
5.8.1 https://phys.libretexts.org/@go/page/57405

5.8: Increase of Spatial Coherence by Propagation
When light propagates, the mutual coherence at transversely separated points in general increases with propagation distance. For
example, the sun consists of an incredibly large number of emitters which emit at random times. Therefore, the fields at different
points at the surface of the sun are completely uncorrelated, i.e. the field at the surface of the sun is spatially fully incoherent. But
after propagation to the earth, the sunlight has become partially coherent, with coherence length of roughly  around the
wavelength of . The further away the sun or a star is, the more spatially coherent the field in two transversely separated
points becomes. How can we understand this?

One way of looking at it is that at the star’s surface, the field is determined by the closest point sources. Since all point sources emit
wavetrains making thousands of uncorrelated phase jumps during an integration time of any detector, the fields in two points at the
surface of the star are completely incoherent. But the field at two transversely separated points at a great distance from the star both
consist of contributions from all point sources in the star, i.e. the fields of the different point sources mix spatially. Provided the
difference in distances between each of the transverse points and the point sources of the star is smaller than the coherence length,
these contributions can interfere. Interesting, when the distance of the transversely separated points to the star increases, the
difference between the distances of the points to the star decreases. Therefore, the field becomes more spatially coherent when the
distance to the start increases.

To quantify this phenomenon, we consider two mutually incoherent point sources  and  in the  plane. We assume that
their mutual coherence function is given by:

where  is the self-coherence which we assume here to be the same for both point sources,  is a decreasing function of the
delay time  (although it is not necessarily monotonically decreasing). Using that the long-time average does not depend on the
origin of time (which was based on the assumption that the source is stationary), we find:

Furthermore, for , which is the intensity of either source.

Consider two points  at large distance  from the two point sources as seen in Figure . We will compute the mutual
coherence  of these points for zero time delay  (we can also compute the mutual coherence for more general time
delay , i.e. , but it will suffice for our purpose to take  ). The field in  is the sum of the fields emitted by  and 

 :

where we used (5.6.3). Similarly,

Let us assume that  is so large that all distances  in the denominators can be replaced by . Then these equal distances can
be omitted. It can then be shown by substitution of (  ) and (  ) that the mutual coherence in  and  for zero time
delay  becomes:
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Figure : Two incoherent point sources  and two points  in a plane at large distance  from the point sources. The
degree of mutual coherence at  and  increases to 1 in the limit .

Now we use (  ) and (  ) and get

Similarly,

The result (  ) confirms what was already remarked in Section 5.5, that the mutual coherence  depends on the
difference in distances of source point  to points  and  and on the difference in distance from  to  and .

Remark. The derivation given here is valid for any two points  sufficiently far away from the points sources  and  and
hence applies not only to transversally but also to longitudinally separated points.

Suppose that  and let  be given by:  for . If  is very large, so
that  and  are almost parallel, then with Figure  we find

Similarly,

Hence, with (  ):

It is thus seen that the degree of mutual coherence depends on the angle  subtended by the two point sources at the
midpoint  on the mask. The smaller this angle, the higher the degree of spatial coherence. The reason is that for smaller ,
i.e. for a smaller size of the source and/or a greater distance to the point sources, the fringes due to the point sources become almost
overlapping and enforce each other, whereas for larger  the fringes are more displaced with respect to each other and hence the
sum of the fringes of the two point sources has less pronounced fringe visibility.
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Figure : For  very large,  and  are almost parallel and  .

As example consider quasi-monochromatic light for which (see (5.4.10):

where  is the centre frequency. Then

and hence the degree of mutual coherence is:

We see that when

there is no interference. Hence we can say that coherence between points in the mask only occurs when there distance is smaller
than .

We see from (  ) that by keeping  fixed, we can retrieve the angle  by measuring  for a number of different
positions of .
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