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6.3: Angular Spectrum Method
Our goal is to derive the field in some point  with , given the field in the plane , as is illustrated in Figure .
The sources of the field are assumed to be in the half space . One way to see how light propagates from one plane to another
is by using the angular spectrum method. We decompose the field in plane waves with a two-dimensional Fourier transform.
Since we know how each plane wave propagates, we can propagate each Fourier component separately and then add them all
together by taking the inverse Fourier transform. Mathematically, this is described as follows: we know the field . We
will write  for convenience and apply a two-dimensional Fourier transform to  :

The inverse Fourier transform implies:

Figure : Given the field , we want to find  in a point  with . It is assumed that the field propagates in
the positive -direction, which means that all sources are in the region .

The most important properties of the Fourier transform are listed in Appendix E. By defining \(k_{x}=2 \pi \xi, k_{y}=2 \pi 
\) can be written as

The variables in the Fourier plane:  and  are called spatial frequencies.

Equation (  ) says that we can write  as an integral (a sum) of plane waves with wave vector 

, each with its own weight (i.e. complex amplitude) . We know how each plane wave with

complex amplitude  and wave vector  propagates over a distance 

Therefore, the field  in the plane  (for some  ) is given by

where
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with  the wavelength of the light as measured in the material (hence, , with  the wavelength in vacuum). The sign in
front of the square root in ( \PageIndex{7}\) ) could in principle be chosen negative: one would then also obtain a solution of the
Helmholtz equation. The choice of the sign of  is determined by the direction in which the light propagates, which in turn
depends on the location of the sources and on the convention chosen for the time dependance. We have to choose here the  sign
in front of the square root because the sources are in  and the time dependence of time-harmonic fields is (as always in this
book) given by  with .

Eq. (  ) can be written alternatively as

where now  is to be interpreted as a function of  :

Note that one can interpret this as a diagonalisation of the propagation operator, as explained in Appendix .

We can observe something interesting: if , then  becomes imaginary, and  decays exponentially for
increasing  :

These exponentially decaying waves are evanescent in the positive -direction. We have met evanescent waves already in the
context of total internal reflection discussed in Section 1.9.5. The physical consequences of evanescent waves in the angular
spectrum decomposition will be explained in Section 6.4.

The waves for which  is real have constant amplitude: only the phase changes due to propagation. These waves therefore are
called propagating waves.

Remark. In homogeneous space, the scalar Helmholtz equation for every electric field component is equivalent to Maxwell’s
equations and hence we may propagate each component  and  individually using the angular spectrum method. If the data
in the plane  of these field components are physically consistent, the electric field thus obtained will automatically satisfy the
condition that the electric field is free of divergence, i.e.

everywhere in . This is equivalent to the statement that the electric vectors of the plane waves in the angular spectrum are
perpendicular to their wave vectors. Alternatively, one can propagate only the and -components and afterwards determine 

 from the condition that (  ) must be satisfied.
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