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5.2: Entanglement
Consider the following experiment: Alice and Bob each blindly draw a marble from a vase that contains one black and one white
marble. Let’s call the state of the write marble  and the state of the black marble . If we describe this classical experiment
quantum mechanically (we can always do this, because classical physics is contained in quantum physics), then there are two
possible states,  and . Since blind drawing is a statistical procedure, the state of the marbles held by Alice and Bob is the
mixed state

From Alice’s perspective, the state of her marble is obtained by tracing over Bob’s marble:

This is what we expect: Alice has a 50:50 probability of finding “white” or “black” when she looks at her marble (i.e., when she
measures the colour of the marble).

Next, consider what the state of Bob’s marble is when Alice finds a white marble. Just from the setup we know that Bob’s marble
must be black, because there was only one white and one black marble in the vase. Let’s see if we can reproduce this in our
quantum mechanical description. Finding a white marble can be described mathematically by a projection operator  (see Eq.
(2.24)). We need to include this operator in the trace over Alice’s marble’s Hilbert space:

which we set out to prove: if Alice finds that when she sees that her marble is white, she describes the state of Bob’s marble as
black. Based on the setup of this experiment, Alice knows instantaneously what the state of Bob’s marble is as soon as she looks at
her own marble. There is nothing spooky about this; it just shows that the marbles held by Alice and Bob are correlated.

Next, consider a second experiment: By some procedure, the details of which are not important right now, Alice and Bob each hold
a two-level system (a qubit) in the pure state

Since  and  are valid quantum states, by virtue of the first postulate of quantum mechanics  is also a valid
quantum mechanical state. It is not difficult to see that these systems are also correlated in the states  and : When Alice finds
the value “0”, Bob must find the value “1”, and vice versa. We can write this state as a density operator

Notice the two extra terms with respect to Eq. (5.5). If Alice now traces out Bob’s system, she finds that the state of her marble is

In other words, even though the total system was in a pure state, the subsystem held by Alice (and Bob, check this) is mixed! We
can try to put the two states back together:

but this is not the state we started out with! It is also a mixed state, instead of the pure state we started with. Since mixed states
mean incomplete knowledge, there must be some information in the combined system that does not reside in the subsystems alone!
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This is called entanglement.

Entanglement arises because states like  cannot be written as a tensor product of two pure states .
These latter states are called separable. In general a state is separable if and only if it can be written as

Classical correlations such as the black and white marbles above fall into the category of separable states.

So far, we have considered the quantum states in the basis . However, we can also describe the same system in the rotated
basis  according to

The entangled state  can then be written as

which means that we have again perfect correlations between the two systems with respect to the states  and . Let’s do the
same for the state  in Eq. (5.5) for classically correlated marbles. After a bit of algebra, we find that

Now there are no correlations in the conjugate basis , which you can check by calculating the conditional probabilities of
Bob’s state given Alice’s measurement outcomes. This is another key difference between classically correlated states and entangled
states. A good interpretation of entanglement is that entangled systems exhibit correlations that are stronger than classical
correlations. We will shortly see how these stronger correlations can be used in information processing.

We have seen that operators, just like states, can be combined into tensor products:

And just like states, some operators cannot be written as :

This is the most general expression of an operator in the Hilbert space . In Dirac notation this becomes

As an example, the Bell operator is diagonal on the Bell basis:

The eigenvalues of the Bell operator are not important, as long as they are not degenerate (why?). A measurement of the Bell
operator projects onto an eigenstate of the operator, which is an entangled state. Consequently, we cannot implement such
composite measurements by measuring each subsystem individually, because those individual measurements would project onto
pure states of the subsystems. And we have seen that the subsystems of pure entangled states are mixed states.

A particularly useful technique when dealing with two systems is the so-called Schmidt decomposition. In general, we can write
any pure state over two systems as a superposition of basis states:
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where  and  are the dimensions of the Hilbert spaces of system  and , respectively, and we order the systems such that 
. It turns out that we can always simplify this description and write  as a single sum over basis states. We state it as a

theorem:

Let  be a pure state of two systems,  and  with Hilbert spaces  and  of dimension  and , respectively.
There exist orthonormal basis vectors  for system  and  for system B such that

with real, positive Schmidt coefficients , and . This decomposition is unique, and the sum runs at most to , the
dimension of the smallest Hilbert space. Traditionally, we order the Schmidt coefficients in descending order: 
The total number of non-zero  is the Schmidt number.

Proof

The proof can be found in many graduate texts on quantum mechanics and quantum information theory.

Given the Schmidt decomposition for a bi-partite system, we can immediately write down the reduced density matrices for
the sub-systems:

and

The basis states  and  may have completely different physical meanings; here we care only that the states of the
decomposition can be labelled with a single index, as opposed to two indices.

Conversely, when we have a single system in a mixed state

we can always construct a pure state  that obeys 

By virtue of the Schmidt decomposition. The state  is called the purification of . Since many theorems are easier to
prove for pure states than for mixed states, purifications can make our work load significantly lighter.

When there is more than one non-zero  in Eq. (5.25), the state  is clearly entangled: there is no alternative choice of 
 due to the uniqueness of the Schmidt decomposition that would result in  and all others zero. Moreover, the more

uniform the values of , the more the state is entangled. One possible measure for the amount of entanglement in  is
the Shannon entropy H.

This is identical to the von Neumann entropy  of the reduced density matrix  of  given in Eq. (5.24):

Both entropies are measured in classical bits.

How do we find the Schmidt decomposition? Consider the state  from Eq. (5.20). The (not necessarily square) matrix 
with elements  needs to be transformed into a single array of numbers . This is achieved by applying the singular-
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value decomposition:

where  and  are elements of unitary matrices  and , respectively, and  is a diagonal matrix with singular values 
. The vectors in the Schmidt decomposition become

This is probably a good time to remind ourselves about the singular-value decomposition. All we need to do is find  and 
, the rest is just matrix multiplication. To find , we diagonalize  and find its eigenvectors. These form the columns

of . Similarly, we diagonalize  and arrange the eigenvectors in columns to find . If  is an  matrix, 
should be  and  should be .
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