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2.6: Gaussian Geometrical Optics

We have seen above that by using lenses or mirrors which have surfaces that are conic sections we can perfectly image a certain
pair of points, but for other points the image is in general not perfect. The imperfections are caused by rays that make larger angles
with the optical axis, i.e. with the symmetry axis of the system. Rays for which these angles are small are called paraxial rays.
Because for paraxial rays the angles of incidence and transmission at the surfaces of the lenses are small, the sine of the angles in
Snell’s Law are replaced by the angles themselves:

n;0; = n;0;. (paraxial space rays space only)

This approximation greatly simplifies the calculations. When only paraxial rays are considered, one may replace any refracting
surface by a sphere with the same curvature at its vertex. For paraxial rays, errors caused by replacing the general surface by a
sphere are of second order and hence insignificant. Spherical surfaces are not only more simple in the derivations but they are also
much easier to manufacture. Hence in the optical industry spherical surfaces are used a lot. To reduce imaging errors caused by
non-paraxial rays one applies two strategies:

1. adding more spherical surfaces
2. replacing one of the spherical surfaces (typically the last before image space) by a non-sphere.

In Gaussian geometrical optics only paraxial rays and spherical surfaces are considered. In Gaussian geometrical optics
every point has a perfect image.

2.5.1 Gaussian Imaging by a Single Spherical Surface

We will first show that within Gaussian optics a single spherical surface between two media with refractive indices n; < n, images
all points perfectly (Figure 2.6.1). The sphere has radius R and centre C which is inside medium 2. We consider a point object S to
the left of the surface. We draw a ray from S perpendicular to the surface. The point of intersection is V. Since for this ray the angle
of incidence with the local normal on the surface vanishes, the ray continues into the second medium without refraction and passes
through the centre C of the sphere. Next we draw a ray that hits the spherical surface in some point A and draw the refracted ray in
medium 2 using Snell’s law in the paraxial form (2.6.1) (note that the angles of incidence and transmission must be measured with
respect to the local normal at A, i.e. with respect to CA). We assume that this ray intersects the first ray in point P. We will show
that within the approximation of Gaussian geometrical optics, all rays from S pass through P. Furthermore, with respect to a
coordinate system (y, z) with origin at V , the z-axis pointing from V to C and the y-axis positive upwards as shown in Figure
2.6.1, we have:

Figure 2.6.1: Imaging by a spherical interface between two media with refractive indices n, > n;.

Proof.
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(Note: the proof is not part of the exam). It suffices to show that P is independent of the ray, i.e. of A. We will do this by expressing
s; into s, and showing that the result is independent of A. Let o; and ay be the angles of the rays SA and AP with the z-axis as
shown in Figure 2.6.1. Let 6; be the angle of incidence of ray SA with the local normal CA on the surface and 6; be the angle of
refraction. By considering the angles in A SCA we find

0; = o1 + 9.
Similarly, from A CPA we find
0, = —as +¢.
By substitution into the paraxial version of Snell’s Law (2.6.1), we obtain
niog +ngae = (ng —nq)e.

Let ya and za be the coordinates of point A. Since s, < 0 and s; > 0 we have

o =tan(ay) = ya , o tan(ag) = ya_
ZA — 8o S; — ZA
Furthermore,
. Ya
~sing ~ ==.
¢~ sing ~
which is small for paraxial rays. Hence,
2
R
za=R—Rcos¢ =R—R(1 —%) = 5¢2 ~0,

because it is second order in y, and therefore is neglected in the paraxial approximation. Then, (2.6.6 becomes

_ Y _ Ya
o) = ——,0p = —.
So S5

By substituting (2.6.9and (2.6.7into (2.6.5 we find —(n1/so)ya + (N2/z))ya = [(n2 — n1)/R]ya, or —ny/sy,+ny/zi=(ny — np)/R,which is
Eq. (2.6.2. It implies that s;, and hence P, is independent of yj, i.e. of the ray chosen. Therefore, P is a perfect image within the
approximation of Gaussian geometrical optics.

When s; — o, the ray after refraction is parallel to the z-axis and we get so —» —n;R/(n, — n;). The object point for which the rays
in the medium 2 are parallel to the z-axis is called the first focal point or object focal point F, Its z-coordinate is:

n1 R
ny—ny’

fo:_

In spite of the fact that this is a coordinate and hence has a sign, it is also called the front focal length or object focal length.

When s, — —oo, the incident ray is parallel to the z-axis in medium 1 and the corresponding image point F; is called the second
focal point or image focal point. Its z-coordinate is given by:
TL2R

fi= 2,
N2 —ny
and it is also referred to as the second focal length or image focal length. With (2.6.11) and (2.6.10), (2.6.2) can be rewritten as:
n1 I Ny No n1
So S; B f i B f o '
By adopting the sign convention listed in Table 2.6.1 below, it turns out that (2.6.2) holds generally. For example, when point S is
between the front focal point and the vertex V so that f, < s, < 0, the rays from S are so strongly diverging that the refraction is
insufficient to obtain an image point in medium 2. Instead there is a diverging ray bundle in medium 2 which for an observer in
medium 2 seems to come from a point P in medium 1 with z-coordinate si , hence si < 0, in agreement with the fact that P is now to

the left of V. Point P is called a virtual image because it does not correspond to an actual concentration of light energy in space.
When s; > 0 there is a concentration of light energy in P which therefore is then called a real image.
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Figure 2.6.2: Imaging of a virtual object S by a spherical interface between two media with refractive indices n; > n,.

Table 2.6.1: Sign convention for spherical surfaces and thin lenses. The convention for s, f,, s;, f; follows from the fact that these are z-
coordinates with the origin at vertex V and the positive z-axis pointing to the right.

quantity positive negative
Sos for Sis £ corresponding point is to the right of vertex corresponding point is to left of vertex
R centre of curvature right of vertex centre of curvature left of vertex

if counter clockwise rotation over a makes  if clockwise rotation over o makes ray
o (astute ray angle)

ray parallel to z-axis parallel to z-axis

Refr. index n ambient medium of mirror before reflection after reflection

If ny >ny or R <0 (i.e. the surface is concave when seen from the left of the vertex), the right-hand side of (2.6.2) is negative:

N2 —1
R

Light rays incident from the left are then refracted away from the z-axis and incident rays that are parallel to the z-axis are refracted
such that they never intersect the z-axis in medium 2. Instead, they seem to be emitted by a point in medium 1. As illustrated in
Figure 2.6.2, the second focal point is thus virtual with negative focal length given by:
TLQR
fi=———<0.

n2—ny

<0.

Furthermore, f, > 0 and an incident ray that after refraction is parallel to the z-axis in medium 2 seems for an observer in medium 1
to converge to a point in medium 2. Hence the first focal point is virtual as well: f, > 0. When (2.6.12) holds, for all object points S
in front of the lens (s, < 0), the image point is always virtual. In fact, si as given by (2.6.2) is then always negative.

2.5.2 Ray Vectors and Ray Matrices

In geometrical optics it is convenient to use ray vectors and ray matrices. In any plane perpendicular to the z-axis, a ray is
determined by the y-coordinate of the point of intersection of the ray with the plane and the acute angle o of the ray with the z-axis.
Here y > 0 when the intersection point is above the z-axis and y < 0 otherwise. We define the ray vector

(%)

where n is the local refractive index. The definition with the refractive index as factor in the first element of the ray vector turns out
to be convenient. The acute angle o has sign according to the convention in Table 2.6.1.
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The ray vectors of a ray in any two planes z = z1, z = z;, with zp > z;, are related by a so-called ray matrix:

() ()
Yo U

w-(23)

The elements of matrix M depend on the optical components and materials between the planes z = z; and z = z,.

where

As an example consider the ray matrix that relates a ray vector in the plane immediately before the spherical surface in Figure 2.6.2
to the corresponding ray vector in the plane immediately behind that surface. Using (2.6.5) and (2.6.7) it follows
N1 — N2ty = —(n2 —m)y
101 202 R )
where we have replaced a, by —a, in (2.6.5), because according to the sign convention, the angle a, in Figure 2.6.1 should be
taken negative. Because furthermore y, = y;, we conclude

(n2 —n1)ys
Yo noag — —————— 1 -P niog .
= R = , spherical surface,
Y2 Y1 0 1 Y1
where
N2 — N
pP= 7
is called the power of the surface.
For a spherical mirror with radius of curvature R, we see that
a; = 01 - ¢)7
Qg = _07‘ - ¢7

where we take the sign convention for the angles into account. Because 0, = 6; we find

Y1
ay=—a1+2¢0=—a1 +2—,
2 1 <]5 1 R

where we used (2.6.7) with yp = y;. As mentioned in Table 2.6.1, the refractive index after reflection is to be chosen negative. This
means that for rays that propagate from right to left, the refractive index in the ray vector should be chosen negative. Hence,

20t 102 101 'R
Then
(nzaz) _ (1 P) (n1a1)7spherical reflector,
y2 O 1 yl

where

2n1

P=—

R

is the power of the mirror. We conclude that the ray matrix for reflection by a spherical mirror is the same as that for refraction by a
spherical surface, provided that n, is replaced by —n;. When a ray is propagating from the right to the left, the refractive index of all
media and interfaces through which the ray propagates, and at which it is being refracted, should have negative refractive index.
After the ray has been reflected a second time, due to which it propagates again from left to right, all refractive indices should again
be positive. In this way the matrix method can be applied to optical systems consisting of both refracting elements, such as lenses,
and reflecting elements.
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Finally we consider the case that between the two planes there is homogeneous material with refractive index n. In that case oy = o
and y, = y; + a1(z2 — z1), hence

1 0
M=\ 25—z 1 , homogeneous space.

n

For two planes between which there are a number of optical components, possibly separated by regions with homogeneous material
(e.g. air), the ray matrix can be obtained by multiplying the matrices of the individual components and of the homogeneous regions.
The order of the multiplication of the matrices is such that the right-mest matrix corresponds to the first component that is
encountered while propagating, and so on.

It should be remarked that the rays considered in the ray matrix approach stay in the same plane, namely the plane through the ray
and the z-axis. These rays are called meridional rays. By considering only meridional rays, the imaging by optical systems is
restricted to two dimensions. Non-meridional rays are called skew rays. Skew rays do not pass through the optical axis and they
are not considered in the paraxial theory.

2.5.3 The Lens Matrix

We apply ray matrices to a lens. Figure 2.6.4 shows a lens with two spherical surfaces. The refractive index of the lens is n; and
that of the ambient medium is np, and the distance between the vertices is d. We will first derive the matrix which maps the ray
vector in the plane immediately in front of the lens to that in the plane immediately behind the lens. Let

and
Y1 Y2

be two vectors in the two planes which correspond to the same ray. The ray is first refracted by the spherical surface with radius R
and centre C;. Using (2.6.25) and (2.6.20) it follows that the matrix between the ray vectors just before and just behind the
spherical surface with radius R; and centre C; is given by

1 n,—npy,
M, = Ry
0 1
The ray propagates then over the distance d through the material of which the lens is made. The matrix that maps ray vectors from

the plane inside the lens immediately behind the left spherical surface to a ray vector in the plane immediately before the right
spherical surface follows from (2.6.27):

1 0
M:

4

ny

Finally, the matrix that maps ray vectors from the plane in the lens immediately before the second spherical surface to vectors in
the plane immediately behind it is

L Tmom
M1: R2
0 1

Hence the matrix that maps ray vectors in the plane immediately before the lens to ray vectors in the plane immediately behind the
lens is given by the matrix product:

d d
1-—P -P—P+—PP
n; ng
M = M3M2M1 = d d ,lens,
- 1-—P,
n; ng
where
P = Ny — Ny Py — Ny, — 1Yy
R; Ry
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The quantity
d
P=P +P— ;Plpg
1

is called the power of the lens. It has dimension 1/length and is given in diopter (D), where 1 D = m™!. The power can be positive
and negative. The z-axis is the axis of symmetry and is called the optical axis. The space to the left of the lens is called the object
space and that to the right of the lens is called the image space.

S()Z

Figure 2.6.3: A spherical lens made of glass of index nj in a medium of index ny,. The point S is imaged in P.
2.5.4 Focusing with a Thin Lens
For a thin lens the vertices V; and V, coincide and d = 0, hence (2.6.34) becomes

M= (1 _P> ,thin lens,
0 1

where P = Py + P,, with P and P; given by (2.6.35). The origin of the coordinate system is chosen in the common vertex Vi = V.
For a ray emerging in image space at height y, and parallel to the optical axis: ap = 0, we have y; =y, and

npoay = Py.

If the power is positive: P > 0, the angle ol has the same sign as y;, which implies that the ray in object space has intersected the
optical axis in a point F, with z-coordinate: z = f satisfying

1 o ny  my—my 1 1

fo wi P nm ‘R R
The point Fo is called the first focal point or object focal point.

Similarly, by considering a ray in medium 1 which is parallel to the optical axis (a; = 0) and at height y;, we get n,ao = —P y; and
y2 = y1. Hence, when P > 0, the angle a of the ray has sign opposite to y, and therefore the ray in image space is bent back to the
optical axis, yielding a second focal point or image focal point F;. Its z-coordinate f; satisfies:

When the power P of the lens is positive, f; = —f, > 0, which means that the first and second focal points are in the object and image
space, respectively. A lens with positive power is called convergent or positive.
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A lens with negative power is called divergent and has f; = —f, < 0. Then incident rays parallel to the optical axis are refracted away
from the optical axis and seem to come from a point in front of the lens with z-coordinate f; < 0. Hence the second focal point does
not correspond to a location where there is actual concentration of light intensity and hence it is virtual. The first focal point is a
virtual object point, because only for a bundle of incident rays that are converging to a certain point behind the lens, the negative
refraction can give a bundle of rays that are all parallel to the optical axis.

With the results obtained for the focal coordinates we can rewrite the lens matrix of a thin lens alternatively as

Nm

1
M= fi | ,thinlens.
0 1

2.5.5 Imaging with a Thin Lens

We first consider the general ray matrix (2.6.16), (2.6.17) between two planes z = z; and z = z; and ask the following question:
what are the properties of the ray matrix such that the two planes are images of each other, or (as this is also called) are each other’s
conjugate? Clearly for these planes to be each other’s image, we should have that for every point coordinate y; in the plane z = z,
there is a point with coordinate y; in the plane z = z; such that any ray through (y1, z1) (within some cone of rays) will pass through
point (y2, zp). Hence for any angle a; (in some interval of angles) there is an angle a; such that (2.6.16) is valid. This means that
for any y; there is a y; such that for all angles o;:

y2 = Cniaq + Dy,
This requires that
C =0, condition for imaging.
The ratio of y, and y; gives the magnification. Hence

v _p

Y1
is the magnification of the image (this quantity has sign).
To determine the image of a point by a thin lens we first derive the ray matrix between the planes z =z; <0 and z =z > 0 with a
thin lens in between with vertex at the origin. This matrix is the product of the matrix for propagating from z = z; to the plane

immediately in front of the lens, the matrix of the thin lens and the matrix for propagation from the plane immediately behind the
lens to the plane z = z;:

z1 n
1 0\ /1 _Im 1 0 1+? *—;L
M= = fi 2 = i i
— 1 0 1 —-—— 1 21 4 2 2122 1 22
n n St el e -
mn mn T, M, n'mfi fz

The imaging condition (2.6.41) implies:

1 1 1
—— 4+ — =—, Lensmaker's Formula.
So S i
where we have written s, = z; and s; = z, for the z-coordinates of the object and the image. Because for the thin lens matrix (
2.6.43): D = 1- z,/f; , it follows by using (2.6.44) that the magnification (2.6.42) is given by

Yo f |3 So
where we have written now y, and y; instead of y; and y», respectively.

For a positive lens: f; > 0 and hence (2.6.44) implies that s; > 0 provided |so| < f; = |f,|, which means that the image by a convergent
lens is real if the object is further from the lens than the first focal point F,. The case s, > 0 corresponds to a virtual object, i.e. to
the case of a converging bundle of incident rays, which for an observer in object space seems to converge to a point at distance so
behind the lens. A convergent lens (fi > 0) will then make an image between the lens and the second focal point. In contrast, a

diverging lens (f; < 0) can turn the incident-converging bundle into a real image only if the virtual object point is between the lens
and the focal point. If the virtual object point has larger distance to the lens, the convergence of the incident bundle is too weak and
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the diverging lens then refracts this bundle into a diverging bundle of rays with vertex at the virtual image point in front of the lens
(s <0).

One can also construct the image with a ruler. Consider imaging a finite object S;S, as shown in Figure 2.6.4. Let y, be the y-
coordinate of S,. We have y, > 0 when the object is above the optical axis. Draw the ray through the focal point F, in object space
and the ray through the centre V of the lens. The first ray becomes parallel in image space. The latter intersects both surfaces of the
lens almost in their (almost coinciding) vertices and therefore the refraction is opposite at both surfaces and the ray exits the lens
parallel to its direction of incidence. Furthermore, its lateral displacement can be neglected because the lens is thin. Hence, the ray
through the centre of the lens is not refracted. The intersection in image space of the two rays gives the location of the image
point P, of S,. The image is real if the intersection occurs in image space and is virtual otherwise. For the case of a convergent lens
with a real object with y, > 0 as shown in Figure 2.6.4, it follows from the similar triangles A AVF; and A P,P,F; that

Yo fz

|y si—fi’
where we used |f,| = f;. From the similar triangles A S,S;F, and A BVF;:

lyil  fi

Yo fo_so‘

(the absolute value of y; is taken because according to our sign convention y; in Figure 2.6.4 is negative whereas (2.6.44) is a ratio
of lengths). By multiplying these two equations we get the Newtonian form of the lens equation:

Toki = _fi2 = _fo2a

where x, and x; are the z-coordinates of the object and image relative to those of the first and second focal point, respectively:

ZTo = S0 — for Ti = 8i — fi.

A
2>
Y

5, W,

Figure 2.6.4: Object and image for a thin lens.
Hence x, is negative if the object is t, the left of F, and x; is positive if the image is to the right of F;.
The transverse magnification is
. s iy
M=% _%_ T
Yo So fi

where the second identity follows from considering the similar triangles AP,P,F; and AAVF, in Figure 2.6.4 A positive M means
that the image is erect, a negative M means that the image is inverted (as is always the case for a single lens).

All equations are also valid for a thin negative lenses and for virtual objects and images. Some examples of real and virtual object
and image points for a positive and a negative lens are shown in Figs. 2.6.5and 2.6.6.
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2.5.6 Two Thin Lenses

The imaging by two thin lenses L; and L, can easily be obtained by construction. We simply construct the image obtained by the
first lens as if the second lens were not present and use this image as (possibly virtual) object for the second lens. In Figure 2.6.7 an
example is shown where the distance between the lenses is larger than the sum of their focal lengths. First the image P' of S is
constructed as obtained by L, as if L, were not present. We construct the intermediate image P' due to lens L; using ray 2 and 3. P,
is a real image of lens L; which is also real object for lens L,. Ray 3 is parallel to the optical axis between the two lenses and is
thus refracted by lens L2 through its back focal point F»;. Ray 4 is the ray from P1 through the centre of lens L,. The image point P
is the intersection of ray 3 and 4.

In the case of Figure 2.6.8 the distance d between the two positive lenses is smaller than their focal lengths. The intermediate
image P' is a real image for L; obtained as the intersection of rays 2 and 3 passing through the object and image focal points Fy,
and Fy; of lens L;. P' is now a virtual object point for lens L. To find its image by Ly, draw ray 4 from P' through the centre of lens
L, back to S (this ray is refracted by lens L; but not by L,) and draw ray 3 as refracted by lens L. Since ray 3 is parallel to the
optical axis between the lenses, it passes through the back focal point Fy; of lens L. The intersection point of ray 3 and 4 is the
final image point P.

Convergent (positive) Lens: -f =f, >0 g s £
11 11 s, = Sofo _ Sofi
j o~ So f i+ So
Real Object s <f,
(a)
Real Image s>,
1S,
pfe
Real Object [ <s <0
®) s :
Virtual Image s,<0 i :
i |
[0

Virtual Object s,>0
©
Real Image O<s <f,

Figure 2.6.5: Real and virtual objects and images for a convergent thin lens, i.e. —f, = f; > 0. In (a) the object is real with s, < f, and
the image is real as well (s; > 0). In (b) the object is between the focal point in front of the lens and the lens: f, < s, < 0. Then the
rays from the object are too divergent for the lens to make them convergent in image space and the image is virtual: s; < 0. In (c)
there is a cone of converging rays incident on the lens from the left which, in the absence of the lens, would converge to point S
behind the lens. Hence S is a virtual object (sp > 0). The image is real and can be constructed with the two rays shown. In (d) si is
shown as function of so for a convergent lens (see Eq. (2.6.44)).
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Divergent (negative) Lens: -f =f, <0

Real Object
(@ ,
Virtual Image f<s<0

5 <0
'

Virtual Object 0<s <-f,

(b)

Real Image §>0

Virtual Object 5, >-f,
(©

Virtual Image </,

Figure 2.6.6: Real and virtual objects and images for a divergent thin lens, i.e. —f, = f; < 0. In (a) the object is real, i.e. s, < 0. The
diverging lens makes the cone of rays from the object more divergent so that the image is virtual: s; < 0. When the object is virtual,
there is a cone of converging rays incident from the left which after extension to the right of the lens (as if the lens is not present)
intersect in the virtual object S (s, > 0). It depends on how strong the convergence is whether the diverging lens turns this cone into
converging rays or whether the rays keep diverging. In (b) 0 <s, < —f;, and the image is real. In c) s, > —f; and the image is real (s;
> 0). In (d) si is shown as function of so for a divergent lens (f; < 0 (see Eq./(2.6.44)).

< »
d L,
P
F'H' F()Z VZ >
/ Fiz

1P

> < >

N
< >« >
ol S:' ! Sr)2 SEZ

Figure 2.6.7: Two thin lenses separated by a distance that is larger than the sum of their focal lengths.
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Figure 2.6.8: Two thin lenses at a distance smaller than their focal lengths.
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It is easy to express the z-coordinate s; with respect to the coordinate system with origin at the vertex of L; of the final image point,
in the z-component s, with respect to the origin at the vertex of lens L; of the object point. We use the Lensmaker’s Formula for
each lens while taking care that the proper local coordinate system is used in each case. The intermediate image P' due to lens L
has z-coordinate sq; with respect to the coordinate system with origin at the vertex V1, which satisfies:

1 1 1

So S Ju

P' is object for lens L, with z-coordinate with respect to the coordinate system with origin at V, given by: sy, = s1; — d, where d is
the distance between the lenses. Hence, with s; = sp; the Lensmaker’s Formula for lens L, implies:

1,11

si—d s fu

By solving (2.6.51) for s;; and substituting the result into (2.6.52), we find
~_ —dfiifei+ frulfri —d)so

fri(f2i = d) + (fri + f2i — d)so

By taking the limit s, — —oo, we obtain the z-coordinate f; of the image focal point of the two lenses, while s; — o gives the z-
coordinate f, of the object focal point:

S; ,twothin lenses.

fie (f1i —d) fai

Y fut fa—d’
f=— (foi —d) fus
’ fiit+ fai—d’

Except when the refractive indices of the media before and after the lens are different, the object and image focal lengths of a thin
lens are the same. However, as follows from the derived formula for an optical system with two lenses, the object and image focal
lengths are in general different when there are several lenses.

By construction using the intermediate image, it is clear that the magnification of the two-lens system is the product of the
maghnifications of the two lenses:
M = M; M,.
Remarks
1. When fy; + f5; = d the focal points are at infinity. Such a system is called telecentric.
2. In the limit where the lenses are very close together: d — 0, (2.6.53) becomes

1.1 1 1
So S Ju  fa

The focal length fi of the system of two lenses in contact thus satisfies:

1 1 1

fio fu fu
Two positive lenses in close contact enforce each other, i.e. the second positive lens makes the convergence of the first lens
stronger. Similarly, two negative lenses in contact make a more strongly negative system. The same applies for more than two
lenses in close contact.

3. Although for two lenses the image coordinate can still be expressed relatively easily in the object distance, for systems with
more lenses finding the overall ray matrix and then using the image condition (2.6.41) is a much better strategy.

2.5.7 The Thick Lens

At the left of Figure 2.6.9 a thick lens is shown. The first focal point is defined as the point whose rays are refracted such that the
emerging rays are parallel to the optical axis. By extending the incident and emerging rays by straight segments, the points of
intersection are found to be on a curved surface, which close to the optical axis, that is in the paraxial approximation, is in good
approximation a plane perpendicular to the optical axis. This plane is called the primary principal plane and its intersection with
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the optical axis is called the primary principal point H;. By considering incident rays which are parallel to the optical axis and
therefore focused in the back focal point, the secondary principal plane and secondary principal point H, are defined in a similar
way (see the drawing at the right in Figure 2.6.9). The principal planes need not be inside the lens. In particular for meniscus
lenses, this is not the case. It can be seen from Figure 2.18 that the principal planes are images of each other, with unit
maghnification. Hence, if an object is placed in the primary principal plane (hypothetically if this plane is inside the lens), its image
is in the secondary principal plane. The image is erect and has unit magnification.

Primary Secondary
principal principa
;| plane plane | ;
First focal i N Second focal
point = . I point
Y e, - —— . = — =3 _p
F vi Hl‘ H} VZ vf H.f H2 VZ Fﬁ
f.fl b.fl

Figure 2.6.9: Principal planes of a thick lens, with front and back focal lengths: f.f.1 and b.f.1.

Figure 2.6.10: Position of the principal planes for several lenses.

We recall the result (2.6.32) for the ray matrix between the planes through the front and back vertices V1, V; of a thick lens with
refractive index nj and thickness d:

d

1-—P —-P
Myv, = gl d ,thick lens,
— 1-——P
n; n;
where
ny—"nm Ny — 1Yy
P = P =
1 Rl y 472 R2 )

and ny, is the refractive index of the ambient medium, and
d
P=P +P,——PP,.
ny

If h; is the z-coordinate of the first principal point H; with respect to the coordinate system with origin vertex V;, we have
according to (2.6.27) for the ray matrix between the primary principal plane and the plane through vertex V;

1 0 \
\ L )
Nm
Similarly, if h; is the coordinate of the secondary principal point H, with respect to the coordinate system with V5 as origin, the ray
matrix between the plane through vertex V; and the secondary principal plane is

M =
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10
M=\ h
Nm

The ray matrix between the two principle planes is then
My, g, = My My,y, M.

The coordinates h1 and h2 can be found by imposing to the resulting matrix the imaging condition (2.6.41): C = 0 and the
condition that the magnification should be unity: D = 1, which follows from (2.6.42). We omit the details and only give the
resulting expressions here:

Nm P2
hy =—2224
1 n P )

Nm P1

hy=——22d
2 n; P

Furthermore, (2.6.64) becomes

We see that the ray matrix between the principal planes is identical to the ray matrix of a thin lens (2.6.35). We therefore
conclude that if the coordinates in object space are chosen with respect to the origin in the primary principal point H;, and the
coordinates in image space are chosen with respect to the origin in the secondary principal point H,, the expressions for the first
and second focal points and for the coordinates of the image point in terms of that of the object point are identical to that for a thin
lens. An example of imaging by a thick lens is shown in Figure 2.6.11

Object Image

h h
< SN D b.f]

< <
< <

Y

Figure 2.6.11: Thick-lens geometry. There holds f; = f, if the ambient medium left of the lens is the same as to the right of the lens.

2.5.8 Stops

An element such as the rim of a lens or a diaphragm which determines the set of rays that can contribute to the image, is called the
aperture stop. An ordinary camera has a variable diaphragm.

The entrance pupil is the image of the aperture stop by all elements to the left of the aperture stop. If there are no lenses between
object and aperture stop, the aperture stop itself is the entrance pupil. Similarly the exit pupil is the image of the aperture stop by
all elements to the right of it. The entrance pupil determines for a given object the cone of rays that enters the optical system, while
the cone of rays leaving and taking part in the image formation is determined by the exit pupil (see Figure 2.6.12). Note that in
constructing the entrance pupil as the image of the aperture stop by the lenses to the left of it, are propagating from the right to the
left. Hence the aperture stop is a real object in this construction, while the entrance pupil can be a real or a virtual image. The rays
used in constructing the exit pupil as the image of the aperture stop by the lenses following the stop are propagating from the left to
the right. Hence also in this case the aperture stop is a real object while the exit pupil can be a real or a virtual image of the aperture
stop.

For any object point, the chief ray is the ray in the cone that passes through the centre of the entrance pupil, and hence also through
the centres of the aperture stop and the exit pupil. A marginal ray is the ray that for an object point on the optical axis passes
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through the rim of the entrance pupil (and hence also through the rims of the aperture stop and the exit pupil).

For a fixed diameter D of the exit pupil and given x,, the magnification of the system is according to (2.6.50) and (2.6.48) given by
M = —xy/f; = fi/x,. It follows that when fi is increased, the magnification increases. A larger magnification means a lower energy
density, hence a longer exposure time, i.e. the speed of the lens is reduced. Camera lenses are usually specified by two numbers:
the focal length f; and the diameter D of the exit pupil. The f-number is the ratio of the focal length to this diameter:

f
f —number = D

For example, f-number= 2 means f = 2D. Since the exposure time is proportional to the square of the f-number, a lens with f-
number 1.4 is twice as fast as a lens with f-number 2.

Exit Entrance
pupil pupil

Marginal
ray

Aperture Stop

Figure 2.6.1: Aperture stop (A.S.) between the second and third lens, with entrance pupil and exit pupil (in this case these pupils
are virtual images of the aperture stop). Also shown are the chief ray and the marginal ray.
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