For small angles, Equation  can be approximated as

and so the period of small oscillations is

Would you expect the period to be long if the rotational inertia were large? Would you expect the vibrations to be rapid if 
were large? Is the above expression dimensionally correct?

This page titled 3.3: Oscillation of a Dipole in an Electric Field is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
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3.4: Potential Energy of a Dipole in an Electric Field
Refer again to Figure III.3. There is a torque on the dipole of magnitude . In order to increase  you would have to
do an amount of work . The amount of work you would have to do to increase the angle between  from 0 to 
would be the integral of this from 0 to , which is , and this is the potential energy of the dipole, provided one takes
the potential energy to be zero when  are parallel. In many applications, writers find it convenient to take the potential
energy (P.E.) to be zero when  perpendicular. In that case, the potential energy is

This is negative when  is acute and positive when  is obtuse. You should verify that the product of  does have the
dimensions of energy.
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3.5: Force on a Dipole in an Inhomogeneous Electric Field

Consider a simple dipole consisting of two charges  and  separated by a distance , so that its dipole moment is .
Imagine that it is situated in an inhomogeneous electrical field as shown in Figure .4. We have already noted that a dipole in a
homogeneous field experiences no net force, but we can see that it does experience a net force in an inhomogeneous field. Let the
field at  and the field at . The force on  to the left, and the force on  to the
right. Thus there is a net force to the right of , or:

Equation  describes the situation where the dipole, the electric field and the gradient are all parallel to the x-axis. In a more
general situation, all three of these are in different directions. Recall that electric field is minus potential gradient. Potential is a
scalar function, whereas electric field is a vector function with three component, of which the x-component, for example is 

. Field gradient is a symmetric tensor having nine components (of which, however, only six are distinct), such as 

 etc. Thus in general Equation  would have to be written as

in which the double subscripts in the potential gradient tensor denote the second partial derivatives.
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3.6: Induced Dipoles and Polarizability
We noted in section 1.3 that a charged rod will attract an uncharged pith ball, and at that time we left this as a little unsolved
mystery. What happens is that the rod induces a dipole moment in the uncharged pith ball, and the pith ball, which now has a dipole
moment, is attracted in the inhomogeneous field surrounding the charged rod.

How may a dipole moment be induced in an uncharged body? Well, if the uncharged body is metallic (as in the gold leaf
electroscope), it is quite easy. In a metal, there are numerous free electrons, not attached to any particular atoms, and they are free
to wander about inside the metal. If a metal is placed in an electric field, the free electrons are attracted to one end of the metal,
leaving an excess of positive charge at the other end. Thus a dipole moment is induced.

What about a nonmetal, which doesn’t have free electrons unattached to atoms? It may be that the individual molecules in the
material have permanent dipole moments. In that case, the imposition of an external electric field will exert a torque on the
molecules, and will cause all their dipole moments to line up in the same direction, and thus the bulk material will acquire a dipole
moment. The water molecule, for example, has a permanent dipole moment, and these dipoles will align in an external field. This is
why pure water has such a large dielectric constant.

But what if the molecules do not have a permanent dipole moment, or what if they do, but they cannot easily rotate (as may well be
the case in a solid material)? The bulk material can still become polarized, because a dipole moment is induced in the individual
molecules, the electrons inside the molecule tending to be pushed towards one end of the molecule. Or a molecule such as ,
which is symmetrical in the absence of an external electric field, may become distorted from its symmetrical shape when placed in
an electric field, and thereby acquire a dipole moment.

Thus, one way or another, the imposition of an electric field may induce a dipole moment in most materials, whether they are
conductors of electricity or not, or whether or not their molecules have permanent dipole moments.

If two molecules approach each other in a gas, the electrons in one molecule repel the electrons in the other, so that each molecule
induces a dipole moment in the other. The two molecules then attract each other, because each dipolar molecule finds itself in the
inhomogeneous electric field of the other. This is the origin of the van der Waals forces.

Some bodies (I am thinking about individual molecules in particular, but this is not necessary) are more easily polarized that others
by the imposition of an external field. The ratio of the induced dipole moment to the applied field is called the polarizability  of
the molecule (or whatever body we have in mind). Thus

The SI unit for  is C m  and the dimensions are .

This brief account, and the general appearance of Equation , suggests that  are in the same direction – but this is so
only if the electrical properties of the molecule are isotropic. Perhaps most molecules – and, especially, long organic molecules −
have anisotropic polarizability. Thus a molecule may be easy to polarize with a field in the x-direction, and much less easy in the
y- or z-directions. Thus, in Equation , the polarizability is really a symmetric tensor,  are not in general parallel, and
the equation, written out in full, is

(Unlike in equation 3.5.2, the double subscripts are not intended to indicate second partial derivatives; rather they are just the
components of the polarizability tensor.) As in several analogous situations in various branches of physics (see, for example,
section 2.17 of Classical Mechanics and the inertia tensor) there are three mutually orthogonal directions (the eigenvectors of the
polarizability tensor) for which  will be parallel.

This page titled 3.6: Induced Dipoles and Polarizability is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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3.7: The Simple Dipole
As you may expect from the title of this section, this will be the most difficult and complicated section of this chapter so far. Our
aim will be to calculate the field and potential surrounding a simple dipole.

A simple dipole is a system consisting of two charges, , separated by a distance . The dipole moment of this
system is just . We’ll suppose that the dipole lies along the x-axis, with the negative charge at  and the positive
charge at . See Figure .5.

 

Let us first calculate the electric field at a point P at a distance  along the -axis. It will be agreed, I think, that it is directed
towards the left and is equal to

Therefore

For large  this becomes

That is, the field falls off as the cube of the distance.

To find the field on the -axis, refer to Figure .6.

 

It will be agreed, I think, that the field is directed towards the right and is equal to

This can be written , and on expansion of this by the binomial theorem, neglecting terms

of order  and smaller, we see that at large x the field is
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Now for the field at a point P that is neither on the axis ( -axis) nor the equator ( -axis) of the dipole. See Figure .7.

 

It will probably be agreed that it would not be particularly difficult to write down expressions for the contributions to the field at P
from each of the two charges in turn. The difficult part then begins; the two contributions to the field are in different and awkward
directions, and adding them vectorially is going to be a bit of a headache.

It is much easier to calculate the potential at P, since the two contributions to the potential can be added as scalars. Then we can
find the x- and y-components of the field by calculating  and .

Thus

To start with I am going to investigate the potential and the field at a large distance from the dipole – though I shall return later to
the near vicinity of it.

At large distances from a small dipole (see Figure .8), we can write, ,

 

and, with , the expression 3.7.5 for the potential at P becomes

When this is expanded by the binomial theorem we find, to order L/r , that the potential can be written in any of the following
equivalent ways:

Thus the equipotentials are of the form
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where

Now, bearing in mind that , we can differentiate  with respect to  and  to find the - and -

components of the field. Thus we find that

We can also use polar coordinates to find the radial and transverse components from 

 to obtain

The angle that  makes with the axis of the dipole at the point  is .

For those who enjoy vector calculus, we can also say , from which, after a little algebra and quite a lot of

vector calculus, we find

This equation contains all the information that we are likely to want, but I expect most readers will prefer the more explicit
rectangular and polar forms of equations  and .

Equation  gives the equation to the equipotentials. The equation to the lines of force can be found as follows. Referring to
Figure .9, we see that the differential equation to the lines of force is

 

which, upon integration, becomes

Note that the equations  (for the equipotentials) and  (for the lines of force) are orthogonal trajectories, and

either can be derived from the other. Thus, given that the differential equation to the lines of force is  with solution 

, the differential equation to the orthogonal trajectories (i.e. the equipotentials) is , with solution 
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In Figure .10, there is supposed to be a tiny dipole situated at the origin. The unit of length is , half the length of the dipole. I
have drawn eight electric field lines (continuous), corresponding to a = 25, 50, 100, 200, 400, 800, 1600, 3200. If r is expressed in

units of , and if  is expressed in units of , the equations  and  for the equipotentials can be written , 

, and I have drawn seven equipotentials (dashed) for  = 0.0001, 0.0002, 0.0004, 0.0008, 0.0016, 0.0032, 0.0064. It

will be noticed from Equation , and is also evident from Figure .10, that  is zero for .

 

At the end of this chapter I append a (geophysical) exercise in the geometry of the field at a large distance from a small dipole.

Equipotentials near to the dipole

These, then, are the field lines and equipotentials at a large distance from the dipole. We arrived at these equations and graphs by
expanding Equation  binomially, and neglecting terms of higher order than . We now look near to the dipole, where we
cannot make such an approximation. Refer to Figure .7.

We can write Equation  as

where . If, as before, we express distances in terms of  and  in units of ,

the expression for the potential becomes

where .

One way to plot the equipotentials would be to calculate  for a whole grid of  values and then use a contour plotting routine
to draw the equipotentials. My computing skills are not up to this, so I’m going to see if we can find some way of plotting the
equipotentials directly.

I present two methods. In the first method I use Equation  and endeavour to manipulate it so that I can calculate  as a
function of  and . The second method was shown to me by J. Visvanathan of Chennai, India. We’ll do both, and then compare
them.

First Method.

To anticipate, we are going to need the following:
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Now Equation  is . In order to extract  it is necessary to square this twice, so that  appear only as
. After some algebra, we obtain

Upon substitution of equations ,17,18, for which we are well prepared, we find for the equation to the equipotentials an
equation which, after some algebra, can be written as a quartic equation in B:

The algorithm will be as follows: For a given  and , calculate the quartic coefficients from equations - . Solve the
quartic Equation  for B. Calculate y from Equation . My attempt to do this is shown in Figure .11. The dipole is
supposed to have a negative charge at (−1 , 0) and a positive charge at (+1 , 0). The equipotentials are drawn for  = 0.05, 0.10,
0.20, 0.40, 0.80.

 

Second method (J. Visvanathan).

In this method, we work in polar coordinates, but instead of using the coordinates , in which the origin, or pole, of the polar
coordinate system is at the center of the dipole (see Figure .7), we use the coordinates  with origin at the positive charge.

From the triangle, we see that

For future reference we note that

Provided that distances are expressed in units of , these equations become
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If, in addition, electrical potential is expressed in units of , the potential at P is given, as before (Equation ), by

bearing in mind that  is given by Equation .

By differentiation with respect to , we have

and we are all set to begin a Newton-Raphson iteration: . Having obained , we can then obtain the 
coordinates from .

I tried this method and I got exactly the same result as by the first method and as shown in Figure .11.

So which method do we prefer? Well, anyone who has worked through in detail the derivations of equations  - , and
has then tried to program them for a computer, will agree that the first method is very laborious and cumbersome. By comparison
Visvanathan’s method is much easier both to derive and to program. On the other hand, one small point in favor of the first method
is that it involves no trigonometric functions, and so the numerical computation is potentially faster than the second method in
which a trigonometric function is calculated at each iteration of the Newton-Raphson process. In truth, though, a modern computer
will perform the calculation by either method apparently instantaneously, so that small advantage is hardly relevant.

So far, we have managed to draw the equipotentials near to the dipole. The lines of force are orthogonal to the equipotentials. After
I tried several methods with only partial success, I am grateful to Dr Visvanathan who pointed out to me what ought to have been
the “obvious” method, namely to use Equation , which, in our  coordinate system based on the positive charge, is 

, just as we did for the large distance, small dipole, approximation. In this case, the potential is given by equations 

 and . (Recall that in these equations, distances are expressed in units of L and the potential in units of .) The

radial and transverse components of the field are given by , which result in

and

Here, the field is expressed in units of , although that hardly matters, since we are interested only in the ratio. On applying 

 to these field components we obtain the following differential equation to the lines of force:

Thus one can start with some initial  and small  and increase  successively by small increments, calculating a new φ each
time. The results are shown in Figure .12, in which the equipotentials are drawn for the same values as in Figure .11, and
the initial angles for the lines of force are 30º, 60º, 90º, 120º, 150º.
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Before we leave this section, here is yet another method of calculating the potential near to a dipole, for those who are familiar with
Legendre polynomials.

 

The potential at P is given by

where .

It is well known (to those who are familiar with Legendre polynomials!) that

where the  are the Legendre polynomials. Thus the potential can be calculated as a series expansion. Those who are unfamiliar
with the Legendre polynomials can find something about them in my notes on celestial mechanics
www.astro.uvic.ca/~tatum/celmechs/celm1.pdf

This page titled 3.7: The Simple Dipole is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.
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3.8: Quadrupole Moment
Consider the system of charges shown in Figure .13. It has no net charge and no net dipole moment. Unlike a dipole, it will
experience neither a net force nor a net torque in any uniform field. It may or may not experience a net force in an external
nonuniform field. For example, if we think of the quadrupole as two dipoles, each dipole will experience a force proportional to the
local field gradient in which it finds itself. If the field gradients at the location of each dipole are equal, the forces on each dipole
will be equal but opposite, and there will be no net force on the quadrupole. If, however, the field gradients at the positions of the
two dipoles are unequal, the forces on the two dipoles will be unequal, and there will be a net force on the quadrupole. Thus there
will be a net force if there is a non-zero gradient of the field gradient. Stated another way, there will be no net force on the
quadrupole if the mixed second partial derivatives of the field components (the third derivatives of the potential!) are zero. Further,
if the quadrupole is in a nonuniform field, increasing, say, to the right, the upper pair will experience a force to the right and the
lower pair will experience a force to the left; thus the system will experience a net torque in an inhomogeneous field, though there
will be no net force unless the field gradients on the two pairs are unequal.

 

The system possesses what is known as a quadrupole moment. While a single charge is a scalar quantity, and a dipole moment is
a vector quantity, the quadrupole moment is a second order symmetric tensor.

The dipole moment of a system of charges is a vector with three components given by

The quadrupole moment  has nine components (of which six are distinct) defined by

etc., and its matrix representation is

For a continuous charge distribution with charge density  coulombs per square metre, the components will be given by 
, etc., where  is a volume element, given in rectangular coordinates by  and in spherical coordinates by 

. The SI unit of quadrupole moment is C m , and the dimensions are L Q, By suitable rotation of axes, in the usual
way (see for example section 2.17 of Classical Mechanics), the matrix can be diagonalized, and the diagonal elements are then the
eigenvalues of the quadrupole moment, and the trace of the matrix is unaltered by the rotation.

This page titled 3.8: Quadrupole Moment is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum
via source content that was edited to the style and standards of the LibreTexts platform.
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3.9: Potential at a Large Distance from a Charged Body
We wish to find the potential at a point P at a large distance  from a charged body, in terms of its total charge and its dipole,
quadrupole, and possibly higher-order moments. There will be no loss of generality if we choose a set of axes such that P is on the 

-axis.

 

We refer to Figure .14, and we consider a volume element  at a distance r from some origin. The point P is at a distance r
from the origin and a distance . The potential at P from the charge in the element  is given by

and so the potential from the charge on the whole body is given by

On expanding the parentheses by the binomial theorem, we find, after a little trouble, that this becomes

where the polynomials P are the Legendre polynomials given by

We see from the forms of these integrals and the definitions of the components of the dipole and quadrupole moments that this can
now be written:

Here Tr q is the trace of the quadrupole moment matrix, or the (invariant) sum of its diagonal elements. Equation  can also be
written

The quantity  of the diagonalized matrix is often referred to as “the” quadrupole moment. It is zero if all three

diagonal components are zero or if . If the body has cylindrical symmetry about the -axis, this becomes 
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.

 

The solution to this exercise is easy if you know about Legendre polynomials. See Section 1.14 of my notes on Celestial
Mechanics. What you need to know is that the expansion of  can be written as a series of Legendre
polynomials, namely . You also need a (very small) table of Legendre polynamials, namely 

. Given that, you should find the exercise very easy.

This page titled 3.9: Potential at a Large Distance from a Charged Body is shared under a CC BY-NC 4.0 license and was authored, remixed,
and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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3.10: A Geophysical Example
Assume that planet Earth is spherical and that it has a little magnet or current loop at its centre. By “little” I mean small compared
with the radius of the Earth. Suppose that, at a large distance from the magnet or current loop the geometry of the magnetic field is
the same as that of an electric field at a large distance from a simple dipole. That is to say, the equation to the lines of force is

and the differential equation to the lines of force is

Show that the angle of dip  at geomagnetic latitude  is given by

The geometry is shown in Figure .16.

The result is a simple one, and there is probably a simpler way of getting it than the one I tried. Let me know (jtatum@uvic.ca) if
you find a simpler way. In the meantime, here is my solution.

I am going to try to find the slope  of the tangent to Earth (i.e. of the horizon) and the slope  of the line of force. Then the
angle D between them will be given by the equation (which I am hoping is well known from coordinate geometry!)

The first is easy:

For  we want to find the slope of the line of force, whose equation is given in polar coordinates. So, how do you find the slope
of a curve whose equation is given in polar coordinates? We can do it like this:

From these, we obtain

In our particular case, we have  (equation 3.7.12), so if we substitute this into Equation  we soon obtain

Now put Equations  and  into equation 3.10.2, and, after a little algebra, we soon obtain
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Here is another question. The magnetic field is generally given the symbol . Show that the strength of the magnetic field  at
geomagnetic latitude  is given by

where  is the strength of the field at the equator. This means that it is twice as strong at the magnetic poles as at the equator.

Start with equation 3.7.2, which gives the electric field at a distant point on the equator of an electric dipole. That equation was 
. In this case we are dealing with a magnetic field and a magnetic dipole, so we’ll replace the electric field  with a

magnetic field . Also  is a combination of electrical quantities, and since we are interested only in the geometry (i.e. on
how  varies from equation to pole, let’s just write  as . And we’ll take the radius of Earth to be , so that equation
3.7.2 gives for the magnetic field at the surface of Earth on the equator as

In a similar vein, equations 3.7.10 for the radial and transverse components of the field at geomagnetic latitude  (which is 90º − )
become

And since  the result immediately follows.

This page titled 3.10: A Geophysical Example is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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4.1: Introduction
An electric cell consists of two different metals, or carbon and a metal, called the poles, immersed or dipped into a liquid or some
sort of a wet, conducting paste, known as the electrolyte, and, because of some chemical reaction between the two poles and the
electrolyte, there exists a small potential difference (typically of the order of one or two volts) between the poles. This potential
difference is much smaller than the hundreds or thousands of volts that may be obtained in typical laboratory experiments in
electrostatics, and the electric field between the poles is also correspondingly small.

The potential difference across the poles of a cell when no current is being taken from it is called the electromotive force
(EMF) of the cell.

The circuit symbol for a cell is drawn thus:

The longer, thin line represents the positive pole and the shorter, thick line represents the negative pole.

Several cells connected together form a battery of cells. Thus in principle a single cell should strictly be called just that – a cell –
and the word battery should be restricted to a battery of several cells. However, in practice, most people use the word battery to
mean either literally a battery of several cells, or a single cell.

I shall not discuss in this chapter the detailed chemistry of why there exists such a potential difference, nor shall I discuss in detail
the chemical processes that take place inside the several different varieties of cell. I shall just mention that in the cheaper types of
flashlight battery (cell), the negative pole, made of zinc, is the outer casing of the cell, while the positive pole is a central carbon
rod. The rather dirty mess that is the electrolyte is a mixture that is probably known only to the manufacturer, though it probably
includes manganese oxide and ammonium chloride and perhaps such goo as flour or glue and goodness knows what else. Other
types have a positive pole of nickelic hydroxide and a negative pole of cadmium metal in a potassium hydroxide electrolyte. A 12-
volt car battery is typically a battery of 6 cells in series, in which the positive poles are lead oxide PbO , the negative poles are
metallic lead and the electrolyte is sulphuric acid. In some batteries, after they are exhausted, the poles are irreversibly damaged
and the battery has to be discarded. In others, such as the nickel-cadmium or lead-acid cells, the chemical reaction is reversible, and
so the cells can be recharged. I have heard the word “accumulator” used for a rechargeable battery, particularly the lead-acid car
battery, but I don’t know how general that usage is.

Obviously the purpose of a battery is to extract a current from it. An electrolytic cell is quite the opposite. In an electrolytic cell, an
electric current is forced into it from outside. This may be done in a laboratory, for example, to study the flow of electricity through
an electrolyte, or in industrial processes such as electroplating. In an electrolytic cell, the current is forced into the cell by two
electrodes, one of which (the anode) is maintained at a higher potential than the other (the cathode). The electrolyte contains
positive ions (cations) and negative ions (anions), which can flow through the electrolyte. Naturally, the positive ions (cations)
flow towards the negative electrode (the cathode) and the negative ions (the anions) flow towards the positive electrode (the
anode).

The direction of flow of electricity in an electrolytic cell is the opposite from the flow when a battery is being used to power an
external circuit, and the roles of the two poles or electrodes are reversed. Thus some writers will refer to the positive pole of a
battery as its “cathode”. It is not surprising therefore, that many a student (and, one might even guess, many a professor and
textbook writer) has become confused over the words cathode and anode. The situation is not eased by referring to negatively
charged electrons in a gaseous discharge tube as “cathode rays”.

My recommendation would be: When referring to an electrolytic cell, use the word “electrodes”; when referring to a battery, use
the word “poles”. Avoid the use of the prefixes “cat” and “an” altogether. Thus, refer to the positive and negative electrodes of an
electrolytic cell, the positive and negative poles of a battery, and the positive and negative ions of an electrolyte. In that way your
meaning will always be clear and unambiguous to yourself and to your audience or your readers.

 Definition: electromotive force (EMF)
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4.2: Resistance and Ohm's Law
When a potential difference is maintained across the electrodes in an electrolytic cell, a current flows through the electrolyte. This
current is carried by positive ions moving from the positive electrode towards the negative electrode and also, simultaneously, by
negative ions moving from the negative electrode towards the positive electrode. The conventional direction of the flow of
electricity is the direction in which positive charges are moving. That is to say, electricity flows from the positive electrode towards
the negative electrode. The positive ions, then, are moving in the same direction as the conventional direction of flow of electricity,
and the negative ions are moving in the opposite direction.

When current flows in a metal, the current is carried exclusively by means of negatively charged electrons, and therefore the
current is carried exclusively by means of particles that are moving in the opposite direction to the conventional flow of electricity.
Thus “electricity” flows from a point of high potential to a point of lower potential; electrons move from a point of low potential to
a point of higher potential.

When a potential difference is applied across a resistor, the ratio of the potential difference across the resistor to the current  that
flows through it is called the resistance, , of the resistor. Thus

This equation, which defines resistance, appears at first glance to say that the current through a resistor is proportional to the
potential difference across it, and this is Ohm’s Law. Equation , however, implies a simple proportionality between  and 

only if  is constant and independent of  or of . In practice, when a current flows through a resistor, the resistor becomes hot,
and its resistance increases – and then  and  are no longer linearly proportional to one another. Thus one would have to state
Ohm’s Law in the form that the current through a resistor is proportional to the potential difference across it, provided that the
temperature is held constant. Even so, there are some substances (and various electronic devices) in which the resistance is not
independent of the applied potential difference even at constant temperature. Thus it is better to regard Equation  as a
definition of resistance rather than as a fundamental law, while also accepting that it is a good description of the behaviour of most
real substances under a wide variety of conditions as long as the temperature is held constant.

If a current of one amp flows through a resistor when there is a potential difference of one volt across it, the resistance is one ohm (
). (Clear though this definition may appear, however, recall from chapter 1 that we have not yet defined exactly what we mean by

an amp, nor a volt, so suddenly the meaning of “ohm” becomes a good deal less clear! I do promise a definition of “amp” in a later
chapter – but in the meantime I crave your patience.)

The dimensions of resistance are

The reciprocal of resistance is conductance, . Thus . It is common informal practice to express conductance in “mhos”, a
“mho” being an ohm . The official SI unit of conductance, however, is the siemens (S), which is the same thing as a “mho”,
namely one A V .

The resistance of a resistor is proportional to its length  and inversely proportional to its cross-sectional area A:

The constant of proportionality  is called the resistivity of the material of which the resistor is made. Its dimensions are ML T Q
, and its SI unit is ohm metre, or  m.

The reciprocal of resistivity is the conductivity, . Its dimensions are M L TQ , and its SI unit is siemens per metre, S m .

For those who enjoy collecting obscure units, there is an amusing unit I once came across, namely the unit of surface resistivity.
One is concerned with the resistance of a thin sheet of conducting material, such as, for example, a thin metallic film deposited on
glass. The resistance of some rectangular area of this is proportional to the length l of the rectangle and inversely proportional to its
width w:

V I

R

V = IR. (4.2.1)
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The resistance, then, depends on the ratio  – i.e. on the shape of the rectangle, rather than on its size. Thus the resistance of a 2
mm  3 mm rectangle is the same as that of a 2 m  3 m rectangle, but quite different from that of a 3 mm  2 mm rectangle. The
surface resistivity is defined as the resistance of a rectangle of unit length and unit width (i.e. a square) – and it doesn’t matter what
the size of the square. Thus the units of surface resistivity are ohms per square. (End of sentence!)

As far as their resistivities are concerned, it is found that substances may be categorized as metals, nonconductors (insulators), and
semiconductors. Metals have rather low resistivities, of the order of 10   m. For example:

Silver: 1.6  10   m

Copper: 1.7  10

Aluminium: 2.8  10

Tungsten: 5.5  10

Iron: 10  10

Nonconductors have resistivities typically of order 10  to 10   m or more. That is, for most practical purposes and conditions
they don’t conduct any easily measurable electricity at all.

Semiconductors have intermediate resistivities, such as

Carbon: 1500  10   m

Germanium: 4.5  10

Silicon 6.4  10

There is another way, besides equation 4.2.1, that is commonly used to express Ohm’s law. Refer to Figure IV.1.

We have a metal rod of length , cross-sectional area A, electrical conductivity , and so its resistance is l/( A). We clamp it
between two points which have a potential difference of V between them, and consequently the magnitude of the electric field in
the metal is . Equation 4.2.1 (Ohm’s law) therefore becomes . Now introduce  as the current
density (amps per square metre). Them Ohm’s law becomes . This is usually written in vector form, since current and field
are both vectors, so that Ohm’s law is written

This page titled 4.2: Resistance and Ohm's Law is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
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4.3: Resistance and Temperature
It is found that the resistivities of metals generally increase with increasing temperature, while the resistivities of semiconductors
generally decrease with increasing temperature.

It may be worth thinking a little about how electrons in a metal or semiconductor conduct electricity. In a solid metal, most of the
electrons in an atom are used to form covalent bonds between adjacent atoms and hence to hold the solid together. But about one
electron per atom is not tied up in this way, and these “conduction electrons” are more or less free to move around inside the metal
much like the molecules in a gas. We can estimate roughly the speed at which the electrons are moving. Thus we recall the formula 

 for the root-mean-square speed of molecules in a gas, and maybe we can apply that to electrons in a metal just for a
rough order of magnitude for their speed. Boltzmann’s constant  is about 1.38  10  J K  and the mass of the electron, m, is
about 9.11  10  kg. If we assume that the temperature is about 27 C or 300 K, the root mean square electron speed would be
about 1.2  10  m s .

Now consider a current of 1 A flowing in a copper wire of diameter 1 mm – i.e. cross-sectional area 7.85  10  m . The density of
copper is 8.9 g cm , and its “atomic weight” (molar mass) is 63.5 g per mole, which means that there are 6.02  10  (Avogadro’s
number) of atoms in 63.5 grams, or 8.44  10  atoms per cm  or 8.44  10  atoms per m . If we assume that there is one
conduction electron per atom, then there are 8.44  10  conduction electrons per m , or, in our wire of diameter 1 mm, 6.63 
10  conduction electrons per metre.

The speed at which the electrons are carrying the current of one amp is the current divided by the charge per unit length, and with
the charge on a single electron being 1.60  10  C, we find that the speed at which the electrons are carrying the current is about
9.4  10  m s .

Thus we have this picture of electrons moving in random directions at a speed of about 1.2  10  m s  (the thermal motion) and,
superimposed on that, a very slow drift speed of only 9.4  10  m s  for the electron current. If you were able to see the electrons,
you would see them dashing hither and thither at very high speeds, but you wouldn’t even notice the very slow drift in the direction
of the current.

When you connect a long wire to a battery, however, the current (the slow electron drift) starts almost instantaneously along the
entire length of the wire. If the electrons were in a complete vacuum, rather than in the interior of a metal, they would accelerate as
long as they were in an electric field. The electrons inside the metal also accelerate, but they are repeatedly stopped in their tracks
by collisions with the metal atoms – and then they start up again. If the temperature is increased, the vibrations of the atoms within
the metal lattice increase, and this presumably somehow increases the resistance to the electron flow, or decreases the mean time or
the mean path-length between collisions.

In a semiconductor, most of the electrons are required for valence bonding between the atoms – but there are a few (much fewer
than one per atom) free, conduction electrons. As the temperature is increased, more electrons are shaken free from their valence
duties, and they then take on the task of conducting electricity. Thus the conductivity of a semiconductor increases with increasing
temperature.

The temperature coefficient of resistance, a, of a metal (or other substance) is the fractional increase in its resistivity per unit rise in
temperature:

In SI units it would be expressed in K . However, in many practical applications the temperature coefficient is defined in relation
to the change in resistance compared with the resistivity at a temperature of 20 C, and is given by the equation

where t is the temperature in degrees Celsius.
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Tungsten: 4.5  10

Iron: 5.0  10

Carbon: -0.5  10

Germanium: -48  10

Silicon: -75  10

Some metallic alloys with commercial names such as nichrome, manganin, constantan, eureka, etc., have fairly large resistivities
and very low temperature coefficients.

As a matter of style, note that the kelvin is a unit of temperature, much a the metre is a unit of length. Thus, when discussing
temperatures, there is no need to use the “degree” symbol with the kelvin. When you are talking about some other temperature
scale, such as Celsius, one needs to say “20 degrees on the Celsius scale” – thus 20 C. But when one is talking about a temperature
interval of so many Celsius degrees, this is written C . I have adhered to this convention above.

The resistivity of platinum as a function of temperature is used as the basis of the platinum resistance thermometer, useful under
conditions and temperatures where other types of thermometers may not be useful, and it is also used for defining a practical
temperature scale at high temperatures. A bolometer is an instrument used for detecting and measuring infrared radiation. The
radiation is focussed on a blackened platinum disc, which consequently rises in temperature. The temperature rise is measured by
measuring the increase in resistance. A thermistor is a semiconducting device whose resistance is very sensitive to temperature, and
it can be used for measuring or controlling temperature.

This page titled 4.3: Resistance and Temperature is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
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4.4: Resistors in Series

The current is the same in each. The potential difference is greatest across the largest resistance.

This page titled 4.4: Resistors in Series is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.
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4.5: Conductors in Parallel

 

That is to say

The potential difference is the same across each. The current is greatest through the largest conductance – i.e. through the smallest
resistance.
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4.6: Dissipation of Energy
When current flows through a resistor, electricity is falling through a potential difference. When a coulomb drops through a volt, it
loses potential energy 1 joule. This energy is dissipated as heat. When a current of  coulombs per second falls through a potential
difference of  volts, the rate of dissipation of energy is , which can also be written (by making use of Ohm’s law) 

.

If two resistors are connected in series, the current is the same in each, and we see from the formula  that more heat is
generated in the larger resistance.

If two resistors are connected in parallel, the potential difference is the same across each, and we see from the formula  that
more heat is generated in the smaller resistance.

This page titled 4.6: Dissipation of Energy is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum
via source content that was edited to the style and standards of the LibreTexts platform.

I

V IV

R or  /RI

2

V

2

RI

2

/RV

2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/5436?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/04%3A_Batteries_Resistors_and_Ohm's_Law/4.06%3A_Dissipation_of_Energy
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/04%3A_Batteries_Resistors_and_Ohm's_Law/4.06%3A_Dissipation_of_Energy
https://creativecommons.org/licenses/by-nc/4.0
https://www.astro.uvic.ca/~tatum/celmechs.html
http://orca.phys.uvic.ca/~tatum/elmag.html


4.7.1 https://phys.libretexts.org/@go/page/5971

4.7: Electromotive Force and Internal Resistance
The reader is reminded of the following definition from section 4.1:

Definition. The potential difference across the poles of a cell when no current is being taken from it is called the electromotive force
(EMF) of the cell.

I shall use the symbol E for EMF.

Question. A 4  resistance is connected across a cell of EMF 2 V. What current flows?

The immediate answer is 0.5 A – but this is likely to be wrong. The reason is that a cell has a resistance of its own – its internal
resistance. The internal resistance of a lead-acid cell is typically quite small, but most dry cells have an appreciable internal
resistance. If the external resistance is  and the internal resistance is , the total resistance of the circuit is , so that the
current that flows is E .

Whenever a current is taken from a cell (or battery) the potential difference across its poles drops to a value less than its EMF. We
can think of a cell as an EMF in series with an internal resistance:

 

If we take the point A as having zero potential, we see that the potential of the point B will be E - , and this, then, is the potential
difference across the poles of the cell when a current  is being taken from it.

This page titled 4.7: Electromotive Force and Internal Resistance is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.

Ω

R r R+r

/(R+r)

FIGURE IV.4

Ir

I

 Show that this can also be written as .ER

R+r

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/5971?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/04%3A_Batteries_Resistors_and_Ohm's_Law/4.07%3A_Electromotive_Force_and_Internal_Resistance
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/04%3A_Batteries_Resistors_and_Ohm's_Law/4.07%3A_Electromotive_Force_and_Internal_Resistance
https://creativecommons.org/licenses/by-nc/4.0
https://www.astro.uvic.ca/~tatum/celmechs.html
http://orca.phys.uvic.ca/~tatum/elmag.html


4.8.1 https://phys.libretexts.org/@go/page/5972

4.8: Power Delivered to an External Resistance
Question: How much heat will be generated in the external resistance ? 
Answer: None!

Question: How much heat will be generated in the external resistance ? 
Answer: None!

Question: How much heat will be generated in the external resistance  is something? 
Answer: Something!

This suggests that there will be some value of the external resistance for which the power delivered, and heat generated, will be a
maximum, and this is indeed the case.

The rate at which power is delivered, and dissipated as heat, is

In Figure IV.5 I have plotted the power (in units of E / ) versus . Differentiation of the above expression (do it!) will show
that the power delivered reaches a maximum of  when ; that is, when the external resistance is “matched” to the
internal resistance of the cell. This is but one example of many in physics and engineering in which maximum power is delivered to
a load when the load is matched to the internal load of the power source.
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4.9: Potential Divider
The circuit illustrated in Figure IV.6 is a potential divider. It may be used to supply a variable voltage to an external circuit. It is
then called a rheostat. Or it may be used to compare potential differences, in which case it is called a potentiometer. (In practice
many people refer to such a device as a “pot”, regardless of the use to which it is put.)

For example, in Figure IV.7, a balance point (no current in the ammeter, A) is found when the potential drop down the length x of
the resistance wire is equal to the EMF of the small cell. (Note that, since no current is being taken from the small cell, the potential
difference across its poles is indeed the EMF.) One could compare the EMFs of two cells in this manner, one of which might be a
“standard cell” whose EMF is known.

 :The potentiometer is being used as a rheostat to supply a variable voltage to an external circuit.

In Figure IV.8, a current is flowing through a resistor (which is assumed to be in part of some external circuit, not drawn), and,
assuming that the potential gradient down the potentiometer has been calibrated with a standard cell, the potentiometer is being
used to measure the potential difference across the resistor. That is, the potentiometer is being used as a voltmeter.

 : The potentiometer is being used as a voltmeter
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4.10: Ammeters and Voltmeters
For the purpose of this section it doesn’t matter how an ammeter actually works. Suffice it to say that a current flows through the
ammeter and a needle moves over a scale to indicate the current, or else the current is indicated as numbers in a digital display. In
order to measure the current through some element of a circuit, the ammeter is placed, of course, in series with the element.
Generally an ammeter has rather a low resistance.

An inexpensive voltmeter is really just an ammeter having rather a high resistance. If you want to measure the potential difference
across some circuit element, you place the voltmeter, of course, across that element (i.e. in parallel with it). A small portion of the
current through the element is diverted through the meter; the meter measures this current, and, from the known resistance of the
meter, the potential difference can be calculated – though in practice nobody does any calculation – the scale is marked in volts.
Placing a meter across a circuit element in fact slightly reduces the potential difference across the element – that is, it reduces the
very thing you want to measure. But, because a voltmeter typically has a high resistance, this effect is small. There are, of course,
modern (and more expensive) voltmeters of a quite different design, which take no current at all, and genuinely measure potential
difference, but we are concerned in this section with the commonly-encountered ammeter-turned-voltmeter. It may be noticed that
the potentiometer described in the previous section takes no current from the circuit element of interest, and is therefore a true
voltmeter.

There are meters known as “multimeters” or “avometers” (for amps, volts and ohms), which can be used as ammeters or as
voltmeters, and it is with these that this section is concerned.

A typical inexpensive ammeter gives a full scale deflection (FSD) when a current of 15 mA = 0.015 A flows through it. It can be
adapted to measure higher currents by connecting a small resistance (known as a “shunt”) across it.

Let’s suppose, for example, that we have a meter that which shows a FSD when a current of 0.015 A flows through it, and that the
resistance of the meter is 10 . We would like to use the meter to measure currents as high as 0.15 A. What value of shunt
resistance shall we put across the meter? Well, when the total current is 0.15 A, we want 0.015 A to flow through the meter (which
then shows FSD) and the remainder, 0.135 A, is to flow through the shunt. With a current of 0.015 A flowing through the 10 
meter, the potential difference across it is 0.15 V. This is also the potential difference across the shunt, and, since the current
through the shunt is 0.135 A, the resistance of the shunt must be 1.11 .

We can also use the meter as a voltmeter. Suppose, for example, that we want to measure voltages (horrible word!) of up to 1.5 V.
We place a large resistance R in series with the meter, and then place the meter-plus-series-resistance across the potential difference
to measured. The total resistance of meter-plus-series-resistance is (10 + R), and it will show a FSD when the current through it is
0.015 A. We want this to happen when the potential difference across it is 1.5 volts. This 1.5 = 0.015 × (10 + R), and so R = 90 .
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4.11: Wheatstone Bridge

The Wheatstone bridge can be used to compare the value of two resistances – or, if the unknown resistance is compared with a
resistance whose value is known, it can be used to measure an unknown resistance. R and R  can be varied. R  is a standard
resistance whose value is known. R is the unknown resistance whose value is to be determined. G is a galvanometer. This is just a
sensitive ammeter, in which the zero-current position has the needle in the middle of the scale; the needle may move one way or the
other, depending on which way the current is flowing. The function of the galvanometer is not so much to measure current, but
merely to detect whether or not a current is flowing in one direction of another. In use, the resistances R  and R  are varied until no
current flows in the galvanometer. The bridge is then said to be “balanced” and  and hence the unknown
resistance is given by .

This page titled 4.11: Wheatstone Bridge is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum
via source content that was edited to the style and standards of the LibreTexts platform.
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4.12: Delta-Star Transform
Consider the two circuits (each enclosed in a black box) of Figure IV.10.

The configuration in the left hand box is called a “delta” ( ) and the configuration in the right hand box is called a “star” or a “Y”.
I have marked against each resistor its resistance and its conductance, the conductance, of course, merely being the reciprocal of
the resistance. I am going to suppose that the resistance between the terminals X and Y is the same for each box. In that case:

We can get similar equations for the terminal pairs Y,Z and Z,X. Solving the three equations for r , r  and r , we obtain

In terms of the conductances, these are

The converses of these equations are:

That means that, if the resistances and conductances in one box are related to the resistances and conductances in the other by these
equations, then you would not be able to tell, if you had an ammeter, and a voltmeter and an ohmmeter, which circuit was in which
box. The two boxes are indistinguishable from their electrical behaviour.

FIGURE IV.10
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These equations are not easy to commit to memory unless you are using them every day, and they are sufficiently awkward that
mistakes are likely when evaluating them numerically. Therefore, to make the formulas useful, you should programme your
calculator or computer so that they will instantly convert between delta and star without your ever having to think about it. The
next example shows the formulas in use. It will be heavy work unless you have programmed your computer in advance – but if you
have done so, you will see how very useful the transformations are.

Example. Calculate the resistance between the points A and B in the Figure below. The individual resistances are given in ohms.

At first, one doesn’t know how to start. But notice that the 1, 3 and 4 ohm resistors are connected in delta and the circuit is
therefore equivalent to

After that, it is easy, and you will soon find that the resistance between A and B is 2.85 .

This page titled 4.12: Delta-Star Transform is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum
via source content that was edited to the style and standards of the LibreTexts platform.
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4.13: Kirchhoff’s Rules
There are two h’s in his name, and there is no tch sound in the middle. The pronunciation is approximately keerr–hhofe.

The rules themselves are simple and are self-evident. What has to be learned, however, is the art of using them.

K1: The net current going into any point in a circuit is zero; expressed otherwise, the sum of all the currents entering any point
in a circuit is equal to the sum of all the currents leaving the point.
K2: The sum of all the EMFs and  products in a closed circuit is zero. Expressed otherwise, as you move around a closed
circuit, the potential will sometimes rise and sometimes fall as you encounter a battery or a resistance; but, when you come
round again to the point where you started, there is no change in potential.

In the above circuit, the 24 V battery is assumed to have negligible internal resistance. Calculate the current in each of the resistors.

The art of applying Kirchhoff’s rules is as follows.

1. Draw a large circuit diagram in pencil.
2. Count the number of independent resistors. (Two is series with nothing in between don’t count as independent.) This tells

you how many independent equations you can obtain, and how many unknowns you can solve for. In this case, there are
five independent resistors; you can get five independent equations and you can solve for five unknowns.

3. Mark in the unknown currents. If you don’t know the directions of some of them, don’t spend time trying to think it out.
Just make a wild guess. If you are wrong, you will merely get a negative answer for it. Those who have some physical
insight might already guess (correctly) that I have marked I  in the wrong direction, but that doesn’t matter.

4. Choose any closed circuit and apply K2. Go over that closed surface in ink. Repeat for several closed circuits until the
entire diagram is inked over. When this happens, you cannot get any further independent equations using K2. If you try to
do so, you will merely end up with another equation that is a linear combination of the ones you already have,

5. Make up the required number of equations with K1.

Let us apply these to the present problem. There are five resistors; we need five equations. Apply K2 to OACBO. Start at the
negative pole of the battery and move counterclockwise around the circuit. When we move up to the positive pole, the potential has
gone up by 24 V. When we move down a resistor in the direction of the current, the potential goes down. For the circuit OACBO,
K2 results in

Now do the same this with circuit OADBO:

and with circuit ACDA:

If you have conscientiously inked over each circuit as you have done this, you will now find that the entire diagram is inked over.
You cannot gain any further independent equations from K2. We need two more equations. Apply K1 to point C:

IR
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and to point D:

You now have five independent linear equations in five unknowns and you can solve them. (Methods for solving simultaneous
linear equations are given in Chapter 1, Section 1.7 of Celestial Mechanics.) The solutions are:

This page titled 4.13: Kirchhoff’s Rules is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.
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4.14: Tortures for the Brain
I don’t know if any of the examples in this section have any practical applications, but they are excellent ways for torturing
students, or for whiling away rainy Sunday afternoons.

Q4.14.1

The drawing shows 12 resistances, each of value r , arranged along the edges of a cube. What is the resistance across opposite
corners of the cube?

Q4.14.2

The drawing shows six resistors, each of resistance 1 , arranged along the edges of a tetrahedron. A 12 V battery is connected
across one of the resistors. Calculate the current between points A and B.

Ω

Ω
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Q4.14.3

The Figure shows six resistors, whose resistances in ohms are marked, arranged along the edges of a tetrahedron. Calculate the net
resistance between C and D.

Q4.14.4

R  = 8  and R  = 0.5  are connected across a battery. The rate at which heat is generated is the same whether they are connected
in series or in parallel. What is the internal resistance r of the battery?

Q4.14.5
R  = 0.25  and R  = ? are connected across a battery whose internal resistance r is 0.5 . The rate at which heat is generated is the
same whether they are connected in series or in parallel. What is the value of R ?

Q4.14.6

In the above circuit, each resistance is 1 ohm. What is the net resistance between A and B if the chain is of infinite length?

Q4.14.7
What is the resistance between A and B in question 4.14.6 if the chain is not of infinite length, but has n “links” – i.e. 2n resistors
in all?

Q4.14.8

In the circuit below, what is the potential difference between A and B, and what is the current in each resistor?

1 Ω 2 Ω

1 Ω 2 Ω
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4.15: Solutions, Answers or Hints to 4.14
Hints for 4.14.1. Imagine a current of 6  going into the bottom left hand corner. Follow the current through the cube, writing down
the current through each of the 12 resistors. Also write down the potential drop across each resistor, and hence the total potential
drop across the cube. I make the answer for the effective resistance of the whole cube .

Solution for 4.14.2. By symmetry, the potentials of A and B are equal. Therefore there is no current between A and B.

Hint for 4.14.3. Replace the heavily-drawn delta with its corresponding star. After that it should be straightforward, although there
is a little bit of calculation to do. I make the answer 1.52  .

Solution for 4.14. From equation 4.8.1, the rate at which heat is generated in a resistance R connected across a battery of EMF E
and internal resistance r is . If the resistors are connected in series,  while if they are connected in parallel, 

. If the heat generated is the same in either case, we must have

After some algebra, we obtain

With R  = 8  and R  = 0.5 , we obtain r = 2.00  .

Solution for 4.14.5.

In equation 4.15.1, let  and . The equation 4.15.1 becomes

Upon rearrangement, this is

In our example,  so that equation 4.15.4 is

or

The only real root is x = 2. But .

Solution to 4.14.6 Suppose that there are n links (2n resistors) to the right of the dotted line, and that the effective resistance of
these n links is R . Add one more link, to the left. The effective resistance of the n + 1 links is then

As .

Whence, .

Solution to 4.14.7 By repeated application of equation 4.15.4, we find:
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Inspection shows that  where  is the mth member of the Fibonacci sequence: 1 1 2 3 5 8 13 21 ...

But, from the theory of Fibonacci sequences,

Hence

I’ll call the potential at B (and at the negative poles of each cell) zero, which is equivalent to grounding (earthing) the point B; and
I’ll call the potential at A V.

I don’t think all of the currents will be in the direction indicated on the drawing. One or more must be in the other direction, and
one or more of the cells are being re-charged. I don’t know which is wrong, so I’ll just leave them as drawn for the time being, and
we’ll see what happens. Apply Ohm’s law to each resistor in turn:

 amps, and apply Kirchhoff’s first rule to A: . From these, we obtain V = 6.750
V,  = 0.375 A,  = -1.75 A,  = 1.375 A.

This page titled 4.15: Solutions, Answers or Hints to 4.14 is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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4.16: Attenuators
These are networks, usually of resistors, that serve the dual purpose of supplying more examples for students or for reducing the
voltage, current or power from one circuit to another. An example of the former might be:

You might be told the values of the four left-hand resistances and of the EMF of the cell, and you are asked to find the current in
the right hand resistor.

On the other hand, if the object is to design an attenuator, you might be told the values of the resistances at the two ends, and you
are required to find the resistances of the three middle resistors such that the current in the rightmost resistor is half the current in
the left hand resistor. The three intermediate resistances perform the function of an attenuator.

In the drawing below, A is some sort of a device, or electrical circuit, or, in the simplest case, just a battery, which has an
electromotive force E and an internal resistance R . C is some other device, whose internal resistance is R . B is an attenuator,
which is a collection of resistors which you want to design so that the current delivered to C is a certain fraction of the current
flowing from A; or so that the voltage delivered across the terminals of C is a certain fraction of the voltage across the terminals of
A; or perhaps again so that the power delivered to C is a certain fraction of the power generated by A. The circuit in the attenuator
has to be designed so as to achieve one of these goals.

Four simple attenuators are known as T, H,  or square, named after their shapes. In the drawing below, the H is on its side, like
this: 

Let us look at a T attenuator. We’ll suppose that the A device has an electromotive force E and an internal resistance R, and indeed
it can be represented by a cell in series with a resistor. And we’ll suppose that the resistance of the C device is also R and it can be

A C

Π
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represented by a single resistor. We’ll suppose that we want the current that flows into C to be a fraction a of the current flowing
out of A, and the voltage to be supplied to C to be a fraction a of the potential difference across the output terminals of A. What
must be the values of the resistances in the T attenuator? I’ll call them r R and r R, so that we have to determine the dimensionless
ratios r  and r . The equivalent circuit is:

The current leaving the battery is , and we want the current entering the load at the right hand side to be a . The current down the
middle resistor is then necessarily, by Kirchhoff’s first rule, . If we apply Kirchhoff’s second rule to the outermost circuit,
we obtain (after algebraic reduction)

We also want the potential difference across the load (i.e. across EF), which, by Ohm’s law, is a R, to be a times the potential
difference across the source AB. AB are the terminals of the source. Recall that E is the EMF of the source, and R its internal
resistance, so that, when a current I is being taken from the source, the potential difference across its terminals AB is E - R, and
we want a R to be a times this. The fraction a can be called the voltage reduction factor of the attenuator. Thus we have

From these two equations we obtain

Application of Kirchhoff’s second rule to the right hand circuit gives

which, in combination with equation 4.16.3, yields

Thus, if source and load resistance are each equal to R, and we want a voltage reduction factor of , we must choose r R to be ,
and r R to be .
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5.1.1 https://phys.libretexts.org/@go/page/5438

5.1: Introduction
A capacitor consists of two metal plates separated by a nonconducting medium (known as the dielectric medium or simply the
dielectric) or by a vacuum. It is represented by the electrical symbol

Capacitors of one sort or another are included in almost any electronic device. Physically, there is a vast variety of shapes, sizes and
construction, depending upon their particular application. This chapter, however, is not primarily concerned with real, practical
capacitors and how they are made and what they are used for, although a brief section at the end of the chapter will discuss this. In
addition to their practical uses in electronic circuits, capacitors are very useful to professors for torturing students during exams,
and, more importantly, for helping students to understand the concepts of and the relationships between electric fields ,
potential difference, permittivity, energy, and so on. The capacitors in this chapter are, for the most part, imaginary academic
concepts useful largely for pedagogical purposes. Need the electronics technician or electronics engineer spend time on these
academic capacitors, apparently so far removed from the real devices to be found in electronic equipment? The answer is surely
and decidedly yes – more than anyone else, the practical technician or engineer must thoroughly understand the basic concepts of
electricity before even starting with real electronic devices.

If a potential difference is maintained across the two plates of a capacitor (for example, by connecting the plates across the poles of
a battery) a charge +  will be stored on one plate and -  on the other. The ratio of the charge stored on the plates to the potential
difference  across them is called the capacitance  of the capacitor. Thus:

If, when the potential difference is one volt, the charge stored is one coulomb, the capacitance is one farad, F. Thus, a farad is a
coulomb per volt. It should be mentioned here that, in practical terms, a farad is a very large unit of capacitance, and most
capacitors have capacitances of the order of microfarads, F.

The dimensions of capacitance are .

It might be remarked that, in older books, a capacitor was called a “condenser”, and its capacitance was called its “capacity”. Thus
what we would now call the “capacitance of a capacitor” was formerly called the “capacity of a condenser”.

In the highly idealized capacitors of this chapter, the linear dimensions of the plates (length and breadth, or diameter) are supposed
to be very much larger than the separation between them. This in fact is nearly always the case in real capacitors, too, though
perhaps not necessarily for the same reason. In real capacitors, the distance between the plates is small so that the capacitance is as
large as possible. In the imaginary capacitors of this chapter, I want the separation to be small so that the electric field between the
plates is uniform. Thus the capacitors I shall be discussing are mostly like Figure 1, where I have indicated, in blue, the electric
field between the plates:

However, I shall not always draw them like this, because it is rather difficult to see what is going on inside the capacitor. I shall
usually much exaggerate the scale in one direction, so that my drawings will look more like this:
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5.1.2 https://phys.libretexts.org/@go/page/5438

If the separation were really as large as this, the field would not be nearly as uniform as indicated; the electric field lines would
greatly bulge outwards near the edges of the plates.

In the next few sections we are going to derive formulas for the capacitances of various capacitors of simple geometric shapes.
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5.2: Plane Parallel Capacitor

We have a capacitor whose plates are each of area , separation , and the medium between the plates has permittivity . It is
connected to a battery of EMF , so the potential difference across the plates is . The electric field between the plates is 

, and therefore . The total -flux arising from the positive plate is , and, by Gauss’s law, this must equal 
, the charge on the plate.

Thus  and therefore the capacitance is

Verify that this is dimensionally correct, and note how the capacitance depends upon ,  and .

In Section 1.5 we gave the SI units of permittivity as . Equation  shows that a more convenient SI unit for
permittivity is , or farads per metre.

Question: If the separation of the plates is not small, so that the electric field is not uniform, and the field lines bulge outwards at
the edge, will the capacitance be less than or greater than ?
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5.3: Coaxial Cylindrical Capacitor
The radii of the inner and outer cylinders are  and , and the permittivity between them is .

Suppose that the two cylinders are connected to a battery so that the potential difference between them is , and the charge per unit
length on the inner cylinder is , and on the outer cylinder is . We have seen (Subsection 2.2.3) that the
potential difference between the cylinders under such circumstances is . Therefore the capacitance per unit length, ,
is

This is by no means solely of academic interest. The capacitance per unit length of coaxial cable (“coax”) is an important property
of the cable, and this is the formula used to calculate it.
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5.4: Concentric Spherical Capacitor
Unlike the coaxial cylindrical capacitor, I don’t know of any very obvious practical application, nor quite how you would construct
one and connect the two spheres to a battery, but let’s go ahead all the same. Figure 4 will do just as well for this one.

The two spheres are of inner and outer radii a and b, with a potential difference V between them, with charges  and  on the
inner and outer spheres respectively. The potential difference between the two spheres is then , and so the capacitance
is

If  we obtain for the capacitance of an isolated sphere of radius a:

Exercise: Calculate the capacitance of planet Earth, of radius 6.371 × 10  km, suspended in free space. I make it 709  - which
may be a bit smaller than you were expecting.
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5.5: Capacitors in Parallel

The potential difference is the same across each, and the total charge is the sum of the charges on the individual capacitor.
Therefore:
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5.6: Capacitors in Series

The charge is the same on each, and the potential difference across the system is the sum of the potential differences across the
individual capacitances. Hence
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5.7: Delta-Star Transform
As we did with resistors in Section 4.12, we can make a delta-star transform with capacitors.

I leave it to the reader to show that the capacitance between any two terminals in the left hand box is the same as the capacitance
between the corresponding two terminals in the right hand box provided that

The converse relations are

For example, just for fun, what is the capacitance between points A and B in Figure , in which I have marked the individual
capacitances in microfarads?

The first three capacitors are connected in delta. Replace them by their equivalent star configuration. After that it should be
straightforward. I make the answer 2.515 .
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5.8: Kirchhoff’s Rules
We can even adapt Kirchhoff’s rules to deal with capacitors. Thus, connect a 24  battery across the circuit of Figure  – see
Figure 

Calculate the charge held in each capacitor. We can proceed in a manner very similar to how we did it in Chapter 4, applying the
capacitance equivalent of Kirchhoff’s second rule to three closed circuits, and then making up the five necessary equations by
applying “Kirchhoff’s first rule” to two points. Thus:

I make the solutions
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5.9: Problem for a Rainy Day
Another problem to while away a rainy Sunday afternoon would be to replace each of the resistors in the cube of subsection 4.14.1
with capacitors each of capacitance . What is the total capacitance across opposite corners of the cube? I would start by supposing
that the cube holds a net charge of , and I would then ask myself what is the charge held in each of the individual capacitors.
And I would then follow the potential drop from one corner of the cube to the opposite corner. I make the answer for the effective
capacitance of the entire cube 1.2 .

This page titled 5.9: Problem for a Rainy Day is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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5.10: Energy Stored in a Capacitor
Let us imagine (Figure 10) that we have a capacitor of capacitance  which, at some time, has a charge of  on one plate and a
charge of  on the other plate. The potential difference across the plates is then . Let us now take a charge of  from the
bottom plate (the negative one) and move it up to the top plate. We evidently have to do work to do this, in the amount of .

The total work required, then, starting with the plates completely uncharged until we have transferred a charge  from one plate to
the other is

This is, then, the energy  stored in the capacitor, and, by application of  it can also be written , or, more
usually,

Verify that this has the correct dimensions for energy. Also, think about how many expressions for energy you know that are of the
form . There are more to come.

This page titled 5.10: Energy Stored in a Capacitor is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
Tatum via source content that was edited to the style and standards of the LibreTexts platform.

V . C +q

−q q/C +δq

δq

q

C

FIGURE V.10

Q

q dq = /(2C)

1

C

∫

Q

0

Q

2

(5.10.1)

U Q = CV U = QV

1

2

U = C

1

2

V

2

(5.10.2)

a

1

2

b

2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6018?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/05%3A_Capacitors/5.10%3A__Energy_Stored_in_a_Capacitor
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/05%3A_Capacitors/5.10%3A__Energy_Stored_in_a_Capacitor
https://creativecommons.org/licenses/by-nc/4.0
https://www.astro.uvic.ca/~tatum/celmechs.html
http://orca.phys.uvic.ca/~tatum/elmag.html


5.11.1 https://phys.libretexts.org/@go/page/6019

5.11: Energy Stored in an Electric Field
Recall that we are assuming that the separation between the plates is small compared with their linear dimensions and that therefore
the electric field is uniform between the plates.

The capacitance is , and the potential differnece between the plates is , where  is the electric field and  is the
distance between the plates. Thus the energy stored in the capacitor is . The volume of the dielectric (insulating) material
between the plates is , and therefore we find the following expression for the energy stored per unit volume in a dielectric
material in which there is an electric field:

Verify that this has the correct dimensions for energy per unit volume.

If the space between the plates is a vacuum, we have the following expression for the energy stored per unit volume in the electric
field

- even though there is absolutely nothing other than energy in the space. Think about that!

I mentioned in Section 1.7 that in an anisotropic medium  and  are not parallel, the permittivity then being a tensor quantity. In
that case the correct expression for the energy per unit volume in an electric field is .

This page titled 5.11: Energy Stored in an Electric Field is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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5.12: Force Between the Plates of a Plane Parallel Plate Capacitor
We imagine a capacitor with a charge  on one plate and  on the other, and initially the plates are almost, but not quite,
touching. There is a force  between the plates. Now we gradually pull the plates apart (but the separation remains small enough
that it is still small compared with the linear dimensions of the plates and we can maintain our approximation of a uniform field
between the plates, and so the force remains  as we separate them). The work done in separating the plates from near zero to  is 

, and this must then equal the energy stored in the capacitor, . The electric field between the plates is , so we
find for the force between the plates

We can now do an interesting imaginary experiment, just to see that we understand the various concepts. Let us imagine that we
have a capacitor in which the plates are horizontal; the lower plate is fixed, while the upper plate is suspended above it from a
spring of force constant . We connect a battery across the plates, so the plates will attract each other. The upper plate will move
down, but only so far, because the electrical attraction between the plates is countered by the tension in the spring. Calculate the
equilibrium separation  between the plates as a function of the applied voltage . (Horrid word! We don’t say “metreage” for
length, “kilogrammage” for mass or “secondage” for time – so why do we say “voltage” for potential difference and “acreage” for
area? Ugh!) We should be able to use our invention as a voltmeter – it even has an infinite resistance! Refer to Figure 11.

We’ll suppose that the separation when the potential difference is zero is a, and the separation when the potential difference is  is 
, at which time the spring has been extended by a length .

The electrical force between the plates is . Now , so the force between the plates is .
Here  is the area of each plate and it is assumed that the experiment is done in air, whose permittivity is very close to . The
tension in the stretched spring is , so equating the two forces gives us

Calculus shows [do it! – just differentiate ] that  has a maximum value of  for a separation . If

we express the potential difference in units of  and the separation in units of , Equation  becomes

In Figure 12 I have plotted the separation as a function of the potential difference.
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As expected, the potential difference is zero when the separation is 0 or 1 (and therefore you would expect it to go through a
maximum for some intermediate separation).

We see that for  there are two equilibrium positions. For example, if , show that .
The question also arises – what happens if you apply across the plates a potential difference that is greater than ?

Further insight can be obtained from energy considerations. The potential energy of the system is the work done in moving the
upper plate from  while the potential difference is :

You may need to refer to Section 5.15 to be sure that we have got this right.

If we express  in units of ,  in units of , and  in units of  this becomes

In Figure 13 I have plotted the energy versus separation for three values of potential difference, 90% of , , and 110%
of .

We see that for , there are two equilibrium positions, of which the lower one (smaller x) is unstable, and we see exactly
what will happen if the upper plate is displaced slightly upwards (larger ) from the unstable equilibrium position or if it is
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displaced slightly downwards (smaller ). The upper equilibrium position is stable.

If , there is no equilibrium position, and  goes down to zero – i.e. the plates clamp together.
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5.13: Sharing a Charge Between Two Capacitors

We have two capacitors.  is initially uncharged. Initially,  bears a charge  and the potential difference across its plates is 
, such that

and the energy of the system is

We now close the switches, so that the charge is shared between the two capacitors:

The capacitors  and  now bear charges  and  such that  and

The potential difference across the plates of either capacitor is, of course, the same, so we can call it  without a subscript, and it is
easily seen, by applying  to either capacitor, that

We can now apply  to each capacitor in turn to find the energy stored in each. We find for the energies stored in the
two capacitors:

The total energy stored in the two capacitors is the sum of these, which is

which can also be written
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Surprise, surprise! The energy stored in the two capacitors is less than the energy that was originally stored in . What has
happened to the lost energy?

A perfectly reasonable and not incorrect answer is that it has been dissipated as heat in the connecting wires as current flowed from
one capacitor to the other. However, it has been found in low temperature physics that if you immerse certain metals in liquid
helium they lose all electrical resistance and they become superconductive. So, let us connect the capacitors with superconducting
wires. Then there is no dissipation of energy as heat in the wires – so the question remains: where has the missing energy gone?

Well, perhaps the dielectric medium in the capacitors is heated? Again this seems like a perfectly reasonable and probably not
entirely incorrect answer. However, my capacitors have a vacuum between the plates, and are connected by superconducting wires,
so that no heat is generated either in the dielectric or in the wires. Where has that energy gone?

This will have to remain a mystery for the time being, and a topic for lunchtime conversation. In a later chapter I shall suggest
another explanation.
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5.14: Mixed Dielectrics
This section addresses the question: If there are two or more dielectric media between the plates of a capacitor, with different
permittivities, are the electric fields in the two media different, or are they the same? The answer depends on

1. Whether by “electric field” you mean  or ;
2. The disposition of the media between the plates – i.e. whether the two dielectrics are in series or in parallel.

Let us first suppose that two media are in series (Figure 16).

Our capacitor has two dielectrics in series, the first one of thickness  and permittivity and the second one of thickness  and
permittivity . As always, the thicknesses of the dielectrics are supposed to be small so that the fields within them are uniform.
This is effectively two capacitors in series, of capacitances . The total capacitance is therefore

Let us imagine that the potential difference across the plates is . Specifically, we’ll suppose the potential of the lower plate is
zero and the potential of the upper plate is . The charge  held by the capacitor (positive on one plate, negative on the other) is
just given by , and hence the surface charge density  is . Gauss’s law is that the total -flux arising from a
charge is equal to the charge, so that in this geometry , and this is not altered by the nature of the dielectric materials
between the plates. Thus, in this capacitor,  in both media. Thus  is continuous across the boundary.

Then by application of  to each of the media, we find that the -fields in the two media are = / ) and = /
), the -field (and hence the potential gradient) being larger in the medium with the smaller permittivity.

The potential V at the media boundary is given by . Combining this with our expression for , and and
Equation , we find for the boundary potential:

Let us now suppose that two media are in parallel (Figure 17).
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This time, we have two dielectrics, each of thickness , but one has area  and permittivity  while the other has area  and
permittivity . This is just two capacitors in parallel, and the total capacitance is

The -field is just the potential gradient, and this is independent of any medium between the plates, so that . in each of
the two dielectrics. After that, we have simply that . The charge density on the plates is given by
Gauss’s law as , so that, if , the charge density on the left hand portion of each plate is less than on the right hand
portion – although the potential is the same throughout each plate. (The surface of a metal is always an equipotential surface.) The
two different charge densities on each plate is a result of the different polarizations of the two dielectrics – something that will be
more readily understood a little later in this chapter when we deal with media polarization.

We have established that:

1. The component of  perpendicular to a boundary is continuous;
2. The component of  parallel to a boundary is continuous.

In Figure 18 we are looking at the -field and at the -field as it crosses a boundary in which . Note that  and are
the same on either side of the boundary. This results in:
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source content that was edited to the style and standards of the LibreTexts platform.

FIGURE V.17

d A

1

ϵ

1

A

2

ϵ

2

C = +

ϵ

1

A

1

d

ϵ

2

A

2

d

(5.14.3)

E E = V /d

= E and  = ED

1

ϵ

1

D

2

ϵ

2

σ = D <ϵ

1

ϵ

2

D

E

V . D E <ϵ

1

ϵ

2

D

y

E

x

= .

tanθ

1

tanθ

2

ϵ

1

ϵ

2

(5.14.4)

FIGURE V.18

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6022?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/05%3A_Capacitors/5.14%3A__Mixed_Dielectrics
https://creativecommons.org/licenses/by-nc/4.0
https://www.astro.uvic.ca/~tatum/celmechs.html
http://orca.phys.uvic.ca/~tatum/elmag.html


5.15.1 https://phys.libretexts.org/@go/page/6023

5.15: Changing the Distance Between the Plates of a Capacitor
If you gradually increase the distance between the plates of a capacitor (although always keeping it sufficiently small so that the
field is uniform) does the intensity of the field change or does it stay the same? If the former, does it increase or decrease?

The answers to these questions depends

1. on whether, by the field, you are referring to the -field or the -field;
2. on whether the plates are isolated or if they are connected to the poles of a battery.

We shall start by supposing that the plates are isolated.

In this case the charge on the plates is constant, and so is the charge density. Gauss’s law requires that , so that remains
constant. And, since the permittivity hasn’t changed,  also remains constant.

The potential difference across the plates is , so, as you increase the plate separation, so the potential difference across the plates
in increased. The capacitance decreases from A/d  to  and the energy stored in the capacitor increases from .
This energy derives from the work done in separating the plates.

Now let’s suppose that the plates are connected to a battery of EMF , with air or a vacuum between the plates. At first, the
separation is . The magnitudes of  and are, respectively,  and . When we have increased the separation to ,
the potential difference across the plates has not changed; it is still the EMF  of the battery. The electric field, however, is now
only  and . But Gauss’s law still dictates that , and therefore the charge density, and the total charge
on the plates, is less than it was before. It has gone into the battery. In other words, in doing work by separating the plates we have

recharged the battery. The energy stored in the capacitor was originally ; it is now only . Thus the energy held in the

capacitor has been reduced by .

The charge originally held by the capacitor was . After the plate separation has been increased to d  the charge held is .

The difference, , is the charge that has gone into the battery. The energy, or work, required to force this amount of

charge into the battery against its EMF  is . Half of this came from the loss in energy held by the capacitor

(see above). The other half presumably came from the mechanical work you did in separating the plates. Let’s see if we can verify
this.

When the plate separation is , the force between the plates is  which is . The work required to increase 

 from  to  is , which is indeed . Thus this amount of mechanical work, plus an equal

amount of energy from the capacitor, has gone into recharging the battery. Expressed otherwise, the work done in separating the
plates equals the work required to charge the battery minus the decrease in energy stored by the capacitor.

Perhaps we have invented a battery charger (Figure 19)!

When the plate separation is , the charge stored in the capacitor is . If  is increased at a rate ,  will increase at a rate
. That is, the capacitor will discharge (because  is negative), and a current  will flow counterclockwise in

the circuit. (Verify that this expression is dimensionally correct for current.)
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5.16: Inserting a Dielectric into a Capacitor
Suppose you start with two plates separated by a vacuum or by air, with a potential difference across the plates, and you then insert
a dielectric material of permittivity  between the plates. Does the intensity of the field change or does it stay the same? If the
former, does it increase or decrease?

The answer to these questions depends

1. on whether, by the field, you are referring to the -field or the -field;
2. on whether the plates are isolated or if they are connected to the poles of a battery.

We shall start by supposing that the plates are isolated. See Figure 20.

Let  be the charge on the plates, and  the surface charge density. These are unaltered by the introduction of the dielectric.
Gauss’s law provides that , so this, too, is unaltered by the introduction of the dielectric. The electric field was, initially, 

. After introduction of the dielectric, it is a little less, namely .

Let us take the potential of the lower plate to be zero. Before introduction of the dielectric, the potential of the upper plate was 
. After introduction of the dielectric, it is a little less, namely .

Why is the electric field  less after introduction of the dielectric material? It is because the dielectric material becomes polarized.
We saw in Section 3.6 how matter may become polarized. Either molecules with pre-existing dipole moments align themselves
with the imposed electric field, or, if they have no permanent dipole moment or if they cannot rotate, a dipole moment can be
induced in the individual molecules. In any case, the effect of the alignment of all these molecular dipoles is that there is a slight
surplus of positive charge on the surface of the dielectric material next to the negative plate, and a slight surplus of negative charge
on the surface of the dielectric material next to the positive plate. This produces an electric field opposite to the direction of the
imposed field, and thus the total electric field is somewhat reduced.

Before introduction of the dielectric material, the energy stored in the capacitor was . After introduction of the material, it is 

, which is a little bit less. Thus it will require work to remove the material from between the plates. The empty capacitor will

tend to suck the material in, just as the charged rod in Chapter 1 attracted an uncharged pith ball.

Now let us suppose that the plates are connected to a battery. (Figure 21)

This time the potential difference remains constant, and therefore so does the -field, which is just . But the -field increases
from  to , and so, therefore, does the surface charge density on the plates. This extra charge comes from the battery.
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The capacitance increases from  and the charge stored on the plates increases from . The

energy stored in the capacitor increases from .

The energy supplied by the battery = the energy dumped into the capacitor + the energy required to suck the dielectric material into
the capacitor:

You would have to do work to remove the material from the capacitor; half of the work you do would be the mechanical work
performed in pulling the material out; the other half would be used in charging the battery.

In Section 5.15 I invented one type of battery charger. I am now going to make my fortune by inventing another type of battery
charger.

Example 1.

A capacitor is formed of two square plates, each of dimensions , separation , connected to a battery. There is a dielectric
medium of permittivity  between the plates. I pull the dielectric medium out at speed . Calculate the current in the circuit as the
battery is recharged.

Solution.

When I have moved a distance , the capacitance is

The charge held by the capacitor is then

If the dielectric is moved out at speed , the charge held by the capacitor will increase at a rate

(That’s negative, so  decreases.) A current of this magnitude therefore flows clockwise around the circuit, into the battery. You
should verify that the expression has the correct dimensions for current.
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A capacitor consists of two plates, each of area , separated by a distance , connected to a battery of EMF  A cup rests on the
lower plate. The cup is gradually filled with a nonconducting liquid of permittivity , the surface rising at a speed . Calculate the
magnitude and direction of the current in the circuit.

It is easy to calculate that, when the liquid has a depth x, the capacitance of the capacitor is

and the charge held by the capacitor is then

If  is increasing at a rate , the rate at which , the charge on the capacitor, is increasing is

A current of this magnitude therefore flows in the circuit counterclockwise, draining the battery. This current increases

monotonically from zero to .

This page titled 5.16: Inserting a Dielectric into a Capacitor is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.

FIGURE V.23

A x V .

ϵ ẋ
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5.17: Polarization and Susceptibility
When an insulating material is placed in an electric field, it becomes polarized, either by rotation of molecules with pre-existing
dipole moments or by induction of dipole moments in the individual molecules. Inside the material,  is then greater than .
Indeed,

The excess, , of  over  is called the polarization of the medium. It is dimensionally similar to, and expressed in the same
units as, ; that is to say . Another way of looking at the polarization of a medium is that it is the dipole moment per unit
volume.

In vector form, the relation is

If the medium is isotropic, all three vectors are parallel.

Some media are more susceptible to becoming polarized in a polarizing field than others, and the ratio of to  is called the
electric susceptibility  of the medium:

This implies that  is linearly proportional to  but only if  is independent of , which is by no means always the case, but is
good for small polarizations.

When we combine Equations  and  with  and with , the relative permittivity or dielectric constant,
we obtain
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5.18: Discharging a Capacitor Through a Resistor

What you have to be sure of in this section and the following section is to get the signs right. For example, if the charge held in the
capacitor at some time is , then the symbol  means the rate of increase of  with respect to time. If the capacitor is
discharging,  is negative. Expressed otherwise, the symbol to be used for the rate at which a capacitor is losing charge is .

In Figure 24 a capacitor is discharging through a resistor, and the current as drawn is given by . The potential difference
across the plates of the capacitor is , and the potential difference across the resistor is .

Thus:

On separating the variables ( ) and integrating we obtain

where  is the charge in the capacitor at .

Hence

Here  is the time constant. (Verify that it has the dimensions of time.) It is the time for the charge to be reduced to 
% of the initial charge. The half life of the charge is .
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5.19: Charging a Capacitor Through a Resistor
This time, the charge on the capacitor is increasing, so the current, as drawn, is .

Thus

Whence:

Upon integrating Equation , we obtain

Thus the charge on the capacitor asymptotically approaches its final value , reaching 63% (1 - e ) of the final value in time 
and half of the final value in time .

The potential difference across the plates increases at the same rate. Potential difference cannot change instantaneously in any
circuit containing capacitance.

How does the current change with time? This is found by differentiating Equation  with respect to time, to give

This suggests that the current grows instantaneously from zero to  as soon as the switch is closed, and then it decays
exponentially, with time constant , to zero. Is this really possible? It is possible in principle if the inductance (see Chapter 12) of
the circuit is zero. But the inductance of any closed circuit cannot be exactly zero, and the circuit, as drawn without any inductance
whatever, is not achievable in any real circuit, and so, in a real circuit, there will not be an instantaneous change of current. Section
10.15 will deal with the growth of current in a circuit that contains both capacitance and inductance as well as resistance.

Energy considerations
When the capacitor is fully charged, the current has dropped to zero, the potential difference across its plates is  (the EMF of the
battery), and the energy stored in the capacitor (see Section 5.10) is

But the energy lost by the battery is . Let us hope that the remaining  is heat generated in and dissipated by the resistor.
The rate at which heat is generated by current in a resistor (see Chapter 4 Section 4.6) is . In this case, according to the
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Remember that, at any finite ,  is less than its asymptotic value , and you want to keep the denominator
of the left hand integral positive.
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previous paragraph, the current at time  is

so the total heat generated in the resistor is

so all is well. The energy lost by the battery is shared equally between  and .

Neon lamp

Here’s a way of making a neon lamp flash periodically.

In Figure 25  (sorry about the fraction – I slipped the Figure in as an afterthought!), the thing that looks something like a happy
face on the right is a discharge tube; the dot inside it indicates that it’s not a complete vacuum inside, but it has a little bit of gas
inside.

It will discharge when the potential difference across the electrodes is higher than a certain threshold. When an electric field is
applied across the tube, electrons and positive ions accelerate, but are soon slowed by collisions. But, if the field is sufficiently
high, the electrons and ions will have enough energy on collision to ionize the atoms they collide with, so a cascading discharge
will occur. The potential difference rises exponentially on an  time-scale until it reaches the threshold value, and the neon tube
suddenly discharges. Then it starts all over again.

This page titled 5.19: Charging a Capacitor Through a Resistor is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
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There is a similar problem involving an inductor in Chapter 10, Section 10.12.
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5.20: Real Capacitors
Real capacitors can vary from huge metal plates suspended in oil to the tiny cylindrical components seen inside a radio. A great
deal of information about them is available on the Web and from manufacturers’ catalogs, and I only make the briefest remarks
here.

A typical inexpensive capacitor seen inside a radio is nothing much more than two strips of metal foil separated by a strip of plastic
or even paper, rolled up into a cylinder much like a Swiss roll. Thus the separation of the “plates” is small, and the area of the
plates is as much as can be conveniently rolled into a tiny radio component.

In most applications it doesn’t matter which way round the capacitor is connected. However, with some capacitors it is intended
that the outermost of the two metal strips be grounded (“earthed” in UK terminology), and the inner one is shielded by the outer
one from stray electric fields. In that case the symbol used to represent the capacitor is

The curved line is the outer strip, and is the one that is intended to be grounded. It should be noted, however, that not everyone
appears to be aware of this convention or adheres to it, and some people will use this symbol to denote any capacitor. Therefore
care must be taken in reading the literature to be sure that you know what the writer intended, and, if you are describing a circuit
yourself, you must make very clear the intended meaning of your symbols.

There is a type of capacitor known as an electrolytic capacitor. The two “plates” are strips of aluminium foil separated by a
conducting paste, or electrolyte. One of the foils is covered by an extremely thin layer of aluminium oxide, which has been
electrolytically deposited, and it is this layer than forms the dielectric medium, not the paste that separates the two foils. Because of
the extreme thinness of the oxide layer, the capacitance is relatively high, although it may not be possible to control the actual
thickness with great precision and consequently the actual value of the capacitance may not be known with great precision. It is
very important that an electrolytic capacitor be corrected the right way round in a circuit, otherwise electrolysis will start to remove
the oxide layer from one foil and deposit it on the other, thus greatly changing the capacitance. Also, when this happens, a current
may pass through the electrolyte and heat it up so much that the capacitor may burst open with consequent danger to the eyes. The
symbol used to indicate an electrolytic capacitor is:

The side indicated with the plus sign (which is often omitted from the symbol) is to be connected to the positive side of the circuit.

When you tune your radio, you will usually find that, as you turn the knob that changes the wavelength that you want to receive,
you are changing the capacitance of a variable air-spaced capacitor just behind the knob. A variable capacitor can be represented by
the symbol

Such a capacitor often consists of two sets of interleaved partially overlapping plates, one set of which can be rotated with respect
to the other, thus changing the overlap area and hence the capacitance. Thinking about this suggests to me a couple of small
problems for you to amuse yourself with.

Problem 1.
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A capacitor (Figure 26) is made from two sets of four plates. The area of each plate is A and the spacing between the plates in
each set is 2d. The two sets of plates are interleaved, so that the distance between the plates of one set and the plates of the other is
d. What is the capacitance of the system?

Problem 2

This is just like Problem 1, except that one set has four plates and the other has three. What is the capacitance now?

Solutions. The answer to the first problem is 7  and the answer to the second problem is 6  – but it isn’t good enough
just to assert that this is the case. We must give some reasons.

Let us suppose that the potential of the left-hand (blue) plates is zero and the potential of the right-hand (blue) plates is  The
electric field in each space is V/d and D = V/d. The surface charge density on each plate, by Gauss’s theorem, is therefore 2 V/d
except for the two end plates, for which the charge density is just V/d. The total charge held in the capacitor of Problem 1 is
therefore , and the capacitance is therefore 7 . For Problem 2, the blue set has two
end-plates and two middle-plates, so the charge held is . The red set has three middle-
plates and no end-plates, so the charge held is . The capacitance is therefore 6 .
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5.21: More on E, D, P, etc
I’ll review a few things that we have already covered before going on. The electric field  between the plates of a plane parallel
capacitor is equal to the potential gradient – i.e. the potential difference between the plates divided by the distance between them.

The electric field  between the plates of a plane parallel capacitor is equal to the surface charge density on the plates.

Suppose at first there is nothing between the plates. If you now thrust an isotropic* dielectric material of relative permittivity 
between the plates, what happens? Answer: If the plates are isolated  remains the same while  (and hence the potential
difference across the plates) is reduced by a factor . If on the other hand the plates are connected to a battery, the potential
difference and hence  remains the same while  (and hence the charge density on the plates) increases by a factor .

You will have noticed the word isotropic here. Refer to Section 1.7 for a brief mention of an anisotropic medium, and the
concept of permittivity as a tensor quantity. I’m not concerned with this aspect here.

In either case, the block of dielectric material becomes polarized. It develops a charge density on the surfaces that adjoin the plates.
The block of material develops a dipole moment, and the dipole moment divided by the volume of the material – i.e. the dipole
moment per unit volume – is the polarization  of the material.  is also equal to  and, of course, to . The ratio
of the resulting polarization  to the polarizing field  is called the electric susceptibility  of the medium. It will be worth
spending a few moments convincing yourself from these definitions and concepts that , where  is
the dimensionless relative permittivity (or dielectric constant) .

What is happening physically inside the medium when it becomes polarized? One possibility is that the individual molecules, if
they are asymmetric molecules, may already possess a permanent dipole moment. The molecule carbon dioxide, which, in its
ground state, is linear and symmetric, , does not have a permanent dipole moment. Symmetric molecules such as ,
and single atoms such as , do not have a permanent dipole moment. The water molecule has some elements of symmetry, but it
is not linear, and it does have a permanent dipole moment, of about , directed along the bisector of the HOH angle
and away from the O atom. If the molecules have a permanent dipole moment and are free to rotate (as, for example, in a gas) they
will tend to rotate in the direction of the applied field. (I’ll discuss that phrase “tend to” in a moment.) Thus the material becomes
polarized.

A molecule such as  is symmetric and has no permanent dipole moment, but, if it is placed in an external electric field, the
molecule may become distorted from its perfect tetrahedral shape with neat 109º angles, because each pair of  atoms has a
dipole moment. Thus the molecule acquires an induced dipole moment, and the material as a whole becomes polarized. The ratio of
the induced dipole moment  to the polarizing field  polarizability  of the molecule. Review Section 3.6 for more on this.

How about a single atom, such as ? Even that can acquire a dipole moment. Although there are no bonds to bend, under the
influence of an electric field a preponderance of electrons will migrate to one side of the atom, and so the atom acquires a dipole
moment. The same phenomenon applies, of course, to a molecule such as  in addition to the bond bending already mentioned.

Let us consider the situation of a dielectric material in which the molecules have a permanent dipole moment and are free (as in a
gas, for example) to rotate. We’ll suppose that, at least in a weak polarizing field, the permanent dipole moment is significantly
larger than any induced dipole moment, so we’ll neglect the latter. We have said that, under the influence of a polarizing field, the
permanent dipole will tend to align themselves with the field. But they also have to contend with the constant jostling and
collisions between molecules, which knock their dipole moments haywire, so they can’t immediately all align exactly with the
field. We might imagine that the material may become fairly strongly polarized if the temperature is fairly low, but only relatively
weakly polarized at higher temperatures. Dare we even hope that we might be able to predict the variation of polarization  with
temperature ? Let’s have a go!

We recall (Section 3.4) that the potential energy  of a dipole, when it makes an angle  with the electric field, is

The energy of a dipole whose direction makes an angle of between  with the field will be between ,
where . What happens next requires familiarity with Boltzmann’s equation for distribution of energies in a
statistical mechanics. See for example my Stellar Atmospheres notes, Chapter 8, Section 8.4. The fraction of molecules having
energies between  will be, following Boltzmann’s equation,
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(Caution: Remember that here I’m using  for potential energy, and  for electric field.)

That is, the fraction of molecules making angles of between  with the field is

The component in the direction of  of the dipole moment of this fraction of the molecules is

and this expression represents the induced dipole moment in the direction of the field of the entire sample, which I’ll call . The
polarization of the sample would be this divided by its volume.

Let

Then the expression for the dipole moment of the entire sample becomes (some care is needed):

The expression in parentheses is called the Langevin function, and it was first derived in connection with the theory of
paramagnetism. If your calculator or computer supports the hyperbolic coth function, it is most easily calculated as coth .
If it does not support , calculate it as

where . In any case it is a rather interesting, even challenging, function. Let us call the expression in parentheses .
What would the function look like it you were to plot ? The derivative with respect to  is

It is easy to see that, as , the function approaches 1 and its derivative, or slope, approaches zero. But what are the function
and its derivative (slope) at ? You may find that a bit of a challenge. The answer is that, as , the function approaches

zero and its derivative approaches 1/3. (In fact, for small a, the Langevin function is approximately , and for very small 

, it is .) Thus, for small a (i.e. hot temperatures)  approaches  and no higher. The Langevin function looks like

this:
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It may be more interesting to see directly how the sample dipole moment varies with temperature. If we express the sample dipole
moment ps in units of the molecular dipole moment , and the temperature in units of , then equation 5.22.6 becomes

and that looks like this

 

The contribution to the polarization of a sample from the other two mechanisms – namely bond bending, and the pushing of
electrons to one side, is independent of temperature. Thus, if we find that the polarization is temperature dependent, this tells us of
the existence of a permanent dipole moment, as, for example, in methyl chloride  and . Indeed the temperature
dependence of the polarization is part of the evidence that tells us that the water molecule is nonlinear. For small  (recall that 

), the polarization of the material is , and so a graph of the polarization versus  will be a straight line from which

one can determine the dipole moment of the molecule – the greater the slope, the greater the dipole moment. On the other hand, if
the polarization is temperature-independent, then the molecule is symmetric, such as methane  and . Indeed the
independence of the polarization on temperature is part of the evidence that tells us that  is a linear molecule.
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5.22: Dielectric material in an alternating electric field.
We have seen that, when we put a dielectric material in an electric field, it becomes polarized, and the  field is now  instead of
merely . But how long does it take to become polarized? Does it happen instantaneously? In practice there is an enormous
range in relaxation times. (We may define a relaxation time as the time taken for the material to reach a certain fraction – such as,
perhaps  percent, or whatever fraction may be convenient in a particular context – of its final polarization.) The
relaxation time may be practically instantaneous, or it may be many hours.

As a consequence of the finite relaxation time, if we put a dielectric material in oscillating electric field  (e.g. if light
passes through a piece of glass), there will be a phase lag of .  will vary as . Stated another way,

if the -field is , the -field will be . Then . This can be written

where .

The complex permittivity is just a way of expressing the phase difference between . The magnitude, or modulus, of
, the ordinary permittivity in a static field.

Let us imagine that we have a dielectric material between the plates of a capacitor, and that an alternating potential difference is
being applied across the plates. At some instant the charge density  on the plates (which is equal to the -field) is changing at a
rate , which is also equal to the rate of change  of the -field), and the current in the circuit is , where  is the area of each
plate. The potential difference across the plates, on the other hand, is , where  is the distance between the plates. The
instantaneous rate of dissipation of energy in the material is , or, let’s say, the instantaneous rate of dissipation of energy per
unit volume of the material is .

Suppose  and that  so that

The dissipation of energy, in unit volume, in a complete cycle (or period ) is the integral, with respect to time, of  from 
. That is,

The first integral is zero, so the dissipation of energy per unit volume per cycle is

Since the energy loss per cycle is proportional to  is called the loss factor. (Sometimes the loss factor is given as ,
although this is an approximation only for small loss angles.)

This page titled 5.22: Dielectric material in an alternating electric field. is shared under a CC BY-NC 4.0 license and was authored, remixed,
and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.

D ϵE

Eϵ

0

1− = 63e

−1

E = cosωtE

^

D behind E D D= cos(ωt−δ)D

^

E E =E

^

e

iωt

D D=D

^

e

i(ωt−δ)

= = ϵ(cosδ− i sinδ)

D

E

D

^

E

^

e

−iδ

D= E,ϵ

∗

(5.22.1)

= − i  and  = ϵcosδ and  = ϵ sinδϵ

∗

ϵ

′

ϵ

′′

ϵ

′

ϵ

′′

D and E

 is ϵϵ

∗

σ D

σ̇ D

˙

D AD

˙

A

Ed d

AdED

˙

ED

˙

E = cosωtE

^

D= cos(ωt−δ)D

^

=− ω sin(ωt−δ) =− ω(sinωt cosδ−cosωt sinδ).D

˙

D

^

D

^

2π/ω ED

˙

0 to 2π/ω

ω cosωt(sinωt cosδ−cosωt sinδ)dt.E

^

D

^

∫

2π/ω

0

ω sinδ ωt dt = π ω sinδ.E

^

D

^

∫

2π/ω

0

cos

2

E

^

D

^

sinδ, sinδ tanδ

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/7791?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/05%3A_Capacitors/5.22%3A_Dielectric_material_in_an_alternating_electric_field.
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/05%3A_Capacitors/5.22%3A_Dielectric_material_in_an_alternating_electric_field.
https://creativecommons.org/licenses/by-nc/4.0
https://www.astro.uvic.ca/~tatum/celmechs.html
http://orca.phys.uvic.ca/~tatum/elmag.html


1

CHAPTER OVERVIEW

6: The Magnetic Effect of an Electric Current
6.1: Introduction
6.2: Definition of the Amp
6.3: Definition of the Magnetic Field
6.4: The Biot-Savart Law
6.5: Magnetic Field Near a Long, Straight, Current-carrying Conductor
6.6: Field on the Axis and in the Plane of a Plane Circular Current-carrying Coil
6.7: Helmholtz Coils
6.8: Field on the Axis of a Long Solenoid
6.9: The Magnetic Field H
6.10: Flux
6.11: Ampère’s Theorem
6.12: Boundary Conditions

This page titled 6: The Magnetic Effect of an Electric Current is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/06%3A_The_Magnetic_Effect_of_an_Electric_Current/6.01%3A_Introduction
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/06%3A_The_Magnetic_Effect_of_an_Electric_Current/6.02%3A_Definition_of_the_Amp
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/06%3A_The_Magnetic_Effect_of_an_Electric_Current/6.03%3A_Definition_of_the_Magnetic_Field
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/06%3A_The_Magnetic_Effect_of_an_Electric_Current/6.04%3A_The_Biot-Savart_Law
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/06%3A_The_Magnetic_Effect_of_an_Electric_Current/6.05%3A_Magnetic_Field_Near_a_Long%2C_Straight%2C_Current-carrying_Conductor
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/06%3A_The_Magnetic_Effect_of_an_Electric_Current/6.06%3A_Field_on_the_Axis_and_in_the_Plane_of_a_Plane_Circular_Current-carrying_Coil
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/06%3A_The_Magnetic_Effect_of_an_Electric_Current/6.07%3A_Helmholtz_Coils
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/06%3A_The_Magnetic_Effect_of_an_Electric_Current/6.08%3A_Field_on_the_Axis_of_a_Long_Solenoid
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/06%3A_The_Magnetic_Effect_of_an_Electric_Current/6.09%3A_The_Magnetic_Field_H
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/06%3A_The_Magnetic_Effect_of_an_Electric_Current/6.10%3A_Flux
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/06%3A_The_Magnetic_Effect_of_an_Electric_Current/6.11%3A_Amperes_Theorem
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/06%3A_The_Magnetic_Effect_of_an_Electric_Current/6.12%3A_Boundary_Conditions
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/06%3A_The_Magnetic_Effect_of_an_Electric_Current
https://creativecommons.org/licenses/by-nc/4.0
https://www.astro.uvic.ca/~tatum/celmechs.html
http://orca.phys.uvic.ca/~tatum/elmag.html


6.1.1 https://phys.libretexts.org/@go/page/5445

6.1: Introduction
Most of us are familiar with the more obvious properties of magnets and compass needles. A magnet, often in the form of a short
iron bar, will attract small pieces of iron such as nails and paper clips. Two magnets will either attract each other or repel each
other, depending upon their orientation. If a bar magnet is placed on a sheet of paper and iron filings are scattered around the
magnet, the iron filings arrange themselves in a manner that reminds us of the electric field lines surrounding an electric dipole. All
in all, a bar magnet has some properties that are quite similar to those of an electric dipole. The region of space around a magnet
within which it exerts its magic influence is called a magnetic field, and its geometry is rather similar to that of the electric field
around an electric dipole – although its nature seems a little different, in that it interacts with iron filings and small bits of iron
rather than with scraps of paper or pith-balls.

The resemblance of the magnetic field of a bar magnet to the electric field of an electric dipole was sometimes demonstrated in
Victorian times by means of a Robison Ball-ended Magnet, which was a magnet shaped something like this:

 

The geometry of the magnetic field (demonstrated, for example, with iron filings) then greatly resembled the geometry of an
electric dipole field. Indeed it looked as though a magnet had two poles (analogous to, but not the same as, electric charges), and
that one of them acts as a source for magnetic field lines (i.e. field lines diverge from it), and the other acts as a sink (i.e. field lines
converge to it). Rather than calling the poles “positive” and “negative”, we somewhat arbitrarily call them “north” and “south”
poles, the “north” pole being the source and the “south” pole the sink. By experimenting with two or more magnets, we find that
like poles repel and unlike poles attract.

We also observe that a freely-suspended magnet (i.e. a compass needle) will orient itself so that one end points approximately
north, and the other points approximately south, and it is these poles that are called the “north” and “south” poles of the magnet.

Since unlike poles attract, we deduce (or rather William Gilbert, in his 1600 book De Magnete, Magneticisque Corporibus, et de
Magno Magnete Tellure deduced) that Earth itself acts as a giant magnet, with a south magnetic pole somewhere in the Arctic and a
north magnetic pole in the Antarctic. The Arctic magnetic pole is at present in Bathurst Island in northern Canada and is usually
marked in atlases as the “North Magnetic Pole”, though magnetically it is a sink, rather than a source. The Antarctic magnetic pole
is at present just offshore from Wilkes Land in the Antarctic continent. The Antarctic magnetic pole is a source, although it is
usually marked in atlases as the “South Magnetic Pole”. Some people have advocated calling the end of a compass needle that
points north the “north-seeking pole”, and the other end the “south-seeking pole. This has much to commend it, but usually,
instead, we just call them the “north” and “south” poles. Unfortunately this means that the Earth’s magnetic pole in the Arctic is
really a south magnetic pole, and the pole in the Antarctic is a north magnetic pole.

The resemblance of the magnetic field of a bar magnet to a dipole field, and the very close resemblance of a “Robison Ball-ended
Magnet” to a dipole, with a point source (the north pole) at one end and a point sink (the south pole) at the other, is, however,
deceptive.

In truth a magnetic field has no sources and no sinks. This is even expressed as one of Maxwell’s equations, div , as being
one of the defining characteristics of a magnetic field. The magnetic lines of force always form closed loops. Inside a bar magnet
(even inside the connecting rod of a Robison magnet) the magnetic field lines are directed from the south pole to the north pole. If a
magnet, even a Robison magnet, is cut in two, we do not isolate two separate poles. Instead each half of the magnet becomes a
dipolar magnet itself.

All of this is very curious, and matters stood like this until Oersted made an outstanding discovery in 1820 (it is said while giving a
university lecture in Copenhagen), which added what may have seemed like an additional complication, but which turned out to be
in many ways a great simplification. He observed that, if an electric current is made to flow in a wire near to a freely suspended
compass needle, the compass needle is deflected. Similarly, if a current flows in a wire that is free to move and is near to a fixed
bar magnet, the wire experiences a force at right angles to the wire.

From this point on we understand that a magnetic field is something that is primarily associated with an electric current. All the
phenomena associated with magnetized iron, nickel or cobalt, and “lodestones” and compass needles are somehow secondary to the
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fundamental phenomenon that an electric current is always surrounded by a magnetic field. Indeed, Ampère speculated that the
magnetic field of a bar magnet may be caused by many circulating current loops within the iron. He was right! – the little current
loops are today identified with electron spin.

If the direction of the magnetic field is taken to be the direction of the force on the north pole of a compass needle, Oersted’s
observation showed that the magnetic field around a current is in the form of concentric circles surrounding the current. Thus in
Figure VI.2, the current is assumed to be going away from you at right angles to the plane of your computer screen (or of the paper,
if you have printed this page out), and the magnetic field lines are concentric circles around the current,

 

In the remainder of this chapter, we shall no longer be concerned with magnets, compass needles and lodestones. These may come
in a later chapter. In the remainder of this chapter we shall be concerned with the magnetic field that surrounds an electric current.

This page titled 6.1: Introduction is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source
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6.2: Definition of the Amp
We have seen that an electric current is surrounded by a magnetic field; and also that, if a wire carrying a current is situated in an
external magnetic field, it experiences a force at right angles to the current. It is therefore not surprising that two current-carrying
wires exert forces upon each other.

More precisely, if there are two parallel wires each carrying a current in the same direction, the two wires will attract each other
with a force that depends on the strength of the current in each, and the distance between the wires.

Definition. One amp (also called an ampère) is that steady current which, flowing in each of two parallel wires of negligible cross-
section one metre apart in vacuo, gives rise to a force between them of 2 × 10  newtons per metre of their length.

At last! We now know what an amp is, and consequently we know what a coulomb, a volt and an ohm are. We have been left in a
state of uncertainty until now. No longer!

But you may ask: Why the factor 2 × 10 ? Why not define an amp in such a manner that the force is 1 N m ? This is a good
question, and its answer is tied to the long and tortuous history of units in electromagnetism. I shall probably discuss this history,
and the various “CGS” units, in a later chapter. In brief, it took a long time to understand that electrostatics, magnetism and current
electricity were all aspects of the same basic phenomena, and different systems of units developed within each topic. In particular a
so-called “practical” unit, the amp (defined in terms of the rate of deposition of silver from an electrolytic solution) became so
entrenched that it was felt impractical to abandon it. Consequently when all the various systems of electromagnetic units became
unified in the twentieth century (starting with proposals by Giorgi based on the metre, kilogram and second (MKS) as long ago as
1895) in the “Système International” (SI), it was determined that the fundamental unit of current should be identical with what had
always been known as the ampère. (The factor 2, by the way, is not related to their being two wires in the definition.) The amp is
the only SI unit in which any number other than “one” is incorporated into its definition, and the exception was forced by the desire
to maintain the amp.

A proposal to be considered (and probably passed) by the Conférence Générale des Poids et Mesures in 2018 would re-define
the coulomb in such a manner that the magnitude of the charge on a single electron is exactly 1.60217 x 10  C.

One last point before leaving this section. In the opening paragraph I wrote that “It is therefore not surprising that two current-
carrying wires exert forces upon each other.” Yet when I first learned, as a student, of the mutual attraction of two parallel electric
currents, I was very astonished indeed. The reason why this is astonishing is discussed in Chapter 15 (Special Relativity) of the
Classical Mechanics section of these notes.
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6.3: Definition of the Magnetic Field
We are going to define the magnitude and direction of the magnetic field entirely by reference to its effect upon an electric current,
without reference to magnets or lodestones. We have already noted that, if an electric current flows in a wire in an externally-
imposed magnetic field, it experiences a force at right angles to the wire.

I want you to imagine that there is a magnetic field in this room, originating, perhaps, from some source outside the room. This
need not entail a great deal of imagination, for there already is such a magnetic field – namely, Earth’s magnetic field. I’ll tell you
that the field within the room is uniform, but I shan’t tell you anything about either its magnitude or its direction.

You have a straight wire and you can pass a current through it. You will note that there is a force on the wire. Perhaps we can define
the direction of the field as being the direction of this force. But this won’t do at all, because the force is always at right angles to
the wire no matter what its orientation! We do notice, however, that the magnitude of the force depends on the orientation of the
wire; and there is one unique orientation of the wire in which it experiences no force at all. Since this orientation is unique, we
choose to define the direction of the magnetic field as being parallel to the wire when the orientation of the wire is such that it
experiences no force.

This leaves a two-fold ambiguity since, even with the wire in its unique orientation, we can cause the current to flow in one
direction or in the opposite direction. We still have to resolve this ambiguity. Have patience for a few more lines.

As we move our wire around in the magnetic field, from one orientation to another, we notice that, while the direction of the force
on it is always at right angles to the wire, the magnitude of the force depends on the orientation of the wire, being zero (by
definition) when it is parallel to the field and greatest when it is perpendicular to it.

Definition. The intensity  (also called the flux density, or field strength, or merely “field”) of a magnetic field is equal to the
maximum force exerted per unit length on unit current (this maximum force occurring when the current and field are at right angles
to each other).

The dimensions of  are

Definition. If the maximum force per unit length on a current of 1 amp (this maximum force occurring, of course, when current
and field are perpendicular) is 1 N m , the intensity of the field is 1 tesla (T).

By definition, then, when the wire is parallel to the field, the force on it is zero; and, when it is perpendicular to the field, the force
per unit length is  newtons per metre.

It will be found that, when the angle between the current and the field is , the force per unit length, , is

In vector notation, we can write this as

where, in choosing to write  rather than  we have removed the two-fold ambiguity in our definition of the
direction of . Equation  expresses the “right-hand rule” for determining the relation between the directions of the current,
field and force.
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6.4: The Biot-Savart Law
Since we now know that a wire carrying an electric current is surrounded by a magnetic field, and we have also decided upon how
we are going to define the intensity of a magnetic field, we want to ask if we can calculate the intensity of the magnetic field in the
vicinity of various geometries of electrical conductor, such as a straight wire, or a plane coil, or a solenoid. When we were
calculating the electric field in the vicinity of various geometries of charged bodies, we started from Coulomb’s Law, which told us
what the field was at a given distance from a point charge. Is there something similar in electromagnetism which tells us how the
magnetic field varies with distance from an electric current? Indeed there is, and it is called the Biot-Savart Law.

 

Figure VI.3 shows a portion of an electrical circuit carrying a current . The Biot-Savart Law tells us what the contribution  is at
a point  from an elemental portion of the electrical circuit of length  at a distance  from , the angle between the current at 
and the radius vector from  to  being . The Biot-Savart Law tells us that

This law will enable us, by integrating it around various electrical circuits, to calculate the total magnetic field at any point in the
vicinity of the circuit.

But – can I prove the Biot-Savart Law, or is it just a bald statement from nowhere? The answer is neither. I cannot prove it, but nor
is it merely a bald statement from nowhere. First of all, it is a not unreasonable guess to suppose that the field is proportional to 
and to , and also inversely proportional to , since , in the limit, approaches a point source. But you are still free to regard it,
if you wish, as speculation, even if reasonable speculation. Physics is an experimental science, and to that extent you cannot
“prove” anything in a mathematical sense; you can experiment and measure. The Biot-Savart law enables us to calculate what the
magnetic field ought to be near a straight wire, near a plane circular current, inside a solenoid, and indeed near any geometry you
can imagine. So far, after having used it to calculate the field near millions of conductors of a myriad shapes and sizes, the
predicted field has always agreed with experimental measurement. Thus the Biot-Savart law is likely to be true – but you are
perfectly correct in asserting that, no matter how many magnetic fields it has correctly predicted, there is always the chance that,
some day, it will predict a field for some unusually-shaped circuit that disagrees with what is measured. All that is needed is one
such example, and the law is disproved. You may, if you wish, try and discover, for a Ph.D. project, such a circuit; but I would not
recommend that you spend your time on it!

There remains the question of what to write for the constant of proportionality. We are free to use any symbol we like, but, in
modern notation, we symbol we use is . Why the factor ? The inclusion of  gives us what is called a “rationalized”
definition, and it is introduced for the same reasons that we introduced a similar factor in the constant of proportionality for
Coulomb’s law, namely that it results in the appearance of  in spherically-symmetric geometries,  in cylindrically-symmetric
geometries, and no  where the magnetic field is uniform. Not everyone uses this definition, and this will be discussed in a later
chapter, but it is certainly the recommended one.

In any case, the Biot-Savart Law takes the form

FIGURE VI.3
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The constant  is called the permeability of free space, “free space” meaning a vacuum. The subscript allows for the possibility
that if we do an experiment in a medium other than a vacuum, the permeability may be different, and we can then use a different
subscript, or none at all. In practice the permeability of air is very little different from that of a vacuum, and hence I shall normally
use the symbol  for experiments performed in air, unless we are discussing measurement of very high precision.

From Equation , we can see that the SI units of permeability are  (tesla metres per amp). In a later chapter we shall
come across another unit – the henry – for a quantity (inductance) that we have not yet described, and we shall see then that a more
convenient unit for permeability is  (henrys per metre) – but we are getting ahead of ourselves.

What is the numerical value of ? I shall reveal that in the next chapter.

Thought for the Day.

The sketch shows two current elements, each of length , the current being the same in each but in different directions. Is the force
on one element from the other equal but opposite to the force on the other from the one? If not, is there something wrong with
Newton’s third law of motion? Discuss this over lunch.
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6.5: Magnetic Field Near a Long, Straight, Current-carrying Conductor
Consider a point  at a distance  from a conductor carrying a current  (Figure VI.4).

 

The contribution to the magnetic field at  from the elemental length  is

(Look at the way I have drawn  if you are worried about the cosine.)

Here I have omitted the subscript zero on the permeability to allow for the possibility that the wire is immersed in a medium in
which the permeability is not the same as that of a vacuum. (The permeability of liquid oxygen, for example, is slightly greater than
that of free space.) The direction of the field at  is into the plane of the “paper” (or of your computer screen).

We need to express this in terms of one variable, and we’ll choose . We can see that  and  so that 
. Thus Equation  becomes

Upon integrating this from  (or from  and then double it), we find that the field at  is

Note the  in this problem with cylindrical symmetry.
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6.6: Field on the Axis and in the Plane of a Plane Circular Current-carrying Coil
I strongly recommend that you compare and contrast this derivation and the result with the treatment of the electric field on the axis
of a charged ring in Section 1.6.4 of Chapter 1. Indeed I am copying the drawing from there and then modifying it as need be.

 

The contribution to the magnetic field at  from an element  of the current is  in the direction shown by the colored

arrow. By symmetry, the total component of this from the entire coil perpendicular to the axis is zero, and the only component of
interest is the component along the axis, which is  times .

The integral of  around the whole coil is just the circumference of the coil, , and if we write  we find that

the field at  from the entire coil is

or  times this if there are  turns in the coil. At the centre of the coil the field is

The field is greatest at the center of the coil and it decreases monotonically to zero at infinity. The field is directed to the left in
Figure IV.5.

We can calculate the field in the plane of the ring as follows.

Consider an element of the wire at  of length . The angle between the current at  and the line  is . The
contribution to the -field at  from the current  this element is

FIGURE VI.5
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The field from the entire ring is therefore

where

and

This requires a numerical integration. The results are shown in the following graph, in which the abscissa, , is the distance from
the center of the circle in units of its radius, and the ordinate, , is the magnetic field in units of its value  at the center.
Further out than , the field increases rapidly.
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6.7: Helmholtz Coils
Let us calculate the field at a point halfway between two identical parallel plane coils. If the separation between the coils is equal to
the radius of one of the coils, the arrangement is known as “Helmholtz coils”, and we shall see why they are of particular interest.
To

begin with, however, we’ll start with two coils, each of radius , separated by a distance .

There are turns in each coil, and each carries a current .

The field at  is

At the origin , the field is

(What does this become if ? Is this what you’d expect?)

If we express  in units of  and  and  in units of , Equation  becomes

Figure VI.7 shows the field as a function of  for three values of . The coil separation is , and distances are in units of the coil
radius . Notice that when , which means that the coil separation is equal to the coil radius, the field is uniform over a large
range, and this is the usefulness of the Helmholtz arrangement for providing a uniform field. If you are energetic, you could try
differentiating Equation  twice with respect to  and show that the second derivative is zero when .

For the Helmholtz arrangement the field at the origin is
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6.8: Field on the Axis of a Long Solenoid
The solenoid, of radius , is wound with  turns per unit length of a wire carrying a current in the direction indicated by the
symbols  and .

 

At a point O on the axis of the solenoid the contribution to the magnetic field arising from an elemental ring of width  (hence
having  turns) at a distance  from O is

This field is directed towards the right.

Let us express this in terms of the angle .

We have . Equation  becomes

If the solenoid is of infinite length, to find the field from the entire infinite solenoid, we integrate from  and double it.
Thus

Thus the field on the axis of the solenoid is

This is the field on the axis of the solenoid. What happens if we move away from the axis? Is the field a little greater as we move
away from the axis, or is it a little less? Is the field a maximum on the axis, or a minimum? Or does the field go through a
maximum, or a minimum, somewhere between the axis and the circumference? We shall answer these questions in section 6.11.
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6.9: The Magnetic Field H
If you look at the various formulas for the magnetic field  near various geometries of conductor, such as equations 6.5.3, 6.6.2,
6.7.1, 6.8.4, you will see that there is always a  on the right hand side. It is often convenient to define a quantity . Then
these equations become just

It is easily seen from any of these equations that the SI units of are , or amps per metre, and the dimensions are 
.

Of course the magnetic field, whether represented by the quantity  or by , is a vector quantity, and the relation between the two
representations can be written

In an isotropic medium  and  are parallel, but in an anisotropic medium they are not parallel (except in the directions of the
eigenvectors of the permeability tensor), and permeability is a tensor. This was discussed in section 1.7.1 with respect to the
equation .
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6.10: Flux
Recall from Section 1.8 that we defined two extensive scalar quantities for the electric field

and

which I called the -flux and the -flux, respectively. In an entirely similar manner I can define the -flux and -flux of a
magnetic field by

and

The SI unit of  is the tesla metre-squared, or , also called the weber Wb. A summary of the SI units and dimensions of the
four fields and fluxes might not come amiss here.

V m MLT Q
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6.11: Ampère’s Theorem
In Section 1.9 we introduced Gauss’s theorem, which is that the total normal component of the -flux through a closed surface is
equal to the charge enclosed within that surface. Gauss’s theorem is a consequence of Coulomb’s law, in which the electric field
from a point source falls off inversely as the square of the distance. We found that Gauss’s theorem was surprisingly useful in that it
enabled us almost immediately to write down expressions for the electric field in the vicinity of various shapes of charged bodies
without going through a whole lot of calculus.

Is there perhaps a similar theorem concerned with the magnetic field around a current-carrying conductor that will enable us to
calculate the magnetic field in its vicinity without going through a lot of calculus? There is indeed, and it is called Ampère’s
Theorem.

 

In Figure  there is supposed to be a current coming towards you in the middle of the circle. I have drawn one of the magnetic
field lines – a dashed line of radius . The strength of the field there is . I have also drawn a small elemental length 

 on the circumference of the circle. The line integral of the field around the circle is just  times the circumference of the circle.
That is, the line integral of the field around the circle is just . Note that this is independent of the radius of the circle. At greater
distances from the current, the field falls off as , but the circumference of the circle increases as , so the product of the two (the
line integral) is independent of .

Consequently, if I calculate the line integral around a circuit such as the one shown in Figure , it will still come to just .
Indeed it doesn’t matter what the shape of the path is. The line integral is . The field  at some point is perpendicular to
the line joining the current to the point, and the vector  is directed along the path of integration, and  is equal to  times
the component of  along the direction of , so that, regardless of the length and shape of the path of integration:

The line integral of the field  around any closed path is equal to the current enclosed by that path.
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This is Ampère’s Theorem.

So now let’s do the infinite solenoid again. Let us calculate the line integral around the rectangular amperian path shown in Figure 
. There is no contribution to the line integral along the vertical sides of the rectangle because these sides are perpendicular to

the field, and there is no contribution from the top side of the rectangle, since the field there is zero (if the solenoid is infinite). The
only contribution to the line integral is along the bottom side of the rectangle, and the line integral there is just , where  is the
length of the rectangle. If the number of turns of wire per unit length along the solenoid is , there will be  turns enclosed by the
rectangle, and hence the current enclosed by the rectangle is , where  is the current in the wire. Therefore by Ampère’s
theorem, , and so , which is what we deduced before rather more laboriously. Here  is the strength of the field
at the position of the lower side of the rectangle; but we can place the rectangle at any height, so we see that the field is 
anywhere inside the solenoid. That is, the field inside an infinite solenoid is uniform.

 

It is perhaps worth noting that Gauss’s theorem is a consequence of the inverse square diminution of the electric field with distance
from a point charge, and Ampère’s theorem is a consequence of the inverse first power diminution of the magnetic field with
distance from a line current.
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Figure  shows the cross-section of the rod, and I have drawn an amperian circle of radius . If the field at the
circumference of the circle is , the line integral around the circle is . The current enclosed within the circle is .
These two are equal, and therefore .

More and More Examples

In the above example, the current density was uniform. But now we can think of lots and lots of examples in which the current
density is not uniform. For example, let us imagine that we have a long straight hollow cylindrical tube of radius , perhaps a linear
particle accelerator, and the current density J (amps per square metre) varies from the middle (axis) of the cylinder to its edge
according to . The total current is, of course,  and the mean current density is 

.

The question, however, is: what is the magnetic field  at a distance  from the axis? Further, show that the magnetic field at the
edge (circumference) of the cylinder is , and that the field reaches a maximum value of  at .

Well, the current enclosed within a distance  from the axis is

and this is equal to the line integral of the magnetic field around a circle of radius , which is . Thus

At the circumference of the cylinder, this comes to . Calculus shows that  reaches a maximum value of  at .
The graph below shows  as a function of .
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Having whetted our appetites, we can now try the same problem but with some other distributions of current density, such as

The mean current density is , and the total current is  times this.

The magnetic field is .

Here are the results:

1.
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 reaches a maximum value of , but this maximum occurs inside the cylinder only if .
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 reaches a maximum value of , but this maximum occurs inside the cylinder only if .
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I have not calculated explicit formulas for the positions and values of the maxima. A maximum occurs inside the cylinder if 
.

4.
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A maximum occurs inside the cylinder if .

In all of these cases, the condition that there shall be no maximum  inside the cylinder – that is, between  - is

that . I believe this to be true for any axially symmetric current density distribution, though I have not proved it. I expect

that a fairly simple proof could be found by someone interested.

Additional current density distributions that readers might like to investigate are

This page titled 6.11: Ampère’s Theorem is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum
via source content that was edited to the style and standards of the LibreTexts platform.
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6.12: Boundary Conditions
We recall from Section 5.14, that, at a boundary between two media of different permittivities, the normal component of  and the
tangential component of  are continuous, while the tangential component of  is proportional to  and the normal component of 

 is inversely proportional to . The lines of electric force are refracted at a boundary in such a manner that

The situation is similar with magnetic fields. That is, at a boundary between two media of different permeabilities, the normal
component of  and the tangential component of  are continuous, while the tangential component of is proportional to m and
the normal component of  is inversely proportional to . The lines of magnetic force are refracted at a boundary in such a manner
that

 

The configuration of the magnetic field inside an infinitely long solenoid with materials of different permeabilities needs some
care. We shall be guided by the Biot-Savart law, namely , and Ampère’s law, namely that the line integral of 
around a closed circuit is equal to the enclosed current. We also recall that the magnetic field inside an infinite solenoid containing
a single homogeneous isotropic material is uniform, is parallel to the axis of the solenoid, and is given by  or .

The easiest two-material case to consider is that in which the two materials are arranged in parallel as in Figure VI.17.

 

One can see by applying Ampère’s law to each of the two circuits indicated by dashed lines that the -field is the same in each
material and is equal to , and is uniform throughout the solenoid. It is directed parallel to the axis of the solenoid. That is, the
tangential component of is continuous. The -fields in the two materials, however, are different, being  in the upper
material and  in the lower.

We now look at the situation in which the two materials are in series, as in Figure VI.18.

We’ll use a horizontal coordinate , which is zero at the boundary, negative to the left of it, and positive to the right of it.
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We might at first be tempted to suppose that  to the left of the boundary and  to the right of the boundary,
while, by an application of Ampère’s law around any of the dashed circuits indicated,  on both sides. Tempting though this
is, it is not correct, and we shall see why shortly.

The -field is indeed  a long way to the left of the boundary, and  a long way to the right. However, near to the
boundary it is between these limiting values. We can calculate the -field on the axis at the boundary by the same method that we
used in Section 6.8. See especially equation 6.8, which, with the present geometry, becomes

It should come as no surprise that this comes to

It is the same just to the left of the boundary and just to the right.

The -field, however, drops suddenly at the boundary from  immediately to the left of the boundary to 

 immediately to the right of the boundary.

In any case, the very important results from these considerations is

At a boundary between two media of different permeabilities, the parallel component of  is continuous, and the perpendicular
component of  is continuous.

Compare and contrast this with the electrical case:

At a boundary between two media of different permittivities, the parallel component of  is continuous, and the perpendicular
component of  is continuous.
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7.1: Introduction
In Chapter 6 we showed that when an electric current is situated in an external magnetic field it experiences a force at right angles
to both the current and the field. Indeed we used this to define both the magnitude and direction of the magnetic field. The
magnetic field is defined in magnitude and direction such that the force per unit length  on the current is given by

This page titled 7.1: Introduction is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source
content that was edited to the style and standards of the LibreTexts platform.
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7.2: Force Between Two Current-carrying Wires
In Figure , we have two parallel currents,  and , each directed away from you (i.e. into the plane of the paper) and a
distance  apart. The current  produces a magnetic field at , directed downward as shown, and of magnitude 
where  is the permeability of the medium in which the two wires are immersed. Therefore, following Equation 7.1.1, 
experiences a force per unit length towards the left  You must also go through the same argument to show that
the force per unit length on  from the magnetic field produced by  is of the same magnitude but directed towards the right, thus
satisfying Newton’s third law of motion.

 

Thus the force of attraction per unit length between two parallel currents a distance  apart is
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7.3: The Permeability of Free Space
If each of the currents in the arrangement of Section 7.2 is one amp, and if the distance  between to two wires is one metre, and if
the experiment is performed in a vacuum, so that , then the force per unit length between the two wires is 
newtons per metre. But we have already (in Chapter 6) defined the amp in such a manner that this force is 2 × 10  N m .
Therefore it follows from our definition of the amp that the permeability of free space, by definition, has a value of exactly

or, as we shall learn to express it in a later chapter,  henrys per metre, .

It was mentioned briefly in Chapters 1 and 6 that there is a proposal , likely to become official in 2018, to re-define the
coulomb (and hence the amp) in such a manner that the magnitude of the charge on a single electron is exactly 

. If this proposal is passed (as is likely),  will no longer have a defined value, but will have a measured
value of approximately .
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7.4: Magnetic Moment
If a compass needle, or indeed any bar magnet, is placed in an external magnetic field, it experiences a torque – the one exception
being if the needle is placed exactly along the direction of the field. The torque is greatest when the needle is oriented at right
angles to the field.

Definition. The magnetic moment of a magnet is equal to the maximum torque it experiences when in unit magnetic field.

As already noted this maximum torque is experienced when the magnet is at right angles to the magnetic field. In SI units, "unit
magnetic field" means, of course, one tesla, and the SI units of magnetic moment are , or newton metres per tesla. The
reader should look up (or deduce) the dimension of magnetic field (teslas) and then show that the dimensions of magnetic moment
are .

It is noted here that many different definitions of and units for magnetic moment are to be found in the literature, not all of which
are correct or even have the correct dimensions. This will be discussed in a later chapter. In the meantime the definition we have
given above is standard in the Système International.
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7.5: Magnetic Moment of a Plane, Current-carrying Coil
A plane, current carrying coil also experiences a torque in an external magnetic field, and its behaviour in a magnetic field is quite
similar to that of a bar magnet or a compass needle. The torque is maximum when the normal to the coil is perpendicular to the 3
magnetic field, and the magnetic moment is defined in exactly the same way, namely the maximum torque experienced in unit
magnetic field.

Let us examine the behavior of a rectangular coil of sides a and b, which is free to rotate about the dashed line shown in Figure 
.

 

In Figure , I am looking down the axis represented by the dashed line in Figure , and we see the coil sideways on. A
current  is flowing around the coil in the directions indicated by the symbols  and . The normal to the coil makes an angle 
with respect to an external field .

 

According to the Biot-Savart law there is a force  on each of the b-length arms of magnitude , or, if there are  turns in the
coil, . These two forces are opposite in direction and constitute a couple. The perpendicular distance between the two
forces is , so the torque  on the coil is , or , where  is the area of the coil. This has its
greatest value when , and so the magnetic moment of the coil is . This shows that, in SI units, magnetic moment can
equally well be expressed in units of , or ampere metre squared, which is dimensionally entirely equivalent to .
Thus we have

where, for a plane current-carrying coil, the magnetic moment is

This can conveniently be written in vector form:

where, for a plane current-carrying coil,

Here  is a vector normal to the plane of the coil, with the current flowing clockwise around it. The vector  is directed into the
plane of the paper in Figure 

The formula  for the magnetic moment of a plane current-carrying coil is not restricted to rectangular coils, but holds equally
for plane coils of any shape; for (see Figure ) any curve can be described in terms of an infinite number of infinitesimally
small vertical and horizontal segments.
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We understand that a magnet, or anything that has a magnetic moment, experiences no net force in a uniform magnetic field,
although it does experience a torque. Furthermore, as in the case of an electric dipole in an electric field, a magnetic dipole situated
in an inhomogeneous magnetic field does experience a net force. If the magnetic moment and the gradient of the magnetic field are
in the same direction, the net force on the dipole is

[ ]

See Section 3.5 for further details relating to a dipole in an inhomogeneous field.

An important historical experiment that readers may come across, using the force on a magnetic dipole in an inhomogeneous
magnetic field, is the 1922 experiment of Stern and Gerlach, demonstrating the spatial quantization of the magnetic moment
associated with electron spin.
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7.6: Period of Oscillation of a Magnet or a Coil in an External Magnetic Field

For a derivation of this, see the derivation in Section 3.3 for the period of oscillation of an electric dipole in an electric field. Also,
verify that the dimensions of the right hand side of Equation  are . In this equation, what does the symbol  stand for?
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7.7: Potential Energy of a Magnet or a Coil in a Magnetic Field

For a derivation of this, see the derivation in Section 3.4 for the potential energy of an electric dipole in an electric field. Also,
verify that the dimensions of the right hand side of Equation  are  (energy).
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7.8: Moving-coil Ammeter

 

The current is led into the coil of  turns through a spiral spring of torsion constant . The coil is between two poles of a specially-
shaped magnet, and there is an iron cylinder inside the coil. This ensures that the magnetic field is everywhere parallel to the plane
of the coil; that is, at right angles to its magnetic moment vector. This ensures that the deflection of the coil increases linearly with
current, for there is no  factor. When a current flows through the coil, the torque on it is , and this in counteracted by
the torque  of the holding springs. Thus the current and deflection are related by
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7.9: Magnetogyric Ratio
The magnetic moment and the angular momentum are both important properties of subatomic particles. Each of them, however,
depends on the angular speed of rotation of the particle. The ratio of magnetic moment to angular momentum, on the other hand, is
independent of the speed of rotation, and tells us something about how the mass and charge are distributed within the particle. Also,
it can be measured with higher precision than either the magnetic moment or the angular momentum separately. This ratio is called
the magnetogyric ratio (or, perversely and illogically, by some, the "gyromagnetic ratio"). You should be able to show that the
dimensions of the magnetogyric ratio are , and therefore the SI unit is . I doubt, however, if many particle physicists
use such simple units. They probably express magnetic moment in Bohr magnetons or nuclear magnetons and angular momentum
in units of Planck's constant divided by  − but that is not our problem.

Let us calculate the magnetogyric ratio of a point charge and point mass moving in a circular orbit – rather like the electron moving
around the proton in the simplest model of a hydrogen atom. We'll suppose that the angular speed in the orbit is  and the radius of
the orbit is . The angular momentum is easy – it is just . The frequency with which the particle (whose charge is ) passes
a given point in its orbit is , so the current is . The area of the orbit is  and so the magnetic moment of the
orbiting particle is . The magnetogyric ratio is therefore .

The magnetogyric ratio will be the same as this in any spinning body in which the distributions of mass density and charge density
inside the body are the same. Consider, however, the magnetogyric ratio of a charged, spinning metal sphere. The mass is
distributed uniformly throughout the sphere, but the charge all resides on the surface. We may then expect the magnetogyric ratio to
be rather larger than .

The angular momentum is easy. It is just . Now for the magnetic moment. Refer to Figure .

 

The area of the elemental zone shown is . The area of the entire sphere is , so the charge on the elemental zone is 
. The zone is spinning, as is the entire sphere, at an angular speed , so the current is

The area enclosed by the elemental zone is . The magnetic moment  of the zone is the current times the area
enclosed, which is

The magnetic moment of the entire sphere is found by integrating this from  = 0 to , whence

The ratio of the magnetic moment to the angular momentum is therefore .

Those who are familiar with gyroscopic motion will know that if a spinning body of angular momentum  is subject to a torque ,
the angular momentum vector will not be constant in direction and indeed the rate of change of angular momentum will be equal to

. Figure  is a reminder of the motion of a top in regular precession (that is, with no nutation).
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A study of Chapter 4 Section 4.10 of Classical Mechanics will be needed for a more detailed understanding of the motion of a top.
The top is subject to a torque of magnitude . The torque can be represented by a vector  directed into the plane of the
paper. As drawn, the angular momentum vector  makes an angle  with the gravitational field , and it precesses about the
vertical with an angular velocity , the three vectors ,  and  being related by . The magnitude of the angular
momentum vector is therefore . But , so that the precessional frequency is , independent of .
Likewise a charged spinning body with a magnetic moment of  is a magnetic field  experiences a torque ,
which is of magnitude , and consequently its angular momentum vector precesses around  at an angular speed ,
independent of . (Verify that this has dimensions .) The coefficient of  here is the magnetogyric ratio. The precessional
speed can be measured very precisely, and hence the magnetogyric ratio can be measured correspondingly precisely. This
phenomenon of "Larmor precession" is the basis of many interesting instruments and disciplines, such as the proton precession
magnetometer, nuclear magnetic resonance spectroscopy and nuclear magnetic resonance imaging used in medicine. Because
anything including the word "nuclear" is a politically incorrect phrase, the word "nuclear” is usually dropped, and nuclear magnetic
resonance imaging is usually called just "magnetic resonance imaging", or MRI, which doesn't quite make sense, but at least is
politically correct.
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8.1: Introduction to Electrodynamics of Moving Bodies
First, I have shamelessly plagiarized the title of this chapter. I have stolen the title from that of one of the most famous physics
research papers of the twentieth century – Zur Elektrodynamik Bewegter Körper, the paper in which Einstein described the Special
Theory of Relativity in 1905. I shall be describing the motion of charged particles in electric and magnetic fields, but, unlike
Einstein, I shall (unless I state otherwise – which will happen from time to time) be restricting the considerations of this chapter
mostly to nonrelativistic speeds – that is to say speeds such that  is much smaller than the level of precision one is interested
in or can conveniently measure. Some relativistic aspects of electrodynamics are touched upon briefly in Chapter 15 of the
Classical Mechanics notes in this series, but, apart from the fact that this chapter and Einstein's paper both deal with the motions of
charged bodies in electric and magnetic fields, there will be little else in common.

Section 8.2 will deal with the motion of a charged particle in an electric field alone, and Section 8.3 will deal with the motion of a
charged particle in a magnetic field alone. Section 8.4 will deal with the motion of a charged particle where both an electric and a
magnetic field are present. That section may be a little more difficult than the others and may be omitted on a first reading by less
experienced readers. Section 8.5 deals with the motion of a charged particle in a nonuniform magnetic field and is more difficult
again.
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8.2: Charged Particle in an Electric Field
There is really very little that can be said about a charged particle moving at nonrelativistic speeds in an electric field . The
particle, of charge q and mass , experiences a force , and consequently it accelerates at a rate . If it starts from rest, you
can calculate how fast it is moving in time t, what distance it has travelled in time , and how fast it is moving after it has covered a
distance , by all the usual first-year equations for uniformly accelerated motion in a straight line. If the charge is accelerated
through a potential difference , its loss of potential energy  will equal its gain in kinetic energy . Thus .

Let us calculate, using this nonrelativistic formula, the speed gained by an electron that is accelerated through 1, 10, 100, 1000,
10000, 100,000 and 1,000,000 volts, given that, for an electron, . (The symbol for the electronic
charge is usually written . You might note here that that's a lot of coulombs per kilogram!). We'll also calculate  and .

We can see that, even working to a modest precision of four significant Figures, an electron accelerated through only a few hundred
volts is reaching speeds at which  is not quite negligible, and for less than a million volts, the electron is already apparently
moving faster than light! Therefore for large voltages the formulas of special relativity should be used. Those who are familiar with
special relativity (i.e. those who have read Chapter 15 of Classical Mechanics!), will understand that the relativistically correct
relation between potential and kinetic energy is , and will be able to calculate the speeds correctly as in the
following table. Those who are not familiar with relativity may be a bit lost here, but just take it as a warning that particles such as
electrons with a very large charge-to-mass ratio rapidly reach speeds at which relativistic formulas need to be used. These Figures
are given here merely to give some idea of the magnitude of the potential differences that will accelerate an electron up to speeds
where the relativistic formulas must be used.

If a charged particle is moving at constant speed in the -direction, and it encounters a region in which there is an electric field in
the -direction (as in the Thomson  experiment, for example) it will accelerate in the -direction while maintaining its
constant speed in the -direction. Consequently it will move in a parabolic trajectory just like a ball thrown in a uniform
gravitational field, and all the familiar analysis of a parabolic trajectory will apply, except that instead of an acceleration g, the
acceleration will be .
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8.3: Charged Particle in a Magnetic Field
We already know that an electric current  flowing in a region of space where there exists a magnetic field  will experience a
force that is at right angles to both  and , and the force per unit length, , is given by

and indeed we used this Equation to define what we mean by . Equation  is illustrated in Figure .

 

The large cross in a circle is intended to indicate a magnetic field directed into the plane of the paper, and  and  show the
directions of the current and the force.

Now we might consider the current to comprise a stream of particles,  of them per unit length, each bearing a charge , and
moving with velocity  (speed ). The current is then , and Equation  then shows that the force on each particle is

This, then, is the Equation that gives the force on a charged particle moving in a magnetic field, and the force is known as the
Lorentz force.

It will be noted that there is a force on a charged particle in a magnetic field only if the particle is moving, and the force is at right
angles to both  and .

As to the question: "Who's to say if the particle is moving?" or "moving relative to what?" – that takes us into very deep waters
indeed. For an answer, I refer you to the following paper: Einstein, A., Zur Elektrodynamik Bewegter Körper, Annalen der Physik
17, 891 (1905).

Let us suppose that we have a particle, of charge  and mass , moving with speed  in the plane of the paper, and that there is a
magnetic field  directed at right angles to the plane of the paper. (If you are reading this straight off the screen, then read "plane
of the screen"!) The particle will experience a force of magnitude   (because  and  are at right angles to each other), and this
force is at right angles to the instantaneous velocity of the particle. Because the force is at right angles to the instantaneous velocity
vector, the speed of the particle is unaffected. Its acceleration is constant in magnitude and therefore the particle moves in a circle,
whose radius is determined by equating the force   to the mass times the centripetal acceleration. That is  , or

If we are looking at the motion of some subatomic particle in a magnetic field, and we have reason to believe that the charge is
equal to the electronic charge (or perhaps some small multiple of it), we see that the radius of the circular path tells us the
momentum of the particle; that is, the product of its mass and speed. Equation  is quite valid for relativistic speeds, except that
the mass that appears in the Equation is then the relativistic mass, not the rest mass, so that the radius is a slightly more complicated
function of speed and rest mass.

If  and  are not perpendicular to each other, we may resolve  into a component  perpendicular to  and a component 
parallel to . The particle will then move in a helical path, the radius of the helix being , and the centre of the circle
moving at speed  in the direction of .

The angular speed  of the particle in its circular path is , which, in concert with Equation , gives

This is called the cyclotron angular speed or the cyclotron angular frequency. You should verify that its dimensions are .

A magnetron is an evacuated cylindrical glass tube with two electrodes inside. One, the negative electrode (cathode) is a wire along
the axis of the cylinder. This is surrounded by a hollow cylindrical anode of radius . A uniform magnetic field is directed parallel
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to the axis of the cylinder. The cathode is heated (and emits electrons, of charge  and mass ) and a potential difference  is
established across the electrodes. The electrons consequently reach a speed given by

Because of the magnetic field, they move in arcs of circles. As the magnetic field is increased, the radius of the circles become
smaller, and, when the diameter of the circle is equal to the radius  of the anode, no electrons can reach the anode, and the current
through the magnetron suddenly drops. This happens when

Elimination of  from Equations  and  shows that the current drops to zero when

Those who are skilled in special relativity should try and do this with the relativistic formulas. In Equation  the right hand side
will have to be , and in Equation   will have to be replaced with . I make the result

For small potential differences,  is very much less than , and Equation  reduces to Equation .
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8.4: Charged Particle in an Electric and a Magnetic Field
The force on a charged particle in an electric and a magnetic field is

As an example, let us investigate the motion of a charged particle in uniform electric and magnetic fields that are at right angles to
each other. Specifically, let us choose axes so that the magnetic field  is directed along the positive -axis and the electric field is
directed along the positive -axis. (Draw this on a large diagram!) Try and imagine what the motion would be like. Suppose, for
example, the motion is all in the -plane. Perhaps the particle will move round and round in a circle around an axis parallel to the
magnetic field, but the centre of this circle will accelerate in the direction of the electric field. Well, you are right in that the particle
does move in a circle around an axis parallel to , and also that the centre of the circle does indeed move. But the rest of it isn't
quite right. Before embarking on a mathematical analysis, see if you can imagine the motion a bit more accurately.

We'll suppose that at some instant the ,  and  components of the velocity of the particle are ,  and . We'll suppose that these
velocity components are all nonrelativistic, which means that m is constant and not a function of the speed. The three components
of the equation of motion (Equation ) are then

and

For short, I shall write  (the cyclotron angular speed) and, noting that the dimensions of  are the dimensions of
speed (verify this!), I shall write , where the significance of the subscript  will become apparent in due course. The
equations of motion then become

and

To find the general solutions to these, we can, for example, let . Then equations 8.4.5 and 8.4.6 become  and 
. From these, we obtain . The general solution of this is , and so 

. By integration and differentiation with respect to time we can find  and  respectively. Thus we
obtain:

and

Similarly we can solve for y and z as follows:

and
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= = ωv,ẍ u̇ (8.4.5)

= =−ω(u− )ÿ v̇ V
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There are six arbitrary constants of integration, namely , , , ,  and , whose values depend on the initial conditions
(position and velocity at ). Of these,  and  are just the initial values of  and . Let us suppose that these are both zero
and that all the motion takes place in the -plane.

In these equations  and  always occur in the combinations  and , and therefore for convenience I am going to let 
 and , and I am going to re-write equations 8.4.8, 8.4.9, 8.4.11 and 8.4.12 as

and

Let us suppose that the initial conditions are: at , . That is, the particle starts from rest at the origin. If the
put these initial conditions in equations 8.4.17-20, we find that , ,  and . Equations 8.4.17 and
8.4.19, which give the equation to the path described by the particle, become

and

It is worth reminding ourselves here that the cyclotron angular speed is  and that , and therefore .

These equations are the parametric equations of a cycloid. (For more on the cycloid, see Chapter 19 of the Classical Mechanics
notes in this series.) The motion is a circular motion in which the centre of the circle drifts (hence the subscript ) in the -
direction at speed . The path is shown in Figure , drawn for distances in units of .

 

I leave it to the reader to try different initial conditions, such as one of  or  not initially zero. You can try with  or  equal to
some multiple of fraction of , and you can make the  or  positive or negative. Calculate the values of the constants , , 
and  and draw the resulting path. You will always get some sort of cycloid. It may not be a simple cycloid as in our example, but
it might be an expanded cycloid (i.e. small loops instead of cusps) or a contracted cycloid, which has neither loops nor cusps, but
looks more or less sinusoidal. I’ll try just one. I’ll let  and . If I do that, I get

and

This looks like this:
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8.5: Motion in a Nonuniform Magnetic Field
I give this as a rather more difficult example, not suitable for beginners, just to illustrate how one might calculate the motion of a
charged particle in a magnetic field that is not uniform. I am going to suppose that we have an electric current  flowing (in a wire)
in the positive -direction up the -axis. An electron of mass  and charge of magnitude  (i.e., its charge is ) is wandering
around in the vicinity of the current. The current produces a magnetic field, and consequently the electron, when it moves,
experiences a Lorenz force. In the following table I write, in cylindrical coordinates, the components of the magnetic field
produced by the current, the components of the Lorentz force on the electron, and the expressions in cylindrical coordinates for
acceleration component. Some facility in classical mechanics will be needed to follow this.

From this table we can write down the equations of motion, as follows, in which  is short for . This quantity has the
dimensions of speed (verify!) and I am going to call it the characteristic speed. It has the numerical value ,
where  is in . The equations of motion, then, are

Radial:

Transverse (Azimuthal):

Longitudinal:

It will be convenient to define dimensionless velocity components:

Suppose that initially, at time , their values are ,  and , and also that the initial distance of the particle from the current
is . Further, introduce the dimensionless distance

so that the initial value of  is 1. The initial values of  and  may be taken to be zero by suitable choice of axes.

Integration of equations 8.5.2 and 3, with these initial conditions, yields

and

or, in terms of the dimensionless variables,

and

We may write  for  in equation 8.5.1, and substitution for  and  from equations 8.5.6 and 8.5.7 yields

I

z z m e −e

ρ

ϕ

z

Field

= 0B

ρ

=B

ϕ

Iμ

0

2πρ

= 0B

z

Force

eżB
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Equations 8.5.8,9 and 10 give the velocity components of the electron as a function of its distance from the wire.

Equation 8.5.2 expresses the fact that there is no transverse (azimuthal) force. Its time integral, equation 8.5.7) expresses the
consequence that the -component of its angular momentum is conserved. Further, from equations 8.5.8,9 and 10, we find that

so that the speed of the electron is constant. This is as expected, since the force on the electron is always perpendicular to its
velocity; the point of application of the force does not move in the direction of the force, which therefore does no work, so that
kinetic energy, and hence speed, is conserved.

The distance of the electron from the wire is bounded below and above. The lower and upper bounds,  and  are found from
equation 8.5.10 by putting  and solving for . Examples of these bounds are shown in the Table  for a variety of initial
conditions.
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In analysing the motion in more detail, we can start with some particular initial conditions. One easy case is if 
– i.e. the electron starts at rest. In that case there will be no forces on it, and it remains at rest for all time. A less trivial initial
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condition is for , but the other components not zero. In that case, equation 8.5.7 shows that  is constant for all time. What
this means is that the motion all takes place in a plane , and there is no motion “around” the wire. This is just to be
expected, because the -component of the velocity gives rise to a -component of the Lorenz force, and the -component of the
velocity gives rise to a Lorentz force towards the wire, and there is no component of force “around” (increasing ) the wire. The

electron, then, is going to move in the plane  at a constant speed , where . (Recall that 

and  are dimensionless quantities, being the velocity components in units of the characteristic speed ) I am going to coin the
words perineme and aponeme to describe the least and greatest distances of the electrons from the wire – i.e. the bounds of the
motion. These bounds can be found by setting  and  in equation 8.5.10 (where we recall that  - i.e. the ratio
of the radial distance of the electron at some time to its initial radial distance). We obtain

for the aponeme (upper sign) and perineme (lower sign) distances. From equation 8.5.8 we can deduce that the electron is moving
at right angles to the wire (i.e. ) when it is at a distance

The form of the trajectory with v0 = 0 is found by integrating equations 8.5.8 and 8.5.10. It is convenient to start the integration at
perineme so that u0 = 0 and s = w0, and the initial value of x ( / ) = ρ ρ0 is 1. For any other initial conditions, the perineme values
of x and ρ can be found from equations 8.5.10 and 8.5.12 respectively. Equations 8.5.10 and 8.5.8 may them be written

and

There are singularities in the integrands at  and , and, in order to circumvent this difficulty it is convenient to
introduce a variable  defined by

Equations 8.5.14 and 15 then become

and

Examples of these trajectories are shown in Figure , though I’m afraid you will have to turn your monitor on its side to view
it properly. They are drawn for  0.25, 0.50, 1.00 and 2.00, where  is the ration of the constant electron speed to the
characteristic speed . The wire is supposed to be situated along the -axis ( ) with the current flowing in the direction of
positive . The electron drifts in the opposite direction to the current. (A positively charged particle would drift in the same
direction as the current.) Distances in the Figure are expressed in terms of the perineme distance . The shape of the path depends
only on  (and not on ). For no speed does the path have a cusp. The radius of curvature  at any point is given by .

Minima of  occur at  and , where  is an integer;

Maxima of  occur at  and  ;

Maxima of  occur at  and  ;

Minima of  occur at  and .

The distance between successive loops and the period of each loop vary rapidly with electron speed, as is illustrated in Table 
. In this table,  is the electron speed in units of the characteristic speed ,  is the ratio of aponeme to perineme
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distance,  is the ratio of interloop distance to perineme distance,  is the ratio of period per loop to , and  is the drift
speed in units of the characteristic speed .

 

For example, for a current of 1 , the characteristic speed is . If an electron is accelerated through , it
will gain a speed of , which is 50 times the characteristic speed. If the electron starts off at this speed moving in the
same direction as the current and  from it, it will reach a maximum distance of  megaparsecs ( 1 

) from it, provided the Universe is euclidean. The distance between the loops will be , and
the period will be  years, after which the electron will have covered, at constant speed, a total distance of 

. The drift speed will be .

 

Let us now turn to consideration of cases where  so that the motion of the electron is not restricted to a plane. At first glance
is might be thought that since an azimuthal velocity component gives rise to no additional Lorenz force on the electron, the motion
will hardly be affected by a nonzero , other than perhaps by a revolution around the wire. In particular, for given initial velocity
components  and , the perineme and aponeme distances  and  might seem to be independent of . Reference to Table 

, however, shows that this is by no means so. The reason is that as the electron moves closer to or further from the wire, the
changes in  made necessary by conservation of the -component of the angular momentum are compensated for by corresponding
changes in  and  made necessary by conservation of kinetic energy.

Since the motion is bounded above and below, there will always be some time when . There is no loss of generality if we
shift the time origin so as to choose  when  and . From this point, therefore, we shall consider only those
trajectories for which . In other words we shall follow the motion from a time  when the electron is at an apsis (

). [The plural of apsis is apsides. The word apse (plural apses) is often used in this connection, but it seems useful to
maintain a distinction between the architectural term apse and the mathematical term apsis.] Whether this apsis is perineme (so that

, , ) or aponeme (so that , , ) depends on the subsequent motion.
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The electron starts, then, at a distance from the wire defined by . It is of interest to find the value of  at the next apsis, in
terms of the initial velocity components  and . This is found from equation 8.5.10 with  and . The results are
shown in Figure . This Figure shows loci of constant next apsis distance, for values of  (going from bottom left to top right
of the Figure) of 0.05, 0.10, 0.20, 0.50, 1, 2, 5, 10, 20, 50, 100. The heavy curve is for . It will immediately be seen that, if 

, (above the heavy curve) the value of  at the second apsis is greater than 1. (Recall that  and  are dimensionless
ratios, so there is no problem of dimensional imbalance in the inequality.) The electron was therefore initially at perineme and
subsequently moves away from the wire. If on the other hand , , (below the heavy curve) the value of  at the second
apsis is less than 1. The electron was therefore initially at aponeme and subsequently moves closer to the wire.

 

The case where  is of special interest, for them perineme and aponeme distances are equal and indeed the electron stays
at a constant distance from the wire at all times. It moves in a helical trajectory drifting in the opposite direction to the direction of
the conventional current . (A positively charged particle would drift in the same direction as .) The pitch angle  of the helix (i.e.
the angle between the instantaneous velocity and a plane normal to the wire) is given by

where  and  are constrained by the equations

and

This implies that the pitch angle is determined solely by , the ratio of the speed  of the electron to the characteristic speed .
On other words, the pitch angle is determined by the ratio of the electron speed  to the current . The variation of pitch angle 
with speed  is shown in Figure . This relation is entirely independent of the radius of the helix.
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If ,  the electron no longer moves in a simple helix, and the motion must be calculated numerically for each case. It is
convenient to start the calculation at perineme with initial conditions , , . For other initial conditions, the
perineme (and aponeme) values of , ,  and  can easily be found from equations 8.5.10 (with ), 8.5.8 and 8.5.9. Starting,
then, from perineme, integrations of these equations take the respective forms

and

The integration of these equations is not quite trivial and is discussed in the Appendix (Section 8A).

In general the motion of the electron can be described qualitatively roughly as follows. The motion is bounded between two
cylinders of radii equal to the perineme and aponeme distances, and the speed is constant. The electron moves around the wire in
either a clockwise or a counterclockwise direction, but, once started, the sense of this motion does not change. The angular speed
around the wire is greatest at perineme and least at aponeme, being inversely proportional to the square of the distance from the
wire. Superimposed on the motion around the wire is a general drift in the opposite direction to that of the conventional current.
However, for a brief moment near perineme the electron is temporarily moving in the same direction as the current.

An example of the motion is given in Figures  and 8 for initial velocity components , . The aponeme
distance is 11.15 times the perineme distance. The time interval between two perineme passages is 26.47 . The time interval
for a complete revolution around the wire (  ) is 68.05 . In Figure , the conventional electric current is
supposed to be flowing into the plane of the “paper” (computer screen), away from the reader. The portions of the electron
trajectory where the electron is moving towards from the reader are drawn as a continuous line, and the brief portions near
perineme where the electron is moving away from the reader are indicated by a dotted line. Time marks on the Figure are at
intervals of .
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8.6: Appendix. Integration of the Equations
Numerical integration of equations 8.5.22-24 is straightforward (by Simpson’s rule, for example) except near perineme ( ) and
aponeme ( ), where the integrands become infinite. Near perineme, however, we can substitute  and near aponeme we can
substitute , and we can expand the integrands as power series in  and integrate term by term. I gather here the following
results for the intervals  to and  to , where  must be chosen to be sufficiently small that  is smaller
than the precision required.

The constants are defined as follows.
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9.1.1 https://phys.libretexts.org/@go/page/5466

9.1: Introduction to Magnetic Potential
We are familiar with the idea that an electric field  can be expressed as minus the gradient of a potential function . That is

Note that  is not unique, because an arbitrary constant can be added to it. We can define a unique  by assigning a particular
value of  to some point (such as zero at infinity).

Can we express the magnetic field  in a similar manner as the gradient of some potential function , so that, for example, 
? Before answering this, we note that there are some differences between  and . Unlike , the

magnetic field  is sourceless; there are no sources or sinks; the magnetic field lines are closed loops. The force on a charge  in
an electric field is , and it depends only on where the charge is in the electric field – i.e. on its position. Thus the force is
conservative, and we understand from any study of classical mechanics that only conservative forces can be expressed as the
derivative of a potential function. The force on a charge  in a magnetic field is . This force (the Lorentz force) does not
depend only on the position of the particle, but also on its velocity (speed and direction). Thus the force is not conservative. This
suggests that perhaps we cannot express the magnetic field merely as the gradient of a scalar potential function – and this is correct;
we cannot.

This page titled 9.1: Introduction to Magnetic Potential is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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9.2: The Magnetic Vector Potential
Although we cannot express the magnetic field as the gradient of a scalar potential function, we shall define a vector quantity 
whose curl is equal to the magnetic field:

Just as  does not define  uniquely (because we can add an arbitrary constant to it), so, similarly, Equation  does
not define  uniquely. For, if  is some scalar quantity, we can always add  to  without affecting , because 

.

The vector  is called the magnetic vector potential. Its dimensions are . Its SI units can be expressed as 
.

It might be briefly noted here that some authors define the magnetic vector potential from , though it is standard SI
practice to define it from . Systems of units and definitions other than SI will be dealt with in Chapter 16.

Now in electrostatics, we have  for the electric field near a point charge, and, with , we obtain for the

potential . In electromagnetism we have  for the contribution to the magnetic field near a circuit
element . Given that , can we obtain an expression for the magnetic vector potential from the current element? The
answer is yes, if we recognize that  can be written . (If this isn't obvious, go to the expression for  in spherical
coordinates, and put .) The Biot-Savart law becomes

Since  is independent of , the nabla can be moved to the left of the cross product to give

The expression , then, is the contribution  to the magnetic vector potential from the circuit element . Of course an
isolated circuit element cannot exist by itself, so, for the magnetic vector potential from a complete circuit, the line integral of this
must be calculated around the circuit.

This page titled 9.2: The Magnetic Vector Potential is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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9.3: Long, Straight, Current-carrying Conductor
By way of example, let us use the expression , to calculate the magnetic vector potential in the vicinity of a long,
straight, current-carrying conductor ("wire" for short!). We'll suppose that the wire lies along the -axis, with the current flowing in
the direction of positive . We'll work in cylindrical coordinates, and the symbols ,  will denote the unit orthogonal
vectors. After we have calculated , we'll try and calculate its curl to give us the magnetic field . We already know, of course,
that for a straight wire the field is  , so this will serve as a check on our algebra.

Consider an element  on the wire at a height  above the -plane. (The length of this element is ; the unit vector  just
indicates its direction.) Consider also a point P in the -plane at a distance  from the wire. The distance of P from the element 

. The contribution to the magnetic vector potential is therefore

The total magnetic vector potential is therefore

This integral is infinite, which at first may appear to be puzzling. Let us therefore first calculate the magnetic vector potential for a
finite section of length  of the wire. For this section, we have

To integrate this, let , whence  where . From this we obtain 

, whence

For  this becomes

Thus we see that the magnetic vector potential in the vicinity of a straight wire is a vector field parallel to the wire. If the wire is of
infinite length, the magnetic vector potential is infinite. For a finite length, the potential is given exactly by Equation , and,
very close to a long wire, the potential is given approximately by Equation .

Now let us use Equation  together with , to see if we can find the magnetic field . We'll have to use the
expression for  in cylindrical coordinates, which is

In our case,  has only a -component, so this is much simplified:

And since the -component of  depends only on , the calculation becomes trivial, and we obtain, as expected

This is an approximate result for very close to a long wire – but it is exact for any distance for an infinite wire. This may strike you
as a long palaver to derive Equation  – but the object of the exercise was not to derive Equation  (which is trivial from
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Ampère's theorem), but to derive the expression for . Calculating  subsequently was only to reassure us that our algebra was
correct.
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9.4: Long Solenoid
Let us place an infinitely long solenoid of  turns per unit length so that its axis coincides with the -axis of coordinates, and the
current  flows in the sense of increasing . In that case, we already know that the field inside the solenoid is uniform and is

 inside the solenoid and zero outside. Since the field has only a  component, the vector potential  can have only a -
component.

We'll suppose that the radius of the solenoid is . Now consider a circle of radius  (less than ) perpendicular to the axis of the
solenoid (and hence to the field ). The magnetic flux through this circle (i.e. the surface integral of  across the circle) is 

. Now, as everybody knows, the surface integral of a vector field across a closed curve is equal to the line integral
of its curl around the curve, and this is equal to . Thus, inside the solenoid the vector potential is

It is left to the reader to argue that, outside the solenoid , the magnetic vector potential is

This page titled 9.4: Long Solenoid is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.
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9.5: Divergence
Like the magnetic field itself, the lines of magnetic vector potential form closed loops (except in the case of the infinitely long
straight conducting wire, in which case they are infinitely long straight lines). That is to say  has no sources or sinks, or, in other
words, its divergence is everywhere zero:

This page titled 9.5: Divergence is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source
content that was edited to the style and standards of the LibreTexts platform.
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10.1: Introduction to Electromagnetic Induction
In 1820, Oersted had shown that an electric current generates a magnetic field. But can a magnetic field generate an electric
current? This was answered almost simultaneously and independently in 1831 by Joseph Henry in the United States and Michael
Faraday in Great Britain. Faraday constructed an iron ring, about six inches in diameter. He wound two coils of wire tightly around
the ring; one coil around one half (semicircle) of the ring, and the second coil around the second half of the ring. The two coils
were not connected to one another other than by sharing the same iron core. One coil (which I'll refer to as the "primary" coil) was
connected to a battery; the other coil (which I'll refer to as the "secondary" coil) was connected to a galvanometer. When the battery
was connected to the primary coil a current, of course, flowed through the primary coil. This current generated a magnetic field
throughout the iron core, so that there was a magnetic field inside each of the two coils. As long as the current in the primary coil
remained constant, there was no current in the secondary coil. What Faraday observed was that at the instant when the battery was
connected to the primary, and during that brief moment when the current in the primary was rising from zero, a current
momentarily flowed in the secondary – but only while the current in the primary was changing. When the battery was
disconnected, and during the brief moment when the primary current was falling to zero, again a current flowed in the secondary
(but in the opposite direction to previously). Of course, while the primary current was changing, the magnetic field in the iron core
was changing, and Faraday recognized that a current was generated in the secondary while the magnetic flux through it was
changing. The strength of the current depended on the resistance of the secondary, so it is perhaps more fundamental to note that
when the magnetic flux through a circuit changes, an electromotive force (EMF) is generated in the circuit, and the faster the flux
changes, the greater the induced EMF. Quantitative measurements have long established that:

While the magnetic flux through a circuit is changing, an EMF is generated in the circuit which is equal to the rate of
change of magnetic flux  through the circuit.

This is generally called "Faraday's Law of Electromagnetic Induction". A complete statement of the laws of electromagnetic
induction must also tell us the direction of the induced EMF, and this is generally given in a second statement usually known as
"Lenz's Law of Electromagnetic Induction", which we shall describe in Section 10.2. When asked, therefore, for the laws of
electromagnetic induction, both laws must be given: Faraday's, which deals with the magnitude of the EMF, and Lenz's, which
deals with its direction.

You will note that the statement of Faraday's Law given above, says that the induced EMF is not merely "proportional" to the rate
of change of magnetic B-flux, but is equal to it. You will therefore want to refer to the dimensions of electromotive force (SI unit:
volt) and of -flux (SI unit: weber) and verify that  is indeed dimensionally similar to EMF. This alone does not tell you the
constant of proportionality between the induced EMF and , though the constant is in fact unity, as stated in Faraday's law. You
may then ask: Is this value of 1 for the constant of proportionality between the EMF and  an experimental value (and, if so, how
close to 1 is it, and what is its currently determined best value), or is it expected theoretically to be exactly 1? Well, I suppose it has
to be admitted that physics is an experimental science, so that from that point of view the constant has to be determined
experimentally. But I shall advance an argument shortly to show not only that you would expect it to be exactly 1, but that the very
phenomenon of electromagnetic induction is only to be expected from what we already knew (before embarking upon this chapter)
about electricity and magnetism.

Incidentally, we recall that the SI unit for  is the weber ( ). To some, this is not a very familiar unit and some therefore prefer
to express  in . Yet again, consideration of Faraday's law tells us that a perfectly legitimate SI unit (which many prefer) for

 is .
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10.2: Electromagnetic Induction and the Lorentz Force
Imagine that there is a uniform magnetic field directed into the plane of the paper (or your computer screen), as in Figure X.1.
Suppose there is a metal rod, as in the Figure, and that the rod is being moved steadily to the right. We know that, within the metal,
there are many free conduction electrons, not attached to any particular atom, but free to wander about inside the metal. As the
metal rod is moved to the right, these free conduction electrons are also moving to the right and therefore they experience a Lorentz

 force, which moves them down (remember – electrons are negatively charged) towards the bottom end of the rod. Thus the
movement of the rod through the magnetic field induces a potential difference across the ends of the rod. We have achieved
electromagnetic induction, and, seen this way, there is nothing new: electromagnetic induction is nothing more than the Lorentz
force on the conduction electrons within the metal.

You may speculate that, as an aircraft flies through Earth's magnetic field, a potential difference will be induced across the
wingtips. You might try to imagine how you might set up an experiment to detect or measure this. You might also speculate that, as
seawater flows up the English Channel, a potential difference is induced between England and France. You might also ask yourself:
What if the rod were stationary, and the magnetic field were moving to the left? That's an interesting discussion for lunchtime: Can
you imagine the magnetic field moving to the left? Who's to say whether the rod or the field is moving?

If we were somehow to connect the ends of the rod in Figure X.1 to a closed circuit, we might cause a current to flow – and we
would then have made an electric generator. Look at Figure X.2.

We imagine that our metal bar is being pulled steadily to the right at speed , and that it is in contact with, and sliding smoothly
without friction upon, two rails a distance  apart, and that the rails are connected via a resistance . As a consequence, a current 
flows in the circuit in the direction shown, counterclockwise. (The current is, of course, made up of negative conduction electrons
moving clockwise.) Now the magnetic field will exert a force on the current in the rod. The force on the rod will be a ; that is

 acting to the left. In order to keep the rod moving steadily at speed  to the right against this force, work will have to be done
at a rate . The work will be dissipated in the resistance at a rate  where  is the induced EMF. Therefore the induced EMF
is . But  is the rate at which the area of the circuit is increasing, and  is the rate at which the magnetic -flux through
the circuit is increasing. Therefore the induced EMF is equal to the rate of change of magnetic flux through the circuit. Thus we
have predicted Faraday's law quantitatively merely from what we already know about the forces on currents and charged particles
in a magnetic field.

This page titled 10.2: Electromagnetic Induction and the Lorentz Force is shared under a CC BY-NC 4.0 license and was authored, remixed,
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10.3: Lenz's Law
We can now address ourselves to the direction of the induced EMF. From our knowledge of the Lorentz force  we see that
the current flows counterclockwise, and that this results in a force on the rod that is in the opposite direction to its motion. But,
even if we did not know this law, or had forgotten the formula, or if we didn't understand a vector product, we could see that this
must be so. For, suppose that we move the rod to the right, and that, as a consequence, there will be a force also the right. Then the
rod moves faster, and the force to the right is greater, and the rod moves yet faster, and so on. The rod would accelerate indefinitely,
for the expenditure of no work. No – this cannot be right. The direction of the induced EMF must be such as to oppose the change
of flux that causes it. This is merely a consequence of conservation of energy, and it can be stated as Lenz's Law:

When an EMF is induced in a circuit as a result of changing magnetic flux through the circuit, the direction of the induced EMF is
such as to oppose the change of flux that causes it.

In our example of Section 10.2, we increased the magnetic flux through a circuit by increasing the area of the circuit. There are
other ways of changing the flux through a circuit. For example, in Figure X.3, we have a circular wire and a magnetic field
perpendicular to the plane of the circle, directed into the plane of the drawing.

We could increase the magnetic flux through the coil by increasing the strength of the field rather than by increasing the area of the
coil. The rate of increase of the flux would then be  rather than . We could imagine increasing , for example by moving a
magnet closer to the coil, or by moving the coil into a region where the magnetic field was stronger; or, if the magnetic field is
generated by an electromagnet somewhere, by increasing the current in the electromagnet. One way or another, we increase the
strength of the field through the coil. An EMF is generated in the coil equal to the rate of change of magnetic flux, and
consequently a current flows in the coil. In which direction does this induced current flow? It flows in such a direction as to oppose
the increase in  that causes it. That is, the current flows counterclockwise in the coil. If this were not so, and the induced current
were clockwise, this would still further increase the flux through the coil, and the current would increase further, and the flux
would increase further, and so on. A runaway increase in the current and the field would result, and energy would not be conserved.

If we were in decrease the strength of the field through the coil, a current would flow clockwise in the coil – i.e. in such a sense as
to tend to increase the field – i.e. to oppose the decrease in field that we are trying to impose. It may well occur to you at this stage
that it is impossible to increase the current in a circuit instantaneously, and it takes a finite time to establish a new level of current.
This is correct – a point to which we shall return later, when indeed we shall calculate just how long it does take.

Another way in which we could change the magnetic flux through a coil would be to rotate the coil in a magnetic field. For
example, in Figure X.4a, we see a magnetic field directed to the right, and a coil whose normal is perpendicular to the field. There
is no magnetic flux through the coil. If we now rotate the coil, as in Figure X.4b, the flux through the coil will increase, an EMF
will be induced in the coil, equal to the rate of increase of flux, and a current will flow. The current will flow in a direction such
that the magnetic moment of the coil will be as shown, which will result in an opposition to our imposed rotation on the coil, and
the current will flow in the direction indicated by the symbols .
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If the flux through a coil changes at a rate  and if the coil is not just a single turn but is made of  turns, the induced EMF will
be  per turn, so that the induced EMF in the coil as a whole will be .

This page titled 10.3: Lenz's Law is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source
content that was edited to the style and standards of the LibreTexts platform.
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10.4: Ballistic Galvanometer and the Measurement of Magnetic Field
A galvanometer is similar to a sensitive ammeter, differing mainly in that when no current passes through the meter, the needle is in
the middle of the dial rather than at the left hand end. A galvanometer is used not so much to measure a current, but rather to detect
whether or not a current is flowing, and in which direction. In the ballistic galvanometer, the motion of the needle is undamped, or
as close to undamped as can easily be achieved. If a small quantity of electricity is passed through the ballistic galvanometer in a
time that is short compared with the period of oscillation of the needle, the needle will jerk from its rest position, and then swing to
and fro in lightly damped harmonic motion. (It would be simple harmonic motion if it could be completely undamped.) The
amplitude of the motion, or rather the extent of the first swing, depends on the quantity of electricity that was passed through the
galvanometer. It could be calibrated, for example, by discharging various capacitors through it, and making a table or graph of
amplitude of swing versus quantity of electricity passed.

Now, if we have a small coil of area ,  turns, resistance , we could place the coil perpendicular to a magnetic field , and
then connect the coil to a ballistic galvanometer. Then, suddenly (in a time that is short compared with the oscillation period of the
galvanometer), remove the coil from the field (or rotate it through  ) so that the flux through the coil goes from  to zero.
While the flux through the coil is changing, and EMF will be induced, equal to ,  and consequently a current will flow
momentarily through the coil of magnitude

where r is the resistance of the galvanometer. Integrate this with respect to time, with initial condition , and we
find for the total quantity of electricity that flows through the galvanometer

Since  can be measured from the amplitude of the galvanometer motion, the strength of the magnetic field,  is determined.

I mentioned that the ballistic galvanometer differs from that of an ordinary galvanometer or ammeter in that its motion is
undamped. The motion of the needle in an ordinary ammeter is damped, so that the needle doesn't swing violently whenever the
current is changed, and so that the needle moves promptly and purposefully towards its correct position. How is this damping
achieved?

The coil of a moving-coil meter is wound around a small aluminium frame called a former. When the current through the ammeter
coil is changed, the coil – and the former – swing round; but a current is induced in the former, which gives the former a magnetic
moment in such a sense as to oppose and therefore dampen the motion. The resistance of the former is made just right so that
critical damping is achieved, so that the needle reaches its equilibrium position in the least time without overshoot or swinging. The
little aluminium former does not look as if it were an important part of the instrument – but in fact its careful design is very
important!

This page titled 10.4: Ballistic Galvanometer and the Measurement of Magnetic Field is shared under a CC BY-NC 4.0 license and was authored,
remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.

A N R B

90

∘

AB

NAB

˙

I = ,

NAB

˙

R+r

(10.4.1)

Q = 0 when t = 0

Q = .

NAB

R+r

(10.4.2)

Q B

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/5476?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/10%3A_Electromagnetic_Induction/10.04%3A_Ballistic_Galvanometer_and_the_Measurement_of_Magnetic_Field
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/10%3A_Electromagnetic_Induction/10.04%3A_Ballistic_Galvanometer_and_the_Measurement_of_Magnetic_Field
https://creativecommons.org/licenses/by-nc/4.0
https://www.astro.uvic.ca/~tatum/celmechs.html
http://orca.phys.uvic.ca/~tatum/elmag.html


10.5.1 https://phys.libretexts.org/@go/page/5477

10.5: AC Generator
This and the following sections will be devoted to generators and motors. I shall not be concerned with – and indeed am not
knowledgeable about – the engineering design or practical details of real generators or motors, but only with the scientific
principles involved. The "generators" and "motors" of this chapter will be highly idealized abstract concepts bearing little obvious
resemblance to the real things. Need an engineering student, then, pay any attention to this? Well, of course, all real generators and
motors obey and are designed around these very scientific principles, and they wouldn't work unless their designers and builders
had a very clear knowledge and understanding of the basic principles.

The rod sliding on rails in a magnetic field described in Section 10.2 in fact was a D.C. (direct current) generator. I now describe an
A.C. (alternating current) generator.

In Figure X.5 we have a magnetic field , and inside the field we have a coil of area  (yes – area is a vector) and N turns. The
coil is being physically turned counterclockwise by some outside agency at an angular speed  radians per second. I am not
concerned with who, what or how it is being physically turned. For all I know, it might be turned by a little man turning a hand
crank, or by a steam turbine driven by a coal- or oil-burning plant, or by a nuclear reactor, or it might be driven by a water turbine
from a hydroelectric generating plant, or it might be turned by having something rubbing against the rim of your bicycle wheel. All
I am interested in is that it is being mechanically turned at an angular speed . As the coil turns, the flux through it changes, and a
current flows through the coil in a direction such that the magnetic moment generated for the coil is in the direction indicated for
the area  in Figure X.5, and also indicated by the symbols . This will result in an opposition to rotation of the coil;
whoever or whatever is causing the coil to rotate will experience some opposition to his efforts and will have to do work. You can
also deduce the direction of the induced current by considering the direction of the Lorentz force on the electrons in the wire of the
coil.

At the instant illustrated in Figure X.5, the flux through the coil is , or , if we assume that . The
rate of change of flux through the coil at this instant is the time derivative of this, or . The magnitude of the induced
EMF is therefore

where  (" -peak") is the peak or maximum EMF, given by

Are you surprised that the peak EMF is proportional to  ? To  ? To  ? To  ? Verify that  has the correct dimensions
for .

The peak EMF occurs when the flux through the coil is changing most rapidly; this occurs when , at which time the coil is
horizontal and the flux through it is zero.

The leads from the coil can be connected to an external circuit via a pair of slip rings through which they can deliver current to the
circuit.

The actual physical design of a generator is beyond the scope of this chapter and indeed of my expertise, though all depend on the
physical principles herein described. In the "design" (such as it is) that I have described, the coil in which the EMF is induced is the
rotor while the magnet is the stator – but this need not always be the case, and indeed designs are perfectly possible in which the
magnet is the rotor and the coil the stator. In my design, too, I have assumed that there is but one coil – but there might be several
in different planes. For example, you might have three coils whose planes make angles of  with each other. Each then
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generates a sinusoidal voltage, but the phase of each differs by  from the phases of the other two. This enables the delivery of
power to three circuits. In a common arrangement these three circuits are not independent, but each is connected to a common line.
The EMF in this common line is then made up three sine waves differing in phase by :

There are several ways in which you can see what this is like. For example, you could calculate this expression for numerous
values of  and plot the function out as a graph. Or you could expand the expressions  and 

, and gather the various terms together to see what you get. (I recommend trying this.) Or you could simply
add the three components in a phase diagram:

It then becomes obvious that the sum is zero, and this line is the neutral line, the other three being live lines.

This page titled 10.5: AC Generator is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.
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10.6: AC Power
When a current I flows through a resistance , the rate of dissipation of electrical energy as heat is . If an alternating potential
difference  is applied across a resistance, then an alternating current  will flow through it, and the rate at
which energy is dissipated as heat will also change periodically. Of interest is the average rate of dissipation of electrical energy as
heat during a complete cycle of period .

Let  = instantaneous rate of dissipation of energy, and  = average rate over a cycle of period . Then

Thus

The expression  is the mean value of  over a complete cycle. Its square root  is the root mean square value
of the current, . Thus the average rate of dissipation of electrical energy is

Likewise, the RMS EMF (pardon all the abbreviations) over a complete cycle is .

Often when an AC current or voltage is quoted, it is the RMS value that is meant rather than the peak value. I recommend that in
writing or conversation you always make it explicitly clear which you mean.

Also of interest is the mean induced voltage  over half a cycle. (Over a full cycle, the mean voltage is, of course, zero.) We have

Remembering that , we see that

This page titled 10.6: AC Power is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source
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10.7: Linear Motors and Generators
Most (but not all!) real motors and generators are, of course, rotary. In this section I am going to describe highly idealized and
imaginary linear motors and generators, only because the geometry is simpler than for rotary motors, and it is easier to explain
certain principles. We'll move on the rotary motors afterwards.

In Figure X.7 I compare a motor and a generator. In both cases there is supposed to be an external magnetic field (from some
external magnet) directed away from the reader. A metal rod is resting on a pair of conducting rails.

In the motor, a battery is connected in the circuit, causing a current to flow clockwise around the circuit. The interaction between
the current and the external magnetic field produces a force on the rod, moving it to the right.

In the generator, the rod is moved to the right by some externally applied force, and a current is induced counterclockwise. If the B
inside the circle represents a light bulb, a current will flow through the bulb, and the bulb will light up.

Let us suppose that the rails are smooth and frictionless, and suppose that, in the motor, the rod isn't pulling any weight. That is to
say, suppose that there is no mechanical load on the motor. How fast will the rod move? Since there is a force moving the rod to the
right, will it continue to accelerate indefinitely to the right, with no limit to its eventual speed? No, this is not what happens. When
the switch is first closed and the rod is stationary, a current will flow, given by , where  is the EMF of the battery and 
is the total resistance of the circuit. However, when the rod has reached a speed , the area of the circuit is increasing at a rate ,
and a back EMF (which opposes the EMF of the battery), of magnitude  is induced, so the net EMF in the circuit is now 

 and the current is correspondingly reduced according to

Eventually the rod reaches a limiting speed of , at which point no further current is being taken from the battery, and the
rod (sliding as it is on frictionless rails with no mechanical load) then obeys Newton's first law of motion – namely it will continue
in its state of uniform motion, because no forces are no acting upon it.

Problem 1. Show that the speed increases with time according to

where  is the mass of the rod.

Problem 2. Show that the time for the rod to reach half of its maximum speed is

FIGURE X.7
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Problem 3. Suppose that . If the rod reaches a speed of ,
what is the strength of the magnetic field?

I'll give solutions to these problems at the end of this section. Until then – no peeking.

In a frictionless rotary motor, the situation would be similar. Initially the current would be , but, when the motor is rotating
with angular speed , the average back EMF is  equations 10.5.2 and 10.6.5), and by the time this has reached the EMF
of the battery, the frictionless, loadless coil carries on rotating at constant angular speed, taking no current from the battery.

Now let's go back to our linear motor consisting of a metal rod lying on two rails, but this time suppose that there is some
mechanical resistance to the motion. This could be either because there is friction between the rod and the rails, or perhaps the rod
is dragging a heavy weight behind it, or both. One way or another, let us suppose that the rod is subjected to a constant force 
towards the left. As before, the relation between the current and the speed is given by Equation , but, when a steady state has
been reached, the electromagnetic force  pulling the rod to the right is equal to the mechanical load  dragging the rod to the
left. That is, . If we eliminate  between these two equations, we obtain

or

This equation, which relates the speed at which the motor runs to the mechanical load, is called the motor performance
characteristic. In our particular motor, the performance characteristic shows that the speed at which the motor runs decreases
steadily as the load is increased, and the motor runs to a grinding halt for a load equal to . (Verify that this has the
dimensions of force.) The current is then . This current may be quite large. If you physically prevent a real motor from turning
by applying a mechanical torque to it so large that the motor cannot move, a large current will flow through the coil – large enough
to heat and possibly fuse the coil. You will hear a sharp crack and see a little puff of smoke.

If we multiply Equation  by , we obtain

or

This shows that the power produced by the battery goes partly into doing external mechanical work, and the remainder is dissipated
as heat in the resistance. Restrain the motor so that , and all of that  goes into .

If you were physically to move the rod to the right at a speed faster than the equilibrium speed, the back EMF becomes greater than
the battery EMF, and current flows back into the battery. The device is then a generator rather than a motor.

The nature of the performance characteristic varies with the details of motor design. You may not want a motor whose speed
decreases so drastically with load. You may have to decide in advance what sort of performance characteristic you want the motor
to have, depending on what tasks you want it to perform, and then you have to design the motor accordingly. We shall mention
some possibilities in the next section.

Now – the promised solutions to the problems.

Solution to Problem 1.

When the speed of the rod is , the net EMF in the circuit is , so the current is , and so the force on the rod
will be  and the acceleration  will be . The equation of motion is therefore

Integration, with  when , gives the required Equation .
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Solution to Problem 2.

Just put  in Equation  and solve for . Verify that the expression has the dimensions of time.

Solution to Problem 3.

Put the given numbers into Equation  to get

and solve this for . (Nice and easy. But if you are not experienced in solving equations such as this, the Newton-Raphson process
is described in Chapter 1 of the Celestial Mechanics notes of this series. This equation would be good practice.) There are two
possible answers, namely  and 0.249505 teslas. I draw the speed:time graphs for the two solutions below:

Numbers of interest for the two fields:

This page titled 10.7: Linear Motors and Generators is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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10.8: Rotary Motors
Most real motors, of course, are rotary motors, though all of the principles described for our highly idealized linear motor of the
Section 10.7 still apply.

Current is fed into a coil (known as the armature) via a split-ring commutator and the coil therefore develops a magnetic moment.
The coil is in a magnetic field, and it therefore experiences a torque. (Figure X.5) The coil rotates and soon its magnetic moment
vector will be parallel to the field and there would be no further torque – except that, at that instant, the split-ring commutator
reverses the direction of the current in the coil, and hence reverses the direction of the magnetic moment. Thus the coil continues to
rotate until, half a period later, its new magnetic moment again lines up with the magnetic field, and the commutator again reverses
the direction of the moment.

As in the case of the linear motor, the coil reaches a maximum angular speed, which depends on the mechanical load (this time a
torque) and the relation between the maximum angular speed and the torque is the motor performance characteristic.

Also, as with a generator, there may be several coils (with a corresponding number of sections in the commutator), and it is also
possible to design motors in which the armature is the stator and the magnet the rotor – but I am not particularly knowledgeable
about the detailed engineering designs of real motors – except that all of them depend upon the same scientific principles.

In all of the foregoing, it has been assumed that the magnetic field is constant, as if produced by a permanent magnet. In real
motors, the field is generally produced by an electromagnet. (Some types of iron retain their magnetism permanently unless
deliberately demagnetized. Others become magnetized only when placed in a strong magnetic field such as produced by a solenoid,
and they lose most of their magnetization as soon as the magnetizing field is removed.)

The field coils may be wound in series with the armature coil (a series-wound motor) or in parallel with it (a shunt-wound motor),
or even partly in series and partly in parallel (a compound-wound motor). Each design has it own performance characteristic,
depending on the use for which it is intended.

With a single coil rotating in a magnetic field, the induced back EMF varies periodically, the average value being, as we have seen, 
. In practice the coil may be wound around many slots placed around the perimeter of a cylindrical core every few

degrees, and there are a corresponding number of sections in the split-ring commutator. The back EMF is then less variable than
with a single coil, and, although the formula  is no longer appropriate, the back EMF is still proportional to . We can
write the average back EMF as , where the motor constant  depends on the detailed geometry of a particular design.

Shunt-wound Motors
In the shunt-wound motor, the field coil is wound in parallel to the armature coil. In this case, the back EMF generated in the
armature does not affect the current in the field coil, so the motor operates rather as previously described for a constant field. That
is, the motor performance characteristic, giving the equilibrium angular speed in terms of the mechanical load (torque, ) is given
by

Here,  is the armature resistance. In practice, there may be a variable resistance (rheostat) in series with the field coil, so that the
current through the field coil – and hence the field strength – can be changed.

Series-wound Motors

Series-wound Motor. The field coil is wound in series with the armature, and the motor performance characteristic is rather
different that for the shunt-wound motor. If the magnet core does not saturate, then, to a linear approximation, the field is
proportional to the current, and the back EMF is proportional to the product of the current  and the angular speed  - so let's say
that the back EMF is . We then have

where  is the externally applied EMF (from a battery, for example) and  is the total resistance of field coil plus armature.

Multiply both sides by :
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The term  is the power supplied by the battery and  is the power dissipated as heat. Thus the rate of doing mechanical work
is , which shows that the torque exerted by the motor is . If we now substitute  for  in Equation , we
obtain the motor performance characteristic – i.e. the relation between :

In Figure X.8 we show the performance characteristics, in arbitrary units, for shunt- and series wound motors, based in our linear
analysis, which assumes in both cases no saturation of the electromagnet iron core. The maximum possible torque in both cases is
the torque that makes  in the corresponding performance characteristic, namely  for the shunt-wound motor and 

 for the series-wound motor. The latter goes to infinity for zero load. This does not happen in practice, because we have
made some assumptions that are not real (such as no saturation of the magnet core, and also there can never be literally zero load),
but nevertheless the analysis is sufficient to show the general characteristics of the two types.

The characteristics of the two may be combined in a compound-wound motor, depending on the intended application. For example,
a tape-recorder requires constant speed, whereas a car starter requires a high starting torque.

This page titled 10.8: Rotary Motors is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.
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10.9: The Transformer
Two coils are wound on a common iron core. The primary coil is connected to an AC (alternating current) generator of (RMS)
voltage . If there are  turns in the primary coil, the primary current will be proportional to  and, provided the core is
not magnetically saturated, the magnetic field will also be proportional to this. The voltage  induced in the secondary coil (of 
turns) will be proportional to  and to the field, and so we have

We shall give a more detailed analysis of the transformer in a later chapter. However, one aspect which can be noted here is that the
rapidly-changing magnetic field induces eddy currents in the iron core, and for this reason the core is usually constructed of thin
laminated sheets (or sometimes wires) insulated from each other to reduce these energy-wasting eddy currents. Sometimes these
laminations vibrate a little unless tightly bound together, and this is often responsible for the "hum" of a transformer.

Figure 10.9.1: Idealized single-phase transformer also showing the path of magnetic flux through the core.Magnetic flux is
produced by the primary winding, and contained by the high permeability core, links the secondary winding. The mutual

inductance between the two windings results in an induced voltage on the secondary side, whose magnitude is determined by the
ratio of turns between the two windings. (CC SA-BY 3.0; BillC).

This page titled 10.9: The Transformer is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.

V

1

N

1

/V

1

N

1

V

2

N

2

N

2

= .

V

2

V

1

N

2

N

1

(10.9.1)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/7893?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/10%3A_Electromagnetic_Induction/10.09%3A_The_Transformer
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/13%3A_Electromagnetic_Induction/13.06%3A_Eddy_Currents
https://en.wikipedia.org/wiki/User:BillC
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/10%3A_Electromagnetic_Induction/10.09%3A_The_Transformer
https://creativecommons.org/licenses/by-nc/4.0
https://www.astro.uvic.ca/~tatum/celmechs.html
http://orca.phys.uvic.ca/~tatum/elmag.html


10.10.1 https://phys.libretexts.org/@go/page/7894

10.10: Mutual Inductance
Consider two coils, not connected to one another, other than being close together in space. If the current changes in one of the
coils, so will the magnetic field in the other, and consequently an EMF will be induced in the second coil. Definition: The ratio of
the EMF  induced in the second coil to the rate of change of current  in the first is called the coefficient of mutual inductance 

 between the two coils:

The dimensions of mutual inductance can be found from the dimensions of EMF and of current, and are readily found to be 
.

Definition: If an EMF of one volt is induced in one coil when the rate of change of current in the other is 1 amp per second, the
coefficient of mutual inductance between the two is 1 henry, .

Mental Exercise: If the current in coil 1 changes at a rate , the EMF induced in coil 2 is . Now ask yourself this: If the
current in coil 2 changes at a rate  is it true that the EMF induced in coil 1 will be ? (The answer is "yes" – but you are not
excused the mental effort required to convince yourself of this.)

Example: Suppose that the primary coil is an infinite solenoid having  turns per unit length wound round a core of permeability 
. Tightly would around this is a plain circular coil of  turns. The solenoid and the coil wrapped tightly round it are of area .

We can calculate the mutual inductance of this arrangement as follows. The magnetic field in the primary is  so the flux
through each coil is . If the current changes at a rate , flux will change at a rate  and the EMF induced in the
secondary coil will be . Therefore the mutual inductance is

Several points:

1. Verify that this has the correct dimensions.
2. If the current in the solenoid changes in such a manner as to cause an increase in the magnetic field towards the right, the EMF

induced in the secondary coil is such that, if it were connected to a closed circuit so that a secondary current flows, the direction
of this current will produce a magnetic field towards the left – i.e. such as to oppose the rightward increase in .

3. Because of the little mental effort you made a few minutes ago, you are now convinced that, if you were to change the current
in the plane coil at a rate , the EMF induced in the solenoid would be , where  is given by Equation .

4. Equation  is the equation for the mutual inductance of the system, provided that the coil and the solenoid are tightly
coupled. If the coil is rather loosely draped around the solenoid, or if the solenoid is not infinite in length, the mutual inductance
would be rather less than given by Equation . It would be, in fact, , where , a dimensionless number
between 0 and 1, is the coupling coefficient.

5. While we have hitherto expressed permeability in units of tesla metres per amp (  ) or some such combination,
Equation  shows that permeability can equally well be (and usually is) expressed in henrys per metre, . Thus, we
say that the permeability of free space is .

This page titled 10.10: Mutual Inductance is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum
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 A plane coil of 10 turns is tightly wound around a solenoid of diameter 2 cm having 400 turns per centimeter.
The relative permeability of the core is 800. Calculate the mutual inductance. (I make it 0.126 .)H
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10.11: Self Inductance
In this section we are dealing with the self inductance of a single coil rather than the mutual inductance between two coils. If the
current through a single coil changes, the magnetic field inside that coil will change; consequently a back EMF will be induced in
the coil that will oppose the change in the magnetic field and indeed will oppose the change of current.

The ratio of the back EMF to the rate of change of current is the coefficient of self inductance . If the back EMF is 1 volt when the
current changes at a rate of one amp per metre, the coefficient of self inductance is 1 henry.

Show that the coefficient of self inductance (usually called simply the "inductance") of a long solenoid of length  and having 
turns per unit length is , where I'm sure you know what all the symbols stand for. Put some numbers in for an imaginary
solenoid of your own choosing, and calculate its inductance in henrys.

The circuit symbol for inductance is

.

If a coil has an iron core, this may be indicated in the circuit by

.

The symbol for a transformer is

.

Finally, don't confuse self-inductance with self-indulgence.

This page titled 10.11: Self Inductance is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.
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10.12: Growth of Current in a Circuit Containing Inductance
It will have occurred to you that if the growth of current in a coil results in a back EMF which opposes the increase of current,
current cannot change instantaneously in a circuit that contains inductance. This is correct. (Recall also that the potential difference
in a circuit cannot change instantaneously in a circuit containing capacitance. Come to think of it, it is hardly possible for the
capacitance or inductance of any circuit to be exactly zero; any real circuit must have some capacitance and inductance, even if
very small.)

Consider the circuit of Figure X.9. A battery of EMF  is in series with a resistance and an inductance. (A coil or solenoid or any
inductor in general will have both inductance and resistance, so the  and the  in the Figure may belong to one single item.) We
have to be very careful about signs in what follows.

When the circuit is closed (by a switch, for example) a current flows in the direction shown. by an arrow, which also indicates the
direction of the increase of current. An EMF  is induced in the opposite direction to . Thus, Ohm's law, or, if your prefer,
Kirchhoff's second rule, applied to the circuit (watch the signs carefully) is

Hence:

Warning: Some people find an almost irresistible urge to write this as .

Don't!

You can anticipate that the left hand side is going to be a logarithm, so make sure that the denominator is positive. You may recall a
similar warning when we were charging and discharging a capacitor through a resistance.

Integration of Equation  results in the following equation for the growth of the current with time:

Thus the current asymptotically approaches its ultimate value of , reaching 63% (i.e.  ) of its ultimate value in a time 
. In Figure X.10, the current is shown in units of , and the time in units of . You should check that , which is

called the time constant of the circuit, has the dimensions of time.
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Here is a problem that will give practice in sending a current through an inductor, applying Kirchhoff’s rules, and solving
differential equations. There is a similar problem involving a capacitor, in Chapter 5, Section 5.19.

In the above circuit, while the switch is open, . Long after the switch is closed and steady currents
have been reached,  will be , and  will each be . But we want to investigate what happens in the brief
moment while the current is changing.

We apply Kirchhoff’s rules:

[Getting the sign of  right in Equation  is important. Think of the inductor as a battery of EMF  oriented like this: 

.]

Eliminate  to get a single equation in .

This is of the form , and those experienced with differential equations will have no difficulty in arriving at the solution

With the initial condition that , this becomes

The other currents are found from Kirchhoff’s rules (equations -6). I make them:
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Thus  goes from initially .

 goes from initially .

 goes from initially zero to finally .

Here are graphs of the currents (in units of ) as a function of time (in units of ).
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10.13: Discharge of a Capacitor through an Inductance
The circuit is shown in Figure X.11, and, once again, it is important to take care with the signs.

If  is the charge on the left hand plate of the capacitor at some time (and  the charge on the right hand plate) the current  in
the direction indicated is  and the potential difference across the plates is . The back EMF is in the direction shown, and
we have

or

This can be written

which is simple harmonic motion of period . (verify that this has dimensions of time.) Thus energy sloshes to and fro
between storage as charge in the capacitor and storage as current in the inductor.

If there is resistance in the circuit, the oscillatory motion will be damped, the charge and current eventually approaching zero. But,
even if there is no resistance, the oscillation does not continue for ever. While the details are beyond the scope of this chapter, being
more readily dealt with in a discussion of electromagnetic radiation, the periodic changes in the charge in the capacitor and the
current in the inductor, result in an oscillating electromagnetic field around the circuit, and in the generation of an electromagnetic
wave, which carries energy away at a speed of . Verify that this has the dimensions of speed, and that it has the value 

. The motion in the circuit is damped just as if there were a resistance of  in the
circuit. Verify that this has the dimensions of resistance and that it has a value of . This effective resistance is called the
impedance of free space.
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FIGURE X.11
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10.14: Discharge of a Capacitor through an Inductance and a Resistance
In the section and the next, the reader is assumed to have some experience in the solution of differential equations. When we arrive
at a differential equation, I shall not go into the mechanics of how to solve it, I shall merely write down the solution of the equation
immediately following it, without explanation. It is not assumed that a reader will immediately be able to solve the equation is his
or her head, but would be able to do so given half an hour in a quiet room. Those with no experience in differential equations will
have to take the solutions given on trust.

A charged capacitor of capacitance  is connected in series with a switch and an inductor of inductance . The switch is closed,
and charge flows out of the capacitor and hence a current flows through the inductor. Thus while the electric field in the capacitor
diminishes, the magnetic field in the inductor grows, and a back electromotive force (EMF) is induced in the inductor. Let  be the
charge in the capacitor at some time. The current  flowing from the positive plate is equal to . The potential difference across
the capacitor is  and the back EMF across the inductor is . The potential drop around the whole circuit is zero, so
that . The charge on the capacitor is therefore governed by the differential equation

which is simple harmonic motion with . You should verify that this has dimensions .

If there is a resistor of resistance  in the circuit, while a current flows through the resistor there is

a potential drop  across it, and the differential equation governing the charge on the capacitor is then

This is damped oscillatory motion, the condition for critical damping being . In fact, it is not necessary actually to
have a physical resistor in the circuit. Even if the capacitor and inductor were connected by superconducting wires of zero
resistance, while the charge in the circuit is slopping around between the capacitor and the inductor, it will be radiating
electromagnetic energy into space and hence losing energy. The effect is just as if a resistance were in the circuit.

Those familiar with differential equations will recognize that the nature of the solution will depends on whether the resistance

is greater than, less than, or equal to . You can use the table of dimensions in Chapter 11 to verify that  is

dimensionally similar to resistance.

If the resistance is smaller than  the charge in the capacitor will vary with time as

where  and
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This is a sine function whose amplitude decreases exponentially with time. The constants  and  are arbitrary constants of
integration, which depend upon the initial conditions. If the initial conditions are such that, at time ,  and ,
then Equation  becomes, after a little algebra and trigonometry

This is a sine function whose amplitude decreases exponentially with time.

If the resistance is larger than  the charge in the capacitor will vary with time as

where

Here, and  are arbitrary constants of integration, which depend upon the initial conditions. If the initial conditions are such
that, at time 0, , then Equation  becomes

Thus, with these initial conditions,  decreases monotonically, without oscillation, to zero as .

If the resistance is equal to  the charge in the capacitor will vary with time as

If the initial conditions are such that, at time 0, , then Equation  becomes

which decreases monotonically to zero as .
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10.15: Charging a Capacitor through and Inductance and a Resistance
In Section 5.19 we connected a battery to a capacitance and a resistance in series to see how the current in the circuit and the charge
in the capacitor varied with time; In this chapter, Section 10.12, we connected a battery to an inductance and a resistance in series
to see how the current increased with time. We have not yet connected a battery to , ,  in series. We are about to do this. We
also recall, from Section 5.19, when we connect a battery to  and  in series, the current apparently increases instantaneously
from zero to  as soon as we closed the switch. We pointed out that any real circuit (which is necessarily a loop) must have
some inductance, however small, and consequently the current takes a finite time, however small, to reach its maximum value after
the switch is closed.

The differential equation that shows how the EMF of the battery is equal to the sum of the potential differences across the three
elements is

If we write  we arrive at the differential equation for the charge in the capacitor:

The general solutions to this are the same as for Equation 10.14.2 except for the addition of the particular integral, which devotees
of differential equations will recognize as simply . The general solutions for the current I can be found by differentiating the
solutions for  with respect to time.

Thus the general solutions are

If the resistance is smaller than  the charge in the capacitor and the current in the circuit will vary with time as

The definitions of the constants  were given by equations 10.14.4.

If the resistance is larger than  the charge in the capacitor and the current in the circuit will vary with time as

The definitions of the constants  were given by equations 10.14.7.

If the resistance is equal to  the charge in the capacitor and the current in the circuit will vary with time as

The constants of integration can be found from the initial conditions. At , the charge in the capacitor, is zero. (This is
different from the example in Section 10.14, where the initial charge was . Also at , the current . Indeed this is one of
the motivations for doing this investigation - remember our difficulty in Section 5.19. The results of applying the initial conditions
are:

If the resistance is larger than  the constants of integration are given by
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These could in principle be inserted into equations  and . For computational purposes it is easier to leave the
equations as they are.

If the resistance is larger than  the charge in the capacitor and the current in the circuit will vary with time as

If the resistance is equal to  the charge in the capacitor and the current in the circuit will vary with time as

It will be noted, in all three cases, that the complementary function of the solution to the differential equation is a transient which
eventually disappears, while the particular integral represents the final steady state solution. Readers may have noticed that, when
a fuse blows, it often blows just when you switch on; it is the transient surge that strikes the fatal blow.

The situation that initially interested us in this problem was the case when the inductance in the circuit was very small - that is,

when the resistance is larger than . We were concerned that, when the inductance was actually zero, the current apparently

immediately rose to  as soon as the switch was closed. So let us look at Equation . If we multiply both sides by  it
can then be written in dimensionless form as

where

In other words we are expressing time in units of .

It can be observed, by differentiation of Equation , that the current will reach a maximum value (which is less than )
at time given by

The two  constants, first defined in equations 10.14.7, can be written in the form

I introduce the dimensionless ratio

so that

In the table and graph below I show how the current  changes with time (Equation , or, in dimensionless form, )
for  and for . The current is given in units of , and the time is in units of . Only if the inductance of the
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circuit is exactly zero (which cannot possibly be obtained in any real closed circuit) will the current jump immediately from 0 to 
 at the instant when the switch is closed.
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remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.

E/R

x

0.10

0.04

l

1

1.12702

1.04356

l

2

8.87298

23.95644

l

1

l

2

−l

2

l

1

1.29099

1.09109

τ

max

0.26639

0.13676

I

max

E/R

0.83473

0.90476

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/7906?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/10%3A_Electromagnetic_Induction/10.15%3A_Charging_a_Capacitor_through_and_Inductance_and_a_Resistance
https://creativecommons.org/licenses/by-nc/4.0
https://www.astro.uvic.ca/~tatum/celmechs.html
http://orca.phys.uvic.ca/~tatum/elmag.html


10.16.1 https://phys.libretexts.org/@go/page/7908

10.16: Energy Stored in an Inductance
During the growth of the current in an inductor, at a time when the current is  and the rate of increase of current is , there will be
a back EMF . The rate of doing work against this back EMF is then . The work done in time  where 
is the increase in current in time . The total work done when the current is increased from 0 to  is

and this is the energy stored in the inductance. (Verify the dimensions.)

This page titled 10.16: Energy Stored in an Inductance is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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10.17: Energy Stored in a Magnetic Field
Recall your derivation (Section 10.11) that the inductance of a long solenoid is . The energy stored in it, then, is .
The volume of the solenoid is , and the magnetic field is , or . Thus we find that the energy stored per unit
volume in a magnetic field is

In a vacuum, the energy stored per unit volume in a magnetic field is - even though the vacuum is absolutely empty!

Equation 10.16.2 is valid in any isotropic medium, including a vacuum. In an anisotropic medium,  are not in general
parallel – unless they are both parallel to a crystallographic axis. More generally, in an anisotropic medium, the energy per unit
volume is .

Verify that the product of  has the dimensions of energy per unit volume.

This page titled 10.17: Energy Stored in a Magnetic Field is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
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11: Dimensions
Although we have not yet met all of the quantities in use in electricity and magnetism, we have met most of the important ones. Of
those yet to come, some, such as impedance and reactance, will obviously have the dimensions of resistance; some, such as
reluctance and permeance, you will rarely come across; and some, such as magnetic susceptibility, will obviously be dimensionless.
Now is therefore quite a convenient time to gather together the various quantities we have come across, together with their
dimensions (i.e. the powers of M, L, T and Q of which they are composed) and their SI units.
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12.1: Introduction
This chapter is likely to be a short one, not least because it is a subject in which my own knowledge is, to put it charitably, a little
limited. A thorough understanding of why some materials are magnetic requires a full course in the physics of the solid state, a
course that I could not possibly give. Nevertheless, there are a few basic concepts and ideas concerned with magnetic materials
which everyone who is interested in electromagnetism should know, and it is the aim of this chapter to describe them in a very
introductory way.

It may be worthwhile to remind ourselves of the ways in which we have defined the magnetic fields  and . To define , we
noted that an electric current situated in a magnetic field experiences a force at right angles to the current, the magnitude and
direction of this force depending on the direction of the current. We accordingly defined  as being equal to the maximum force
per unit length experienced per unit current, the defining equation being .

Later, we asked ourselves about the strength of the magnetic field in the vicinity of an electric current. We introduced the Biot-
Savart law, which says that the contribution to the magnetic field from an element  of a circuit carrying a current  is
proportional to  and we called the constant of proportionality  where  is the permeability of the material
surrounding the current. We might equally well have approached it from another angle. For example, we might have noted that the
magnetic field inside a solenoid is proportional to , and we could have denoted the constant of proportionality , the
permeability of the material inside the solenoid.

We then defined  as being an alternative measure of the magnetic field, given by .

In an isotropic medium, the vectors  and  are parallel, and the permeability is a scalar quantity. In an anisotropic crystal,  and 
 are not necessarily parallel, and the permeability is a tensor.

Some people see an analogy between the equation between the equation  and the equation  of electric fields. With
our approach, however, I think most readers will see that, to the extent that there may be an analogy, the analogy is between 

 and .

For example, consider a long solenoid, in the inside of which are two different magnetic materials in series, the first of permeability
 and the second of greater permeability . The -field everywhere inside the solenoid is just , regardless of what is inside it.

Like , the component of  perpendicular to the boundary between two media is continuous, whereas the perpendicular
component of  is greater inside the material with the larger permeability. Likewise, if you were to consider, for example, two
different media lying side-by-side in parallel, between the poles, for example, of a horseshoe magnet, the component of  parallel
to the boundary between the media is continuous, and the parallel component of  is less in the medium of greater permeability.

In this chapter, we shall introduce a few new words, such as permeance and magnetization. We shall describe in a rather simple and
introductory way five types of magnetism exhibited by various materials: diamagnetism, paramagnetism, ferromagnetism,
antiferromagnetism and ferrimagnetism. And we shall discuss the phenomenon of hysteresis.
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12.2: Magnetic Circuits and Ohm's Law
Some people find it helpful to see an analogy between a system of solenoids and various magnetic materials and a simple electrical
circuit. They see it as a "magnetic circuit". I myself haven't found it to be particularly useful – but, as I mentioned, my experience
in this field is less than extensive. I think it may be useful for some readers, however, at least to be introduced to the concept.

The magnetic field inside a long solenoid is given by . Here,  is the number of turns per unit length,  is the
total number of turns, and  is the length of the solenoid. If the cross-sectional area of the solenoid is , the -flux is 

. This can be written

The analogy which some people find useful is between this and Ohm's law:

The term , expressed in ampere-turns, is the magnetomotive force MMF.

The symbol  is the familiar B-flux, and is held to be analogous to current.

The term  is the reluctance, expressed in H . Reluctances add in series.

The reciprocal of the reluctance is the permeance, expressed in H. Permeances add in parallel.

Although the SI unit of permeance is the henry, permeance is not the same as the inductance. It will be recalled, for example, that
the inductance of a long solenoid of N turns is

Continuing with the analogy, we recall that resistivity =  resistance;

Similarly reluctivity =  reluctance = .

Also, the reciprocal of resistance is conductance.

Similarly, the reciprocal of reluctance is permeance. (H)

And conductivity is  conductance.

Likewise  permeance is – what else? – permeability .

I have mentioned these names partly for completeness and partly because it's fun to write some unusual and unfamiliar words such
as permeance and reluctivity. I am probably not going to use these concepts further or give examples of their use. This is mostly
because I am not as familiar with them myself as perhaps I ought to be, and I am sure that there are contexts in which these
concepts are indeed highly useful. The next section introduces some more funny words, such as magnetization and susceptibility –
but these are words that you will need to know and understand.
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12.3: Magnetization and Susceptibility
The -field inside a long solenoid is . If there is a vacuum inside the solenoid, the B-field is . If we now place an
iron rod of permeability  inside the solenoid, this doesn't change , which remains . The B-field, however, is now .
This is greater than , and we can write

The quantity  is called the magnetization of the material. In SI units it is expressed in A m . We see that there are two
components to . There is the , which is the externally imposed field, and the component , originating as a
result of something that has happened within the material.

It might have occurred to you that you would have preferred to define the magnetization from

so that the magnetization would be the excess of  over . The equation , would be analogous to the
familiar

and the magnetization would then be expressed in tesla rather than in A m . This viewpoint does indeed have much to
commend it, but so does

The latter is the recommended definition in the SI approach, and that is what we shall use here.

The ratio of the magnetization  ("the result") to  ("the cause"), which is obviously a measure of how susceptible the material is
to becoming magnetized, is called the magnetic susceptibility  of the material:

On combining this with Equation  and , we readily see that the magnetic susceptibility (which is dimensionless) is
related to the relative permeability  by
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12.4: Diamagnetism
We mentioned in Section 12.1 that there are five types of magnetism exhibited by various materials. In this section we deal with the
first of these, namely, diamagnetism.

Diamagnetic materials have a very weak negative susceptibility, typically of order 10 . That is to say, the relative permeability is
slightly less than 1. Consequently, when a diamagnetic material is placed in a magnetic field, 

If you are now hearing about this phenomenon for the first time, you may be a little surprised, and you will be expecting me to
present a very short list of quite exotic materials known to be diamagnetic. So, here comes a further surprise: All materials are
diamagnetic. Some materials may also be paramagnetic or ferromagnetic, and their positive paramagnetic or ferromagnetic
susceptibilities may be larger than their negative diamagnetic susceptibility, so that their overall susceptibility is positive. But all
materials are diamagnetic, even if their diamagnetism is hidden by their greater paramagnetism or ferromagnetism.

All materials are diamagnetic.

A proper account of the mechanism at the atomic level of the cause of diamagnetism requires a quantum mechanical treatment, but
we can understand the phenomenon qualitatively classically. We just have to think of an atom as being a nucleus surrounded by
electrons moving in orbits around the nucleus. When an atom (or a large collection of atoms in a macroscopic sample of matter) is
placed in a magnetic field, a current is induced within the atom by electromagnetic induction. That is, the electrons are caused to
orbit around the nucleus, and hence to give the atom a magnetic moment, in such a direction as to oppose the increase in the
magnetic field that causes it. The result of this happening to all of the atoms in a macroscopic sample is that B will now be less than

, and the susceptibility will be negative. But, you may argue, these induced currents and their associated opposing magnetic
moments will last only so long as the external field is changing. In fact it persists as long as the magnetizing field persists. The
reason is as follows. In Chapter 10, we were dealing with wires and coils and resistors, and any current induced by a changing
magnetic field was rapidly dissipated. For an electron in an orbit around a nucleus, however, there is no resistance, so, once it is set
in motion, it will stay in motion. The same situation would arise if we were to induce a current in a loop of wire made of
superconducting material whose resistance is zero. The current, once induced, continues, and is not dissipated away as heat.
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12.5: Paramagnetism
Diamagnetism makes itself evident in atoms and molecules that have no permanent magnetic moment. Some atoms or molecules,
however, do have a permanent magnetic moment, and such materials are paramagnetic. They must still be diamagnetic, but often
the paramagnetism will outweigh the diamagnetism. The magnetic moment of an atom of a molecule is typically of order of a Bohr
magneton. (See Chapter VII, Sections 21-23, of Stellar Atmospheres for more details about the Bohr magneton and the magnetic
moments of atoms. All that we need note here is that a Bohr magneton is about  N m T .) The presence of a permanent
magnetic moment is often the result of unpaired electron spins. An example often quoted is the oxygen molecule O . Liquid
oxygen indeed is paramagnetic. When a paramagnetic material is placed in a magnetic field, the magnetic moments experience a
torque and they tend to orient themselves in the direction of the magnetic field, thus augmenting, rather than diminishing, B.
Unsurprisingly the effect is greatest at low temperatures, where the random motion of atoms and molecules is low. At liquid helium
temperatures (of order 1 K), susceptibilities can be of order +10  or +10 , thus greatly exceeding the small negative susceptibility.
At room temperature, paramagnetic susceptibilities are much less – typically about +10 , barely exceeding the diamagnetic
susceptibility.
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12.6: Ferromagnetism
What we normally think of as magnetic materials are technically ferromagnetic. The susceptibilities of ferromagnetic materials are
typically of order +10  or 10  or even greater. However, the ferromagnetic susceptibility of a material is quite temperature
sensitive, and, above a temperature known as the Curie temperature, the material ceases to become ferromagnetic, and it becomes
merely paramagnetic.

Among the elements, only cobalt, iron and nickel are strongly ferromagnetic, their Curie temperatures being about 1400, 1040 and
630 K respectively. Gadolinium is ferromagnetic at low temperatures; its Curie temperature is about 289 K = 16 C. Dysprosium is
ferromagnetic below its Curie temperature of about 105 K. There are many artificial alloys and ceramic materials which are
ferromagnetic.

As with paramagnetic materials, the atoms have permanent magnetic moments, but with the difference that these moments are not
randomly oriented but are strongly aligned to the crystallographic axes. Within a single crystal, there exist domains, within which
all the magnetic moments are parallel and are aligned with a particular axis. In an adjacent domain, again all the moments are
parallel to each other, but they may be aligned with a different axis, perhaps at right angles to the first domain, or perhaps aligned
with the same axis but pointing in the opposite direction. Thus we have a number of domains, each highly magnetized, but with
some domains magnetized in one direction and some in another. The domains are separated by domain boundaries, or “Bloch
walls”, perhaps a few hundred atoms thick, within which the orientation of the magnetic moments gradually changes from one
domain to the next. Figure XII.1 is a schematic sketch of a crystal divided into four domains, with the magnetization in a different
direction in each.

Figure XIII.1

In Figure XIII.2 I am exposing the crystal to a progressively stronger and stronger magnetic field, and we watch what happens to
the domains, and, in Figure XIII.3, to the magnetization of the crystal as a whole.

Figure XIII.2

When we first apply a weak field (a), the Bloch walls (domain boundaries) move so that the favorably-oriented domains grow at
the expense of the opposing domains, and the magnetization slowly increases. With stronger fields (b), suddenly all the magnetic
moments (due to unpaired spins) within a single domain change direction almost in unison, so that an opposing domain suddenly
becomes a favorable domain; this happens to one domain after another, until all domains are oriented favorably, and the
magnetization of the specimen rapidly increases. For yet stronger fields (c), the magnetic moments, usually oriented parallel to a
crystal axis, bend so that they are in the direction of the magnetizing field. When all of that is achieved, no further magnetization is
possible, and the specimen is saturated.
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Figure XIII.3

Now, if the field is reduced, the magnetic moments relax and take up their normal positions parallel to a crystallographic axis. But,
as the field is further reduced (d), there is no reason for the domains to reverse their polarity as happened at stage (b). That is, when
stage (b) originally happened, this was an irreversible process. The demagnetization curve does not follow the magnetization curve
in reverse. Consequently, when the magnetizing field has been reduced to zero, the specimen retains a remanent magnetization
(indicated by RM in Figure XIII.3), with all domains still favorably oriented. In order to reduce the magnetization to zero, you have
to apply a field in the reverse direction. The reverse field needed to reduce the magnetization to zero is called the coercive force
(indicated by CF in Figure XIII.3).

As you repeatedly magnetize the specimen first on one direction and then the other, the graph of magnetization versus magnetizing
field describes the hysteresis loop indicated in Figure XII.3. Because of the irreversible process (b), magnetic energy is dissipated
as heat during a complete cycle, the about of energy loss being proportional to the area of the hysteresis loop. The amount of the
hysteresis depends on how freely the domain walls can move, which in turn depends on the physical and chemical constitution of
the magnetic materials, particularly on the number of impurities present that can inhibit Bloch wall movement. For a permanent
magnet, you need a material with a fat hysteresis loop, with a large remanent magnetization as well as a large coercive force, so
that it cannot be demagnetized easily. For a transformer core, you need a material with a narrow hysteresis loop.

If you put a magnetic material inside a solenoid with alternating current inside the solenoid, the magnetization will repeatedly go
around the hysteresis loop. If you now gradually decrease the amplitude of the current in the solenoid, the hysteresis loop will
gradually become smaller and smaller, vanishing to a point (H and M both zero) when the current is reduced to zero. This provides
a method of demagnetizing a specimen.

It is distressing how often one reads of the “remnant” magnetization. I have even encountered over-enthusiastic copy-editors
who will change an author’s correct spelling “remanent” to the incorrect “remnant”. The difference is that “remnant” is a noun
(as in a remnant of cloth) and “remanent”, which is pronounced with three distinct syllables, is an adjective, meaning
“remaining”.
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12.7: Antiferromagnetism
I include this largely for completeness, but I am obliged to be brief, because it is a subject I know little about. It is my
understanding that it involves materials in which the atoms or ions or molecules have a permanent dipole moment (resulting from
unpaired electron spins), as in paramagnetic and ferromagnetic materials, and the crystals have domain structure, as in
ferromagnetic materials, but alternating ions within a domain have their magnetic moments oriented in opposite directions, so the
domain as a whole has zero magnetization, or zero susceptibility. An example of an antiferromagnetic material is manganese oxide 

, in which the  ion has a magnetic moment. Such materials are generally antiferromagnetic at low temperatures. As the
temperature is increased, the domain structure breaks down and the material becomes paramagnetic – as also happens, of course,
with ferromagnetic materials. But whereas the susceptibility of a ferromagnetic material decreases dramatically with rising
temperature, until it become merely paramagnetic, the susceptibility of an antiferromagnetic material starts at zero, and its
transformation to a paramagnetic material results in an increase (albeit a small increase) in its susceptibility. As the temperature is
raised still further, the paramagnetic susceptibility drops (as is usual for paramagnetics), so there is presumably some temperature
at which the susceptibility is a maximum.
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12.8: Ferrimagnetism
This section will be shorter still, because I know even less about it! It is my understanding that, like ferromagnetics and
antiferromagnetics, there is a domain structure, and, like antiferromagnetics, alternate magnetic moments are pointing in opposite
directions. But this does not result is complete cancellation of the magnetization of a domain. This often results if the alternating
atoms or ions within a domain are different species, with unequal magnetic moments.
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CHAPTER OVERVIEW

13: Alternating Current

Thumbnail: A graph of voltage and current versus time for 60-Hz AC power. The voltage and current are sinusoidal and are in
phase for a simple resistance circuit. The frequencies and peak voltages of AC sources differ greatly. (CC BY-SA 3.0; OpenStax).
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13.1: Alternating current in an inductance
In the Figure we see a current increasing to the right and passing through an inductor. As a consequence of the inductance, a back
EMF will be induced, with the signs as indicated. I denote the back EMF by . The back EMF is given by .

 
FIGURE 

Now suppose that the current is an alternating current given by

In that case , and therefore the back EMF is

which can be written

where the peak voltage is

and, of course  (Section 13.11).

The quantity  is called the inductive reactance . It is expressed in ohms (check the dimensions), and, the higher the
frequency, the greater the reactance. (The frequency  is .)

Comparison of equations  and  shows that the current and voltage are out of phase, and that  leads on  by 90 , as
shown in Figure XIII.2.

FIGURE 
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13.2: Alternating Voltage across a Capacitor
At any time, the charge  on the capacitor is related to the potential difference  across it by . If there is a current in the
circuit, then  is changing, and .

FIGURE 

Now suppose that an alternating voltage given by

is applied across the capacitor. In that case the current is

which can be written

where the peak current is

and, of course

The quantity  is called the capacitive reactance . It is expressed in ohms (check the dimensions), and, the higher the
frequency, the smaller the reactance. (The frequency .)

When we come to deal with complex numbers, in the next and future sections, we shall incorporate a sign into the reactance.
We shall call the reactance of a capacitor  rather than merely , and the minus sign will indicate to us that 
lags behind . The reactance of an inductor will remain , since  leads on .

Comparison of equations  and  shows that the current and voltage are out of phase, and that  lags behind  by 90°, as
shown in Figure XIII.4.

FIGURE 
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13.3: Complex Numbers
I am now going to repeat the analyses of Sections 13.1 and 13.2 using the notation of complex numbers. In the context of
alternating current theory, the imaginary unit is customarily given the symbol  rather than , so that the symbol  is available, if
need be, for electric currents. I am making the assumption that the reader is familiar with the basics of complex numbers; without
that background, the reader may have difficulty with much of this chapter.

We start with the inductance. If the current is changing, there will be a back EMF given by . If the current is changing as

then

Therefore the voltage is given by

The quantity  is called the impedance of the inductor, and is  times its reactance. Its reactance is , and, in SI units, is
expressed in ohms. Equation  (in particular the operator  on the right hand side) tells us that  leads on  by 90 .

Now suppose that an alternating voltage is applied across a capacitor. The charge on the capacitor at any time is , and the
current is . If the voltage is changing as

then

Therefore the current is given by

That is to say

The quantity  is called the impedance of the capacitor, and is  times its reactance. Its reactance is , and, in SI
units, is expressed in ohms. Equation  (in particular the operator  on the right hand side) tells us that  lags behind  by
90 .

In summary:

It may be that at this stage you haven't got a very clear idea of the distinction between reactance (symbol ) and impedance
(symbol ) other than that one seems to be  times the other. The next section deals with a slightly more complicated situation,
namely a resistor and an inductor in series. (In practice, it may be one piece of equipment, such as a solenoid, that has both
resistance and inductance.) Paradoxically, you may find it easier to understand the distinction between impedance and reactance
from this more complicated situation.
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13.4: Resistance and Inductance in Series
The impedance is just the sum of the resistance of the resistor and the impedance of the inductor:

Thus the impedance is a complex number, whose real part is the resistance and whose imaginary part  is the reactance. For a
pure resistance, the impedance is real, and  and  are in phase. For a pure inductance, the impedance is imaginary (reactive), and
there is a 90  phase difference between  and .

The voltage and current are related by

Those who are familiar with complex numbers will see that this means that  leads on , not by 90 , but by the argument of the
complex impedance, namely . Further the ratio of the peak (or RMS) voltage to the peak (or RMS) current is equal
to the modulus of the impedance, namely .
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13.5: Resistance and Capacitance in Series
Likewise the impedance of a resistance and a capacitance in series is

The voltage and current are related, as usual, by

Equation  shows that the voltage lags behind the current by

and that
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13.6: Admittance
In general, the impedance of a circuit is partly resistive and partly reactive:

The real part is the resistance, and the imaginary part is the reactance. The relation between  and  is . If the circuit is
purely resistive,  and  are in phase. If is it purely reactive,  and  differ in phase by 90 . The reactance may be partly inductive
and partly capacitive, so that

Indeed we shall describe such a system in detail in the next section. Note that  is negative.

The Equation  is sometimes written , in which  is intended to represent the unsigned quantity
. In these notes  is intended to represent .

The reciprocal of the impedance  is the admittance, .

Thus

And of course, since .

Whenever we see a complex (or a purely imaginary) number in the denominator of an expression, we always immediately multiply
top and bottom by the complex conjugate, so Equation  becomes

This can be written

where the real part, , is the conductance:

and the imaginary part, , is the susceptance:

The SI unit for admittance, conductance and susceptance is the siemens (or the "mho" in informal talk).

I leave it to the reader to show that

and

What is the impedance of the circuit below to alternating current of frequency  ( )?
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Solution
I think that the following will be readily agreed. (Remember, the admittance is the reciprocal of the impedance; and, whenever
you see a complex number in a denominator, immediately multiply top and bottom by the conjugate.)

Impedance of 

Impedance of 

Admittance of 

Admittance of 

Admittance of the circuit = 

Impedance of the circuit = 

The current leads on the voltage by 12º.

Three resistors and a capacitor are connected to an  voltage source as shown. The point  is grounded (earthed), and its
potential can be taken as zero. Calculate the three currents, and the potential at .

Solution

We can do this by using Kirchhoff’s rules in the usual way. When I did this I found the algebra to be slightly heavy going, and I

found that it was much simplified by writing , where  is a dimensionless number. Then, instead of writing the

AB= 25(1−2j)Ω

CD= 20(2+j)Ω

AB=  S

1+2j

125

CD=  S

2−j

100

 S

28+6j
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100(14−3j)

41
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impedance of the section BDG as , I write it as .

Kirchhoff’s rules, applied to two circuits and the point , are

These equations are to be solved for the three currents . These will all be complex numbers, representing alternating
currents. Solution could proceed, for example, by eliminating  from equations  and , and then eliminating 
from equations  and . This results in two equations in  and . We can eliminate  from these to obtain . I

make it , but then we immediately multiply top and bottom by  to obtain

It is then straightforward to return to the original equations to obtain

and

For example, suppose that the frequency and the capacitance were such that , then

and

Thus  leads on  by 7º.1;  leads on  by 33º.7; and  lags behind  by 11º.3.

The vector (phasor) diagram for these three currents is shown below, in which the phasor representing the alternating voltage 
 is directed along the real axis.

Bearing in mind that the potential at  is zero, we see that the potential at  is just  and is in phase with .
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There is another method of finding , which we now try. If we get the same answer by both methods, this will be a nice check
for possible mistakes in the algebra.

I’ll re-draw the circuit diagram as follows:

To calculate  we have to calculate the admittance  of the circuit, and then we have immediately . The impedance

of  and  in series is  and so its admittance is . The admittance of the rectangle is therefore 

. The impedance of the rectangle is , and the impedance of the whole circuit

is  plus this, which is . The admittance of the whole circuit is . Multiply top and bottom by

the conjugate of the denominator to obtain . Hence , which is what we

obtained by the Kirchhoff method.

If you want to invent some similar problems, either as a student for practice, or as an instructor looking for homework or
examination questions, you could generalize the above problem as follows.

Each of the three impedances in the circuit could be various combinations of capacitors and inductors in series or in parallel,
but, whatever the configuration, each could be written in the form . Three Kirchhoff equations could be constructed as
follows

If I have done my algebra correctly, I make the solutions
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Each must eventually be written in the form , or . For example, suppose that the three impedances, in
ohms, are . In that case, I believe (let me know if I’m wrong, jtatum at uvic.ca) that

Equation  becomes, after manipulation, . This means that  leads on  by 64º.0, and that the peak

value of  is , where  is in .

The potential at  is . Both of these are complex numbers and the potential at  us not in phase with  unless is
purely resistive.

In composing a problem, you probably want all resistances and reactances to be of comparable magnitudes, say a few ohms each.
As a guide, if you choose the frequency to be , so that , and if you choose inductances to be about 10
mH and capacitances about , your reactances will each be about .

You can probably also compose problems with various bridge circuits, such as

There are six independent impedances, so you’ll need six equations. Three for Kirchhoff’s second rule, to cover the complete
circuit once; and three of Kirchhoff’s first rule, at three points. Good luck in solving them. Remember that, in an equation
involving complex numbers, the real and imaginary parts are separately equal. And remember, as soon as a complex number
appears in a denominator, multiply top and bottom with the conjugate. Alternatively, and easier, we could do what we did with a
similar problem with direct currents in Section 4.12, using a delta-star transformation. We’ll try an example in Section 13.9,
subsection 13.9.4.
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13.7: The RLC Series Acceptor Circuit
A resistance, inductance and a capacitance in series is called an "acceptor" circuit, presumably because, for some combination of
the parameters, the magnitude of the inductance is a minimum, and so current is accepted most readily. We see in Figure  an
alternating voltage  applied across such an ,  and .

 
FIGURE 

The impedance is

We can see that the voltage leads on the current if the reactance is positive; that is, if the inductive reactance is greater than the
capacitive reactance; that is, if . (Recall that the frequency, , is ). If , the voltage lags behind the
current. And if , the circuit is purely resistive, and voltage and current are in phase.

The magnitude of the impedance (which is equal to ) is

and this is least (and hence the current is greatest) when , the resonant frequency, which I shall denote by .

It is of interest to draw a graph of how the magnitude of the impedance varies with frequency for various values of the circuit
parameters. I can reduce the number of parameters by defining the dimensionless quantities

and

You should verify that  is indeed dimensionless. We shall see that the sharpness of the resonance depends on , which is known
as the quality factor (hence the symbol ). In terms of the dimensionless parameters, Equation  becomes

This is shown in Figure , in which it can be seen that the higher the quality factor, the sharper the resonance.

XIII.5

V = V

^

e

jωt

R L C

XIII.5

Z =R+j(Lω− ) .

1

Cω

(13.7.1)

ω> 1/ LC

−−−

√

ν ω/(2π) ω< 1/ LC

−−−

√

ω= 1/ LC

−−−

√

/V

^

I

^

|Z| = ,+R

2

(Lω−1/(Cω))

2

− −−−−−−−−−−−−−−−−

√

(13.7.2)

ω= 1/ LC

−−−

√

ω

0

Ω = ω/ω

0

(13.7.3)

Q =

1

R

L

C

−−

√

(13.7.4)

z= .

|Z|

R

(13.7.5)

Q Q

Q 13.7.2

z= .1+ (Ω−1/ΩQ

2

)

2

− −−−−−−−−−−−−−

√ (13.7.6)

XIII.6

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/5848?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/13%3A_Alternating_Current/13.07%3A_The_RLC_Series_Acceptor_Circuit


13.7.2 https://phys.libretexts.org/@go/page/5848

 
FIGURE 

In particular, it is easy to show that the frequencies at which the impedance is twice its minimum value are given by the positive
solutions of

If I denote the smaller and larger of these solutions by , then  will serve as a useful description of the width
of the resonance, and this is shown as a function of quality factor in Figure .

  
FIGURE 
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13.8: The RLC Parallel Rejector Circuit
In the circuit below, the magnitude of the admittance is least for certain values of the parameters. When you tune a radio set, you
are changing the overlap area (and hence the capacitance) of the plates of a variable air-spaced capacitor so that the admittance is a
minimum for a given frequency, so as to ensure the highest potential difference across the circuit. This resonance, as we shall see,
does not occur for an angular frequency of exactly , but at an angular frequency that is approximately this if the resistance
is small.

The admittance is

After some routine algebra (multiply top and bottom by the conjugate; then collect real and imaginary parts), this becomes

The magnitude of the admittance is least when the susceptance is zero, which occurs at an angular frequency of

If  this is approximately .

This page titled 13.8: The RLC Parallel Rejector Circuit is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
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SECTION OVERVIEW

13.9: AC Bridges
We have already met, Section 4.11, the Wheatstone bridge, which is a DC (direct current) bridge for comparing resistances, or for
"measuring" an unknown resistance if it is compared with a known resistance. In the Wheatstone bridge (Figure ), balance is
achieved when . Likewise in a AC (alternating current) bridge, in which the power supply is an AC generator, and there
are impedances (combinations of ,  and  ) in each arm (Figure ),

 
FIGURE 

balance is achieved when

or, of course, . This means not only that the RMS potentials on both sides of the detector must be equal, but they must be
in phase, so that the potentials are the same at all times. (I have drawn the "detector" as though it were a galvanometer, simply
because that is easiest for me to draw. In practice, it might be a pair of earphones or an oscilloscope.) Each side of Equation 
is a complex number, and two complex numbers are equal if and only if their real and imaginary parts are separately equal. Thus
Equation  really represents two equations – which are necessary in order to satisfy the two conditions that the potentials on
either side of the detector are equal in magnitude and in phase.

We shall look at three examples of AC bridges. It is not recommended that these be committed to memory. They are described only
as examples of how to do the calculation.
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13.9A: The Owen Bridge

 
FIGURE 

This bridge can be used for measuring inductance. Note that the unknown inductance is the only inductance in the bridge.
Reactance is supplied by the capacitors.

Equation 13.9.1 in this case becomes

That is,

On equating real and imaginary parts separately, we obtain

and

This page titled 13.9A: The Owen Bridge is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum
via source content that was edited to the style and standards of the LibreTexts platform.

XIII.9

= .

R

1

+j ωR

2

L

2

−j/( ω)C

3

−j/( ω)R

4

C

4

(13.9.2)

−j = −j .R

1

R

4

R

1

ωC

4

L

2

C

3

R

2

ωC

3

(13.9.3)

=L

2

R

1

R

4

C

3

(13.9.4)

= .

R

1

R

2

C

4

C

3

(13.9.5)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/5851?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/13%3A_Alternating_Current/13.09%3A_AC_Bridges/13.9A%3A_The_Owen_Bridge
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/13%3A_Alternating_Current/13.09%3A_AC_Bridges/13.9A%3A_The_Owen_Bridge
https://creativecommons.org/licenses/by-nc/4.0
https://www.astro.uvic.ca/~tatum/celmechs.html
http://orca.phys.uvic.ca/~tatum/elmag.html


13.9B.1 https://phys.libretexts.org/@go/page/5852

13.9B: The Schering Bridge
This bridge can be used for measuring capacitance.

 
FIGURE  

The admittance of the fourth arm is , and its impedance is the reciprocal of this. I leave the reader to balance the bridge
and to show that

and
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13.9C: The Wien Bridge

Figure  

This bridge can be used for measuring frequency.

The reader will, I think, be able to show that

and
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13.9D: Bridge Solution by Delta-Star Transform
In the above examples, we have calculated the condition that there is no current in the detector -. i.e. that the bridge is balanced.
Such calculations are relatively easy. But what if the bridge is not balanced? Can we calculate the impedance of the circuit? Can we
calculate the currents in each branch, or the potentials at any points? This is evidently a little harder. We should be able to do it.
Kirchhoff’s rules and the delta-star transform still apply for alternating currents, the complication being that all impedances,
currents and potentials are complex numbers.

Let us start by trying the following problem:

That is to say:

 
*The impedances are indicated in ohms.

Our question is: What is the impedance of the circuit at a frequency of ?

We refer now to Chapter 4, Section 12. We are going to replace the left hand “delta” with its equivalent “star”. Recall equations
4.12.2 - 4.12.13. With alternating currents, We can use the same equations with alternating currents, provided that we replace the 

 in the delta and the  in the star with  in the delta and  in the star.
That is, we replace the resistances with impedances, and conductances with admittances. This is going to need a little bit of
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calculation, and familiarity with complex numbers. I used a computer - hand calculation was too tedious and prone to mistakes.
This is what I got, using  and cyclic variations:

 
*The impedances are indicated in ohms.

The impedance of PBC is .
The impedance of PDC is .
The admittance of PBC is .
The admittance of PDC is .
The admittance of PC is .
The impedance of PC is .
The impedance of AC is .
The admittance of AC is .

Suppose the applied voltage is , with  and .

Can we find the currents in each of  and the potential differences between the several points? This should be
fun. I’m sitting in front of my computer. Among other things, I have trained it instantly to multiply two complex numbers and also
to calculate the reciprocal of a complex number. If I ask it for  it will instantly tell me . If I
ask it for  it will instantly tell me . I can instantaneously convert between impedance and
admittance.

The current through any element depends on the potential difference across it. We can take any point to have zero potential, and
determine the potentials at other points relative to that point. I choose to take the potential at  to be zero, and I have indicated this
by means of a ground (earth) symbol at . We are going to try to find the potentials at various other points relative to that at .

In drawings B and C I have indicated the currents with arrows. Since the currents are alternating, they should, perhaps, be drawn as
double-headed arrows. However, I have drawn them in the direction that I think they should be at some instant when the potential
at  is greater than the potential at . If any of my guesses are wrong, I’ll get a negative answer in the usual way.

The total current  is  times the admittance of the circuit.

That is: .

The peak current will be  (because the modulus of the admittance is ), and the current lags behind the
voltage by 3º.9.

I hope the following two equations are obvious from drawing C.
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From this,

 leads on  by 18º.7 .

 lags behind  by 22º.2 .

Check: 

I show below graphs of the potential difference between  and   and the currents ,  and . The origin for the
horizontal scale is such that the potential at  is zero at . The vertical scale is in volts for , and is five times the current in
amps for the three currents.

We don’t really need to know , but we do want to know . Let’s first see if we can find some potentials relative to
the point .

From drawing C we see that

, which results in 

 lags behind  by 49º.5 .

From drawing C we see that

, which results in 

 leads on  by  14º.7 .

We can now calculate  (see drawing B) from .

I find 

 lags behind  by  60º.0. .

 can now be found from . The real part of  is 24 V, and (since we have grounded C), its
imaginary part is zero. If in doubt about this verify that
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I find

 lags behind  by 25º.4. .

In a similar manner, I find

 leads on  by  49º.4. .

Summary:

These may be checked by verification of Kirchhoff’s first rule at each of the points , , , .
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13.10: The Transformer
We met the transformer briefly in Section 10.9. There we pointed out that the EMF induced in the secondary coil is equal to the
number of turns in the secondary coil times the rate of change of magnetic flux; and the flux is proportional to the EMF applied to
the primary times the number of turns in the primary. Hence we deduced the well known relation

relating the primary and secondary voltages to the number of turns in each. We now look at the transformer in more detail; in
particular, we look at what happens when we connect the secondary coil to a circuit and take power from it.

 
Figure 

In Figure , we apply an AC EMF  to the primary circuit. The self inductance of the primary coil is , and an
alternating current  flows in the primary circuit. The self inductance of the secondary coil is , and the mutual inductance of the
two coils is . If the coupling between the two coils is very tight, then ; otherwise it is less than this. I am supposing
that the resistance of the primary circuit is much smaller than the reactance, so I am going to neglect it.

The secondary coil is connected to a resistance . An alternating current  flows in the secondary circuit.

Let us apply Ohm's law (or Kirchhoff's second rule) to each of the two circuits.

In the primary circuit, the applied EMF V is opposed by two back EMF's:

That is to say

Similarly for the secondary circuit:

These are two simultaneous equations for the currents, and we can (with a small effort) solve them for  and :

and

This would be easier to understand if we were to do the necessary algebra to write these in the forms 
. We could then easily see the phase relationships between the current and  as well as the

peak values of the currents. There is no reason why we should not try this, but I am going to be a bit lazy before I do it, and I am
going to assume that we have a well designed transformer in which the secondary coil is really tightly wound around the primary,
and  If you wish, you may carry on with a less efficient transformer, with  where  is a coupling
coefficient less than 1, but I'm going to stick with . In that case, Equations  and 6 eventually take the forms
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and

These equations will tell us, on examination, the magnitudes of the currents, and their phases relative to .

Now look at the circuit shown in Figure .

 
Figure 

In Figure  we have a resistance  in parallel with an inductance . The admittances of these two elements are,

respectively,  and , so the total admittance is . Thus, as far as the relationship between

current and voltage is concerned, the primary circuit of the transformer is precisely equivalent to the circuit drawn in Figure 
. To see the relationship between  and , we need look no further than Figure .

Likewise, Equation  shows us that the relationship between  and  is exactly as if we had an AC generator of EMF 
 connected across , as in Figure .

 
Figure 

Note that, if the secondary is short-circuited (i.e. if  and if the resistance of the secondary coil is literally zero) both the
primary and secondary current become infinite. If the secondary circuit is left open (i.e. ), the secondary current is zero (as
expected), and the primary current, also as expected, is not zero but is ; That is to say, the current is of magnitude 

 and it lags behind the voltage by 90 , just as if the secondary circuit were not there.
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source content that was edited to the style and standards of the LibreTexts platform.
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13.11: Root-mean-square values, power and impedance matching
We have been dealing with alternating currents of the form . I have been using the notation  to denote the “peak” (i.e.
maximum) value of the current. Of course, in the notation of complex numbers, this is synonymous with the modulus of . That is
to say . I shall use one or other notation wherever it is convenient. This will often mean using ^ when describing
time-varying quantities, and  when describing constant (but perhaps frequency dependent) quantities, such as impedances.

Suppose we have a current that varies with time as . During a complete period  the average or mean

current is zero. The mean of the square of the current, however, is not zero. The mean square current, , is defined such that

With  this gives . The square root of this is the root-mean-square current, or the RMS value of the current:

When we are told that an alternating current is so many amps, or an alternating voltage is so many volts, it is usually the RMS
value that is meant, though we cannot be sure of this unless the speaker or writer explicitly says so. If you wish to be understood
and not misunderstood in your own writings, you will always make it explicitly clear what meaning you intend.

If an alternating current is flowing through a resistor, at some instant when the current is , the instantaneous rate of dissipation of
energy in the resistor is . The mean rate of dissipation of energy during a complete cycle is . This is one obvious reason
why the concept of RMS current is important.

Now cast your mind back to Section 4.8. There we imagined that we connected a resistance  across a battery of EMF  and
internal resistance . We calculated that the power delivered to the resistance was , and that this was greatest

(and equal to ), when the external resistance was equal to the internal resistance of the battery.

What is the corresponding situation with alternating current? Suppose we have a box (a “source”) that delivers an alternating
voltage  (which is represented by a complex number ), and that this box has an internal impedance . If we
connect across the box a device (a “load”) that has an impedance , what will be the power delivered to the load, and
can we match the external impedance of the load to the internal impedance of the box in such a manner that the power delivered to
the load is greatest?

The second question is quite easy to answer. Reactance can be either positive (inductive) or negative (capacitive), and so it is quite
possible for the total reactance of the entire circuit to be zero. Thus for a start, we want to ensure that . That is, the external
reactance should be equal in magnitude but opposite in sign to the internal reactance. The circuit is then purely resistive, and the
power delivered to the circuit is just what it was in the direct current case, namely , where the current and EMF

in this equation are now RMS values. And, as in the direct current case, this is greatest if . The conclusion is that, for
maximum power transfer,  should equal . That is, for the external and internal impedances to be matched for
maximum power transfer, . The load impedance should equal the conjugate of the source impedance.

What is the power delivered to the load when the impedances are not matched? In other words, when  and 

. It is . The current is given by the equation . (These are all complex numbers - i.e. they
are all periodic functions with different phases.  and  vary with time.) Now if  and  are two complex numbers, it is well
known (from courses in complex numbers) that . We apply this now to . [I shall use ^ for the
“peak” of the time-varying quantities, and  for the modulus of the impedances] We obtain .
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14.1: Introduction to Laplace Transforms
If  is a function of , where  lies in the range  to , then the function  defined by

is called the Laplace transform of . However, in this chapter, where we shall be applying Laplace transforms to electrical
circuits,  will most often be a voltage or current that is varying with time rather than with "x". Thus I shall use  as our variable
rather than , and I shall use  rather than  (although it will be noted that, as yet, I have given no particular physical meaning to
either  or to .) Thus I shall define the Laplace transform with the notation

it being understood that t lies in the range  to .

For short, I could write this as

When we first learned differential calculus, we soon learned that there were just a few functions whose derivatives it was worth
committing to memory. Thus we learned the derivatives of  and a very few more. We found that we could readily find
the derivatives of more complicated functions by means of a few simple rules, such as how to differentiate a product of two
functions, or a function of a function, and so on. Likewise, we have to know only a very few basic Laplace transforms; there are a
few simple rules that will enable us to calculate more complicated ones.

After we had learned differential calculus, we came across integral calculus. This was the inverse process from differentiation. We
had to ask: What function would we have had to differentiate in order to arrive at this function? It was as though we were given the
answer to a problem, and had to deduce what the question was. It will be a similar situation with Laplace transforms. We shall often
be given a function  and we shall want to know: what function  is this the Laplace transform of? In other words, we shall
need to know the inverse Laplace transform:

We shall find that facility in calculating Laplace transforms and their inverses leads to very quick ways of solving some types of
differential equations – in particular the types of differential equations that arise in electrical theory. We can use Laplace transforms
to see the relations between varying current and voltages in circuits containing resistance, capacitance and inductance. However,
these methods are quick and convenient only if we are in constant daily practice in dealing with Laplace transforms with easy
familiarity. Few of us, unfortunately, have the luxury of calculating Laplace transforms and their inverses on a daily basis, and they
lose many of their advantages if we have to refresh our memories and regain our skills every time we may want to use them. It may
therefore be asked: Since we already know perfectly well how to do AC calculations using complex numbers, is there any point in
learning what just amounts to another way of doing the same thing? There is an answer to that. The theory of AC circuits that we
developed in Chapter 13 using complex numbers to find the relations between current and voltages dealt primarily with steady state
conditions, in which voltages and current were varying sinusoidally. It did not deal with the transient effects that might happen in
the first few moments after we switch on an electrical circuit, or situations where the time variations are not sinusoidal. The
Laplace transform approach will deal equally well with steady state, sinusoidal, non-sinusoidal and transient situations.
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14.2: Table of Laplace Transforms
It is easy, by using Equation 14.1.2, to derive all of the transforms shown in the following table, in which t > 0. (Do it!)

This table can, of course, be used to find inverse Laplace transforms as well as direct transforms. Thus, for example, .
In practice, you may find that you are using it more often to find inverse transforms than direct transforms.

These are really all the transforms that it is necessary to know – and they need not be committed to memory if this table is handy.
For more complicated functions, there are rules for finding the transforms, as we shall see in the following sections, which
introduce a number of theorems. Although I shall derive some of these theorems, I shall merely state others, though perhaps with
an example. Many (not all) of them are straightforward to prove, but in any case I am more anxious to introduce their applications
to circuit theory than to write a formal course on the mathematics of Laplace transforms.

After you have understood some of these theorems, you may well want to apply them to a number of functions and hence greatly
expand your table of Laplace transforms with results that you will discover on application of the theorems.
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14.3: The First Integration Theorem

The theorem is:

Before deriving this theorem, here's a quick example to show what it means. The theorem is most useful, as in this example, for
finding an inverse Laplace transform, i.e.

Calculate

Solution

From the table, we see that . The integration theorem tells us that

You should now verify that this is the correct answer by substituting this in Equation 14.1.2 and integrating – or (and!) using
the table of Laplace transforms.

The proof of the theorem is just a matter of integrating by parts. Thus

The expression in brackets is zero at both limits, and therefore the theorem is proved.
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14.4: The Second Integration Theorem (Dividing a Function by t)
This theorem looks very like the first integration theorem, but "the other way round". It is

I'll leave it for the reader to derive the theorem. Here I just give an example of its use. Whereas the first integration theorem is most
useful in finding inverse transforms, the second integration theorem is more useful for finding direct transforms.

Calculate

Solution

This means calculate

While this integral can no doubt be done, you may find it a bit daunting, and the second integration theorem provides an
alternative way of doing it, resulting in an easier integral.

Note that the right hand side of equation 14.4.1 is a function of , not of , which is just a dummy variable. The function 
is the Laplace transform, with  as argument, of . In our particular case,  is , so that, from the table, 

. The second integration theorem, then, tells us that . This is a much easier integral. It
is . You may want to add this result to your table of Laplace integrals. Indeed,
you may already want to expand the table considerably by applying both integration theorems to several functions.
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14.5: Shifting Theorem
This is a very useful theorem, and one that is almost trivial to prove. (Try it!) It is

For example, from the table, we have . The shifting theorem tells us that . I'm sure you will
now want to expand your table even more. Or you may want to go the other way, and cut down the table a bit! After all, you know
that . The shifting theorem, then, tells you that , so that entry in the table is superfluous! Note that
you can use the theorem to deduce either direct or inverse transforms.
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14.6: A Function Times tⁿ
I'll just give this one with out proof:

For n a positive integer,

Before proceeding further, I strongly recommend that you now apply theorems 14.3.1, 14.4.1, 14.5.1 and 14.6.1 to the several
entries in your existing table of Laplace transforms and greatly expand your table of Laplace transforms. For example, you can
already add  and  to the list of functions for which you have calculated the Laplace transforms.
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14.7: Differentiation Theorem

This looks formidable, and you will be tempted to skip it – but don't, because it is essential! However, to make it more palatable, I'll point
out that one rarely, if ever, needs derivatives higher than the second, so I'll re-write this for the first and second derivatives, and they will
look much less frightening.

and

Here, the subscript zero means "evaluated at t = 0".

Equation 14.7.2 is easily proved by integration by parts:

From this,

Apply this over and over again, and you arrive at equation 14.7.1
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14.8: A First Order Differential Equation

Solve  with initial condition .

Solution

If you are in good practice with solving this type of equation, you will probably multiply it through by , so that it becomes

from which

(You can now substitute this back into the original differential equation, to verify that it is indeed the correct solution.)

With the given initial condition, it is quickly found that  so that the solution is

Now, here's the same solution, using Laplace transforms.

We take the Laplace transform of both sides of the original differential equation:

Thus

Partial fractions:

Inverse transforms:

You will probably admit that you can follow this, but will say that you can do this at speed only after a great deal of practice with
many similar equations. But this is equally true of the first method, too.
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14.9: A Second Order Differential Equation
Solve

with initial conditions  and .

You probably already know some method for solving this equation, so please go ahead and do it. Then, when you have finished,
look at the solution by Laplace transforms.

Laplace transform:

(My! Wasn't that fast!)

A little algebra:

Partial fractions:

or

Inverse transforms:

and you can verify that this is correct by substitution in the original differential equation (Equation ).

So: We have found a new way of solving differential equations. If (but only if) we have a lot of practice in manipulating Laplace
transforms, and have used the various manipulations to prepare a slightly larger table of transforms from the basic table given
above, and we can go from  to  and from  to  with equal facility, we can believe that our new method can be both fast and easy.

But, what has this to do with electrical circuits? Read on.
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14.10: Generalized Impedance
We have dealt in Chapter 13 with a sinusoidally varying voltage applied to an inductance, a resistance and a capacitance in series.
The equation that governs the relation between voltage and current is

If we multiply by , differentiate with respect to time, and write  for , this becomes just

If we suppose that the applied voltage  is varying sinusoidally (that is, , or, if you prefer, ), then the
operator , or "double dot", is equivalent to multiplying by , and the operator , or "dot", is equivalent to multiplying
by . Thus Equation  is equivalent to

That is,

The complex expression inside the brackets is the now familiar impedance Z, and we can write

But what if  is not varying sinusoidally? Suppose that  is varying in some other manner, perhaps not even periodically? This
might include, as one possible example, the situation where  is constant and not varying with time at all. But whether or not 
varying with time, Equation  is still valid – except that, unless the time variation is sinusoidally, we cannot substitute  for

. We are faced with having to solve the differential Equation .

But we have just learned a neat new way of solving differential equations of this type. We can take the Laplace transform of each
side of the equation. Thus

Now we are going to make use of the differentiation theorem, equations 14.7.2 and 14.7.3.

Let us suppose that, at ,  and  are both zero – i.e. before  a switch was open, and we close the switch at .
Furthermore, since the circuit contains inductance, the current cannot change instantaneously, and, since it contains capacitance, the
voltage cannot change instantaneously, so the equation becomes

This is so regardless of the form of the variation of : it could be sinusoidal, it could be constant, or it could be something quite
different. This is a generalized Ohm's law. The generalized impedance of the circuit is . Recall that in the complex
number treatment of a steady-state sinusoidal voltage, the complex impedance was .

To find out how the current varies, all we have to do is to take the inverse Laplace transform of

We look at a couple of examples in the next sections.
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14.11: RLC Series Transient
A battery of constant  is connected to a switch, and an ,  and  in series. The switch is closed at time . We'll first
solve this problem by "conventional" methods; then by Laplace transforms. The reader who is familiar with the mechanics of
damped oscillatory motion, such as is dealt with in Chapter 11 of the Classical Mechanics notes of this series, may have an
advantage over the reader for whom this topic is new – though not necessarily so!

"Ohm's law" is

or

Those who are familiar with this type of equation will recognize that the general solution (complementary function plus particular
integral) is

where

and

(Those who are not familiar with the solution of differential equations of this type should not give up here. Just go on to the part
where we do this by Laplace transforms. You'll soon be streaking ahead of your more learned colleagues, who will be struggling for
a while.)

Case I

 is positive. For short I'm going to write Equations  as

Then

and, by differentiation with respect to time,

At ,  and  are both zero, from which we find that

Thus

and

On recalling the meanings of  and  and the sinh function, and a little algebra, we obtain
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Verify that Equation  is dimensionally correct. Draw a graph of  : . The current is, of course, zero at  and .
What is the maximum current, and when does it occur?

Case II

 is zero. In this case, those who are in practice with differential equations will obtain for the general solution

where

from which

After applying the initial conditions that Q and I are initially zero, we obtain

and

As in case II, this starts and ends at zero and goes through a maximum, and you may wish to calculate what the maximum current
is and when it occurs.

Case III

 is negative. In this case, I am going to write equations 14.11.4 as

where

All that is necessary, then, is to repeat the analysis for Case I, but to substitute  for  and  for , and, provided that you
know that , you finish with

This is lightly damped oscillatory motion.

Now let us try the same problem using Laplace transforms. Recall that we have a  in series with an ,  and , and that initially 
 are all zero. (The circuit contains capacitance, so  cannot change instantaneously; it contains inductance, so  cannot

change instantaneously.)

Immediately, automatically and with scarcely a thought, our first line is the generalized Ohm's law, with the Laplace transforms of 
 and  and the generalized impedance:

Since  is constant, reference to the very first entry in your table of transforms shows that , and so
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where

Case I. 

Here, of course,

On taking the inverse transforms, we find that

From there it is a matter of routine algebra (do it!) to show that this is exactly the same as Equation .

In order to arrive at this result, it wasn't at all necessary to know how to solve differential equations. All that was necessary was to
understand generalized impedance and to look up a table of Laplace transforms.

Case II. .

In this case, Equation  is of the form

where . If you have dutifully expanded your original table of Laplace transforms, as suggested, you will probably already
have an entry for the inverse transform of the right hand side. If not, you know that the Laplace transform of  is , so you can
just apply the shifting theorem to see that the Laplace transform of  is . Thus

which is the same as Equation .

[Gosh – what could be quicker and easier than that!?]

Case III. .

This time, we'll complete the square in the denominator of Equation :

where I have introduced  with obvious notation.

On taking the inverse transform (from our table, with a little help from the shifting theorem) we obtain

which is the same as Equation .

With this brief introductory chapter to the application of Laplace transforms to electrical circuitry, we have just opened a door by a
tiny crack to glimpse the potential great power of this method. With practice, it can be used to solve complicated problems of many
sorts with great rapidity. All we have so far is a tiny glimpse. I shall end this chapter with just one more example, in the hope that
this short introduction will whet the reader's appetite to learn more about this technique.
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14.12: Another Example

 

The circuit in Figure  contains two equal resistances, two equal capacitances, and a battery. The battery is connected at time 
. Find the charges held by the capacitors after time .

Apply Kirchhoff’s second rule to each half:

and

Eliminate :

Transform, with  and  initially zero:

I.e.

where

That is

Partial fractions:

That is,

Inverse transform:

The current can be found by differentiation.

I leave it to the reader to eliminate  from equations 14.12.1 and 2 and hence to show that
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CHAPTER OVERVIEW

15: Maxwell's Equations
We describe these four equations in this chapter, and, in passing, we also mention Poisson's and Laplace's equations. We also show
how Maxwell's equations predict the existence of electromagnetic waves that travel at a speed of . This is the speed
at which light is measured to move, and one of the most important bases of our belief that light is an electromagnetic wave.
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15.2: Maxwell's First Equation
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15.4: Maxwell's Second Equation
15.5: Maxwell's Third Equation
15.6: The Magnetic Equivalent of Poisson's Equation
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15.11: Maxwell’s Equations in Potential Form
15.12: Retarded Potential
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15.1: Introduction
One of Newton's great achievements was to show that all of the phenomena of classical mechanics can be deduced as consequences
of three basic, fundamental laws, namely Newton's laws of motion. It was likewise one of Maxwell's great achievements to show
that all of the phenomena of classical electricity and magnetism – all of the phenomena discovered by Oersted, Ampère, Henry,
Faraday and others whose names are commemorated in several electrical units – can be deduced as consequences of four basic,
fundamental equations. We describe these four equations in this chapter, and, in passing, we also mention Poisson's and Laplace's
equations. We also show how Maxwell's equations predict the existence of electromagnetic waves that travel at a speed of 

. This is the speed at which light is measured to move, and one of the most important bases of our belief that light is
an electromagnetic wave.

Before embarking upon this, we may need a reminder of two mathematical theorems, as well as a reminder of the differential
equation that describes wave motion.

The two mathematical theorems that we need to remind ourselves of are:

The surface integral of a vector field over a closed surface is equal to the volume integral of its divergence.
The line integral of a vector field around a closed plane curve is equal to the surface integral of its curl.

A function  represents a function that is moving with speed  in the positive -direction, and a function 
represents a function that is moving with speed  in the negative -direction. It is easy to verify by substitution that 
is a solution of the differential equation

Indeed it is the most general solution, since  and  are quite general functions, and the function  already contains the only two
arbitrary integration constants to be expected from a second order differential equation. Equation  is, then, the differential
equation for a wave in one dimension. For a function  in three dimensions, the corresponding wave equation is

It is easy to remember which side of the equation  is on from dimensional considerations.

One last small point before proceeding – I may be running out of symbols! I may need to refer to surface charge density, a scalar
quantity for which the usual symbol is . I shall also need to refer to magnetic vector potential, for which the usual symbol is .
And I shall need to refer to area, for which either of the symbols  or  are commonly used – or, if the vector nature of area is to
be emphasized,  or . What I shall try to do, then, to avoid this difficulty, is to use  for magnetic vector potential, and  for
area, and I shall try to avoid using surface charge density in any equation. However, the reader is warned to be on the lookout and
to be sure what each symbol means in a particular context.

This page titled 15.1: Introduction is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.
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15.2: Maxwell's First Equation
Maxwell's first equation, which describes the electrostatic field, is derived immediately from Gauss's theorem, which in turn is a
consequence of Coulomb's inverse square law. Gauss's theorem states that the surface integral of the electrostatic field  over a
closed surface is equal to the charge enclosed by that surface. That is

Here  is the charge per unit volume.

But the surface integral of a vector field over a closed surface is equal to the volume integral of its divergence, and therefore

Therefore

or, in the nabla notation,

This is the first of Maxwell's equations.

This page titled 15.2: Maxwell's First Equation is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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15.3: Poisson's and Laplace's Equations
Equation 15.2.4 can be written , where  is the permittivity. But  is minus the potential gradient; i.e. .
Therefore,

This is Poisson's equation. At a point in space where the charge density is zero, it becomes

which is generally known as Laplace's equation. Thus, regardless of how many charged bodies there may be an a place of interest,
and regardless of their shape or size, the potential at any point can be calculated from Poisson's or Laplace's equations. Courses in
differential equations commonly discuss how to solve these equations for a variety of boundary conditions – by which is meant the
size, shape and location of the various charged bodies and the charge carried by each.

It perhaps just needs to be emphasized that Poisson’s and Laplace’s equations apply only
for static fields.

This page titled 15.3: Poisson's and Laplace's Equations is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.

∇⋅E= ρ/ϵ ϵ E E=−∇V

V =∇

2

ρ

ϵ

(15.3.1)

V = 0∇

2

(15.3.2)
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15.4: Maxwell's Second Equation
Unlike the electrostatic field, magnetic fields have no sources or sinks, and the magnetic lines of force are closed curves.
Consequently the surface integral of the magnetic field over a closed surface is zero, and therefore

or, in the nabla notation

This is the second of Maxwell's equations.

This page titled 15.4: Maxwell's Second Equation is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
Tatum via source content that was edited to the style and standards of the LibreTexts platform.

divB = 0 (15.4.1)

∇ ⋅B = 0 (15.4.2)
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15.5: Maxwell's Third Equation
This is derived from Ampère's theorem, which is that the line integral of the magnetic field  around a closed circuit is equal to the
enclosed current.

Now there are two possible components to the "enclosed" current, one of which is obvious, and the other, I suppose, could also be
said to be "obvious" once it has been pointed out! Let's deal with the immediately obvious one first, and look at Figure XV.1.

FIGURE XV.1

In Figure XV.1, I am imagining a metal cylinder with current flowing from top to bottom - i.e. electrons flowing from bottom to
top. It needn't be a metal cylinder, though. It could just be a volume of space with a stream of protons moving from top to bottom.
In any case, the current density (which may vary with distance from the axis of the cylinder) is , and the total current enclosed by
the dashed circle is the integral of  throughout the cylinder. In a more general geometry, in which  is not necessarily
perpendicular to the area of interest, and indeed in which the area need not be planar, this would be .

Now for the less obvious component to the "enclosed current". See Figure XV.2.

FIGURE XV.2

In Figure XV.2, I imagine two capacitor plates in the process of being charged. There is undoubtedly a current flowing in the
connecting wires. There is a magnetic field at A, and the line integral of the field around the upper dotted curve is undoubtedly
equal to the enclosed current. The current is equal to the rate at which charge is being built up on the plates. Electrons are being
deposited on the lower plate and are leaving the upper plate. There is also a magnetic field at B (it doesn't suddenly stop!), and the
field at  is just the same as the field at A, which is equal to the rate at which charge is being built up on the plates. The charge on
the plates (which may not be uniform, and indeed won't be while the current is still flowing or if the plates are not infinite in extent)
is equal to the integral of the charge density times the area. And the charge density on the plates, by Gauss's theorem, is equal to the
electric field  between the plates. Thus the current is equal to the integral of  over the surface of the plates. Thus the line
integral of  around either of the dashed closed loops is equal to .

In general, both types of current (the obvious one in which there is an obvious flow of charge, and the less obvious one, where the
electric field is varying because of a real flow of charge elsewhere) contributes to the magnetic field, and so Ampère's theorem in
general must read

H

J

J J

∫ J ⋅dσ

B

D D

˙

H ∫ ⋅dσD

˙
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But the line integral of a vector field around a closed plane curve is equal to the surface integral of its curl, and therefore

Thus we arrive at:

or, in the nabla notation,

This is the third of Maxwell's equations.
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H ⋅ds= ( +J) ⋅dσ∫

loop

∫

area

D

˙

(15.5.1)

curlH ⋅ dσ = ( +J) ⋅dσ∫

area

∫

area

D

˙

(15.5.2)

curlH= +JD

˙

(15.5.3)

∇×H= +JD

˙

(15.5.4)
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15.6: The Magnetic Equivalent of Poisson's Equation
This deals with a static magnetic field, where there is no electrostatic field or at least any electrostatic field is indeed static – i.e. not
changing. In that case . Now the magnetic field can be derived from the curl of the magnetic vector potential, defined
by the two equations

and

(See Chapter 9 for a reminder of this.) Together with  (  = permeability), this gives us

If we now remind ourselves of the jabberwockian-sounding vector differential operator equivalence

together with Equation , this gives us

I don't know if this equation has any particular name, but it plays the same role for static magnetic fields that Poisson's equation
plays for electrostatic fields. No matter what the distribution of currents, the magnetic vector potential at any point must obey
Equation .
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curlH= J

B = curlA (15.6.1)

divA = 0. (15.6.2)

H=B/μ μ

curl curlA = μJ. (15.6.3)

curl curl ≡ grad div−nabla-squared, (15.6.4)

15.6.2

A =−μJ.∇

2

(15.6.5)

15.6.5
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15.7: Maxwell's Fourth Equation
This is derived from the laws of electromagnetic induction.

Faraday's and Lenz's laws of electromagnetic induction tell us that the E.M.F. induced in a closed circuit is equal to minus the rate
of change of B-flux through the circuit. The E.M.F. around a closed circuit is the line integral of  around the circuit, where 
is the electric field. The line integral of  around the closed circuit is equal to the surface integral of its curl. The rate of change of
B-flux through a circuit is the surface integral of . Therefore

or, in the nabla notation,

This is the fourth of Maxwell's equations.
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E ⋅ds E

E

B

˙

curlE=−B

˙

(15.7.1)

∇×E=− .B

˙

(15.7.2)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/5342?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/15%3A_Maxwell's_Equations/15.07%3A_Maxwell's_Fourth_Equation
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/13%3A_Electromagnetic_Induction/13.02%3A_Faradays_Law
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/10%3A_Electromagnetic_Induction/10.03%3A_Lenz's_Law
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/15%3A_Maxwell's_Equations/15.07%3A_Maxwell's_Fourth_Equation
https://creativecommons.org/licenses/by-nc/4.0
https://www.astro.uvic.ca/~tatum/celmechs.html
http://orca.phys.uvic.ca/~tatum/elmag.html


15.8.1 https://phys.libretexts.org/@go/page/5343

15.8: Summary of Maxwell's and Poisson's Equations

Maxwell's Equations

Maxwell's equations:

Sometimes you may see versions of these equations with factors such as  or  scattered liberally throughout them. If you do, my
best advice is to white them out with a bottle of erasing fluid, or otherwise ignore them. I shall try to explain in Chapter 16 where
they come from. They serve no scientific purpose, and are merely conversion factors between the many different systems of units
that have been used in the past.

Poisson's Equation

Poisson's equation for the potential in an electrostatic field:

The equivalent of Poisson's equation for the magnetic vector potential on a static magnetic field:

This page titled 15.8: Summary of Maxwell's and Poisson's Equations is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
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∇ ⋅D = ρ. (15.8.1)

∇ ⋅B = 0. (15.8.2)

∇×H= +J.D

˙

(15.8.3)

∇×E=− .B

˙

(15.8.4)

4π c

V =−∇

2

ρ

ϵ

(15.8.5)

A =−μJ∇

2

(15.8.6)
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15.9: Electromagnetic Waves
Maxwell predicted the existence of electromagnetic waves, and these were generated experimentally by Hertz shortly afterwards.
In addition, the predicted speed of the waves was , the same as the measured speed of light, showing that light is an
electromagnetic wave.

In an isotropic, homogeneous, nonconducting, uncharged medium, where the permittivity and permeability are scalar quantities,
Maxwell's equations can be written

These equations involve , , and . Let us see if we can eliminate  and hence find an equation in just  and .

Take the  of equation , and make use of equation 15.6.4:

Substitute for  and  from equations  and  to obtain

This is the equation in terms of just  and  that we sought.

Comparison with equation 15.1.2 shows that this is a wave of speed  (Verify that this has the dimensions of speed.)

In a similar manner the reader should easily be able to eliminate  to derive the equation

In a vacuum, the speed is . With  and , this comes to 
.

Can we eliminate  from the equations, and hence obtain a relation between just  and ? If you do, you will obtain

which, in a vacuum, or free space, becomes

which is the impedance of a vacuum, or of free space. Since the SI units of  and  are, respectively V m  and A m , it is easy to
verify that the units of impedance are V A , or .
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∇ ⋅E= ρ. (15.9.1)

∇ ⋅H = 0. (15.9.2)

∇×H = ϵ .E

˙

(15.9.3)

∇×E= −μ .H

˙

(15.9.4)

E H t E H t

curl 15.9.3

grad divH− H = ϵ curlE∇
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∂

∂t
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div H curlE 15.9.2 15.9.4

H = ϵμ∇

2
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15.10: Gauge Transformations
We recall (equation 9.1.1) that a static electric field  can be derived from the negative of the gradient of a scalar potential function
of space:

The zero of the potential is arbitrary. We can add any constant (with the dimensions of potential) to V. For example, if we define 
 where  is a constant (in the sense that it is not a function of x, y, z) then we can still calculate the electric field from 

.

We also recall (Equation 9.2.1) that a static magnetic field  can be derived from the curl of a magnetic vector potential function:

Let us also recall here the concept of the B-flux from Equation 6.10.1:

It will be worth while here to recapitulate the dimensions and SI units of these quantities:

Observable Dimensions Si Units

E MLT Q V m

B MT Q T

V ML T Q V

A MLT Q T m or Wb m

Φ ML T Q T m  or Wb

Equation  is also true for a nonstatic field. Thus a time-varying magnetic field can be represented by the  of a time-
varying magnetic vector potential. However, we know from the phenomenon of electromagnetic induction that a varying magnetic
field has the same effect as an electric field, so that, if the fields are not static, the electric field is the result of an electrical potential
gradient and a varying magnetic field, so that equation  holds only for static fields.

If we combine the Maxwell equation  with the equation for the definition of the magnetic vector potential 
, we obtain  Then, since  of any scalar function is zero, we can define a potential

function  such that

(We could have chosen a plus sign, but we choose a minus sign so that it reduces to the familiar  for a static field.)
Thus equations  and  define the electric and magnetic potentials – or at least they define the ient of V and the 

 of . But we recall that, in the static case, we can add an arbitrary constant to  (as long as the constant is dimensionally
similar to V), and the equation , where , still holds. Can we find a suitable transformation for  and 

 such that equations  and  still hold in the nonstatic case? Such a transformation would be a gauge transformation.

Let  be some arbitrary scalar function of space and time. I demand little of the form of ; indeed I demand only two things. One is
that it is a “well-behaved” function, in the sense that it is everywhere and at all times single-valued, continuous and differentiable.
The other is that it should have dimensions ML T Q . This is the same as the dimensions of magnetic B-flux, but I am not sure
that it is particularly helpful to think of this. It will, however, be useful to note that the dimensions of grad  and of  are,
respectively, the same as the dimensions of magnetic vector potential ( ) and of electric potential ( ).

Let us make the transformations

and

E

E =−grad V . (15.10.1)

= V +CV

′

C

E =−gradV

′

B

B = curl A (15.10.2)

=∬ B ⋅ dAΦ

B

(15.10.3)

-2 -1 -1

-1 -1

2 -2 -1

-1 -1 -1

B
2 -1 -1 2

15.10.2 curl

15.10.1

curl E =−B

˙

curl A = B curl (E + ) = 0A

˙

curl grad

V

E+ =−grad VA

˙

(15.10.4)

E =−gradV

15.10.4 15.10.2 grad

curl A V

E =−gradV

′

= V +CV

′

V

A 15.10.2 15.10.4

χ χ

2 -1 -1

χ χ̇

A V

= A−gradχA

′

(15.10.5)
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We shall see very quickly that this transformation (and we have a wide choice in the form of c) preserves the forms of equations 
 and , and therefore this transformation (or, rather, these transformations, since c can have any well-behaved form)

are gauge transformations.

Thus  becomes  And since  of any scalar field is zero, this becomes 
.

Also,  becomes

becomes

Thus the form of the equations is preserved. If we make a gauge transformation to the potentials such as equations  and 
, this does not change the fields  and , so that the fields  and  are gauge invariant. Maxwell’s equations in their

usual form are expressed in terms of  and , and are hence gauge invariant.
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= V +V

′

χ

˙

(15.10.6)

15.10.2 15.10.4

curl A = B curl ( +gradχ) = BA

′

curl grad

curl = BA

′

gradV =−(E+ )A

˙

grad( − ) =−(E+ +grad ),  or grad =−(E+ ).V

′

χ̇ A

′

˙

χ

˙

V

′

A

′

˙

(15.10.7)
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15.11: Maxwell’s Equations in Potential Form
In their usual form, Maxwell’s equations for an isotropic medium, written in terms of the fields, are

If we write the fields in terms of the potentials:

and

together with  and , we obtain for the first Maxwell equation, after some vector calculus and algebra,

For the second equation, we merely verify that zero is equal to zero. ( .)

For the third equation, which requires a little more vector calculus and algebra, we obtain

The speed of electromagnetic waves in the medium is  and, in a vacuum, equation 15.11.8 becomes

where  is the speed of electromagnetic waves in a vacuum.

The fourth Maxwell equation, when written in terms of the potentials, tells us nothing new (try it), so equations  and 
 (or  in vacuo) are Maxwell’s equations in potential form.

These equations look awfully difficult – but perhaps we can find a gauge transformation, using some form for , and subtracting 
 from  and adding  to , which will make the equations much easier and which will still give the right answers for 

and for .

One of the things that make equations  and  look particularly difficult is that each equation contains both  and ;
that is, we have two simultaneous differential equations to solve for the two potentials. It would be nice if we had one equation for 

 and one equation for . This can be achieved, as we shall shortly see, if we can find a gauge transformation such that the
potentials are related by

You should check that the two sides of this equation are dimensionally similar. What would be the SI units?

You’ll see that this is chosen so as to make the “difficult” part of equation  zero.

If we make a gauge transformation and take the divergence of equation 15.10.5 and the time derivative of equation 15.10.6, we
then see that condition  will be satisfied by a function  that satisfies

Don’t worry – you don’t have to solve this equation and find the function ; you just have to be assured that some such function
exists such that, when applied to the potentials, the potentials will be related by equation . Then, if you substitute equation 

divD = ρ (15.11.1)

divB = 0 (15.11.2)

curl H = +JD

˙

(15.11.3)

curl E =−B

˙

(15.11.4)

E =− −gradVA

˙

(15.11.5)

B = curl A, (15.11.6)

D = ϵE B = μH

★ V + (div A) =− .∇

2

∂

∂t

ρ

ϵ

(15.11.7)

div curl A = 0

★ A− ϵμ = grad(div A+ ϵμ )−μJ.∇

2

A∂

2
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 into Maxwell’s equations in potential form (equations  and ), you obtain the following forms for
Maxwell’s equations in vacuo in potential form, and the  and  are now separated:

and

And, since these equations were arrived at by a gauge transformation, their solutions, when differentiated, will give the right
answers for the fields.

This page titled 15.11: Maxwell’s Equations in Potential Form is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.

15.11.10 15.11.7 15.11.9

A V

★ V − =−∇

2

1

c

2

V∂

2

∂t

2

ρ

ϵ

0

(15.11.12)

★ A− =− J.∇

2

1

c

2

A∂

2

∂t

2

μ

0

(15.11.13)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/5346?pdf
https://creativecommons.org/licenses/by-nc/4.0
https://www.astro.uvic.ca/~tatum/celmechs.html
http://orca.phys.uvic.ca/~tatum/elmag.html


15.12.1 https://phys.libretexts.org/@go/page/5347

15.12: Retarded Potential
In a static situation, in which the charge density , the current density , the electric field  and potential , and the magnetic field

 and potential  are all constant in time (i.e. they are functions of ,  and , but not of ) we already know how to calculate, in
vacuo, the electric potential from the electric charge density and the magnetic potential from the current density. The formulas are

and

Here  is the distance between the point  and the point  and  is a volume element at the point . I
can’t remember if we have written these two equations in exactly that form before, but we have certainly used them, and given lots
of examples of calculating  in Chapter 2, and one of calculating  in Section 9.3.

The question we are now going to address is whether these formulas are still valid in a nonstatic situation, in which the charge
density , the current density , the electric field and potential , and the magnetic field  and potential  are all varying in
time (i.e. they are functions of x, y, z and t). The answer is “yes, but…”. The relevant formulas are indeed

and

…but notice the  on the right hand side and the  on the left hand side! What this means is that, if  is the charge
density at a point  at time , equation  gives the correct potential at the point  at some slightly later
time , the time difference  being equal to the time  that it takes for an electromagnetic signal to travel from  to 

. If the charge density at  changes, the information about this change cannot reach the point instantaneously; it
takes a time  for the information to be transmitted from one point to another. The same considerations apply to the change in
the magnetic potential when the current density changes, as described by equation . The potentials so calculated are called,
naturally, the retarded potentials. While this result has been arrived at by a qualitative argument, in fact equations  and 

 can be obtained as a solution of the differential Equations 15.11.12 and 15.11.13. Mathematically there is also a solution
that gives an “advance potential” – that is, one in which  rather than  is equal to . You can regard, if you wish, the
retarded solution as the “physically acceptable” solution and discard the “advance” solution as not being physically significant.That
is, the potential cannot predict in advance that the charge density is about to change, and so change its value before the charge
density does. Alternatively one can think that the laws of physics, from the mathematical view at least, allow the universe to run
equally well backward as well as forward, though in fact the arrow of time is such that cause must precede effect (a condition
which, in relativity, leads to the conclusion that information cannot be transmitted from one place to another at a speed faster than
the speed of light). One is also reminded that the laws of physics, from the mathematical view at least, allow the entropy of an
isolated thermodynamical system to decrease (see Section 7.4 in the Thermodynamics part of these notes) – although in the real
universe the arrow of time is such that the entropy in fact increases. Recall also the following passage from Through the Looking-
glass and What Alice Found There.

Addendum. Coincidentally, just two days after having completed this chapter, I received the 2005 February issue of Astronomy &
Geophysics, which included a fascinating article on the Arrow of Time. You might want to look it up. The reference is Davis, P.,
Astronomy & Geophysics (Royal Astronomical Society) 46, 26 (2005).
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CHAPTER OVERVIEW

16: CGS Electricity and Magnetism
An older system of units, still used by some authors, was the CGS (centimeter-gram-second) system. In this system, a dyne is the
force that will impart an acceleration of 1 cm s to a mass of 1 gram. An erg is the work done when a force of one dyne moves its
point of application through 1 cm in the line of action of the force. It will not take the reader a moment to see that a newton is equal
to 10  dynes, and a joule is 10  ergs. As far as mechanical units are concerned, neither one system has any particular advantage
over the other.

16.1: Introduction
16.2: The CGS Electrostatic System
16.3: The CGS Electromagnetic System
16.4: The Gaussian Mixed System
16.5: Conversion Factors
16.6: Dimensions
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16.1: Introduction
We are accustomed to using MKS (metre-kilogram-second) units. A second, at one time defined as a fraction 1/86400 of a day, is
now defined as 9 192 631 770 times the period of a hyperfine line emitted in the spectrum of the Cs (cesium) atom. A metre was
at one time defined as one ten-millionth of the length of a quadrant of Earth's surface measured from pole to equator. Later it was
defined as the distance between two scratches on a platinum-iridium bar held on Paris. Still later, it was defined in terms of the
wavelength of one or other of several spectral lines that have been used in the past for this purpose. At present, the metre is defined
as the distance travelled by light in vacuo in a time of 1/(299 792 458) second. A kilogram is equal to the mass of a platinum-
iridium cylinder held in Paris. The day may come when we are able to define a kilogram as the mass of so many electrons, but that
day is not yet.

For electricity and magnetism, we extended the MKS system by adding an additional unit, the ampère, whose definition was given
in Section 6.2, to form the MKSA system. This in turn is a subset of SI (le Système International des Unités), which also includes
the kelvin, the candela and the mole.

An older system of units, still used by some authors, was the CGS (centimetre-gram-second) system. In this system, a dyne is the
force that will impart an acceleration of 1 cm s  to a mass of 1 gram. An erg is the work done when a force of one dyne moves its
point of application through 1 cm in the line of action of the force. It will not take the reader a moment to see that a newton is equal
to 10  dynes, and a joule is 10  ergs. As far as mechanical units are concerned, neither one system has any particular advantage
over the other.

When it comes to electricity and magnetism, however, the situation is entirely different, and there is a huge difference between
MKS and CGS. Part of the difficulty stems from the circumstance that electrostatics, magnetism and current electricity originally
grew up as quite separate disciplines, each with its own system of units, and the connections between them were not appreciated or
even discovered. It is not always realized that there are several version of CGS units used in electricity and magnetism, including
hybrid systems, and countless conversion factors between one version and another. There are CGS electrostatic units (esu), to be
used in electrostatics; CGS electromagnetic units (emu), to be used for describing magnetic quantities; and gaussian mixed units. In
the gaussian mixed system, in equations that include both electrostatic quantities and magnetic quantities, the former were
supposed to be expressed in esu and the latter in emu, and a conversion factor, given the symbol c, would appear in various parts of
an equation to take account of the fact that some quantities were expressed in one system of units and others were expressed in
another system. There was also the practical system of units, used in current electricity. In this, the ampère would be defined either
in terms of the rate of electrolytic deposition of silver from a silver nitrate solution, or as exactly 0.1 CGS emu of current. The ohm
would be defined in terms of the resistance of a column of mercury of defined dimensions, or again as exactly 10  emu of
resistance. And a volt was 10  emu of potential difference. It will be seen already that, for every electrical quantity, several
conversion factors between the different systems had to be known. Indeed, the MKSA system was devised specifically to avoid this
proliferation of conversion factors.

Generally, the units in these CGS system have no particular names; one just talks about so many esu of charge, or so many emu of
current. Some authors, however, give the names statcoulomb, statamp, statvolt, statohm ,etc., for the CGS esu of charge, current,
potential difference and resistance, and abcoulomb, abamp, abvolt, abohm for the corresponding emu.

The difficulties by no means end there. For example, Coulomb's law is generally written as

It will immediately be evident from this that the permittivity defined by this equation differs by a factor of  from the permittivity
that we are accustomed to. In the familiar equation generally used in conjunction with SI units, namely

the permittivity  so defined is called the rationalized permittivity. The permittivity  of equation 16.1.1 is the unrationalized
permittivity. The two are related by . A difficulty with the unrationalized form is that a factor  appears in formulas
describing uniform fields, and is absent from formulas describing situations with spherical symmetry.

Yet a further difficulty is that the magnitude of the CGS esu of charge is defined in such a way that the unrationalized free space
permittivity has the numerical value 1 – and consequently it is normally left out of any equations in which it should appear. Thus
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equations as written often do not balance dimensionally, and one is deprived of dimensional analysis as a tool. Permittivity is
regarded as a dimensionless number, and Coulomb's law for two charges in vacuo is written as

The view is taken that electrical quantities can be expressed dimensionally in terms of mass, length and time only, and, from
equation 16.1.3, it is asserted that the dimensions of electrical charge are

Because permittivity is regarded as a dimensionless quantity, the vectors  and  are regarded as dimensionally similar, and in
vacuo they are identical. That is, in vacuo, there is no distinction between them.

When we come to CGS electromagnetic units all these difficulties reappear, except that, in the emu system, the free space
permeability is regarded as a dimensionless number equal to 1,  and  are dimensionally similar, and in vacuo there is no
distinction between them. The dimensions of electric charge in the CGS emu system are

Thus the dimensions of charge are different in esu and in emu.

Two more highlights. The unit of capacitance in the CGS esu system is the centimeter, but in the CGS emu system, the centimeter
is the unit of inductance.

Few users of CGS esu and emu fully understand the complexity of the system. Those who do so have long abandoned it for SI.
CGS units are probably largely maintained by those who work with CGS units in a relatively narrow field and who therefore do not
often have occasion to convert from one unit to another in this immensely complicated and physically unrealistic system.

Please don't blame me for this – I'm just the messenger!

In Sections 16.2, 16.3 and 16.4, I shall describe some of the features of the esu, emu and mixed systems. I shall not be giving a full
and detailed exposition of CGS electricity, but I am just mentioning some of the highlights and difficulties. You are not going to
like these sections very much, and will probably not make much sense of them. I suggest just skip through them quickly the first
time, just to get some idea of what it's all about. The practical difficulty that you are likely to come across in real life is that you
will come across equations and units written in CGS language, and you will want to know how to translate them into the SI
language with which you are familiar. I hope to address that in Section 16.5, and to give you some way of translating a CGS
formula into an SI formula that you can use and get the right answer from.

This page titled 16.1: Introduction is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.
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16.2: The CGS Electrostatic System
Definition. One CGS esu of charge (also known as the statcoulomb) is that charge which, if placed 1 cm from a similar charge in
vacuo, will repel it with a force of 1 dyne.

The following exercises will be instructive.

Potential Difference

If the work required to move a charge of 1 esu from one point to another is 1 erg, the potential difference between the points is 1
esu of potential difference, or 1 statvolt.

It is often said that an esu of potential difference is 300 volts, but this is just an approximation. The exact conversion is

Capacitance

If the potential difference across the plate of a capacitor is one statvolt when the capacitor holds a charge of one statcoulomb, the
capacitance of the capacitor is one centimetre. (No – that's not a misprint.)

Here is a sample of some formulas for use with CGS esu.

Potential at a distance  from a point charge  in vacuo = .

Field at a distance  in vacuo from an infinite line charge of .

Field in vacuo above an infinite charged plate bearing a surface charge density of .

An electric dipole moment  is, as in SI, the maximum torque experienced by the dipole in unit electric field. A debye is  esu
of dipole moment. The field at a distance  in vacuo along the axis of a dipole is .

Gauss's theorem: The total normal outward flux through a closed surface is 4  time the enclosed charge.

Capacitance of a plane parallel capacitor = .

Capacitance of an isolated sphere of radius  in vacuo = . Example: What is the capacitance of a sphere of radius 1 cm? Answer:
1 cm. Easy, eh?

Energy per unit volume or an electric field .

One more example before leaving esu. You will recall that, if a polarizable material is placed in an electrostatic field, the field  in
the material is greater than  by the polarization  of the material. That is, . The equivalent formula for use with
CGS esu is

And since  and , it follows that

At this stage you may want a conversion factor between esu and SI for all quantities. I'll supply one a little later, but I want to
describe emu first, and then we can construct a table given conversions between all three systems.

This page titled 16.2: The CGS Electrostatic System is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
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16.3: The CGS Electromagnetic System
If you have been dismayed by the problems of CGS esu, you don't yet know what is in store for you with CGS emu. Wait for it:

Definition. One CGS emu of magnetic pole strength is that pole which, if placed 1 cm from a similar pole in vacuo, will repel it
with a force of 1 dyne.

The system is based on the proposition that there exists a "pole" at each end of a magnet, and that point poles repel each other
according to an inverse square law. Magnetic field strength  is defined as the force experienced by a unit pole situated in the
field. Thus, if a pole of strength  emu is situated in a field of strength , it will experience a force .

Definition. If a pole of strength 1 emu experiences a force of 1 dyne when it is situated in a magnetic field, the strength of the
magnetic field is 1 oersted (Oe). It will probably be impossible for the reader at this stage to try to work out the conversion factor
between Oe and , but, for the record

Now hold on tight, for the definition of the unit of electric current.

Definition: One emu of current (1 abamp) is that steady current, which, flowing in the arc of a circle of length 1 cm and of radius 1
cm (i.e. subtending 1 radian at the centre of the circle) gives rise to a magnetic field of 1 oersted at the centre of the circle.

This will involve quite an effort of the imagination. First you have to imagine a current flowing in an arc of a circle. Then you have
to imagine measuring the field at the centre of the circle by measuring the force on a unit magnetic pole that you place there.

It follows that, if a current  abamp flows in a circle of radius  cm, the field at the centre is of the circle is

The conversion between emu of current (abamp) and ampères is

1 emu = 10 .

The Biot-Savart law becomes

The field at a distance  in vacuo from a long straight current  is

Ampère's law says that the line integral of  around a closed plane curve is  times the enclosed current. The field inside a long
solenoid of  turns per centimetre is

So far, no mention of , but it is now time to introduce it. Let us imagine that we have a long solenoid of  turns per cm, carrying
a current of  emu, so that the field inside it is  Oe. Suppose that the cross-sectional area of the solenoid is A. Let us wrap a
single loop of wire tightly around the outside of the solenoid, and then change the current at a rate  so that the field changes at a
rate . An EMF will be set up in the outside (secondary) coil of magnitude . If we now insert an iron core inside the
solenoid and repeat the experiment, we find that the induced EMF is much larger. It is larger by a (supposed dimensionless) factor
called the permeability of the iron. Although this factor is called the permeability and the symbols used is often , I am going to
use the symbol  for it. The induced EMF is now A times . We denote the product of  and  with the symbol , so that 

. The magnitude of  inside the solenoid is

It will be evident from the familiar SI version  that the CGS emu definition of the permeability differs from the SI
definition by a factor . The CGS emu definition is called an unrationalized definition; the SI definition is rationalized. The
relation between them is .
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In CGS emu, the permeability of free space has the value 1. Indeed the supposedly dimensionless unrationalized permeability is
what, in SI parlance, would be the relative permeability.

The CGS unit of  is the gauss ( ), and 1 .

It is usually held that  is a dimensionless number, so that  and  have the same dimensions, and, in free space, B and H are
identical. They are identical not only numerically, but there is physically no distinction between them. Because of this, the unit
oersted is rarely heard, and it is common to hear the unit gauss used haphazardly to describe either  or .

The scalar product of  and area is the magnetic flux, and its CGS unit, , bears the name the maxwell. The rate of change of
flux in maxwells per second will give you the induced EMF in emus (abvolts). An abvolt is  V.

The subject of magnetic moment has caused so much confusion in the literature that I shall devote an entire future chapter to it
rather than try to do it here.

I end this section by giving the CGS emu version of magnetization. The familiar  becomes, in its CGS emu
guise, . The magnetic susceptibility  is defined by . Together with , this results in 

.
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16.4: The Gaussian Mixed System
A problem arises if we are dealing with a situation in which there are both “electrostatic” and “electromagnetic” quantities. The
“mixed system”, which is used very frequently, in CGS literature, uses esu for quantities that are held to be “electrostatic” and emu
for quantities that are held to be “electromagnetic”, and it seems to be up to each author to decide which quantities are to be
regarded as “electrostatic” and which are “electromagnetic. Because different quantities are to be expressed in different sets of units
within a single equation, the equation must include the conversion factor   in strategic positions within the
equation.

The most familiar example of this is the equation for the force  experienced by a charge  when it is moving with velocity  in
an electric field  and a magnetic field . This equation is liable to appear either as

or as

It can appear in either of these forms because, if CGS emu are used,  and  are numerically equal in vacuo. The conversion
factor  appears in these equations, because it is understood (by those who understand CGS units) that  and  are to be expressed
in esu, while  or  is to be expressed in emu, and the conversion factor  is necessary to convert it to esu.

It should be noted that in all previous chapters in these notes, equations balance dimensionally, and the equations are valid in any
coherent system of units, not merely SI. Difficulties arise, of course, if you write an equation that is valid only so long as a
particular set of units is used, and even more difficulties arise if some quantities are to be expressed in one system of units, and
other quantities are to be expressed in another system of units.

An analogous situation is to be found in some of the older books on thermodynamics, where it is possible to find the following
equation:

This equation expresses the difference in the specific heat capacities of an ideal gas, measured at constant pressure and at constant
volume. In equation 16.4.3, it is understood that  and  are to be expressed in calories per gram per degree, while the
universal gas constant is to be expressed in ergs per gram per degree. The factor  is a conversion factor between erg and calories.
Of course the sensible way to write the equation is merely

This is valid whatever units are used, be they calories, ergs, joules, British Thermal Units or kWh, as long as all quantities are
expressed in the same units. Yet it is truly extraordinary how many electrical equations are to be found in the literature, in which
different units are to be used for dimensionally similar quantities.

Maxwell’s equations may appear in several forms. I take one at random from a text written in CGS:

The factor  occurs as a conversion factor, since some quantities are to be expressed in esu and some in emu. The  arises because
of a different definition (unrationalized) of permeability. In some versions there may be no distinction between  and , or
between  and , and the  and the  may appear in various places in the equations.

(It may also be remarked that, in the earlier papers, and in Maxwell’s original writings, vector notation is not used, and the
equations appear extremely cumbersome and all but incomprehensible to modern eyes.)
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divD = 4πρ, (16.4.6)

c curlH= +4πJ,D
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16.5: Conversion Factors
By this time, you are completely bewildered, and you want nothing to do with such a system. Indeed you may even be wondering if
I made it all up, so irrational does it appear to be. You would like to ignore it all completely. But you cannot ignore it, because, in
your reading, you keep coming across formulas that you need, but you don’t know what units to use, or whether there should be a 

 in the formula, or whether there is a permittivity or permeability missing from the equation because the author happens to be
using some set of units in which one or the other of these quantities has the numerical value 1, or whether the  in the equation
should really be a , or the  a .

Is there anything I can do to help?

What I am going to do in this section is to list a number of conversion factors between the different systems of units. This may help
a little, but it won’t by any means completely solve the problem. Really to try and sort out what a CGS equation means requires
some dimensional analysis, and I shall address that in section 16.6

In the conversion factors that I list in this section, the symbol c stands for the number , which is numerically
equal to the speed of light expressed in . The abbreviation “esu” will mean CGS electrostatic unit, and “emu” will mean
CGS electromagnetic unit. A prefix “stat” to a unit implies that it is an esu; a prefix “ab” implies that it is an emu. I list the
conversion factors for each quantity in the form “1 SI unit = so many esu = so many emu”.

I might mention that people will say that “SI is full of conversion factors”. The fact is that SI is a unified coherent set of units, and
it has no conversion factors. Conversion factors are characteristic of CGS electricity and magnetism.

Quantity of Electricity (Electric Charge)

1 coulomb =  statcoulomb =  emu

Electric Current

1 amp =  esu =  abamp

Potential Difference

1 volt =  statvolt =  emu

Resistance

1 ohm =  esu =  abohm

Capacitance

1 farad =  esu =  emu

Inductance

1 henry =  esu =  emu

Electric Field E

1  =  esu =  esu

Electric Field D

1  =  esu =  emu

Magnetic Field B

1 tesla =  esu =  gauss

Magnetic Field H

1  =  esu =  oersted

Magnetic B-flux F

1 weber =  esu =  maxwell

4π
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16.6: Dimensions
A book says that the equivalent width , in wavelength units, of a spectrum line, is related to the number of atoms per unit area in
the line of sight, , by

Is this formula all right in any system of units? Can I use SI units on the right hand side, and get the answer in metres? Or must I
use a particular set of units in order to get the right answer? And if so, which units?

A book says that the rate at which energy is radiated, , from an accelerating charge is

Is this correct? Is  the speed of light, or is it merely a conversion factor between different units? Or is one of the s a conversion
factor, and the other two are the speed of light?

It is possible to find the answer to such bewildering questions, if we do a bit of dimensional analysis. So, before trying to answer
these specific questions (which I shall do later as examples) I am going to present a table of dimensions. I already gave a table of
dimensions of electrical quantities in Chapter 11, in terms of  and , but that table won’t be particularly helpful in the
present context.

I pointed out in Section 16.1 of the present chapter that Coulomb’s law is often written in the form

Consequently the dimensions of  are held to be . But we know that a permittivity is missing from the
denominator of equation 16.6.3, because the writer intends his formula to be restricted to a particular set of units such that  or 

. In order to detect whether a permittivity has been omitted from an equation, we need a table in which the dimensions of
electrical quantities are given not in terms of  and  as in Chapter 11, but in terms of  and , and this is what I am
just about to do. However, often it is the permeability that has been omitted from an equation, and, in order to detect whether this is
so, I am also supplying a table in which the dimensions of electrical quantities are given in terms of  and .

If, from dimensional analysis, you find that an expression is dimensionally wrong by a power of the permittivity, insert  in the
appropriate part of the equation. If you find that an expression is dimensionally wrong by a power of the permeability, insert 

 in the appropriate part of the equation. If you find that the equation is wrong by , insert or delete  as appropriate.
Your equation will then balance dimensionally and will be ready for use in any coherent system of units, including SI. This
procedure will probably work in most cases, but I cannot guarantee that it will work in all cases, because it cannot deal with those
(frequent!) cases in which the formula given is plain wrong, whatever units are used!
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Now let’s look at the equation for equivalent width of a spectrum line:

Here  and . By making use of the table we find that the dimensions of the right hand side are . There is
therefore a  missing from the denominator, and the equation should be

How about the rate at which energy is radiated from an accelerating charge?

Power has dimensions , whereas the dimensions of the right hand side are , so again there is a  missing
from the denominator and the formula should be

It is often the case that there is a  missing from the denominator is formulas that have an  upstairs.

“Electromagnetic” formulas often give more difficulty. For example, one book says that the energy per unit volume in a magnetic
field in vacuo is , while another says that is it is . Which is it (if indeed it is either)? Energy per unit volume has dimensions 

. The dimensions of  are . The equation given is therefore wrong dimensionally by permeability, and the
equation should be divided by  to give , which is correct. On the other hand, the dimensions of  are 

, so perhaps we should multiply by ? But this does not give a correct answer, and it exemplifies some of the
many difficulties that are caused by writing formulas that do not balance dimensionally and are intended to be used only with a
particular set of units. The situation is particularly difficult with respect to magnetic moment, a subject to which I shall devote the
next chapter.

This page titled 16.6: Dimensions is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
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Thumbnail: Magnetic fields can be visualized with iron filings, that align along the magnetic field direction. Here the magnetic
field of a homogeneously magnetized cylindrical bar magnet was accurately computed, and the field is shown with simulated
randomly placed iron filings. The density of filings is also proportional to the field strength. The field is strongest around the
magnetic poles. (CC BY-SA 4.0; Geek3 via Wikipedia)
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17.1: Introduction to Magnetic Dipole Moments
A number of different units for expressing magnetic dipole moment (hereafter simply “magnetic moment”) are commonly seen in
the literature, including, for example, erg , ,  , , , . It is not always obvious how to convert
from one to another, nor is it obvious whether all quantities described as “magnetic moment” refer to the same physical concept or
are dimensionally or numerically similar. It can be almost an impossibility, for example, to write down a list of the magnetic
moments of the planets in order of increasing magnetic moment if one refers to the diverse literature in which the moments of each
of the nine planets are quoted in different units. This chapter explores some of these aspects of magnetic moment.

In previous chapters, I have used the symbols  and  for electric and magnetic dipole moment. In this chapter I shall be
concerned exclusively with magnetic moment, and so I shall dispense with the subscript m.

This page titled 17.1: Introduction to Magnetic Dipole Moments is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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17.2: The SI Definition of Magnetic Moment
If a magnet is placed in an external magnetic field , it will experience a torque. The magnitude of the torque depends on the
orientation of the magnet with respect to the magnetic field. There are two oppositely-directed orientations in which the magnet
will experience the greatest torque, and the magnitude of the magnetic moment is defined as the maximum torque experienced by
the magnet when placed in unit external magnetic field. The magnitude and direction of the torque is given by the equation

The SI unit for magnetic moment is clearly .

If an electric current  flows in a plane coil of area  (recall that area is a vector quantity – hence the boldface), the torque it will
experience in a magnetic field is given by

This means that the magnetic moment of the coil is given by

Thus the unit  is also a correct SI unit for magnetic moment, though, unless the concept of “current in a coil” needs to be
emphasized in a particular context, it is perhaps better to stick to .

While “ ” is also formally dimensionally correct, it is perhaps better to restrict the unit “joule” to work or energy, and to use 
 for torque. Although these are dimensionally similar, they are conceptually rather different. For this reason, the occasional

practice seen in atomic physics of expressing magnetic moments in  is not entirely appropriate, however convenient it
may sometimes seem to be in a field in which masses and momenta are often conveniently expressed in  and .

It is clear that the unit “ ”, often seen for “magnetic moment” is not dimensionally correct for magnetic moment as defined
above, so that, whatever quantity is being expressed by the often-seen “ ”, it is not the conventionally defined concept of
magnetic moment.

The magnetization  of a material is defined by the equation

Equations  and  for the definitions of magnetic moment and magnetization are consistent with the alternative concept
of magnetization as “magnetic moment per unit volume”.

This page titled 17.2: The SI Definition of Magnetic Moment is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
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17.3: The Magnetic Field on the Equator of a Magnet
By the “equator” of a magnet I mean a plane normal to its magnetic moment vector, passing through the mid-point of the magnet.

The magnetic field at a point at a distance r on the equator of a magnet may be expressed as a series of terms of successively higher
powers of  (the first term in the series being a term in ), and the higher powers decrease rapidly with increasing distance. At
large distances, the higher powers become negligible, so that, at a large distance from a small magnet, the magnitude of the
magnetic field produced by the magnet is given approximately by

For example, if the surface magnetic field on the equator of a planet has been measured, and the magnetic properties of the planet
are being modelled in terms of a small magnet at the centre of the planet, the dipole moment can be calculated by multiplying the
surface equatorial magnetic field by  times the cube of the radius of the planet. If , and  are expressed respectively in

 and , the magnetic moment will be in .

This page titled 17.3: The Magnetic Field on the Equator of a Magnet is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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17.4: CGS Magnetic Moment, and Lip Service to SI
Equation 17.3.1 is the equation (written in the convention of quantity calculus, in which symbols stand for physical quantities
rather than for their numerical values in some particular system of units) for the magnetic field at a large distance on the equator of
a magnet. The equation is valid in any coherent system of units whatever, and its validity is not restricted to any particular system
of units. Example of systems of units in which Equation 17.3.1 are valid include SI, CGS EMU, and British Imperial Units.

If CGS EMU are used, the quantity  has the numerical value 1. Consequently, when working exclusively in CGS EMU,
Equation 17.3.1 is often written as

This equation appears not to balance dimensionally. However, the equation is not written according to the conventions of quantity
calculus, and the symbols do not stand for physical quantities. Rather, they stand for their numerical values in a particular system of
units. Thus  is the distance in cm,  is the field in gauss, and  is the magnetic moment in dyne cm per gauss. However, because
of the deceptive appearance of the equation, a common practice, for example, in calculating the magnetic moment of a planet is to
measure its surface equatorial field, multiply it by the cube of the planet’s radius, and then quote the magnetic moment in “ ”.
While the numerical result is correct for the magnetic moment in CGS EMU, the units quoted are not.

While some may consider objections to incorrect units to be mere pedantry (and who would presumably therefore see nothing
wrong with quoting a length in grams, as long as the actual number is correct), the situation becomes more difficult when a writer,
wishing to pay lip service to SI, attempts to use Equation  using SI units, by multiplying the surface equatorial field in  by
the cube of the planet’s radius, and then giving the magnetic moment in “ ”, a clearly disastrous recipe!

Of course, some may use Equation  as a definition of magnetic moment. If that is so, then the quantity so defined is clearly
not the same quantity, physically, conceptually, dimensionally or numerically, as the quantity defined as magnetic moment in
Section 17.2.

This page titled 17.4: CGS Magnetic Moment, and Lip Service to SI is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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17.5: Possible Alternative Definitions of Magnetic Moment
Although the standard SI definition of magnetic moment is described in Section 17.2, and there is little reason for anyone who
wishes to be understood by others to use any other, the previous paragraph suggested that there might be more than one choice as to
how one wishes to define magnetic moment. Do we use equation 17.2.1 or equation 17.4.1 as the definition? (They are clearly
different concepts.) Additional degrees of freedom as to how one might choose to define magnetic moment depend on whether we
elect to use magnetic field  or magnetic field  in the definition, or whether the permeability is or is not to include the factor 
in its definition – that is, whether we elect to use a “rationalized” or “unrationalized” definition of permeability.

If one chooses to define the magnetic moment as the maximum torque experienced in unit external magnetic field, there is still a
choice as to whether by magnetic field we choose  or . Thus we could define magnetic moment by either of the following two
equations:

or

Alternatively, we could choose to define the magnetic moment is terms of the field on the equator. In that case we have a choice of
four. We can choose to use  or  for the magnetic field, and we can choose to exclude or include  in the denominator:

These six possible definitions of magnetic moment are clearly different quantities, and one may well wonder why to list them all.
The reason is that all of them are to be found in current scientific literature. To give some hint as to the unnecessary complications
introduced when authors depart from the simple SI definition, I list in Table  the dimensions of each version of magnetic
moment, the CGS EM unit, the SI unit, and the conversion factor between CGS and SI. The conversion factors cannot be obtained
simply by referring to the dimensions, because this does not take into account the inclusion or exclusion of  in the permeability.
The correct factors can be obtained from the units, for example by noting that  and .

: DIMENSIONS, CGS AND SI UNITS, AND CONVERSION FACTORS FOR MAGNETIC MOMENTS

This page titled 17.5: Possible Alternative Definitions of Magnetic Moment is shared under a CC BY-NC 4.0 license and was authored, remixed,
and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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17.6: Thirteen Questions
We have seen that the SI definition of magnetic moment is unequivocally defined as the maximum torque experienced in unit
external field. Nevertheless some authors prefer to think of magnetic moment as the product of the equatorial field and the cube of
the distance. Thus there are two conceptually different concepts of magnetic moment, and, when to these are added minor details as
to whether the magnetic field is  or , and whether or not the permeability should include the factor , six possible definitions
of magnetic moment, described in Section 17.6, all of which are to be found in current literature, arise.

Regardless, however, how one chooses to define magnetic moment, whether the SI definition or some other unconventional
definition, it should be easily possible to answer both of the following questions:

A. Given the magnitude of the equatorial field on the equator of a magnet, what is the maximum torque that that magnet would
experience if it were placed in an external field?

B. Given the maximum torque that a magnet experiences when placed in an external field, what is the magnitude of the equatorial
field produced by the magnet?

It must surely be conceded that a failure to be able to answer such basic questions indicates a failure to understand what is meant by
magnetic moment.

I therefore now ask a series of thirteen questions. The first six are questions of type A, in which I use the six possible definitions of
magnetic moment. The next six are similar questions of type B. And the last is an absurdly simple question, which anyone who
believes he understands the meaning of magnetic moment should easily be able to answer.

1. The magnitude of the field in the equatorial plane of a magnet at a distance of 1 cm is 1 Oe.

What is the maximum torque that this magnet will experience in an external magnetic field of 1 Oe, and what is its magnetic
moment?

Note that, in this question and the following seven there must be a unique answer for the torque. The answer you give for the
magnetic moment, however, will depend on how you choose to define magnetic moment, and on whether you choose to give the
answer in SI units or CGS EMU.

2. The magnitude of the field in the equatorial plane of a magnet at a distance of 1 cm is 1 .

What is the maximum torque that this magnet will experience in an external magnetic field of 1 , and what is its magnetic
moment?

3. The magnitude of the field in the equatorial plane of a magnet at a distance of 1 cm is 1 .

What is the maximum torque that this magnet will experience in an external magnetic field of 1 , and what is its magnetic
moment?

4. The magnitude of the field in the equatorial plane of a magnet at a distance of 1 cm is 1 .

What is the maximum torque that this magnet will experience in an external magnetic field of 1 , and what is its magnetic
moment?

5. The magnitude of the field in the equatorial plane of a magnet at a distance of 1  is 1 .

What is the maximum torque that this magnet will experience in an external magnetic field of 1 , and what is its magnetic
moment?

6. The magnitude of the field in the equatorial plane of a magnet at a distance of 1  is 1 .

What is the maximum torque that this magnet will experience in an external magnetic field of 1 , and what is its magnetic
moment?

7. The magnitude of the field in the equatorial plane of a magnet at a distance of 1  is 1 .

What is the maximum torque that this magnet will experience in an external magnetic field of 1 , and what is its magnetic
moment?

8. The magnitude of the field in the equatorial plane of a magnet at a distance of 1  is 1 .
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What is the maximum torque that this magnet will experience in an external magnetic field of 1 , and what is its magnetic
moment?

9. A magnet experiences a maximum torque of 1 dyn cm if placed in a field of 1 . What is the magnitude of the field in the
equatorial plane at a distance of 1 cm, and what is the magnetic moment?

Note that, in this question and the following three there must be a unique answer for  and a unique answer for , though each can
be expressed in SI or in CGS EMU, while the answer for the magnetic moment depends on which definition you adopt.

10. A magnet experiences a maximum torque of 1 dyn cm if placed in a field of 1 . What is the magnitude of the field in the
equatorial plane at a distance of 1 cm, and what is the magnetic moment?

11. A magnet experiences a maximum torque of 1  m if placed in a field of 1 . What is the magnitude of the field in the
equatorial plane at a distance of 1 , and what is the magnetic moment?

12. A magnet experiences a maximum torque of 1  if placed in a field of 1 . What is the magnitude of the field in the
equatorial plane at a distance of 1 , and what is the magnetic moment?

I’ll pose Question Number 13 a little later. In the meantime the answers to the first four questions are given in Table , and
the answers to Questions 5 – 12 are given in Tables  and . The sheer complexity of these answers to absurdly simple
questions is a consequence of different usages by various authors of the meaning of “magnetic moment” and of departure from
standard SI usage.

 
AnswerS TO QUESTIONS 1 – 4 IN CGS EMU AND SI UNITS 
The answers to the first four questions are identical
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AnswerS TO QUESTIONS 9 – 12 IN CGS EMU AND SI UNITS
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The thirteenth and last of these questions is as follows: Assume that Earth is a sphere of radius , and
that the surface field at the magnetic equator is , what is the magnetic
moment of Earth? It is hard to imagine a more straightforward question, yet it would be hard to find two people who would give
the same answer.

The SI answer (which, to me, is the only answer) is

This result correctly predicts that, if Earth were placed in an external field of , it would experience a maximum torque of 
, and this is the normal meaning of what is meant by magnetic moment.

A calculation in GCS might proceed thus:

Is this the same result as was obtained from the SI calculation? We can use the conversions  and ,
and we obtain

We arrive at a number that not only differs from the SI calculation by , but is expressed in quite different, dimensionally
dissimilar, units.

Perhaps the CGS calculation should be
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Now  and , and we obtain

This time we arrive at SI units that are dimensionally similar to , and which are perfectly correct SI units, but the
magnetic moment is smaller than correctly predicted by the SI calculation by a factor of 12.6.

Yet again, we might do what appears to be frequently done by planetary scientists, and we can multiply the surface field in  by the
cube of the radius in  to obtain

This arrives at the same result as one of the CGS calculations, but, whatever it is, it is not the magnetic moment in the sense of the
greatest torque in a unit field. The quantity so obtained appears to be nothing more that the product of the surface equatorial field
and the cube of the radius, and as such would appear to be a purposeless and meaningless calculation.

It would be a good deal more meaningful merely to multiply the surface value of  by 3. This in fact would give (correctly) the
dipole moment divided by the volume of Earth, and hence it would be the average magnetization of Earth – a very meaningful
quantity, which would be useful in comparing the magnetic properties of Earth with those of the other planets.

This page titled 17.6: Thirteen Questions is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum
via source content that was edited to the style and standards of the LibreTexts platform.
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17.7: Additional Remarks
The units erg  or  are frequently encountered for magnetic moment. These may be dimensionally correct, although ergs
and joules (units of energy) are not quite the same things as  or  as units of torque. It could be argued that magnetic
moment could be defined from the expression  for the potential energy of a magnet in a magnetic field. But the correct
expression is actually constant , the constant being zero only if you specify that the energy is taken to be zero when the
magnetic moment and field vectors are perpendicular to each other. This seems merely to add yet further complications to what
should be, but unfortunately is not, a concept of the utmost simplicity.

Nevertheless the use of ergs or joules rather than  or  is not uncommon, and nuclear and particle physicists commonly
convert joules to . Magnetic moments of atomic nuclei are commonly quoted in nuclear magnetons, where a nuclear
magneton is  and has the value . While one is never likely to want to express the magnetic
moment of the planet Uranus in nuclear magnetons, it is sobering to attempt to do so, given that the magnetic moment of Uranus is
quoted as . While on the subject of Uranus, I have seen it stated that the magnetic quadrupole of Uranus is or the
same order of magnitude as its magnetic dipole moment – though, since these are dimensionally dissimilar quantities, such a
statement conveys no meaning.

Another exercise to illustrate the points I have been trying to make is as follows. From four published papers I find the following.
The magnetic moment of Mercury is  in one paper, and  in another. The magnetic moment of Uranus
is  in one paper, and  in another. The radii of Mercury and Uranus are, respectively, 
and . Calculate the ratio of the magnetic moment of Uranus to that of Mercury. If you are by now completely
confused, you are not alone.
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17.8: Conclusion
Readers will by now probably be bewildered at the complexities described in this chapter. After all, there could scarcely be a
simpler notion than that of the torque experienced by a magnet in a magnetic field, and there would seem to be no need for all of
these complicated variations. You are right – there is no such need. All that need be known is summarized in Sections 17.2 and
17.3. The difficulty arises because authors of scientific papers are using almost all possible variations of what they think is meant
by magnetic moment, and this has led to a thoroughly chaotic situation. All I can do is to hope that readers of these notes will be
encouraged to use only the standard SI definition and units for magnetic moment, and to be aware of the enormous complications
arising when they depart from these.
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18: Electrochemistry
For a long time I have resisted writing a chapter on electrochemistry in these notes on electricity and magnetism. The reason for
this, quite frankly, is that I am not a chemist, I know relatively little about the subject, and I am not really qualified to write on it.
However, a set of notes on electricity and magnetism with no mention at all of this huge topic is not very satisfactory, so I should
perhaps attempt a little. I shall do little, however, other than merely introduce and define some words.

We can perhaps think of two sorts of cell with rather opposite purposes. In an electrolytic cell, we pass an electric current through a
conducting liquid through two electrodes, which may be of the same or of different metals. The object may simply be to see what
happens (i.e. scientific research); or it may be to deposit a metal from a salt in the electrolytic solution on to one of the electrodes,
as, for example, in silver plating, or in the industrial manufacture of aluminium; or it may be to break up the electrolyte into its
constituent elements, as, for example, in a classroom demonstration that water consists of two parts of hydrogen to one of oxygen.
The process is called electrolysis; the Greek etymology of the word electrolysis suggests "loosening" by electricity.

The other sort is what we commonly call a "battery", such as a flashlight battery or a car battery. In a “battery”, we have an
electrolyte and two metal poles (generally of different metals, or perhaps a metal and carbon). Because of chemical reactions inside
the battery, there exists a small potential difference (usually about one or two volts) across the poles, and when the "battery" is
connected to an external circuit, we can extract a continuous current from the battery. Strictly, we should call it a “cell” rather than
a “battery”. A “battery” is a battery of several cells in series. Usually a flashlight holds a battery of two or three cells. A car battery
is genuinely a battery of several connected cells and can correctly be called a battery. Unfortunately in common parlance we often
refer to a single cell as a “battery”. In order to distinguish a cell in this sense from what I have called an "electrolytic cell", I shall
refer to a cell from which we hope to extract a current as an "electrical cell". I hope these opposite terms "electrolytic cell" and
"electric cell" do not prove too confusing. If they do, I'd be glad of suggestions. One suggestion that I have heard is to call an
electric cell a "galvanic cell". Another is a "voltaic cell".

In an electrolytic cell, the positive electrode is called the anode, from a Greek derivation suggesting "up". The negative electrode is
the cathode, from a Greek derivation suggesting "down". In the electrolyte, current is carried by positive ions and negative ions.
The positive ions, which move toward the cathode, are called cations, and the negative ions, which move towards the anode, are
called anions.

Do you find it confusing that the positive electrode is the anode, but the positive ion is the cation? And that the negative electrode
is the cathode, but the negative ion is the anion? If you do, you are not alone. I find them confusing. Solution: I suggest that you
call the positive electrode the positive electrode; the negative electrode the negative electrode; the positive ion the positive ion; and
the negative ion the negative ion. That way there is no likelihood of your being misunderstood.

Now, when we come to electrical cells, it may be that the roles of the electrodes are reversed. What was a positive electrode in an
electrolytic cell may be the negative side of an electrical cell. What are we going to call them? I suggest that, when we are talking
about electrical cells we do not use the word "electrode" at all. We shall refer to the positive pole and the negative pole of an
electrical cell.
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