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1.4: Projection Operators and Tensor Products
We can combine two linear vector spaces  and  into a new linear vector space . The symbol ⊕ is called the direct
sum. The dimension of  is the sum of the dimensions of  and :

A vector in  can be written as

where  and  are typically not normalized (i.e., they are not unit vectors). The spaces  and  are so-called subspaces of 
.

As an example, consider the three-dimensional Euclidean space spanned by the Cartesian axes , , and . The -plane is a two-
dimensional subspace of the full space, and the -axis is a one-dimensional subspace. Any three-dimensional form can be projected
onto the -plane by setting the  component to zero. Similarly, we can project onto the -axis by setting the  and  coordinates
to zero. A projector is therefore associated with a subspace. It acts on a vector in the full space, and forces all components to zero,
except those of the subspace it projects onto.

The formal definition of a projector  on  is given by

This is equivalent to requiring that , , or  is idempotent. One-dimensional projectors can be written as

Two projectors  and  are orthogonal is . If , then  is another projector:

When  and  commute but are non-orthogonal (i.e., they overlap), the general projector onto their combined subspace is

(Prove this.) The orthocomplement of  is , which is also a projector:

Another way to combine two vector spaces  and  is via the tensor product: , where the symbol ⊗ is called the
direct product or tensor product. The dimension of the space  is then

Let  and . Then

If  and , then the tensor product of these vectors can be written as

where we introduced convenient abbreviations for the tensor product notation. The inner product of two vectors that are tensor
products is

Operators also obey the tensor product structure, with

and

U V W =U ⊕V

W U V

dimW = dimU +dimV (1.34)
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|Ψ = |ψ +|ϕ ,⟩W ⟩U ⟩V (1.35)
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U V W =U ⊗V

W

dimW = dimU ⋅ dimV (1.41)

|ψ⟩ ∈ U |ϕ⟩ ∈ V

|ψ⟩⊗|ϕ⟩ ∈ W =U ⊗V (1.42)

|ψ⟩ = | ⟩∑j aj ψj |ϕ⟩ = | ⟩∑j bj ϕj

|ψ⟩⊗|ϕ⟩ = | ⟩⊗| ⟩ = | ⟩ | ⟩ = | , ⟩ ,∑
jk

ajbk ψj ϕk ∑
jk

ajbk ψj ϕk ∑
jk

ajbk ψj ϕk (1.43)

(⟨ |⊗ ⟨ |) (| ⟩⊗| ⟩) = ⟨ ∣ ⟩ ⟨ ∣ ⟩ψ1 ϕ1 ψ2 ϕ2 ψ1 ψ2 ϕ1 ϕ2 (1.44)

(A ⊗B)|ψ⟩⊗|ϕ⟩ = (A|ψ⟩) ⊗(B|ϕ⟩) (1.45)

(A ⊗B)(C ⊗D)|ψ⟩⊗|ϕ⟩ = (AC|ψ⟩) ⊗(BD|ϕ⟩) (1.46)
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General rules for tensor products of operators are

1.  and ,
2. ,
3. ,
4. ,
5. ,
6. .

Note that the last rule preserves the order of the operators. In other words, operators always act on their own space. Often, it is
understood implicitly which operator acts on which subspace, and we will write  and . Alternatively, we can
add subscripts to the operator, e.g.,  and .

As a practical example, consider two two-dimensional operators

with respect to some orthonormal bases  and  for  and , respectively (not necessarily eigenbases). The
question is now: what is the matrix representation of ? Since the dimension of the new vector space is the product of the
dimensions of the two vector spaces, we have . A natural basis for  is then given by , with , 

, or

We can construct the matrix representation of  by applying this operator to the basis vectors in Eq. (1.48), using

which leads to

Looking at the first line of Eq. (1.50), the basis vector  gets mapped to all basis vectors:

Combining this into matrix form leads to

Recall that this is dependent on the basis that we have chosen. In particular,  may be diagonalized in some other basis.
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A ⊗B
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