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8.4: Bose-Einstein and Fermi-Dirac Statistics
Finally, in this section we will derive the Bose-Einstein and Fermi-Dirac statistics. In particular, we are interested in the thermal
equilibrium for a large number of (non-interacting) identical particles with some energy spectrum , which my be continuous.

Since the number of particles is not fixed, we are dealing with the Grand Canonical Ensemble. Its partition function  is given by

where  is the many-body Hamiltonian,  and  is the chemical potential. The average number of particles with single
particle energy  is then given by

For the simple case where  and the creation and annihilation operators obey the commutator algebra, the exponent
can be written as

and the trace becomes

The average photon number for energy  is

This is the Bose-Einstein distribution for particles with energy . It is shown for increasing  in Fig. 4 on the left.

Figure 4: Left: Bose-Einstein distribution for different temperatures . The lower the temperature, the more particles occupy
the low energy states. Right: Fermi-Dirac distribution for different temperatures and . The fermions will not occupy energy
states with numbers higher than 1, and therefore higher energies are necessarily populated. The energy values  form a continuum
on the horizontal axis.

Alternatively, if the creation and annihilation operators obey the anti-commutation relations, the sum over  in Eq. (8.45) runs not
from 0 to ∞, but over 0 and 1. The partition function of the grand canonical ensemble then becomes

and the average number of particles with energy  becomes
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This is the Fermi-Dirac statistics for these particles, and it is shown in Fig. 4 on the right. The chemical potential is the highest
occupied energy at zero temperature, and in solid state physics this is called the Fermi level. Note the sign difference in the
denominator with respect to the Bose-Einstein statistics.

1. Calculate the Slater determinant for three electrons and show that no two electrons can be in the same state.
2. Particle statistics.

a. What is the probability of finding  bosons with energy  in a thermal state?
b. What is the probability of finding  fermions with energy  in a thermal state?

3. Consider a system of (non-interacting) identical bosons with a discrete energy spectrum and a ground state energy .
Furthermore, the chemical potential starts out lower than the ground state energy .
a. Calculate  and increase the chemical potential to  (e.g., by lowering the temperature). What happens when 

 passes ?
b. What is the behaviour of  as ? Sketch both  and  as a function of .

What is the fraction of particles in the ground state at ?
c. What physical process does this describe?

4. The process  with  creates particles in two systems, 1 and 2, when applied to the vacuum

state .

a. Show that the bosonic operators  and  obey the algebra

with .

b. For operators obeying the algebra in (a) we can write

Calculate the state  of the two systems.

c. The amount of entanglement between two systems can be measured by the entropy  of the reduced density matrix 
 for one of the systems. Calculate .

d. What is the probability of finding  particles in system 1?
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