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4.3: Creating and Manipulating Polarisation States

We have seen how Maxwell’s equations allow the existence of plane waves with many different states of polarisation. But how can
we create these states, and how do these states manifest themselves?

Natural light often does not have a definite polarisation. Instead, the polarisation fluctuates rapidly with time. In order to turn such
randomly polarised light into linearly polarised light in a certain direction, we must extinguish the light polarised in the
perpendicular direction, so that the remaining light is linearly polarised along the required direction. One could do this by using
light reflected under the Brewster angle (which extinguishes p-polarised light), or one could let light pass through a dichroic
crystal, which is a material which absorbs light polarised perpendicular to its so-called optic axis. A third method is sending the
light through a wire grid polariser, which consists of a metallic grating with sub-wavelength slits. Such a grating only transmits the
electric field component that is perpendicular to the slits.

So suppose that with one of these methods we have obtained linearly polarised light. Then the question rises how the state of linear
polarisation can be changed into circularly or elliptically polarised light. Or how the state of linear polarisation can be rotated over
a certain angle. We have seen that the polarisation state depends on the ratio of the amplitudes and on the phase difference ¢, — ¢,
of the orthogonal components &, and &, of the electric field. Thus, to change linearly polarised light to some other state of
polarisation, a certain phase shift (say A, ) must be introduced to one component (say &, ), and another phase shift Ay, to the
orthogonal component £,. We can achieve this with a birefringent crystal, such as calcite. What is special about such a crystal is
that it has two refractive indices: light polarised in a certain direction experiences a refractive index of n,, while light polarised
perpendicular to it feels another refractive index n,. (the subscripts o and e stand for "ordinary" and "extraordinary"), but for our
purpose we do not need to understand this terminology. The direction for which the refractive index is smallest (which can be either
n, or 1 ) is called the fast axis because its phase velocity is largest, and the other direction is the slow axis. Because there are two
different refractive indices, one can see double images through a birefringent crystal. The difference between the two refractive
indices An =n, —n, is called the birefringence.

Suppose n > n, and that the fast axis, which corresponds to n, is aligned with &,, while the slow axis (which then has refractive

index n. ) is aligned with &,. If the wave travels a distance d through the crystal, £, will accumulate a phase A, = 27;'15 d, and

&, will accumulate a phase Ap, = 27;"" d . Thus, after propagation through the crystal the phase difference ¢, — ¢, has increased
by
2
Apy —Ap, = Tﬂd (ne — o) -

Jones Matrices

By letting light pass through crystals of different thicknesses d, we can create different phase differences between the orthogonal
field components, and this way we can create different states of polarisation. To be specific, let J, as given by (4.1.4), be the Jones
vector of the plane wave before the crystal. Then we have, for the Jones vector after the passage through the crystal:

J=MJ,

g y 1 0
M=[°¢" 2(.) = e5dne omi .
0 e%dne 0 e dremo)

A matrix such as M, which transfers one state of polarisation of a plane wave in another, is called a Jones matrix. Depending on
the phase difference which a wave accumulates by traveling through the crystal, these devices are called quarter-wave plates
(phase difference 7/2 ), half-wave plates (phase difference 7 ), or full-wave plates (phase difference 2 ). The applications of
these wave plates will be discussed in later sections.

where

Consider as example the Jones matrix which described the change of linear polarised light into circular polarisation. Assume that

=50)

we have diagonally (linearly) polarised light, so that
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We want to change it to circularly polarised light, for which

where one can check that indeed ¢, — ¢, = 7/2 . This can be done by passing the light through a crystal such that £, accumulates
a phase difference of /2 with respect to &,. The transformation by which this is accomplished can be written as

(o 1) 70)-5()

The matrix on the left is the Jones matrix describing the operation of a quarter-wave plate.

Another important Jones matrix is the rotation matrix. In the preceding discussion it was assumed that the fast and slow axes were
aligned with the z - and y-direction (i.e. they were parallel to £, and &, ). Suppose now that the slow and fast axes of the wave
plate no longer coincide with X and ¥, but rather with some other X and y' as in Figure 4.3.1 In that case we apply a basis
transformation: the electric field vector which is expressed in the X, ¥ basis should first be expressed in the X', ¥’ basis before
applying the Jones matrix of the wave plate to it. After applying the Jones matrix, the electric field has to be transformed back from
the ¥, ¥’ basis to the X, ¥ basis.

Let E be given in terms of its components on the X, ¥ basis:
E=E,X+E,3.
To find the components E,, E, on the X, ¥ basis:
E=E,% +Ey,§r",
we first write the unit vectors X and 37/ in terms of the basis X, ¥ (see Figure 4.3.1)

X = cosbX +sinby,
¥ = —sinfx + cos 6y.
By substituting (4.3.9) and (4.3.10) into ( 4.3.8) we find
E = Ezril + Ey?l
= E, (cos6x +sinby) + E, (— sin6x + cos 6y),
= (cosOFE, —sinfE, )X+ (sinfE, +cosbE,)y.

E,\ ([ Epcos0—E,sinf\ R E,

E, -\ E, sinf + E, cosf - E, ’
where Ry is the rotation matrix over an angle 6 in the anti-clockwise direction:

0 —sinf
Ry= (c?s sin )
sinf  cosf

That R(6) indeed is a rotation over angle  in the anti-clockwise direction is easy to see by considering what happens when Ry is
applied to the vector (1,0)7. Since R, =R _4 we get:

Ey E
(5)-(2)
Ey, E,

This relationship expresses the components E,, E, of the Jones vector on the %', ¥ basis, which is aligned with the fast and slow
axes of the crystal, in terms of the components E, and E,, on the original basis X, ¥. If the matrix M describes the Jones matrix as
defined in ( 4.3.3), then the matrix My for the same wave plate but with =" as slow and g’ as fast axis, is, with respect to the X,y
basis, given by:

Comparing with ( 4.3.7) implies

My =ReMR_g.
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For more information on basis transformations, see Appendix F'.
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Figure 4.3.1: If the wave plate is rotated, the fast and slow axis no longer correspond to y and z. Instead, we have to introduce a
new coordinate system y', z’.

4.2.2 Linear Polarisers

A polariser that only transmits horizontally polarised light is described by the Jones matrix:

10
Mrp = .
w=(3 0)
Clearly, horizontally polarised light is completely transmitted, while vertically polarised light is not transmitted at all. More
generally, for light that is polarised at an angle «;, we get

cosa 10 cosa cosa
My=Mpp| . = . = .
sina 0 0 sina 0
The amplitude of the transmitted field is reduced by the factor cosa, which implies that the intensity of the transmitted light is
reduced by the factor cos? a. This relation is known as Malus’ law.

4.2.3 Degree of Polarisation

Natural light such as sun light is unpolarised. The instantaneous polarisation of unpolarised light fluctuates rapidly in a random
manner. A linear polariser produces linear polarised light from unpolarised light.

Light that is a mixture of polarised and unpolarised light is called partially polarised. The degree of polarisation is defined as the
fraction of the total intensity that is polarised:

Ipol

degree of polarisation = ———.
Ipol + Iunpol

It follows from ( 4.3.17) that the intensity transmitted by a linear polariser when unpolarised light is passed incident, is the average
value of cos? a namely %, times the incident intensity.

4.2.4 Quarter-Wave Plates

A quarter-wave plate introduces a phase shift of 7/2, so its Jones matrix is

1 0
Mowp = ,
ewr (0 z)

because exp(im/2) = 4. To describe the actual transmission through the quarter-wave plate, the matrix should be multiplied by
some global phase factor, but because we only care about the phase difference between the field components, this global phase
factor can be omitted without problem. The quarter-wave plate is typically used to convert linearly polarised light to elliptically
polarised light and vice-versa. If the incident light is linearly polarised at angle «, the state of polarisation after the quater wave
plate is
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In particular, if incident light is linear polarised under 45°, or equivalently, if the quarter wave plate is rotated over this angle, it
will transform linearly polarised light into circularly polarised light (and vice versa).

1 ( 1 ) ( 1 l)) 1 ( 1 )
V2 \1i 0 i/ 42\1
A demonstration is shown.

4.2.5 Half-Wave Plates

A half-wave plate introduces a phase shift of 7, so its Jones matrix is

1 0
MHWP—(O _1),

because exp(im) = —1. An important application of the half-wave plate is to change the orientation of linearly polarised light.
After all, what this matrix does is mirroring the polarisation state in the z-axis. Thus, if we choose our mirroring axis correctly (i.e.
if we choose the orientation of the wave plate correctly), we can change the direction in which the light is linearly polarised
arbitrarily. A demonstration is shown in. To give an example: the polarisation of a wave that is parallel to the z-direction, can be
rotated over angle « by rotating the crystal such that the slow axis makes angle «/2 with the z-axis. Upon propagation through the
crystal, the fast axis gets an additional phase of 7, due to which the electric vector makes angle o« with the x-axis (see Figure 4.3.2

).

Fast Axis

Figure 4.3.2: Rotation of horizontally polarised light over an angle « using a half-wave plate.

4.2.6 Full-Wave Plates

A full-wave plate introduces a phase difference of 27, which is the same as introducing no phase difference between the two field
components. So what can possibly be an application for a full-wave plate? We need to recall from Eq. (( 4.3.1)) that the phase
difference is 27 only for a particular wavelength. If we send through linearly (say vertically) polarised light of other wavelengths,
these will become elliptically polarised, while the light with the correct wavelength Ay will stay vertically polarised. If we then let
all the light pass through a horizontal polariser, the light with wavelength Ay will be completely extinguished, while the light of
other wavelengths will be able to pass through at least partially. Therefore, full-wave plates can be used to filter out specific
wavelengths of light.

4.3: Creating and Manipulating Polarisation States is shared under a not declared license and was authored, remixed, and/or curated by
LibreTexts.
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