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3.E: Same Laws for All (Exercises)

PRACTICE

3-1 relativity and swimming

The idea here is to illustrate how remarkable is the invariance of the speed of light (light speed same in all free-float frames) by
contrasting it with the case of a swimmer making her way through water.

Light goes through space at 3 x 10® meters/second, and the swimmer goes through the water at 1 meter/second. "But how can
there otherwise be any difference?" one at first asks oneself.

For a light flash to go down the length of a 30 meter spaceship and back again takes

time = ( distance )/( speed )
=2 X (30 meters )/ (3 x 10® meters / second )

=2x10"7 second
as measured in the spaceship, regardless of whether the ship is stationary at the spaceport or is zooming past it at high speed.
Check how very different the story is for the swimmer plowing along at 1 meter/second with respect to the water.

a. How long does it take her to swim down the length of a 30 -meter pool and back again?

b. How long does it take her to swim from float A to float B and back again when the two floats, A and B, are still 30
meters apart, but now are being towed through a lake at 1,/3 meter/second?
Discussion: When the swimmer is swimming in the same direction in which the floats are being towed, what is her speed
relative to the floats? And how great is the distance she has to travel expressed in the "frame of reference' of the floats?
So how long does it take to travel that leg of her trip? Then consider the same three questions for the return trip.

c. Is it true that the total time from A to B and back again is independent of the reference system ("stationary" pool ends vs.
moving floats)?

d. Express in the cleanest, clearest, sharpest one-sentence formulation you can the difference between what happens for the
swimmer and what happens for a light flash.

3-2 Einstein puzzler

When Albert Einstein was a boy of 16, he mulled over the following puzzler: A runner looks at herself in a mirror that she holds at
arm's length in front of her. If she runs with nearly the speed of light, will she be able to see herself in the mirror? Analyze this
question using the Principle of Relativity.

3-3 construction of clocks

For the measurement of time, we have made no distinction among spring clocks, quartz crystal clocks, biological clocks (aging),
atomic clocks, radioactive clocks, and a clock in which the ticking element is a pulse of light bouncing back and forth between two
mirrors (see figure). Let all these clocks be adjusted by the laboratory observer to run at the same rate when at rest in the laboratory.
Now let the clocks all be accelerated gently to a high speed in a rocket, which then turns off its engines. Make a simple but
powerful argument that the free-float rocket observer will also measure these different clocks all to run at the same rate as one
another. Does it follow that the (common) clock rate of these clocks measured by the rocket observer is the same as their (common)
rate measured by the laboratory observer as they pass by in the rocket?
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Figure 3.E. 1: This two-mirror "clock" sends to the eye flash after flash, each separated from the next by 1 meter of light-travel
time. A light flash (represented by an asterisk) bounces back and forth between parallel mirrors separated from one another by 0.5
meter of distance. The silver coating of the right-band mirror does not reflect perfectly: It lets 1 percent of the light pass through to
the eye each time the light pulse bits it. Hence the eye receives a pulse of light every meter of light-travel time.
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3-4 the Principle of Relativity

Two overlapping free-float frames are in uniform relative motion. On the following list, mark with a "yes" the quantities that must
necessarily be the same as measured in the two frames. Mark with a "no" the quantities that are not necessarily the same as
measured in the two frames.

a. time it takes for light to go one meter of distance in a vacuum
b. spacetime interval between two events

c. kinetic energy of an electron

d. value of the mass of the electron

e. value of the magnetic field at a given point

f. distance between two events

g. structure of the DNA molecule

h. time rate of change of momentum of a neutron

3-5 many unpowered rockets

In the laboratory frame, event 1 occurs at x = 0 light-years, ¢ = 0 years. Event 2 occurs at £ = 6 light-years, ¢t = 10 years. In all
rocket frames, event 1 also occurs at the position 0 light-years and the time 0 years. The y- and z-coordinates of both events are
zero in both frames.

a. In rocket frame A, event 2 occurs at time ¢ = 14 years. At what position =’ will event 2 occur in this frame?

b. In rocket frame B, event 2 occurs at position " = 5 light-years. At what time ¢ will event 2 occur in this frame?
c. How fast must rocket frame C' move if events 1 and 2 occur at the same place in this rocket frame?

d. What is the time between events 1 and 2 in rocket frame C' of part ¢ ?

3-6 down with relativity!

Mr. Van Dam is an intelligent and reasonable man with a knowledge of high school physics. He has the following objections to the
theory of relativity. Answer each of Mr. Van Dam's objections decisively without criticizing him. If you wish, you may present a
single connected account of how and why one is driven to relativity, in which these objections are all answered.

a. "Observer A says that B's clock goes slow, and observer B says that A's clock goes slow. This is a logical contradiction.
Therefore relativity should be abandoned."

b. "Observer A says that B's meter sticks are contracted along their direction of relative motion, and observer B says that A's meter
sticks are contracted. This is a logical contradiction. Therefore relativity should be abandoned."

c. "Relativity does not even have a unique way to define space and time coordinates for the instantaneous position of an object.
Laboratory and rocket observers typically record different coordinates for this position and time. Therefore anything relativity
says about the velocity of the object (and hence about its motion) is without meaning."

d. "Relativity postulates that light travels with a standard speed regardless of the free-float frame from which its progress is
measured. This postulate is certainly wrong. Anybody with common sense knows that travel at high speed in the direction of a
receding light pulse will decrease the speed with which the pulse recedes. Hence a flash of light cannot have the same speed for
observers in relative motion. With this disproof of the basic postulate, all of relativity collapses."

e. "There isn't a single experimental test of the results of special relativity."

f. "Relativity offers no way to describe an event without coordinates - and no way to speak about coordinates without referring to
one or another particular reference frame. However, physical events have an existence independent of all choice of coordinates
and all choice of reference frame. Hence relativity - with its coordinates and reference frames - cannot provide a valid
description of these events."

g. "Relativity is preoccupied with how we observe things, not what is really happening. Hence it is not a scientific theory, since
science deals with reality."

PROBLEMS

3-7 Space War

Two rockets of equal rest length are passing “head on" at relativistic speeds, as shown in the figure (left). Observer o has a gun in
the tail of her rocket pointing perpendicular to the direction of relative motion (center). She fires the gun when points @ and o’
coincide. In her frame the other rocket ship is Lorentz contracted. Therefore o expects her bullet to miss the other rocket. But in the
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frame of the other observer o’ it is the rocket ship of o that is measured to be Lorentz contracted (right). Therefore when points a
and o’ coincide, observer o’ should observe a hit.

Figure 3.E. 2: Left: Two rocket ships passing at high speed. Center: In the frame of o one expects a bullet fired when a coincides

with a' to miss the other ship. Right: In the frame of o' one expects a bullet fired when a coincides with a' to hit the other ship.
Does the bullet actually hit or miss? Pinpoint the looseness of the language used to state the problem and the error in one figure.
Show that your argument is consistent with the results of the Train Paradox (Section 3.4).

3-8 C'erenkov radiation

No particle has been observed to travel faster than the speed of light in a vacuum. However particles have been observed that travel
in a material medium faster than the speed of light in that medium. When a charged particle moves through a medium faster than
light moves in that medium, it radiates coherent light in a cone whose axis lies along the path of the particle. (Note the rough
similarity to waves created by a motorboat speeding across calm water and the more exact similarity to the "cone of sonic boom"

created by a supersonic aircraft.) This is called Cerenkov radiation (Russian Cis pronounced as "ch"). Let v be the speed of the
particle in the medium and vy;¢1,; be the speed of light in the medium.

Figure 3.E. 3: first figure. Calculation of Cerenkov angle ¢.
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Figure 3.E.4: Use of Ceerenkov radiation for indirect detection of neutrinos in the Deep Underwater Muon and Neutrino Detector
(DUMAND) 30 kilometers off Keahole Point on the island of Hawaii. Neutrinos have no electric charge and their mass, if any, has
so far escaped detection (Box 8-1). Neutrinos interact extremely weakly with matter, passing through Earth with almost no
collisions. Indeed, the DUMAND detector array selects for analysis only neutrinos that come upward through Earth. In this way
Earth itself acts as a shield to eliminate all other cosmic-ray particles.

What are possible sources for these neutrinos? Theory predicts the emission of very high-energy {greater than 102 electron-volt)
neutrinos from matter plunging toward a black hole. Black holes may be the energy sources for extra-bright galactic nuclei and for
quasars —small, distant, enigmatic objects shining with the light of hundreds of galaxies (Section 9.8). Information about
conditions deep within these astronomical structures may be carried by neutrinos as they pierce Earth and travel upward through
the DUMAND detector array.

In a rare event, a neutrino moving through the ocean slams into one of the quarks that make up a proton or a neutron in, say, an
oxygen nucleus in the water, creating a burst of particles. All of these particles are quickly absorbed by the surrounding water
except a stable negatively charged muon, 201 times the mass of the electron (thus sometimes called a "fat electron"). This muon
streaks through the water in the same direction as the neutrino that created it and at a speed greater than that of light in water, thus
emitting Cerenkov radiation. The Ceerenkov radiation is detected by photomultiplier tubes in an array anchored to the ocean floor.

Photomultipliers are strung along 9 vertical cables, 8 cables spaced around a circle 100 meters in diameter on the ocean floor, the
ninth cable rising from the center of the circle. Each cable is 335 meters long and holds 24 glass spheres positioned 10 meters apart
on the top 230 meters of its length. There are no detectors on the bottom no meters, in order to avoid any cloud of sediments from
the bottom. Above the bottom, the water is so clear and modem photo detectors so sensitive that Cerenkov radiation can he
detected from a muon that passes within 40 meters of a detector.

Photomultipliers in the glass spheres detect Cerenkov radiation from the passing muons, transmitting this signal through
underwater optical fibers to computers on the nearby island of Hawaii. The computers select for examination only those events in
which (1) several optical sensors detect bursts that are (2) within 40 meters or so of a straight line, (3) spaced in time to show that
the particle is moving at essentially the speed of light in a vacuum, and (4) from a particle moving upward through the water. A
system of sonar beacons and hydrophones tracks the locations of the photomultipliers as the strings sway with the slow ocean
currents. As a result, the direction of motion of the original neutrino can be recorded to an accuracy of one degree.

The DUMAND facility is designed to create a new sky map of neutrino sources to supplement our knowledge of the heavens, so
far obtained primarily from the electromagnetic spectrum (radio, infrared, optical, ultraviolet. X-ray, gamma ray).

a. From this information use the first figure to show that the half-angle ¢, of the light cone is given by the expression

COS ¢ = Viight /U
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b. Consider the plastic with the trade name Lucite, for which vjgne = 2/3. What is the minimum velocity that a charged particle
can have if it is to produce Cerenkov radiation in Lucite? What is the maximum angle ¢ at which Clerenkov radiation can be
produced in Lucite? Measurement of the angle provides a good way to measure the velocity of the particle.

c. In water the speed of light is approximately vjign; = 0.75. Answer the questions of part b for the case of water. See the second

figure for an application of Cerenkov radiation in water.

3-9 aberration of starlight

A star lies in a direction generally perpendicular to Earth's direction of motion around Sun. Because of Earth's motion, the star
appears to an Earth observer to lie in a slightly different direction than it would appear to an observer at rest relative to Sun. This
effect is called aberration. Using the diagram, find this apparent difference of direction.

distance moved by sun

in one meter of light-
travel time

Ld
distance moved distance moved
by photon in by photon in
one meter of one meter of
light-travel light-travel
fime fime
Y

SUN FRAME EARTH FRAME

(In this frame, Earth moves
to right with speed v\ )
Figure 3.E. 5: Aberration of starlight. Not to scale.

a. Find a trigonometric expression for the aberration angle ¢ shown in the figure.

b. Evaluate your expression using the speed of Earth around Sun, vgarthconv = 30 kilometers/second.Find the answer in radians
and in seconds of arc. (One degree equals 60 minutes of arc; one minute equals 60 seconds of arc.) This change in apparent
position can be detected with sensitive equipment.

c. The nonrelativistic answer to this problem — the answer using nonrelativistic physics—is tan ¥ = vg,,t;, meters/meter). Do
you think that the experimental difference between relativistic and nonrelativistic answers for stellar aberration observed from
Earth can be the basis of a crucial experiment to decide between the correctness of the two theories?

Discussion: Of course we cannot climb off Earth and view the star from the Sun frame. But Earth reverses direction every six
months (with respect to what?), so light from a "transverse star" viewed in, say, July will appear to be shifted through twice the
aberration angle calculated in part b compared with the light from the same star in January. New question: Since the
background of stars behind the one under observation also shifts due to aberration, how can the effect be measured at all?

d. A rocket in orbit around Earth suddenly changes its velocity from a very small fraction of the speed of light to v = 0.5 with
respect to Sun, moving in the same direction as Earth is moving around Sun. In what direction will the rocket astronaut now see
the star of parts a and b?

3-10 the expanding universe
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Figure 3.E. 6: Calculation of the time Atyeception between arrival at observer of consecutive flashes from receding emitter. Light
moves one meter of distance in one meter of time, so lines showing motion of light are tilted at £45° from the vertical.

a. A giant bomb explodes in otherwise empty space. What is the nature of the motion of one fragment relative to another? And
how can this relative motion be detected?

Discussion: Imagine each fragment equipped with a beacon that gives off flashes of light at regular, known intervals A7 of time
as measured in its own frame of reference (proper time!). Knowing this interval between flashes, what method of detection can
an observer on one fragment employ to determine the velocity v - relative to her - of any other fragment? Assume that she uses,
in making this determination, (1) the known proper time A7 between flashes and (2) the time Ateception between the arrival of
consecutive flashes at her position. (This is not equal to the time At in her frame between the emission of the two flashes from
the receding emitter; see the figure.) Derive a formula for v in terms of proper time lapse A7 and At,eception. How will the
measured recession velocity depend on the distance from one's own fragment to the fragment at which one is looking? Hint: In
any given time in any given frame, fragments evidently travel distances in that frame from the point of explosion that are in
direct proportion to their velocities in that frame.

b. How can observation of the light from stars be used to verify that the universe is expanding? Discussion: Atoms in hot stars
give off light of different frequencies characteristic of these atoms ("spectral lines"). The observed period of the light in each
spectral line from starlight can be measured on Earth. From the pattern of spectral lines the kind of atom emitting the light can
be identified. The same kind of atom can then be excited in the laboratory to emit light while at rest and the proper period of the
light in any spectral line can be measured. Use the results of part a to describe how the observed period of light in one spectral
line from starlight can be compared to the proper period of light in the same spectral line from atoms at rest in the laboratory to
give the velocity of recession of the star that emits the light. This observed change in period due to the velocity of the source is
called the Doppler shift. (For a more detailed treatment of Doppler shift, see the exercises for Chapters 5 and 8.) If the universe
began in a gigantic explosion, how must the observed velocities of recession of different stars at different distances compare
with one another? Slowing down during expansion - by gravitational attraction or otherwise - is to be neglected here but is
considered in more complete treatments.

c. The brightest steadily shining objects in the heavens are called quasars, which stands for "quasistellar objects." A single quasar
emits more than 100 times the light of our entire galaxy. One possible source of quasar energy is the gravitational energy
released as material falls into a black hole (Section 9.8). Because they are so bright, quasars can be observed at great distances.
As of 1991, the greatest observed quasar red shift At,eception /A7 has the value 5.9. According to the theory of this exercise,
what is the velocity of recession of this quasar, as a fraction of the speed of light?

3-11 law of addition of velocities

In a spacebus a bullet shoots forward with speed 3 /4 that of light as measured by travelers in the bus. The spacebus moves forward
with speed 3/4 light speed as measured by Earth observers. How fast does the bullet move as measured by Earth observers:
3/4+3/4=6/4=1.5 times the speed of light? No! Why not? Because (1) special relativity predicts that nothing can travel
faster than light, and (2) hundreds of millions of dollars have been spent accelerating particles ("bullets") to the fastest possible
speed without anyone detecting a single particle that moves faster than light in a vacuum. Then where is the flaw in our addition of
velocities? And what is the correct law of addition of velocities? These questions are answered in this exercise.
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a. First use Earth observers to record the motions of the spacebus (length L measured in the Earth frame, speed v,¢ ) and the
streaking bullet (speed vpupet ). The bullet starts at the back of the bus. To give it some competition, let a light flash (speed = 1)
race the bullet from the back of the bus toward the front. The light flash wins, of course, reaching the front of the bus in time
ttorward - ANd torwara 1S also equal to the distance that the light travels in this time. Show that this distance (measured in the
Earth frame) equals the length of the bus plus the distance the bus travels in the same time:

L
ttorward = L + Urel ttorward OT torward = ————— (3E ].)

1—v
b. In order to rub in its advantage over the bullet, the light flash reflects from the front of the bus and moves backward until, after
an additional time tpackward , it rejoins the forward-plodding bullet. This meeting takes place next to the seat occupied by Fred,
who sits a distance fL behind the front of the bus, where f is a fraction of the bus length L. Show that for this leg of the trip the
Earth-measured distance tpackwara traveled by the light flash can also be expressed as

thackward = fL — Vrel thackward or

fL
t = — 3.E.2
backward 1 T g ( )

c. The light flash has moved forward and then backward with respect to Earth. What is the net forward distance covered by the
light flash at the instant it rejoins the bullet? Equate this with the forward distance moved by the bullet (at speed vpyiet ) to
obtain the equation

Ubullet (tforward + tbackward ) = tforward - tbackward

or

(1 +vbullet) tbackward - (1 - vbullet) tforward (3E3)

d. What are we after? We want a relation between the bullet speed vpyet as measured in the Earth frame and the bullet speed, call
it v}y (With a prime), as measured in the spacebus frame. The times given in parts a, b, and c are of no use to this end.
Worse, we already know that times between events are typically different as measured in the spacebus frame than times
between the same events measured in the Earth frame. So get rid of these times! Moreover, the Lorentz-contracted length L of
the spacebus itself as measured in the Earth frame will be different from its rest length measured in the bus frame (Section 3.5).
So get rid of L as well. Equations (3.5.1), (3.E.2), and (3.E.3) can be treated as three equations in the three unknowns
tforward s thackward » and L. Substitute equations for the times (3.E.1)and (3.E.2) into equation (3.E.3). Lucky us: The symbol L
cancels out of the result. Show that this result can be written

fe (1 —vbuttet ) (1 +vrar) (3.E.4)
(1 +vbuttet ) (1 —vrar)

e. Now repeat the development of parts a through d for the spacebus frame, with respect to which the spacebus has its rest length

L' and the bullet has speed v} ;.. (both with primes). Show that the result is:

(1 — Vet )

f p—
(1 + Vhuttes )

(3.E.5)

Discussion: Instead of working hard, work smart! Why not use the old equations (3.E.1)through (3.E.4) for the spacebus
frame? Because there is no relative velocity v, in the spacebus frame; the spacebus is at rest in its own frame! No problem:
Set v;e; = 0 in equation (3.5.4), replace Vpuiet by ¥}, and obtain equation (3.1.5) directly from equation (3.1.4). If this is
too big a step, carry out the derivation from the beginning in the spacebus frame.

f. Do the two fractions f in equations (3.5.4)and (3.E.5)have the same value? In equation (3.F.4)the number f locates Fred's
seat in the bus as a fraction of the total length of the bus in the Earth frame. In equation (3.5.5)the number f locates Fred's seat
in the bus as a fraction of the total length of the bus in the bus frame. But this fraction must be the same: Fred cannot be
halfway back in the Earth frame and, say, three quarters of the way back in the spacebus frame. Equate the two expressions for
f given in equations (3.E.4)and (3.E.5) and solve for vpye; to obtain the Law of Addition of Velocities:
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!
Vbl T Urel

(3.E.6)
1+ Vhpep Vrel

Ubullet =

g. Explore some consequences of the Law of Addition of Velocities.

1. An express bus on Earth moves at 108 kilometers/hour (approximately 67 miles/ hour or 30 meters per second). A bullet
moves forward with speed 600 meters/second with respect to the bus. What are the values of v;¢ and v}, in
meters/meter? What is the value of their product in the denominator of equation (3.5.6 2 Does this product of speeds
increase the value of the denominator significantly over the value unity? Therefore what approximate form does equation
(3.1.6) take for everyday speeds? Is this the form you would expect from your experience?

2. Analyze the example that began this exercise: Speed of bullet with respect to spacebus v} , =3 /4; speed of spacebus

with respect to Earth v, = 3/4. What is the speed of the bullet measured by Earth observers?

U ey = - Forvpg =3 /4, with what speed does this light flash move as measured in the Earth frame? Is this what you

expect from the Principle of Relativity?

4. Suppose a light flash is launched from the front of the bus directed toward the back (v{)ullet = —1) . What is the velocity of
this light flash measured in the Earth frame? Is this what you expect from the Principle of Relativity?

Reference: N. David Mermin, American Journal of Physics, Volume 51 , pages 1130-1131 (1983).

3-12 Michelson-Morley experiment

a. An airplane moves with air speed ¢ (not the speed of light) from point A to point B on Earth. A stiff wind of speed v is
blowing from B toward A. (In this exercise only, the symbol v stands for velocity in conventional units, for example
meters/second.) Show that the time for a round trip from A to B and back to A under these circumstances is greater by a factor
1/ (1 —v?/ cZ) than the corresponding round trip time in still air. Paradox: The wind helps on one leg of the flight as well as
hinders on the other. Why, therefore, is the round-trip time not the same in the presence of wind as in still air? Give a simple
physical reason for this difference. What happens when the wind speed is nearly equal to the speed of the airplane?

b. The same airplane now makes a round trip between A and C'. The distance between A and C is the same as the distance from
A to B, but the line from A to C is perpendicular to the line from A to B, so that in moving between A and C' the plane flies
across the wind. Show that the round-trip time between A and C under these circumstances is greater by a factor
1/(1—v%/72) /2 than the corresponding round-trip time in still air.

c. Two airplanes with the same air speed c start from A at the same time. One travels from A to B and back to A, flying first
against and then with the wind (wind speed v ). The other travels from A to C and back to A, flying across the wind. Which
one will arrive home first, and what will be the difference in their arrival times? Using the first two terms of the binomial
theorem,

(1+2)"=14nz for|z <<1

show that if v << ¢, then an approximate expression for this time difference is At ~ (L/2c)(v/c)?, where L is the round-trip
distance between A and B (and between A and C').

d. The South Pole Air Station is the supply depot for research huts on a circle of 300 -kilometer radius centered on the air station.
Every Monday many supply planes start simultaneously from the station and fly radially in all directions at the same altitude.
Each plane drops supplies and mail to one of the research huts and flies directly home. A Fussbudget with a stopwatch stands
on the hill overlooking the air station. She notices that the planes do not all return at the same time. This discrepancy perplexes
her because she knows from careful measurement that
(1) the distance from the air station to every research hut is the same,

(2) every plane flies with the same air speed as every other plane - 300 kilometers/hour-and

(3) every plane travels in a straight line over the ground from station to hut and back.

The Fussbudget finally decides that the discrepancy is due to the wind at the high altitude at which the planes fly. With her
stopwatch she measures the time from the return of the first plane to the return of the last plane to be 4 seconds. What is the
wind speed at the altitude where the planes fly? What can the Fussbudget say about the direction of this wind?

e. In their famous experiment Michelson and Morley attempted to detect the so-called ether drift - the motion of Earth through the
"ether," with respect to which light was supposed to have the velocity c. They compared the round-trip times for light to travel
equal distances parallel and perpendicular to the direction of motion of Earth around Sun. They reflected the light back and
forth between nearly parallel mirrors. (This would correspond to part c if each airplane made repeated round trips.) By this
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means they were able to use a total round-trip length of 22 meters for each path. If the "ether" is at rest with respect to Sun, and
if Earth moves at 30 x 10® meters/second in its path around Sun, what is the approximate difference in time of return between
light flashes that are emitted simultaneously and travel along the two perpendicular paths? Even with the instruments of today,
the difference predicted by the ether-drift hypothesis would be too small to measure directly, and the following method was
used instead.

f. The original Michelson-Morley interferometer is diagrammed in the figure. Nearly monochromatic light (light of a single
frequency) enters through the lens at a. Some of the light is reflected by the half-silvered mirror at b and the rest of the light
continues toward d. Both beams are reflected back and forth until they reach mirrors e and e; respectively, where each beam is
reflected back on itself and re- traces its path to mirror b. At mirror b parts of each beam combine to enter telescope f together.
The transparent piece of glass at ¢, of the same dimensions as the half-silvered mirror b, is inserted so that both beams pass the
same number of times (three times) through this thickness of glass on their way to telescope f. Suppose that the perpendicular
path lengths are exactly equal and the instrument is at rest with respect to the ether. Then monochromatic light from the two
paths that leave mirror b in some relative phase will return to mirror b in the same phase. Under these circumstances the waves
entering telescope f will add crest to crest and the image in this telescope will be bright. On the other hand, if one of the beams
has been delayed a time corresponding to one half period of the light, then it will arrive at mirror b one half period later and the
waves entering the telescope will cancel (crest to trough), so the image in the telescope will be dark. If one beam is retarded a
time corresponding to one whole period, the telescope image will be bright, and so forth. What time corresponds to one period
of the light? Michelson and Morley used sodium light of wavelength 589 nanometers (one nanometer is equal to 10~ meter).
Use the equations fA =c and f = 1/T that relate frequency f, period T', wavelength A, and speed ¢ of an electromagnetic
wave. Show that one period of sodium light corresponds to about 2 x 10" seconds.

Now there is no way to "turn off' the alleged ether drift, adjust the apparatus, and then turn the alleged ether drift on again.
Instead of this, Michelson and Morley floated their interferometer in a pool of mercury and rotated it slowly about its center like
a phonograph record while observing the image in the telescope (see the figure). In this way if light is delayed on either path
when the instrument is oriented in a certain direction, light on the other path will be delayed by the same amount of time when
the instrument has rotated 90 degrees. Hence the total change in delay time between the two paths observed as the
interferometer rotates should be twice the difference calculated using the expression derived in part c. By refinements of this
method Michelson and Morley were able to show that the time change between the two paths as the instrument rotated
corresponded to less than one one-hundredth of the shift from one dark image in the telescope to the next dark image. Show that
this result implies that the motion of the ether at the surface of Earth - if it exists at all - is less than one sixth of the speed of
Earth in its orbit. In order to eliminate the possibility that the ether was flowing past Sun at the same rate as Earth was moving
its orbit, they repeated the experiment at intervals of three months, always with negative results.

RO NN B 7
ARAN \/\Z§></ Q :

Figure 3.E. 7: Michelson-Morley interferometer mounted on a rotating marble slab.
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g. Discussion question: Does the Michelson Morley experiment, by itself, disprove the theory that light is propagated through an
ether? Can the ether theory be modified to agree with the results of this experiment? How? What further experiment can be used
to test the modified theory?

Reference: A. A. Michelson and E. W. Morley, American Journal of Science, Volume 134, pages 333-345 (1887).

3-13 the Kennedy-Thorndike experiment

Note: Part d of this exercise uses elementary calculus.

The Michelson - Morley experiment was designed to detect any motion of Earth relative to a hypothetical fluid - the ether - a
medium in which light was supposed to move with characteristic speed c. No such relative motion of earth and ether was detected.
Partly as a result of this experiment the concept of ether has since been discarded. In the modern view, light requires no medium for
its transmission. What significance does the negative result of the Michelson-Morley experiment have for us who do not believe in
the ether theory of light propagation? Simply this:

(1) The round-trip speed of light measured on earth is the same in every direction - the speed of light is isotropic.

(2) The speed of light is isotropic not only when Earth moves in one direction around Sun in, say, January (call Earth with this
motion the "laboratory frame"), but also when Earth moves in the opposite direction around Sun six months later, in July (call Earth
with this motion the "rocket frame").

(3) The generalization of this result to any pair of inertial frames in relative motion is contained in the statement: The round-trip
speed of light is isotropic both in the laboratory frame and in the rocket frame.

This result leaves an important question unanswered: Does the round-trip speed of light - which is isotropic in both laboratory and
rocket frames - also have the same numerical value in laboratory and rocket frames? The assumption that this speed has the same
numerical value in both frames played a central role in demonstrating the invariance of the interval (Section 3.7). But is this
assumption valid?

Inner vocwum jocket

Quartz plate mounting
for interferometer

Outer water jocket [water
temperature constont to £0.001°C)

Figure 3.E. 8: Schematic diagram of apparatus used for the Kennedy- Thorndike experiment. Parts of the interferometer have been
labeled with letters corresponding to those used in describing the Michelson-Morley interferometer (Exercise 3-12). The experi
menters went to great lengths to insure the optical and mechanical stability of their apparatus. The interferometer is mounted on a
plate of quartz, which changes dimension very little when tempera ture changes. The interferometer is enclosed in a vacuum jacket
so that changes in atmospheric pressure will not alter the effective optical path length of the interferometer arms (slightly different
speed of light at different atmospheric pressure). The inner vacuum jacket is surrounded by an outer water jacket in which the water
is kept at a temperature that varies less than +0.001 degrees Celsius. The entire apparatus shown in the figure is enclosed in a small
darkroom (not shown) maintained at a temperature constant within a few hundredths of a degree. The small darkroom is in turn
enclosed in a larger darkroom whose temperature is constant within a few tenths of a degree. The overall size of the apparatus can
he judged from the fact that the difference in length of the two arms of the interferometer (length eb compared with length e;b) is
16 centimeters.

a. An experiment to test the assumption of the equality of the round-trip speed of light in two inertial frames in relative motion
was conducted in 1932 by Roy J. Kennedy and Edward M. Thorndike. The experiment uses an interferometer with arms of
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unequal length (see the figure). Assume that one arm of the interferometer is Al longer than the other arm. Show that a flash of
light entering the apparatus will take a time 2Al/clonger to complete the round trip along the longer arm than along the shorter
arm. The difference in length Al used by Kennedy and Thorndike was approximately 16 centimeters. What is the approximate
difference in time for the round trip of a light flash along the alternative paths?

b. Instead of a pulse of light, Kennedy and Thorndike used continuous monochromatic light of period 7 = 1.820 x 10715
seconds (A = 546.1 nanometers = 546.1 x 10~ meters) from a mercury source. Light that traverses the longer arm of the
interferometer will return approximately how many periods n later than light that traverses the shorter arm? If in the actual
experiment the number of periods is an integer, the reunited light from the two arms will add (crest-to-crest) and the field of
view seen through the telescope will be bright. In contrast, if in the actual experiment the number of periods is a half-integer,
the reunited light from the two arms will cancel (crest-to-trough) and the field of view of the telescope will be dark.

c. Earth continues on its path around Sun. Six months later Earth has reversed the direction of its velocity relative to the fixed
stars. In this new frame of reference will the round-trip speed of light have the same numerical value c as in the original frame
of reference? One can rewrite the answer to part b for the original frame of reference in the form

c=(2/n)(Al/T)

where Al is the difference in length between the two interferometer arms, 7" is the time for one period of the atomic light
source, and 7 is the number of periods that elapse between the return of the light on the shorter path and the return of the light
on the longer path. Suppose that as Earth orbits Sun no shift is observed in the telescope field of view from, say, light toward
dark. This means that n is observed to be constant. What would this hypothetical result tell about the numerical value c of the
speed of light? Point out the standards of distance and time used in determining this result, as they appear in the equation.
Quartz has the greatest stability of dimension of any known material. Atomic time standards have proved to be the most
dependable earth-bound time keeping mechanisms.

d. In order to carry our the experiment outlined in the preceding paragraphs, Kennedy and Thorndike would have had to keep their
interferometer operating perfectly for half a year while continuously ob serving the field of view through the telescope.
Uninterrupted operation for so long a time was not feasible. The actual durations of their observations varied from eight days to
a month. There were several such periods of observation at three-month time separations. From the data obtained in these
periods, Kennedy and Thorndike were able to estimate that over a single six-month observation the number of periods n of
relative delay would vary by less than the fraction 3/10000f one period. Take the differential of the equation in part ¢ to find
the largest fractional change dc/c of the round-trip speed of light between the two frames consistent with this estimated change
in n (frame 1 - the "laboratory" frame-and frame 2 - the "rocket" frame - being in the present analysis Earth itself at two
different times of year, with a relative velocity twice the speed of Earth in its orbit: 2 x 30 kilometers/second).

Historical note: At the time of the Michelson Morley experiment in 1887 , no one was ready for the idea that physics - including
the speed of light - is the same in every inertial frame of reference. According to today's standard Einstein interpretation it seems
obvious that both the Michelson-Morley and the Kennedy-Thorndike experiments should give null results. However, when
Kennedy and Thorndike made their measurements in 1932 , two alternatives to the Einstein theory were open to consideration
(designated here as theory A and theory B ). Both A and B assumed the old idea of an absolute space, or "ether," in which light has
the speed c. Both A and B explained the zero fringe shift in the Michelson Morley experiment by saying that all matter that moves
at a velocity v (expressed as a fraction of light speed) relative to "absolute space" undergoes a shrinkage of its space dimensions in

the direction of motion to a new length equal to (1 — 1)2) 12 times the old length ("Lorentz-Fitz Gerald contraction hypothesis").
The two theories differed as to the effect of "motion through absolute space" on the running rate of a clock. Theory A said, No
effect. Theory B said that a standard seconds clock moving through absolute space at velocity v has a time between ticks of

(1 - v2) 172 seconds. In theory B the ratio Al/T in the equation in part b will not be affected by the velocity of the clock, and the
Kennedy-Thorndike experiment will give a null result, as observed ("complicated explanation for simple effect'). In theory A the

1/

ratio Al/T in the equation will be multiplied by the factor (1 —v}) ? at a time of year when the "velocity of Earth relative to

absolute space" is v; and multiplied by (1 - v%) 1/2 at a time of year when this velocity is vs. Thus the fringes should shift from

one time of year (v; = Uorbital +Vsun ) to another time of year (v2 = Uorbital — Usun ) unless by accident Sun happened to have
"zero velocity relative to absolute space" - an accident judged so unlikely as not to provide an acceptable explanation of the
observed null effect. Thus the Kennedy-Thorndike experiment ruled out theory A (length contraction alone) but allowed theory B
(Iength contraction plus time contraction) - and also allowed the much simpler Einstein theory of equivalence of all inertial
reference frames.
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The "sensitivity" of the Kennedy-Thorndike experiment depends on the theory under consideration. In the context of theory A the
observations set an upper limit of about 15 kilometers/second to the "speed of Sun through absolute space" (sensitivity reported in
the Kennedy-Thorndike paper). In the context of Einstein's theory the observations say that the round-trip speed of light has the
same numerical magnitude-within an error of about 3 meters/ second - in inertial frames of reference having a relative velocity of
60 kilometers/second.

Reference: R. J. Kennedy and E. M. Thorndike, Physical Review, Volume 42, pages 400-418 (1932).

3-14 things that move faster than light

Can "things" or "messages" move faster than light? Does relativity really say "No" to this possibility? Explore these questions
further using the following examples.

a. The Scissors Paradox. A very long straight rod, inclined at an angle  to the z-axis, moves downward with uniform speed
Urod as shown in the figure. Find the speed v 4 of the point of intersection A of the lower edge of the stick with the z-axis. Can
this speed be greater than the speed of light? If so, for what values of the angle 6 and v,,q does this occur? Can the motion of
intersection point A be used to transmit a message faster than light from someone at the origin to someone far out on the z-
axis?

origin T e A W,

¥rod
Figure 3.E.9: Can the point of intersection A move with a speed v4 greater than the speed of light?

b. Transmission of a Hammer Pulse. Suppose the same rod is initially at rest in the laboratory with the point of intersection
initially at the origin. The region of the rod centered at the origin is struck sharply with the downward blow of a hammer. The
point of intersection moves to the right. Can this motion of the point of intersection be used to transmit a message faster than
the speed of light?

c. Searchlight Messenger? A very powerful searchlight is rotated rapidly in such a way that its beam sweeps out a flat plane.
Observers A and B are at rest on the plane and each the same distance from the searchlight but not near each other. How far
from the searchlight must A and B be in order that the searchlight beam will sweep from A to B faster than a light signal could
travel from A to B ? Before they took their positions, the two observers were given the following instruction:

To A : "When you see the searchlight beam, fire a bullet at B."
To B : "When you see the searchlight beam, duck because A has fired a bullet at you."
Under these circumstances, has a warning message traveled from A to B with a speed faster than that of light?

d. Oscilloscope Writing Speed. The manufacturer of an oscilloscope claims a writing speed (the speed with which the bright spot
moves across the screen) in excess of the speed of light. Is this possible?

3-15 four times the speed of light?

We look westward across the United States and see the rocket approaching us at four times the speed of light.

How can this be, since nothing moves faster than light?

We did not say the rocket moves faster than light; we said only that we see it moving faster than light.

Here is what happens: The rocket streaks under the Golden Gate Bridge in San Francisco, emitting a flash of light that illuminates
the rocket, the bridge, and the surroundings. At time At later the rocket threads the Gateway Arch in St. Louis that commemorates
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the starting point for covered wagons. The arch and the Mississippi riverfront are flooded by a second flash of light. The top figure
is a visual summary of measurements from our continent-spanning latticework of clocks taken at this moment.

Now the rocket continues toward us as we stand in New York City. The center figure summarizes data taken as the first flash is
about to enter our eye. Flash 1 shows us the rocket passing under the Golden Gate Bridge. An instant later flash 2 shows us the
rocket passing through the Gateway Arch.

a. Answer the following questions using symbols from the first two figures. The images carried by the two flashes show the rocket
how far apart in space? What is the time lapse between our reception of these two images? Therefore, what is the apparent
speed of the approaching rocket we see? For what speed v of the rocket does the apparent speed of approach equal four times
the speed of light? For what rocket speed do we see the approaching rocket to be moving at 99 times the speed of light?

b. Our friend in San Francisco is deeply disappointed. Looking eastward, she sees the retreating rocket traveling at less than half
the speed of light (bottom figure). She wails, "Which one of us is wrong?" "Neither one." we reply. "No matter how high the
speed v of the rocket, you will never see it moving directly away from you at a speed greater than half the speed of light."

Use the bottom figure to derive an expression for the apparent speed of recession of the rocket. When we in New York see the
rocket approaching at four times the speed of light, with what speed does our San Francisco friend see it moving away from
her? When we see a faster rocket approaching at 99 times the speed of light, what speed of recession does she behold?

SAN FRANCISCO ST. LOUIS NEW YORK

-

f====

===

ROCKET AT ST. LOUIS

flash 2 flash 1

emit emit
flash fessh | [
1 2 | ¢
——————————— ) s > | 0-vat E
| |
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Rcls}l'! 2
[ emit emit
' flosh flosh
. 2 3
q - At e vt L = .
|
|
. ROCKET AT NEW YORK

Figure 3.E.10: Top: Rocket headed east, shown at the instant it passes under the Gateway Arch in St. Louis and emits flash 2. The
rocket is chasing flash 1, emitted earlier as it passed under the Golden Gate Bridge in San Francisco. Center: The two image
carrying flashes are close together, so they enter the eye in rapid succession. This gives the viewer the visual impression that the
rocket moved from San Francisco to St. Louis in a very short time. Bottom: Rocket headed east, shown at the instant it approaches
the Empire State Building in New York City and emits flash 3. When the rocket moves away from the viewer, the distance of
rocket travel is added to the separation between flashes. This increases the ap parent time between flashes, giving the viewer the
impression that the rocket moved from St. Louis to New York at less than one half light-speed.

3-16 superluminal expansion off quasar 3C273?

The most powerful sources of energy we know or conceive or see in all the universe are so-called quasi- stellar objects, or quasars,
starlike sources of light located billions of light-years away. Despite being far smaller than any galaxy, the typical quasar manages
to put out more than 100 times as much energy as our own Milky Way, with its hundred billion stars. Quasars, unsurpassed in
brilliance and remoteness, we count today as lighthouses of the heavens.
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One of the major problems associated with quasars is that some are composed of two or more components that appear to be
separating from each other with relative velocity greater than the speed of light ("superluminal” velocity). One theory that helps
explain this effect pictures the quasar as a core that ejects a jet of plasma at relativistic speed. Disturbances or instabilities in such a
jet appear as discrete "knots" of plasma. The motion and light emission from a knot may account for its apparent greater-than-light
speed, as shown using the first figure.

quasar

quasar

vAtcos®
15t light
flash *

At

1st |igH1 \
flash * ‘vAtsin©

Y Y

to Earth to Earth

Figure 3.E.11: first figure. Left: Bright "knot" of plasma ejected from a quasar at high speed v emits a first flash of light toward
Earth. Right: The knot emits a second light flash toward Earth a time At later. This time At is measured locally near the knot
using the Earth-linked latticework of rods and clocks (bar! bar!).

a. The first figure shows two Earth-directed light flashes emitted from the streaking knot. The time between emissions is At as
measured locally near the knot using the Earth-linked latticework of rods and clocks. Of course the clock readings on this
portion of the Earth-linked latticework are not available to us on Earth; therefore we cannot measure At directly. Rather, we see
the time separation between the arrivals of the two flashes at Earth. From the figure, show that this Earth-seen time separation
Atgeen is given by the expression

Atgeen = At(1 —vcosb)

b. We have another disability in viewing the knot from Earth. We do not see the motion of the knot toward us, only the apparent
motion of the knot across our field of view. Find an expression for this transverse motion (call it Azgee, ) between emissions of
the two light flashes in terms of At.

¢. Now calculate the speed viee, of the rightward motion of the knot as seen on Earth. Show that the result is

ATgeen vsin @

Ugeen =
Atgeen 1—vcosé

d. What is the value of vi., when the knot is emitted in the direction exactly toward Earth? when it is emitted perpendicular to
this direction? Find an expression that gives the range of angles 6 for which v, is greater than the speed of light. For 8 = 45
degrees, what is the range of knot speeds v such that vZ.., is greater than the speed of light?

e. If you know calculus, find an expression for the angle 6,5 at which vgee, has its maximum value for a given knot speed v.
Show that this angle satisfies the equation cos 6,,,x = v. Whether or not you derive this result, use it to show that the maximum
apparent transverse speed is seen as

v
(1—v2)'/?

T —
vSeeIl, max

f. What is this maximum transverse speed seen on Earth when v =0.99?

g. The second figure shows the pattern of radio emission from the quasar 3C'273. The decreased period of radiation from this
source (Exercise 3-10) shows that it is approximately 2.6 x 10° light-years from Earth. A secondary source is apparently
moving away from the central quasar. Take your own measurements on the figure. Combine this with data from the figure
caption to show that the apparent speed of separation is greater than 9 times the speed of light.
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Note: As of 1990 , apparent greater-than-light-speed ("superluminal") motion has been observed in approximately 25 different
sources.

1978.92

1979.44

Figure 3.E.12: second figure. Contour lines of radio emission from the quasar 3C273 showing a bright "knot" of plasma
apparently moving away from it at a speed greater than the speed of light. The time of each image is given as calendar year and
decimal fraction. Horizontal scale divisions are in units of 2 milli arc-seconds. (1 milli arc-second = 1073/3600 degree
= 4.85 x 10~ radian)

References: Analysis and first figure adapted from Denise C. Gabuzda, American Journal of Physics, Volume 55, pages 214-215
(1987). Second figure and data taken from T. J. Pearson, S. C. Unwin, M. H. Cohen, R. P. Linfield, A. C. S. Readhead, G. A.
Seielstad, R. S. Simon, and R. C. Walker, Nature, Volume 290, pages 365-368 (2 April 1981).

3-17 Contraction or rotation?

A cube at rest in the rocket frame has an edge of length 1 meter in that frame. In the laboratory frame the cube is Lorentz
contracted in the direction of motion, as shown in the figure. Determine this Lorentz contraction, for example, from locations of
four clocks at rest and synchronized in the laboratory lattice with which the four corners of the cube, E, F', G, H, coincide when
all four clocks read the same time. This latticework measurement eliminates time lags in the travel of light from different corners of
the cube.

Now for a different observing procedure! Stand in the laboratory frame and look at the cube with one eye as the cube passes
overhead. What one sees at any time is light that enters the eye at that time, even if it left the different corners of the cube at
different times. Hence, what one sees visually may not be the same as what one observes using a latticework of clocks. If the cube
is viewed from the bottom then the distance GO is equal to the distance HO, so light that leaves G and H simultaneously will
arrive at O simultaneously. Hence, when one sees the cube to be overhead one will see the Lorentz contraction of the bottom edge.

a. Light from E that arrives at O simultaneously with light from G will have to leave E earlier than light from G left G. How
much earlier? How far has the cube moved in this time? What is the value of the distance « in the right top figure?

b. Suppose the eye interprets the projection in the figures as a rotation of a cube that is not Lorentz contracted. Find an expression
for the angle of apparent rotation ¢ of this uncontracted cube. Interpret this expression for the two limiting cases of cube speed
in the laboratory frame: v — 0 andv — 1.

c. Discussion question: Is the word "really" an appropriate word in the following quotations?

(1) An observer using the rocket latticework of clocks says, "The stationary cube is really neither rotated nor contracted.”

3.E.15 https://phys.libretexts.org/@go/page/58908



https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/58908?pdf

LibreTextsm

(2) Someone riding in the rocket who looks at the stationary cube agrees, "The cube is really neither rotated nor contracted."
(3) An observer using the laboratory latticework of clocks says, "The passing cube is really Lorentz contracted but not rotated."
(4) Someone standing in the laboratory frame looking at the passing cube says, "The cube is really rotated but not Lorentz

contracted."
What can one rightfully say - in a sentence or two - to make each observer think it reasonable that the other observers should

come to different conclusions?
d. The analysis of parts b and c assumes that the visual observer looks with one eye and has no depth perception. How will the

cube passing overhead be perceived by the viewer with accurate depth perception?

Location of cube
derived from E F

lattice clocks |
1 7 ——v
7,

G H \-/%C
W i (1 =22

1=y i—

this distance
is much greater
than 1 meter

L Assume that

To
observer's
eye

O, J

iti f ~
Position o Y ;‘i“ il

observer's eye

Figure 3.E. 13: Left: Position of eye of visual observer watching cube pass overhead. Right top: What the visual observer sees as
she looks up from below. Right bottom: How the visual observer can interpret the projection of the second figure.

Reference: For a more complete treatment of this topic, see Edwin F. Taylor, Introductory Mechanics (John Wiley and Sons, New
York, 1963), pages 346-360.
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