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5.7: Spatial Coherence and Young's Experiment

While for temporal coherence we used a Michelson interferometer, the natural choice to characterize spatial coherence is Young’s
experiment, because it allows the fields in two points separated in space to interfere with each other. In Young’s experiment, a
mask is used with two pinholes at the positions of the points P; and P, of interest. Let r; and ro be the position vectors of the two
points P; and P;, respectively. We write the field in P; as a superposition of time-harmonic fields as in (5.3.6):

U(ry,t)= /Aw (r1) e ™ dw.

According to the Huygens-Fresnel principle, a time-harmonic disturbance with frequency w in the pinhole at r; causes a radiating
spherical wave behind the mask, with time-harmonic field in some point r given by
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Figure 5.7.1: Young’s experiment to study the spatial coherence of two points. A mask with two holes at the two points of interest,
r; and ry, is used to let the fields in these points interfere with each other on a screen at a large distance. Because the light
propagates over different distances from the two holes to the point of observation, U (ry,t) interferes with U (ra,¢+ 7), where 7
is the difference in propagation time.

The total field Uy (r, t) in any point r due to the pinhole at P; is obtained by integrating over all frequencies:

e—iw(t—|r—r1\/c) U(rl,t—|r—r1|/c)

Ul(r,t):/Aw (r1) dw —

|r—r| |r—rq]

In words, the field in r at time ¢ due to the pinhole at r; is proportional to the field at ry at the earlier time = |r —ry| /c that it
takes for the light to propagate form ry to r. The proportionality factor scales with the reciprocal distance between r and ry .
Consider the set-up shown in Figure 5.7.1. The fields U; and U, from the two pinholes at r1 and ry interfere with each other in a

point r at a great distance. Because of the difference in propagation distance AR = |r —ry| — |[r —r;| , there is a time difference
7 between the two fields when they arrive at point r on the screen, given by
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Furthermore, because of the propagation, the amplitudes are reduced by a factor proportional to the reciprocal distance which is
different for the two fields. But if the distance between the two screens is large enough, we can take these factors to be the same
and then omit them. The interference pattern on the screen is then given by
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= (JU 1, O ) + (U (r2,=7)|* ) +2Re(U (x1,6) U2, = 7).

We define the mutual coherence function and the intensities:

Ti2(7) = (U (r1,t) U(re, t —7)"),

= (U @1, H)) =Tu(0),
= (|U (r2,t = 7)|”) =T2(0).

The complex degree of mutual coherence is defined by using these intensities to normalise I'15(7) :
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The modulus of 712 is smaller or equal than 1 (which can be proved by using Bessel’s inequality). We can now write ( 5.7.5) as

I(T) =L +1 +2\/I_1\/T2Re{’712(7')}

By varying the point of observation r over the screen, we can vary 7. By measuring the intensities, we can deduce the real part of
~12(T). Note that y15(7) indicates the ability to form fringes.

T2(T) = , complex degree of mutual coherence.

Let us see what happens when U(r, t) is a monochromatic field
U(r,t) = A(r)e ™"

In that case
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where ¢ is the phase difference of A (r2) and A (r;1). In this case ;2 has modulus 1, as expected for a monochromatic field. The
intensity on the screen becomes

I(T) = |A(r1) > + A (r2) > +2|A(r1)] | A (r2)] cos(wr — ).

So indeed we see interference fringes, as one would expect for a monochromatic wave. If ¢ = 0, then interference maxima occur
for

wr =0, 27, 47, +6m, ...

2
Because w = c=E

3 and AR = c7, we find that maxima occur when

AR =0, 4\, 42X\, £3), . ..

For large distance between the mask and the screen (in the Fraunhofer limit), these path length differences correspond to directions
of the maxima given by the angles 6,,, (see Figure 5.7.1):
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Remark. We recognise I'15(7) = (U (r1,t) U(ra,t — 7)) to be the cross-correlation of the two signals U (r,t) and U (ra, t).
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