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1.4: Projection Operators and Tensor Products

We can combine two linear vector spaces %/ and ¥ into a new linear vector space # = % @ ¥ . The symbol @ is called the direct
sum. The dimension of % is the sum of the dimensions of % and ¥

dim % =dim% +dim ¥ (1.34)

A vector in % can be written as
W)y =) +)r, (1.35)
where |1)4, and |¢) are typically not normalized (i.e., they are not unit vectors). The spaces % and ¥ are so-called subspaces of

V.

As an example, consider the three-dimensional Euclidean space spanned by the Cartesian axes z, y, and z. The zy-plane is a two-
dimensional subspace of the full space, and the z-axis is a one-dimensional subspace. Any three-dimensional form can be projected
onto the zy-plane by setting the z component to zero. Similarly, we can project onto the z-axis by setting the  and y coordinates
to zero. A projector is therefore associated with a subspace. It acts on a vector in the full space, and forces all components to zero,
except those of the subspace it projects onto.

The formal definition of a projector Py on % is given by

Py W)y =) (1.36)
This is equivalent to requiring that P2 =Py, P = Py, or Py, is idempotent. One-dimensional projectors can be written as
P; =|¢;) (441 (1.37)

Two projectors P; and P, are orthogonal is P P, = 0. If P, P, =0, then P, + P; is another projector:
(P +Py)’ =P2+P,Py+ PP+ P2 =P2+P} =P +P, (1.38)
When P; and P, commute but are non-orthogonal (i.e., they overlap), the general projector onto their combined subspace is
P ,=P+P—-PPF (1.39)
(Prove this.) The orthocomplement of P is I — P, which is also a projector:
P-P)=P-P*=P-P=0 and (I-P)*=1-2P+P>=I1-P (1.40)

Another way to combine two vector spaces % and ¥ is via the tensor product: # = % ® ¥, where the symbol ® is called the
direct product or tensor product. The dimension of the space # is then

dim¥ =dim% -dim ¥ (1.41)
Let [¢) € % and |¢) € ¥'. Then
py|p)eW =URY (1.42)
If [4) =3, a;[v;) and [¢) =3, b; |¢;), then the tensor product of these vectors can be written as
[¥) ®|4) Za]bk [¥;) ® |éx) Za]bk ;) [k) Za]bk %, Bx) (1.43)

where we introduced convenient abbreviations for the tensor product notation. The inner product of two vectors that are tensor
products is

(1@ (#1]) (I192) ®[p2)) = (1 | h2) (1 | ¢2) (1.44)
Operators also obey the tensor product structure, with
(A®B)|y) ®[¢) = (Aly)) ® (B|4)) (1.45)
and
(A®B)(CRD)lp)®|¢) = (AC|¢)) ® (BD|¢)) (1.46)
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General rules for tensor products of operators are

1 A®0=0 and0® B =0,

2.I1=TI,

3. (A1 +A2)®B=A1 ®B+A,QB ,

4.aA®bB = (ab)AR B ,

5. (A B) 1 =A1®B!

6.(A®B) =AT®Bf .
Note that the last rule preserves the order of the operators. In other words, operators always act on their own space. Often, it is
understood implicitly which operator acts on which subspace, and we will write A® = A and [® B = B . Alternatively, we can
add subscripts to the operator, e.g., A9 and By.

As a practical example, consider two two-dimensional operators
A:(A“ Aw) and B:(B“ Bw) (1.47)
Ag Ag By Ba

with respect to some orthonormal bases {|a1),|a2)} and {|b1), |b2)} for A and B, respectively (not necessarily eigenbases). The
question is now: what is the matrix representation of A ® B? Since the dimension of the new vector space is the product of the
dimensions of the two vector spaces, we have dim %" =2 -2 =4 . A natural basis for A ® B is then given by {|a;, bk>}jk, with j,

k=1,2,0r
la1) [b1), a1} [b2), la2)[b1), [a2)[b2) (1.48)
We can construct the matrix representation of A ® B by applying this operator to the basis vectors in Eq. (1.48), using
A|aj>:A1j|a1>+A2j|a2) and B|ak>=B1k|b1>+BQk|b2> (1.49)
which leads to
A®Blay, b (A1 |ay
A®Bla,by) = (Anla

)
AQ®Blaz,b1) = (A1z]a1
AQ®Blas,by) = (A1z2]a1

+ Aa1 |az)) (Bi1 |by
+ A31 |az)) (Biz2 by
+ Agz |az)) (Bi1 by
+ Agz |az)) (Biz2 [by
Looking at the first line of Eq. (1.50), the basis vector |a1, b1) gets mapped to all basis vectors:

A®B|ai,b1) = A11Bi1|a1,b1) + A11Boi a1, be) + A1 Bi1 |ag, bi) + A21 Bog |az, b) (1.51)

+ By |bs))
+ By |by))
+ By |b2))
+ By, |bs))

(1.50)

—~— ~— ~— ~—
~ ~ ~ ~

Combining this into matrix form leads to

A Bin AnBiy AppBin ApBip
A9 B— A11By1 A11Boy A19By1 A1aBa _ (AnB A12B)
As1Bin Ay By AxBii AxBis AnB AyB

Ay By AnByy AypBy  AyBj

(1.52)

Recall that this is dependent on the basis that we have chosen. In particular, A ® B may be diagonalized in some other basis.
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