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4.2: Polarisation States and Jones Vectors
We have seen in Chapter 1 that light is an electromagnetic wave which satisfies Maxwell’s equations and the wave equation
derived therefrom. Since the electric field is a vector that oscillates in a certain direction, we say that the wave has a certain
polarisation. In this chapter we look at the different types of polarisation and how the polarisation of a light beam can be
manipulated.

We start with Eqs. (1.6.9) and (1.6.11) which show that the electric field  of a plane wave is always perpendicular to the
direction of propagation, which is the direction of the wave vector . Let the wave propagate in the -direction:

Then the electric field vector does not have a -component and hence the real electric field at  and at time  can be written as

where  and  are positive amplitudes and  are the phases of the electric field components. While  and  are fixed in
this case, we can vary  and . This degree of freedom is why different states of polarisation exist: the state of
polarisation is determined by the ratio of the amplitudes and by the phase difference  between the two orthogonal
components of the light wave. Varying the quantity  means that we are ’shifting’  with respect to .
Consider the electric field in a fixed plane  :

The complex vector

is called the Jones vector. It is used to characterise the polarisation state. Let us see how, at a fixed position in space, the electric
field vector behaves as a function of time for different choices of  and .

a) Linear polarisation:  or . When  we have

Equality of the phases: , means that the field components  and  are in phase: when  is large, 
 is large, and when  is small,  is small. We can write

which shows that for  the electric field simply oscillates in one direction given by real the vector . See
Figure a.
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In this case  and  are out of phase and the electric field oscillates in the direction given by the real vector 
.

b) Circular polarisation: . In this case the Jones vector is:

The field components  and  are  radians (90 degrees) out of phase: when  is large,  is small, and
when  is small,  is large. We can write for  and with  :

The electric field vector moves in a circle. When for an observer looking towards the source, the electric field is rotating anti-
clockwise, the polarisation is called left-circularly polarised (  sign in (  )), while if the electric vector moves clockwise,
the polarisation is called right-circularly polarised (- sign in (  )).

c) Elliptical polarisation:  and  arbitrary. The Jones vector is:

In this case we get instead of (  ) (again taking  ):

which shows that the electric vector moves along an ellipse with major and minor axes parallel to the  - and -axis. When the 
 applies, the field is called left-elliptically polarised, otherwise it is called right-elliptically polarised.

d) Elliptical polarisation:  anything else,  and  arbitrary. The Jones vector is now the most general one:

It can be shown that the electric field vector moves always along an ellipse. The exact shape and orientation of this ellipse of course
varies with the difference in phase  and the ratio of the amplitude  and, except when , the major
and minor axis of the ellipse are not parallel to the  - and -axis. See Figure  c.

Remarks.

1. Frequently the Jones vector is normalised such that

The normalized vector represents of course the same polarisation state as the unnormalised one. In general, multiplying the Jones
vector by a complex number does not change the polarisation state. If we multiply for example by , this has the same result as
changing the instant that , hence it does not change the polarisation state. In fact:

2. We will show in section  that a general time-harmonic electromagnetic field, is a superposition of plane waves with wave
vectors of the same length determined by the frequency of the wave but with different directions. An example is the
electromagnetic field near the focal plane of a lens. There is then no particular direction of propagation to which the electric field
should be perpendicular; in other words, there is no obvious choice for a plane in which the electric field oscillates as function of
time. Nevertheless, for every point in space, such a plane exists, but its orientation varies in general with position. Furthermore, the
electric field in a certain point moves along an ellipse in the corresponding plane, but the shape of the ellipse and the orientation of
its major axis can be arbitrary. We can conclude that in any point of an arbitrary time-harmonic electromagnetic field, the electric
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(and in fact also the magnetic) field vector prescribes as function of time an ellipse in a certain plane which depends on position. In
this chapter we only consider the field and polarisation state of a single plane wave.

Figure : Illustration of different types of polarisation. Top: linear polarisation; middle: circular polarisation; bottom: elliptical
polarisation. The horizonal and vertical arrows indicate the momentary field components  The thick arrow indicates the
vector . The black curve indicates the trajectory of .
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