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7.5: Energy- "Time Part" of Momenergy

energy has two partis: rest energy (= mass) plus kinetic energy

What about the "time part" of the momentum-energy of a particle-the part we have called its energy? This is certainly a strange-
looking beast! As measured in a particular free-float frame, say the laboratory, this time component as given in equation (7-5) is

Relativistic expression for energy

Compare this with the Newtonian expression for kinetic energy, using  as the symbol for kinetic energy:

How does the relativistic expression for energy, equation , compare with the Newtonian expression for kinetic energy ?
To answer this question, first look at the behavior of these two expressions when particle speed equals zero. The Newtonian kinetic
energy goes to zero. In contrast, at zero speed  and the relativistic value for energy becomes equal to mass of the
particle,

Rest energy of a particle equals its mass

where  is called rest energy of the particle. Rest energy of a particle is simply its mass. So the relativistic expression for
energy does not go to zero at zero speed, while the Newtonian expression for kinetic energy does go to zero.

Is this an irreconcilable difference? The Newtonian formula does not contain an expression for rest energy, equal to the mass of the
particle. But here is the distinction: The relativistic expression gives the value for total energy of the particle, while the Newtonian
expression describes kinetic energy only (valid for low speed). However, in Newtonian mechanics any constant potential energy
whatever can be added to the energy of a particle without changing the laws that describe its motion. One may think of the zero-
speed limit of the relativistic expression for energy as providing this previously undetermined constant.

When we refer to energy of a particle we ordinarily mean total energy of the particle. As measured in a frame in which the particle
is at rest, this total energy equals rest energy, the mass of the particle. As measured from frames in which the particle moves, total
energy includes not only rest energy but also kinetic energy.

This leads us to define kinetic energy of a particle as energy above and beyond its rest energy:

Kinetic energy defined

or

An object of mass 3 kilograms moves 8 meters along the -direction in 10 meters of time as measured in the laboratory. What
is its energy and momentum? Its rest energy? Its kinetic energy? What value of kinetic energy would Newton predict for this
object? Using relativistic expressions, verify that the velocity of this object equals its momentum divided by its energy.

Solution
From the statement of the problem:

E = m = = mγ
dt

dτ

m

(1 − )v2 1/2
(7.5.1)

K

= m  [valid for low speed] KNewton 
1

2
v2 (7.5.2)
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1/ = 1(1 − )v2 1/2

= mErest  (7.5.3)

Erest 

( energy ) = ( rest energy ) +( kinetic energy )

E = m+K (7.5.4)
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From this we obtain a value for the speed:

Use  to calculate the factor  in equation (7-8):

From equation (7-11) the energy is

From equation (7-8) momentum has the magnitude

Rest energy of the particle just equals its mass:

From equation (7-15) kinetic energy  equals total energy minus rest energy:

The Newtonian prediction for kinetic energy is

which is a lot smaller than the correct relativistic result. Even at the speed of light, the Newtonian prediction would be 
 kilogram, whereas relativistic value would increase without limit.

Equation (7-16) says that velocity equals the ratio (magnitude of momentum)  energy):

This is the same value as reckoned directly from the given quantities.

From this comes the relativistic expression for kinetic energy  :

Box 7-2 elaborates the relation between this expression and the Newtonian expression (7.5.2). Notice that if we divide the
respective sides of the momentum equation (7-8) by corresponding sides of the energy equation (7.5.1), the result gives particle
speed:

We could have predicted this directly from the first figure in this chapter, Figure 7.1.1. Speed  is the tilt (slope) of the worldline
from the vertical: (space displacement) /(time for this displacement). Momenergy points along the worldline, with space component

 and time component . Therefore momenergy slope  equals worldline slope .

Conversion to conventional energy units

m

t

x

y

z

= 3 kilograms 

= 10 meters 

= 8 meters 

= 0 meters 

= 0 meters 

v= = = 0.8
x

t

8 meters of distance 

10 meters of time 
(7.5.5)

v 1/(1 − )v2 1/2

= = = = =
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(1 − )v2 1/2
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(1 −(0.8 ))2 1/2

1

(1 −0.64)1/2

1

(0.36)1/2

1

0.6
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3
(7.5.6)

E = m/ = (3 kilograms )(5/3) = 5 kilograms (1 − )v2 1/2
(7.5.7)

p = mv/ = (5/3) ×(3 kilograms ) ×0.8 = 4 kilograms (1 − )v2 1/2
(7.5.8)

= m = 3 kilograms Erest  (7.5.9)

K

K = E−m = 5 kilograms  −3 kilograms  = 2 kilograms  (7.5.10)

= m = ×3 ×(0.8 = 0.96 kilogram KNewton 
1

2
v2 1

2
)2 (7.5.11)

= 1.5KNewton 

/(

v= = = 0.8
p

E

4 kilograms 

5 kilograms 
(7.5.12)

K

K = E− = E−m = −m = m[ −1] (7 −15)Erest 
m

(1 − )v2 1/2

1

(1 − )v2 1/2
(7.5.13)

v=
p

E
(7.5.14)
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Still More Units: In order to convert energy in units of mass to energy in conventional units, such as joules, multiply the
expressions above by the square of light speed, , and use subscript "conv":

Thus conversion from energy in units of mass to energy in conventional units is always accomplished by multiplying by conversion
factor . This is true whether the expression for energy being converted is Newtonian or relativistic. Table  at the end of the
chapter summarizes these comparisons.

Equation (7-18) is the most famous equation in all physics. Historically, the factor  captured the public imagination because it
witnessed to the vast store of energy available in the conversion of even tiny amounts of mass to heat and radiation. The units of 

 are joules; the units of  are kilograms. However, we now recognize that joules and kilograms are units different only
because of historical accident. The conversion factor , like the factor of conversion from seconds to meters or miles to feet, can
today be counted as a detail of convention rather than as a deep new principle.

For each of the following cases, write down the vector in the given frame in the form  four components of the
momentum-energy 4- Each particle has mass .

a. A particle moves in the positive -direction in the laboratory with kinetic energy equal to three times its rest energy.

b. The same particle is observed in a rocket in which its kinetic energy equals its mass.

c. Another particle moves in the -direction in the laboratory frame with momentum equal to twice its mass.

d. Yet another particle moves in the negative -direction in the laboratory with total energy equal to four times its mass.

e. Still another particle moves with equal , and  momentum components in the laboratory and kinetic energy equal to four
times its rest energy.

Solution
a. Total energy of the particle equals rest energy  plus kinetic energy . Therefore its total energy  equals 

. The particle moves along the -direction, so  and , the total momentum. Substitute
the value of  into the equation  to obtain

Hence .

In summary, the components of the momenergy 4-vector are

Of course the magnitude of this momenergy 4-vector equals the mass of the particle  - true whatever its speed, its energy, or
its momentum.

b. In this rocket frame, total energy - rest energy plus kinetic energy-has the value  As before, 
. Hence  and components of the 4-vector are 

, .

c2

= E =  [good at any speed]   (7-17) Econv  c2 mc2

[1 − ]( /c)vconv 
2

1/2

= (E− ) = m −1  [good at any speed] (7-19) Kconv  Erest  c2 c2

⎡

⎣

⎢⎢
= mEconv rest  c2

[1 − ]( /c)vconv 
2

1/2

⎤

⎦

⎥⎥

 Conversion to conventional 

= m = m = m  [low speed only]  (7-20) Kconv Newton 
1

2
v2c2 1

2
( )
vconv 
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 Example  MOMENERGY COMPONENTS7.5.2

[E, ] .txtjtz
m

x

y

x

x, y z

m 3m E

E = m+3m = 4m x = = 0py pz = ppx
E = −m2 E2 p2

= − = (4m − = 16 − = 15p2 E2 m2 )2 m2 m2 m2 m2 (7.5.15)

= (15  mpx )1/2

[E, , , ] = [4m, (15 m, 0, 0]px py pz )1/2 (7.5.16)

m

E = 2m.

= − = (2m − = 4 − = 3p2 E2 m2 )2 m2 m2 m2 m2 = mpx 31/2

[E, , , ] = [2m, m,px py pz 31/2 0, 0]
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c. In this case  and . Moreover,   So, finally, 

.

d. We are given directly that , the same as in part a, except here the particle travels in the negative -direction so has
negative -momentum. Hence:

e. Total energy equals . All momentum components have equal value, say

In this case we use the full equation that relates energy, momentum, and mass:

Energy at relativistic speeds and energy at everyday speeds: How are expressions for these two cases related?

Energy in Terms of Momentum: In the limit of velocities low compared with the speed of light, the relativistically accurate
expression for energy   reduces to  corrections. To see why and how, and to estimate
the corrections, it is convenient to work in dimensionless ratios. Thus we focus on the accurate expression in the form 

, or even simpler, , and on the approximation to this result, in the form

Example:  Then our approximation formula gives   a correction. The accurate result is 
, which is the square root of . In other words, the correction is negative and extremely small: correction 

Energy in Terms of Velocity: In the limit of velocities low compared with the speed of light, the relativistically accurate

expression for energy  , reduces to  corrections. It is convenient again to work in
dimensionless ratios. Thus we focus on the accurate expression in the form , or even simpler, 

, and on the approximation to this result, in the form

Example:  Then our approximation formula gives 

 a correction  a correction. The accurate result is   In
other words, the correction is positive and small: correction .

Another example: A jet plane. Take its speed to be exactly . That speed, according to our approximation, brings with
it a fractional augmentation of energy, a kinetic energy per unit mass, equal to   or  In

contrast, the accurate expression   gives the result  
 The 5 a little less than halfway down the length of this string of digits is no trifle, as anyone will testify who

has seen the consequences of the crash of a jet plane into a skyscraper. However, the 9375 further down the line is
approximately a million million times smaller and totally negligible in its practical consequences.

In brief, low speed gives rise to a kinetic energy which, relative to the mass, is given to good approximation by  or by 
. Moreover, the same one or other unit-free number la "fraction" because it is small compared to unity)

automatically reveals to us the order of magnitude of the fractional correction we would have had to make in this fraction itself
if we were to have insisted on a perfectly accurate figure for the kinetic energy.

= = 0px pz = p = 2mpy = + = +(2mE2 m2 p2 m2 )2 = 5 .m2

[E, , , ] = [ m, 0, 2m, 0]px py pz 51/2

E = 4m x

x

[E, , , ] = [4m, −(15 m, 0, 0]px py pz )1/2 (7.5.17)

E = 5m

= = = Ppx py pz (7.5.18)

+ + = 3 = − = (5m − = 24( )px
2 ( )py

2 ( )pz
2 P 2 E2 m2 )2 m2 m2

 or  = 8  and hence  [E, , , ] = [5m, m, m, m] .P 2 m2 px py pz 81/2 81/2 81/2

 Box 7-2

E = (m2 + )p2 1/2
E = m+ /(2m)+p2

E/m = [1 +(p/m ])2 1/2
y = [1 +x]1/2

E/m = 1 +(1/2)(p/m + corrections, or y = 1 +(1/2)x+ corrections )2 (7.5.19)

x = 0.21. y = (1.21 = 1)1/2 +0.105+

y = 1.100 1.21

= −0.005.

E = m/(1− )v2 1/2
E = m+(1/2)m +v2

E/m = [1 − ]v2 −1/2

y = [1 −x]−1/2

E/m = 1 +(1/2) + corrections, or y = 1 +(1/2)x+ corrections v2 (7.5.20)

x = 0.19. y = 1 +(1/2)

0.19+ = 1.095+ y = [1− 0.19 = (0.81 = (0.9 = 1.1111. . .]−1/2 )−1/2 )−1

= +0.01611

v= 10−6

(1/2) = 5Xv2 10−13 0.0000000000005.

E/m = [1 − ]v2 −1/2
E/m = 1.000000000000500000000009375

000000000 … .

(1/2)v2

(1/2)(p/m)2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/58997?pdf


7.5.5 https://phys.libretexts.org/@go/page/58997

Figure : Kinetic energy as a function of speed, as predicted by relativity [equation (7-19), valid for all speeds] and by
Newtonian mechanics [equation (7-20), valid for low speeds only]

Energy: Time part of momenergy 4-vector Mass: Magnitude of that 4-vector

Central to an understanding of the equation  or its equivalent  is the subscript "rest." Energy is not the
same as mass! Energy is only the time part of the momenergy 4 -vector. Mass is the magnitude of that 4 -vector. The energy of an
object, expressed in conventional units, has the value  only when that object is observed from a frame in which it is at rest.
Observed from all other free-float frames, the energy of the object is greater than its rest energy, as shown by equation .

Figure  compares relativistic and Newtonian predictions for kinetic energy per unit mass as a function of speed. At low speeds
the values are indistinguishable (left side of the graph). When a particle moves with high speed, however, so that the factor 

 has a value much greater than one, relativistic and Newtonian expressions do not yield at all the same value for
kinetic energy (right side of the graph). Then one must choose which expression to use in analyzing collisions and other high-speed
phenomena. We choose the relativistic expression because it leads to the same value of the total energy of an isolated system before
and after any interaction between particles in the system - it leads to conservation of total energy of the system.

Relativity: All forms of energy automatically conserved

All this talk of reconciliation at low speeds obscures an immensely powerful feature of the relativistic expression for total energy of
an isolated system of particles. Total energy is conserved in all interactions among particles in the system: elastic and inelastic
collisions as well as creations, transformations, decays, and annihilations of particles. In contrast, total kinetic energy of a system
calculated using the Newtonian formula for low-speed interactions is conserved only for elastic collisions. Elastic collisions are
defined as collisions in which kinetic energy is conserved. In collisions that are not elastic, kinetic energy transforms into heat
energy, chemical energy, potential energy, or other forms of energy. For Newtonian mechanics of low-speed particles, each of these
forms of energy must be treated separately: Conservation of energy must be invoked as a separate principle, as something beyond
Newtonian analysis of mechanical energy.

In relativity, all these energies are included automatically in the single time component of total momenergy of a system - total
energy - which is always conserved for an isolated system. Chapter 8 discusses more fully the momenergy of a system of particles
and the effects of interactions between particles on the energy and mass of the system.
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