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11.9: Problems

11.9.1 a super-speed super?
Take two more steps in the parable of the Great Betrayal (Box 11.1).

a. Find the speed of a new rocket frame moving relative to the Klingon frame such that the Super travels at 6 times the speed of
light in this new frame. Hint: Examine the coordinates ' and ¢’ of event 3 in the new frame. The ratio of these two, =’ /t/, is the
speed of the Super in this frame. We know the coordinates of event 3 in the Klingon frame. Therefore

b. Find the speed of yet another rocket frame, relative to the Klingon frame, such that the Super travels with infinite speed in this
frame. Hint: What does infinite speed imply about the time ¢’ between events 0 and 3 in this new frame?

11.9.2 a bad clock

Note: This exercise uses spacetime diagrams, introduced in Chapter 5 .

A pulse of light is reflected back and forth between mirrors A and B separated by 2 meters of distance in the z-direction in the
Earth frame, as shown in the figure (left). A swindler tells us that this device constitutes a clock that "ticks" every time the pulse
arrives at either mirror.

The swindler claims that events 1 through 6 are sequential "ticks" of this clock (center). However, we notice that the ticking of the
clock is uneven in a rocket frame moving with speed v;¢ in the Earth frame (right). For example, there is less time between events
0 and 1 than between events 1 and 2 as measured in the rocket frame.

a. What is the physical basis for the "bad" behavior of this clock? Use the Lorentz transformation

— 2 mefers |—

mirror A | | s mirror B
light
pulse

Horizontal light-pulse clock as observed in the Earth frame.
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Spacetime diagram showing worldlines of mirrors A and B and the "uniformly ticking" light pulse as observed in the Earth frame.

— SPACE
ROCKET FRAME

Time lapses between sequential ticks of the light-pulse clock are not uniform as observed in the rocket frame. equations to account
for the uneven ticking of this clock in the rocket frame.

b Use some of the same events 0 through 4 to define a "good" clock that ticks evenly in both the laboratory frame and the rocket
frame. From the spacetime diagrams, show qualitatively that your good clock "runs slow" as observed from the rocket frame - as it
must, since the clock is in motion with respect to the rocket frame.

¢ Explain why the clock of Figure 1-3 in the text is a "good" clock.

11.9.3 the Galilean transformation

a Use everyday, nonrelativistic Newtonian arguments to derive transformation equations between reference frames moving at low
relative velocities. Show that the result is

T =T —Veony tsee (Newtonian: veon, << c)
thee =tsee  (Newtonian: veny << c)

where tg. is time measured in seconds and v¢oyy is speed in conventional units (meters/second for example). List the assumptions
you make in your derivation.

b Convert equations (1) and (2) to measure time ¢ in meters and unitless measure of relative velocity, vye] = Ucon/c. Show the
results are:
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' =x — vy t (Newtonian: v << 1)
t' =t ( Newtonian: v << 1)
Do the new units make these equations correct at high relative velocity between frames?

¢ Use the first two terms in the binomial expansion to find a low-velocity approximation for + in the Lorentz transformation.

1

rel

— 1—2
rel

2
-1/2 Urel
~1+—

) +-

Show that this expression differs from unity by less than one percent provided v is less than 1/7. A sports car can accelerate
uniformly from rest to 60 miles / hour (about 27 meters/second) in 7 seconds. Roughly how many days would it take for the sports
car to reach v =1/7 at the same constant acceleration?

d Sety =1 in the Lorentz transformation equations. Show that the resulting "low-velocity Lorentz transformation" is

=z —vqt (Lorentz: v << 1)

11.9.1
t'=—vaz+t (Lorentz:v<<1) ( )

What is the difference between the time transformations for the "Newtonian low-velocity limit" of equation (4) and the "Lorentz
low-velocity limit" of equation (6)? How can they both be correct? The term - v,]  does not depend on any time lapse, but only on
the separation « of the event from the laboratory origin. This term is due to the difference of synchronization of clocks in the two
frames.

e In each of the following cases a laboratory clock (measuring ¢ ) at a distance « from the origin as measured in the laboratory
frame is compared with a passing rocket clock (measuring #' ). Say whether or not the time difference t —# =v,q = can be
detected using wristwatches (accuracy of 10~* second = 3 x 107 meters of light-travel time) and using modern electronic clocks
(accuracy of 10~? second = 0.3 meter of time).

(1) Sports car traveling at 100 kilometers/hour (roughly 30 meters/second) located 1000 kilometers down the road from the origin
as measured in the Earth frame.

(2) Moon probe traveling at 30,000 kilometers hour passing Moon, 3.8 x 10° kilometers from the origin on Earth as measured in
the Earth frame.
(3) Distance from origin on Earth at which space probe traveling at 30,000 kilometers/hour leads to detectable time difference

between rocket wristwatch and adjacent Earth-linked latticework clock. Compare with Earth - Sun distance of 1.5 x 10! meters

f Summarize in a sentence or two the conditions under which the regular Galilean transformation equations (3) and (4) will lead to
correct predictions.

11.9.4 limits of Newtonian

Use the particle speed vy = 1/7 (Exercise 11.7.3 as an approximate maximum limit for the validity of Newtonian mechanics.
Determine whether or not Newtonian mechanics is adequate to analyze motion in each of the following cases, following the
example.

Example: Satellite circling Earth at 30,000 kilometers/hour = 18,000 miles/hour. Answer: Light moves at a speed
Veonv = (3 x 10° kilometers / second) x (3600 seconds / hour )=1.08 x 10° kilometers/hour. Therefore the speed of the
satellite in meters/meter is v = Veony /¢ = 2.8 X 107° . This is much less than vy, = 1 /7, so the Newtonian description of satellite
motion is adequate.

a Earth circling Sun at an orbital speed of 30 kilometers/second.

b Electron circling a proton in the orbit of smallest radius in a hydrogen atom. Discussion: The classical speed of the electron in the
inner orbit of an atom of atomic number Z, where Z is the number of protons in the nucleus, is given, for low velocities, by the
expression v = Z/137. For hydrogen, Z =1.

c Electron in the inner orbit of the gold atom, for which Z =79.

d Electron after acceleration from rest through a voltage of 5000 volts in a black-and-white television picture tube. Discussion: We
say that this electron has a kinetic energy of 5000 electron-volts. One electron-volt is equal to 1.6 x 10710 joule. Try using the
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Newtonian expression for kinetic energy.
o Electron after acceleration from rest through a voltage of 25,000 volts in a color television picture tube.

f A proton or neutron moving with a kinetic energy of 10MeV (million electron-volts) in a nucleus.

11.9.5 Doppler shift

A sparkplug at rest in the rocket emits light with a frequency f' pulses or waves per second. What is the frequency f of this light as
observed in the laboratory? Let this train of waves (or pulses) of light travel in the positive z-direction with speed c, so that in the
course of one meter of light-travel time, f/c of these pulses pass the origin of the laboratory frame. It is understood that the zeroth
or "fiducial" crest or pulse passes the origin at the zero of time-and that the origin of the rocket frame passes the origin of the
laboratory frame at this same time.

a Show that the x-coordinate of the nth pulse or wave crest is related to the time of observation ¢ (in meters) by the equation

n=(f/c)(t—z) (11.9.2)
b The same argument, applied in the rocket frame, leads to the relation
n=(f"/c) (' —2) (11.9.3)

Express this rocket formula in laboratory coordinates x and ¢ using the Lorentz transformation. Equate the resulting expression for
f' to the laboratory formula for f in terms of = and ¢ to derive the simple formula for f in terms of f’ and v, , the relative speed
of laboratory and rocket frames.

1/2
1+ Urel !
=|— 11.9.4

f ( 1- Urel > f ( )
[wave moves in positive x-direction]

¢ Now observe a wave moving along the negative z-direction from the same source at rest in the rocket frame. Show that the
frequency of the wave observed in the laboratory frame is

fe 1— g 1/2 , .[wave I.nove?s in (11.9.5)
14vq negative x-direction]
d Astronomers define the redshift z of light from a receding astronomical object by the formula
2= femit_fobs (1196)

fobs

Here fem;; is the frequency of the light measured in the frame in which the emitter is at rest and fops the frequency observed in
another frame in which the emitter moves directly away from the observer.

The most distant quasar reported as of 1991 has a redshift z =4.897. With what fraction of the speed of light is this quasar
receding from us?

Reference: D. P. Schneider, M. Schmidt, and J. E. Gunn, Astronomical Journal, Volume 102, pages 837 — 840 (1991).

11.9.6 transformation of angles

a A meter stick lies at rest in the rocket frame and makes an angle ¢’ with the z’-axis. Laboratory observers measure the z-and y-
projections of the stick as it streaks past. What values do they measure for these projections, compared with the z’ - and 3’-
projections measured by rocket observers? Therefore what angle ¢ does the same meter stick make with the z-axis of the
laboratory frame? What is the length of the "meter stick" as observed in the laboratory frame?

b Make the courageous assumption that the directions of electric-field lines around a point charge transform in the same way as the
directions of meter sticks that lie along these lines. (Electric field lines around a point charge are assumed to be infinite in length,
so the length transformation of part a does not apply.) Draw qualitatively the electric-field lines due to an isolated positive point
charge at rest in the rocket frame as observed in (1) the rocket frame and (2) the laboratory frame. What conclusions follow
concerning the time variation of electric forces on nearby charges at rest in the laboratory frame?
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11.9.7 transformation of y-velocity

A particle moves with uniform speed v} = Ay’/At’ along the y’-axis of the rocket frame. Transform Ay’ and At' to laboratory
displacements Ax, Ay, and At using the Lorentz transformation equations. Show that the z-component and the y-component of
the velocity of this particle in the laboratory frame are given by the expressions

Vg = Urel

vy =y (1 - U?el) i

11.9.8 transformation of velocity direction

A particle moves with velocity v’ in the 'y’ plane of the rocket frame in a direction that makes an angle ¢’ with the z’-axis. Find
the angle ¢ that the velocity vector of this particle makes with the z-axis of the laboratory frame. (Hint: Transform space and time
displacements rather than velocities.) Why does this angle differ from that found in Exercise L-6 on transformation of angles?
Contrast the two results when the relative velocity between the rocket and laboratory frames is very great.

11.9.9 the headlight effect

A flash of light is emitted at an angle ¢’ with respect to the z'-axis of the rocket frame.a Show that the angle ¢ the direction of
motion of this flash makes with respect to the z-axis of the laboratory frame is given by the equation

cos @' + Vel

cos p = ————————
¢ 1+ vy cos @'
b Show that your answer to Exercise L-8 gives the same result when the velocity v’ is given the value unity.

¢ A particle at rest in the rocket frame emits light uniformly in all directions. Consider the 50 percent of this light that goes into the
forward hemisphere in the rocket frame. Show that in the laboratory frame this light is concentrated in a narrow forward cone of
half-angle ¢y whose axis lies along the direction of motion of the particle. The half-angle ¢, is the solution to the following
equation:

COS ¢0 = Urel

This result is called the headlight effect.

11.9.10 the tilted meter stick

I
vy v,
1 i
— 7 x
LABORATORY FRAME ROCKET FRAME

EXERCISE L-10. Left: Meter stick moving transverse to its length as observed in the laboratory frame. Right: Meter stick as
observed in rocket frame.

Note: This exercise uses the results of Exercise L-7.

A meter stick lying parallel to the z-axis moves in the y-direction in the laboratory frame with speed v, as shown in the figure
(left).

a In the rocket frame the stick is tilted upward in the positive z’-direction as shown in the figure (right). Explain why this is, first
without using equations. b Let the center of the meter stick pass the point z =y =z’ =3’ =0 at time ¢t =¢ = 0. Calculate the
angle ¢' at which the meter stick is inclined to the z’-axis as observed in the rocket frame. Discussion: Where and when does the
right end of the meter stick cross the z-axis as observed in the laboratory frame? Where and when does this event of right-end
crossing occur as measured in the rocket frame? What is the direction and magnitude of the velocity of the meter stick in the rocket
frame (Exercise L-7)? Therefore where is the right end of the meter stick at # = 0, when the center is at the origin? Therefore ..
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11.9.11 the rising manhole

Note: This exercise uses the results of Exercise L-10.

- TJ‘:-;'frx.":-“; — V

Will the "meter stick" pass through the "one-meter-diameter" bole without collision?

A meter stick lies along the z-axis of the laboratory frame and approaches the origin with velocity v, . A very thin plate parallel to
the zz laboratory plane moves upward in the y-direction with speed v, as shown in the figure. The plate has a circular hole with a
diameter of one meter centered on the y-axis. The center of the meter stick arrives at the laboratory origin at the same time in the
laboratory frame as the rising plate arrives at the plane y = 0. Since the meter stick is Lorentz-contracted in the laboratory frame it
will easily pass through the hole in the rising plate. Therefore there will be no collision between meter stick and plate as each
continues its motion. However, someone who objects to this conclusion can make the following argument: "In the rocket frame in
which the meter stick is at rest the meter stick is not contracted, while in this frame the hole in the plate is Lorentz-contracted.
Hence the full-length meter stick cannot possibly pass through the contracted hole in the plate. Therefore there must be a collision
between the meter stick and the plate." Resolve this paradox using your answer to Exercise L —10. Answer unequivocally the
question, Will there be a collision between the meter stick and the plate?

Reference: R. Shaw, American Journal of Pbysics, Volume 30, page 72 (1962).

11.9.12 paradox of the skateboard and the grid

A girl on a skateboard moves very fast, so fast that the relativistic length contraction makes the skateboard very short. On the
sidewalk she has to pass over a grid. A man standing at the grid fully expects the fast short skateboard to fall through the holes in
the grid. Yet to the fast girl her skateboard has its usual length and it is the grid that has the relativistic contraction. To her the holes
in the grid are much narrower than to the stationary man, and she certainly does not expect her skateboard to fall through them.
Which person is correct? The answer hinges on the relativity of rigidity.

Idealize the problem as a one-meter rod sliding lengthwise over a flat table. In its path is a hole one meter wide. If the Lorentz
contraction factor is ten, then in the table (laboratory) frame the rod is 10 centimeters long and will easily drop into the onemeter-
wide hole. Assume that in the laboratory frame the meter stick moves fast enough so that it remains essentially horizontal as it
descends into the hole (no "tipping" in the laboratory frame). Write an equation in the laboratory frame for the motion of the
bottom edge of the meter stick assuming that ¢ = ¢’ = 0 at the instant that the back end of the meter stick leaves the edge of the
hole. For small vertical velocities the rod will fall with the usual acceleration g. Note that in the laboratory frame we have assumed
that every point along the length of the meter stick begins to fall simultaneously.

In the meter stick (rocket) frame the rod is one meter long whereas the hole is Lorentz-contracted to a 10 -centimeter width so that
the rod cannot possibly fit into the hole. Moreover, in the rocket frame different parts along the length of the meter stick begin to
drop at different times, due to the relativity of simultaneity. Transform the laboratory equations into the rocket frame. Show that the
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front and back of the rod will begin to descend at different times in this frame. The rod will "droop" over the edge of the hole in the
rocket frame - that is, it will not be rigid. Will the rod ultimately descend into the hole in both frames? Is the rod really rigid or
nonrigid during the experiment? Is it possible to derive any physical characteristics of the rod (for example its flexibility or
compressibility) from the description of its motion provided by relativity?

11.9.13 paradox of the identically accelerated twins

Note: This exercise uses spacetime diagrams, introduced in Chapter 5.

Two fraternal twins, Dick and Jane, own identical spaceships each containing the same amount of fuel. Jane’s ship is initially
positioned a distance to the right of Dick’s in the Earth frame. On their twentieth birchday they blast off at the same instant in the
Earth frame and undergo identical accelerations to the right as measured by Mom and Dad, who remain at home on Earth. Mom
and Dad further observe that the twins run out of fuel at the same time and move thereafter at the same speed v. Mom and Dad also
measure the distance between Dick and Jane to be the same at the end of the trip as at the beginning.

Dick and Jane compare the ships’ logs of their accelerations and find the entries to be identical. However when both have ceased
accelerating, Dick and Jane, in their new rest frame, discover that Jane is older than Dick! How can this be, since they have an
identical history of accelerations?

a Analyze a simpler trip, in which each spaceship increases speed not continuously but by impulses, as shown in the first spacetime
diagram and the event table. How far apart are Dick and Jane at the beginning of their trip, as observed in the Earth frame? How far
apart are they at the end of their accelerations? What is the final speed v (not the average speed) of the two spaceships? How much
does each astronaut age along the worldline shown in the diagram? (The answer is not the Earth time of 12 years.)

b The second spacetime diagram shows the two worldlines as recorded in a rocket frame moving with the final velocity of the two
astronauts. Copy the figure. On your copy extend the worldlines of Dick and Jane after each has ceased accelerating. Label your
figure to show that Jane ceased accelerating before Dick as observed in this frame. Will Dick age the same between events 0 and 3
in this frame as he aged in the Earth frame? Will Jane age the same between events 4 and 7 in this frame as she aged in the Earth
frame?

c Now use the Lorentz transformation to find the space and time coordinates of one or two critical events in this final rest frame of
the twins in order to answer the following questions

(1) How many years earlier than Dick did Jane cease accelerating?

(2) What is Dick’s age at event 3? (not the rocket time ¢’ of this event!) (3) What is Jane’s age at event 7 ?

(4) What is Jane’s age at the same time (in this frame) as event 3?

(5) What are the ages of Dick and Jane 20 years after event 3 , assuming that neither moves again with respect to this frame?
(6) How far apart in space are Dick and Jane when both have ceased accelerating?

(7) Compare this separation with their initial (and final!) separation measured by Mom and Dad in the Earth frame

d Extend your results to the general case in which Mom and Dad on Earth observe a period of identical continuous accelerations of
the two twins.

(1) At the two start-acceleration events (the two events at which the twins start their rockets), the twins are the same age as
observed in the Earth frame. Are they the same age at these events as observed in every rocket frame?

(2) At the two cease-acceleration events (the two events at which the rockets run out of fuel), are the twins the same age as
observed in the Earth frame? Are they the same age at these events as observed in every rocket frame?

(3) The two cease-acceleration events are simultaneous in the Earth frame. Are they simultaneous as observed in every rocket
frame? (No!) Whose cease-acceleration event occurs first as observed in the final frame in which both twins come to rest? (Recall
the Train Paradox, Section 3.4.)

(4) "When Dick ceases accelerating, Jane is older than Dick." Is this statement true according to the astronauts in their final rest
frame? Is the statement true according to Mom and Dad in the Earth frame?

(5) Criticize the lack of clarity (swindle?) of the word when in the statement of the problem: "However when both have ceased
accelerating, Dick and Jane, in their new rest frame, discover that Jane is older than Dick!"
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e Suppose that Dick and Jane both accelerate to the left, so that Dick is in front of Jane, but their history is otherwise the same.
Describe the outcome of this trip and compare it with the outcome of the original trip.

f Suppose that Dick and Jane both accelerate in a direction perpendicular to the direction of their separation. Describe the outcome
of this trip and compare it with the outcome of the original trip.

Earth Frame Observations
Event  x-position  Time
number  (light years)  (years)
0 0 0
1 1 4
2 3 8
-3 3 6 12
»> 4 12 0
5 13 4
] 15 8
7 8 12
EARTH FRAME

Worldlines of Dick and Jane as observed in the Earth frame of Mom and Dad.

ROCKET FRAME

Worldlines of Dick and Jane as observed in the "final" rocket frame in which both Dick and Jane come to rest after burnout.

Discussion: Einstein postulated that physics in a uniform gravitational field is, locally and for small particle speeds, the same as
physics in an accelerated frame of reference. In this exercise we have found that two accelerated clocks separated along the
direction of acceleration do not remain in synchronism as observed simultaneously in their common frame. Rather, the forward
clock reads a later time ("runs faster") than the rearward clock as so observed. Conclusion from Einstein’s postulate: Two clocks
one above the other in a uniform gravitational field do not remain in synchronism; rather the higher clock reads a later time ("runs
faster") than the lower clock. General relativity also predicts this result, and experiment verifies it. (Read about the patrol plane
experiment in Section 4.10.)

Reference: S. P. Boughn, American Journal of Pbysics, Volume 57 , pages 791 — 793 (September 1989), Reference to general
relativity result: Wolfgang Rindler, Essential Relativity (Springer, New York, 1977 ), pages 17 and 117 .

11.9.14 how do rods Lorentz- contract?

Note: Calculus is used in the solution to this exercise; so is the formula for Lorentz contraction from Section 5.8.

Laboratory observers measure the length of a moving rod lying along its direction of motion in the laboratory frame. Then the rod
speeds up a little. Again laboratory observers measure its length, which they find to be a little shorter than before. They call this
shortening of length Lorentz contraction. How did this shortening of length come about? As happens so often in relativity, the
answer lies in the relativity of simultaneity.
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First, how much shortening takes place when the rod changes from speed v to speed v+dv ? Let L, be the proper length of the
rod when measured at rest. At speed v its laboratory-measured length L will be shorter than this by the Lorentz contraction factor
(Section 5.8):

L=(1-v)"L,

a Using calculus, show that when the rod speeds up from v to a slightly greater speed v+ dv, the change in length dL is given by
the expression

Lyvdv

dL = — —=2%%
(1 —’02)1/2

The negative sign means that the change is a shortening of the rod. We want to explain this change in length.

How is the rod to be accelerated from v to v+ dv ? Fire a rocket attached to the rear of the rod? No. Why not? Because the rocket
pushes only against the rear of the rod; this push is transmitted along the rod to the front at the speed of a compression wave - very
slow! We want the front and back to change speed "at the same time" (exact meaning of this phrase to be determined later). How
can this be done? Only by prearrangement! Saw the rod into a thousand equal pieces and tap each piece in the forward direction
with a mallet "at exactly 12 noon" as read off a set of synchronized clocks. To simplify things for now, set aside all but the front
and back pieces of the rod. Now tap the front and back pieces "at the same time." The change in length of the rod dL is then the
change in distance between these two pieces as a result of the tapping. So much for how to accelerate the "rod."

Now the central question: What does it mean to tap the front and back pieces of the rod "at the same time"? To answer this
question, ask another: What is our final goal? Answer: To account for the Lorentz contraction of a fast-moving rod of proper length
L. More: We want a careful inspector riding on the fast-moving rod to certify that it has the same proper length L as it did when
it was at rest in the laboratory frame. To achieve this goal, the inspector insists that the pair of accelerating taps be applied to the
front and back rod pieces at the same time in the current rest frame of the rod. Otherwise the distance between these pieces would
not remain the same in the frame of the rod; the rod would change proper length. [Notice that in Exercise L-13 the taps occur at the
same time in the laboratory (Earth) frame. This leads to results different from those of the present exercise.]

b You are the inspector riding along with the front and back pieces of the rod. Consider the two events of tapping the front and back
pieces. How far apart Az’ are these events along the z-axis in your (rocket) frame? How far apart At’ in time are these events in
your frame? Predict how far apart in time At these events are as measured in the laboratory frame. Use the Lorentz transformation
equation (L-10):

At = vyAz' +yAY

The relative velocity vy in equation (L — 10) is just v, the current speed of the rod. In the laboratory frame is the tap on the rear
piece earlier or later than the tap on the front piece?

Your answer to part b predicts how much earlier the laboratory observer measures the tap to occur on the back piece than on the
front piece of the rod. Let the tap increase the speed of the back end by dv as measured in the laboratory frame. Then during
laboratory time At the back end is moving at a speed dv faster than the front end. This relative motion will shorten the distance
between the back and front ends. After time interval At the front end receives the identical tap, also speeds up by dv, and once
again moves at the same speed as the back end.

¢ Show that the shortening d L predicted by this analysis is

dL = —dvAt = —yAz'vdv = —vyL,dv
Lovdv

(1—o2)'/?

which is identical to the result of part a, which we wanted to explain. QED.

d Now start with the front and back pieces of the rod at rest in the laboratory frame and a distance L, apart. Tap them repeatedly
and identically. As they speed up, be sure these taps take place simultaneously in the rocket frame in which the two ends are
currently at rest. (This requires you, the ride-along inspector, to resynchronize your rod-rest-frame clocks after each set of front-
and-back taps.) Make a logically rigorous argument that after many taps, when the rod is moving at high speed relative to the
laboratory, the length of the rod measured in the laboratory can be reckoned using the first equation given in this exercise.

11.9.9 https://phys.libretexts.org/@go/page/89963



https://libretexts.org/
https://phys.libretexts.org/@go/page/89963?pdf

LibreTextsw

¢ Now, by stages, put the rod back together. The full thousand pieces of the rod, lined up but not touching, are all tapped
identically and at the same time in the current rest frame of the rod. One set of taps increases the rod’s speed from v to v+ dv
in the laboratory frame. Describe the time sequence of these thousand taps as observed in the laboratory frame. If you have
studied Chapter 6 or the equivalent, answer the following questions: What kind of intervaltimelike, lightlike, or spacelike-
separates any pair of the thousand taps in this set? Can this pair of taps be connected by a light flash? by a compression wave
moving along the rod when the pieces are glued back together? Regarding the "logic of acceleration," is there any reason why
we should not glue these pieces back together? Done!

f During the acceleration process is the reglued rod rigid - unchanging in dimensions - as observed in the rod frame? As observed
in the laboratory frame? Is the rigidity property of an object an invariant, the same for all observers in uniform relative motion?
Show how an ideal rigid rod could be used to transmit signals instantaneously from one place to another. What do you conclude
about the idea of a "rigid body" when applied to high-speed phenomena?

Reference: Edwin F. Taylor and A. P. French, American Journal of Physics, Volume 51 , pages 889 — 893, especially the Appendix
(1983).

11.9.15 the place where both agree

At any instant there is just one plane in which both the laboratory and the rocket clocks agree.

a By a symmetry argument, show that this plane lies perpendicular to the direction of relative motion. Using the Lorentz
transformation equations, show that the velocity of this plane in the laboratory frame is equal to

[1- (@ =o2) "]

b Does the expression for v;—y seem strange? From our everyday experience we might expect that by symmetry the "plane of equal
time" would move in the laboratory at half the speed of the rocket. Verify that indeed this is correct for the low relative velocities of
our everyday experience. Use the first two terms of the binomial expansion

Viy =
Urel

(142)" =1+nzfor|z] <<1
to show that for low relative velocity, vi—y — vrel /2.

¢ What is v,y for the extreme relativistic case in which v,q — 1 ? Show that in this case v,_y is completely different from
Urel / 2.

d Suppose we want to go from the laboratory frame to the rocket frame in two equal velocity jumps. Try a first jump to the plane of
equal laboratory and rocket times. Now symmetry does work: Viewed from this plane the laboratory and rocket frames move apart
with equal and opposite velocities, whose magnitude is given by the equation in part a. A second and equal velocity jump should
then carry us to the rocket frame at speed v, with respect to the laboratory. Verify this directly by using the Law of Addition of
Velocities (Section 11.7) to show that

Uiy +Vpy

Urel =
1+ vy vy

11.9.16 Fizeau experiment

Light moves more slowly through a transparent material medium than through a vacuum. Let Vpedium represent the reduced speed
of light measured in the frame of the medium. Idealize to a case in which this reduced velocity is independent of the wavelength of
the light. Place the medium at rest in a rocket moving at velocity v, to the right relative to the laboratory frame, and let light
travel through the medium, also to the right. Use the Law of Addition of Velocities (Section L. 7) to find an expression for the
velocity v of the light in the laboratory frame. Use the first two terms of the binomial expansion

(142)" =1+nzfor|z] <<1

to show that for small relative velocity v,; between the rocket and laboratory frames, the velocity v of the light with respect to the
laboratory frame is given approximately by the expression

~ 2
U R Unmedium 1 Urel (1 — Umedium )
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This expression has been tested by Fizeau using water flowing in opposite directions in the two arms of an interferometer similar
(but not identical) to the interferometer used later by Michelson and Morley (Exercise 3-12).

Reference: H. Fizeau, Comptes rendus, Volume 33, pages 349-355 (1851). A fascinating discussion (in French) of some central
themes in relativity theory - delivered more than fifty years before Einstein’s first relativity paper.

11.9: Problems is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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