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5.5: Temporal Coherence and the Michelson Interferometer

To investigate the coherence of a field, the most general approach is to make the field in two different points r; and ry interfere for
some time delay 7 and observe the fringe contrast. This means that one lets the fields U (r1,¢) and U (re,¢ —7) interfere. It is
however customary to first look at the field in one point and let it interfere with itself but delayed in time, i.e. interfering U(r, t)
with U(r,¢ —7) . This special case is called temporal coherence. The other special case is spatial coherence in which the
coherence of fields at two points is considered without time delay, by interfering U (r1,¢) and U (rs, t). Spatial coherence will be
treated later.

Because, when studying temporal coherence, the point r is always the same, we omit it from the formula. Furthermore, for easier
understanding of the phenomena, we assume for the time being that the field considered is emitted by a single atom (i.e. a point
source).

Temporal coherence is closely related to the spectral content of the light: if the light consists of fewer frequencies (think of
monochromatic light), then it is more temporally coherent. To study the interference of U(t) with U(¢t —7), a Michelson
interferometer, shown in Figure 5.5.1, is a suitable setup. The light that goes through one arm takes time ¢ to reach the detector,
while the light that goes through the other (longer) arm takes time ¢ + 7 which means that it was radiated earlier. Therefore, the

detector observes the time-averaged intensity <|U(t) +U({t—7) |2> . As remarked before, this averaged intensity does not depend

on the time the average is taken, it only depends on the time difference 7 between the two beams. We have
2
1(r) = (@) + Ut -7))
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Figure 5.5.1: A Michelson interferometer to study the temporal coherence of a field. A beam is split in two by a beam splitter, and

the two beams propagate over different distances which corresponds to a time difference 7 and then interfere at the detector.
So far we have considered a field that originates from a single atom. The total field emitted by an extended source is the sum of
fields U; (¢) corresponding to all atoms 4. In studying time coherence we assume that these fields are propagating more or less
parallel and that the light has a fixed polarisation, so that the fields can be added algebraically. The total complex field produced by
a large number N of atoms is

Ut) =Uy(t)+...+Un(2).

During the integration time of the detector the fields U; experience thousands of random phase jumps and therefore they do not
interfere: the point sources of the extended source are mutually fully incoherent. The detected total intensity ( 5.5.1) is thus
the sum of the intensities of the individual atoms:
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1(r) = ([Ut) + Ut -7)P)
- <Z Ui(t)—l—Ui(t—‘r)] |2>

i

— 22 {<Ui(t)|2> +Re(Ui(t)Ui(t—7')*>} ;

The expression <|U ) +U(t —T)|2> does not depend on position, so it cannot describe interference fringes in space. To better

observe what happens when 7 is varied, we introduce interference fringes in space by tilting one beam so that the observed
interference pattern is given by

I(w,7) = { [U@®)e™ +U(t-7)")
=2 (JUW®)*) +2Re(URU(t —7)" ™).

If 7 is changed, the maxima of the interference pattern translate as function of , which is easy to observe. How interference
fringes for tilted collimated beams are observed in a Michelson interferometer is demonstrated in. It is possible to obtain different
fringe patterns using diverging beams instead of collimated beams, as is demonstrated in.

The self coherence function I'(7) is defined by
I(r)=(U@)U({t—7)*) self-coherence.

The intensity of U(t) is

I, = (|U(®)*) =T(0).
The complex degree of self-coherence is defined by:

I
~(r) = % complex degree of self-coherence

This is a complex number with modulus between 0 and 1 :
0<py(r) <1,
The observed intensity can then be written:
I(z,7)=2I) {1+Re [’y(r)eik’z] b,
Recall that we vary 7 by varying the length of one of the arms in the Michelson interferometer.

We consider some special cases. Suppose U(t) is a monochromatic wave
U(t) =e ™.
In that case we get for the self-coherence
F(T) _ <e—iwt eiw(t—r)> _ e—iwr,

and

Hence the interference pattern is given by
I(z,7) =2[1+cos(wr — k)]

So for monochromatic light we expect to see a cosine interference pattern, which shifts as we change the arm length of the
interferometer (i.e. change 7). No matter how large 7, a clear interference pattern should be observed.

Next we consider what happens when the light is a superposition of two frequencies:
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where Aw < @. Then:

I(r) = %<(efi(E;JrAw/Z)t+67i(waw/2)t) (ei(cDJrAw/Z)(t—r) +e¢(owa/z)(t7¢))>

e*i(@+Aw/2)‘r+e*i(&)*Aw/2)T
4

e—i—wr
2

where in the second line the time average of terms that oscillate with time is set to zero because the averaging is done over a time
interval of duration T" satisfying T'Ad > 1. Hence, the complex degree of self-coherence is:

~(7) = cos(Awr/2)e T

~
~

= cos(Awr/2)

and ( 5.5.8) becomes
I(z,7) = {14+ Re[y(r)e**] } = [1 4 cos(Awr/2) cos(@T — k, )] .

The interference term is the product of the function cos(wr — k) ), which is a rapidly oscillating function of 7, and a slowly
varying envelope cos(Awr/2). It is interesting to note that the envelope, and hence +(7), vanishes for some periodically spaced 7,
which means that for certain 7 the degree of self-coherence vanishes and no interference fringes form. Note that if Aw is increased,
the intervals between the zeroes of () decrease.

If more frequencies are added, the envelope function is not a cosine function but on average decreases with 7. The typical value of
7 below which interferences are observed is roughly equal to half the first zero of the envelope function. This value is called the
coherence time A7,. We conclude with some further interpretations of the degree of self-coherence v(7).

« In stochastic signal analysis I'(7) = (U(¢t)U (¢t —7)*) is called the autocorrelation of U(¢) . Informally, one can interpret the
autocorrelation function as the ability to predict the field U at time ¢ given the field at time ¢t — 7.
o The Wiener-Khinchine theorem says that the Fourier transform of the self coherence function is the spectral power density

of U(t) :
P(w) =0 @)

This result can be proved for stationary fields using Parseval’s indentity. Using the uncertainty principle, we can see that the larger
the spread of the frequencies of U(t) (i.e. the larger the bandwidth), the more sharply peaked I'(7) is. Thus, the light gets
temporally less coherent when it consists of a broader range of frequencies.

5.5: Temporal Coherence and the Michelson Interferometer is shared under a not declared license and was authored, remixed, and/or curated by

LibreTexts.

https://phys.libretexts.org/@go/page/57106


https://libretexts.org/
https://phys.libretexts.org/@go/page/57106?pdf
https://phys.libretexts.org/Bookshelves/Optics/BSc_Optics_(Konijnenberg_Adam_and_Urbach)/05%3A_Interference_and_coherence/5.05%3A_Temporal_Coherence_and_the_Michelson_Interferometer
https://phys.libretexts.org/Bookshelves/Optics/BSc_Optics_(Konijnenberg_Adam_and_Urbach)/05%3A_Interference_and_coherence/5.05%3A_Temporal_Coherence_and_the_Michelson_Interferometer?no-cache

