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6.5: Intuition for the Spatial Fourier Transform in Optics
Since spatial Fourier transformations have played and will play a significant role in our discussion of the propagation of light, it is
important to understand them not just mathematically, but also intuitively.

What happens when an object is illuminated and the reflected or transmitted light is detected at some distance from the object? Let
us look at transmission for example. When the object is much larger than the wavelength, a transmission function  is often
defined and the field transmitted by the object is then assumed to be simply the product of the incident field and the function 

. For example, for a hole in a metallic screen with diameter large compared to the wavelength, the transmission function
would be 1 inside the hole and 0 outside. However, if the object has features of the size of the order of the wavelength, this simple
model breaks down and the transmitted field must instead be determined by solving Maxwell’s equations. This is not easy, but
some software packages can do it.

Now suppose that the transmitted electric field has been obtained in a plane  very close to the object (a distance within a
fraction of a wavelength). This field is called the transmitted near field and it may have been obtained by simply multiplying the
incident field with a transmission function  or by solving Maxwell’s equations. This transmitted near field is a kind of
footprint of the object. But it should be clear that, although it is quite common in optics to speak in terms of "imaging an object",
strictly speaking we do not image an object as such, but we image the transmitted (or reflected) near field which is a kind of copy
of the object. After the transmitted near field has been obtained, we apply the angular spectrum method to propagate the individual
components through homogeneous matter (e.g. air) from the object to the detector plane or to an optical element like a lens.

Let  be a component of the transmitted near field. The first step is to Fourier transform it, by which the field
component is decomposed in plane waves. To each plane wave, characterised by the wave numbers  and , the Fourier

transform assigns a complex amplitude , the magnitude of which indicates how important the role is which this

particular wave plays in the formation of the near field. So what can be said about the object field , by looking at the

magnitude of its spatial Fourier transform  ?

Suppose  has sharp features, i.e. there are regions where  varies rapidly as a function of  and . To describe these
features as a combination of plane waves, these waves must also vary rapidly as a function of  and , which means that the length

of their wave vectors  must be large. Thus, the sharper the features that  has, the larger we can expect 

 to be for large , i.e. high spatial frequencies can be expected to have large amplitude. Similarly, the

slowly varying, broad features of  are described by slowly fluctuating waves, i.e. by  for small 

, i.e. for low spatial frequencies. This is illustrated in Figure .

To investigate these concepts further we choose a certain field, take its Fourier transform, remove the higher spatial frequencies and
then invert the Fourier transform. We then expect that the resulting field has lost its sharp features and only retains its broad
features, i.e. the image is blurred. Conversely, if we remove the lower spatial frequencies but retain the higher, then the result will
only show its sharp features, i.e. its contours. These effects are shown in Figure 6.5.1. Recall that when , the
plane wave decays exponentially as the field propagates. Losing these high spatial frequencies leads to a loss of resolution. Because
by propagation through homogeneous space, the information contained in the high spatial frequencies corresponding to evanescent
waves is lost (only exponentially small amplitudes of the evanescent waves remain), perfect imaging is impossible, no matter how
well-designed an optical system is.

Propagation of light leads to irrecoverable loss of resolution.

It is this fact that motivates near-field microscopy, which tries to detect these evanescent waves by scanning close to the sample,
thus obtaining subwavelength resolution, which otherwise is not possible.

So we have seen how we can guess properties of some object field  given the amplitude of its spatial Fourier transform 

. But what about the phase of  ? Although one cannot really guess properties of  by

looking at the phase of  the same way as we can by looking at its amplitude, it is in fact the phase that plays a

larger role in defining . This is illustrated in Figure 6.5.2: if the amplitude information of  is removed,
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features of the original  may still be retrieved. However, if we only know the amplitude  but not the
phase, then the original object is utterly lost. Thus, the phase of a field  is very important, arguably sometimes even more
important than its amplitude. However, we cannot measure the phase of a field directly, only its intensity  from
which we can calculate the amplitude . It is this fact that makes phase retrieval an entire field of study on its own: how
can we find the phase of a field, given that we can only perform intensity measurements? This question is related to a new field of
optics called "lensless imaging", where amplitudes and phases are retrieved from intensity measurements and the image is
reconstructed computationally. Interesting as this topic may be, we will not treat it in these notes and refer instead to Master
courses in optics.

Remark. The importance of the phase for the field can also be seen by looking at the plane wave expansion (6.5.3). We have seen
that the field in a plane  constant can be obtained by propagating the plane waves by multiplying their amplitudes by the phase
factors , which depends on the propagation distance . If one leaves the evanescent waves out of consideration (since
after some distance they hardly contribute to the field anyway), it follows that only the phases of the plane waves change upon
propagation, while their amplitudes (the moduli of their complex amplitudes) do not change. Yet, depending on the propagation
distance , widely differing light patterns are obtained (see e.g. Figure 6.5.4).

Another aspect of the Fourier transform is the uncertainty principle. It states that many waves of different frequencies have to be
added to get a function that is confined to a small space. Stated differently, if  is confined to a very small region, then 

 must be very spread out. This can also be illustrated by the scaling property of the Fourier transform:

which simply states that the more  is squeezed by increasing , the more its Fourier transform  spreads out. This
principle is illustrated in Figure 6.5.3. The uncertainty principle is familiar from quantum physics where it is stated that a particle
cannot have both a definite momentum and a definite position. In fact, this is just one particular manifestation of the uncertainty
principle just described. A quantum state  can be described in the position basis  as well as in the momentum basis .
The basis transformation that links these two expressions is the Fourier transform

Figure : A qualitative interpretation of spatial Fourier transforms. The low spatial frequencies (i.e. small  )
represent slow fluctuations, and therefore contribute to the broad features of the real-space object. The high spatial frequencies (i.e.
large  ) fluctuate rapidly, and can therefore form sharp features in the real-space object.

Hence, the two are obviously subject to the uncertainty principle! In fact, any two quantum observables which are related by a
Fourier transform (also called conjugate variables), such as position and momentum, obey this uncertainty relation.

The uncertainty relation roughly says:

If a function  has width , its Fourier transform has a width .

Since after propagation over a distance , the evanescent waves do not contribute to the Fourier transform of the field, it follows
that this Fourier transform has maximum width . By the uncertainty principle it follows that after propagation, the
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minimum width of the field is .

The minimum feature size of a field after propagation is of the order of the wavelength.

This poses a fundamental limit to resolution given by the wavelength of the light.
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