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5.7: Spatial Coherence and Young’s Experiment
While for temporal coherence we used a Michelson interferometer, the natural choice to characterize spatial coherence is Young’s
experiment, because it allows the fields in two points separated in space to interfere with each other. In Young’s experiment, a
mask is used with two pinholes at the positions of the points  and  of interest. Let  and  be the position vectors of the two
points  and , respectively. We write the field in  as a superposition of time-harmonic fields as in (5.3.6):

According to the Huygens-Fresnel principle, a time-harmonic disturbance with frequency  in the pinhole at  causes a radiating
spherical wave behind the mask, with time-harmonic field in some point  given by

Figure : Young’s experiment to study the spatial coherence of two points. A mask with two holes at the two points of interest, 
 and , is used to let the fields in these points interfere with each other on a screen at a large distance. Because the light

propagates over different distances from the two holes to the point of observation,  interferes with , where 
is the difference in propagation time.

The total field  in any point  due to the pinhole at  is obtained by integrating over all frequencies:

In words, the field in  at time  due to the pinhole at  is proportional to the field at  at the earlier time  that it
takes for the light to propagate form  to . The proportionality factor scales with the reciprocal distance between  and .

Consider the set-up shown in Figure . The fields  and  from the two pinholes at  and  interfere with each other in a
point  at a great distance. Because of the difference in propagation distance , there is a time difference 

 between the two fields when they arrive at point  on the screen, given by

Furthermore, because of the propagation, the amplitudes are reduced by a factor proportional to the reciprocal distance which is
different for the two fields. But if the distance between the two screens is large enough, we can take these factors to be the same
and then omit them. The interference pattern on the screen is then given by
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We define the mutual coherence function and the intensities:

The complex degree of mutual coherence is defined by using these intensities to normalise  :

The modulus of  is smaller or equal than 1 (which can be proved by using Bessel’s inequality). We can now write (  ) as

By varying the point of observation  over the screen, we can vary . By measuring the intensities, we can deduce the real part of 
. Note that  indicates the ability to form fringes.

Let us see what happens when  is a monochromatic field

In that case

So we get

where  is the phase difference of  and . In this case  has modulus 1 , as expected for a monochromatic field. The
intensity on the screen becomes

So indeed we see interference fringes, as one would expect for a monochromatic wave. If , then interference maxima occur
for

Because , and , we find that maxima occur when

For large distance between the mask and the screen (in the Fraunhofer limit), these path length differences correspond to directions
of the maxima given by the angles  (see Figure  ):

where  is the distance between the slits and  is an integer.
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Remark. We recognise  to be the cross-correlation of the two signals  and .
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