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Preface

Physics and Models
The whole idea of the study of physics is to understand how the universe operates. We cannot actually ever know for sure how this
works, but we play a sort of game: We develop a model that explains why things happen the way they do, and then we test the
effectiveness of that model when it comes to predicting how other things will unfold. If the model predicts accurately, it is a “good”
model, and if it doesn’t, it is discarded.

Inherent to this description is the idea of “accuracy.” No model we have ever designed has ever predicted a result with 100%
accuracy. Mainly this is because 100% accuracy requires 100% accurate measurements of both the starting conditions and of the
results, and this simply isn’t possible. What we settle for instead is a sense of what sorts of problems our model is intended to
solve. Some models are precise to an incredibly small dimension (like models that predict atomic behavior), but these are not useful
for making predictions in the macroscopic world where trillions of trillions of atoms are involved. Conversely, we also make
macroscopic models that breakdown when our measurements become too fine.

So all models come with them an understanding that they work “up to a point.” When I discuss a problem involving a “frictionless
surface,” one can certainly argue that no such thing exists, but true as that statement is, it is not relevant. The model of the
frictionless surface allows us to answer questions about situations where the amount of friction is small, and our coarse
measurements can’t distinguish the effects of that small amount of friction. Further, this model can be used as a starting point, to
which we can later append a friction effect to make a more inclusive model.

You will sometimes hear me (or future physics instructors) say that such-and-such is true if a certain quantity is “small.” This
simply means that if the quantity is small enough, the coarseness of our measurements provide too much noise for us to really
notice the effect of that small quantity.

Measurement and Units
While we can make some general predictions about the behavior of our universe, these are not usually particularly satisfying. The
statement, “If I drop something, it will fall to Earth” can be considered a “theory of gravity,” but big deal. How long does it take the
dropped object to fall some specified distance? How fast is it going when it lands? How do the motions of two different dropped
objects differ from each other? All of these are questions we would like to answer as well, and they all require measurement. But if
I measure the time for an object to fall and call it “3,” while you measure the same process and call it “17,” we are not going to get
anywhere. We need a standardized system of units that we can agree upon so that we can compare results.

Many hundreds of years before Galileo, Aristotle sought to explain everything, but he did so descriptively. Galileo was among
the first set out to do so mathematically. Galileo was studying the effects of gravity on motion (Aristotle simply said that things
that are heavy fall, and things that are light rise), and did experiments where he rolled balls down ramps and timed their
journeys. He started zeroing-in on a precise mathematical description, but every time he got close to accepting his results, the
experiment would go haywire and his new results would disagree badly with the early ones. It turns out that the problem was
that he was using his own heartbeat to time the motion of the ball, and when his predictions started coming true, he got excited,
his heart beat faster, and the predictions began to fail.

There are many systems of units available to us. We could for example measure speed (which is a rate of distance covered over
time) in units of furlongs per fortnight. But there is one system that we use in physics as the default, from which we only rarely
stray. It is called the Système Internationale d’Unites, or SI units for short. The three most fundamental measurements we have in
this system are meters (distance), kilograms (mass), and seconds (time). For this reason, this system of units is also often referred to
as mks units.

First-time physics students often pay little attention to units when they are solving problems, thinking of them as more of a
nuisance than a help. You should fight this tendency. If you are solving a problem to find a speed and you end up with an answer
that (because you carefully carried units through the math) came out to be kilograms per meter, then that is an indication that you
made a mistake somewhere. Many students plug in the numbers and then throw the proper units in at the end, and this provides
them with no opportunity for catching mistakes.
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0.1: Why Physics?

Not Just for Physics Majors

Introductory physics like you find in the 9-series at UC Davis is not just offered to the relatively small number of students that have
chosen to major in Physics. Indeed, the vast majority of these classes are populated by students majoring in some branch of
engineering, with a few other STEM fields represented as well. This sometimes leads to questions of why the courses that don't
closely relate to the majors are required at all. Here we attempt to explain why such a broad physics curriculum is required of
otherwise very focused majors...

Human Intellectual Capital
Let's start with a decidedly non-ivory-tower perspective on higher education – the view of businesses and macroeconomics.
Investopedia.com defines intellectual capital this way:

... the collection of all informational resources a company has at its disposal that can be used to drive profits, gain new customers,
create new products or otherwise improve the business

The phrase "informational resources" is broad and very vague. Naturally it includes things like patents, secret formulas, and
computer algorithms, but we will be focusing on the human element of intellectual capital – "brain power," if you will.  And in
particular, we will confine ourselves to brain power in STEM fields.

Knowledge vs. Understanding

It is useful to divide "informational resources" in the context of human intellectual capital into essentially two types – knowledge
and understanding.  Most people have some inkling of the difference between these two things, even if only vaguely.  A simple
example that clarifies this difference is the act of riding a bicycle. One can look up "how to ride a bicycle" in Google, and retrieve
all of the relevant information:

1. what actions to take
hold the handle bars
sit on the seat
get the bike rolling
start pedaling
lean the bike in the direction you want it to turn

2. tricks for how to master riding
lower the seat so that your feet can easily reach the ground
roll the bike forward by pushing with your feet
raise your feet intermittently to get used to balancing while rolling
bring your feet up to pedals to continue the rolling, removing them to use ground to regain balance as needed

The first of these lists obviously falls squarely in the category of knowledge.  The second list also constitutes knowledge, but in
some sense it is meta-knowledge in that it gives you tips for achieving understanding. But most notably, it doesn't directly give you
that understanding (measured by your ability to actually ride) – you absolutely have to gain this on your own by your own efforts.
 This is a general feature of understanding; humans cannot simply look something up to achieve understanding – we must
deliberately immerse ourselves into the pursuit before we can reach that point.

When considering the difference between these two aspects of human intellectual capital, it should be clear which is more valuable.
Engineering firms do not gain a lot of value by recruiting people that have information committed to memory, when that is merely
a web search away. Instead, they are looking for people that have a deeper understanding, as that requires time and effort to
acquire, and cannot be replicated in short order. Furthermore, understanding has a certain organic quality to it, in that understanding
of one pursuit can often quickly be re-purposed for another task.  Riding a motorcycle and ice skating both rely on the same basic
method for turning as riding a bike, and though there are other skills involved with these two activities, having some core
understanding of the turning process is useful.
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Applying this to STEM

When it comes to human intellectual capital for STEM fields, it is clear that having an understanding of physical, chemical, and
biological processes is far more valuable than essentially memorizing a database of example processes.  Knowing why a certain
chemical reaction occurs is more valuable than remembering the components and final product for a specific reaction.
 Understanding how to compute the stresses and strains of a system of beams is better than memorizing certain standard structures
of beams that are used.  And so on.

As clear as the value gap between memory and reasoning is for STEM fields, when it comes to STEM education, we do run into
problems with emphasizing what is important. This is not the place to go into all of these, so here's the most dramatic example of
such a problem: All education involves an evaluation process (grading). It is much easier to evaluate based on memory than on
understanding.  It is also much easier to study for exams that test memory rather than understanding. Unfortunately, this has led to
ubiquitous testing based on students' ability to remember, rather than their ability to figure things out.  This in turn introduces an
incentive to study in the manner most effective for those tests, which means that many STEM students are not "practicing their bike
riding" to gain understanding – they are essentially memorizing search engine results on how to ride a bike instead, because it is
much easier and less time-consuming to do this than practice riding.  Imagine teaching a class in bike riding, and at the end the
exam consists of a multiple choice exam that covers the elements of riding a bike listed above, but doesn't actually require that
students get on a bike to demonstrate that they can now ride it.  This is unfortunately exactly how many STEM classes are
structured.

Where Physics Comes In
This is an ongoing problem, and one that shows itself particularly clearly in physics, which is perhaps the subject where the value
gap between understanding and knowing is the greatest. A physics class where exam problems are given that are similar to
previously-assigned problems (in homework or "practice exams") incentivizes memorizing, and students taking such a class gain
very little value from it, even though they may believe otherwise.  Given that classes taught in this manner exist from elementary
school, high school, and unfortunately even into college, it can be difficult to "right the ship" later – students have never trained
themselves to study toward understanding rather than knowledge, and can become quite frustrated when they finally need to do so.
Then student exasperation over this sudden change feeds back into instructor behavior – instructors want students to be happy, and
exams based on knowledge are easier to write anyway, so changes creep in that can make the problem endemic in higher-education.

While this problem presents a serious challenge, the subject of physics, taught correctly, provides perhaps the best training ground
for teaching students to reason rather than memorize.  For this reason, far more than any other, introductory physics is required of
virtually all STEM majors, even if physical principals are rarely, if ever, directly used in that field.  The wisdom of this university
policy is often lost on students, especially those majoring in STEM fields that seem to be the farthest removed from physical
principles, like the life sciences. What complicates matters even more is that physics (again, when taught with a goal of
understanding rather than knowledge) is a very challenging subject, a fact that is the subject of the next section.

This page titled 0.1: Why Physics? is shared under a CC BY-SA license and was authored, remixed, and/or curated by Tom Weideman.
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0.2: Physics is Hard!

Some Historical Perspective

You are in luck! You are poised to study of one of the most difficult subjects ever undertaken by humankind. For some of you, this
may not exactly conform to your definition of "luck." But for just about every career physicist out there, the inherent difficulty of
this subject is the primary reason they like it so much. There is a mistaken notion out there that a professional physicist just
naturally understands their subject, and that it is easy for them. Some physicists may even try to lead others to believe that this is
true, because it makes them look smarter.  But the fact is that this subject simply does not fit neatly into our brains, and we all
struggle with it.  Physicists get better at the basics of physics from constant practice, but this should not be taken as evidence that
they understood it instantly the first time they saw it, while lesser mortals struggle with it.  Physics is hard for everyone.  Here's a
short historical perspective on this fact, showing how even the greatest human minds in history struggled with physics...

Aristotle (384 - 322 BCE)

Considered one of the most brilliant minds in human history, when it came to physics (or "natural philosophy"), Aristotle got just
about everything wrong. His erroneous approach to something as basic as the physics of celestial and terrestrial motion would
dominate western thought for nearly two millennia! Aristotle was a great observer of the natural world. He was great at collecting
knowledge. He tried to derive understanding from these observations, and failed terribly – the laws of nature were just too subtle
for even his prodigious intellect.

Copernicus (1473 - 1543)

One of the greatest problems people have in figuring out physics comes from thinking they already understand it. Starting with
Aristotle's notions of celestial motion that were later tweaked by Ptolemy in the second century, it took another thirteen centuries
for someone like Copernicus to come along and suggest the simpler (and correct) explanation that the Earth is not the center of the
universe and in fact the planets orbit the Sun.

Galileo (1564 - 1642)   and   Kepler (1571 - 1630)
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After a century of everyone basically ignoring Copernicus, Galileo and Kepler arrived.  Between Galileo's direct observations of
Jupiter's moons (through a new device called a telescope) and Kepler's mathematical model of planetary orbits, one would think
that the geocentric model would finally be discarded, but the Church would not allow that. Even when shown the right path, we
humans are slow to embrace it!  We begin to see a common problem here – it takes understanding to fully believe what these
geniuses concluded. They acquired this understanding through many years of hard work, but the people they passed their
conclusions to could only evaluate their claims on the basis of a belief (knowledge) system. This is the first clear demonstration of
the value of understanding in human intellectual capital.

Newton (1642 - 1726)

Finally humanity spawned a remarkable genius that could complete assembling the celestial puzzle started by Copernicus, Galileo,
and Kepler, through the brilliance of his theory of Universal Gravitation. It took 2000 years for someone to finally discard
Aristotle's notion that motion in the heavens is governed by different laws than motion on the Earth. 

It is worth noting that humanity was not struggling with esoteric mathematical constructs like quantum field theory for all these
centuries.  The topic in which these people left their marks was little more than basic motion (along with changing the mindset to a
more universal notion of motion that applies to both the heavens and at the Earth's surface) – something Physics 9A students study
in the very first week!  For whatever reason, even the most elementary aspects of physics are hard for humans to understand.

Relating, not Memorizing
Adding to the problem of the difficulty of physics is something that was discussed in the previous section. People get better at
pursuits the more they train for them. Partly due to a need for evaluating students with grades, and partly due to a lack of
understanding about what true progress in physics education looks like, most students are academically trained to memorize. This
skill is not one that is useful in physics, which is much more about building an understandable structure of interrelated ideas. So
introductory physics is hard because students are not trained in the critical thinking skills needed. Indeed, physics classes turn out
to be the training that students need for later.  As with training atrophied muscles in the body, starting from scratch is always the
most difficult, painful endeavor.

The Curse of Incentives
There is one last problem that conspires with those above to make physics classes very challenging, and that is the negative effects
brought about by grade incentives. When one needs to "dig into" a subject to reach a level of understanding, it requires a great deal
of self-motivation. If one is just trying to "get through" a class, or if the only motivation is to get a decent grade, with no interest in
actually understanding the material, then shortcuts will be taken, and the hard work that is necessary to actually reach
understanding will not be done. Grades work as a fine incentive for doing busy work, and for memorizing, but reaching actual
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understanding is a much messier business, and as the following video shows (from outside the context of physics), simply won't
inspire people to do the outside-the-box thinking necessary to get the real message from physics instruction.

A physics class can be taught in two ways where the exam evaluations are analogous to the candle problem discussed in this video.
The first is with the tacks in the box. This is a "hard" physics class, made harder by using grades to motivate students.  The second
is with the tacks outside the box. This is an "easy" physics class made easier by using grades to motivate students. The trouble is,
students only take away a valuable educational experience (where the idea is to learn to think outside the box) in the first class.
 The second case can scarcely be called a physics class at all – it is little more than a series of mindless exercises.

So physics – real physics – is just hard.

This page titled 0.2: Physics is Hard! is shared under a CC BY-SA license and was authored, remixed, and/or curated by Tom Weideman.
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0.3: How to Learn Physics

No Shortcuts, No Memorizing

In previous sections we discussed the importance of taking a class in physics, and why a true physics class is so challenging.  Here
we will try to put together what we learned there to come up with an effective way to get through this daunting task of learning
physics.

The first most important principle we need to embrace is that there is no easy path.  Trying to gain an understanding of physics (or
really, anything) without engaging in it fully is a losing battle. If you want to build muscle by lifting weights, you won't do so by
watching videos of other people lifting those weights – you have to get in there and do it yourself.

Students in physics classes tend to focus too much on having problem solutions to study from.  Sample problems are only valuable
for those that struggle with them. They are worthless if all they are used for is to "study" their solutions. In this case, the word
"study" is just a euphemism for "memorize," and indeed physics study shortcuts all boil down to memorization. Going back to the
weightlifting analogy, if the weight is lifted for you, and then handed to you to hold up, it may feel like you are accomplishing
something (it is not trivial to hold it up), but this does not exercise your muscles.  And a physics class, properly taught, seeks to test
your "physics muscles," not your ability to regurgitate what you have seen before.

So in the way of study advice, the point is this: Avoid looking at solutions as much as possible!  Derive the maximum benefit by
putting in your own effort.  Even those times you fail to completely figure something out (and you will – physics is hard!), you will
learn more than you will by avoiding this discomfort by jumping to the solutions. This is not to say that the solutions are not
helpful – but like a spotter that helps you when you lift weights, the less you rely on them, the better.

Deliberate Practice
In the last couple decades a lot of stuff has been written about effective training of athletes and the achievement of expertise in
general. One idea that has really taken hold is the idea of deliberate practice. Perhaps you have heard the claim that to become elite
in some pursuit, one needs to invest on the order of 10,000 hours of practice? The number seems to be what gets all the attention,
but what often gets lost in discussion is the form that this practice needs to take. For example, a player learning to hit a baseball
better will not achieve the goal of elite hitter simply by spending 10,000 hours in a batting cage. Rather, those hours need to include
reducing proper hitting technique to its infinitesimal constituent parts: Hours need to be spent on getting the swing-plane of the bat
 to the correct angle, getting hip rotation right, achieving proper weight transfer, and so on. And many more hours are needed to
combine these tiny pieces together properly into an integrated swing. This deliberate practice of components is what those 10,000
hours must be comprised of, and coaching from someone knowledgeable about these things is pretty much a necessity.

Now of course you will not have anything close to 10,000 hours available, but the goal here is to get a fruitful first exposure to
physics, not become an elite practitioner.  But the idea of deliberate practice is still an important one, no matter what the scale of
the numbers of hours may be.  Fortunately, you have an instructor, teaching assistants, and even this textbook to serve as "coaches"
to help direct you through this practice. But the responsibility of maintaining the discipline necessary to do this right is on you, the
student.

You will find that there are many tools or templates offered during this and future physics courses that are intended to get you
through problem solving.  To employ deliberate practice in the context of these tools and template means that you should spend
some time getting good at these without regard to your success in solving the problem itself. For example, one of the most
important tools in this class on mechanics is called the "free-body diagram." A short amount of time is dedicated to teaching you
how to draw one of these, but they are a critical part of solving so many different kinds of problems.  Most students invest a short
time on learning to do these, and move on well before mastering them – they focus much more on getting the answer to the
problem, and hardly at all on getting this step right. Often when a problem is stated, if it does not include an explicit step that says,
"draw a careful free-body diagram," many students will not bother to do so, or if they do it will be very crude and incomplete –
they jump straight to writing down equations, and inevitably get things wrong. Free-body diagrams are not just "busy work" at the
start of a problem – drawing them requires deep conceptual thought that is necessary for avoiding misconceptions and modeling the
math properly.  Failing to master this tiny component to physics problem solving is like failing to master weight transfer in hitting a
baseball, the grip of a golf club, or turning one's head to breath properly when swimming.  Time must be spent on these
components, or the whole pursuit fails.
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When in doubt as to whether you are applying proper focus on components when doing practice physics problems, simply remind
yourself that your goal needs to be to get better at the process, not to get the right answer.

Embrace the Big Picture
Suppose you watch dozens of scenes from a movie, and are later asked to answer some questions about them. Hopefully it is clear
that putting them into the context of the movie plot makes them easier to understand and easier to recall details than if they are
viewed in random order and out of context. This is a general feature of human understanding – we are better at remembering details
and extrapolating conclusions when the information is organized into a contextual framework. The same is true about physics. It's
not always easy to see the bigger picture when struggling to understand specific concepts and nuanced mathematical models, but
striving to do so can itself help one to overcome those struggles with the details.

Put more succinctly: The best way to learn new ideas in physics is to relate them back to things you already understand. If some
new topic seems utterly disjoint from what you have learned already, then you know there is something you are missing, and it is
an indication that you need to delve in further. A good instructor will do their best to segue from one subject to the next, so that a
big picture is developed.  But if this doesn't happen, or if you are unable to grasp the connections the instructor is trying to make,
then it is worth your time to go back and make those connections yourself.

Students that have a disjointed understanding of physics feel like a useful approach to studying the subject is to do as many
different practice problems as they can. There goal is to commit to memory as many different "tricks" as they can find, in the hope
that the exam will involve a trick they have memorized. This approach is utterly ineffective in a properly-taught class that
emphasizes understanding over memorization. Practice problems are helpful, but the emphasis should not be on how they are
different (the "tricks"), but how they are the same. Once it is clear what elements a wide variety of problems have in common,
seeing the big picture is easier, and one can focus their deliberate practice of those common elements. This is the path to success –
building a simple, understandable, mental big-picture, and mastering the fundamental tools that go with it.

Doing Sample Problems

One of the most common pieces of advice given for studying physics is to "carpet bomb" your brain by doing countless sample
problems. This is only half-true, and the fact that most people that give this advice seem to think it is some sort of magic pill shows
that they don't understand the importance of the word "deliberate" in "deliberate practice". What unfortunately typically plays out
for the unsuspecting student who follows this advice is this:

Finds a new problem to solve.
EITHER:

Solves it quickly and correctly so it was of no benefit, as nothing new was learned.
OR:

Gets stuck early, as it challenging.
Rather than struggling too much with the problem, decides not to "waste time" with blind alleys, and simply peeks at the
solutions.
The solution makes sense, so after reading it, feels like they have learned something.

Repeats cycle.

This cycle of "just doing lots of practice problems" is utterly useless for learning physics, and when the student that follows the
advice in this way can't seem to solve any exam problems, they are understandably frustrated that so many hours of practice were
not effective. That's the tragedy of this advice – it is so incomplete and deceptively simple that it frequently leads to lots of wasted
hours of work that could have been better-spent.

One might ask, "If this is all true, why do so many people that have been successful in their study of physics give this advice?" The
answer depends upon which category of two categories the adviser belongs to. If it is a practicing physicist, then it is likely in their
nature not to quickly resort to looking at solutions. They don't mind "wasting their time" with blind alleys – getting unstuck by
themselves is the "fun part".

If it is a fellow student that is claiming that this strategy got them through a class, and they are not of the same mentality described
above for the practicing physicist, then the odds are that what made them successful was poor examinations. Some instructors
intentionally write their exams so that they closely resemble some subset of a collection of problems given for practice. When this
is done, "practicing" by studying the solutions to a large number of sample problems is effective for the test-taking, because
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memorization is key. Unfortunately, this teaching practice is more common than it should be, and leads to lots of students believing
they have learned more than they really have. This does not lead to success down the road, when a robust understanding of physics
(and physics problem-solving) is needed, and the short-term memorization from the previously-taken class is useless. The general
rule is, if your physics course (and particularly the exams) are easy, then it's not because the instructor is good at teaching it to you
(no one can actually "make physics easy") – it's because they are actually not asking you (with their exams) to demonstrate that you
have learned anything of any value. And usually, when exams don't require that students learn anything, students don't take the
appropriate steps to do so.

Using This Textbook's Sample Problems
This textbook provides you with sample problems to help you get in your deliberate practice, and they are constructed to help you
avoid the "study the solutions" pitfall described above. These sample problems come in two parts. The first part (given in the body
of a chapter) provides only the physical situation, where you are asked to simply "analyze". There is no question for you to answer
here – just flex your muscles with extracting as much as you can from what has been given. The second part of the sample problem
appears at the end of the chapter, and it is a question that accompanies the physical situation given earlier. The reason for this split
will be explained below, but here is the most effective use of these sample problems:

1. Do as much of the analysis as you possibly can without looking at the analysis provided in the textbook. Write this analysis
down on a piece of paper – don't just think this through in your head! This is very important.

2. Open the analysis window to see what analysis has been provided for you. See if the analysis you did matches what is there, and
make notes on your piece of paper about where you went wrong. Add notes to this piece of paper that describe in your own
words any parts of the analysis that you overlooked that was provided by the textbook.

3. Go to the question at the end of the chapter, and try to solve it, referring to the notes you have written on your piece of paper.

So why the split? In the analysis stage, without an end goal of a question to answer, you don't get stuck trying to find a specific
path. This is not to say that you won't get stuck! At times you will find that you can hardly think of any information that can be
extracted. But when one has a specific question in their heads, it is difficult to free-up their thinking to allow them to see important
points of analysis. In essence, this method breaks down the task into smaller parts, and like a coach that provides drills, forces your
practice to be more "deliberate".

This page titled 0.3: How to Learn Physics is shared under a CC BY-SA license and was authored, remixed, and/or curated by Tom Weideman.
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0.4: Basics of Scientific Measurement

Things You Should Already Know

As a final section for the "Preliminaries" chapter, we will review a few things you should have encountered somewhere in a science
class prior to enrolling in the university. Some things that fall into this category are covered by course prerequisites.  For example,
everyone entering Physics 9A should already have a solid working knowledge of trigonometry and basic calculus (differentiation
and integration). This section will discuss other basics that are not explicitly in the course prerequisites, but will nevertheless be
assumed to be understood by students entering the course.

Physical Dimensions and Units
When describing a physical quantity in the subject of mechanics (covered in Physics 9A), it can be broken down into a combination
of three distinct physical dimensions. These dimensions are distance, time, and mass.  Physical quantities can be measured in many
different scales called units (distance can be measured in centimeters, yards, or light years, time measured in seconds, hours, or
fortnights, and so on), but while two measurements may use different units, their physical dimensions are the same.  For example,
two speeds may be measured in meters per second and miles per hour, respectively, but they have in common the dimensions of
"length per unit time."

Dimensional Analysis

When solving physics problems, it is often useful to check one's work at the end (or even while in progress), as it is possible to
have made an algebraic error in the calculation. One way to make a quick check is to see if the dimensions of a quantity work out

right. For example, in this class we will talk about a quantity called energy.  It turns out that energy has units of: .
Suppose a problem asks for a computation of velocity, after some algebra you get:

While it is not a definitive check of whether the answer is right, it is possible to gain confidence in the answer or catch an error if it
is wrong by plugging in the dimensions to see if they work out in the equality.  The dimensions of velocity we know to be length-
per-time, so if we plug in the dimensions for energy  and mass , we can check to see if things work out.  Note that the number 2
has no physical dimensions, so it can be ignored (the brackets around the variable  mean "dimensions of"):

The mass dimensions divide out, and the quare root of the squared length and time results in a confirmation of the dimensions.

Unit Conversion

While the dimensions of physical quantities are always the same, they may be measured differently.  Occasionally it is desirable to
convert a numerical value from one system of units to another.  One reason might be that a problem is given where different
quantities are measured in different systems of units, and the final answer should not contain both (say) inches and meters. There is
a simple procedure for making this conversions...

It starts with knowing what a measurement of a dimensions in one system of units is in another system.  For example, 1 inch is a
length equal to 2.54 centimeters.  Given that this is true, then the ratio of these two values (with either one in the numerator) must
be equal to one:

This is useful to know, because a quantity can always be multiplied by 1 without affecting its value. So suppose we want to know
how many centimeters there are in 3.5 inches.  All we have to do is multiply 3.5 inches by 1, using the fraction with inches in the
denominator so that the inches unit cancels, and the number of centimeters is left behind:
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If the quantity is more complicated than just a single length, the same procedure can be followed for each separate unit. For
example, suppose we wish to know how fast a car is traveling in miles per hour when we are given that it is moving at a speed
of 40 meters per second.  Now we need to convert meters to miles, and seconds to hours.  We can even use intermediate units like
kilometers and minutes along the way.  That is, suppose we know the conversion between kilometers and miles is .
 Of course we know that there are 1000 meters in 1 kilometer, 60 seconds in a minute, and 60 minutes in an hour, so we form the
following ratios with a value of 1 for the purposes of our conversion:

Now we take the original value and start multiplying it by as many 1's as we need to in order to replace the units as we want them:

Significant Figures
Most (but certainly not all) physics problems that you will encounter in this course provide you with some numeric values
associated with a physical system. The presumption is that those numbers were determined by a measuring device of some kind.
 Measuring devices have varying levels of precision. For example, if one measures a distance with a meter stick, one can expect the
measurement to be accurate to within about a millimeter. If a measurement is taken using a microscope, the measurement may be
accurate to within a micron (one thousandth of a millimeter). In all scientific disciplines, it is understood that the measuring
device's precision is reflected in the number itself.  So for example, a measurement with a meter stick (in meters) will show no
more than three decimal places, because the fourth decimal place signifies fractions of millimeters.  Conversely, whenever we see a
number given in a problem that describes a length to three decimal places, we assume that the measuring device could only do that
well (so maybe it was a meter stick with millimeter subdivisions). Note that if the result is a round number, then the number
provided can still provide information about the true level of precision by including trailing zeros. So if a number  is given,
then the implication is that it is accurate down to millimeters.

For larger numbers this can get a little weird.  For example, suppose we want to express the number above in microns.  Clearly the
value is , but now it seems that we have lost the information about precision (which is the same if we measured with the
same device).  The solution here is to use scientific notation, and only keep trailing zeros to the place where the precision ends.  So
the above number with the same precision would be expressed as: .

Understanding the precision of given numbers is one thing, but ultimately these numbers are used in calculations to get new
numbers, so the question becomes, "How do we express the precision of our calculated numbers?"  The simple answer is that the
calculated number's level of precision is only as good as the least precise number in the calculation.  For example, suppose we want
to know how far something travels when we are given its speed and the time it moves at this constant speed.  The distance is
obviously computed by multiplying these numbers.  Suppose the speed is measured fairly crudely, no more precisely than 1 meter
per second. Let's say the speed is .  Let's also assume that the time is measured very precisely – with an atomic clock, and the
time comes out to be .  Simply multiplying these numbers together gives a distance traveled equal to .
But if we claim this is the answer, then someone reading it will assume that this distance value is accurate down to 
(microns). But suppose the actual speed value was  (this extra decimal place was not caught by our measuring device). Then
the correct distance value would be over , and the accuracy implied by our 9-digit answer would be misleading.  So rather
than keep all 9 digits generated by the exact calculation, we round off that answer to the number of digits ("significant figures") in
the less-precise number.  The speed has only two digits, so we would round-off our final answer to only two significant figures,
changing the answer from  to .

There is one other thing to mention here regarding significant figures. If a measured value is multiplied by an exact number, then
the exact number is not taken into the significant figure calculation.  For example, a physics formula might include a factor of one-
half. This number is not a measured value – it is exact – so even though you might think it is 0.5 and has only one significant
figure, this is not correct.  In fact it is 0.50000000000..., which means that it will not limit the number of significant figures of the
final answer at all – only the measured value(s) in the calculation will. Another interesting example is the calculation of the
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circumference of a circle.  Suppose the diameter is given to be , then the circumference is equal to . To express this
as a decimal, you might think that the two significant figures for the diameter means that you only keep two significant figures for 

. But  is an exact number (even if we can't express it completely as a decimal), so you need to keep more decimal places of that
number.  Using  gives an answer for the circumference (to two significant figures) of , while using more decimal
places for pi raises the answer for the circumference to .

This page titled 0.4: Basics of Scientific Measurement is shared under a CC BY-SA license and was authored, remixed, and/or curated by Tom
Weideman.
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1.1: Vectors

Definition of a Vector

Just being able to put numbers on physical quantities is not sufficient for describing nature. Very often physical quantities have
directions. For example, a description of something’s motion is incomplete if you merely state how fast it is going. [Okay, so an
asteroid is moving at 35,000 miles per hour, but is it headed for Earth?!] We therefore have the following definition for physical
quantities that exhibit both these properties:

Definition: Vector
A vector is a quantity with both magnitude and direction.

We will frequently represent a vector quantity with an arrow, where the direction of the vector is the direction that the arrow points,
and the magnitude of the vector is represented by the length of the arrow. This is not to say that vectors are arrows – arrows just
make a handy geometric representation. So while an arrow representing a vector might be 6cm long, that doesn’t mean that the
vector has a magnitude of 6cm. The vector might represent the speed and direction of a moving object, for example, and then the
vector’s magnitude isn’t even in units of cm. However, if we draw two arrow representations of the same sort of quantity, and one
is twice as long as the other, the implication is that the longer arrow represents a vector with twice the magnitude of the vector
represented by the shorter arrow.

Alert
There is no way to compare magnitudes of different physical quantities. If a distance vector is drawn as an arrow on the same
page as a velocity vector’s arrow, the relative sizes of the two arrows are meaningless.

There are a few other things that we should say about vectors and the arrows that represent them:

Where the arrow representing a vector is positioned is not a distinct feature of the vector. That is, an arrow representing a vector
can be moved at will, and so long as it isn’t stretched, shrunk, or rotated, it will represent the same vector. Just changing an
arrow's location does not change its magnitude or its direction if it is moved carefully.
Vector directions (and therefore the directions of their representative arrows) can be reversed mathematically through
multiplication by –1.
Vector lengths can be expanded or shrunk (scaled) through multiplication by a regular number (called a scalar). If the number is
greater than 1, the vector expands in length, and if it is less than 1, it contracts.

One other thing... When we write a symbol for a vector quantity, we will do so with a small arrow above the letter, like this: .
Variables with the same letter as a defined vector that do not include an arrow, are assumed to represent the magnitude of that

vector. So for example, when used in the same context, the variable A represents the magnitude of .

Vector Addition/Subtraction
For these mathematical quantities we call vectors to have any value to us, they have to allow for simple mathematical operations,
such as addition. The directional nature of vectors makes addition much trickier than simply summing the two magnitudes. It turns
out that a well-defined vector addition involves simple geometry. It goes like this: Transport one of the vectors (in a parallel
fashion, so as not to change its direction) so that its tail is in contact with the head of the other vector. Then fashion a new vector
such that its tail is at the open tail and its head is at the open head.

Figure 1.1.1 – Graphical Vector Addition

A
→

A
→
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Figure 1.1.2 – Vector Addition is Commutative

What about subtracting two vectors? Well, we can do this by following the same method as for regular numbers: Whichever vector
we wish to subtract we multiply by –1, and then add the result to the other vector, which we do in the manner described above. We
already know that multiplying a vector by –1 reverses its direction (and leaves its magnitude unchanged), so this is a well-defined
operation for us.

Vector Components

The graphical method of adding vectors are not always convenient. For example, we shouldn’t have to actually measure the length
of the new vector, we should be able to calculate it. Well, of course we can do this using some sophisticated knowledge of triangles.
For example, given we know the lengths and directions of the two vectors we are adding, we can determine the length of the third
leg of the triangle using the Law of Cosines:

With all of the lengths of the triangle legs and one of the angles (the one between  and ), we can get the other angles using the
Law of Sines.

Exercise

The magnitudes of the two vectors shown in the diagram below are:  and . Find the
magnitude and direction (angle made with the -axis) of the vector that is the difference of these two
vectors.

= + −2AB cos θC 2 A2 B2 (1.1.1)

A B

A = 132 B = 145

x
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Solution

Using the fact that the negative of a vector is the same vector pointing in the opposite direction along with using tail-to-head
vector addition, we get the following diagram for the three vectors:

The angle between  and  is obviously 65º – 30º = 35º, so for this triangle we have the lengths of two sides and the

angle between them. We can therefore find the length of the third side ( ) from the law of cosines:

Next we can determine the angle between  and  using the law of sines:

If we rotate  counterclockwise through this angle, it will be parallel to , if we then rotated it back clockwise by 30º (the

angle  makes with the -axis), then it will be parallel to the -axis. Therefore the angle  makes with the -axis is: –81º

+ 30º = –51º (below the -axis). This answer certainly conforms with the diagram above, which shows  with a smaller

magnitude than  and  and pointing down to the right.

While we can use these tools to mathematically solve for the sum of two vectors, it turns out that there is another way we can do it
that doesn’t require quite as much geometrical reasoning. This method exploits three simple facts:

We can replace any single vector as a sum of two (or more) vectors.
It is easy to add two vectors that are parallel.
If we use right triangles, trigonometry is easier to work with than with general triangles and the law of cosines/sines.

The trick is to select two (or three, if necessary) perpendicular axes (they do not have to be horizontal and vertical, they only need
to be perpendicular to each other), and break up every vector involved into a sum of two perpendicular vectors parallel to these
axes. The lengths of these perpendicular vectors are called the components of the vector along those axes. Going back to the list of
advantages above, remember that we can add similar components like numbers, and we can determine these components easily
using trigonometry.

Figure 1.1.3 – Vector Components

A
→

B
→

C
→

= + −2AB cos θ ⇒ C = = 84.2C 2 A2 B2 + −2 (132) (145) cos( )(132)
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Figure 1.1.4 – Summing Vectors Using Components

The sums of components are like summing numbers, but only components along the same axes can be added. The results are then
more components, which then have to be reconstructed into a vector.

Unit Vectors
So we can use perpendicular coordinate systems to describe vectors in terms of their components. Essentially this means that to
describe a vector in terms of a set of three axes, we need to know three numbers. But it might be useful to actually express these
vectors as a single mathematical entity, and that’s where the notion of the unit vector comes in. Vectors have magnitude and
direction, and with unit vectors we can mathematically break up the vector into those two parts. The magnitude is just a number
(with physical units) without direction, and a unit vector is a vector (without units) that has a length of 1, so that it can be scaled to
any length without contributing anything to the magnitude. Therefore we can write a vector as a simple product:

where  is the unit vector (usually pronounced “ -hat”). It is a unitless vector of length 1 that points in the direction of the vector 

. The value  is a number with physical units that equals the magnitude. The diagram below gives a graphic description of how
this construction works for a few common physical vectors. The unit vectors provide a very basic template by defining the
direction, and the magnitude fills in the template by contributing the girth and 'flavor' (physical units) of the vector.

Figure 1.1.4 – Unit Vectors and Magnitudes

= AA
→

Â (1.1.2)

Â A

A
→
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If we combine this notion with components, we can write any vector as a sum of components multiplying unit vectors in the
directions of the three spatial dimensions. By convention, we give these unit vectors the names , , and  for the axes , , and ,
respectively. So specifically, we have:

Now we can just use this as a mathematical representation of vectors, and we do not have to appeal to geometry at all. For example,

Giving us the same result as we got before for the components of the sum of two vectors.

Exercise

Repeat the calculation of the previous Exercise, this time using components.

Solution

Breaking the two vectors into their  and  components gives:

Next we subtract  from  to get , then compute its magnitude (using the Pythagorean
theorem) and direction (using trigonometry):

î ĵ k̂ x y z

= + +A
→

Ax î Ay ĵ Azk̂ (1.1.3)

C
→

= +A
→

B
→

= ( + + ) +( + + )Ax î Ay ĵ Azk̂ Bx î By ĵ Bzk̂

= + +Cx î Cy ĵ Czk̂

= ( + ) +( + ) +( + )Ax Bx î Ay By ĵ Az Bz k̂ (1.1.4)

x y

= + = Acos θ + Asinθ = 132cos + 132sin = 114.3 + 66.0A
→

Ax î Ay ĵ î ĵ 30o î 30o ĵ î ĵ

= + = B cos θ + B sinθ = 145cos + 145sin = 61.3 + 131.4B
→

Ax î Ay ĵ î ĵ 65o î 65o ĵ î ĵ

B
→

A
→

C
→
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This matches the answer found in in the previous exercise.

This page titled 1.1: Vectors is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman directly on the
LibreTexts platform.
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1.2: Vector Multiplication
Now we know how to do some math with vectors, and the question arises, “If we can add and subtract vectors, can we also multiply them?” The answer is yes
and no. It turns out that there is not one unique way to define a product of two vectors, but instead there are two…

Scalar Product
Soon we will be looking at how we can describe the effect that a force pushing on an object has on its speed as it moves from one position to another. The force
is a vector, because it has a magnitude (the amount of the push) and a direction (the way the push is directed). And the movement of the object is also a vector
(tail is at the object’s starting point, and head is at its ending point). It will turn out that this effect is describable mathematically as the product of the amount of
force and the amount of movement. This is simple to compute if the push is along the direction of movement, but what if it is not? It turns out that only the
amount of push that acts in the direction of the movement will affect the object's speed.

We therefore would like to introduce the notion of the projection of one vector onto another. The best description of this is, "the amount of a given vector that
points along the other vector." This could be imagined as the “shadow” one vector casts upon another vector:

Figure 1.2.1 – Projecting One Vector Onto Another

So if we want to multiply the length of a vector by the amount of a second vector that is projected onto it we get:

This is the first of the two types of vector multiplication, and it is called a scalar product, because the result of the product is a scalar. We usually write the
product with a dot (giving its alternative name of dot product):

Exercise

The vector  has a magnitude of 120 units, and when projected onto , the projected portion has a value of 105 units. Suppose that  is now projected

onto , and the projected length is 49 units. Find the magnitude of .

Solution

The factor that determines the length of the projection is . The angle between the two vectors is the same regardless of which vector is projected, so

the factor is the same in both directions. The projection of  onto  is 7/8 of the magnitude of , so the magnitude of  must be 8/7 of its projection,
which is 56 units. Note that when the projection of one vector is multiplied by the magnitude of the other, the same product results regardless of which
way the projection occurs. That is, the scalar product is the same in either order (i.e. it is commutative).

Note that a scalar product of a vector with itself is the square of the magnitude of that vector:

It should be immediately clear what the scalar products of the unit vectors are. They have unit length, so a scalar product of a unit vector with itself is just 1.

They are also mutually orthogonal, so the scalar products with each other are zero:

This gives us an alternative way to look at components, which are projections of a vector onto the coordinate axes. Since the unit vectors point along the , ,
and  directions, the components of a vector can be expressed as a dot product. For example:

Unit vectors also show us an easy way to take the scalar product of two vectors whose components we know. Start with two vectors written in component form:

(projection of   onto  )(magnitude of  ) = (A cosθ)(B) = AB cosθA
→

B
→

B
→

(1.2.1)

⋅ ≡ AB cosθ, θ = angle between andA
→

B
→

A
→

B
→

(1.2.2)

A
→

B
→

B
→

A
→

B
→

cosθ

A
→

B
→

A
→

B
→

⋅ = cos 0 =A
→

A
→

A2 A2 (1.2.3)

⋅ = ⋅ = ⋅ = 1î î ĵ ĵ k̂ k̂ (1.2.4)

⋅ = ⋅ = ⋅ = 0î ĵ ĵ k̂ k̂ î (1.2.5)

x y

z

⋅A
→

î = ( + + ) ⋅Ax î Ay ĵ Azk̂ î

= + +Ax ⋅î î
1

Ay ⋅ĵ î
0

Az ⋅k̂ î
0

(1.2.6)

= +A
→

Ax î Ay ĵ
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then just do "normal algebra," distributing the dot product as you would with normal multiplication:

If we didn’t have this simple result, think about what we would have to do: We would need to calculate the angles each vector makes with (say) the -axis.
Then from those two angles, we need to figure out the angles between the two vectors. Then we would need to compute the magnitudes of the two vectors.
Finally, with the magnitudes of the vectors and the angle between the vectors, we could finally plug into our scalar product equation.

Alert
With two different ways to compute a scalar product, it should be clear that the simplest method to use will depend upon what information is provided. If you
are given (or can easily ascertain) the magnitudes of the vectors and the angle between them, then use Equation 1.2.2, but if you are given (or can easily
ascertain) the components of the vectors, use Equation 1.2.7.

Exercise
The two vectors given below are perpendicular to each other. Find the unknown -component.

Solution

The scalar product of two vectors is proportional to the cosine of the angle between them. This means that if they are orthogonal, the scalar product is
zero. The dot product is easy to compute when given the components, so we do so and solve for :

The scalar product of two vectors in terms of column vectors works exactly how you would expect – simply multiply the similar components and sum all the
products.

Vector Product
As mentioned earlier, there are actually two ways to define products of vectors. If the scalar product involves the amount of one vector that is parallel to the
other vector, then it should not be surprising that our other product involves the amount of a vector that is perpendicular to the other vector.

Figure 1.2.2 – Portion of One Vector Perpendicular to Another

If we take a product like before, multiplying this perpendicular piece by the magnitude of the other vector, we get an expression similar to what we got for the
scalar product, this time with a sine function rather than a cosine. For reasons that will be clear soon, this type of product is referred to as a vector product.
Because this is distinct from the scalar product, we use a different mathematical notation as well – a cross rather than a dot (giving it an alternative name of
cross product). This has a simple (though not entirely useful, at least not in physics) geometric interpretation in terms of the parallelogram defined by the two
vectors:

Figure 1.2.3 – Constructing a Vector Product (Magnitude)

= +B
→

Bx î By ĵ

⋅A
→

B
→

= ( + ) ⋅ ( + )Ax î Ay ĵ Bx î By ĵ

= ( ) +( ) +( ) +( )AxBx ⋅î î
1

AyBx ⋅ĵ î
0

AxBy ⋅î ĵ
0

AyBy ⋅ĵ ĵ
1

= +AxBx AyBy (1.2.7)

x

z

= +5 −4 − = +2 +3 +A
→

î ĵ k̂ B
→

î ĵ Bzk̂

Bz

0 = ⋅ = (+5) (+2) +(−4) (+3)   +(−1) ( ) ⇒ = −2A
→

B
→

Bz Bz

magnitude of × = × = sinθ = AB sinθA
→

B
→ ∣

∣
∣A
→

B
→∣

∣
∣

∣
∣
∣A
→∣

∣
∣
∣
∣
∣B
→∣

∣
∣ (1.2.8)
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But there is another even bigger difference between the vector and scalar products. While the projection always lands parallel to the second vector, the
perpendicular part implies an orientation, since the perpendicular part can point in multiple directions. Any quantity that has an orientation has the potential to
be a vector, and in fact we will define a vector that results from this type of product as follows: If we follow the perimeter of the parallelogram above in the

direction given by the two vectors, we get a clockwise orientation [Would we get the same orientation if the product was in the opposite order:   ?]. We
turn this circulation direction into a vector direction (which points in a specific direction in space) using a convention called the right-hand-rule:

Convention: Right-hand-rule
Point the fingers of your right hand in the direction of the first vector in the product, then orient your hand such that those fingers curl naturally into the
direction of the second vector in the product. As your fingers curl, your extended thumb points in a direction that is perpendicular to both vectors in the
product. This is the direction of the vector that results from the cross product.

If we perform the cross product with the vectors in the opposite order, our fingers curl in the opposite direction, which makes our thumb point in the opposite
direction in space. This means that the cross product has an anticommutative property:

A cross product of any vector with itself gives zero, since the part of the first vector that is perpendicular to the second vector is zero:

As with the scalar product, the vector product can be easily expressed with components and unit vectors. The vector products of the unit vectors with
themselves are zero. Each of the unit vectors is at right angles with the other two unit vectors, so the magnitude of the cross product of two unit vectors is also a
unit vector (since the sine of the angle between them is 1).

Convention: Right-handed Coordinate Systems
We will always choose a right-handed coordinate system, which means that using the right-hand-rule on the +  to +  axis yields the +  axis.

In terms of the unit vectors, we therefore have:

and

This allows us to do cross products purely mathematically (without resorting to the right-hand-rule) when we know the components, as we did for the scalar
product. Again start with two vectors in component form:

then, as in the case of the scalar product, just do "normal algebra" (apart from the cross product being anti-commutative) by distributing the cross product, and
applying the unit vector cross products above:

It is not obvious right now how we will use the dot and cross product in physics, but it is coming, so it’s a good idea to get a firm grasp on these important tools
now.

Exercise

Using the two vectors  and  from the previous exercise...

a. compute the vector product , and

b. use the result of the vector product to confirm that  and  are perpendicular to each other.

Solution

a. The vector product is a straightforward computation that only requires the distributive property and Equations 1.2.11 and 1.2.12:

B
→

× A
→

× = − ×A
→

B
→

B
→

A
→

(1.2.9)

| × | = sin0 = 0A
→

A
→

A2 (1.2.10)

x y z

× = × = × = 0î î ĵ ĵ k̂ k̂ (1.2.11)

× = − × = , × = − × = , × = − × =î ĵ ĵ î k̂ ĵ k̂ k̂ ĵ î k̂ î î k̂ ĵ (1.2.12)

= +A
→

Ax î Ay ĵ

= +B
→

Bx î By ĵ

×A
→

B
→

= ( + ) ×( + )Ax î Ay ĵ Bx î By ĵ

= ( ) +( ) +( ) +( )AxBx ×î î
0

AyBx ×ĵ î
−k̂

AxBy ×î ĵ
+k̂

AyBy ×ĵ ĵ
0

= ( − )AxBy AyBx k̂

(1.2.13)

(1.2.14)

(1.2.15)

A
→

B
→

×A
→

B
→

A
→

B
→

×A
→

B
→

=

=

=

(+5 −4 − )×(+2 +3 −2 )î ĵ k̂ î ĵ k̂

+10 +15( × )−10( × )−8( × )−12 +8( × )−2( × )−3( × )+2( × )î î

0

î ĵ î k̂ ĵ î ( × )ĵ ĵ

0

ĵ k̂ k̂ î k̂ ĵ ( × )k̂ k̂

0

+11 +8 +23î ĵ k̂
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b. We can compute the magnitudes of the three vectors , , and , and use them to find the angle:

This page titled 1.2: Vector Multiplication is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman directly on the LibreTexts
platform.
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1.3: Straight-Line Motion

Start Simple

There is nothing more fundamental in the study of physics than motion. We will bring a lot of mathematics to bear on this subject
(including the vectors we just learned about), but we are going to start as simply as possible – with motion of a single particle that
remains on a straight line. This simplifies our task in a couple ways:

1. By restricting ourselves to single particles, we don't have to worry about the complicated motions of systems of particles, where
each of the particles can move differently than the others.

2. By keeping the motion along a straight line, there are only two directions involved, and these directions can be characterized
simply as "positive" and "negative" – there is no need for unit vectors.

Throughout this course, for new topics we will take this approach of starting as simply as we can in these two ways (single particle
in one dimension), and only extend to more general results once the simpler case is understood.  It should also be noted that it is
possible to treat a system of particles as if it is a single particle when all of the particles follow the same motion.  This is assured
when the system of particles is a rigid object that does not rotate.  Many of the examples we do for the time being will be of this
variety, even if it is not explicitly stated that the object has these two properties of rigidity and zero rotation.

Displacement

In order for motion to occur for an object, obviously its position must change from one instant in time to another. We will refer to
the coordinate position of the straight line on which the object moves as x(t). A change in this position we call the displacement,
and refer to it as a change in position:

Alert
It’s a good idea to get used to this now, as you will use it throughout the Physics 9-series: When referring to a time-dependent
quantity, the “delta” (∆) means “after minus before,” or “final minus initial.”

Notice that if the final position is a smaller number than the initial position, then the object has a negative displacement. Eventually
we will treat displacement as a vector, but for our straight-line motion, the sign of the value provides all the information we need
about the direction. In this text you will receive several warnings about the precise use of physics language, which is frequently at
odds with how the same words are used in casual conversation. Here is the first example:

Alert
“Displacement” sounds a lot like “distance covered.” Walking a mile to the store and back again is a two mile walk, but the
displacement in this case is not two miles. Displacement is a vector whose magnitude is the distance between the starting and
ending points, and whose direction points from the starting point to the ending point.

Average Velocity
Of course, there is more to motion than just displacement. We will generally also be interested in how fast that displacement
occurs. We therefore define a rate called the average velocity thus:

Since we know displacement is a vector (of course in our current simple 1-dimensional model it can only have two directions), then
average velocity must be a vector as well.

Instantaneous Velocity

Just talking about the before and after gets pretty boring, so what do we do about during? That is, how do we define a velocity at a
single moment in time – the instantaneous velocity? Well, we know the answer to this from calculus. We start with our idea of
average velocity, and just shrink the time span down very small, until it vanishes:

displacement = Δx ≡ −xf xo (1.3.1)

average velocity = ≡ =vave
Δx

Δt

−xf xo

−tf to
(1.3.2)
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Average and Instantaneous Acceleration
We take our discussion of motion to one level more – we consider that things might speed up or slow down. Just as we defined
average velocity in terms of before and after positions, we also define average acceleration in terms of before and after
(instantaneous) velocities:

And, as before, we use calculus to extend this notion of average acceleration to instantaneous acceleration, which we describe as
the amount that our object is speeding up or slowing down at a single moment in time:

Alert
Another language warning – In standard English parlance, we are used to reserving the word “acceleration” to mean only
“speeding up.” In physics it means specifically the rate of change of velocity, which for straight line motion includes both
speeding up and slowing down (for multi-dimensional motion it gets even trickier).

Conceptual Question
If a moving object is slowing down, is it possible that the magnitude of its acceleration is increasing? If an object is speeding
up, is it possible that the magnitude of its acceleration is decreasing? In either of these cases, can the magnitude of the
acceleration be zero? Explain.

Solution

If an object is slowing down, then it is experiencing an acceleration in the direction opposite to its motion. If this
acceleration increases in magnitude, then it slows down faster. So naturally it can be slowing down as the acceleration
magnitude increases. Similarly, as an object is speeding up, it is experiencing an acceleration in the direction of its motion.
If the magnitude of this acceleration decreases, then the rate at which it speeds up decreases, but it is still speeding up. If the
object is either slowing down or speeding up, then its velocity must be changing, and the acceleration cannot be zero.

Motion Diagrams
A motion diagram starts as merely a series of collinear dots that represent the position of an object at different equally-spaced
intervals of time. You can think of it as a time-lapse photograph using a strobe light. There is one other piece of information that
goes with this starting diagram: the direction that the object is moving. An example of this starting point might be this:

Figure 1.3.1a – Creating a Motion Diagram

From this we need to somehow extract the instantaneous velocity (magnitude and direction, which may be changing) at each
position, and the acceleration (magnitude and direction, assumed to be constant throughout) of the object. At this point we are only
working qualitatively, so our goal is to sketch onto the diagram velocity vectors at each dot that have magnitudes and directions
that approximately represent the velocities of the object at those points ( , , etc.), keeping in mind that the time intervals
between dots are all the same, and the acceleration is constant throughout. You can do this intuitively (it must be going faster if it

instantaneous velocity = v= =lim
Δt→0

Δx

Δt

dx

dt
(1.3.3)

average acceleration = = =aave
Δv

Δt

−vf vo

−tf to
(1.3.4)

instantaneous acceleration = a = lim
Δt→0

Δv

Δt
=

dv

dt

=
xd2

dt2

(1.3.5)

(1.3.6)

v1 v2
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covers more distance in the same time), or you can figure it out from Equation 1.3.2. Adding the instantaneous velocity vectors to
the above diagram makes it look like this:

Figure 1.3.1b – Creating a Motion Diagram

Now for acceleration. Since we are assuming constant acceleration (at least for the five-data-point interval we are considering), the
average acceleration equals the instantaneous acceleration. With each dot being separated by the same time interval, the
acceleration between dots is proportional to the velocity changes (magnitude and direction), and in this case of constant
acceleration, is the same between every pair of dots:

Putting this into the diagram gives:

Figure 1.3.1c – Creating a Motion Diagram

Note that  is determined using the usual tail-to-head vector addition, which in one dimension just consists of keeping the signs
straight.

If we didn’t know whether or not the acceleration was constant, we could make a good guess by comparing the ’s. Notice that
we need two dots to determine the average velocity for a single time interval, since two dots gives us a displacement. But if we
want to know how the speed is changing (i.e. the acceleration), we need three dots. If dots #1 and #2 are closer together than dots
#2 and #3, we know the object has sped up, and if the first two dots are father apart, then the object is slowing down. So when we
label our motion diagram, we can arbitrarily draw-in the first velocity vector on the first dot, but we can’t add the velocity vector to
the second dot if there is no third dot present to show us if the object is going faster, slower, or the same speed at the second dot.
The more changes we want to consider (like if we want to know about a changing acceleration), the more dots we need.

This is in fact the nature of calculus – the change of a change of a change, etc, requires an additional measurement of position for
each additional change computed. So the motion diagram only needs three dots if the acceleration is known (or assumed) to be
constant, but to confirm that it is constant requires four dots.

Conceptual Question
Suppose we are given a motion diagram like the figure above, except that each velocity vector arrow is twice as long as the one
before it.  Does this diagram depict a constant acceleration? Explain.

Solution

Since every velocity vector is shown after the same time interval, the acceleration is only constant if the change in the
velocity vector is the same each time.  Let's call the magnitude of the first velocity vector "1 unit."  This means that the
second velocity vector ihas a magnitude of 2 units (since it doubled in length), and the one after that has a magnitude of 4
units.  But this means that the change for the first time interval is 1 unit (from 1 to 2), and the change for the second interval
is 2 units (from 2 ro 4).  These changes are not equal – the object is speeding up more in the second interval than it did in the
first – so this acceleration is not constant.

a = constant = = = = = . . .aave
Δv

Δt

−v2 v1

−t2 t1

−v3 v2

−t3 t2
(1.3.7)

Δv

Δv
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1.4: Kinematics

Equations of Motion

Okay, enough of the definitions. Let’s see how these things all fit together, and how they can be used. What we will be looking at are
called the equations of motion, and this topic is often referred to as kinematics. It is important to note that we are not yet dealing with
causes for these motions, but only the motions themselves.

We will mostly only deal with constant accelerations (unless otherwise specified), and since instantaneous acceleration is the derivative of
velocity, it is not difficult to integrate it to get the instantaneous velocity as a function of time:

The constant of integration is found by plugging  into Equation 1.4.1, which results in the velocity of the object at the starting time,
which is typically designated as .

We can play exactly the same game to obtain the equation of motion for position as a function of time, since we know how it relates to the
instantaneous velocity:

Notice that if we have all the details of this last equation, we can obtain the velocity equation above simply by taking a derivative. We
cannot go in the opposite direction without also obtaining the starting position.

Analyze This
A particle moves along the -axis with an acceleration that varies linearly with time.

Analysis

First, we note that this is not a case of constant acceleration, so equations 1.4.1 and 1.4.2 do not apply. But the calculus we
employed to get to these equations does apply, so we just need some sort of mathematical expression for acceleration to repeat that
process. We are given that the acceleration varies linearly with time, so translating this into a mathematical expression gives:

where  and  are unknown constants. Note that the acceleration at time  is just , so it is more descriptive to just call it 
from this point on.

Without these constants (and some others), we cannot compute values like speeds and positions at different times, but we can still do
some calculus in terms of the unknowns. The velocity of the particle at a time  in terms of the acceleration is:

where  is the constant of integration. We note that at  the velocity just equals , so hereafter we'll just call that constant .

We can repeat this process for the position of the particle as a function of time (noting that the constant of integration this time is
the position at time ):

Let’s make an accounting of all the numbers we can encounter in a constant-acceleration situation:

independent variable: 
dependent variables:  , 

v(t) = at+
a = ⇒ v(t) = ∫ a dt = at+const

dv

dt

const = v(t = 0) ≡ vo

⎫

⎭
⎬ vo (1.4.1)

t = 0

vo

x (t) = a + t+
v= ⇒ x (t) = ∫ vdt = ∫ (at+ )dt = a + t+const

dx

dt
vo

1
2

t2 vo

const = x (t = 0) ≡ xo

⎫

⎭
⎬

1

2
t2 vo xo (1.4.2)

x

a (t) = λt+β

λ β t = 0 β ao

t

v(t) = ∫ a (t)dt = ∫ (λt+ )dt = λ + t+γao
1

2
t2 ao

γ t = 0 γ vo

t = 0

x (t) = ∫ v(t)dt = ∫ ( λ + t+ ) dt = λ + + t+
1

2
t2 ao vo

1

6
t3 1

2
aot

2 vo xo

t

x v
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constants of the motion:  ,  ,  (acceleration is constant by assumption)

With six numbers to work with, you can imagine there are many ways to set up a problem to solve for something unknown. Everything
you need to solve any such problem is provided in the above equations. However, it is often easier to put those equations together to form
a new equation, to cut down on the algebra needs for certain types of problems. The most common useful re-combining of these variables
involves eliminating time from the two equations, since you may be given velocities and positions. The algebra is straightforward:

You can think of this equation as the “before/after” equation, because it deals only with starting and ending positions and velocities, and
has eliminated time as an input variable.

While we are accumulating useful (though unnecessary) equations for motion with constant acceleration, we should also include the two
equations that involve average velocity. The first is just a rewriting of the definition of average velocity, with the "final" position occurring
at time :

The second equation is quite useful, though it applies only to motion involving constant acceleration:

For constant acceleration, the average velocity simply equals the arithmetic average of the starting and ending velocities. We will better
see why it comes out this way when we start discussing graphing shortly.

Free-Fall
There is one type of straight-line motion that involves constant acceleration that we are all familiar with: free-fall.

We will look more closely at how to explain this in terms of forces in a future section, but assuming air resistance has a small effect
(remember, we are devising a simplified model here), then it turns out (as shown by Galileo dropping stones from the Tower of Pisa, and
more dramatically in the demonstration) that objects all accelerate at the same constant rate as they fall to Earth. This rate of acceleration
is commonly given the symbol , and it has the value:

acceleration due to gravity near the surface of the earth 

Note the units of distance-per-time-squared are the units of acceleration. This acceleration is of course always directed downward, and
depending on our choice of coordinate system, this can be either positive or negative. Once the coordinate system is selected, the sign for 

 stays the same no matter which way the object is moving. If the positive direction is chosen to be upward, and the object is moving
upward, then its velocity is positive and the negative value of  leads to a slowing of the object’s motion. If it is moving down, then its
velocity is negative, and the negative acceleration leads to the velocity becoming more negative (i.e. it is speeding up).

Analyze This
A ball is thrown vertically upward at the same instant that a second ball is dropped from rest directly above it.

xo vo a

− = a + ( ) ⇒ 2a ( − ) = −
= at+ ⇒ t =vf vo

−vf vo

a

− = a + txf xo
1
2

t2 vo

⎫

⎭
⎬
⎪

⎪
xf xo

1

2
( )

−vf vo

a

2

vo
−vf vo

a
xf xo vf

2 vo
2 (1.4.3)

t

= = ⇒ x (t) = t+vave
−xf xo

t

x (t) −xo

t
vave xo (1.4.4)

= = = at+ = ( − ) + ⇒ =vave
−xf xo

t

a + t1
2

t2 vo

t

1

2
vo

1

2
vf vo vo vave

+vo vf

2
(1.4.5)
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Analysis

Both balls are under the influence of the earth's gravity, and therefore both accelerate at a rate  downward.  However, one starts
with a velocity in the upward direction, while the other starts from rest.  With both balls subject to the same velocity equation:

their different values for  ensure that they will always have different velocities. In particular, when the ball thrown upward is
eventually moving downward, then assuming there is no collision, its speed will always be less than the speed of the other ball.  This
means that if the two balls start sufficiently high above the Earth's surface, they are guaranteed to eventually collide.

Suppose the higher ball starts at a distance of  above the lower ball. Calling the initial speed of the lower ball , and calling its
starting height zero, we can write down the equations of motion of both balls:

Naturally, if we are interested in when the two balls collide, we simply set the two heights equal to each other. If we do this,
this seemingly complicated situation reduces to something very simple, as the effects of the gravitational accelerations of the two
balls cancel out, which means that they will collide when the lower ball traverses the separation with its initial velocity, ignoring
the common acceleration:

This page titled 1.4: Kinematics is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman directly on the
LibreTexts platform.
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1.5: Graphing

Interpreting Graphs

We conclude our discussion of straight-line motion by taking on the topic of representing motion with graphs. These graphs
represent what is happening to the various dependent variables ( , , and ) over time. There are three goals here:

1. To interpret a graph in terms of the physical motion of the object it represents.
2. To sketch a graph that represents the physical motion of an object, given a description of that motion.
3. To sketch a graph of one or two dependent variables based on the graph of another dependent variable.

Alert
These are not always easy tasks to perform, for two main reasons: First, our first instinct when we see a graph is to interpret it
as a picture, rather than a plot of a quantity vs. time. The second problem (and this persists throughout the study of physics) is
the tendency to confuse the change of a quantity for the value of that quantity. More precisely, we tend to lose sight of the fact
that a variable's value at an instant and its rate of change are quite independent of each other.

For task #1, here are some of the questions we should be able to answer:

Q1: Where is the object (which side of the origin is it on)?

This would seem to be quite trivial (and it is): The position at any given time is the value on the vertical axis for the  vs.  graph.
Where we run into trouble is thinking that we might have some idea of how to answer this question for the velocity and
acceleration graphs. Those graphs only give us information about the object's changing position and changing speed, respectively,
not where the object is at any given time. If we are separately given where the object is at some point in time (say at ), then
we can determine its position at other times. One way to think of this is that the velocity graph gives us the shape of the position
graph, but that shape could be located anywhere up-and-down the vertical axis. All of this is just repeating what we found in
Section 1.4 – that when we integrate , we get an unknown constant  that must be provided separately.

Q2: Is the object at rest, or is it moving?

Another seemingly obvious question to answer, but again there are things to keep in mind. Although this is a property of velocity
we can answer it using the position graph (we only get unknown constants when we integrate, not when we take derivatives).
Mathematically, we know that the velocity is the slope of the position graph, so since "at rest" means zero velocity, the object is at
rest when the tangent line to the  vs.  graph has zero slope. But we should strive to look at this physically as well. Obviously an
object that is moving is one whose position is changing, so if the  value is changing, the object is moving. If we are given a  vs. 
graph, we have to be careful not to use the same criterion as we did for the  vs.  graph. Instead, whether the object is moving or
not is a simple matter of whether or not the value of  is zero. If we have the acceleration graph, then integrating it to get the
velocity graph leaves an unknown constant ( ). We know the shape of the  vs.  graph, but not where it is located up-and-down
the vertical axis. This means that with just the acceleration graph we cannot know where the velocity graph crosses the horizontal
axis, and therefore have no idea where the object is coming to rest.

Q3: Which way is the object moving?

The direction of motion of the object can also be obtained from both the position and velocity graphs. From the position graph, we
know that the sign of the slope is the sign of the velocity (which is the direction of motion). On the velocity graph, we simply need
to determine if the value of the velocity is positive or negative (i.e. is the graph below or above the horizontal axis). A common
mistake is to confuse these two things. For example, the position graph being below the horizontal axis does not mean the object is
moving in the  direction, and a positive slope of the velocity graph does not mean that the object is moving in the  direction.
Once again, the acceleration graph does not – by itself – provide information about the direction of the object's motion, because the
question of above-or-below the horizontal axis for the velocity graph cannot be answered when the acceleration graph only gives
the  vs.  graph's shape.

Q4: Is the object speeding-up or slowing down?

This is probably the trickiest question of all, because it doesn't have a direct correlation to the value or slope of any of the graphs.
To make this determination, you actually need two pieces of information – the directions of both the velocity and the acceleration.
This is because if the object is accelerating in the same direction that it is moving, then it is speeding up, and if it is accelerating in
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the opposite direction as the direction of motion, then it is slowing down. We therefore cannot determine the answer to this
question from the acceleration graph alone, because that graph by itself does not provide the direction of motion (the function 
associated with this acceleration could be above or below the horizontal axis anywhere). We can determine speeding-up/slowing-
down from the  vs.  graph, by comparing the slope of the graph with the value of the graph at the same point. If they have the
same sign, then the acceleration is in the same direction as the velocity, and it is speeding up. If they are opposite, then it is slowing
down. But there is a simpler, physical way to make this determination: If the  vs.  graph at the point in question is heading closer
to the horizontal axis, then its velocity is heading toward zero, and it is slowing down, while if it is heading away, it is speeding up.
Naturally horizontal parts of the the  vs.  graph represent motion in which the object is neither speeding up nor slowing down.

Making this determination from the  vs.  graph is even more challenging. Clearly if a section of the  vs.  graph is a straight
line, then the velocity is constant, and the object is neither speeding up nor slowing down. So what about when  is curved? The
trick to use here is to determine if continuing this curve will eventually cause the graph to go horizontal (i.e. reach a max or a min),
or vertical. If it is the former, then the object is slowing (a horizontal slope is stationary), and the latter is speeding up. Note that
both of these can occur for either concave or convex curves, for positive or negative slopes, and above or below the horizontal axis.

Exercise
For the position vs. time graph of an object moving in one dimension given below answer each of the four questions given above
for every segment of time indicated by the different colors.

Solution

Exercise
For the velocity vs. time graph of an object moving in one dimension given below:

a. Answer each of the four questions given above for every segment of time indicated by the different colors.
b. Sketch the position vs. time and acceleration vs. time graphs associated with this same motion. Assume that the object was at

the origin at time .

v(t)

v t

v t

v t

x t x t

x (t)
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Solution

a.

b.
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Integrating Using Graphs
We have already seen that we can derive equations of motion for  and  by integrating their derivatives, and we know that
integrals of functions equal the areas under the curves those functions represent, so we can use this knowledge to tie together these
two facts. If we are given the graph of a motion, we can compute the area under the curve between the starting and ending points to
get a definite integral, and therefore the change between the starting and ending values. So for example, if we again assume
constant acceleration, a velocity-vs-time graph is a straight line whose slope is the acceleration. The area under this line from the
starting time to the ending time will be the displacement between these two times (note: we still don’t know the positions for these
times, only the change in positions). This actually demonstrates the average velocity relation we found earlier:

Figure 1.5.1 – Area Under Velocity Curve Is Displacement

Notice that it is vital that the acceleration is constant for this formula for average velocity to come out, because the area under the
curve involves the area of a triangle that requires a straight line on top. Of course, the average velocity could accidentally come out
to equal the arithmetic average of the starting and ending velocities when the acceleration is not constant (if the area under the
curved graph happens to equal the area under the straight line graph between the same two points), but we cannot rely on such
coincidences when solving problems. Moreover, this means that we cannot assume the converse – if the arithmetic mean of a
starting and ending velocity equals the average velocity, we cannot conclude that the acceleration was constant over that time
interval.

This page titled 1.5: Graphing is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman directly on
the LibreTexts platform.
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1.6: Motion in Multiple Dimensions
Now that we have mastered the simplest form of motion, it’s time to branch out to more general cases. We will continue to only
consider the motion of individual particles (or equivalently rigid objects that don't rotate), but bo longer will the motion of objects
be constrained to move along a straight line. Of course, this means that we can no longer allow simple positive and negative values
to tell us about directions – we need to introduce vectors into the story. Fortunately, we have built our vector mathematics tools to
the point where we can make use of them here.

Position and Displacement
Without the luxury of being able to describe the position of an object with a single (positive or negative) value, we now have to do
so in terms of something called a position vector. If we assume a coordinate system is in place, the position of the object can be
described by its coordinates, x, y, and z. These also happen to be the components of the position vector, which we define as the
vector that points from the origin to the point in space:

If an object moves from one position to another, then clearly it is displaced, and we can describe this displacement in terms of the
change of the position, as we did for straight-line motion. The only difference is that here we create a displacement vector:

Figure 1.6.1 – Displacement Vector

Velocity

We follow the same process as we did with straight-line motion to determine average and instantaneous velocity vectors. Namely,
we define the average and instantaneous velocities in terms of the rate of change of the displacement:

While this vector formula might appear to imply that the direction of the velocity vector is the same as the direction of the position
vector, it's important to understand that in fact the direction of the velocity vector is the same as the direction of the infinitesimal
change of the position vector. Let's look at an example that makes this clear...

Consider a particle moving in the  plane. Its time-dependent position vector can be expressed in terms of its time-dependent
components as:
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For the sake of this example, let's suppose that the particle's position components have the following time dependences:

Now we can calculate the velocity vector by taking the time derivative of the position vector. The unit vectors  and  don't change
with time, so the derivative is simply:

The position vector changes in both magnitude and direction, while the velocity vector does neither. This demonstrates that the
formula that relates the position and velocity vectors might appear to imply some kinship between these vectors, but in fact the
presence of the derivative removes the possibility of generalizations like them pointing in the same direction. A diagram of this
example for three different times should help visualize this difference:

Figure 1.6.2 – Comparison of a Position Vector and the Related Velocity Vector

Acceleration

Naturally acceleration works the same way as velocity in terms of the calculus:

Alert
Notice that if we confine ourselves to motion in just one dimension (say the -axis), then we get exactly the equations we
obtained in Section 1.3. So what motion in three dimensions amounts to is additional bookkeeping – we have three separate sets
of kinematic relations to keep track of, instead of only one.

Splitting Direction and Magnitude – Velocity

Alert
Students occasionally struggle with what follows, perhaps because the idea of a unit vector is still a bit abstract to them. If you
find yourself in this situation, you should spend a little extra time to become comfortable with these ideas, as they are central to
everything that follows in this course.

We know that whenever we take the derivative of a vector like position (to obtain velocity) or velocity (to obtain acceleration), a
non-zero result comes about when that vector is changing in some way (magnitude, direction, or both). Let’s see what happens if
we split these two vector properties up and treat them separately...

The unit vectors we have encountered to this point have been exclusively the cartesian unit vectors – those that point in the , ,
and  directions: , , and . When we first encountered unit vectors, we saw that a vector can be written as a product of its
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magnitude and the unit vector that points in its direction (Equation 1.1.2). If this vector happens to be changing direction over time,
then unlike the cartesian unit vectors, this unit vector changes over time. As a first example, let's look at what this means for the
position vector (the derivative of which is the velocity vector). We know how to express the position vector in terms of cartesian
unit vectors (Equation 1.6.1), but in terms of its magnitude and directional unit vector, it is written in the same manner as Equation
1.1.2:

Recall that when a vector's variable name (in this case, ) is written without the arrow over it, it refers to the magnitude of the
vector. In this case, this magnitude is, in terms of the cartesian components:

Referring back to Figure 1.6.2, we see a case where both the magnitude and direction of the position vector are changing. Therefore
when we compute the velocity vector, the derivative will act on both the magnitude and on the unit vector, and it turns out that the
usual product rule works perfectly well here:

Alert
This was just stated above, but it bears repeating... The cartesian unit vectors don't change with time (they always point in the 

, , and  directions), but other unit vectors (like ) can and do change with time, so their derivatives don't automatically
vanish. It is the derivative of this unit vector that determines how that vector's direction is changing.

Okay, so let's consider the following questions:

Conceptual Question
How is Equation 1.6.9 affected when the object happens to be moving either directly toward or directly away from the origin?

Solution

If the object is moving directly toward or away from the origin, then the position vector (whose tail is at the origin and head
is at the object) is always pointing in the same direction, but never changes direction. Therefore the second term in that
equation vanishes, leaving only the first term.

Conceptual Question
How is Equation 1.6.9 affected when the object happens to be moving such that its distance from the origin never changes?

Solution

If the object's distance from the origin never changes, then the magnitude of the position vector is not changing, which
means that the first term vanishes. Clearly in order to move while staying the same distance from the origin, the direction of
motion must be changing, so the second term is not zero.

But wait, an object moving such that its distance from a single point never changes must be traveling in a circle (assuming its
motion remains in a plane). So this velocity vector is that of circular motion around the origin. A general velocity vector (one in
which neither term from the product rule vanishes) can therefore be thought of as a vector sum of a velocity vector that points
radially outward from an origin, and one that points tangent to a circle centered at that origin. Geometrically, it looks like this:

Figure 1.6.3 – Parallel and Perpendicular Components
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Clearly the derivative of the position unit vector is a new vector that is perpendicular to the position unit vector. We can check to
see if this is true, as well as make sense of all this by returning to the easier-to-work-with cartesian unit vector approach. We do this
by writing the position vector in polar coordinates. Using  as the angle in the diagram above, we use trigonometry to break the
position vector into  and  components, written in terms of  and :

Combining this with Equation 1.6.1 and Equation 1.6.7 gives us the position unit vector in terms of the cartesian unit vectors:

It's easy to confirm that this unit vector has a length of 1, as it should. The claim above is that the time derivative of  is
perpendicular to  itself, which we can now check directly, using our clever tool from Section 1.2 – the scalar product of these two
vectors should vanish. Start by computing the derivative of the position unit vector. The cartesian unit vectors have zero derivative,
but of course  can be changing as the object moves, so:

Now perform the dot product:

Exercise
Show that the time derivative of any unit vector is either zero (as in the case of ) or is perpendicular to the unit vector itself (as
in the case of ). [Hint: The product rule for the derivative works for the scalar product.]

Solution

Naturally the derivative of the number 1 is zero, and this happens to be the result of a scalar product of a unit vector with
itself, so applying the product rule:

This can only equal zero if the vector resulting from the derivative is zero, or it is perpendicular to .

Splitting Direction and Magnitude – Acceleration

Above we found that a velocity vector can be broken into two components – one parallel to the position vector and one
perpendicular to it. The first accounts for velocity in line with the origin, and the second for velocity tangent to a circle around the
origin. This has few applications in physics, because typically the choice of origin is arbitrary. But when we extend the use of this
vector calculus machinery to acceleration, it gets more interesting and far more useful, as we will see.
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r̂

r̂

θ

= (cosθ   +sinθ ) = −sinθ( ) +cosθ( ) = (−sinθ +cosθ )
dr̂

dt

d

dt
î ĵ
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ĵ

dθ

dt
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If we replace the position vector with the velocity vector and follow the same procedure as above, we get for the acceleration:

Once again we see that the product rule separates the derivative into a sum of two vectors: one that is parallel to the original
velocity, and one that is perpendicular to it. For future reference, we'll right the two terms this way:

We already know that the acceleration vector is the rate of change of the velocity vector, and that the velocity vector includes the
speed and direction of motion, so here we see that the acceleration breaks into two vectors: , which handles only the change of

speed, and , which handles only the change of direction. If only the first term is non-zero, then the object is speeding up or
slowing down in a straight line. If only the second term is non-zero, then the object is neither speeding-up, nor slowing down, but
its direction of motion is changing. We will get a lot of mileage out of this division of labor in the chapters to come.

Analyze This
A particle moves through space with a velocity vector that varies with time according to:

where  and  are positive constants.

Analysis

We know the velocity vector as a function of time, so a derivative with respect to time gives us the acceleration.  The unit
vectors  and  are unchanging, so their derivatives are zero, which means that the acceleration is constant and exclusively
in the  direction:

With only one component of the velocity changing, and the other remaining fixed, the direction of motion must be changing.

In addition, with the magnitude of the velocity equal to: , and  constant while  changes, the

magnitude of the velocity must also be changing.  This means that if we were to express the velocity vector in terms of its
magnitude and directional unit vector, then both terms of Equation 1.6.14 would be non-zero.

We can even determine both of these terms by doing some calculus.  The first term is easier than the second to obtain
directly, so we can do that and then just subtract it from the full acceleration (given above) to get the second term.  The first

term is , where:

Proceeding to the second term :
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î ĵ
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1.7: Examples of 2-Dimensional Motion

Circular Motion

Using what we just derived regarding the parallel and perpendicular components of acceleration, we turn now to the special case of
an object traveling in a circle. The parallel part of the acceleration obviously always points tangent to the circle, which narrows it
down to two directions at any given point on the circle. If the object is speeding up, then of course the tangent points in the
direction of motion, and if it is slowing down, the tangent vector points in the direction opposite to the motion. The perpendicular
part must be at a right angle to this tangent, which means it must be toward or away from the center of the circle. Unlike the tangent
case, however, both directions are not possible. We can see this by considering the average perpendicular acceleration vector over
two nearby moments in time:

Figure 1.7.1 – Direction of Centripetal Acceleration

What is the magnitude of this centripetal acceleration? Well, it depends upon how fast the object is going (the faster it is moving,
the more acceleration is required to turn in the same circle), and the radius of the circle (the acceleration is greater when the radius
is smaller). Deriving the magnitude is left as an exercise, but the answer comes out to be:

Sometimes circular motion is the result of something rotating. For example, a bug on the outer rim of a rotating turntable travels in
a circle, and therefore experiences centripetal acceleration. Well, when we deal with rotating objects we often know only the rate of
its rotation (say in units of revolutions per minute), and we have to translate into linear motion to know the speed. There is a simple
and standard way to do this.

Digression: Radians
If we are talking about rotational motion, we need to discuss how we measure such motion. We clearly don’t measure the speed
of a spinning top or turntable in terms of meters per second, but rather how much it turns in a period of time. How does one
measure the angle through which something turns? One way is to divide the full circle up into 360 equally-sized pie slices. The
magnitude of one of these angles we call a 'degree.' But really this division is arbitrary. So why was 360º selected? Well, given
that we often have to deal with slices of pie, we can avoid having to use fractional degrees if we select a number with lots of
factors, and 360 certainly fits the bill – it is divisible by 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 120, and 180.

But there is no reason at all that divisibility needs to be our only criterion. In fact, we don’t even need to divide the circle into an
integral number of pieces. For example, we could divide it into 7.5 pieces and call the size of each piece “1 flibber.” We can
even translate between different systems of units:  = 48º.

But there is another criterion that leads to a definition of a measurement of angles that is different from degrees. Suppose we
want a simple translation from angle to arclength (the distance traveled along the circular curve subtended by that angle). We
know that traveling around an entire circle requires a journey of a distance equal to  times the radius of the circle. So going
around some fraction of a circle requires a journey equal to that fraction times . So if we divide the circle into an uneven
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number of pieces such that  of these pieces fit into the circle, then in these units you can calculate the arclength by just
multiplying the angle measured in those units (called radians) by the radius of the circle:

If we want to translate between the speed that something is going around the circle to the angular speed at which the slice of the pie
is being swept-out by this motion, we need only take a derivative:

This gives us an alternative way of expressing the centripetal acceleration:

Analyze This
A bead is threaded onto a circular hoop of wire which lies in a vertical plane. The bead starts at the bottom of the hoop from
rest, and is pushed around the hoop such that it speeds up at a steady rate.

Analysis

The tangential motion of the bead is in one dimension, so we can use the usual kinematics equations to describe its motion
along the circle. That is, equations like:

can be used here, where the displacement  is the distance measured around the arc of the circle. So if the bead
goes all the way around, then  is just the circumference of the circle.

The fact that the bead "speeds up at a steady rate" means that the part of the bead's acceleration in its direction of motion
(i.e. tangent to the circle) is a constant.  This is not to say that the acceleration of the bead is constant, however.  Its motion
is changing direction, which means that there is a component of acceleration perpendicular to its velocity (in this case,
centripetal).  Given that the magnitude of centripetal acceleration depends upon the radius of the circle (which in this case
doesn't change) and the speed of the object (which in this case does change), then this component of acceleration is
changing in magnitude over time.

We can apply some general mathematics to this case.  If we call the constant acceleration tangent to the circle , then since
it starts from rest, the speed of the bead tangent to the circle at any given time is just . If we call the radius of the
circle , then we can write down the centripetal acceleration as a function of time as:

Projectile Motion
For circular motion, we have the components of velocity changing in tandem in a specific manner to keep the path circular.
Another – actually simpler – form of motion involves only a single fixed coordinate component of velocity changing, while the
other components involve no change in velocity. What I am alluding to here is projectile motion, which comes about because the
vertical component of motion is subject to constant acceleration (as we discussed when we talked about free-fall), while the
horizontal component is unaffected by gravity’s influence. This kind of motion is only one small step from the free-fall we are
already familiar with, in that it includes a totally independent horizontal component of motion that incorporates (to the extent that

2π
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air resistance can be ignored) no acceleration. As simple as this sounds, a couple of examples muddy the waters a bit, and sorting
them out is very instructive:

Conceptual Question
A hunter climbs a tree and fires a bullet directly at a monkey that is hanging from a branch of another tree at precisely the same
height as the barrel of the hunter’s gun. The instant the bullet leaves the gun, the monkey lets go of the branch. Ignoring air
resistance (and the size of the monkey - assume it is very small), what is the fate of the monkey?

A. The monkey will be hit by the bullet.
B. The bullet will pass beneath the monkey.
C. The bullet will fly over the monkey’s head.
D. Whether the bullet flies over the monkey’s head or passes beneath it depends upon how fast the bullet is moving when it

leaves the barrel of the gun.
E. What kind of jerk shoots a monkey?

Solution

A (and E). The vertical motion of the monkey is independent of the horizontal motion, so in equal time spans, the bullet falls
the same distance as the monkey. Since they started at the same level, they remain at the same level at all times, including
when the horizontal position of the bullet equals the horizontal position of the monkey.

Conceptual Question
After falling out of the tree the last time he tried to shoot a monkey (his gun misfired), the hunter now decides to shoot a monkey
from the ground. He is aiming upward at an angle, and is assuming the monkey will again let go of the branch just as the bullet
is on its way. How should the hunter aim this time, if he is to bag his simian prize?

A. He should aim right at the monkey.
B. He should aim above the monkey.
C. He should aim below the monkey.
D. Unlike the level-shot case, where he should aim this time does depend upon how fast the bullet is coming out of the gun.
E. The jerk should just aim at himself.

Solution

A (and E). If there was no gravity, the bullet would follow a straight line to the monkey. With gravity acting straight down,
the amount that the bullet drops below that straight line is the same that an object starting from rest on that straight line falls
in an equal time. So the bullet and the monkey remain the same distance from the straight line at all times. When the bullet’s
horizontal position equals the monkey’s horizontal position, they will coincide.
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The only difference between this example and the previous one is that in the previous case, the line joining the barrel of the
gun and the target was horizontal. Still, not everyone may be as convinced in this case as in the previous one, so let's do the
math...

Suppose there is no gravity. The path that the bullet takes (  as a function of ) can be written down pretty easily. If the point
where the bullet exits the barrel is chosen to be the origin, then the straight line to the monkey has a slope equal to the ratio
of the vertical and horizontal components of velocity:

Now suppose there is gravity. We have separate horizontal and vertical equations of motion. Again, with the bullet starting
at the origin, we have:

Now solve for  in the first equation and plug it into the first term of the second equation to get:

Comparing this with the first equation above, we see that the  value would follow the same straight line if not for the
second term, and the amount that the height of the bullet  is decreased from that line after a time  is exactly the same
distance that the monkey falls from that line in the same time.

With the number of variables and constants involved in projectile motion problems, there are countless ways to construct problems.
There is no substitute for independent thinking and creativity, but the steps given below provide a good starting point for solving
these kinds of problems.
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Draw a picture, labeling it as completely as you can, using information you have been given. Then spend some time thinking
about what is happening – put yourself into the situation.

Alert
While this is given as a step for projectile problems, this is actually how you should start every physics problem!

Pick an ,  origin as well as  and  directions. Often for projectile problems up is chosen as the positive direction
(making the acceleration due to gravity a negative value), but this is by no means required. What is important is that you use the
positive direction consistently throughout the constants and variables in the equations.
Break any initial velocities into components along the  and  directions.
Write down the equations of motion, circling quantities that you know, and underlining the number you are looking for. If you
have too many un-circled quantities for the number of equations available, you cannot yet do the algebra, so you’ll need to
review the statement of the problem for any values concealed in the language of the problem (if you just scan a problem for
numbers without carefully reading it, you will miss these).
Solve the algebra and reconstitute components back into vectors, if necessary.
Briefly check to see if the answer makes sense.

Alert
This is actually how you should end every physics problem!

One thing in projectile motion that is a useful tool is known as the range equation. This was of particular use to military firing
cannonballs or (farther back in history than that), catapults. This equation relates the distance that a projectile will fly assuming it
lands at the same vertical position that it started, given the starting speed of the projectile and the starting angle. Let’s treat finding
this equation as if it was a projectile motion problem given to us, and follow the procedure outlined above

Analyze This
A cannonball is fired at an angle  up from the horizontal at a speed of , along level ground. Ignore air resistance in your
analysis.

Analysis

The diagram below labels the origin and the + directions. It sure seems like knowing the initial angle and speed (as well as
the fact that the ground is level) should be sufficient to determine how far the cannonball travels. We will therefore look for 

 (referred to as the "range") in terms of the initial speed  of the projectile and the launch angle , which we treat as
known values. The rest of the procedure and algebra is given below.
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It is interesting to note that for any given launch speed, there are in general two (complementary) angles that correspond to
the same range (except for ).  For example, a cannonball fired at  will land at the same place as a cannonball
fired at the same speed at an angle of .

It is also possible to determine the angle at which the range is maximized for a given velocity. Treating  as a constant and
maximizing the function  gives:

Analyze This
Two warlords aim identical catapults (i.e. they both release rocks at the same speed) at each other, with both of them being at
the same altitude. The warlords have made the necessary computations to crush the other, and fire their catapults
simultaneously. Amazingly, the two stones do not collide with each other in mid-air, but instead the stone Alexander fired passes
well below the stone that Genghis shot.

Analysis

These are two projectiles fired with equal speeds to equal ranges, but using the result from the previous analysis box, we
know they must have been fired at complimentary angles.  While the ranges are the same, the times are not, since the time for
the full flight is twice the time from the apex to the ground, which means that the projectile fired at the lower angle (which
will reach a lower peak height) will reach its target first.  Because Alexander's stone passes below Genghis's stone, it must
have a greater  component of velocity, which means that when the stones pass by each other, the crossing point must be
closer to Genghis than Alexander, and Alexander's stine is on the way down, while Genghi's is still on the way up.  It looks
something like this:
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If we knew something about the times these projectiles take to hit their targets, we could relate the (constant) -components
of their velocities. Combining this with the knowledge that they have equal total speeds and are fired at complementary
angles gives us a lot to work with.

This page titled 1.7: Examples of 2-Dimensional Motion is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Tom Weideman directly on the LibreTexts platform.
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1.8: Relative Motion

Reference Frames

Our last topic for motion in multiple dimensions relates what different observers of the same motion measure for velocities. Let's
start with the following simple example:

Ann and Bob are traveling on a train together. The train is traveling north at 60 mph, and while Bob remains in place on the train,
Ann runs south through the dining car at 10 mph. Bob sees Ann traveling south at 10 mph, but Ann & Bob's mutual friend Chu,
who is off the train and looking through the windows, sees Ann moving north at 50 mph. Both Bob and Chu are witnessing the
same event, but they are doing so from do distinctly different perspectives, which we call reference frames. As a result of being in
different reference frames, Bob and Chu make different measurements of Ann's velocity vector (they disagree on both the
magnitude and direction of her motion).

If we can clearly describe how the two reference frames are related to one another, we can translate between Bob's measurements
and Chu's by doing the proper mathematics. In the example above the mathematics is intuitive, but we will want a systematic way
of doing it for more complicated situations, such as when the motions are not along the same line. It shouldn't be surprising that the
way to do this is to bring vectors into the conversation.

Relative Velocity Vectors

We begin by introducing some language. When an observer – who we will call " " – in a given reference frame measures the
velocity vector of an object (or another frame) – which we will call " " – we express this vector in words and symbols in this way:

Let's see if we can put the above example into this language. There are three entities here. Two are frames and on is a moving
object. The moving object is Ann, and she is being observed by Bob, in the reference frame of the train, and Chu, in the reference
frame of the earth. In the example, we expressed three different relative velocity vectors:

Let's represent these three vectors as arrows beside each other in a diagram:

Figure 1.8.1 – Relative Velocity Vectors

The first thing we notice when we look closely at these is that our intuitive understanding of the original statement of the situation
can be represented as a vector addition. Placing the the tail of the first vector at the head of the second vector, we find that the third
vector can connect the open tail to the open head. In other words, we can express the result of the above example as a vector
addition:

Note the ordering of the frames here is like a chain connecting Ann to Chu through Bob: Ann relative to Bob, then Bob relative to
Chu, gives Ann relative to Chu. It turns out that this vector equation works not only when the velocities lie along a line, but also
when they do not. For example, we can use the same vector equation if Ann were walking across the train (perpendicular to its
motion.

A

B

" velocity of B relative to A " ⟺ v
→

B rel A (1.8.1)

" velocity of Bob relative to Chu "⟺ = (60mph)v
→

b rel c nortĥ

" velocity of Ann relative to Bob "⟺ = (10mph)v
→

a rel b soutĥ

" velocity of Ann relative to Chu "⟺ = (50mph)v
→

a rel c nortĥ

(1.8.2)

+ =v
→

a rel b v
→

b rel c v
→

a rel c (1.8.3)
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There is one other feature of these relative velocity vectors that we will need, and that is reversing the perspective. In the case
above, we have that Ann is moving 10 mph south relative to the Bob, but we can also talk about how Ann sees Bob moving relative
to her. Bob starts off south of her, and as she runs by him, he ends up north of her. Therefore from Ann's perspective, Bob is
moving north at 10 mph. So there is a simple way to alter a relative vector to reverse the perspective of reference frames: Switch
the two frames in the subscript, and reverse the direction of the vector (i.e. multiply the original vector by –1). Here is a summary
of these two rules:

Figure 1.8.2 – Summary of Relative Velocity Rules

Analyze This
You stand on the bank of a river, contemplating swimming across, but the place where you hope to cross is just upstream of a
dangerous waterfall. When you look at the speed of the river, you estimate that it is about the same speed as you are able to
swim.

Analysis

This scenario involves three reference frames: the swimmer, the river, and the Earth (or equivalently, the river banks).  This
provides for several relative velocity combinations: swimmer relative to river, river relative to Earth, swimmer relative to
Earth, and the reverse-order of all three of these. The trick to analyzing such situations is having a clear interpretation of
what each of these means, and then following the two vector rules for relative motion given above. So let's start with
interpretation...

The velocity of the swimmer relative to the river is related to the swimming ability – how well they can move through the
water.  This applies to both speed and distance.  For example, if the swimmer in this case swims directly upstream, they get
nowhere, because the river motion cancels the swimmer.  But this doesn't mean the swimmer doesn't get a workout!  The
distance swam relative to the river is not zero, and when this displacement is added to the displacement of the river relative
to the Earth, then the result is zero displacement relative to the Earth. So any information given about how fast or how far
the person can swim is incorporated in this "swimmer relative to river" vector.

The velocity of the river relative to the Earth is self-explanatory - it is the magnitude and direction of the velocity of the river
as you watch it go by while standing on its banks.
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The velocity of the swimmer relative to the Earth is the motion of the swimmer that an observer on the riverbank sees,
without regard to what the water is doing.  If the person is swimming upstream, this velocity is zero in this case, and
downstream it is twice as fast as the person can swim in still water. Across the stream, their are components parallel and
perpendicular to the river flow.

These three velocity (or, if multiplied by a common time, displacement) vectors are related to each other according to the
rules given above, with extra care being given to make sure that the order of "a relative to b" is correct, and including the
proper signs where needed.

Problems such as this one often come down to using an upstream component of swimming velocity to slow or stop the rate at
which the river sweeps the person downstream, while using a perpendicular component to make progress in crossing. If the
swimmer (or boat) can move faster than the water, then it is possible to completely cancel downstream progress and still
have some component of velocity to move across.  In this case, this is not possible, since the river is flowing at the same
speed as the swimmer can swim. So the swimmer is guaranteed, no matter what angle they take, to be swept downstream
some amount if they want to get across.

Obviously quantities like the width of the river and how far upstream the swimmer starts will be important for most
calculations related to this scenario.  The specific swimming speed and river speed are unlikely to play a role, as they are
given to be equal (though it is possible they could still be needed if the time of the swim is to be calculated).

Galilean Transformation
Let's now consider two observers in difference reference frames that are moving at a constant speed relative to one another, which
we will call . We'll define the coordinate systems of these two observers such that their origins coincide at time , and both
observers agree on this starting time. Since the frames are moving relative to each other, this common origin only lasts for that one
instant in time. We'll also define the coordinate systems such that they have common , , and  axes when their origins coincide,
and have their relative motion be along their common -axis. We will label position coordinates and time measured by the frame
moving in the -direction with a prime, to distinguish it from the other frame.

Suppose both observers record the motion of the same object. One observer gets equations of motion of this object for its three
spatial coordinates  as a function of time , while the other observer gets equations of motion of the object for 
as a function of time . The question we want to answer is, "Given what we know about how these frames are related to each other,
what are the relations between the primed and unprimed coordinates?"

Let's start by noting that when the primed observer's origin has moved a distance  relative to the unprimed observer's origin, the -
component of an object's position measured in the unprimed frame will be greater than the same component measured in the
primed frame by that amount:

Figure 1.8.3 – Relating Coordinates of Reference Frames

We defined the frames so that their origins coincided when each of them measured the time to be zero, so the distance  is simply
equal to . The only difference in the two frames is in the -direction, and the clocks are synchronized, so we have a complete
translation of the two frames:
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These are referred to as the Galilean transformation equations. They translate the coordinates of one frame into another that is
moving relative to the first, with the restrictions indicated above regarding coinciding origins and so on. While this may not seem
particularly interesting, keep in mind that these coordinates (when combined with cartesian unit vectors) compose the position
vector, whose first derivative with respect to time is the velocity vector, etc. That is, every element of 3-dimensional kinematics –
all the equations of motion of observed objects – can be translated into what they would be in another frame of reference through
this transformation.

Exercise
Ann and Bob are observers from different reference frames in relative motion, with all of the conditions necessary for their
coordinate systems to be related by the Galilean transformation given above (Bob is in the primed frame, moving in the -
direction relative to Ann at a speed ). Ann observes a toy rocket moving in the -direction with a speed . Show that the
velocity vector of this same rocket as measured by Bob is the same as would be obtained using the method of relative velocity
vectors described in the previous section.

Solution

Let's start by computing the velocity vector of the ball according to Bob using the Galilean transformation. Taking the
derivative of the position components with respect to time gives the components of the velocity vector seen by Bob, so
substituting for  and  in the derivative gives:

Now let's use the tail-to-head relative velocity vector method from the previous section. The velocity of the rocket relative to
Ann is , and the velocity of Bob relative to Ann is . To get the velocity of the rocket relative to Bob, we need to form
the "vector chain," which means we first need to get the velocity of Ann relative to Bob. Swapping the relative order requires
only a minus sign, so doing this and putting together the vector chain gives:

 

This page titled 1.8: Relative Motion is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman
directly on the LibreTexts platform.
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Sample Problems
All of the problems below have had their basic features discussed in an "Analyze This" box in this chapter. This means that the
solutions provided here are incomplete, as they will refer back to the analysis performed for information (i.e. the full solution is
essentially split between the analysis earlier and details here). If you have not yet spent time working on (not simply reading!) the
analysis of these situations, these sample problems will be of little benefit to your studies.

Problem 1.1
The acceleration of a particle moving along the -axis is given by the equation:

The particle is at position  and is moving in the  direction at a speed of  at time .

a. Find the time at which the particle (briefly) comes to rest.
b. Find the position where the particle (briefly) comes to rest.

Solution

a. From the analysis, we have an equation for the velocity of the particle at all times. Here we are given all the constants we
need, namely:

So all we need to do is plug these into the velocity equation, set the velocity equal to zero, and solve for the time in the
quadratic equation:

b. We just computed the time at which it comes to rest, and we already derived the equation for position in the analysis, so
we can just plug the values in, noting that the position at time  is given to be :

Problem 1.2
A ball is thrown vertically upward at the same instant that a second ball is dropped from rest directly above it. The two balls are 

 apart when they start their motion. Find the maximum speed at which the first ball can be thrown such that it doesn't
collide with the second ball before it returns to its starting height. Treat the balls as being very small (i.e. ignore their
diameters).

Solution

The balls will collide at the point in time derived in the analysis, with the starting difference in height being given as 
. The problem states that this time must be at least as long as it takes the lower ball to return to its starting

point.  In such a flight, the lower ball makes a total displacement of zero, so since we know its acceleration, we can solve for
the time of travel in terms of the initial speed:

If we plug this into the equation found in the analysis that relates the starting speed to the time of collision, we will find the
starting velocity for which the balls will collide exactly at the lower ball's starting height.:
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Clearly is the lower ball starts at any speed greater than this, then the balls will collide sooner, and they will have not yet
fallen to the starting position of the lower ball.

Problem 1.3
A particle moves through space with a velocity vector that varies with time according to:

where  and  are positive constants. Find the rate at which the speed of this particle is changing at time . Does this rate
remain the same for all later times?

Solution

We already did all the math we need in the analysis.  The rate of speed change is just , which is computed in the analysis.

Plugging-in  gives a rate of speed change that equals zero!  We see this does not remain true for all values of ,
because it only vanishes at .

The reason for this is that the acceleration vector is a constant, and is initially perpendicular to the velocity vector:

So at that moment, the acceleration only changes the direction of motion (does not speed it up). But after , the constant
acceleration has not changed, and the particle is moving in a new direction, so the acceleration then does change the speed.

Problem 1.4
A bead is threaded onto a circular hoop of wire which lies in a vertical plane. The bead starts at the bottom of the hoop from
rest, and is pushed around the hoop such that it speeds up at a steady rate. Find the angle that the bead's acceleration vector
makes with the horizontal when it gets back to the bottom of the hoop.

Solution

As stated in the analysis, we can treat the motion tangent to the circle like any other 1-dimensional accelerated motion. In
this case, the distance the bead travels is given, so the "no time" kinematics equation (Equation 1.4.3) is most
applicable. Let's call the radius of the circle  and the final velocity . The tangential acceleration is constant, the bead
starts from rest, and the bead travels one circumference, so we get:

The centripetal acceleration is toward the center of the circle, so it points upward and its magnitude is simply:

The tangent of the angle that the full acceleration vector makes with the horizontal is the vertical component divided by the
horizontal component, so:

Problem 1.5
A cannonball is fired at an angle  up from the horizontal at a speed of  along level ground. A second cannonball is fired at
the same speed, but at a different angle.  Both cannonballs travel the same horizontal distance before landing, but one of the
cannonballs takes twice as long to make the journey as the other. Find the two angles at which the cannonballs are launched.
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Solution

In the analysis, we found that except for a  launch angle, there are two values that correspond to the same range for a
given launch velocity, and that these angles are complementary. From the vertical equation in the analysis, we have the
following flight time for a given angle and launch speed:

This applies to both cannonballs, so accumulating everything together we get:

Problem 1.6
Two warlords aim identical catapults (i.e. they both release rocks at the same speed) at each other, with both of them being at
the same altitude. The warlords have made the necessary computations to crush the other, and fire their catapults
simultaneously. Amazingly, the two stones do not collide with each other in mid-air, but instead the stone Alexander fired passes
well below the stone that Genghis shot. Genghis is annihilated 8.0s after the catapults are fired, and Alexander only got to
celebrate his victory for 4.0s before he too was destroyed.

a. Find the maximum height reached by each of the rocks.
b. Find the amount of time that elapses from the launch to the moment that the rocks pass each other in the air.
c. Find the angles at which each warlord fires his rock.

Solution

Conceptual analysis of this problem is found here.

a. The time it takes a rock to travel to its peak height and back down again is equal to twice the time it takes to travel down
from its peak height. Traveling down from its peak height, it starts with zero initial velocity, so we can calculate the height
immediately for each rock:

b. The x–components of the velocities of the rocks never change, and since it takes 12s for Genghis’s rock to travel the same
horizontal distance as Alexander’s rock traveled in 8s, Alexander’s rock is traveling in the x-direction at a rate 1.5 times as
great as Genghis’s rock is traveling in the x–direction. When they are at the same x–position (passing each other), the
distance each has traveled is each one’s velocity times the time we are looking for, and we can express both of these
distances in terms of the x–component of Genghis’s rock using the ratio described above:

Since the rocks travel from both ends and are now at the same horizontal position, the sum of the distances they travel equals
the total separation of the two warlords. This allows us to calculate the time:
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c. Clearly there are two different angles that will result in the rock traveling the same distance. One can see this from the
range equation, but from a physical standpoint, this happens because one rock spends less time in the air but has a greater
x–velocity, while the other spends more time in the air with a smaller x–velocity. To spend 1.5 times as long in the air,
Genghis’s rock needs to start with 1.5 times as much vertical component of velocity as Alexander’s rock. This means that the
ratios of the x and y components of the two rock velocities are inverses of one another, which means that the two angles are
complimentary (i.e. ). But the total speeds of the rocks are the same, so:

Problem 1.7
You stand on the bank of a river, contemplating swimming across, but the place where you hope to cross is just upstream of a
dangerous waterfall. When you look at the speed of the river, you estimate that it is about the same speed as you are able to
swim. You realize that you can only swim so far in the cold water at this speed before your muscles shut down, and in still water
you estimate that this distance is about . The width of the river is about .

a. Find the minimum distance that you must start upstream of the waterfall in order to not be swept over it.
b. If the river flows west-to-east and you start on its south shore, compute the direction in which you must swim in order to get

safely across if you leave from the starting point computed in part (a).

Solution

The analysis discusses the relevant reference frames in this problem: the river, the swimmer, and the Earth.

a. Clearly to minimize the distance upstream that you need to start, you must swim with a component of your velocity relative
to the river being upstream. The more you are able to turn yourself upstream, the less you will float downstream, and the
closer you can start to the waterfall. But there is a limit to how far you can swim relative to the water, so your angle with the
river must be such that when you reach your limit relative to the river, you reach the other side. The velocities are all
constant and the time spans are all equal, so they are proportional to the displacements, which we can draw:

We are given that the speed of the river relative to the earth is the same as the speed of the swimmer relative to the water, so
we’ll call that quantity , and the width of the river (which we know), we’ll call w. From the Pythagorean theorem we can
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get the distance swum upstream against the current:

The distance the water moves downstream relative to the earth is clearly vt, so the total distance the swimmer moves
downstream is:

But we actually know the value of , because it is the maximum distance that the swimmer can go in the water. Plugging in
all the values therefore gives our answer:

b. The angle is easy to determine, since we know the length of the displacement vector of the swimmer relative to the water
and the width of the river:

This page titled Sample Problems is shared under a CC BY-SA license and was authored, remixed, and/or curated by Tom Weideman.
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2.1: Forces, Fundamental and Composite

Newton's First Law

We now understand how to handle motion in all its forms, but really we haven’t done much in the way of physics, because we
haven’t explained what causes these different motions. In ancient times, Aristotle made the observation that eventually all things
seem to come to rest, which led him to conclude that a stationary condition was “natural” for everything (well, everything on Earth
– heavenly bodies never seemed to stop moving). He stated that keeping things moving requires constant pushing or pulling, or it
would eventually settle into a state of rest.

This is a very intuitive way of describing the nature of things, and most people even today see the world this way. It wasn’t until
nearly 2000 years after Aristotle that a genius born on Christmas day would overturn that long-held belief. His name was Isaac
Newton, and he claimed that in fact nature behaved in precisely the opposite manner. Newton claimed that it was not natural for
objects to be at rest unless they were already at rest. If they were already moving, then it was natural for them to continue moving.
He claimed that it was the fact that objects on Earth could not escape the slowing effects of pushes and pulls that accounted for
them always coming to rest.

But Newton was more specific about this “natural state of motion.” He stated that the only type of motion that would continue
indefinitely if undisturbed by pushes or pulls was constant velocity (speed and direction) motion. That is, any motion that involved
changes of speed or direction requires a push or pull.

Newton's 1st Law of Motion
Objects at rest or in motion at a constant speed in a straight line will remain in that state unless acted upon by an external
influence.

Conceptual Question
A stone is swung in a horizontal circle while tied to a string, which suddenly breaks.  Which of the paths below represents the
motion the rock will follow? (these are paths viewed from above)

e. It depends upon whether the rock is speeding up or slowing down at the moment the string broke.

Solution

(d) The rock starts off moving in a circle, which means it was accelerating and according to the first law, it must have had
a force on it.  From the description of the motion, the only force contributing to that net force had to be the tension force by
the string.  At the instant that the string breaks, the force vanishes, which means that the rock can no longer accelerate.  Zero
acceleration means constant velocity, which means that whatever speed and direction the rock had at the moment that the
string broke, it must maintain.  Note that the rock has no memory whatsoever of the fact that it was accelerating just a
moment before, so it neither continues accelerating for a short time, nor does it compensate for the previous acceleration by
accelerating the other way.

Definition of Force
What we have been calling “pushes and pulls” or “external influences” is called force in physics. Most people have an intuitive
idea of what force is, and like so many other physics concepts, this intuition is very likely wrong. We'll start by saying what force is
not, then move on to its definition.

Alert
Force is not a quantity stored in, or possessed by, an object. Force cannot be transferred from one object to another, nor can one
claim that one object “has” more force than another. This can be a hard notion to shake.
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Definition: Force
Force is an interaction between two objects, which comes in the form of a push or a pull.

This simple definition belies some very difficult conceptual ideas that people (like Aristotle, and indeed every human since)
struggle with, as we will soon see. The trick will be for us to develop some tools we can rely on that will help us get past our
misconceptions. We will develop these tools in the sections to come, but here we will focus on the nature of forces that we
encounter in everyday life. But one thing we can conclude from this is that pushes and pulls have definite directions, which means
that we can conclude that forces are vectors.

Individual Particles vs. Systems of Particles
When we consider forces on and/or by individual particles, we find a couple of things.  First, all such forces act "at a distance." 
That is, particles never actually touch each other – it is useful to think of particles as being merely points, with no extension in
space, which makes them touching each other rather problematic. So these particles are somehow aware of each other's presence,
and exert pushes and/or pulls on one another. The second thing we find is that these forces only come in a limited variety of just 4
types: gravitation, electromagnetic, and two different types of nuclear forces. It is believed that while these forces all manifest very
differently (the forces depend upon different particle properties, and vary differently with particle separation), they ultimately are
different manifestations of a single force. Indeed, it was once thought that the electric and magnetic forces were distinct, until it
was shown quite conclusively that they are two sides of the same coin, and they are now referred to as a single force. It also
happens that modern theorists have shown that one of the nuclear forces (called the "weak nuclear force") is just a different
manifestation of the electromagnetic force. This combination is therefore often referred to as the "electroweak" force amongs
physicists. This particular unification of seemingly disparate forces is much harder to describe to those not fluent in the languages
of high-energy physics and advanced mathematics, and so the simpler (older) claim that there are four such forces lingers.  These
four (three) action-at-a-distance-between-individual-particles forces are called the fundamental forces.

Suppose now that we have two collections of particles, each of which we categorize as a "system", or more crudely, as an "object."
These two objects exert forces on one another in the following way: Every particle in system #1 exerts a fundamental force on
every particle in system #2.  The sum of all these forces we can now call a single "force between the two objects." Clearly due to its
cumulative nature, it is not "fundamental," but it is still nevertheless a force (we will use the word composite to describe these non-
fundamental forces), in that it will cause the affected objects to no longer remain at rest or in motion in a straight line at constant
speed. Given that much of what we will discuss are macroscopic systems where objects comprised of trillions of trillions of
particles exert forces on each other, it makes sense to categorize some of the more common examples of these composite forces.
But under it all, it is important to remember that all of these flavors of forces are just macroscopic special cases of just a few
fundamental forces.

Digression: Quantum Mechanics vs. Classical Mechanics
All of the discussion here (and later in this textbook) about fundamental forces and individual particles assumes that we are
employing a "classical" mechanical model for describing the universe. We have known for a long time that the realm of the very
small (i.e. individual particles) does not actually function in this manner. Nevertheless, physics is about using whatever model
we like that describes nature in a consistent manner that has predictive value for the conditions imposed on it. This classical
model will not work if we take an extremely close look at what is happening to particles, but here we are only using this model
to get a more general sense for what is happening macroscopically – the world where we look at enormous systems of particles
("objects" like chairs and bicycles) – and for this purpose, this model serves us very well.

Van der Waals Force

There is clearly a wide chasm that must be bridged in order to move a discussion from a fundamental force between two point-like
particles to a force between two cars in a traffic accident. The most important step in this daunting journey boils down to a simple
observation of what happens when two small clusters (systems you can call molecules, if you prefer) of particles are brought into
proximity with each other...

When they are at just the right separation, the clusters do not exert a net force on each other. Every one of the individual
particles of one cluster exerts a fundamental force on every particle in the other cluster, but the sum total of these forces is zero.
When the clusters are moved closer together than the "perfect separation" described in the previous bullet, a strange thing
happens – the sum total of fundamental forces between individual particles no longer comes to zero.  When they get too close,
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the clusters repel each other.
If the clusters are pulled slightly farther apart than the "perfect separation", then the composite force between the clusters
becomes attractive.

This simple-yet-amazing property of this composite force (typically referred to as a Van der Waals force) resulting from
many electromagnetic forces is what we have to thank for our very existence. If systems of particles could only (as in the case of
individual particles) only exert either attractive or repulsive forces on each other, then all matter would either collapse in on itself or
explode. We will not study the mathematics of this type of composite force for several chapters, but we will refer back to its
characteristic properties frequently later as we describe even more crude composite forces that we will work with in the
macroscopic world.

Alert
An astute reader that looks up "Van der Waals forces" (or who perhaps studied them already in a chemistry class) will
undoubtedly find that this name is generally given specifically to forces between particles in a gas. Indeed, this is the specific
phenomenon that Van der Waals studied. But it turns out that the property is much more robust than only applying to gases, so
we are taking some license here and referring to all forces that behave similarly with this moniker. In a later chapter, we will
discuss a mathematical model for this kind of force called the "Lennard-Jones potential." The point is that we should not get too
worked-up about labels we give this physical behavior – it is the behavior itself that is important.

This page titled 2.1: Forces, Fundamental and Composite is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Tom Weideman directly on the LibreTexts platform.
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2.2: Macroscopic Forces

Macroscopic Composite Forces
As instructive as it is to discuss the microscopic underpinnings of forces, at some point we need to have some working knowledge
of the macroscopic forces we will be dealing with in everyday mechanics problems. We undertake here to make an accounting of
these very forces.

gravity

As mentioned in the previous section, most of our macroscopic composite forces will ultimately stem from Van der Waals forces,
which themselves are a composite of just the electromagnetic force. But there is one exception – gravity. "But wait," you say, "isn't
gravity a fundamental force?" Yes, when it is between two particles. But the Earth is comprised of many particles, and so is a
hammer, so when a hammer is pulled downward by the Earth, the force is composite. If we were to look very closely at the details
of the force between these two objects, we would find that we have to describe it somewhat differently from the fundamental force
case.

Alert
In an attempt to maintain the distinction, we will refer to the fundamental force between particles (which we will study in
Chapter 7) as "gravitation", and the composite force between objects (one of them almost always being the Earth) as "gravity."

What makes gravity so different as a macroscopic force from the others we will discuss here is that it doesn't display a Van der
Waals sort of attract-if-pulled-apart-repel-if-pushed-together  behavior between clusters.   Unlike electromagnetism, there is no
repulsive element of gravity, so each of the individual particles in one cluster only attracts the individual particles in the other
cluster, resulting in only attractive forces between clusters.

Gravitation, like all fundamental forces, depends upon two things – a property of the gravitating particles (namely, their masses),
and the separation of those particles. When we are talking about the composite gravity force on a stone at the Earth's surface, we
assume that the stone never gets particularly far from that surface (even a mile above the Earth's surface is only about 1/4000th the
radius of the Earth), so under the assumption that the stone never gets really far from the Earth (like outside its atmosphere), the
gravity force remains only a function of the mass of the Earth, , and the radius of the Earth, , (both are fixed numbers), and
the mass of the stone, , (which can be different for different stones). This all boils down to a simple mathematical description of
the gravity force on objects like stones: It acts downward – toward the Earth, because it is only attractive – and is proportional to
the mass of the object.   The constant of proportionality we will call " ", a symbol we have not coincidentally already used to
represent the acceleration of a freely-falling object. It is this constant that depends on the mass and the radius of the Earth, 

, where  is the gravitational constant. We'll return to this when we cover gravitation in a later section. But  for
now:

The direction of this force (downward, toward the Earth) is expressed in the unit vector direction, .

elastic (spring) force

A good starting point for macroscopic manifestation of the Van der Waals effect is the force exerted by a spring, often referred to
more generically as an elastic force. This is a macroscopic force that very closely mimics the behavior of Van der Waals forces, in
that compressing the spring between two objects (moving them closer together) results in a force from the spring that seeks to push
the objects apart, and stretching the spring results in a force that seeks to pull them together. There is also an "equilibrium" length
of the spring at which no force is exerted at all. All forces of this nature are given the generic description of restoring forces, in that
the force induced by making a change from equilibrium seeks to restore the equilibrium.

The similarity between the spring force and Van der Waals forces is so strong that physicists frequently use particles
attached  springs as a model for microscopic behavior. Naturally there are not any tiny little springs bonding molecules to each
other, but the model allows for workable mathematics that yields remarkably accurate predictions.  The simplified mathematics is
apparent in the formula that accompanies the elastic force. The elastic force depends upon three things:

the displacement from the equilibrium (the distance that the spring is stretched or compressed)
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the "stiffness" of the spring (usually referred to as the spring constant)
whether the spring is compressed or stretched (this only affects the direction of the force, while the two previous items affect
the magnitude)

Figure 2.1.1 – Elastic Restoring Force

Putting these properties together mathematically gives:

The value   is the spring constant (which is always a positive number, and measures how stiff the spring is),  is the
displacement vector of the object on the spring from the equilibrium point, and the minus sign indicates the restoring nature of the
force, as it always points in the opposite direction of the displacement. This formula is commonly known as  Hooke's Law,
named after a contemporary (and rival) of Newton's.

Alert
Note that the usage of the " " in Hooke's law is different from how we have used it up to this point – here it refers to a
difference in locations, rather than a change that occurs over a period of time.

tension

Suppose that a spring is attached to a fixed point (say a wall), and someone pulls on the other end with a certain amount of force.
 Naturally the spring will stretch until the Hooke's law force grows to the point where it balances the pulling force. At this point,
the stretched spring also exerts the same Hooke's law force on the wall. In other words, the force the person exerts on the spring is
"transmitted" all the way to the wall. If we don't care about the intermediate elements of this force (i.e. the amount the spring
stretches), or equivalently, if the spring constant is so large that the stretch is negligible, then we have a simplified version of the
elastic force called tension, which we will usually denote with the symbol " ".

There is no "formula" for tension, as we saw for gravity and springs, because it is really just a reactionary force – it is determined
by other applied forces that are present. The amount that the person pulls on the string attached to the wall is the amount that the
tension force pulls on the wall. This cannot be expressed as a formula involving quantities related to the string and wall.

An interesting element of tension has to do with how its transmission direction can be redirected. For example, one can pull on a
rope attached to an object without the direction of the applied pull being the same as the pull on the object, if a pulley is involved.
We will spend some time on the effects of pulleys in the sections to come.

Alert
One will often see the phrase "tension in the string" used in the context of physics problems. It is very important that one does
not conceptually interpret this as force being stored within the string. A more accurate phrase in such cases would be "tension
force exerted on the object by the string."
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contact (normal) force

In the same way that tension is a simplified version of the elastic force in the case where a spring is stretched, contact force is a
simplified version of the elastic force when the spring is compressed. The one major difference is that there is no intermediate
object like a rope – it occurs when  two objects are in direct contact with each other. Of course, what we call "contact" at the
macroscopic level is really nothing of the kind microscopically.  The clusters of  particles at/near the outer surfaces of the two
objects that are close to each other repel, thanks to Vans der Waals repulsion. This repulsion is a restoring force similar to that of a
compressed spring. But like tension, for this force, we are not concerned with the details of the amount of compression or the
stiffness of the springs, just that the compression ceases when the applied force is balanced by the elastic force. Like the tension
force, this one is purely reactionary, and therefore has no formula that expresses it in terms of properties of the two objects in
contact.

An important property of this force is its direction. In the case of tension the direction was easy – just look at which way the rope is
pointing. For the contact force, the direction is always perpendicular ("normal") to the surfaces in contact. Note that the surfaces do
not need to be flat – even a curved surface has a well-defined perpendicular at a given point. This property is the source for a
perhaps more-commonly used name for this force, normal force, as well as for the most common symbol used to represent it, " ". 

friction

Another reason that the contact force between surfaces is referred to a normal force is that there is another force that results from
two surfaces coming in contact. While the normal force is perpendicular to the surfaces, the friction force is the force between the
surfaces that is parallel to those surfaces. As with the normal force, friction is a result of Van der Waals forces between clusters of
particles on one object's surface and clusters of particles on the other object's surface. But a critical feature for friction is the
microscopic irregularities that exist in the surfaces.

Figure 2.1.2a – Irregular Surfaces Pushed Together

As the surfaces are pushed together and the repulsive normal force starts to take effect, the irregularities naturally "mesh" with each
other. This meshing causes attractive and repulsive forces to take effect between the peaks of the irregularities along the
direction parallel  to the surfaces (horizontally, in the diagram above). If no external force is applied to the surfaces, then these
forces between peaks will balance themselves out (the objects will move very slightly across each other) to leave only the normal
force between the surfaces. If, however, the surfaces are offset from this equilibrium, some of the peaks will get closer (resulting in
a repulsive Van der Waals force), and some will get farther apart (resulting in an attractive Van der Waals force), and the net result
is a force that opposes this displacement.

Figure 2.1.2b – Effect of Trying to Slide Surfaces Across Each Other

Considering this is a microscopic view of the surfaces, it is clear that they are not shifted very far for this friction force to take hold.
Indeed, we would never even notice such a shift. Very much like the case of tension (where we do not observe the tiny stretch of a
string), or normal force (where we do not notice the tiny compression of a surface), the small displacement of this friction force is
unnoticeable and therefore appears purely reactionary – it occurs when we try to slide two surfaces across each other. This friction

N

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63065?pdf


2.2.4 https://phys.libretexts.org/@go/page/63065

force is what is occurring when we try to slide a heavy box across a floor, and it won't move. The friction force comes from the
restoring Van der Waals force from trillions of irregularities being displaced, and it exactly balances the applied force. Because it is
not related to ongoing sliding of the surfaces across each other, this is called static friction.

Of course, we know that friction also occurs when the surfaces actually do slide across each other. The mechanism is essentially the
same, just repeated over and over as bumps in one surface encounter new bumps in the other. While static friction opposed
the attempted slide of the surfaces across each other, kinetic friction opposes the actual, ongoing, slide. Notice that when a surface
is pushed too weakly across another to get them sliding, static friction is in effect, but as soon as that external push exceeds the
ability of the static friction force to compensate, the sliding begins and kinetic friction takes over. This moment of sudden loss of
the purely-reactionary static friction force is analogous to the tension force suddenly going away when the string breaks.

While the microscopic mechanism for the two types of friction are essentially the same, they do have some differences. For
example, it is relevant to ask how the maximum static friction force compares to the kinetic friction force, for two surfaces under
the same conditions. To answer this we consider the effect of the "depth" of meshing of the surface irregularities. If the surfaces are
pushed closer together, then there are more particle clusters available to engage with each other (it's not just the tips of the peaks
anymore), which should make either friction force stronger. If all else is equal, then two irregular surfaces sliding across each other
is sort of "bouncing along," and the average depth of the meshing is a little less than if the surfaces are unmoving. We would
therefore expect the maximum static friction force for two surfaces at rest with respect to each other to be slightly greater than the
kinetic friction force when the surfaces are sliding.

So how can we express all this mathematically? First, we have already determined that the static friction force is reactionary, so
there is no equation to express it. However, we also know that the magnitude of this force is limited for any given circumstance –
pushing the two surfaces hard enough will get them to slide. So we can express static friction as an inequality:

Here  represents the maximum force that can exist between the surface irregularities parallel to the surfaces before they start
sliding across each other. There are two factors that determine this maximum: how rough the surfaces are (how deep the pits in it
go), and how far the surfaces are "meshed." The only reason they don't mesh fully is the repulsive Van der Waals forces that act
perpendicularly – the normal force. When the surfaces are pushed harder against each other, increasing the normal force, they mesh
more deeply, and the maximum static friction force rises. Experimentation shows that, to a good approximation, the maximum
static friction force is actually proportional to that normal force, giving us:

where  is a dimensionless constant (usually less than 1) called the coefficient of static friction.

Once the surfaces are actually sliding across each other, the friction force is a fixed value (not less than or equal to some
maximum). Once again, this fixed value experimentally is found to be approximately proportional to the normal force, giving us an
equality that looks similar to the inequality above:

where  is called the coefficient of kinetic friction.

Both coefficients of friction reflect properties of the surfaces. It is an oversimplification to say that they give a measure of how
deep the jagged irregularities are, but this is not a terrible mental picture to have when thinking about these constants. It should also
be noted that most physics problems that involve friction have wording that goes something like, "an object slides along a surface
with coefficient of kinetic friction equal to...", but it is important to remember that the coefficient of friction for a single surface
makes no sense – it can only really be defined in terms of both surfaces.

It is natural at this point to ask the following question: "How can the magnitude of the kinetic friction force (or the maximum static
friction force) depend only upon the normal force and "roughness"? If all else is equal, wouldn't the surface area in contact also
play a role?  After all, more surface area means that more surface irregularities encounter each other. But more surface area also
means there are more  molecules repelling each other  perpendicular  to the surfaces. So suppose we increase the surface area
without changing the normal force. To get the same normal force from more repulsing molecules, those molecules need to be
farther apart, which means that the surfaces don't "mesh" as deeply. Less meshing means less friction force.  So it turns out that the
increase in the number of irregularity "encounters" that comes with more surface area is accompanied by less depth in meshing,

≤fstatic fmax (2.2.3)

fmax

≤ Nfstatic μs (2.2.4)

μs

= Nfkinetic μk (2.2.5)

μk
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and these two effects cancel each other out, making contact  surface area (to a good approximation) an unimportant factor in
calculating friction force.

drag

The final macroscopic force to add to our pantheon is called drag. This comes about whenever an object is moving through a fluid.
If the fluid happens to be air, then this force is commonly referred to as air resistance. Drag is similar to kinetic friction in that its
direction on a moving object is always opposite to that object's motion relative to the dragging fluid. It differs from kinetic friction
in that the magnitude of the drag force varies with the speed of the object relative to the fluid, whereas kinetic friction remains
approximately constant for all speed.

Microscopically, the drag force can be viewed as countless collisions of the moving object with the tiny particles in the fluid.
Again, the particles in the moving object don't actually touch the fluid particles, but as the object moves through the fluid, the
particles get close enough together to repel, and naturally that repulsion acting on the object is in the opposite direction to its
motion through the gas.

The mathematics of drag turns out to be quite complicated, though three of the physical properties that factor in are fairly easy to
enumerate:

relative speed of the object and the fluid – By increasing the speed, there are more collisions with fluid particles per second,
which increases the associated force.
cross-sectional area of the object through the fluid – The number of particles that strike the object increases as the cross-
sectional area (the area perpendicular to the direction of motion) is increased.
density of the fluid – This is a measure of how close together the particles in the fluid are to each other. Increasing the density
therefore increases the number of particles in the fixed space through which the object passes, and more particles means more
collisions, which results in more force.

Interestingly, the shape of the object also has an effect, because the fluid flow around the object will also result in forces.  That is,
two objects can have the same cross-sectional area, but one can be more aerodynamic (for gases) or hydrodynamic (for liquids)
than the other, and this plays a role in the amount of drag force.

Putting all this together, we get a not-quite-fully-formed formula that looks like:

where  is the fluid density (measured in mass per volume),  is the cross-sectional area of the object, and  is some unknown
function of the speed of the object relative to the fluid that gets larger as  gets larger. This somewhat unsatisfying result is usually
packaged in the following way: Choose a function of  that comes close for "typical" speeds, and then lump together all the other
factors (two of which are the appropriate tweak to the velocity function and the shape of the object, but there are a few more) into
what is called the drag coefficient,  (which is then determined experimentally), to give:

Apart from a couple very basic applications (such as something called "terminal velocity", which we will discuss later), we will not
typically complicate our physics discussions by incorporating the effects of drag. Phrases like "ignoring air resistance" will be quite
commonplace going forward, to the point where they will be understood to be in effect unless explicitly stated otherwise.

This page titled 2.2: Macroscopic Forces is shared under a CC BY-SA license and was authored, remixed, and/or curated by Tom Weideman.

= (constant)ρAf (v)Fdrag (2.2.6)

ρ A f (v)

v

v

cd

= ρ AFdrag

1

2
cd v2 (2.2.7)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63065?pdf
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/2%3A_Force/2.2%3A_Macroscopic_Forces
https://creativecommons.org/licenses/by-sa/
http://physics.ucdavis.edu/people/adjunct-faculty-and-lecturers/tom-weideman


2.3.1 https://phys.libretexts.org/@go/page/63066

2.3: Forces as Interactions

Stepping Back

From previous sections, we now have a definition of force (push or pull between two objects), a notion of fundamental (between
particles) vs. composite (between clusters of particles), and a description of all the types of composite forces we are going to
encounter in this class. In this section, we will back away from the specifics of the previous section, and explore more general
features of force. We will find that our faulty human intuition and imprecise language when it comes to physical concepts will give
us some challenges, but hopefully this section will provide some tools for overcoming them.

Newton's Third Law
As is implied by the name “first law,” Newton was not finished – he posited two other laws of motion as well. We’ll return to the
second law in a future section, but first we will discuss the third law. You have almost certainly heard it before:

Newton's Third Law
For every action there is an equal and opposite reaction.

This is an extremely unfortunate use of language, and this law has been misinterpreted for hundreds of years as a result. It is often
heard quoted in movies to essentially express how natural it is to seek retribution. Something like, if someone hits you, you will hit
them back afterward.

ALERT
The idea of a “reaction” as we understand it in common parlance is that it is a consequence of a previous action, but this is not
the way that Newton meant it.

Okay, then, so how did Newton mean it? Forces are interactions, and just as it is impossible for a single hand to clap, it is equally
impossible for a single object to be the sole participant in a force interaction. So if one object experiences a force from another,
there must be a reciprocal force also felt in the other direction at exactly the same moment, with precisely the same magnitude and
in precisely the opposite direction (remember, forces are vectors). So for every force you can name, there exists an evil twin that
acts in the opposite direction with equal magnitude. These "twins" we will refer to as Newton’s third law force pairs. It is important
to note that while all third law pairs are forces equal in magnitude and opposite in direction, not all pairs of forces equal in
magnitude and opposite in direction to each other are third law pairs with each other. That is, "equal-and-opposite" is a necessary
(restrictive), but not sufficient (defining) condition. It is also worth noting that this law doesn't depend upon the force being
fundamental between particles, or composite between objects – it is just a general feature of force itself.

What follows is a very useful tool in our study of force, and in particular for identification of third law pairs:

The "Force Phrase"
"...  on  by ..."

By "type of force", we mean one of the macroscopic forces listed in the previous section (gravity, contact, tension, etc.), and since
two objects are always involved, both must be listed here. In addition, the specific force between the two objects must be indicated,
meaning that the phrase specifies which object is doing the pushing or pulling, and which object is being pushed or pulled.  Of
course they are both pushed or pulled, but that just means there are two forces involved (one acting on each object), and this force
phrase singles out one of them.

This phrase can be used to great effect to identify third law pairs. If one can correctly describe a force using the force phrase, then
its third-law pair is the force whose phrase simply reverses the "on" and "by" objects. Naturally the type of force must be the same
for both, as they are two halves of the same single interaction.

Conceptual Question
A child sits on a swing, swinging back-and forth.  At the bottom of the swing, which of the following forces is the Newton’s 3rd
law pair to the contact force the child exerts on the seat of the swing?

a. the tension force on the seat by the chain of the swing
b. the gravitational force on the child by the Earth

⟨type of force⟩ ⟨object experiencing force⟩ ⟨object exerting force⟩
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c. the gravitational force on the Earth by the child
d. the centripetal force on the child by the seat
e. none of these

Solution

(e) The contact force on the seat by the child is a result of the interaction of the seat and the child.  The third law pair is
therefore the contact force on the child by the seat.  Forces (a)-(c) aren't the same interaction as the one given, and (d) is not
even a type of force!

Conceptual Question
A block weighing 12lb travels in a circular path in a vertical plane. As the block does this, it slides along a frictionless circular
track, and it is also attached to a string, the other end of which is attached to a fixed point at the center of the circle. When the
block is at the bottom of its circular path, the contact force exerted on it by the track equals the tension force exerted on it by the
string, and both are equal to 12lb. Which of the following forces is the Newton’s 3rd Law pair corresponding to the gravity force
on the block?

a. the normal force on the block
b. the tension force on the block
c. Either (a) or (b) can be considered a third law pair for the gravity force.
d. the sum of (a) and (b)
e. None of the above is a third law pair to the gravity force on the block.

Solution

(e) Don't let all the special information provided and coincidental numbers fool you! Just reverse the "on" and the "by" in
the force phrase. The gravity force interaction is between the block and the earth, so the third law pair of the gravity force on
the block by the earth is the gravity force on the earth by the block.

Free-Body Diagrams
Possibly our most powerful tool for analyzing forces and their effects on the motions of objects is the free-body diagram (or FBD
for short). This is a diagram that consists of a single system (the "free-body," which can be a single object or a collection of objects
with the same collective fate), with arrows representing force vectors drawn on it. There are a few rules to drawing an accurate
FBD:

It must include only an isolated "system." This system can consist of one object or many, but the analysis that follows
applies to the system as a whole, and nothing outside this system – whatever its role in the physics – is included in the
diagram.
The force vectors must be “real” forces. If you can’t name the force with one of the forces mentioned earlier, then you are
probably trying to fix something that isn’t broken by inventing a force. Also, no forces calculated from aggregates of
other forces should be included – just separate, physically-describable forces.
Only forces on the system can be included – never forces by the system. If every vector is labeled using the force phrase,
there is no way to go wrong here.
For now, where the force vectors are located on the system is not important, so the entire system can be reduced to a
single dot for simplicity (we will discuss why we are allowed to do this for systems of particles in the next section). But
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later this quarter the location where the force acts will become important, so it might be a good idea to try to place the
force vectors properly right away. Since the type of force and its basic nature are related to where it acts on an system,
this will also help confirm that you are dealing with the right forces, and are not trying to invent a force that doesn't exist.

Okay, let's consider the following puzzling question... Suppose two people engage in a tug-o-war. According to Newton's third law,
the tension force on person #1 by person #2 equals the tension force on person #2 by person #1. This is inescapable.  But then how
does anyone ever win, if both always pull with the same force? Let’s draw a FBD to see if we can see why.

The first step is to isolate a single object (the "free body") – we will therefore choose one of the two competitors. Then we need to
think about the physical situation, and name all the forces on (not by!) that object, and add vector arrows to the diagram to
represent those forces. Only then can we decide how the motion of the free body might be affected by these forces.

Figure 2.3.1 – Analyzing a Tug-o-War Using a FBD

The reason the question is confusing is that we think that the two forces that are equal-and-opposite must always cancel out, but
how exactly do forces “cancel?” They have to act on the same system to be added together and cancel. By drawing a careful force
diagram in which we only include the forces on the system in question (in this case, the blue-headed stick figure), we see that in
fact the third law pairs that are equal and opposite are split between two FBDs, and therefore cannot cancel each other. The real
determining factor of whether an individual wins the tug-o-war is whether that individual receives a friction force from the ground
that is greater than or less than the tension force, unbalancing the total horizontal force on them.

Does this mean the person is at the whim of the ground, that either decides to provide a big or small friction force? Of course not!
The friction force on our feet by the ground is equal-and-opposite to the friction force our feet exert on the ground, and we do this
by leaning back and sliding (or push our foot forward as if to slide it) across the ground. We can see that this is the case, because
even the strongest human in the world cannot win a tug-o-war against a small child if the strong person is on ice or on some rolling
device that doesn’t allow them to push horizontally (and thereby be pushed back the opposite way).

Exercise
A pickup truck with the tailgate down carries two identical sheets of plywood stacked in its bed as it accelerates horizontally.
 The plywood sheets do not slide within the bed or across each other.

a. Draw a free-body diagram for both sheets of plywood, labeling the vector arrows using the force phase.

b. Indicate which forces in your diagrams are third-law force pairs of each other.

Solution
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2.4: Effects of Force on Motion

Simple Cases First

What follows is the most important step we need to take in our discussion of forces, in that it links what we have been learning in
this chapter about forces to what we learned in the previous chapter about motion. Following the procedure we have established
already, we will begin by considering the simplest cases first, and then expand what we learn there into more complex scenarios. To
that end, we begin by considering the effect of forces on particles only, and will address the effects of force on collections of
particles afterward.

Newton's Second Law
We have built some tools for analyzing situations where forces act on objects (force phrase, FBDs), and we know that there can
only be accelerations when forces are present (first law). But we still are not yet able to describe the motion of a particle under the
influence of one or more forces. That’s because the first law only tells us qualitatively what is happening. In physics we seek to
develop quantitative models, and that’s where the second law comes in. It is really just a more detailed description of the first law,
or alternatively, the first law is just a special case of the second law.

We know that force is related not to velocity (because the first law says that constant velocity exists in the absence of force), but
rather the change of velocity. More specifically, the rate of change of the velocity – the acceleration. Newton defined force in the
simplest possible fashion in terms of acceleration – with a linear relationship. He reasoned that pushing equal amounts on two
particles of different masses resulted in different changes of motion, so he stated that the relationship between force and
acceleration as a simple proportionality:

The idea is that for a given force, the reaction of the particle (in the form of an acceleration) is inversely-proportional to the amount
of mass the particle possesses. Let’s take a moment to mention units:

There is much more detail lurking in here. First of all, acceleration and force are both vectors, while mass is a scalar, so the second
law is actually a vector equation:

This means that the acceleration experienced by a particle is just a scaled vector of the force exerted on the particle. That is, the
acceleration and the force always point in the same direction (mass is never negative). Of course, this scaling also changes the
units.

ALERT

Most people first encounter Newton's second law expressed as . While this is mathematically equivalent to what is
above, it is very dangerous to write this way, as it encourages a very common misconception. We write it as we do above to
emphasize the interpretation: "the effect on the motion (the acceleration) results from the cause (the force), moderated by a
property of the object experiencing the effect (the mass)." The danger of using the other expression is that it reads like, "the
force of the particle equals the mass of the particle multiplied by the acceleration of the particle." This turns the quantities of
force and acceleration into properties of the particle, rather than cause and effect, and this leads to subtle-but-important
misconceptions.

We aren’t done modifying the second law to its proper form yet! A large number of forces can be on a particle at the same time, so
which force is the one that causes the acceleration? All of them. Do we figure out the accelerations of each force and then add them
up? That makes no sense physically – particles do not experience lots of accelerations at once. Instead, we take all of the forces
together and add them as vectors to create a single composite force that we call the net force, and that is what goes into the
equation:

acceleration of particle =
force acting on particle

mass of particle
(2.4.1)

[F ] = = "Newtons" (N)
kg ⋅m
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=a
→ F
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m
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Collections of Particles
Now that we have the basics of Newton's second law for particles, we would like to apply it to the many macroscopic forces we
have discussed, but those forces all involve interactions with collections of particles, so we need to see if we can extend the reach
of the second law. Here is the problem: If a force acts on a subset of particles in a collection (e.g. a normal force only acts on the
particles at the surface of an object), then those particles will be accelerated, while other particles will not. In such situations where
multiple particles in a collection are accelerating differently, how do we define the "acceleration of the full group"? There is
actually a mathematical answer to this! Let's look at the simplest possible example first...

Figure 2.4.1 – Force Acts on One Particle in a Pair of Identical Particles

Here we have a force with magnitude  acting in the -direction one particle in a pair of particles. According to Newton's second
law, we know how this particle reacts to this force:

But we want to see if we can somehow apply the second law to the combination of the two particles, which would look like this:

The problem we have here is how do we define the position of the pair, ? Given that the two masses were equal, it seems
reasonable to define the halfway point between the particles to be the "pair's position". Will this work? Mathematically, we express

this as , and plugging this in above, we see that in fact the answer is yes. Noting that the second derivative of 

is zero because that mass is unaffected by the force, we get agreement:

Figure 2.4.2 – Force Acts on One Particle from a Pair of Particles with Different Masses

This time the extension to the pair is a little different:

Looking at what happened above, it's clear that picking the midway point between the two particles no longer works. If we think of
the center point between two equal masses as the "average position" of the total mass of the pair, then when the masses are unequal,
we would not expect the average position to be halfway between them. The simplest "try" is to choose an average location that is
closer to the heavier particle, by an amount in proportion to their masses. The formula that accomplishes this is:

So if the masses are equal ( ), then we get the result above. If  is twice as massive as , then the "pair's
location" is twice as far from  as it is from . So let's try this:

=a
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→
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m
(2.4.3)
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It works! Just to recap what we have found here: If we have a pair of particles, and we define the "position of the pair" to be the
precise point described by Equation 2.4.8, then the acceleration of the pair (defined as the second derivative of its position, of
course) equals the force on the pair divided by the mass of the pair, even though the force only acts on one of the particles in the
pair. But this definition of the location of the pair of particles works in far more general cases than this.

Exercise
Show that in the two particle example above, the definition of position of the pair given by Equation 2.4.8 gives the correct
result for the case when a force  acts on particle 1 and a force  acts on particle 2 (both along the -axis).

Solution

Both particles are now accelerated independently by different forces, and their accelerations are given by:

Now let's look at the acceleration of the pair:

The sum  is the net force on the pair (you have to add together all the forces acting on any particles to get the net
force), which shows that the acceleration of the pair equals the net force on the pair divided by the pair's mass.

What we have been calling the "position of a collection of particles" is commonly referred to as the center of mass of that
collection. Above we have restricted it to two particles along the -axis, but it is easy enough to generalize. If the particles have 
and/or  coordinates, then the center of mass in the  and/or  directions can be defined in the same way as it was for the -
direction. And if we want to add more particles, we just include each one's position multiplied by the mass in the numerator sum,
and of course make the denominator the total mass of all the particles. Putting it all together, we can write the definition of the
center of mass in terms of position vectors of all the particles:

Using this as the position of the collection of particles, that collection's acceleration works perfectly with Newton's second law, no
matter how the forces on the group are distributed amongst the particles. We therefore put it all together with " " referring to the
acceleration of the group's center of mass:

Newton's Second Law of Motion

= ( ) = =
d2

dt2
xpair

d2

dt2

+m1x1 m2x2

+m1 m2

+m1
d2x1

dt2
m2

d2x2

dt2

0

+m1 m2

F

+m1 m2

(2.4.9)

F1 F2 x

= = = =a1
d2x1

dt2

F1

m1
a2

d2x2

dt2

F2

m2

= = = =apair
d2

dt2
xpair

+m1
d2x1

dt2
m2

d2x2

dt2

+m1 m2

+m1a1 m2a2

+m1 m2

+F1 F2

+m1 m2

+F1 F2

x y

z y z x

r
→

cm = + +xcm î ycm ĵ zcm k̂
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So now we have a robust law we can use for real objects and the composite forces we enumerated in a previous section. While this
law works for any collection of particles, in almost all of our applications, the group of particles will be rigid objects. In these
cases, using the center of mass is significantly easier than above, where we have to add a bunch of terms representing all of the
particles. For example, if the rigid object isn't rotating, then the motion of its center of mass is identical to the motion of every
particle in the collection. Introductory physics classes spend a lot of time on examples like this, which explains why Newton's
second law is frequently described with no mention of center of mass at all. But even the simplest of questions cannot be answered
without this knowledge. Suppose that a force is applied perpendicularly to a rigid rod at its end. It will clearly start to spin as well
as move forward, which means the particles comprising the rod are all accelerated different amounts.

Figure 2.4.3 – What Part of an Extended Object Accelerates According to the Second Law?

The case of a rigid object like this bar does raise an interesting question: What do we do with the forces that particles within the
collection exert on each other? Such forces are necessary for the object to remain rigid. To answer this question, let's zoom-in on
just two particles within the collection. One of the particles is pushed by the outside force, and as it starts to accelerate, it pulls or

pushes on the other particle, to keep their structure rigid. Let's call this internal force on particle 2 by particle 1 " ". According
to Newton's third law, there must also be present within the collection an "evil twin" force acting on particle 1 by particle 2 exactly

equal to . So when we add up all the forces on the collection, these two forces must be included (since they both act on
particles within the group), but as they are equal magnitude vectors in opposite directions, they just cancel in the sum. This will be
true for any pair of particles within the collection that we care to name, so we can essentially ignore the internal forces altogether.

Second Law Misconceptions
Nearly everyone reading this textbook has encountered Newton's second law before, even if it was as far back as a science class in
middle school. It's unlikely that the reader has seen the discussion of center of mass before, but when it comes to the final result,
many feel like they "know it already." But knowing an equation is very different from understanding what it means, so we will take
some time here to try to root out some common misconceptions about this law held by even the most dedicated physics students
that have seen this before. We will find that many, if not all, of these misconceptions can be avoided by keeping the following two
things in mind:

The second law mathematically expresses a cause & effect relationship, with the cause being a combination of many forces on
the object, and the effect being that object's (center of mass) acceleration (not its velocity!). It is not an equality that expresses a
relationship between several properties of the object.
It is not enough to describe a force that is present in a physical situation – to put it into Newton's second law, it must be
acting on the collection of particles, and it must be caused by another entity that is external to that collection. Liberal use of
the force phrase and free-body diagrams is very helpful in sorting this out.

There is no better way to demonstrate what the most common misconceptions are, or show how the two reminders above helps to
sort them out than to look at examples. The reader is strongly urged to commit to an answer in each case before reading the
solution – this provides maximal benefit.

First a question that addresses the problem of identifying what forces get plugged into the equation for Newton's second law:

Conceptual Question
A driver steps on the brake pedal of her car, slowing the car down, and her body experiences an acceleration as a result. Which
of the following forces does Newton’s second law include when determining her acceleration?
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a. normal force by driver’s foot on the brake pedal
b. friction force by the car tires on the road
c. friction force by the road on the car tires
d. all of these
e. none of these

Solution

(e) One must be very precise when it comes to identifying forces, as ultimately they must be plugged into a mathematical
formula. It is not enough that a force sets off a chain of events that leads to an acceleration, it must be the direct effect of
that acceleration in order to be the force that is featured in the second law. In addition to being a direct force, it isn't even
sufficient to isolate the correct interaction – the specific "twin" from the third law force pair must be identified. That is, the
force must be on the object in order to accelerate it. The problem asks what force slows down her body. The normal force on
the brake pedal affects the motion of the brake pedal. The friction force on the road affects the motion of the road. The
friction force on the tires (which are part of the car's "collection of particles") affects the motion of the car. While parts of
the car (namely tension by the seatbelt, friction by the car seat, and normal force by the steering wheel) do slow her down,
and the friction force on the tires slows down the car, this chain of events does not mean that the friction force slows her
down. If you plug the friction force on the tires and her body's mass into the second law, the acceleration you calculate for
her will not be correct.

If all of that discussion still confuses you, consider what you would draw for a free-body diagram here. We are interested in
the acceleration of an object (the driver), so that is the free-body that we need to draw. Next we need to add force vectors to
this diagram, which, according to the force phrase, are acting on the free-body. If the description of the force does not
include the phrase "on the driver", then it does not belong on the FBD, and does not figure into the calculation of the
driver's acceleration according to the second law.

Next we consider what the acceleration in Newton's second law really means, and how its direction matches the direction of the net
force: 

Conceptual Question
A boy throws a ball straight up, and catches it when it returns. Which pair of diagrams best represents the directions of the net
forces experienced by the ball when it hits the peak of its flight (i.e. when it isn’t moving), and while the boy is catching it (i.e.
not after he has caught it)?

Solution

(d) Gravity is always acting on the ball, no matter where it is. When it reaches its peak, there are no other forces on it (the
boy’s hand is no longer in contact with it), so the gravity force is the net force, and it points down. When the ball is in the
process of being caught, gravity is still acting, but there is also a force up on it by the boy’s hand. The ball is moving
downward and is slowing, so it is acceleration vector points upward, which means the force from the boy's hand exceeds the
force of gravity and the net force is upward.

This question addresses the role of mass in the second law, as well as the notion of "inertia":

Conceptual Question
A stone is dropped to the ground. As it falls, the stone accelerates (without air resistance) at  downward. As a result of
this gravity force interaction, what happens to the Earth?
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a. It accelerates upward toward the stone at .
b. It accelerates upward toward the stone at a rate less than .
c. It doesn’t accelerate - it only exerts a gravity force, it doesn’t feel it.
d. It doesn’t accelerate - it has too much inertia.
e. both (c) and (d)

Solution

(b) The magnitude of the gravity force on the stone by the Earth equals (according to Newton’s third law) the magnitude the
gravity force on the Earth by the stone.  Yes, the stone exerts a gravity force on the Earth, and it is equal to the force the
Earth exerts on the stone!  So why don’t we feel the Earth lurch upward when we drop something?  The magnitude

of acceleration of an object with a force on it is given by the second law to be .  The Earth and the stone feel equal

forces, but the Earth’s mass is much, much bigger, so it reacts to the same force with an acceleration is much, much less.
 This acceleration is much too small for us to feel (the Earth's mass is about 5,972,190,000,000,000,000,000,000 kilograms).

Note that the (wrong) idea most people have of "inertia" is that it expresses a threshold. That is, they think that a certain minimum
amount of force is required to "overcome" an object's inertia, and the more massive that object is, the higher that minimum force is.
In the example above, this leads to the explanation that the Earth's mass is so great that there is no way that the gravity force from a
stone can possibly equal the minimum force needed for acceleration. But this is not what the second law tells us! The
Earth does accelerate, no matter how small the force might be.

Where does this notion of inertia come from? We see cases all the time in everyday life where this trait seems to be exhibited: We
can easily get a chair to start sliding across a floor, but it takes a great deal more force to get a huge couch to start sliding. We
internally reason that since the couch is more massive, this must be the property that accounts for the "inertia" that requires a
threshold force to overcome. But from our earlier study of friction, we see that what is really causing this threshold effect is static
friction. We must push harder than the maximum static friction force. This maximum is partly determined by the normal force
between the surfaces. This normal force comes from the fact that gravity pulls the couch down to the floor. And the gravity force is
greater when the object is more massive. So a more massive object exerts a greater normal force, which results in a greater
maximum static friction force, which increases the threshold force needed to get it accelerating. Whew, now we see one reason why
physics is so hard – one quantity (mass) can have an effect on another (minimum force to get something moving), but they are only
related very indirectly under specific (but common) circumstances, and if we oversimplify the explanation ("inertia"), we get
everything wrong when those circumstances are changed.

Here's a question with a bit of arithmetic:

Conceptual Question
A car with a mass of  is moving in a straight line and has an acceleration vector of magnitude  pointing to the east
just before it crashes into another car that is stationary.  What force does the stationary car exert on the incoming car?

a.  to the east
b.  to the west
c. , but the direction can only be determined if one knows whether the car was speeding up or slowing down
d.  - the equal-and opposite forces between the cars cancel out
e. The information given is not relevant to answering the question.

Solution

(e) This is one of the most common misconceptions among people who first encounter Newton’s second law.  They think that
an object “has” an acceleration, and it “has” a mass, so obviously it “has” a force equal to  as well, and when it hits
something else, that is the force that it hits with.  But acceleration is the result of a net force not a component of it. So the
acceleration and mass of the incoming car tells us the net force on the car that is causing the acceleration prior to the
collision. When the collision occurs, the circumstances (i.e. external forces on the car) change, which means that the car's
acceleration changes – the car doesn't "remember" the acceleration it had before! Without being given this new
acceleration, we can't use the car's mass to compute the net force on it.
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Okay, so there was no arithmetic to be done there after all. This misconception is so prevalent that the reader is strongly encouraged
to not move on from here until they have sorted it out.

Here's a question that combines a couple of ideas:

Conceptual Question
Two cars are in contact with their front bumpers, and are pushing against each other. As they do, the red car is rolling forward
and the blue car is rolling backward at a constant speed. Which of the following is true:

a. The red car exerts a net force on the blue car.
b. We know that the net force on the two-car combination is zero, because the combination is not accelerating.
c. The pair of cars is not accelerating because the contact force of the red car on the blue car equals the contact force of the

blue car on the red car.
d. Two of these statements are true.
e. All of these statements are true.

Solution

(b) This question again addresses the definition of acceleration (it is not the same as velocity!). If there was a net force on
the blue car, it would be accelerating, but it is moving at a constant speed in a straight line, which is zero acceleration. The
pair is also moving in a straight line at a constant speed, so its acceleration is zero, which tells us that this pair is
experiencing no net force. However, the contact forces between the cars are always going to be equal due to the third law, so
these forces (and any others that are internal to the pair) have no say whatsoever in whether the pair accelerates. Only the
outside forces (friction on the tires by the road) play a role.

And finally, let's throw in a tough one that brings in the center of mass idea:

Conceptual Question
A block starts at rest on a wedge, which itself is at rest on a horizontal tabletop, as shown in the diagram.  The contact between
the block and wedge is frictionless, but the contact between the wedge and tabletop is not.  When the block is released, the block
begins sliding down the plane, and the static friction with the tabletop is insufficient to stop the wedge from sliding the opposite
way (though it does experience kinetic friction).  We don't know whether the block or the wedge has a greater mass. What can
we say about the center of mass of the block + wedge combination?

a. It accelerates straight down.
b. It accelerates down and to the right.
c. It accelerates down and to the left.
d. It accelerates down and in the same horizontal direction as the motion of the more massive object.
e. It accelerates down and in the same horizontal direction as the motion of the less massive object.

Solution

(c) It is clear that the center of mass drops, since the block descends in height and the wedge remains at the same height. The
center of mass starts at rest, so it must be accelerating downward. With the two objects moving in opposite directions, it is
not immediately clear what happens to the center of mass of the combination in the horizontal direction. From Newton's
second law, we know that the center of mass of a combination accelerates in the same direction as the net force on it. The net
force in the second law only needs to take into account the forces on the combination that are external to it – we can ignore
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all the internal forces. So what are these external forces? There is gravity down, a normal force up by the table (the
combination of these resulting in the downward acceleration of the combination’s center of mass), and a kinetic friction force
by the table opposing the wedge’s horizontal motion (i.e. pointing to the left).  Since the only horizontal external force on the
combination is to the left, that is the horizontal component of the direction that the center of mass accelerates.

A Summary of Concepts Related to Newton's Laws

Much of what we have discussed in this section and the one before it will be repeated below, but putting all of these ideas in one
place may help the reader consolidate the ideas into a cogent "big picture."

1. Force is not a quantity contained within an object.
2. Forces are push or pull interactions between two objects. If one looks at the two individual forces that make up the interaction,

then those two forces are always equal in magnitude and opposite in direction (Newton’s third Law).
3. To avoid confusion, we learned the all-important “force phrase,” which reminds us that the individual forces that make up the

interaction force pairs always act on one object and by another.
4. Forces are the cause of accelerations. It is impossible to have one of these without the other. This means that forces (if the

vectors don't all cancel each other out) speed up, slow down, or change the direction of an object’s motion. And conversely, if
an object’s motion slows down, speeds up, or changes direction, then it must be experiencing a (net) force. (Newton’s first Law)

5. Forces are vectors, which is to say that they have magnitude and direction.
6. The force vector that causes an object to accelerate is the net force on that object, that is, the vector sum of all of the individual

forces exerted on the object. A net force is a combination of one or more real forces, but is not itself a type of force.
7. Only the forces on an object can contribute to its acceleration (i.e. added together to give the net force), never the forces by it.

Forces by an object only affect the motions of the other objects that they act on.
8. The amount of net force on an object is proportional to the amount of acceleration it experiences, and the constant of

proportionality is the mass, a measure of how much stuff is present in the object. (Newton’s second Law)
9. The fact that net force and acceleration are proportional means that as vectors, they must point in the same direction, since mass

is never negative.
10. Mass is sometimes called “inertia,” which can be loosely thought of as resistance to acceleration. But this must not be confused

with resistance to motion – the smallest net force will cause an acceleration of the largest mass. If a mass at rest doesn’t start to
move when a small individual force acts on it, it is because there is another force balancing it out, causing zero net force, not
because the inertia of the object cannot be overcome.

11. The part of the object (or collection of particles) that experiences the acceleration described in Newton’s second Law is the
center of mass of the object, not the point on the object where the force is acting.

12. A useful tool for analyzing forces is the free-body diagram, which consists of isolating an object, followed by drawing in all the
force vectors acting on it. Careful use of the force phrase helps us avoid putting incorrect forces on this diagram.

This page titled 2.4: Effects of Force on Motion is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom
Weideman directly on the LibreTexts platform.
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2.5: Applications of Newton's Laws

Consolidating What We Know So Far

We will now take a section to spend some time applying Newton's laws to some common circumstances. These applications will
require a good understanding of what we have seen so far, but they are still fairly "basic" in the sense that they do not incorporate
complications called "constraints," which we will put off discussing until next section. We'll start by tying up a couple of loose ends
related to air resistance and friction, and then move on to some examples the reader can analyze to "grow their muscles" in
understanding how Newton's laws are applied.

Air Resistance on Falling Objects
We already know something about gravity from our study of free-fall and projectile motion. We know that the acceleration is the
same for objects of different masses. While we have used this as a model, it is a big step to claim that gravity fundamentally
follows this rule. We know that a feather will experience the same acceleration due to gravity as a stone, if air resistance is
removed. Now how do we put air resistance back into our model so that the reduced acceleration of the feather makes sense?

The effect of reduced acceleration is easy to show with a free-body diagram of two objects that are identical except for mass and
are falling through the air and happen to be at the same speed. For these two objects the air resistance forces are equal, and the
gravity force is greater on the heavier object. The net forces on the two objects are therefore different, giving the following
accelerations:

So the reason the heavier mass accelerates more is simply that the effect that the air resistance force has on it is smaller. From these
final equations, we see that in the special case of assuming zero drag, we find that the acceleration happens to equal the constant 
for objects of any mass.

Alert
It is important to understand that here  has a different meaning than it had when we were discussing motion involving gravity-
caused acceleration. Here the  is a physical constant, which we use to determine the gravity force on an object with mass . It
does not mean that the object is accelerating at ! When an object experiences no other force than gravity, the object's
acceleration just happens to equal this constant, but the constant is present regardless of the state of acceleration of the object.

An object accelerating in free-fall keeps moving faster with time, which means that the drag force due to the air keeps increasing
(drag is a function of the speed through the fluid). This increase of speed cannot maintain the same rate forever, because eventually
the speed will be great enough that the drag force will equal the gravity force. When this occurs, the two opposing forces cancel,
and the second law tells us that acceleration must cease! What actually happens as the object falls is that the drag force gradually
increases as the speed increases, gradually decreasing the falling object's acceleration. We will not go into the calculus that gives
the resulting equation of motion, but instead will jump to the point where the acceleration diminishes to essentially zero. The speed
at which this occurs is called terminal velocity. Clearly this velocity is determined by the many factors that go into the drag and
gravitation forces.

Analyze This
Two spherical objects of identical radii but different masses are dropped from different heights through the air. They both reach
terminal velocity at the same moment in time, and at that moment, they are side-by-side.

⇒
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Analysis

Start with a free-body diagram:

At terminal velocity, the object is no longer accelerating, which means that the net force on the object is zero. The only
forces on these objects are gravity and air drag, so these opposing forces must be equal. The heavier object has a greater
gravity force on it, so it must be also experiencing a greater drag force. The two objects have the same cross-sectional
areas drag coefficients, and they are falling through the same air. This means that the only quantity that can account for
their different drag forces is their speeds. Applying Newton's second law and noting that with velocity being the only
variable to account for the difference in forces, we have:

The most direct conclusion that we can derive from this is that the ratio of their terminal velocities in terms of the ratio of
their masses is:

It should also be noted that although these two spheres may be at the same height at the moment they each reach terminal
velocity, they will not continue to remain side-by-side, since the heavier one is moving faster than the lighter one.

Slowing Motion with Friction
If a book is slid across a horizontal tabletop, it slows because there is a net force on it. The free-body diagram reveals that this net
force comes from the kinetic friction force on the bottom of the book by the table surface. In our discussion of static vs. kinetic
friction, we said that the maximum possible static friction force is greater than the kinetic friction force for the same two surfaces.
That means that if the book we are sliding could somehow experience the maximum static friction force, then according to the
second law, it would slow down faster. But how is one to accomplish this, given that the book must be sliding across the surface
(the definition of kinetic friction) in order to be moving at all?

Okay, so maybe it is impossible to use static friction to slow a sliding book, but consider slowing an automobile (something we
might be very interested in being able to slow as quickly as possible). What slows a car is the friction force on its tires by the road.
Unlike the sliding book, the tires roll, unless we "lock up" the brakes. The interesting thing about rolling tires is that they are
moving, but are not sliding. When breaks are applied, a friction force is introduced to the tires, but if they keep rolling and don't
start skidding, then this force is static friction. The harder the brakes are applied, the greater this static friction force becomes. If the
maximum value of static friction is exceeded, then the tires stop rolling and they start skidding across the surface. The friction force
on the tires goes down when this occurs, because the kinetic friction is smaller than the maximum static friction. So anti-lock
braking systems (ABS) common in today's automobiles automatically release the breaks briefly so that the tires again turn,
restoring rolling and allowing the return of static friction. This would be like trying to push a heavy cardboard box across a floor in
extremely short bursts – as soon as the box starts sliding (and gets easier to push), you stop and start over. Before the invention of
ABS, drivers were told to "lightly pump their brakes" in slippery situations to create this same effect. ABS does the pumping for us,
with a much greater frequency than we could manage, and to great effect.
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Practice
What follows is a series of "Analyze This" boxes, intended to give the reader some practice employing Newton's laws (and
especially the second law). These examples come in several types: 

direct applications of Newton's laws to draw conclusions about forces
bridges from Newton's laws to topics we studied prior to this chapter, such as vector math and kinematics
graphical representation and interpretation

One bit of advice regarding performing analysis on any problem in this chapter (as well as in most chapters to come): After getting
a very basic sense of what the physical situation is about, always employ the most powerful tool in our arsenal – the free-body
diagram. This is true even when the situation seems so simple that a FBD is not needed – those "simple" cases are often trickier
than they appear! It is not an exaggeration to say that drawing accurate FBDs is the most important skill you need to master for
Physics 9A. It is also a critical skill for future physics and engineering classes – it is not just one of those requirements you need to
check-off on your way to your "real" STEM education. This is your chance to get off to the right start.

Of course once you have some FBDs, there is no need to stop there – take the analysis as far as it will go with the information you
have! Here is a template of the analysis procedure you should follow:

1. Briefly discuss the "big picture" of the problem, and point out whatever special features come to mind. Don't try to figure
everything out right then – this is just to get your brain kick-started.

2. Draw careful, detailed free-body diagrams of the objects involved, following the guidelines you have been given for doing this.
Until you are an expert at this (it will take awhile before you can make this claim), you should label the force vectors such that
the "force phrase" description of the force is evident. If you are unable to do this, then your FBD is likely incorrect. Also, it is a
good idea to include an indication of the coordinate system you are using, to ensure that you get the signs correct later.

3. Use the force diagrams to write down a mathematical expression for the net force on the object. If the force has two or three
components, then write these components separately, like this:  , .

4. Employ Newton's second law by setting each net force vector component equal to the object's mass times its corresponding
acceleration vector component. If you know the object is not accelerating in that direction, then you can set this equal to zero!

This template takes you well into the analysis, and prepares you very well to answer any question that may come along about that
physical system.

This first case is a basic problem from a subfield of mechanics known as "statics."

Analyze This
A sign hangs from a wire that is attached to a ring that is also attached to two wires (one of which is horizontally-oriented), as
shown in the diagram. The wires and ring have negligible mass.

Analysis

Clearly the sign is being held motionless due to the tension force in the wire attached to it canceling-out the gravity force on
it. As obvious as this is, we can confirm it with a free-body diagram and Newton's second law, since we know that the sign is

=. . .Fnet x =. . .Fnet y
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not accelerating:

It is unlikely that this will be all that the problem is about, however, as it doesn't say anything about the other two wires or
the angle . Clearly the FBD of the sign will not help us with those, so we turn to a FBD of the ring:

We see that now the force vectors are in two dimensions, which means we will have two equations that come from Newton's
second law – one for each component of the net force. As we noted for the sign previously, the system remains at rest, which
means that the acceleration vector is zero (and therefore both of its components are as well). Only the tension force  has
more than one component, so breaking that up and forming the equations from the second law gives:

We can now put together the results of the two FBD's to obtain the tensions  and  in terms of the weight of the sign, if
we note that Newton's third law tells us that the tension on the sign by the ring equals the tension on the ring by the sign (in
anticipation of this, we have called both of these forces simply " " in the free-body diagrams):

To complete our analysis, we will take a quick look at our final results to see if they make sense. Suppose that the angle 
. Then the sign is essentially hanging straight down from wire #2, and sure enough, the tension force applied by that

wire is the entire weight of the sign. Also, in this case, wire #1 should be doing nothing, and indeed  comes out to be zero.

Our next example combines several forces and allows for possible acceleration.

Analyze This
A block is attached to a spring that stretches down from the ceiling of a stationary elevator that is capable of accelerating up or
down. The block is then lifted slightly, and a bathroom scale is placed beneath it, so that the block rests on it. The spring is still
stretched at this point, but not as fully as when the block was hanging from it.

= +T −mg = ma = 0 ⇒ T = mgFnet
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Analysis

There are several ideas in play here. First, there is a stretched spring, so we will have to include Hooke's law into our
analysis. Second, there is a normal force between the block and the bathroom scale. Such scales are constructed to measure
weight, but in reality all they can measure is the normal force applied to them. For example, a bathroom scale will give a
reading if you put it against a wall and push on it, but that reading is clearly not your weight. And of course there is the
gravity force on the block. We start by putting these three forces into a free-body diagram:

We take our usual next step, which is to apply Newton's second law:

This is as far as we can take this without more information, but we can imagine what happens if the elevator is
accelerating...

If it is accelerating up, then . Clearly the value of  cannot decrease to allow for the block's acceleration with the
elevator, and the spring force cannot increase, because the scale is preventing the spring from stretching any further (and the
spring constant can't change, of course). So an upward acceleration can only be accompanied by an increase in the scale's
reading (its normal force).

If the elevator is accelerating down, then what can we conclude? Well, either the elastic force or the scale force must
decrease (again,  cannot change). But for the spring force to decrease, the spring must stretch less, which means the
block must leave contact with the scale. This would make the normal force zero, that is, as long as the scale is registering
any normal force, the spring's amount of stretch is unchanged. So for a very low acceleration, the normal force of the scale
will come down, while the spring force remains unchanged, but if the acceleration is larger, then the scale's reading goes to
zero, and the mass lifts off the scale, reducing the spring stretch.

= +kΔx+N −mg = maFnet

a > 0 mg

mg
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Let's get kinetic friction in on the fun...

Analyze This
A block is sped-up at a steady rate along a rough, horizontal surface by a stretched spring that pulls on it.

Analysis

Our first observation as we ponder this is that as the block slides, the stretched spring is remaining stretched by the same
amount. Presumably whatever is pulling on the other end of the spring must also be accelerating along.  We know this
because we are told that the acceleration is "at a steady rate".  A steady acceleration means a constant net force, so the sum
of the horizontal forces must remain constant, and since the friction force remains constant, the spring force must as well.
 This only occurs if the spring remains stretched the same amount.

Start with a force diagram of the block:

Now apply Newton's second law for both the  and  components, noting that there is no acceleration of the block in the
vertical direction:

There is one other piece of information we can add to this analysis. We know something about kinetic friction – it is
proportional to the normal force between the two rubbing surfaces. Putting this in the mix and calling the acceleration that
only exists along the -axis simply " " gives:

Okay, now let's start re-using themes, but include some complications that require a bit more thought. The key to getting through
these "trickier" examples is to just "follow the method" – don't try to think too far ahead, or get stuck on a preconceived idea of
what you expect to be the answer.

Here is an example in two-dimensions like the hanging sign problem above, but this time our old friend centripetal acceleration
from Chapter 1 is included.

Analyze This
A tetherball swings around a pole, making a full circle at regular time intervals. The rope has negligible mass.

x y

= − +kΔx = m , = N −mg = m = 0 ⇒ N = mgFnet x fk ax Fnet y ay
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Analysis

Start with a force diagram of the ball, including a coordinate system (we will dispense with the rather obvious force phrase
descriptions here):

Next sum the forces along the  and  axes and apply Newton's second law:

The ball is not accelerating vertically, as it remains at the same constant height, so . In the horizontal direction,
however, the motion of the ball is changing direction, which means that it must be accelerating. This motion is circular, so
the acceleration is toward the center of the circle, and if the ball is moving at a speed , this centripetal acceleration is:

where  is the radius of the circle. Putting these two accelerations in above gives:

The tension  can be eliminated from these equations (and the value of the mass  also cancels-out) to give:

We can take it even a little further than this. The description mentions "regular time intervals" for the tetherball's motion. If
we call the interval for a full revolution " ", then we can relate the speed  to the radius of the circle and the time interval:

We can even take one more step. In the diagram given, the length of the rope is labeled as " ". The radius of the circle can
easily be written in terms of this length and the angle , giving us a final result that relates the interval to the angle and
length of rope:

x y

= T sinθ = m , = T cosθ−mg = mFnet x ax Fnet y ay

= 0ay

v

=ax
v2

R

R

T sinθ = m , T cosθ−mg = 0
v2

R

T m

tanθ =
v2

gR

t v

v= = ⇒ tanθ =
circumference

t

2πR

t

4 Rπ2

gt2

l

θ

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/62986?pdf


2.5.8 https://phys.libretexts.org/@go/page/62986

Another situation where kinetic friction comes into play, though it is a tough one to rely upon intuition for – just follow the
method! 

Analyze This
A large block is pushed along a horizontal, frictionless surface by an external fixed force. In contact with the rear vertical face
of the large block is a smaller block, and as the two blocks are accelerated horizontally, the smaller block slides down the rough
(not frictionless) face of the larger block at a constant speed.

Analysis

Few problems demonstrate the importance of drawing free-body diagrams better than this one. One thing that is interesting
here is that we have several choices for what is the "object" in the free-body diagram. We can choose the large block, the
small block or the system of both blocks. As this is just analysis, and we don't know where we will eventually need to go,
we'll just do all three:

These show nicely how the two third-law pair forces (the normal force between the blocks and the kinetic friction force
between the blocks) appear when we split the blocks into separate systems, but are unneeded when they are internal to the
system of two blocks. Next let's write down the equations that come from Newton's second law for each of these diagrams:

two blocks

large block

R = l sinθ ⇒ cosθ =
gt2

4 lπ2

= F = (M +m) , = N −(M +m)g = mFnet x ax Fnet y ay

= F −n = M , = N −Mg− = m = 0Fnet x ax Fnet y fk ay
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small block

Next we need to consider the accelerations. The acceleration of the big block in the vertical direction is clearly zero, as it
never moves up or down. The values for the 's in the two block and small block cases are not as obvious, as the center of
mass of each of these system is clearly falling. But we are given that the descent of the small block is at a constant speed, so
while the center of mass is moving in the  direction, it is not accelerating in either case. We can therefore declare that
both of the 's appearing in the equations above are zero. The acceleration in the -direction is obviously not zero, but
whatever it is, with the blocks both moving together, it is the same for all three systems. We therefore can compute the
acceleration for all three systems most easily from the two-block system:

Anything else we can extract from what we are given? Well, from the small block system, given that the vertical acceleration
is zero, we know that the kinetic friction force equals the block's weight, but we can also write the kinetic friction force in
terms of the coefficient of kinetic friction and the normal force between the surfaces:

We know the horizontal acceleration of the small block, and the only horizontal force on it is , so we can plug in for  to
finally get:

This tells us that the force that needs to be applied to allow the block to slide at a constant speed is greater than the weight
of the two-block system by a factor of  (recall that coefficients of kinetic friction are generally less than 1). If the force is
any greater than this, then the normal force between the blocks will be greater, making the friction force greater than the
weight of the small block, and the small block's decent will actually slow. If the force is less than this amount, the friction
force will be less than the weight of the small block, and its descent will speed up.

Here's an example to make sure you haven't forgotten about the role of center of mass in Newton's laws. 

Analyze This
A system of two balls of different masses attached by a string are thrown horizontally through the air, and rotates at a steady
rate about its center of mass as it goes. Air resistance is negligible for the system, and at the moment the balls are thrown, the
larger ball is directly above the smaller ball, as in the diagram.

Analysis

Let's start with a free-body diagram of the system. As it is flying through the air, there is only one force on it – gravity. The
internal tension forces between the balls are a third law pair, and can therefore be ignored. At some arbitrary moment during
the flight, the FBD looks like:
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Note that we strive to locate the total gravity force on the system at the center of mass for the system, and if we treat the two
balls as though they are particles, the center of mass comes out to be two-thirds of the distance from the smaller mass  to
the larger mass .

What is interesting here is that with this being the only force, the acceleration of this system is simple to compute:

In other words, this object is just a standard projectile! As such, we can use the projectile equations to describe its motion.
But we have to be careful – this only describes the motion of the center of mass of the system, not the individual balls at the
ends of the string. But if we know something about the rate of rotation of the two balls, then if we are given a time, we can
use the projectile equations to locate the center of mass, and the rotation rate to locate the balls relative to that center of
mass.

 And finally, an example that combines understanding of graphs with Newton's laws.

Analyze This
Two particles, #1 and #2 interact only with each other. The acceleration of particle #1 is plotted on the graph below for a period
of time. The velocity of particle #2 was plotted simultaneously, but the data for the second half of the time interval was lost, and
its graph is also shown below.

m

2m

= −3mg = 3m , = −gFnet y ay ay
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Analysis

This is one of those rare occasions when a free-body diagram is not called for, but Newton's laws are still very important to
the analysis. We are given that these two graphs are for the motions of particles that only interact with each other. Given that
these graphs represent accelerated motion, it must be that the particles exert forces on each other.  From Newton's third law,
these forces must be equal-and opposite.

We cannot extract the forces from these plots, we can only get the accelerations. But by Newton's second law, these are
proportional to the forces. The acceleration of particle #1 can be read directly from the graph, and it is  for the
first half. Particle #2's acceleration is the slope of its velocity graph, and that is  for the first half. With 4 times
as much acceleration and an equal force on it, we conclude that particle #2 has one fourth the mass of particle #1.

The masses of the particles do not change for the second half of the time interval, so since we know the acceleration of
particle #1 , we also immediately know the acceleration of particle #2 from Newtons's second and third laws – it
must be  times particle #1's acceleration, or . If we are asked to add the second half of the time interval to
particle #2's velocity graph, it would have to be a straight line that drops 12 units during that second interval:

 

This page titled 2.5: Applications of Newton's Laws is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom
Weideman directly on the LibreTexts platform.
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2.6: Additional Twists - Constraints

Let's Spice Things Up!

If Newton's laws are the main ingredients of the mechanics recipes we have been cooking-up, then the time has come to add the spices.
Actual physical systems are typically characterized by more than just the three laws of motion. Very often there are other restrictions –
called constraints – that relate physical quantities to each other. Some of these are independent of Newton's laws of motion, while others are
"rules of thumb" that ultimately come from Newton's laws.

We have actually seen a couple of examples of these already, in the examples we look at in the previous section, though we never referred to
them in this way. One of them is the relationship between the kinetic friction force and the normal force for two surfaces. This relationship
(equation) does not come from the invocation of Newton's second or third law, it is just an extra equation that we can use to solve problems
that include the feature of rough surfaces sliding across each other. Another example we have seen is the formula for centripetal acceleration.
Newton's second law tells us how to relate forces to accelerations, but this specific relationship between acceleration and velocity for the case
of circular motion only applies to special cases.

We will add to our "spice rack" of possible constraints in this section, and in so doing, we will greatly multiply the variety of mechanics
problems we can solve.

Constraints on Forces

The two quantities in Newton's second law that can be constrained are force and acceleration. We will look at each possibility in turn, starting
with force constraints.

Pulleys

One of the favorite devices for physics mechanics problems is the pulley. As usual, we will start with the simplest model, which in this
case means we will assume that pulleys are massless and frictionless. As we will see more clearly later in the course, these two conditions are
sufficient to ensure that the tension applied at one end of the rope is the same as the tension applied at the other, even though the intermediate
section of the rope goes around one or more pulleys. This means the measured tension force can have different directions, depending upon
where it is measured, but it always has the same magnitude. This is a constraint on the tension forces present in a physical system.

Pulleys get especially interesting in situations like the following example, where at least one of the pulleys is able to move. The two blocks
remain at rest in the system of ropes and pulleys shown in the diagram. Given this information, can you conclude how the two masses
compare?

Figure 2.6.1 – Blocks Hanging from Multiple Pulleys

By now we know that when it comes to analyzing the forces present in a system, there is no better tool than the free-body diagram. We begin
there:

Figure 2.6.2 – Free-Body Diagrams of Blocks and Pulleys
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Look at all those tension force vectors! There is one for every segment of rope pulling on an object. One might ask why there are two tension
force vectors drawn for the same rope on each pulley. The simplest answer is to consider what you would feel if you grabbed the rope on
both sides of the red pulley, and cut the rope above the two points where you are holding. Clearly you would feel the pulley pulling down on
both ends of the rope. If you feel forces down by each end of the rope, then the pulley must feel forces up by each end as well, according
to Newton's third law.

Here is where our pulley force constraint comes into play. Assuming the pulleys have negligible mass (or are static, and these are both), and
assuming their axles are frictionless, then we can use the constraint that tension forces exerted by every segment of a single continuous piece
of rope has the same magnitude. There are three ropes involved here, so this constraint in mathematical terms gives:

Alert
We must be careful not to equate too many of these tensions – this constraint only holds for a single, continuous piece of rope.

This constraint, if used carefully (i.e. making certain that the conditions required are in place), allows us to greatly streamline our problem-
solving process. For example, when drawing the FBDs, we can avoid 9 different tension force labels, and just label all the tensions from the
long, common rope simply " ." Another simplification for this diagram is noting that if we put the (red) pulley that is free to move up and
down into a single system with the (blue) block that moves with it, then we can ignore the internal tension force ( ) altogether, and
just label the downward force with the weight of the block. Let's incorporate these shortcuts into a revised FBD before proceding with our
analysis. If we note that the FBD of the blue pulley is of no value to our analysis, we get the following very efficient FBDs:

Figure 2.6.3 – Streamlined Free-Body Diagrams of Blocks and Pulleys

The next step in our analysis is to sum the forces for each object and apply Newton's second law, which in this case involves zero
acceleration. In taking the sum of forces, we have to take care to correctly use our coordinate system:

Notice that the light weight  holds up the heavier one because the placement of the pulley allows us to use the tension from the same rope
twice on the heavier mass. This trick can actually be repeated as many times as we like (the pulley can have multiple tracks in it), and this
enables us to lift very heavy weights with very little force. This invention is called a block and tackle. They are used for sailing ships (the
heavy sails and boom can be pulled tighter), lifting engine blocks, and many other applications.

Analyze This
In the system shown below, the blue block remains at rest on the scale while it is attached to the pulley system as shown. All of the pulleys
are massless and frictionless, and the rope is massless.

= = = = , =T1 T3 T6 T8 T9 T4 T5 (2.6.1)
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Analysis

As usual, the first step in analyzing such systems is to draw a FBD. In this case, we will employ whatever "shortcuts" indicated above
that we can, but we need to be extra careful when multiple ropes are involved!

As noted in the text above, a FBD of the fixed (highest) pulley provides no useful information, since it only introduces the force by the
ceiling pulling it up. If we are asked about this force, then we would have to add this FBD to the collection. For these three FBDs, we
can construct the equations that result from Newton's second law, with zero acceleration:

We can now (for example) eliminate the variables  and  from the equations and get the scale reading (the normal force) in terms
of the blocks' masses:

It makes sense that the heavier  is, the less force will be registered by the scale, since the orange block is pulling up on the blue
block through the pulley system.

Friction

Another constraint on forces is one we have discussed previously – how the friction force between surfaces is related to the normal force
between those surfaces. While the friction and normal forces appear in the equations that come from Newton's second law, the relationship
between friction and normal force is "extra." We have already seen examples of this in action for kinetic friction in the previous section, so
here we will direct our attention to the constraint for static friction.

When one has a system of equations, and then throws in an additional equation like , it is easy to incorporate into the algebra.
Incorporating an inequality like  is tougher, mainly because there is a conceptual element to it. Generally it shows itself in the
statement of the question with language like, "Find the largest (or smallest) force for which...", or "Find the value of <whatever> at which the

= +2 +N − g = 0 , = −2 = 0 , = + + − g = 0Fnet T1 m1 Fnet T2 T1 Fnet T1 T2 m2

T1 T2

= 2 ⇒ 2 = g ⇒ N =( − ) gT2 T1 T1
2

3
m2 m1

2

3
m2

m2

= Nfk μk

≤ Nfs μs

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/62987?pdf


2.6.4 https://phys.libretexts.org/@go/page/62987

system starts to move".  That is, there needs to be some mention of an extremum. This is because the extremum will trace its roots back to the
maximum value of static friction, and when we are interested in the maximum value, our inequality becomes an algebraically-useful equality.

Analyze This
A rope is fastened to a block in two places and passes through a system of two massless, frictionless pulleys, as shown in the diagram
below. The block rests on a rough horizontal surface. The bigger pulley can be pulled upward.

Analysis

Start with the free-body diagrams and coordinate systems. The FBD of the smaller pulley will yield us nothing useful, so there are just
two FBDs to draw. Note that the tension on the side of the block comes from the same rope as the tension on the top of the block, so
thanks to the pulley constraint, they are equal, and we'll label them both the same " ".

The block is not accelerating at all (nor is the pulley), so the sum of the forces in each of the  and  directions comes out to zero.

Obviously if we pull up with sufficient force, then we'll lift the block off the horizontal surface. In particular, to lift the block the FBD
of the block shows that the tension force pulling up needs to exceed the weight of the block. With two such tension forces pulling down
on the pulley, we would have to pull up on the pulley with twice the weight of the block to get it to accelerate vertically. But the
interesting part of this system lies with the horizontal motion...

As long as this system remains static, the friction force will only react to the other forces to hold the block in place horizontally. We
can't say anything about this force without more information, but it is natural to ask, "How hard to we have to pull up on the larger
pulley in order to get the block to start moving? We would expect that the force required is less than the force needed to left the block,
computed above, but how do we find this force?

If we have to pull "just hard enough" to get the block moving, then this occurs when the horizontal pull equals the maximum static
friction force, which converts our static friction inequality into a constraint equation:

T

x y

= +pull−2T = 0; , = +T − = 0 , = +T +N −mg = 0Fnet Fnet x fs Fnet y
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Note that the block will have to start sliding before it starts rising, because rising requires than the normal force goes to zero, and it
will slide when the static friction force is small-but-non-zero. Now solve the equations simultaneously to get:

Constraints on Acceleration
We now turn our attention to constraints on acceleration. These are "constraints" in a more literal sense than for forces, in that they are not
shortcuts for more complicated cases. Acceleration constraints are purely mathematical (not physical) relationships, and therefore require
fewer – if any – special conditions. These constraints on acceleration come in several varieties – from restrictions between components of
acceleration for a single object, to accelerations of separate (connected) objects, to restrictions due to "special" motion.

Inclined Planes

In a large percentage of our examples so far, objects have been accelerating either horizontally or vertically. These have actually been
"constraints" of a sort, because we know that when an object is accelerating along a horizontal surface (i.e. the object is "constrained to
remain on the horizontal surface"), then we can immediately infer that its vertical acceleration is zero, and we can then plug this fact into the
vertical equations for Newton's second law.

But now let's suppose that the object is confined to travel along a different surface. We will eventually talk about confinement to curved
surfaces, but the simplest "new" case is a flat surface that makes an angle with the horizontal – a so-called inclined plane. This constraint
forces the horizontal and vertical components of acceleration to have a specific relationship with each other. Namely, if the angle the plane

makes with the horizontal is , then . So if we sum our forces along the horizontal ( ) and vertical ( ) axes, and apply Newton's

second law, then we have an additional equation to throw into the mix thanks to the constraint that the object remains in contact with the
inclined plane. To see this in action, let's look at the simplest possible case – a block on a frictionless inclined plane:

Figure 2.6.4 – Block on a Frictionless Inclined Plane

With no friction present, there are only two forces on the block. Drawing the free-body diagram and resolving the angled normal force into
the usual horizontal and vertical components gives:

Figure 2.6.5 – FBD of Block on a Frictionless Inclined Plane

[The reader is encouraged to do the geometry to confirm that the angle  in the normal force resolution is the same as the angle of the
inclined plane up from the horizontal.]

Now we apply Newton's second law to this diagram, for both components of the net force:

Now we can do a bit of algebra, and apply our acceleration component constraint to get (after some trig identities):

The negative signs have appeared because the coordinate system chosen has to-the-right and upward as the positive directions, and this block
accelerates to-the-left and down. We are interested in the motion of the block, which means its total acceleration along the inclined plane. We
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can get this from the components of acceleration:

It turns out that we can save ourselves some of the algebra above when it comes to inclined planes by using a common trick. We have been
treating our horizontal/vertical ,  coordinate system like it is sacred, but it is certainly not. We can choose any axes we like, as long as we
stick with them throughout, and correctly reference the forces on those axes. Consider what happens if we choose the following coordinate
system:

Figure 2.6.6 – Useful Coordinate System for an Inclined Plane

We have the same physical situation – same FBD – but this time the normal force is parallel to the -axis, and it is the gravity force that we
have to break into components. So what have we gained? The block is constrained to slide along the surface, so it only accelerates parallel to
the -axis. This makes the equations from Newton's second law easier to work with, giving the same answer as above for the acceleration
immediately:

This coordinate system choice is appreciated even more when one encounters a problem with other forces that are also parallel to the rotated
axes (like friction, parallel to the surface). The fewer forces that need to be broken into components, the better.

Analyze This
The system shown in the diagram below remains at rest. The rope and pulley are massless, and the pulley is frictionless, but the inclined
plane is not.

Analysis

There is obviously a lot going on here, but as always, our analysis just needs to take it one step at a time. We start as usual with free-
body diagrams, but the FBD of the blue block poses a bit of a puzzle for us. With a component of the gravity force acting down the
plane, and the tension force acting up the plane, we can't tell from looking at the diagram which of these two forces is greater. The
static friction force only reacts to the other forces, so if the tension force is greater, then the friction force must point down the plane to
keep the block from sliding up, and if the tension force is less, then the friction force points up the plane to keep the block from sliding
down. (The friction force could even equal zero, if the magnitude of the tension force happens to be equal to .)

The answer to this conundrum is this: As an unknown, the static friction force must point either in the  or  direction. If we
happen to draw the vector in the wrong direction, then after we do the math to obtain an answer for this force, then the answer will
have the right magnitude, but will have a negative sign. This doesn't mean we have made a mistake – the FBD is there to help us solve
the problem, which it did! It allowed us to compute the magnitude, and with the sign, it also told us the direction. So just draw the
friction force on the FBD in either direction – it is a means to an end, not a declaration of which way you believe the direction to truly
be.

a = = = g sinθ+a2
x a2

y

− −−−−−
√ θ( θ+ θ)g2 sin2 cos2 sin2

− −−−−−−−−−−−−−−−−−−
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Now for Newton's second law. With the system remaining at rest, we can immediately plug-in zero for the accelerations:

We can go no further without more information, which (for example) could trigger something like the static friction / normal force
equation of constraint.

Pulleys

Another way that accelerations can be constrained involves ropes moving through pulleys. This constraint relates the motion of one object to
that of another when they are connected through a system of pulleys. The only assumption required for this kind of constraint is that the rope
does not stretch – however much it gets shorter in one segment, it gets longer by the same amount in another segment. Let us return to the
system shown in Figure 2.6.1 and ask the following question: If the block  rises a distance , what happens to the block ?

First of all, it should be clear that  drops as  rises, so the only question is, how far? This may not be apparent at first, but think of it this
way: When the pulley holding  moves up 1 unit of distance, both segments of rope going up from that pulley get shorter by 1 unit. These
two units of rope don't simply vanish, and in fact they are taken-up by the free end of the string, which is attached to . This means that as 

 rises a distance of ,  must drop exactly twice that far: .

What does this say about the comparison of the speeds and accelerations of the two blocks? Well, they are required to move simultaneously,
so every unit of length that  rises is matched by a drop of  that is twice as much, which means that  always moves at twice the
speed and accelerates twice as much as . If this system is not balanced (as it was in the original example), then applying Newton's second
law to both blocks includes two accelerations, but these are constrained to be related to each other by a factor of two, providing us with an
additional constraint equation:

What's with the absolute values, you ask? Well, these variables can have positive or negative values, and we must be careful when it comes to
signs. In particular, we have to look at how our constraint relates to our choice of coordinate systems for the two blocks. In Figure 2.6.2, we
chose "up" as the positive direction for both blocks. So we need to ask ourselves, "If one block experiences a positive displacement, what is
the sign of the displacement of the other block?" In this case it's clear that the displacement of the two blocks have opposite signs. Therefore
the constraint equation for the block accelerations is:

Note that it is perfectly fine to set up different coordinate systems for the two blocks – each FBD is entitled to its own individual coordinate
system. How the coordinate systems relate to each other affects the equation of constraint. So for example, if we had instead chosen
downward to be the + -direction for block #2 (but left upward as positive for the other block), then there would be no need for the minus
sign in the constraint equation – positive displacements of one block correspond to positive displacements of the other block. We see that
there is therefore no "correct" choice of coordinate system, but we must take care when the time comes to combine the equations from the
two FBDs, to ensure that the constraint equations relate the variables correctly.

With this constraint mechanism in mind, let's recycle a pulley system we analyzed above, this time without the condition that it remains static
with the blue block resting on a scale:

Analyze This
In the system shown below, the blocks are free to accelerate. All of the pulleys are massless and frictionless, and the rope is massless.

= + g sinθ+ −T = 0 , = +N − gcosθ = 0 , = +T − g = 0Fnet x m1 fs Fnet y m1 Fnet m2

m1 Δy m2

m2 m1

m1

m2

m1 Δy m2 2Δy

m1 m2 m2

m1

2 | | = | |a1 a2 (2.6.7)
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Analysis

[The analysis of this system teaches us a very important lesson about these types of problems: Even though this will clearly behave
very differently from the case studied above, much of the early analysis is the same. This demonstrates why it is important to practice
the little pieces of analysis, as they come up over and over.]

The FBDs for this system are the same as those above, with the exception of the normal force coming from the scale:

Okay, now we invoke Newton's second law. Unlike the previous case, we need to include non-zero accelerations:

Okay, now is where things get a bit different. First, we note that the equation of motion for the pulley includes the mass of the pulley,
which we are given is zero. So the relationship between the two tensions is the same as before:

And now the time has come to relate the constrained accelerations of the two blocks. [This is quite tricky – much trickier than you will
encounter on your own in this class, but we'll slog through it in the hope that it helps you to do simpler examples on your own.] Start
by defining the positions of the three moving objects, measured as the distance down from the highest pulley: , , and . The
lengths of the long and short ropes (  and , respectively) can be written in terms of these distances (plus a constant to account for the
radii of the pulleys and in the case of the longer rope, the distance of the highest pulley from the ceiling):

We are interested in how the change in the height of the blue block is related to the change in height of the orange block, which means
we are looking to relate  to . The length of the rope doesn't change, nor does the constant, so:

= +2 − g = , = −2 = , = + + − g =Fnet T1 m1 m1a1 Fnet T2 T1 mpulleyapulley Fnet T1 T2 m2 m2a2

= 2T2 T1

y1 yp y2

L l

L = const+left segment +middle segment +right segment = const+ +( − ) +( − ) = const+2 −2 +y1 y1 yp y2 yp y1 yp y2
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dy1 dy2
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From this result, we conclude that the magnitude of the acceleration of the blue block is 1.5 times the acceleration of the orange block.
Notice that we have chosen 'up' to the be positive direction for both blocks, but when one block goes down, the other must go up. So
the accelerations must have opposite signs, and we conclude:

From this and in equations above, one can compute the accelerations of the blocks in terms of their masses. Sparing the reader the
algebra, it comes out to be:

The tensions in the two ropes can also be computed in terms of the two masses:

Circular Motion

The last of the accelerated constraints involves knowing something specific about the acceleration of the one or more objects involved. A
trivial case would be that you could be simply given the acceleration. Another possibility is that the object could be moving in a straight line
and you could be given details about its motion (initial speed, distance traveled, etc.), and the acceleration could be computed using
kinematics. But the most interesting and useful ways to constrain the acceleration of an object is to have it move in a circle, so that it
experiences a centripetal acceleration.

Conceptual Question
Everyone knows that a spring can only be stretched if it is pulled from both ends – pulling from one end only moves the whole spring
without stretching it. With this in mind, consider the following: A block is attached to one end of a massless spring, the other end of which
is attached to a vertical fixed peg in a frictionless horizontal surface. The block is spun around a circle, and the spring stretches as a
result of this motion, (which means that both ends are being pulled). In fact, the faster the motion, the more the spring stretches. Clearly
the peg is pulling on one end of the spring as the block goes in the circle, but what force is pulling the block outward to stretch the spring?

Solution

The block is not pulled outward! It is only pulled inward (by the spring). It is not the block that needs to be pulled outward to stretch
the spring, but rather the spring that needs to be pulled that way. The spring pulls the block inward (keeping it accelerating
centripetally), and the third-law-pair force of the block on the spring is what pulls the spring outward. This is a fantastic example of
how imprecise wording can get someone in trouble in physics discussions.

This points out possibly better than any other example the importance of isolating objects with force diagrams. The block here is not a
conduit for some mysterious force pulling out on the spring – it is the object pulling out on the spring. You thoroughly need to trust the third
law here to get the force between the spring and the block, and you need to thoroughly trust the second law to realize that the block does not
require another force on it outward to balance the spring force, because it is accelerating.

Now for an example that incorporates circular motion. What makes this problem interesting is the information that is hidden within the
wording...

Analyze This

= −a1
3

2
a2
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A rock on a string flies around (with negligible air drag) in a circle in a vertical plane (in the presence of the earth's gravity) such that it
just barely gets by the top (the string remains at its full length at the top of the circle, just barely not going limp) as it continues in its
circular path.

Analysis

Start with a free-body diagram. Clearly there is gravity acting on the rock, so the only question is whether the string is contributing a
tension force. While it is straight, we are told that the rock "barely gets by the top", which means that the string has gone limp at the
peak, and the tension force is zero. That makes the FBD rather simple:

Though we have not stated so explicitly, we can think of the "tension force from string equals zero" as a force constraint. It is
information given to us (in an obscure manner) that pertains to the value of one of the forces that is not derived from the application of
Newton's laws, so it fits the description perfectly. Whether we call it a constraint or not isn't important – what matters is that we can
extract this piece of physical data from the information given.

Next we turn to the acceleration constraint – the rock is traveling in a circle. If we call the speed of the rock at the top of the circle " ,"
and the length of the string " ," as indicated in the diagram, then  the centripetal acceleration toward the other end of the string is:

Relating this acceleration to the only force present, we see that these vectors are in the same direction, as they should be, and
Newton's law gives us a result that expresses the velocity of the rock in terms of only the length of the string!

 

This page titled 2.6: Additional Twists - Constraints is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman
directly on the LibreTexts platform.
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Sample Problems
All of the problems below have had their basic features discussed in an "Analyze This" box in this chapter. This means that the solutions provided
here are incomplete, as they will refer back to the analysis performed for information (i.e. the full solution is essentially split between the analysis
earlier and details here). If you have not yet spent time working on (not simply reading!) the analysis of these situations, these sample problems
will be of little benefit to your studies.

Problem 2.1
Two spherical objects of identical radii but different masses are dropped from different heights through the air. They both reach terminal
velocity at the same moment in time, and at that moment, they are side-by-side. From this point on, the time that the heavier sphere takes to
reach the ground is half the time that the lighter sphere takes.

a. Find the ratio of the masses of the two spheres.
b. Treating the two spheres as a single system, the constant velocities of the individual spheres assures that the system's center of mass is also

moving at a constant speed. In other words, the system is also at terminal velocity. The system as a whole does not have the same cross-
sectional area or the same shape as the individual spheres, so it has a different drag coefficient  than that of the individual spheres .
Find  in terms of .

Solution

a. Both spheres are moving at constant speeds, and they are both covering the same distance, so the times they take to reach their
destination are inversely-proportional to these speeds. The heavier mass takes half the time to get to the ground, so it must be moving twice
as fast. Using the result from the analysis, we find the ratio of the masses to be:

b. The density of the air ( ), cross-sectional area ( ), and drag coefficient ( ) are all the same for both cases, so given what we learned
about the velocities, the drag forces on the two spheres are (capital letter symbols refer to the heavier sphere, lower-case symbols to the
lighter sphere):

For the system as a whole, the air density is unchanged, and the cross-sectional area is the sum of the areas of the two spheres (
). The terminal velocity of the system is the velocity of its center of mass ( ), so in terms of the new drag coefficient, the drag

force on the system is:

Now we just need to include two more things. First, the drag force on the system is just the sum of the drag forces on the spheres:

And second, we need the speed of the center of mass. We have the ratio of the masses from part (a), so:

Now we put it all together:

Comparing this to the equation above allows us to extract the drag coefficient:

Problem 2.2
A sign hangs from a wire that is attached to a ring that is also attached to two wires (one of which is horizontally-oriented), as shown in the
diagram. The wires and ring have negligible mass. The tension in one of the wires is three times as great as the tension in the other wire. Find
the angle .
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Solution

In the analysis we found, among other things:

The cosine is always less than or equal to 1, so the force with the greater magnitude must be . Plugging-in  and solving for 
gives:

Problem 2.3
A block is attached to a spring that stretches down from the ceiling of a stationary elevator that is capable of accelerating up or down. The
block is then lifted slightly, and a bathroom scale is placed beneath it, so that the block rests on it. The spring is still stretched at this point, but
not as fully as when the block was hanging from it. The spring constant is , the mass of the block is , and in the
stationary elevator the scale reads .

a. Find the direction and minimum magnitude of the acceleration of the elevator necessary to bring the scale reading to zero.
b. If the acceleration is double the value given in part (a), find how far above the scale the block rises.

Solution

a. In the analysis for this situation, we found the relationship between the forces and the acceleration:

The reading of the scale is the normal force, and when the elevator is not accelerating we'll call it , We therefore have:

The scale reads zero at the point when the normal force goes to zero, so setting  equal to zero in the original equation above, and noting
that the spring stretch and weight of the block remain the same for the cases of when the normal force just goes to zero and  , we get:
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The minus sign indicates that the elevator must accelerate downward, as we would expect.

b. When the block leaves contact with the scale, the normal force remains zero, and at twice the acceleration we have a new spring stretch
we'll call  Subtracting this stretch from the original stretch gives the height that the block rises, so:

Problem 2.4
A block is sped-up at a steady rate along a rough, horizontal surface by a stretched spring that pulls on it. The coefficient of kinetic friction
between the block and the horizontal surface is . as the block is being pulled in this manner, it suddenly comes upon a smooth
(frictionless) region of the horizontal surface, and its acceleration instantly increases to an amount that is 250% of the original acceleration.
Find the before and after accelerations.

Solution

In the analysis we found this:

Initially we have , and when the surface becomes smooth, this changes to  while  changes to . The
spring stretch doesn't have time to change when the block suddenly reaches the smooth area, so the value of  remains unchanged. This
gives us two equations that we can solve simultaneously for the acceleration :

 

Problem 2.5
A tetherball swings around a pole, making a full circle at regular time intervals. The rope has negligible mass. A pebble is dropped from rest
from the point where the rope is in contact with the pole. In the time it takes the pebble to cross the horizontal plane of the tetherball's circular
motion, find the number of radians the tether ball has traversed of its circle.

Solution

The distance that the pebble travels is found from the right triangle formed by the rope and the pole (from the point where the rope is
attached to the ball's rotational plane), and as it is in free-fall, this can be related to the time of the journey, starting from rest:

In the analysis, we found the following relationship (where " " is the time of one full revolution of the ball):

ma = +kΔx+0 −mg = − ⇒ a = − = − = −1.37No

No

m

8.20N

6.00kg

m

s2

Δx′

+kΔ +0 −mg = m (2a) = 2 (kΔx−mg) ⇒ kΔx−kΔ = mg−kΔx = ⇒ Δx−Δ = = = 0.342mx′ x′ No x′ No

k

8.20N

24.0 N
m

= 0.300μk

− mg+kΔx = maμk

= 0.300μk = 0.0μk a = 2.50aaafter
kΔx

a

0 +kΔx = m (2.50a) ⇒ −(0.300)mg+2.50ma = ma ⇒ a = g = 1.96 , = 4.90
0.300

1.50

m

s2
aafter

m

s2

Δy = l cosθ = g
1

2
t2
drop

t

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63057?pdf
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/2%3A_Force/2.5%3A_Applications_of_Newton's_Laws#Problem+2.4
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/2%3A_Force/2.5%3A_Applications_of_Newton's_Laws#Problem+2.5


4 https://phys.libretexts.org/@go/page/63057

Setting these equal, we can determine what fraction of the time of a tetherball revolution is the time the pebble takes to drop:

In a full revolution, the tetherball sweeps out a full , so in the fraction of time, it travels:

Problem 2.6
A large block is pushed along a horizontal, frictionless surface by an external fixed force. In contact with the rear vertical face of the large
block is a smaller block, and as the two blocks are accelerated horizontally, the smaller block slides down the rough (not frictionless) face of
the larger block at a constant speed. The coefficient of kinetic friction between the blocks is . The large block begins at rest, and
after , the small block hits the horizontal surface. At this moment, the large block has been displaced horizontally the same distance that
the small block has fallen. Find the speed of the smaller block when it hits the horizontal surface.

Solution

The analysis gave us the force that must be applied to allow the kinetic friction force to equal; the weight of the small block (so that it
doesn't accelerate vertically), and this gives us the horizontal acceleration of both blocks:

The big block starts at rest, so after a time  is moves a distance equal to:

The distance the smaller block falls at a constant speed in the same time is , so ssince we are given that these distances are equal, we
get:

The horizontal component of the smaller block's velocity is found from its horizontal acceleration:

And the block's total speed is therefore:

Problem 2.7
A system of two balls of different masses attached by a string are thrown horizontally through the air, and rotates at a steady rate about its
center of mass as it goes. Air resistance is negligible for the system, and at the moment the balls are thrown, the larger ball is directly above
the smaller ball, as in the diagram. The length of the string is , and the two-ball system makes 2 full revolutions every second. Find the
amount that the height of the heavier ball has changed 1.25 seconds after the balls are released.
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Solution

This system as a whole (i.e. its center of mass) behaves like any other projectile as discussed in the analysis, and since it is launched
horizontally, we can easily compute how far the center of mass falls:

With the system rotating at a rate of 2 revolutions per second, after 1.25 seconds it has made 2.5 revolutions, which means that the heavier
ball is now directly below the center of mass. With the two masses in a 2-to-1 ratio, the center of mass half as far from the heavier ball than
it is from the lighter ball. This means that it started one third of the length of the string above the center of mass, and 1.25 seconds later it
was one third of the length of the string below the center of mass. So the amount it has fallen is the distance the center of mass has fallen
plus an additional amount of two-thirds of the string length:

Problem 2.8
Two particles, #1 and #2 interact only with each other. The acceleration of particle #1 is plotted on the graph below for a period of time. The
velocity of particle #2 was plotted simultaneously, but the data for the second half of the time interval was lost, and its graph is also shown
below. Particle #1 comes to rest end of its journey.

a. Fill in the missing segment of the graph.
b. Plot the graph of the center of mass of this two-particle system.

Solution

Δ = g = 766cmycm
1

2
t2

Δ = l+Δ = (15cm) +766cm = 776cmy2m
2

3
ycm

2

3
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a. This was done in its entirety in the analysis! [It's often the case that the analysis can get us right up to the doorstep of the answer to any
question, but occasionally the analysis can provide a complete answer.]

b. The particles are interacting only with each other, which means that there is no external force on this system. This means that its center
of mass must maintain a constant velocity (Newton's first law). We are given that particle #1 comes to rest at the end of the journey, so we
know the velocities of both particles at that moment in time, which means we can compute the unchanging velocity of the center of mass.

In the analysis, we used the second and third laws to determine the ratio of the masses of the particles, namely: . This gives us
the center of mass velocity:

The graph of this (constant center) of mass velocity is this simple:

 

Problem 2.9
In the system shown below, the blue block remains at rest on the scale while it is attached to the pulley system as shown. All of the pulleys are
massless and frictionless, and the rope is massless. In this setup, the scale reads . The blue block is then removed from the pulleys and
placed on the scale by itself, and the scale reads . Find the mass  of the orange block.

Solution

In the analysis, we found:

Doing some algebra to solve for what we are looking for gives:

= 4m1 m2

= = = = −1unitvcm
+m1v1 m2v2

+m1 m2

4 +1v1
0

v2

4 +1

−5units

5

980N
1470N m2

N =( − ) gm1
2

3
m2
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When the blue block is placed on the scale by itself, the normal force measured by the scale equals the weight of the block, . Putting in
this given value and the value of  when the pulleys are connected gives us the value of :

Problem 2.10
A rope is fastened to a block in two places and passes through a system of two massless, frictionless pulleys, as shown in the diagram below.
The block rests on a rough horizontal surface. The bigger pulley can be pulled upward. It is discovered that when the strength of the pull
reaches one-half the weight of the block, the block just starts to slide. Find the coefficient of static friction between the block and the
horizontal surface.

Solution

The analysis gave us the relationship between the pull force, the coefficient of static friction, and the weight of the block, for the case when
the friction force is maximized:

We are given that the sliding starts when the magnitude of the pull force is one-half the weight of the block, so . Plugging this
in and solving for  gives:

Problem 2.11
The system shown in the diagram below remains at rest. The rope and pulley are massless, and the pulley is frictionless, but the inclined plane
is not. The coefficient of static friction is 0.35, and the blue block has twice the mass of the yellow block. Find the maximum and minimum
values that  can have such that the system remains at rest.

Solution

=m2
3

2

g−Nm1

g

gm1

N m2

= = 75kgm2
3

2

1470N −980N

9.8 m

s2

pull = mg
2μs

1 +μs

pull = mg1
2

μs

= 0.33μs

θ
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We start by noting that if  is at its extreme maximum of , then the normal force between the blue block and the plane is zero,
resulting in zero friction force, and greater mass of  will cause the system to accelerate (the yellow block will rise). If  is at its other
extreme of , then the plane is flat, and the maximum static friction force is just  multiplied by the weight of the blue block. But
this is less than the weight of the yellow block, so the system will accelerate in the other direction (the yellow block will fall). So there must
be two extremes for , between which the system remains at rest.

We are looking for the extreme case, so we invoke the constraint that the friction force is its maximum:

Putting this constraint together with the equations from the analysis and using the information given above that  gives:

We will find that this equation results in two possible values for . The smaller one gives a positive value for  (so the friction force points
down the plane, as in the FBD from the analysis), and the larger one gives a negative value for  (indicating that the vector points up the
plane, opposite to the FBD from which we derived these equations). The rest is algebra: Start by putting the equation in terms of only 

:

Now solve for  using the quadratic formula:

Taking the inverse-cosine gives these two angles:

The larger of these numbers looks unusual, but it comes from the negative root of the quadratic equation, which represents the case when
the frictional force points in the opposite direction than we diagrammed. We can just take the supplement of this angle (or ignore the minus
sign on 0.676), and we get the more sensible answer of .

Problem 2.12
In the system shown below, the blocks are free to accelerate. All of the pulleys are massless and frictionless, and the rope is massless. The
orange block starts at a height of  above the blue block, and they are released from rest. After , the blocks are at the same height.

Find the ratio of the masses, .

Solution

We computed expressions for the accelerations of the two blocks in the analysis. We can rewrite these in terms of the ratio we are looking
for:

theta 90o

m1 θ

0o = 0.35μs

θ

= Nfs μs

= 2m1 m2

0 = + g sinθ+ −T = + g sinθ+ N −T = + g sinθ+ gcosθ− g ⇒ sinθ = − cosθ+m1 fs m1 μs m1 μsm1 m2 μs

1

2

θ fs
fs

cosθ

θ = = θ− cosθ+ = 1 − θ ⇒ 0 = ( +1) θ− cosθ−sin2 (− cosθ+ )μs

1

2

2

μ2
s cos2 μs

1

4
cos2 μ2

s cos2 μs

3

4

cosθ

cosθ = = = 0.988 or  −0.676
+ ±μs −4 ( +1) (− )μ2

s μ2
s

3
4

− −−−−−−−−−−−−−−−−
√

2 ( +1)μ2
s

+ ±μs 4 +3μ2
s

− −−−−−
√

2 ( +1)μ2
s

θ =  or 8.9o 132.6o

47.4o

8.0m 2.0s
m2

m1
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These are the rates that they are accelerating relative to the earth, but we also know that they are in opposite directions, with the blue
block accelerating in the direction we chose to be positive in the FBD, and the orange block accelerating in the negative direction. So they
are accelerating toward each other at a rate equal to the difference of these values. They started from rest, and we are given the distance
they travel relative to each other, so we have:

Setting the relative acceleration equal to  and solving for the mass ratio gives our answer:

Problem 2.13
A rock on a string flies around in a circle (with negligible air drag) in a vertical plane (in the presence of the earth's gravity) such that it just
barely gets by the top (the string remains at its full length at the top of the circle, just barely not going limp) as it continues in its circular path.
The string, which has a length of , suddenly becomes detached from the rock at the point when the rock hits its peak, turning it into a
projectile. Find how far the rock has traveled in the horizontal direction when it has fallen to a height level with the center of the circle.

Solution

We worked out the speed of the rock at the peak of the circle in the analysis: . When the string releases it, there is no vertical
component of velocity, so we can find the time it takes the rock to fall the distance :

With a constant horizontal component of velocity, the distance traveled horizontally is just the product of that component of velocity and
the time, so:
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3.1: The Work - Energy Theorem

Ignoring Directional Changes
For a large number of applications in mechanics, we are not interested in how a force causes the direction of motion of an object to
change. In these cases, we only care about how that force changes the speed of the object. By now we know how much of a pain
vectors can be, so having an alternative to Newton’s second law to solve problems where only changes in speed are of interest is a
welcome improvement. To see how we get to such a place, we need to go back to what we previously said about acceleration, and
how it breaks into perpendicular parts – one that is parallel to the velocity (the “speeding-up/slowing-down” part), and the part that
is perpendicular to the velocity (the “changing direction” part). We expressed this mathematically in Equation 1.6.14. We will now
restrict our attention to the first term of that equation. Note that restricting ourselves to the part of the acceleration parallel to the
direction of motion means we also restrict ourselves only to the component of the net force parallel to the motion. We will also
begin, as we always do, by restricting our discussion to the motions of single particles, and will come back later to determine the
consequences our findings have on systems of many particles.

Kinetic Energy and the Work-Energy Theorem
We have a neat trick that allows us to relate the change of the speed to the net force. The net force is proportional to the time
derivative of the velocity vector, and we can use the product rule for derivatives of dot products of vectors, so let's take a derivative
of the square of the velocity:

To get to the net force, we multiply both sides by the mass of the particle and divide both sides by 2:

This makes some sense. The rate of change on the left side of this equation only depends upon the rate at which the speed changes
(it is insensitive to changes in direction), and the dot product on the right side ensures that only the projection of the net force along
the direction of motion (i.e. the direction of the velocity) plays a role. The part of the net force that causes the particle to change
direction is cast aside with the use of the dot product. We can take this a little bit further by expressing the velocity vector on the

right side as a tiny displacement (which we will call ) divided by the tiny time interval. Multiplying both sides by  then gives
an equation that expresses a small change in the quantity  (called the kinetic energy) due to a net force acting on

the particle as it displaces a small amount .

Suppose the particle now undergoes several displacements, so that the change in the kinetic energy is no longer infinitesimal. This
is tricky business, as each displacement may be the same (if it moves in a straight line), or it may change direction (if it follows a
curvy path). Also, the net force on the particle might change as it moves from one place to another. We express the sum of many
infinitesimals as an integral, and since the sum of the right side of this equation depends upon the directions of many
displacements, this particular type of integral is called a line integral. This does not mean that the displacements are along a
straight line, however – here the word "line" is rather misleading – the word "trajectory" might be better.

Of course, the left side of this equation is simply a small number, and adding those up does not depend upon anything as
complicated as a trajectory, so it ends up being just a change from the beginning of the path to the end. If we call the start of the
journey  and the end , then we can express the totals for the whole journey as:
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dt
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The line integral on the right side of this equation is called the work done (by the net force) going from the initial to final positions.
We can (and later, will) discuss the work done by individual forces, and the work done by the net force is the total of all of those
works. We will often write the above equation with the following abbreviated notation:

In words, this reads: "The change of an particle's kinetic energy when it changes its position from  to  equals the work done on
it by all forces on it, computed over a well-defined path connecting those endpoints." This is known as the work-energy theorem. It
does exactly what we set out to do – it expresses the effect forces have on the change in an particle's speed, with no regard to its
directional changes. It doesn't solve any problem that can't be solved by Newton's second law, and in fact for some cases it isn't
even any easier to work with. But for other cases is it much easier to work with, as we will see, and these are the cases for which
this approach was invented.

These new quantities of kinetic energy and work have units of what we will more generically refer to as energy, and we give energy
units their own name:

Exercise
A single force which varies in magnitude and direction in space acts upon a particle, and is given by the equation below. Find
the change in the particle's kinetic energy as it moves from the origin along the -axis a distance of 2m.

Solution

This is a direct application of the work-energy theorem, which means it consists entirely of computing a line integral. To do

this, we first need to define the path mathematically, and all of the tiny displacements  along that path. The path in this
case is pretty simple – it is a straight line along the -axis from the origin ( ) to the point ( ). Along this path,
the value of  remains a constant zero. The direction of every infinitesimal displacement is the  direction, and the
magnitude of each displacement is simply . The work integral therefore becomes:

Now we just need to plug in for the force. The force must be evaluated at each point on the path, and since the value of  is
zero on the entire path, we can set  in the force vector, simplifying things greatly:

The dot product of this vector with the tiny displacement vector simplifies things even more:

Finally, we just perform the integral and apply the work-energy theorem:

Line Integrals
As you can tell from the example above, the hardest part of using the work-energy theorem is setting up the line integral. There are
several elements that need to be kept in mind:

1. define a direction for the tiny displacement vectors for every point on the path

ΔKE = (A → B)Wtot (3.1.5)
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The direction of the tiny displacement vectors (which we will assume to be in the ( ) plane) will have components equal to the
displacements in the  and  directions:

2. write the magnitude of the tiny displacements in terms of the integration variable

The displacement vector as written above doesn't tell us much. We also need to include the path for this to be useful. Since we are
assuming that everything is in the ( ) plane, the path can be expressed as a relationship between the variables  and . For
example, if the path is a straight line, then we can write . In this case, we can replace the  in the displacement
vector:

This puts the displacement vector in terms of a single variable ( ) for integration (we could of course have instead chosen our
integration variable to be ). More generally, the path could be a function: , in which case the  above would be replaced
by the derivative of the function:

Note also that the path may not even be a function, since it could have multiple  values for each  value. [Suffice to say that path
integrals have a lot more going on than we will cover in this course, and we'll leave coverage of the more nuanced details to a
course in vector calculus.]

3. evaluate the force vector at each point in the path

The force vector will be in terms of  and  (i.e. it is defined at all points in space), but in the integral only its value along the path
matters, so we can substitute the equation that defines the path (such as  in the case of a straight-line) into the force
vector so that it is a function of only one variable, allowing us to do the integral.

4. take the dot product

We of course know how to do this by now, but it is important to remember that it must be done. This step goes back to the start of
our discussion of this method. This dot product assures that we are only using the part of the force vector that lies along the tiny
displacement, which means we are only using the part of the force vector that changes the speed of the particle.

Of course, much more complicated paths than straight lines are possible. The following example illustrates how this is handled.

Exercise
Compute the work done on a particle by the force given below, along a parabolic path  connecting the origin to the
point on the path with an  value of 1m, where .

Solution

Start by determining the displacement vector as a function of  along the path:

Next write the force vector along the path only (in terms of ):

Now for the dot product:
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And finally integrate between the two endpoints, defined in terms of the  variable that we have put everything in terms of:

Lost Information
It is important to note that while the introduction of the work-energy theorem will simplify things for us with a subset of problems,
we do sacrifice some information. By throwing out the part of the force that acts to change the direction of motion of the particle,
we cannot use this method to determine which way the particle is moving after the force acts on it – we only know how fast it is
going. Also, we lose information about the time element of the motion between the starting and ending points. This should not be
surprising – just because we know how fast something is moving, if we don’t know the directions it takes to get from start to finish,
we still don’t know anything about the elapsed time. For example, a projectile thrown into the air will reach the same speed at two
different points of time – once on the way up and once on the way down. If we don't know anything about the direction of motion,
we don't know which time we are looking at.

To see this another way, consider a situation we are very familiar with – a particle  moving in a straight line, accelerating at a
constant rate. We know that we can write its acceleration in terms of the starting and final velocities using Equation 1.4.3:

By Newton’s second law, the acceleration here must have been caused by a (net) force in the same direction, so substituting the
ratio of force/mass for the acceleration gives:

This is once again the work-energy theorem (in one dimension, for a constant net force), and we see that it came directly from the
kinematics equation from which the time variable had been eliminated.

Work Contributions of Individual Forces
It probably isn’t immediately clear what is to be gained from this work-energy approach. After all, one still has to determine the net
force at each point in the path of the object’s motion, so our attempt to escape the tyranny of vectors would appear to be a failure.
But there is much more to this story. It begins with the recognition that total work done can be broken into a sum of works done by
individual forces:

There are a number of advantages to this, but the one we can see immediately is that if one of the individual forces happens to be
everywhere perpendicular to the path of the particle from A to B, then the work it contributes is zero, and we can simply ignore it –
no need to do the vector addition to add it to the other forces. Consider the following example of pushing a block across a rough
horizontal surface. [As we have stated several times, rigid macroscopic objects that don't rotate behave like individual particles, so
we are still following the restrictions we set above.] ] Figure 3.1.1 shows a diagram of what is happening and a FBD of the block.

Figure 3.1.1 – Pushing Block Across a Rough Horizontal Surface
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The work done by the net force can be broken down into a sum of the works done by each individual force:

Just by looking at the physical situation it is clear that the gravity and contact forces will play no role in the total work done, as they
are always perpendicular to the motion. This greatly reduces the number of forces (and vector addition) we would otherwise have
to deal with. Let’s look at some even more compelling examples:

Figure 3.1.2 – Loop-de-Loop

For a block sliding around a frictionless loop-de-loop track, the path it follows is quite complicated. The FBD of the block as it
travels along the track includes only two forces – gravity and the normal force by the track. The motion of the block is parallel to
the track everywhere, which means it is perpendicular to the normal force everywhere. That means that no matter what our starting
and ending points are, the normal force does no work on the block! Of the two forces involved, the normal force is by far the
hardest to deal with, since its direction and magnitude change everywhere on the track. but if we are only interested in the speed of
the block, we only need to worry about the work done by the gravity force, which has a constant direction and magnitude. We'll
come back to the simple result that comes from this shortly.

Figure 3.1.3 – Simple Pendulum
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For the simple pendulum, we see the same result for the tension as we found for the normal force in the loop-de-loop example. The
tension force remains at right angles to the motion of the bob at the end of the string, so there is no work done by the tension force.
If all we care about is the speed of the bob, then we only need to compute the work done by gravity.

Analyze This
A toy train rolls along a straight, frictionless track, parallel to the -axis.   As it rolls, it experiences a force given by the
equation:

The function  can be expressed by the graph below.

Analysis

In the equation for the force, the quantity in brackets is unitless and  has a magnitude of 1: . This
means that the function  is the magnitude of the force vector as a function of .

This force has a component in the -direction, which is parallel to the direction of motion of the train. We don't know
which way the train is moving, so we don't know whether the work done on it is positive or negative (whether the force is
speeding up the train or slowing it down).  The work done by the force on the train is therefore equal to plus-or-minus the -
component of the force, integrated over the displacement of the train. This will just equal  times the area under the 

 curve, so if the train moves from the origin to the position , then the work done is just  times the area of
the triangle shown, and since the motion in this case is in the -direction, the work done is positive.

If we are given the mass and starting speed of the train, we can use the work-energy theorem to compute its final speed.
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3.2: Work and Energy for Collections of Particles

Internal Energy

We now wish to extend our results from the previous section beyond just single particles. We want to ultimately talk about macroscopic
objects, but of course these are merely collections of particles. If we choose a model where this macroscopic collection of particles are
held rigidly in place, without the ability to move independently from each other, then such an object can be treated in exactly the same
way as an individual particle (assuming the object doesn't rotate). We will actually do this quite a lot in the coming pages, but for now we
want to look at what happens if the particles in our collection can move independently of each other.

We will start by looking a little closer at kinetic energy. When we first talked about force, we made very clear that force was not a
quantity possessed by an object – it is an interaction between two objects. Let's ask the same question of kinetic energy – is kinetic energy
a property that "belongs" to a particle? At first blush, the answer would appear to be yes. The particle has a well-defined mass and speed,
so since , it seems like we can attribute this quantity to the particle itself – there is no interaction or cause/effect here as
there was for force.

But alas, there is a problem with attributing this quantity solely to the particle, and that has to do with the observer that measures the
kinetic energy. If it was a property that belonged exclusively to the particle, then everyone that measures it for the same particle should
get the same number. But clearly this is not the case. Imagine that Ann watches a particle with mass  and speed  fly by. She says,
"That particle has a kinetic energy of ." But Bob, who is moving past Ann, traveling along with the particle, measures the speed of
the particle to be zero, and claims that the particle's kinetic energy is zero! Kinetic energy is not a property we can attribute to the particle
if different observers measure different values for it. Clearly there is always a frame (the one that moves along with the particle) for which
the kinetic energy is zero.

Now let's suppose we have a collection two non-interacting particles. The total energy of this two-particle collection is just the sum of the
kinetic energies of these particles. Does there exist a frame in which the energy of this collection is zero? In general, the answer is no! If
the two particles happen to be moving at the same speed in the same direction, then yes, jumping over to the frame common to both of
these particles will result in both particles being stationary. But in any case where the two particles are moving relative to each other, then
no such "zero total energy" frame exists. If you jump on the frame of one particle, then it is stationary, but the other is moving.

Okay then, let's see if we can determine, for the simplest case of two particles, what frame results in the lowest amount of total energy,
given that it is in general not equal to zero. It is probably not clear why we would care to know this yet, but hang in there...

Figure 3.2.1 – Two Particle Collection (Non-Interacting)

The figure shows a very simple case of two particles moving along a line at different speeds (shown from our perspective), and another
observer (Bob) moving along the same direction. If Bob is moving slower than the slowest particle, then he will see speeds for the
particles that are both slower than what we see from our perspective. Bob will measure a smaller energy for this two-particle
collection than what we measure, since both particles are moving slower. It is easy to write mathematically what energy Bob sees. Particle
#1 is moving (according to him) at a speed of , and particle #2 at a speed of , so:

Now Bob (by changing speeds) can choose to look at these particles from any frame he likes, which means that the energy of the two-
particle collection is a function of the speed  (relative to us) that he chooses. If we want to know the minimum energy one can measure
for this two-particle combination, one only needs to minimize the function  with respect to :
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This looks vaguely familiar... If we take a time derivative of the position of the center of mass of two particles aligned on the -
axis (Equation 2.4.8), we get the same expression:

So this is the velocity of the center of mass of the two-particle combination! Bob measures the minimum energy for the collection when
he is moving along with the collection as a whole, i.e. in the same frame as its center of mass. Put another way, from Bob's perspective,
while he sees the individual particles moving, according to him, the combined two-particle group is not.

Let's answer another question: For those of us not in the center-of-mass frame of the collection like Bob, how much greater do we
measure the collection's energy to be? We can calculate this simply by subtracting the energy Bob measures from the amount we measure:

The reader is encouraged to plow through the algebra here to obtain the final result, which is surprisingly simple:

But wait, this is just the kinetic energy equation for a single object of mass  and speed . The details related to the fact
that the "object" is made out of two moving particles is utterly ignored in this expression. This completes a very simple, intuitive picture
for how we do the energy accounting for a collection of particles:

where  is the kinetic energy of the collection as a single entity, calculated from its total mass and center of mass velocity, and 
 is the internal energy of the collection, defined as the sum of the kinetic energies of the particles comprising the collection, as

measured in the center of mass frame of reference. Notice that the internal energy of a collection is a feature of the full group of particles
as an entity, no matter who is looking at it. The total energy then only changes with observer because the whole group's KE changes when
the perspective is changed.

A few additional comments need to be added here:

This definition of internal energy depends upon the particles not interacting with each other. As such, it works pretty well for
something we will call "ideal gases" when we get to Physics 9B. We will later make a small alteration to this definition when the
particles within the collection push and pull on each other, but the idea of internal energy will endure.
It should be clear that if we use a model for a macroscopic object that consists of particles which are rigidly arranged, this
model allows for no internal energy. In these cases, the rigid object can be treated as if it was just a single particle, which simplifies
calculations. This model is useful as an approximation (just like assuming pulleys are massless, surfaces are frictionless, or there is no
air resistance), but in reality all objects are made of particles that can move, and therefore all objects possess some internal energy.
While particles within the collection of a rigid object that rotates are moving relative to each other, in a future chapter we will
introduce another type of kinetic energy (i.e. "rotational KE") for the object as a whole, which is not considered part of the internal
energy.

Analyze This
Three identical particles, A, B, and C are positioned at the vertices of an equilateral triangle. Particle A remains at rest at the origin,
while particles B and C move directly away from particle A at equal speeds along the lines defined by the triangle, as shown in the
diagram.
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Analysis

We can immediately determine the energy in the three-particle collection measured in the frame shown, as it is just the sum of the
kinetic energies of the two moving particles. They are identical in mass, and are moving at equal speeds, so:

The particles are moving relative to each other, so this collection must have some internal energy. But this internal energy must be
less than , because the frame shown is not the center of mass frame. How do we know this? Well, the particles at this moment
lie on the vertices of an equilateral triangle, and particles B and C continue moving along the lines defined by that triangle at
equal speeds, so at any later time they must still lie on the vertices of an equilateral triangle (each is always the same distance
from particle A as the other, and the angle at particle A remains ). The center of mass for three equal-mass particles that form
an equilateral triangle is obviously going to be the geometric center of that triangle. But this triangle is growing with time, so the
geometric center is moving away from the origin, along a line that forms a  angle with the -axis. So the center of mass
is moving relative to the frame defined by the diagram.

From the geometry given and the fact that all three particles have the same mass, we can determine the precise velocity of the
center of mass measured in the diagramed frame in terms of v:

We can use this result to determine the speed of the particles relative to the center of mass of the collection. We have a cool trick at
our disposal here. Clearly due to the symmetry, every particle is moving away from the center of mass at an equal speed (imagine
standing at the center of mass, stationary in your frame, and watching all the particles move away from you as they remain in an
equilateral triangle). But there is one particle whose speed relative to the center of mass is easy to compute: particle A. In the
frame of the diagram, particle A is not moving, and the center of mass is moving away from it at some speed, so if we change to the
rest frame of the center of mass, particle A must be moving away from the center of mass at the same speed. We therefore conclude
that every particle is moving away from the center of mass at a speed of:

And now that we know how fast every particle is moving in the center of mass frame, we know the internal energy of the group:
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The kinetic energy of the full collection in the diagrammed frame can be found either by subtracting the internal energy (
) from the total energy ( ), or by plugging the total mass (  and the center of mass velocity ( ) into the KE formula (

). Both clearly give the same answer.

Work Done on Collections of Particles
Next we will look at the effect of work on collections of particles. We once again choose a very simple model to start with – two particles
start at rest on the -axis, and a force is applied to one of them, speeding it up along that axis. The force remains constant in both
magnitude and direction, and is applied until the particle is displaced by a distance of .

Figure 3.2.2 – Work Done on Two Particle Group

We know exactly how much energy has been added to this collection. It started with zero, and the amount of work that was done
equals the kinetic energy change of particle #1. Given that particle #1 started at rest and particle #2 remains at rest, its change of kinetic
energy constitutes all of the energy given to the particle collection. But now we know that since the particles within the group are in
relative motion, some of this energy given to the two-particle entity goes into internal energy, which means that not all the energy added
to the collection by this work goes into its collective (center of mass) kinetic energy.  Summarizing:

So it would appear that the work-energy theorem only applies to individual particles, since the work done does not equal the change in the
full group's kinetic energy. But appearances are deceiving! While  is the work done on one particle in the collection, it is not the
work done on the group as a whole, because the displacement  is not equal to the displacement of the group. The group's displacement
is the change in the position of its center of mass, and the position of the center of mass moves less than particle #1 does. This shorter
displacement of the two-particle collection results in less work done on it than the same force does on the individual particle, and the
difference is exactly equal to the internal energy. In other words, the work done in moving the center of mass of the group exactly equals
the change in the group's kinetic energy.

Exercise
Show that the above statement is true (for the two-particle example above): The work done moving the group's center of mass equals
the change in its kinetic energy, confirming the work-energy theorem for collection of particles.

Solution

The change of the position of the center of mass is:

So the work done on the group is:

Now let's calculate the kinetic energy change of the group (it changes from zero):

They are indeed equal.

It is interesting to note that if equal forces act on each of the two particles in opposite directions, then they both speed up, but of course in
this case the net force on the two-particle collection is zero, which means that the center of mass doesn't move. In this case, all of the
energy goes into the internal energy. As a general rule, combinations of forces that stretch or compress objects (without accelerating their
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centers of mass) add to the internal energy of that object. This observation gives us a hint about how to deal with internal forces (forces
between particles in the same object) later on.

While everything we have shown here has applied to a specific case of a force acting on a single particle of a two-particle group in one
dimension, the results apply much more generally. 

This page titled 3.2: Work and Energy for Collections of Particles is shared under a CC BY-SA license and was authored, remixed, and/or curated by
Tom Weideman.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63365?pdf
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/3%3A_Work_and_Energy/3.2%3A_Work_and_Energy_for_Collections_of_Particles
https://creativecommons.org/licenses/by-sa/
http://physics.ucdavis.edu/people/adjunct-faculty-and-lecturers/tom-weideman


3.3.1 https://phys.libretexts.org/@go/page/63367

3.3: Conservative and Non-Conservative Forces

Path-Dependence for Work
As we saw in our introduction to the work-energy theorem, the calculation of the work done by a force requires that we perform a line
integral. In such an integral, the actual path that the particle takes from the start to the end is, in general, an important factor. There are
some special cases, however, where the line integral calculation of the work done on a particle by a force as it moves from point A  to
point B results in a single, unique, value, no matter what path is taken between those points. A force that satisfies such a property is called
a conservative force.  Conversely, a force for which the work done on a particle depends upon the path it takes between two endpoints is
called a non-conservative force.

Another way to characterize these two types of forces is to look at the work they do to a particle that follows a closed path – a journey that
begins and ends at the same position in space. Suppose a particle starts at a point A, and is moved around for awhile while acted upon by a
force until it finally returns to point A. If the force is conservative, then every path that brings it back around to its starting point results in
the same work done by that force. One can imagine choosing paths that are shorter and shorter until finally the "path" we try is just not
moving it at all. Clearly there is no work done in this case, and if it is true for one path (however trivial), it is true for all paths. The
therefore conclude:

The work done by a conservative force around any closed path is equal to zero.

This fact gives us a nice mathematical trick for recognizing conservative forces. To see the source of this trick, we will (as usual) use a
simple case, which we will then be able to generalize. Consider a rectangular closed path in the -  plane with the sides of the rectangle
parallel to the  and  axes:

Figure 3.3.1 – A Simple Closed Path

The work done by a force  for the part of the journey from  to  only includes the -component of
the force, evaluated at -position :

The part of the journey from point  to  looks similar, except that the direction is negative of the  path, and the force is evaluated
at , rather than :

The work done over the  and   paths are found similarly, with the 's and 's swapped:

Now we add all of these contributions together to get the work done around the closed loop, and if the force is conservative, we set this
equal to zero, giving:

Dividing both sides by  gives:
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ΔxΔy

0 = −
(x+Δx, y) − (x, y)Fy Fy

Δx

(x, y+Δy) − (x, y)Fx Fx

Δy
(3.3.5)
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We have taken a bit of license here, when we did not concern ourselves with (for example) how the -component of the force might change
during the path  But we can remedy this by allowing the dimensions to shrink to zero, ,  . This turns the two terms
into derivatives. More specifically, it turns them into  partial derivatives. A partial derivative is a derivative that acts on a function of
multiple variables (in this case,  and ), but only measures the rate of change of the function with respect to one of the variables, while
holding the other one fixed. The symbols used for partial derivatives are slightly different than those for regular derivatives:

Here's an example:

The condition we have for a force  to be conservative is therefore most compactly written as:

If the force has components in three dimensions, then of course this mathematical condition has to also apply to the -  and  -  planes as
well.

Digression: Curl
While it is beyond the scope of this course, a reader with more mathematical background than required for this class may recognize this
condition for a conservative force as being the zero "curl" of the force vector field:

Analyze This
Consider the following forces that act on a particle as it moves in the  plane (  is a constant):

Analysis

There are a few ways we can check whether this force is conservative or not. The simplest involves taking the partial derivatives of
the components of the force:

 :

With both of these derivatives vanishing, our check confirms that this force is conservative:

y

A → B. Δx → 0 Δy → 0

x y

≡
∂f

∂x
lim

Δx→0

f (x+Δx, y) −f (x, y)

Δx
(3.3.6)

f (x, y) = +3y+6 ⇒ = 2x +0 +18 , = 3 +3 +0x2y3 x3 ∂f

∂x
y3 x2 ∂f

∂y
x2y2 (3.3.7)

(x, y) = (x, y) + (x, y)F
→

Fx î Fy ĵ

0 = −
∂Fy

∂x

∂Fx

∂y
(3.3.8)

y z x z

curl of  (x, y, z) = × ≡ =( − ) +( − )F
→

∇
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ŷ

+( − ) = 0
∂Fx

∂y

∂Fy

∂x
k̂

(x, y) α

(x, y) = α (x −y )F
→

î ĵ
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 :

For this case, our check shows that the force is non-conservative:

Another method would be to perform a work integral between two points over different paths. Unfortunately, this method will only
work as a proof that the force is non-conservative if the two integrals come out different. If the two integrals come out the same, it
does not prove that the force is conservative, since those two paths could coincidentally  result in the same work for a non-
conservative force. As we cannot perform the work integral for all paths, we can't use that method to conclusively prove that the
force is conservative.

 Examples of Conservative Forces
Let's look at a few important examples of conservative forces.

central forces

The first is very fundamental to all of physics, and it goes like this:

Any force on a particle that originates from a single point is conservative.

This can be proven mathematically with the tools we have, but we will refrain from doing so here. The way this is usually expressed by
physicists is, "central forces are conservative,"  where a central force is one that originates from a single point (the "center"). Reminding
ourselves that forces are interactions between two objects, a force that "originates" from a single point is one that is exerted by an object
located at that single point. Put another way, this is a force from another particle! We labeled forces that act between individual particles as
"fundamental forces," so we therefore conclude that all fundamental forces are conservative.

Digression: Spherical Sources
While all forces that have point particles as a source are certainly central forces, the converse is not true. It is possible to have a central
force whose source is a collection of particles, if those particles are placed very symmetrically – in the shape of a sphere. This fact will
become important later when we get to gravitation, because stars and planets very closely approximate spheres, which means we can
treat the gravitational forces they exert as conservative to a very good approximation.

This means that to the extent that we see non-conservative forces in nature, the source of its non-conservative nature must be that the forces
are exerted by objects that are collections of particles rather than by individual particles. This is not to say that the composite forces we
have discussed (gravity, elastic, drag, etc.) are inherently non-conservative. It just means that they require just the right conditions to be
"considered" conservative to a good approximation.

Alert
Resist the temptation to label a certain type of force as either conservative or non-conservative. One cannot tell whether a type (gravity,
tension, etc.) is conservative or not without more details of how this type of force is acting. It is perhaps better not to say that a given
force is conservative, and instead say that the force is "being applied in a conservative manner." But this is not the language you will
find elsewhere, so we will not use it here.

gravity

As a composite force, we have approximated gravity as a constant force at all points in space – we assume that the region involved is small
compared to the size of the Earth. Subject to the limits of this approximation, we can declare gravity to be conservative:

It is enlightening to look at how much work is actually done by gravity as a particle moves around. The work done by gravity on a particle
that moves from point  to point  (near the surface of the Earth, of course) is given by:

(x, y) = α (y −x )F
→

î ĵ

= (−αx) = −α
∂

∂x
Fy

∂

∂x

= (αy) = α
∂

∂y
Fx

∂

∂y

− = −α−α = −2α ≠ 0
∂Fy

∂x

∂Fx

∂y

= −mg ⇒ − = (mg) − (0) = 0F
→

grav ĵ
∂Fy

∂x

∂Fx

∂y

∂

∂x

∂

∂y
(3.3.9)
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As usual, we have  that , but as we will see, we will be able to determine the work done without specifying a path from 
 to  by expressing  as a function of :

The work done by gravity depends only upon the change in height of the particle. It is important to note a few things about this result:

It doesn't depend upon the path taken from the starting height to the ending height – it could go straight up, or take many loop-de-loops
that go above and below the starting and ending points, and the result is the same.
The actual value of the starting and ending heights are not relevant, it is only the difference of the starting and ending heights that
matters.
According to the work-energy theorem, if gravity is the only force that does work on a particle (or if other forces that might be
acting happen to cancel out), then the change of kinetic energy of a particle (and therefore its speed) can be calculated using nothing
more than the change in the particle's height.

Exercise
A particle follows projectile motion free of air resistance. According to the work-energy theorem, its change in kinetic energy equals the
work done on it by the net force, which in this case is only gravity, so:

Confirm that this is true using tools we have from kinematics.

Solution

We will assume that the particle travels from point A to point B. For projectile motion, the -component of velocity doesn't change,
which means that:

The -component does change, and since we know nothing about how long the particle is in the air, we will use the "no
time equation" for vertical motion accelerated by gravity ( ):

Using the result of the first equation, we can add  to the left side of this equation without changing it, giving

The quantities in parentheses are just the squares of the speeds at points  and , respectively, so:

Now multiplying both sides by the mass of the particle and dividing both sides by 2 reconstructs the work-energy theorem
result given above.

Analyze This
A small block slides along a frictionless, horizontal surface into a frictionless vertical half-circle track, and it remains in contact with
the track, until at least the  point (with  defined in the diagram).

W (A → B) = ⋅∫

A→B

F
→

grav dl
→

(3.3.10)

= dx +dydl
→

î ĵ

A B y x

W (A → B) = (−mg ) ⋅(dx +dy ) = −mg ( − )∫

A

B

ĵ î ĵ yB yA (3.3.11)
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Analysis

With no friction present, the only forces acting on the block are gravity and the normal force. We can ask how much work each of
these forces do on the block. We assume the gravitational force is a constant  downward, so from our efforts above, we conclude
that the work done by gravity is:

If we call the radius of the circle , then we can express the change in the height in terms of  and :

The work done by the normal force might seem complicated at first, since on the curved track it is constantly changing direction, but

every infinitesimal displacement by the block  is parallel to the track, while the normal force is always perpendicular to the track.

Each contribution to the work done is , and since the normal force and displacement are perpendicular to each other
at all times the work done by this force is zero.

Now that we know the total work done by all forces, we can apply the work-energy theorem to get the speed of the block after it
climbs the angle :

There is one other thing that we can extract from this analysis. We know that the block is still in contact with the track when it

reaches the angle . It has been slowing down as it gets higher, so the centripetal acceleration  that keeps it going in a circle has

gotten smaller, but it is not zero. The normal force combined with a  component of the gravity force is what is maintaining this
acceleration, and as it goes higher from its current position, the component of the gravity force acting toward the center of the circle
will get larger. So this means that the decaying centripetal acceleration is due to a decreasing normal force. The normal force can
only go to zero (it can't become negative), and if it does, then the block will start to lose contact with the track. We can therefore
determine the minimum speed the block must have at angle  to maintain contact with the track (anything less, and it falls off). The
gravity force can be broken into components radial (toward the center of the circle) and tangential to the track (use a FBD and
geometry to determine these components), and setting the normal force equal to zero gives:

[Note that the minus sign is present because angle being used (the cosine of  is negative).]

elastic

In one way, the elastic force is an even easier case than that of gravity – the particle's displacement is entirely confined to one dimension.
But it does include the twist that unlike gravity, it does not maintain a constant magnitude. Let's define the one dimension we are working
in to be the -axis. Let's further assume that the particle that is subject to the elastic force experiences zero force when it is located at 

mg

= −mgΔyWgrav

R R θ

= −mgR [1 +sin(θ− )] = −mgR [1 −cosθ]Wgrav 90o

dl
→

dW = ⋅N
→

dl
→

θ

m − m = −mgR (1 −cosθ) ⇒ =
1

2
v2
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2
v2
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. That is, when the particle is here, then the spring is at its equilibrium length. Then according to Hooke's law, the force on the
particle is:

When the particle is located in the region   it experiences a force in the -direction (back toward ), and when it is in the region 
, it experiences a force in the  -direction (also back toward ). So this is the restoring force we expect for the elastic force. The

partial derivative check once again demonstrates that this is a conservative force. As with the case of gravity, we can compute the work

done by the spring on the particle. All the displacements in this case are confined to the -axis, so we have simply that , giving:

We can simplify the look of this result a bit by defining the equilibrium point of the spring to be the origin , giving:

We see that this result differs from that of gravity, in that the work done by gravity is proportional to how much the (vertical) position
changes, while the work done by the elastic force is proportional to how much the  square  of the position changes. So if one particle
changes its height by twice as much as another particle, gravity does twice as much work on it. But if a particle changes its position from
the equilibrium point twice as much as another particle, the spring does four times as much work on it.

We have been careful to define all of these conservative forces in terms of the displacement of a particle, rather than an "object." But just as
we saw in earlier sections, we can extend these results to non-rotating objects whose constituent particles remain rigidly in place within the
object. If they do not, then an object that follows a closed path may end up with a different internal energy, which can have an effect on the
amount of kinetic energy it has. And if the kinetic energy changes around a closed path, then the work done around that closed path is not
zero, and the force on that object is not conservative.

Analyze This
A block is attached to a vertical spring, the other end of which is attached to the ceiling. The block is held stationary at a height where
the spring is at its equilibrium length. The block is then released.

Analysis

There are two forces acting on the block when it is released. One is the force of gravity downward, and the other is the elastic force
of the spring upward. Both of these conservative forces do work at the same time on the block, and since the block moves downward,
the gravity force (which acts in the direction of motion) does positive work, while the elastic force (which acts opposite to the
direction of motion does negative work.

One thing we can determine, if given all the numbers, is how far the block will fall before stopping and bouncing back up. If we are
careless, we might conclude too quickly that this must be where the two forces cancel each other out – but this is wrong! As the block
is falling, when it reaches the point where the forces cancel, then the net force is zero, which means it stops accelerating. This does
not mean it stops moving.

The way we find the distance it falls before stopping is to use the work-energy theorem. The total work done by all forces equals the
change in kinetic energy. The kinetic energy starts at zero, and we are interested in where the block once again has zero kinetic
energy – when it stops falling. As stated above, gravity does positive work as the block falls, and the spring does negative work, so

x = xo

= −k (x− )F
→

elastic xo î (3.3.12)

x > xo −x xo
x < xo +x xo

x = dxdl
→
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we are looking for the distance where these cancel out to give zero total work. Calling the stretch of the spring from equilibrium at
the point where the block stops , then the change of the block's height is , and we can use the work results for the gravity
and elastic forces above to get:

The solution also included the possibility that  – naturally no total work is done if the block never moves, or (since the forces
are conservative) if it comes back to the position where it started.

Also notice that if the block was hung stationary from the spring, then the forces would balance, giving . The value of 
in this case is half as much as that found above. So the zero-net-force position is exactly halfway between the maximum and
minimum heights of the block.

Now for Some Non-Conservative Forces
Next we will discuss a couple of non-conservative forces. The first is fairly obvious, but the second may be surprising.

kinetic friction

The kinetic friction force is quite unlike the others we have discussed. It's magnitude is simple enough – if the normal force and the
surfaces remain unchanged, then the kinetic friction is constant – but the direction is quite another matter. The kinetic friction force on one
object always acts in the direction opposite to the direction of motion of that object relative to the surface it is rubbing against. Consider a
hockey puck sliding on a horizontal table. If it is sliding north when it is located at point , then the friction force points south. If, at a
later time,  it is sliding east at that same point  ,  then the direction of the friction  force points west. What this tells us is that the
direction of the force cannot be determined from the location alone – one must know the direction of motion.

If we now look back at our partial derivative formula for determining whether a force is conservative, it requires that we know the  and 
components of the force as a function of the position . We cannot get this information in the case of kinetic friction. The partial
derivative equation is both a necessary and sufficient condition for the force to be conservative, so when it is unusable for a given force,
that force is necessarily non-conservative.

Perhaps this is an unsatisfying explanation. Fair enough, let's do a more rigorous analysis of the case of kinetic friction for a specific case:

Analyze This
A puck is slid along a horizontal rough surface in a straight line along the diameter of a circle (the gravity, contact and friction forces
are the only forces on the puck).  The same puck is then slid on the same surface starting at the same speed along the circle defined by
the diameter indicated in the first experiment (it slides around the inside surface of a frictionless circular wall). The figure shown
depicts a top view of these two paths.

Solution

The kinetic friction force always acts in the direction directly opposite to the motion. So for every small displacement  along the

path taken, the direction of the friction force is always the same as the direction of . When we compute the work done by
friction, we therefore have:

+Δy −Δy

0 = = + = [− k ]+[−mg (−Δy)] ⇒ Δy =Wtot Wspring Wgrav

1

2
(Δy)2 2mg

k
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The magnitude of the kinetic friction force is constant, as it is proportional to the unchanging normal force (the surface remains
horizontal). So the line integral can pull the constant  out of the integral, leaving:

The length of the path that follows a half-circle path (#2) is longer than the straight-line path (#1) by a factor of , so the work done
on the puck by friction is greater (more negative) for path #2 than for path #1 by that factor.

Notice that both paths begin and end at the same points, but the work done is different for the two paths, demonstrating that kinetic
friction is non-conservative.

One might ask, "The frictional force between the particles on the surfaces is ultimately electric, which is a fundamental force, and therefore
conservative, so what is the physical source of this force being non-conservative?" The answer is that by only interacting at their surfaces,
some particles in the rubbing objects are accelerated while others are not. This results in changes in the internal energies of the rubbing
objects. In the analysis example above, path #1 results in less energy being transferred into internal energy than path #2 (more surface
particles are affected in the longer path). With the internal energies changed by different amounts, the kinetic energies change by different
amounts. This can only occur if different amounts of work are performed, and since the two paths begin and end at the same place, and by
definition this means that the force is non-conservative.

gravity

Wait... gravity? Didn't we just learn that gravity is a conservative force? Gravitation as a force between individual particles is conservative
as all fundamental forces are, and gravity near the surface of the Earth is approximately constant, making it approximately conservative,
but here we are going to look at an example where this force does not behave as a conservative force.

The Voyager probes were  launched in 1977. Neither was  given sufficient  kinetic energy to escape the Sun's gravitational pull without
"help." If we approximate a probe and the sun as individual particles (when they are far apart, this is reasonable), then when the
gravitational pull of the Sun brings the probe back to the point where it began, no net work will be done, and the probe's kinetic energy
goes back to its starting value. Now let's introduce a third particle – Jupiter. We will declare the Sun and Jupiter to be a two-particle
object  (we'll call it the "solar system"), and examine what can happen to the individual Voyager "particle" when it interacts with this
system.

Some very bright minds at NASA launched the Voyager probes so that they would get gravitational "kicks" from flying close to planets, the
result of which is increased speed for the Voyager probes that is sufficient to escape the Sun's gravitational pull. Now suppose NASA made
a small miscalculation, and sent the probe (with its extra gravitational kick) back toward the Sun, instead of away from it. Then when it
returns to the point where it started, it is moving faster than when it was launched. This means that the starting and ending kinetic energies
at the same point in space are not equal, and the force on the probe by the solar system is not conservative. [If you are curious about how
this gravitational "kick" is accomplished, see the simplified explanation at the end of Section 7.3.]

As with the case of friction, this result comes about because the force on the particle comes from different parts of the system acting
independently, and those different parts moving relative to each other (as Jupiter moves around the Sun). The Sun and Jupiter "particles"
each exert their own conservative gravitational force on the probe, and the aggregate of these forces comes out to be non-conservative.

This page titled 3.3: Conservative and Non-Conservative Forces is shared under a CC BY-SA license and was authored, remixed, and/or curated by Tom
Weideman.

Current page by Tom Weideman is licensed CC BY-SA 4.0.
Sample Problems by Tom Weideman is licensed CC BY-SA 4.0.
3.4: Energy Accounting with Conservative Forces: Potential Energy by Tom Weideman is licensed CC BY-SA 4.0.
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3.4: Energy Accounting with Conservative Forces: Potential Energy

Internal Forces

We have discussed how work done on a object (a collection of particles) can contribute to both the overall kinetic energy of that
object (measured using its total mass and the speed of its center of mass) and the internal energy of the object. But our definition of
internal energy as the sum of the kinetic energies of the particles in the center of mass frame is not very robust. For example,
suppose that the particles within an object exert forces on each other, as they do in pretty much every object except for a container
of ideal gas.  This will change the kinetic energies of the particles, and according to our current definition of internal energy, it will
change. Implicit in the name "internal energy" is the idea that it is a fixed quantity unless some outside influence changes it.  It
would be nice, therefore, to somehow account for the effects of the internal forces so that we have an intuitively-defined internal
energy.

Conservative Forces Provide a Shortcut
One thing that the internal forces between individual particles have going for them is that they are conservative. We have learned
that when forces with this property do work on a particle as it moves from point  to point , it doesn't matter what path the
particle takes in that journey. This actually allows us to introduce a significant shortcut when dealing with conservative forces.
Consider the following situation...

Suppose we have a conservative force that is well-defined by the location of the particle on which it acts. That is, at every point in
space, there is a well-defined force vector . Let's start by choosing, completely arbitrarily, a point in space that we call
the "origin." Next, we will place a particle at some other position in space (position " ", and move it from that position to the
origin through some arbitrary path, adding up the work done on the particle as we do (i.e. performing the line integral for the force
from  to the origin). We know that since the force is conservative, if we had chosen a different path between these two points, we
would have computed the same work done by the force. Let's repeat this for a new starting point (position " "). Once again we
find that we can follow any path from  to the origin and the work done would be the same.

Figure 3.4.1 – Work Done Coming to the Origin

Given that it doesn't matter what path is taken from any given point in space, we can save ourselves a lot of trouble by just labeling
every point in space with the energy value that equals the work the force would do in moving the particle from that point to the
origin. Then whenever a particle is moved from a point in space to the origin, we would immediately know how much its kinetic
energy changed, without having to even think about doing a line integral. Note that the origin would automatically be labeled with
a zero energy value.

Figure 3.4.2 – Labeled Points in Space
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Now whenever a particle is at one of these points in space, one might say that the force "provides the potential to change the
particle's kinetic energy by an amount equal to the value at that point, if it is moved to the origin." Not coincidentally, these values
are known as potential energies. As we have seen here, the value of a potential energy at a point in space depends upon two things:
The conservative force that is involved, and the position chosen to be the origin (which we will hereafter refer to instead as the
"position of zero potential energy", as the word "origin" has coordinate system implications).

This would seem to have limited use, as it only applies to a very specific ending point of the journey of the particle. But actually
this trick is more robust than this. Consider the case of a particle again moved from  to the origin above, but this time let's chose a
path that passes through .

Figure 3.4.3 – Path from A to Origin Through B

Like any other path to the origin, this one comes with a work done on the particle equal to the potential energy at point . But the
work done by the force during the part of the trip from  to the origin contributes an amount of work equal to the potential energy
at point , and this tells us something about the work done in going from point  to point , neither of which is the origin.

Figure 3.4.4 – Work Done from A to B
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It's also to important to note that the work done from point  to point  doesn't depend at all upon where we placed the origin. 
The second leg of the trip shown above from point  to the origin could have gone to any origin whatsoever, and the work done
from  to  would still come out the same. We therefore claim, more generally, the following:

The work done by a conservative force acting on a particle that moves from point A to point B equals the amount that the potential
at those points drops as a result of the trip.

Here we have adopted the usual meaning of " " meaning "after minus before". There are a few important things to
emphasize here:

If the particle returns to where it started, then the difference is between the same two numbers, giving zero. As we have already
seen, for a conservative force, the work done over a path that returns to its starting point is indeed zero.
Once we have arbitrarily chosen an origin (zero potential energy) to be a given point in space, then the potential energy
values of all the other points in space are well-defined. Actually, we do not need to even have zero potential be our starting
point – fixing any value for potential energy at a specific point in space will define all of the potential energies just as
well. When we introduced kinetic energy, we pointed out that we can't say that a particle or collection of particles "has" a
specific kinetic energy, without first defining the reference frame of the observer of that kinetic energy. Potential energy has a
similar ambiguity: We can't say that a particle "has" a specific potential energy without first clarifying what we have chosen as
our arbitrary reference position & value for the potential energy.
The potential energy values defined in space are only for the specific conservative force in question. The particle may have
several forces on it, and some may not be conservative. This shortcut can still be used for the individual conservative force's
work contribution, but not for all the forces combined (unless the combination of all the forces happens to make a conservative
composite force). Non-conservative forces do not provide us this opportunity – there is simply no way to define a potential
energy for forces like kinetic friction.

Digression: Fields
The idea of associating a value with every point in space is one that comes up frequently in physics. These values and the
positions to which they are assigned are collectively referred to as a field. If the values associated with each point in space
are simply numbers, as they are for potential energy, then it is called a scalar field. It's also possible to assign a vector at each
point in space (say, for example, the velocity of the particle at every point in space filled by a gas), and this is called a vector
field. We will deal much more with fields in future physics classes, especially Physics 9C.

When the particle moves from a higher potential energy to a lower one, positive work is done, which means the kinetic energy
rises. Potential energy can be thought of as a bank balance - work has the effect of either "spending" the balance, moving that
potential energy into the kinetic energy of the particle), or "storing" the balance, taking kinetic energy away and adding it to the
potential energy balance. If we are talking about particles or objects on which there are only conservative forces acting, then every
change in its total potential energy is balanced by an opposite change in its kinetic energy – the sum of these two numbers remains
constant. Whenever we run across a quantity that remains fixed despite a change in circumstances, we can that this quantity
is conserved. If only conservative forces are present, then:

The quantity  is conserved (unchanging) provided that there are only conservative forces present, and that these forces are
represented by potential energy functions. This quantity is commonly known as mechanical energy.

Potential Energy for Collections of Particles

It might seem like the use of potential energy would be very limited, given that it is only defined for conservative forces, and as we
have seen, when many particles are involved, the force on a single particle can easily be non-conservative.  In the previous section,
we mentioned the example of a three "particle" collection of the Sun, Jupiter, and the Voyager probe where the latter "particle"
experienced a combined force from the other two that was not conservative. The reason that the force on the voyager probe is non-
conservative is that when the gravitational forces from the Sun and Jupiter do work on Voyager, those same forces also do work on
the Sun and Jupiter! So the kinetic energy gained by the probe from the other two bodies is energy lost by those other bodies.  Put
another way, the Sun + Jupiter combination loses exactly the same amount that the kinetic energy that Voyager gains.

A B

B

A B

W (A → B) = − = −( − ) = −ΔUUA UB UB UA (3.4.1)

Δ

0 = ΔU +ΔKE = Δ (U +KE) (3.4.2)

U +KE
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It turns out that if we consider all of the particles in the collection together, and we add up the kinetic and potential energies of all
the particles combined, then this number for the grouping (assuming no external work comes in) remains fixed (conserved).  The
way we compute the potential energies is pairwise – every possible combination of two particles has a fundamental force between
them, and therefore a well-defined potential energy.  So the total potential energy of the Sun+Jupiter+Voyager combination is the
sum of the gravitational potential energies of Sun+Voyager, Jupiter+Voyager, and Sun+Jupiter.  When you also add in their kinetic
energies, you get a total energy for the collection that remains conserved. The apparent weirdness comes from the fact that these
three bodies can re-partition the energy in unexpected ways (so that Voyager gains a lot of KE, for example).

Because this scheme for adding potential energies pairwise between particles in a collection assures that the total energy of the
grouping remains unchanged, we are able to make the following powerful claim:

The total energy of any isolated collection of particles remains conserved.

Naturally if the collection is not "isolated," external bodies can exert forces that do work on the particles, thereby adding energy to,
or taking energy away from the collection.  But the internal forces within the group of particles that do work only serve to
exchange kinetic and potential energy between the particles within the group, thereby leaving the total energy unchanged.

There is one bit of clarification needed for the equation above.  The index  is obviously intended to run over all of the particles in
the collection. The quantity , or "potential energy of the th particle" really involves all of the particles, because the potential
energy values are determined from pairwise forces between particles. So the value of  is really a sum of potential energies
between particle  and particle 1, particle  and particle 2, and so on.

Energy Accounting For Conservative Forces
We now know two alternative ways to account for what changes the kinetic energy of a particle or collection of particles
(macroscopic object). What differs between these choices is the definition of something we will call a system. A system is simply a
well-defined collection of objects (in most cases we will be discussing from now on, these will not be single particles). Energy is
transferred into or out of a system through work done by forces exerted by objects outside the system. Objects within the
system that exert forces on each other keep the energy in the system, though it can change forms.

Figure 3.4.5 – Changing Energy Accounting for Conservative Forces

The figure above shows a physical situation where three objects are interacting with each other through conservative forces. On the
left, we have chosen just object  as our system and the forces from the other two objects do work on this object, exchanging
energy with the system. The left diagram employs exclusively the work-energy theorem – the work from the external forces
changes the kinetic energy of object in the system.

One the right is the same physical situation, but we have changed our accounting method. We have extended what we have defined
as a system to include one of the other two objects. As the forces involved were conservative, we can account for the interaction
between objects  and  using potential energy. This energy is entirely contained within the system, where it can be exchanged
freely with the kinetic energies of objects  and . Object  has been left outside the system, so accounting for its contribution to
the system's energy still relies upon computing work.

Notice that in our definition of system as only object , we didn't care at all about the interaction between particles  and  in our
accounting, but once object  was brought into the system, this interaction became relevant, because the energy exchange is now
across the system border.
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Given the difficulty of computing line integrals, we will generally pull all of the objects into the system that are exerting
conservative forces, so that we can use the potential energy "shortcut." Let's look at a concrete example – gravity.

Potential Energy Function for Gravity
Even though it is not a force between two individual particles, the force of gravity by the Earth on an object like a stone is (to an
extremely good approximation) conservative. As discussed above, we can choose to do the energy accounting for a falling stone by
putting making the stone the system and computing the work done on the stone by the Earth, or we can include the Earth in the
system and compute the potential energy change of the Earth/stone system as the stone falls.

Figure 3.4.6 – Energy Accounting for Gravity

In Equation 3.3.11, we computed the work done by the gravity force on a projectile, and found:

Above we said that the work done from point  to point  is the potential energy at point  minus the potential energy at point ,
so it seems clear that we can define the potential energy function for gravity (near the Earth's surface) as:

But this definition implies that we have already determined a position where we have defined . We can of course choose our
arbitrary reference point to be whatever we like, so it can be useful to express this in the equation. We therefore have:

where  is an arbitrary constant. Notice that if we take a difference of potential energies at two different altitudes, the constant
drops out, showing that its actual value doesn't change the physics:

Analyze This
There are few things as fun as swinging into a river from a rope swing tied to the limb of a tree on its banks. The person at the
end of this rope starts at the top of a hill at one angle, then swings to another angle when they let go and fly into the water.

(A → B) = −mg ( − ) = mg −mgWgrav yB yA yA yB (3.4.4)

A B A B

(y) = mgyUgrav (3.4.5)

y = 0

(y) = mgy+ ,Ugrav Uo (3.4.6)

Uo

Δ = U ( ) −U ( ) = (mg + ) −(mg + ) = mg ( − ) = mgΔyUgrav yB yA yB Uo yA Uo yB yA (3.4.7)
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Analysis

The tension of the rope does no work here, as it acts perpendicular to your motion throughout. Ignoring air resistance, we
therefore can use the total energy conservation of the swinger to determine the change in the swinger's speed from the point
where they leave the ground to the point where they release the rope (the swinger is an object that is collection of many
particles, but we assume that none of the total energy referred to here is going into the swinger's internal energy):

The potential energy here is due to gravity, so we need to know the change in height from the start to the end. This requires
some geometry to figure out. The simplest approach is to use the right triangles the rope makes with the vertical and
horizontal directions, and measure the distances below the tree limb. Calling the height of the tree limb zero, we have:

Putting this into total energy conservation gives:

Potential Energy Function for Elastic Force
For the case of an object pushed or pulled by a spring, we can again choose only the object as a system and compute the work done
by the spring force, or include the spring in the system and use the change in its potential energy. For the a stretched or compressed
spring with the  variable defined to be zero when the spring is at its equilibrium length, we obtained Equation 3.3.14:

As with the case of gravity, this immediately implies a function for elastic potential energy:

If we return to the more general case of the position of the spring at equilibrium being , then to get the proper potential energy
function, we only need to make the substitution , giving:

The Formal Relationship Between Potential Energy and Force
Given the close ties between work done by a conservative force and the potential energy function for that force, we must be able to
link force to potential energy more formally. If we take Equation 3.4.1 and rewrite it using the definition of work, we get:

The whole idea of using potential energy is to be able to express it as a function of position, so the question that arises is, "Is there
some way to 'reverse' this equation, so that if we are given the potential energy function, we can determine the force function?"
Well, we already know the answer to this: The 'reverse' of an integral is a derivative! This is the Fundamental Theorem of Calculus.
Reversing a line integral is a little bit trickier than doing it for the simple single-variable integrals we are used to from our basic
calculus classes, but it can nevertheless be done. To see how this works, let's consider only a very tiny change in potential energy
due to a very small displacement. This changes the left hand side of our equation to an infinitesimal, and the right hand side is no
longer a sum of many pieces, but is instead only a single piece:

In three dimensions, the tiny displacement can be written as:

0 = Δ +ΔKEUgrav

} ⇒ Δ = mg ( − ) = mgL (cos −cos )
start:

end:

= −L cosyo θo

= −L cosyf θf
Ugrav yf yo θo θf

0 = Δ +ΔKE = mgL (cos −cos ) +( m − m ) ⇒ =Ugrav θo θf
1

2
v2
f

1

2
v2
o vf −2gL (cos −cos )v2

o θo θf
− −−−−−−−−−−−−−−−−−−−

√

x

(A → B) = − kΔ ( ) = k − kWspring

1

2
x2 1

2
x2
A

1

2
x2
B (3.4.8)

(x) = k +Uelastic

1

2
x2 Uo (3.4.9)

xo
x → x−xo

(x) = k +Uelastic

1

2
(x− )xo

2
Uo (3.4.10)

− = − ⋅UB UA ∫

A

B

F
→

dl
→

(3.4.11)

dU = − ⋅F
→

dl
→

(3.4.12)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63412?pdf
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/3%3A_Work_and_Energy/3.3%3A_Conservative_and_Non-Conservative_Forces#work_done_by_spring


3.4.7 https://phys.libretexts.org/@go/page/63412

This means that the dot product with the force vector is:

Suppose we make our tiny displacement only along the -axis, so that  and  are zero. Then clearly all the work done by the
force is given by the first term above, and we get that the small change in potential energy that occurs when the position changes a
small amount in the -direction is:

This is fine for a potential that changes only in the -direction, but what happens if the potential energy is also a function of  and 
? The answer is that we treat  and  as though they are constants, which means that , and our result above works.

When we treat  and  as constants, we have to return to the partial derivatives we discussed in Section 3.3. We therefore have the
following relationship between the potential energy function and the force components:

Digression: Gradient
As was the case with the curl digression in Section 3.3, a reader that is further along in math than most will recognize this

relationship between the scalar function  and the vector function  as that of a (negative) "gradient":

Exercise
We know that a potential energy function can only exist for a force that is conservative. It is a mathematical fact that
multiple partial derivatives of a single function can be performed in any order.  That is, if the partial derivative of the function 

 with respect to  is taken, followed by a partial derivative of the result with respect to , then the same result is obtained
if the partial derivatives are performed in the opposite order. Use this mathematical property to show that Equation 3.4.17
produces a conservative force from the potential energy function.

Solution

We already have a check for a conservative force – Equation 3.3.8. If we apply this to the  and -components of the force
given by Equation 3.4.15, we get:

The mathematical property of the reversibility of partial derivatives was used in the final equality.

Exercise
Show that the partial derivative link between the potential energy function works for the two macroscopic conservative forces
we have discussed:

a. gravity:    
b. elastic:    

Solution

Just plug-in and turn the crank in each case:

a. gravity:

= dx +dy +dzdl
→

î ĵ k̂ (3.4.13)
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a. elastic:

Analyze This
A bead is threaded onto a frictionless circular loop that lies in the horizontal -  plane, as shown in the diagram below. This
bead is subjected to a conservative force that is characterized by the potential energy function:

Analysis

The loop of wire is frictionless, so it can only produce a force that lies perpendicular to the circle (i.e. radially inward or
outward). With the bead only allowed to move along the circle, this means that the loop can do no work on the bead. Also,
with the loop being in a horizontal plane, the bead never changes elevation, so gravity will not do any work either.  This
means that the only force acting on the bead is the one that comes from the potential energy function given. The obvious next
step is to determine this force, which we do with the partial derivatives:

So the component of the force along the -direction remains constant, while the component along the  direction grows
stronger as the magnitude of the  value gets larger.  We can therefore immediately determine the positions on the loop
where this potential field exerts the strongest force. It does this when the bead crosses the -axis, and at these points, the
magnitude of the force from the potential field is:

We know that since the applied force is conservative, when the bead does a complete circle around the loop, it must return to
the same kinetic energy at which it started. This means that it can't continually speed up in the same direction, though the
direction of the tangential acceleration can flip from clockwise to counterclockwise, or vice-versa. It must make such a flip
in a smooth, continuous way, so there must be at least two positions on the loop where the (tangential) acceleration is zero
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(one where it changes from clockwise acceleration to counterclockwise, and one where it changes back). At such positions,
the entire acceleration vector must point radially (no component tangential). The loop already supplies a radial force, so we
are looking for the positions where the potential field's force is also purely radial. So let's look for the positions (  values) at
which angles result in zero tangential force.

The force from this potential field will point radially when the tangent of the angle it makes equals plus-or-minus the tangent
of the angle the position vector makes.  These tangents are simply the ratios of the  and  components, so we have:

The -position divided by the radius of the circle equals , so:

There are many angles for which one of these conditions exists. Solving these shows that it is true at 
.

It should also be noted that wherever the force changes direction, the bead goes from a state of either speeding-up to
slowing-down, or vice-versa, which means that the speed of the bead either hits a local maximum or minimum at these
positions. Given that the total energy of the bead remains conserved, low points of potential energies must correspond to
high point of kinetic energies (and therefore speeds), and vice-versa.  So looking at each of these critical points we find:

So it appears that the bead reaches its maximum speed at , and its minimum speed at .

Equipotential Surfaces
Suppose a particle is under the influence of a single conservative force. At a given point in space, the force exerted on the particle
has a specific direction. If the particle is displaced slightly in a direction perpendicular to this force vector, then this force will do
no work. If no work is done by the force, then the potential energy due to that conservative force could not have changed.  Suppose
now we keep displacing the particle from place-to-place, always moving in a direction perpendicular to the force. The region
mapped out by all of this moving of the particle will be a surface throughout that region of space, and the force vector at every
point on this surface will be perpendicular to it. The potential energy at every point on this surface is the same, and for this reason
such a surface is called an equipotential surface. Here's an example:

The sum of the squares of the , , and  coordinates is just the square of the distance from the origin. So any sphere that we
choose that is centered at the origin will have the same potential at every point on it – these spheres are equipotentials.

We claimed that the force vectors at every point on an equipotential surface is perpendicular to that surface, and we can check that
for this example:

Hopefully you recognize the part of this vector in parentheses. It is the position vector relative to the origin, Equation 1.6.1. This
vector points directly to the point  from the origin, which means that it is perpendicular to the sphere centered at the origin
that contains that point, confirming the general property that the force vectors in space associated with a potential are
perpendicular to the equipotential surfaces everywhere.

Notice that for the function  above, if , the potential energy gets smaller as one gets farther from the origin, and
the force vector from this potential points away from the origin. This is also a general feature – the force associated with a potential
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points in the direction from greater potential to lower potential. It should be clear on many fronts why this must be the case. If an
object moves from a region of higher potential to one of lower potential, this decrease in potential energy must be balanced by an
increase in kinetic energy, which means the object speeds up. Objects speed up when the net force on them points in the same
direction that they are moving, so the force must point from where the potential energy is higher to where it is lower.

This page titled 3.4: Energy Accounting with Conservative Forces: Potential Energy is shared under a CC BY-SA license and was authored,
remixed, and/or curated by Tom Weideman.
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3.5: Energy Accounting with Non-Conservative Forces: Thermal Energy

Energy Accounting for Non-Conservative Forces

Okay, so we have seen how we can pull conservative forces due to macroscopic objects into a system and change the accounting to
using the simpler potential energies, but what about the case of work done by an external macroscopic object in the case where the
force is not conservative? As we have seen already in such cases, we can still account for the total energy if the internal energies are
included in the tally. The schematic diagram is only a bit different from the case of the conservative force.

Figure 3.5.1 – Changing Energy Accounting for Non-Conservative Forces

In this case, the external non-conservative force does not allow for redefining the system with a potential energy. Instead, the transfer
of energy can only be accounted-for in terms of the internal energies of the objects involved.  The change of accounting from the
work-energy theorem to the new system therefore looks like:

This rather abstract description is difficult to wrap one's mind around without a clear example, as gravity was for the conservative
force case. So we'll demonstrate how this accounting works with the most common example of a non-conservative force – kinetic
friction. We want to keep this as simple as possible, so we will consider the following scenario...

The system in this example consists of two books.  They are sliding across a horizontal tabletop, but the tabletop is frictionless, so it
exerts no horizontal force on the books.  The tabletop does exert a vertical force (the normal force) upward on the books, but as the
books do not displace vertically, this force does no work. The Earth also exerts a force (gravity) on the books, but again, as they do not
displace vertically, this force does no work either.  So despite the presence of the tabletop and the Earth's gravity, the two books really
are an isolated system, with no external work done on them (we also assume no air resistance during their motion).  Below is a
diagram of what occurs between the two books: At first they are separate, and then book  slides on top of stationary book , the
kinetic friction force between them causing book  to speed up and book  to slow down, until they eventually stop rubbing across
each other and slide away together at the same speed.

Figure 3.5.2 – Energy Accounting for Kinetic Friction

If we treat book  as a system, then the (non-conservative) friction force exerted on it by book  does external work, leading to a
change in the kinetic energy of the system:

= ΔK ⇒ ΔK +ΔK +Δ +Δ = 0WAB EB EA EB Eint A Eint B (3.5.1)
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If we instead treat both books as a system, then we need to include both of their kinetic energies and their internal energies, and we get
the same result as is expressed in Equation 3.5.1. The changes in the kinetic energies of the two books are equal to the works done on
each, expressed in the diagram. There are two important things to note here.  First, the change in the kinetic energy of book  is
negative (it slows down), and this is evident from the work done on it by book , since the kinetic friction force is in the opposite
direction of book 's displacement. Second, the positive work done on book  (and therefore its kinetic energy change) is a smaller
magnitude than the negative work done on book  (equal to its kinetic energy change), since they experience forces of equal
magnitude (Newton's 3rd Law), and book  displaces farther than book  during the time that they are rubbing against each other.
The upshot of these facts is that the quantity  is a negative number.  This in turn requires that the changes of
internal energy of the two books is positive – they collectively gain internal energy. This is manifested microscopically as an increase
in the kinetic and potential energies of the particles in the books, a phenomenon we will address shortly.

We can't compute the change in internal energy of an individual book, but the combined increase in their internal energies can be
expressed in terms of what is given in the diagram:

The quantity  is the distance that book  slides across book , and it is a positive number, which means that there is an
increase in the internal energies of the two books. This makes sense, as it means that the amount of energy that goes into the internal
energies of the books is a measure of the number of interactions between molecules at the surfaces of the books, and the distance that
they slide across each other is directly related to the number of molecular interactions.

There is still much more we can do with this simple two-book model, and we will return to it in a future chapter.

Thermal Energy
There is one subset of the internal energy category that deserves special mention. In most macroscopic model calculations, the internal
energy change that occurs in the system comes in the form of random motions of molecules in the participating objects. When two
surfaces slide across each other with kinetic friction, the surface molecules push and pull against each other, and as they are bound to
their respective objects, they react by vibrating.  These vibrations are not in-sync – they are quite random, and the vibrations spread to
their neighbor molecules as well.  Such vibrating particles possess energy, both kinetic and potential (the latter due to the potential
energy from the restoring Van der Waals forces), and this energy is within the objects themselves, so it is internal. This microscopic,
random internal energy is so important that it is given its own name – thermal energy.

As is implied by the name, thermal energy is measured most easily through temperature – the two sliding books above become
warmer. We will wait until Physics 9B to see how thermal energy and temperature are mathematically related to each other. For the
purposes of this class, knowing that a change in temperature is an indication of a change in internal energy will be sufficient. One
other important feature of thermal energy that we will not explain until Physics 9B is that with models like the sliding books, the
conversion of some of a book's kinetic energy into thermal energy is a one-way trip. We would have a wait a long time if we ever
wanted to see the two books cool off and spontaneously slide off each other. This comes from the fact that all (or a very large
majority) of the randomly-moving momlecules would have to synchronize and move in the same direction at the same time, and this is
improbable in the extreme.

Alert
While it will be some time before you encounter the idea of "heat" in Physics 9B, it is important to understand as early as
possible that thermal energy is not the same as heat.  Heat is not a form of internal energy.

To get some sense of how important thermal energy is to this discussion, it should be noted that it requires quite a contrived situation
to produce an example in the mechanics of macroscopic objects where internal energy is not thermal energy. Indeed, for this reason,
most textbooks don't even make the distinction, and instead go straight to the total energy conservation equation:

Thermal energy can have different intrinsic properties for different physical systems.  For example, for a system that is a gas, the
particles don't interact very much, which means there is very little potential energy included in such a system's internal/thermal energy.
 For a solid, on the other hand, the molecules are bound to each other, so the energy is divided pretty equally between the potential
energies of the particle interactions and the kinetic energies of their motions.

= +fΔ = ΔK = K −K = −0WAB xB EB EBf EBo
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Summary of Energy Accounting
In the last two sections, we have talked about a dizzying number of ways that we can keep track of the energy accounting for a
physical system, so let's get away from all the conceptual discussion and summarize what is most useful for solving problems. As a
general rule, we will be dealing with systems involving macroscopic objects whose internal energies are all thermal. Aside from these
thermal energies, all of the remaining energy will be mechanical.  This means that what we will mainly need for any problem are two
things: The equation for total energy conservation, and the ability to compute a change in thermal energy by performing the work
integral for the non-conservative (usually kinetic friction) force:

Some important/useful notes:

There could be more than one type of potential energy present at the same time (such as a spring and gravity), so keep in mind that
the " " in the formula above is a placeholder for all of them summed together.
We are assuming here that the objects in the system are rigid and are not rotating, so that the kinetic energy for each object is
simply . This allows us to not be concerned about the specifics of each object's center of mass motion, as every part of it is
moving at the same speed. We will see how to deal with the kinetic energy associated with rotational motion in a future chapter.
It is often helpful to break down the 's into "before" and "after", rewriting the energy conservation equation this way:

The interpretation of this equation is a simple one: The system begins with some total energy that is in the form of mechanical energy.
Later, the distribution of this total energy has changed. The amount of kinetic and potential has changed, and assuming there was also
a non-conservative force present, some of that starting energy has become thermal energy, internal to the objects.  Naturally the system
started with some thermal energy, and we could similarly divide that between the two sides of the equation, but this equation is used
for specific calculations, and while it is possible to compute the thermal energy change using a work integral, it is not possible (in
Physics 9A) to compute the thermal energy of an object directly.

Analyze This
A ball is launched straight up into the air with the apparatus shown below. The ball is pushed upward so that it compresses the
spring, and is released from rest. It then travels around a frictionless half-circle track, at the bottom of which is a scale that
measures the contact force the ball exerts on the track at that point.

Analysis

0 = ΔKE+ΔU +Δ , Δ = − = − f ⋅ dlEthermal Ethermal Wf ∫

A

B

(3.5.5)
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Δ
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The first thing we note here is that if we ignore air resistance, there are no non-conservative forces present, which means that 
, and the mechanical energy of the system doesn't change from one moment to the next:

Next, we can see that at various times in the motion of the ball, there are two different potential energies possible - one from the
spring and one from gravity. We are told that the ball is launched by the spring, which means that the spring must have been
compressed.  If we call this amount of compression , then at the moment the ball is released, the system contains an amount
of spring potential energy equal to:

Determining the amount of gravitational potential energy stored in the system requires that we define a point of zero potential
energy.  Naturally we can choose anywhere we like as this zero-point, because ultimately only the change in the gravitational
potential energy from "before" to "after" will matter, and that will be the same wherever we happen to call . The
diagram labels a height for the ball when it stops rising measured from the bottom of the track, so let's choose that position as
zero gravity.  Doing this, we can determine the gravitational potential energy of the ball just as it is launched. It's height above
the bottom of the track is the radius of the track plus the amount the spring is compressed, so we have:

Clearly the ball starts at rest, so it starts with zero kinetic energy. This completes a "before" picture that we can use to solve a
problem. There are a number of "after" times we might be asked about, most of them presumably after the ball has left contact
with the spring. At such times, the ball will have a new height and a new speed. The resulting gravitational potential energy and
kinetic energy can then be put into the "after" side of the equation, and one can then solve for unknowns.

One item that we have not accounted for is the presence of the scale. It doesn't contribute to the energy of the ball in any way,
so why is it even mentioned? Well, the scale provides a clever way to measure the speed of the ball (and therefore its kinetic
energy) at the bottom of the track. When the ball passes directly above the scale, it is moving in a circle, and the force exerted
by the track on the ball at that point (which is measured by the scale) is straight up toward the center of the circle. The gravity
force is straight down, so the net force on the ball is toward the center of the circle, which means its acceleration is centripetal.
 We therefore have:

So if we have the scale measurement (and obviously the mass of the ball), we can compute the kinetic energy of the ball at that
bottom point from the radius of the track.

Analyze This
A puck slides down a frictionless track, over  a short horizontal rough (frictional) patch, around a frictionless loop-de-loop, and
into an ideal spring fixed to a wall, where it bounces off and goes back the other way, returning through the loop-de-loop, over the
rough patch, and back up the ramp.

Δ = 0Ethermal

+ = +KEbefore Ubefore KEafter Uafter

Δy
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Analysis

We clearly have several modes for energy to change form here. The puck will change gravitational potential energy as if moves
vertically, it will convert energy from mechanical to thermal when it experiences kinetic friction on the rough patch, potential
energy in the spring will change when the puck compresses it, and of course the kinetic energy of the puck can change
throughout.

The only weird part here is the loop-de-loop. Like the ramp, it introduces an opportunity for the gravitational potential energy
to change, but what else can we say about it? Well, in a previous 'Analyze This' example, we determined a condition for the
puck going around the loop to remain in contact. We tend to assume that the puck will make it around the loop to get to the
spring, but in fact it has to have at least enough speed at the top of the loop so that it the gravitational force is barely enough to
maintain centripetal acceleration.  In particular, we found that the minimum speed it must have at the top of the loop is:

We can express this as a minimum kinetic energy that the puck must have at the top of the loop in order to maintain contact:

Given that the gravitational potential energy at the top of the loop is greater than at the bottom by an amount ,
it means that to make it around the loop the puck must have a kinetic energy of at least . If it came down the ramp from
rest with a vertical drop of \(\frac{5}{2}R\), then that would be just enough to let it get around, but of course in this case, the
starting point would need to be higher, since the puck loses some of it's kinetic energy to thermal energy thanks to work done by
kinetic friction, which we address next.

If we know the coefficient of kinetic friction, then all we need is the normal force between the puck and the rough patch to get
the force of kinetic friction, and as this force is constant, the work done by the kinetic friction force is easy to compute, and this
energy goes into increasing the thermal energy of the system:
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[The last equality comes from the fact that the surface where the rough patch lies is horizontal, so the normal force equals the
puck's weight.]

There is one last important point to make in this analysis. As many places as are available for energy to turn forms, it is not
usually necessary to include all of them in the process of solving a problem. Here's an example... Suppose we want to know how
high the puck goes back up the ramp after it bounces back one time. We could track its motions through the process, going
around the loop and bouncing off the spring, but assuming we know that it has enough energy to traverse the loop-de-loop
(something we will need to check, using the criterion found above), we simply set the "before" time as the moment the puck is
released and the "after" time when it comes to rest, then all we need to do is include the thermal energy resulting from two trips
across the rough patch:

Analyze This
A block slides along a horizontal frictionless surface until it runs into a spring at its equilibrium length.  Just as it starts to
compress the spring, the surface becomes rough.

Analysis

With everything occurring on a horizontal surface, gravitational potential energy does not play a role. It's not that it isn't
present, but it never changes, so it will not appear in our equations. The block will change kinetic energy, and the spring will
gain potential energy as it is compressed. In addition, as the spring is being compressed, there is work being done by the kinetic
friction force, so this will result in a change of thermal energy for the system. Our energy accounting therefore comes to:

If we assume the friction force remains constant along the rough portion of the horizontal surface, then the work done by the
constant kinetic friction force is just the negative of that force multiplied by the distance of the slide across the surface. The
surface is horizontal, so the normal force equals the weight of the block. This distance is also the compression of the spring, so
putting it all together, we have: 

If the roughness of the surface (measured by the coefficient of kinetic friction) does not remain constant along the slide of the
block, then the problem becomes a bit tougher. The normal force is the same, but  is now a function of position, complicating
the work integral:

This page titled 3.5: Energy Accounting with Non-Conservative Forces: Thermal Energy is shared under a CC BY-SA license and was authored,
remixed, and/or curated by Tom Weideman.

Current page by Tom Weideman is licensed CC BY-SA 4.0.
3.4: Energy Accounting with Conservative Forces: Potential Energy by Tom Weideman is licensed CC BY-SA 4.0.
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3.6: Mechanical Advantage and Power

Reconciling Work with Mechanical Advantage
Back when we first talked about pulleys, we said that the block-and-tackle device was useful for lifting heavy objects.  The figure
below shows two blocks lifted the same distance by pulling on a rope in a pulley system. We know that it requires less force to lift
the same mass for the case on the left than the case on the right, but now let's compare the amount of work done by the pull force in
the two cases. In both cases, the block is raised the same distance, and in both cases it starts and ends at rest.

Figure 3.6.1 – Work Done with Pulley Systems

The pull force acts downward on the end off the rope, and the direction the end of the rope moves is downward, so there is positive
work done in both cases. With identical blocks, the force required to be applied to the rope for the left case is half as great as the
force required to lift the block in the right case. However, in order to lift the block the same distance from where it started, the rope
must be pulled twice as far in the right case than in the left case, thanks to the pulley ratio constraint. With half the force acting
over twice the distance, the amount of work done is the same. The multiplicative factor by which the force needed for the load
exceeds the force exerted on the system is called mechanical advantage (MA):

What we have found is that since the work done on the load is the same as the work done from outside, the mechanical advantage
can also be expressed in terms of the ratio of the displacement of the object on which the applied force acts (e.g. the end of the rope
in a block-and-tackle), and the displacement of the load:

The mechanical advantage can of course be multiplied by including more pulleys (or mor loops around the same pulley) –  the
pulley constraint ratio discussed earlier is the same as the mechanical advantage in every case.

So it appears that the block & tackle (and simple machines more generally) trade effort (force) for displacement, such that the
amount of work done remains the same. Let's see if we see a similar result for the case of the inclined plane.

Figure 3.6.2 – Work Done with an Inclined Plane

MA ≡
force on load

force applied
(3.6.1)

=     ⇒     Δ = Δ     ⇒    MA =Win Wout Fapplied xapplied Fon load xload
Δxapplied

Δxload
(3.6.2)
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Let's assume that the inclined plane shown in the figure above is frictionless, that the force applied to the block is parallel to the
plane, and that it is just enough so that the block moves at a constant speed up the plane. A FBD (without the irrelevant normal
force which acts perpendicular to the motion) looks like:

Figure 3.6.3 – Partial FBD of Block on Plane

For the block to stay at a constant speed, the force up the plane must equal the force down the plane, which means:

So the force required is reduced by the factor  compared to lifting the block straight up. But from trigonometry, the distance
the block must be pushed is:

When we multiply the force by the distance to get the work done, we get:

This is the amount of work required to lift the block straight up at a constant speed, so once again the simple machine trades extra
distance for less force to get the same work. This agrees with the result we have already obtained, using gravitational potential
energy. [Note: The change in gravitational potential energy equals the negative of the work done by the gravity force. In this case,
we have computed the work done by us, and since the force we apply to do the work is in the opposite direction as the gravity
component, we get a positive value.]

Power
We take a moment now to introduce yet another physics word whose common usage in English is very different from its meaning
in physics.

Definition: Power
Power is the rate at which work is performed.

Note that just like we can talk about the work done by an individual force or a collection of forces, we can also talk about the
power "delivered" to a system by one or more forces. For example, if a car is moving at a constant speed on level ground, its
kinetic energy is not changing over time, so no total work is being done on it. If no work is done on it over time, there is no net
power being delivered to it. But clearly the engine of the car is doing something. So it is useful to break up the power delivered by
separate sources if we want to isolate the rate at which the engine is doing work, without worrying about the rate at which air
resistance and friction are are doing negative work on the car to bring the total to zero.

Mathematically, we therefore have for the power delivered by a given force is:

Since the units of work is Joules, the units of power is Joules per second, which we rename as: watts ( ).

One nice shortcut for power involves the force doing the work and the velocity of the object on which the work is being performed:

F = mg sinθ (3.6.3)

sinθ

d =
Δy

sinθ
(3.6.4)

W = Fd = (mg sinθ)( ) = mgΔy
Δy

sinθ
(3.6.5)
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Note that this is the power delivered to the moving object (i.e. the rate at which energy is added to or taken away from the object) at
the instant that the force and velocity are the vectors given above. If this is integrated from a starting time to a final time, the result
is the total work done over that time span by the force.

Exercise
Two forces act on a moving object of mass , causing its velocity to change over time. One of the two forces is given
below, as is the velocity as a function of time.

 At one moment in time, only the force not given above is delivering power to the object. Find the amount of power delivered by
this force at this moment in time.

Solution

First we need to find the time at which this is occurring. We know that the force given above is not delivering any power at
this moment, so its dot product with the velocity vector must vanish, giving:

We can find the net force on the particle as a function of time by computing the acceleration from the velocity and using
Newton's 2nd Law:

This results in a total power delivered to the object as a function of time that is:

At the time computed above, the force  is not delivering any power, so all of the total power must be coming from the
second force. Thus:

Analyze This
A particle starts from rest and experiences a net force that has a constant magnitude. This force does change direction, however,
such that the particle is made to move in a circular path.

Analysis

To get the particle moving, the force must be tangential to the circle around which the particle will eventually be traveling.
But as the particle speeds up, in order to continue its motion in a circle, the component of the net force toward the center of
the circle grows, and since the magnitude of the force remains fixed, there is a decreasing amount of tangential component of
the force that goes into speeding up the motion of the particle.

For a given mass of particle and radius of circle, there is a limited speed at which the particle can travel – the speed at
which the entire force acts to maintain the centripetal acceleration:
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3.7: Energy Diagrams

A New Tool for Energy Analysis: Energy Diagrams

An energy diagram provides us a means to assess features of physical systems at a glance. We will examine a couple of simple
examples, and then show how it can be used for more advanced cases in physics and chemistry. It's important to understand that there
is no new physics in here – what we have learned to this point is simply represented diagrammatically, making it easier in some cases
to see the "big picture" of a physical system.

First of all, it should be noted that we will be confining ourselves to energy diagrams for 1-dimensional motion. This dimension will
be represented by the horizontal axis, and the vertical axis will have units of energy. Secondly, the physical systems represented by
energy diagrams will involve only one (conservative) force acting on an object.

Construction of an energy diagram entails first graphing the potential energy function for the conservative force on the axes. Note that
potential energy function includes an arbitrary additive constant, which means that the entire graph can be moved up or down on the
vertical axis as much as one likes without changing the physical system at all. There is one common convention that is followed
regarding the height of the graph on the vertical axis, which we will see below, but it should be remembered that this is only a
convention, and doesn't change any of the physical properties of the system.

The graph of the potential energy function could apply to any object under the influence of this conservative force. To represent a
specific system, the diagram also needs to indicate the total mechanical energy of the system, and this is done with a horizontal line
with the correct height on the vertical axis.

That's all there is to drawing these diagrams. The real value comes from interpreting them, which we will discuss in the context of a
couple of simple examples.

Two Simple Examples

Let's look at the energy diagrams for the two conservative forces we have dealt with so far... gravity and the elastic force.

Gravity

If we choose the arbitrary constant  for the gravitational potential energy to be zero, we have as a graph of the potential energy
function a straight line that passes through the origin. We then include a horizontal line to represent the total energy of the particular
system (which I will label as ). Now for interpretation...

Figure 3.7.1 – Energy Diagram for Object Influenced by Gravity Near Earth's Surface

The position of the object (which in this case is the height above some defined zero point), is the value along the horizontal axis. For
every position of the object, there is a corresponding value of its potential energy, given by the height of the  graph above (if
positive) or below (if negative) the horizontal axis. The total (mechanical) energy of this system is conserved (i.e. it is the same for
every position of the object), which explains why the total energy graph is a horizontal line. For a given position, the gap between the
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total energy line and the potential energy line equals the kinetic energy of the object, since the sum of this gap and the height of the
potential energy graph is the total energy.

We can also interpret the intersection point of the total energy and the potential energy graphs. At this point, the total energy equals
the potential energy, which means the object has no kinetic energy – i.e. the object is at rest at this position. How can an object under
the influence of only gravity be at rest? It can be for just an instant, when it reaches the peak of its flight. Therefore the value on the
horizontal axis corresponding to this intersection point is the highest elevation the object can reach. Note that for heights (horizontal
axis values) greater than this, the potential energy is greater than the mechanical energy, which would require a negative kinetic
energy. This is of course impossible, and we call this the forbidden region of the diagram, as we will never find the system in one of
these states. As time passes, when the object reaches the intersection point, it must have done so from the allowed region, which
means that when the object comes to rest here, it reverses its direction of motion. Consequently, this position is often referred to as the
turnaround point.

There is one other nugget of information we can extract from this diagram, though in this particular case it is fairly trivial. If we
evaluate the negative of the slope of the potential energy graph at the point where the object is at some moment, we know the force
acting on the object at that moment. In the case of gravity, the force is the same everywhere:

[Note: There is no need for partial derivatives here, as we are only dealing with one-dimensional potential energy functions.]

If we change the arbitrary constant, the only quantities that change in the entire picture are the potential energy and total energy.
Every physically-observable quantity (kinetic energy, turnaround point, and force) remains unchanged. This may not be immediately
apparent, but looking at the graph it is easy to see:

Figure 3.7.2 – Redefined Zero Point for Gravitational Potential Energy

Interestingly, the fact that this potential is a straight line means that a shift of the graph up or down by an additive constant is
equivalent to redefining the origin. This is easily seen by noting that this graph can also be viewed as the previous graph shifted to the
left by , where . So for this simple case, changing the zero point of potential energy is equivalent to changing the
position which we call the origin.

Elastic Force

We take precisely the same steps to draw the energy diagram for a mass on a spring, but there are some differences, such as two
forbidden regions and a different slope for every position, and there is one additional feature for this potential that doesn't exist for the
case of gravity: an equilibrium point.

Figure 3.7.3 – Energy Diagram for Object Influenced by Elastic Force
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The two forbidden regions arise here because the spring has a maximum stretch and a maximum compression that result in potential
energy equaling the total energy. Regions of potential energy confined by two turnaround points like this are often referred to as
potential wells. Clearly the slope of the potential energy curve is different everywhere, which reflects the fact that the force by the
spring is different for every position the mass can have.

An equilibrium point occurs whenever the slope vanishes (at maxima, minima, and inflection points in the potential energy curve) –
there are simply places where the force vanishes. For the spring, it is the position where the spring is neither stretched nor compressed
from its natural length. This particular equilibrium is referred to as a stable equilibrium for the following reason: If the object is at rest
at this point, and it is given a small nudge in either direction, the resulting force acts to bring the object back to its original position.
We can see this here, because the slope on the (+) side of the equilibrium point is positive, which means the force is in the negative
direction. The force on the (–) side of the equilibrium point similarly acts back toward the equilibrium. Forces that create stable
equilibrium like this are called restoring forces.

It should be clear that any minimum in the potential energy curve will lead to a stable equilibrium, but what about maxima? In this
case, the forces that result from small displacements away from the equilibrium point act to push or pull the object farther from its
starting point. This type of equilibrium is therefore referred to as an unstable equilibrium. Inflection points lie between parts of the
curve that are concave (stable) on one side and convex (unstable) on the other, and the resulting equilibrium is referred to as a meta-
stable equilibrium.

As with the case of gravity, shifting the entire curve up or down by an amount  doesn't change any of the physics, including the
position of the equilibrium point. Unlike the gravity case, shifting the entire curve left or right (changing the definition of the origin)
is not equivalent to the addition of an additive constant to the potential energy curve. But in both cases, the physics is unchanged by
the positioning of the curve relative to either of the axes.

Conceptual Question
An object is subjected to a one-dimensional conservative force whose potential energy curve is represented in the graph of  vs 

 below.  The total energy of the object is indicated by the horizontal dashed line.  As the object moves from position  to
position , at which of the positions indicated is the power delivered to the object the greatest?

a. A
b. B
c. C
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d. D
e. The power delivered is constant during the entire journey.

Solution

(b) The power delivered at any instant is the dot product of the force vector with the velocity vector.  The force is the negative of
the slope of the potential energy function.  At point  this slope is zero, so there is no force, and no power is delivered.  At
point , the object’s potential energy equals its total energy, so it is not moving, and with zero velocity, no power is delivered.
 There is power delivered at points  and , but only the power delivered at point  is positive, since in that case the force
direction and velocity direction are both the same.  At point  the particle is still moving in the -direction, but the force is
the opposite way (slope is positive, force is negative), slowing the object down.  The power delivered to the object is obviously
greatest when the object is receiving the power, not when it is being sapped away.

Bound States of Two Particles
While our models of terrestrial gravity and the elastic force are useful, we have to keep in mind that force interactions are between
two objects, and the energy diagrams we have drawn appear to involve only a single object (the other object is lurking in the
background). The leap to discussing two particles is not a difficult one. Instead of being a position along the  or  axis, the one
dimension of freedom becomes the separation of the two particles, which we represent with the variable . If we can express the force
as a function of the separation of the two particles interacting, then we can express the potential energy as a function of that variable
as well, and voilà – we can draw an energy diagram. For the sake of interpreting such diagrams correctly, we have to keep in mind
that the horizontal axis represents a separation, rather than a position, which leads to a big difference from the energy diagrams we
created above – the horizontal axis has no negative values. It also should be remembered that these diagrams only relate motion
between the particles along the line joining them. If we want to include motion around each other (as in the case of an orbit), we
require more information than we can get from the energy diagram.

When we look at the universe in both the microscopic and macroscopic realm, we see countless examples of forces holding systems
together. Gravity interactions between the sun and the planets keeps them in orbit. Electromagnetic interactions between protons and
electrons holds them together in atoms, and electromagnetic interactions between atoms bind them into molecules. Systems of two
bodies that possess too little total energy to escape each other's attractive force are in what is called a bound state. For the purposes of
this section, we will confine ourselves to discussing bound states between microscopic particles, and save the discussion of orbits of
celestial bodies for the chapter on gravitation.

Bound states between atoms and molecules in our universe are quite extraordinary. We have already talked a bit about these Van der
Waals forces, and the time has come to look at them a bit more closely. Here is how the famous Nobel laureate Richard Feynman put
it:

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generations
of creatures, what statement would contain the most information in the fewest words? All things are made of atoms—little
particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon
being squeezed into one another. In that one sentence ... there is an enormous amount of information about the world.

From our earlier discussion, we know that this means that forces between atoms (and between molecules, which are clusters of atoms,
which we will also just treat as "particles," ignoring the possibility that they can acquire internal energy) must be restoring in nature,
with an equilibrium separation. Indeed this does tell us a lot about the shape of the potential energy curve – it must contain a local
minimum. But we know even more than this. Clearly a separation distance of zero is not possible (the particles can't occupy the same
space), and this is assured by an ever-increasing force as they continue to get closer. This means that the potential energy curve gets
steeper and approaches infinity as the separation distance gets closer to zero (i.e. the graph gets closer to the vertical axis). We know
one other thing: The force between the two particles gets weaker as they get farther apart, and drops to zero in the limit as their
separation goes to infinity. This means that the potential energy curve "flattens out" to a horizontal line as the distance from the
vertical axis goes to infinity. Amazingly, this seemingly insignificant amount of information gives us a general shape for the
interaction potential of two particles.

Figure 3.7.4 – Shape of Inter-Particle Interaction Potentials
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The horizontal axis has been intentionally left out here, because this is not something we can determine. Recall that this potential
energy curve can be raised or lowered an arbitrary amount without changing the physics, so we are actually free to place the
horizontal axis (the point we call "zero energy") wherever we like. It is here that we come to the convention alluded-to at the start of
this section: It is generally agreed to place the horizontal axis at the position that the potential energy curve reaches as . That
is, it is usually agreed that the potential energy of the interaction vanishes when the particles are separated by an infinite distance (see
the figure below).

One nice consequence of the  is that it gives us a simple rule-of-thumb to determine whether or not the two particles
in this potential are bound to each other. If the total energy of the system is positive (i.e. the horizontal line representing the total
energy is above the -axis), then that means that when the two particles are moving away from each other, the graphs never intersect
to give a "forbidden region," and they just keep moving apart – they are not bound. If the total energy is negative, then the total
energy horizontal line intersects the potential energy graph in two places, giving two turnaround points, keeping the particles within a
range of separations.

Figure 3.7.5 – Bound and Unbound States
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All of the physical interpretations we came up with above apply to this function as well, though it might be a bit confusing at first,
since for much of the graph the potential energy is negative. But note:

The kinetic energy for a specific position is still always positive, and equals the gap between the point on the curve and the total
energy line.
The force between the particles is still the negative of the slope, which means it is attractive (seeks to make  smaller) when the
slope is positive, and is repulsive (seeks to make  bigger) when the slope is negative.
The equilibrium and turnaround points are defined as the bottom of the dip and the intersection points of the total energy line and
potential energy curve, respectively.

Alert
When two particles are bound to each other, to break the bond, energy must be added to them. That is, the total energy line must be
moved up until it is above the -axis. Collections of particles must receive additional energy to break their chemical bonds, and
energy only comes out of chemical reactions in which new bonds are formed. For some reason, belief of the exact reverse is a very
common misconception.

A model of the potential energy that works very well for two neutrally-charged atoms or molecules was constructed in 1924 by John
Lennard-Jones. This Lennard-Jones potential has a simple-but-surprising form (yes, those powers are not typos!):

Exercise
Two molecules separated by a small distance interact with each other such that a potential energy curve that looks like the one
below is the result. The particles start at rest in state .  A short time later, they are bound to each other, stuck within the range of
separation from  to .
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In terms of the labels provided in the diagram, answer the following:

a. How much energy was added to or taken away from (specify which) this two-particle system in the process of going from the
starting state to the bound state?

b. What was the average inter-particle force as particles went from a separation of  to ?  Was this force attractive or
repulsive?

c. What is the sum of the kinetic energies of the two molecules when they are separated by the distance ?
d. How much energy needs to be added to the bound particle system in order to completely separate them?

Solution

a. The difference in energy between the starting unbound state and the ending bound state is:

(Energy is taken away.)

b. The inter-particle force is given by the negative of the slope of the potential energy curve.  The part of the curve between
points  and  is not quite straight, but we are only asked for the average force, so we determine the slope using the
endpoints:

The slope of the curve is negative, so the force is positive, which means it is repulsive.

c. The kinetic energy is the gap between the total energy line (in this case, at ) and the specific state in question, so the
kinetic energy is just .

d. The “binding energy” is the amount of energy that needs to be added to the two particles to just barely (with no kinetic
energy leftover) separate them to .  The system has a total energy of , which is a negative number, so it needs 

 to be added to it to get its energy to zero – just enough to break the bond. 
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Modeling Bonds as Springs

It is quite common to model chemical bonds as springs, but this seems like a strange practice, given that the potential energy function
looks like the equation above, which is nothing like the potential energy function of a spring. Surprisingly, a spring can nevertheless
act as a reasonable replacement for the Lennard-Jones potential when the total energy is close to the lowest point of the curve.
Certainly the curve at the bottom of the well resembles the parabolic curve of the elastic potential, but one might argue that the bottom
of any concave curve will resemble the elastic potential energy curve. It turns out that this argument is completely correct – every
smooth concave curve can be approximated by the parabolic curve of the elastic potential energy!

How well this approximation works depends upon the range of values we confine ourselves to. If we look at the whole curve, then
obviously the approximation of the Lennard-Jones potential with a parabola breaks down badly. But as we narrow-down our view to a
smaller and smaller range near the bottom of the potential well, this approximation gets better. The reason for this is related to some
amazing mathematics: Any smooth function of a single variable can be written as a series (often infinite) of powers of that variable,
with each term multiplied by a different constant:

From this perspective, it's clear that almost every function has a bit of the  function in it. For the Lennard-Jones potential, we can

define  in the expansion above as , which is a measure of how far the particle separation is from the equilibrium. For

example, if the separation distance  is 90% of the equilibrium distance , then , and for  equal to 99% of , 

.

In the spring model, it is precisely the distance that the spring is stretched or compressed from the equilibrium that determines the

potential energy. So if we write the Lennard-Jones potential as an expansion in powers of , we can more easily compare it

to a spring potential energy:

To use a spring to model this function, we want the series to look like a quadratic, so we need the contributions of the terms in the
series with powers greater than 2 to be small compared to the terms before them. Well, if we restrict ourselves to values of  that are
close to  (i.e. consider particles that are separated by a distance close to the equilibrium separation, which means the total energy is

quite low), then the difference  is a small number less than 1. The more times we multiply this small number by itself, the

smaller the result, so higher powers provide ever-smaller contributions to the sum of the series.

All that remains if we are going to use the elastic potential energy to approximate the Lennard-Jones (or any other) potential is to
figure out how to determine the equivalent "spring constant." Fortunately we have a nice trick for doing this. We can compare the way
in which the spring constant enters the potential energy function to the series expansion, and determine what number we need from
the series expansion to find the effective spring constant :

Okay, so we know where to find the effective spring constant – we express the actual potential as an infinite series, then look at the
constant that multiplies the quadratic term in the expansion, and multiply it by two. But this still means we need to come up with the
series... or does it? Consider the following useful mathematical trick: First, take two derivatives of Equation 3.7.3:

Now evaluate this second derivative at the point . All of the terms after the constant term then vanish, leaving what we are
looking for:
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Exercise
Find the effective spring constant for the Lennard-Jones potential given in Equation 3.7.2 in terms of the constants  and .

Solution

Let's start by noting that taking derivatives of a potential function  with respect to  and evaluating at  is
no different from taking derivatives with respect to  and evaluating at . The former method is nice for explaining how
this works, but the latter is easier in practice. So we just follow the method given:

Evaluating at  gives the answer:

This page titled 3.7: Energy Diagrams is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman
directly on the LibreTexts platform.

Current page by Tom Weideman is licensed CC BY-SA 4.0. Original source: native.
2.3: Forces as Interactions by Tom Weideman is licensed CC BY-SA 4.0.
3.2: Work and Energy for Collections of Particles by Tom Weideman is licensed CC BY-SA 4.0.
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Sample Problems
All of the problems below have had their basic features discussed in an "Analyze This" box in this chapter. This means that the
solutions provided here are incomplete, as they will refer back to the analysis performed for information (i.e. the full solution is
essentially split between the analysis earlier and details here). If you have not yet spent time working on (not simply reading!) the
analysis of these situations, these sample problems will be of little benefit to your studies.

Problem 3.1
A toy train rolls along a straight, frictionless track, parallel to the -axis.   As it rolls, it experiences a force given by the
equation:

The function  can be expressed by the graph below.

The train starts at the position  with a speed of , moving in the  direction, and the force stops it when it gets
halfway to the origin. If the same train is then picked up and placed on the track at the origin, find its acceleration.

Solution

As we saw in the analysis, the work done by this force on the train when it moves along the -axis  is 0.60 times the area
under the graph given.  In this case, the displacement of the train is from  to , so we use the area for that interval to
compute the work (and since the displacement is in the -direction, this work is negative).  The maximum force reached is 

, so area of this triangle is:

The work done by the force during the train's journey is therefore:

This work results in a change of the train's kinetic energy, according to the work-energy theorem.  The final kinetic energy is
zero (the train stops), so:

If the train is now placed at the origin, then the net force by the train + tracks will be in the  direction (the tracks exert a
force on the train  that  won't let it move any other way), so only the -component of the force will contribute to the
acceleration. The train therefore feels a net force of , and dividing this by the mass of the train gives its acceleration,
according to Newton's 2nd Law. The equation above gives us this ratio:
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Problem 3.2
Three identical particles, A, B, and C are positioned at the vertices of an equilateral triangle. Particle A remains at rest at the
origin, while particles B and C move directly away from particle A at equal speeds along the lines defined by the triangle, as
shown in the diagram.

The kinetic energy of each particle is .

a. Find the internal energy of the three-particle system.
b. Find the internal energy of the two-particle system .
c. Find the internal energy of the two-particle system .

Solution

a. We anticipated this question in the analysis, so we will not reproduce the work here.  There we found that the internal
energy of the three-particle system was , which is the same as the kinetic energy of a single particle (measured in the
diagramed frame of reference), which here is 10J.

b. The internal energy is found by subtracting the system's collective kinetic energy from its total energy, the latter of which
can be found using the kinetic energies of the individual particles. Clearly, therefore, the total energy of the  system in the
reference frame given is . The system's collective kinetic energy comes from the motion of its center of mass. With just
two particles of equal mass involved, the center of mass speed is:

The kinetic energy of the  system is therefore:

Subtracting this from the total energy of the two-particle system gives us its internal energy:

c. If we think about what the arrangement of particles looks like at later times, we conclude that it remains an equilateral
triangle, but just a bigger one. This means that if we looked at the motion of   from the perspective of , we would see
exactly the same thing as viewing 's motion from 's perspective. The internal energy is independent of the frame from
which we view it, so the internal energy of the  system must be the same as it is for the  system. We can of course
confirm this with lots of velocity vector math. Sigh, okay, here it is... Place  at the origin, and  moves along the -axis,
while  moves away from the origin in a direction 60º above the -axis. The velocity vectors are therefore:
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The center of mass velocity of the system  is:

This makes the system's collective kinetic energy equal to:

The system's total energy is the sum of the kinetic energies of the two particles  and , which is just . So
the internal energy is:

This confirms that it is the same internal energy as the system .

Problem 3.3
Consider the following forces that act on a particle as it moves in the  plane (  is a constant):

Check each of these forces to determine if it is conservative, in each of the following ways:

a. Use the partial derivative check (Equation 3.3.8).
b. Compute the work done by each force on a particle that moves from the origin to the point  in the  plane over the

following two paths:

Solution

a. We already did this in the analysis.

b. This method is quite a bit tougher (which makes us thankful for the partial derivative method). You may want to review the
discussion of line integrals for more guidance on how this works. We have two line integrals to perform for each force – one
following the linear path and one following the parabolic path.  In every case, the infinitesimal displacement vector can be
written as:

Evaluating this vector on the specific path being used is then just a simple matter of knowing the derivative for that path,
and the integral can then be performed over  between  the endpoints of the path (for both of  these paths, that will be 

). The thing to always keep in mind is that anything we evaluate must be specific to the path, and we are
converting everything to the single variable  so we can perform the integral.  This will become clear below.
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1

2
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Linear path, so  and  :

Parabolic path, so  and  :

The two line integrals along different paths between the same endpoints yield the same answer, as they should for this force
that we have already determined to be conservative. Now for the second force:

 

Linear path, so  and  :

Parabolic path, so  and  :

These two line integrals are not equal, which confirms that this force in non-conservative.

Problem 3.4
A small block slides along a frictionless, horizontal surface into a frictionless vertical half-circle track, and it remains in contact
with the track, until at least the  point (with  defined in the diagram).
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Find the fraction of kinetic energy lost by the block in getting to the top of the half-circle, if it just barely maintains contact with
the track at the top.

Solution

In the analysis, we found a relationship between the block's initial and final speeds, in terms of the angle . In this case, we
are interested in its speed at the top, so , giving:

We also found in the analysis an expression for the minimum velocity needed for the block to remain in contact with the
track, as a function of the angle . As we are given that the block barely remains in contact at the top of the half-circle, we
must assume that it has the minimum speed it can have at this point. This speed is the "final" speed, so we have:

So we have  in terms of , and combining these two equations allows us to do the same for  :

Now all we have to do is construct the kinetic energy ratio requested:

Problem 3.5
A block is attached to a vertical spring, the other end of which is attached to the ceiling. The block is held stationary at a height
where the spring is at its equilibrium length. The block is then released.

The block falls a distance of  before finally stopping and bouncing back up. Find the distance it has fallen when it
reaches its maximum speed.

Solution

With some thought, the analysis actually gives us the answer immediately. We found that the position where the spring force
cancels the gravity force is exactly halfway between the top and the bottom, which we also found to be the position where the
spring and gravity forces are equal. The gravity force is unchanging, so slightly above this midway position, the spring
stretch is not quite enough to produce a force as great as the force of gravity. This means that everywhere above this midway
point there is a net force downward.  So the block continues speeding up in its descent until it reaches the midway point.
After crossing the midway point, the spring force is greater than the gravity force, so the block slows down.  Therefore the
block reaches a maximum speed after dropping .

Okay, now let's do it the "cool" mathematical way, using the work-energy theorem. If we call the starting point of the block 
 and treat downward as the -direction, then from the equation we found in the analysis, we have the total work done

on the block in terms of , and we can set it equal to the kinetic energy at the position  (yes, the work done equals the
change in kinetic energy, but the block starts from rest, so the change equals the kinetic energy itself):

θ

θ = 180o

= −2gR (1 −cos ) = −4gRv2
f

v2
o 180o v2

o

θ

= −gR cos = gRv2
f

180o

v2
f R v2

o

gR = −4gR ⇒ = 5gRv2
o v2

o

= = = = = 0.8
KElost

KEo

K −KEo Ef

KEo

m − m1
2

v2
o

1
2

v2
f

m1
2

v2
o

−v2
o v2

f

v2
o

5gR−gR

5gR

120cm

60cm

y = 0 +y

y y

KE (y) = W (0 → y) = − k +mgy
1

2
y2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63406?pdf
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/3%3A_Work_and_Energy/3.3%3A_Conservative_and_Non-Conservative_Forces#Problem+3.4
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/3%3A_Work_and_Energy/3.3%3A_Conservative_and_Non-Conservative_Forces#Problem+3.5


6 https://phys.libretexts.org/@go/page/63406

We want to know the value of  where the speed of the block is a maximum.  Well, obviously this occurs where the kinetic
energy is a maximum (the block's mass doesn't change). So maximizing the  function gives:

We already found in the analysis that the maximum stretch of the spring is twice this value, so once again we find that the 
value where the block is moving fastest is .

Problem 3.6
A puck is slid along a horizontal rough surface in a straight line along the diameter of a circle (the gravity, contact and friction
forces are the only forces on the puck).  The same puck is then slid on the same surface starting at the same speed along the
circle defined by the diameter indicated in the first experiment (it slides around the inside surface of a frictionless circular wall).
The figure shown depicts a top view of these two paths.

The puck is pushed at the start point so that it slides around path #2, and it just comes to rest at the end point. If it is pushed at
the same speed from the start point along path #1, find the fraction of initial speed that it has lost when it reaches the end point.

Solution

In the analysis we found that the work done by friction over path #2 is greater than the work done by friction over path #1 by
a factor of . From the work-energy theorem, this means that the changes in kinetic energy for these two paths are related in
the same way:

Solving for the final velocity in terms of the initial velocity gives:

So the puck loses about 40% of its speed along path #1.

Problem 3.7
There are few things as fun as swinging into a river from a rope swing tied to the limb of a tree on its banks. The person at the
end of this rope starts at the top of a hill at one angle, then swings to another angle when they let go and fly into the water.
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The length of the rope is , and the starting and ending angles are  and , respectively. The end of the rope
when it hangs vertically at the shoreline is  above the water level. You start from rest (don't get a running start).

a. Find your speed at the point when you release the rope.
b. Find the distance above the water that you reach at the peak of your flight.

Solution

a. We solved this in the analysis, so all that remains is to plug in the numbers. The initial speed is zero, and the length of the
rope and angles are given, so:

b.  We know that at the point of release, the velocity vector makes a 30º angle with the horizontal, so the horizontal
component of this velocity (which never changes) is:

When you hit your peak height, you will have a zero -component of velocity, so the quantity above will be your total speed.
Given we are ignoring air resistance, the only work is being done throughout is by gravity, which means we can use the same
method as in the analysis – whether the rope is involved throughout or not is irrelevant. So again calling the height of the
tree limb , we have:

Plugging in for , and   for , we get:

This is the distance below the tree branch, and since we know how high the tree branch is above the water, we have our
answer:

Problem 3.8
A bead is threaded onto a frictionless circular loop that lies in the horizontal -  plane, as shown in the diagram below. This
bead is subjected to a conservative force that is characterized by the potential energy function:
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The physical values for this set up  are as follows:  ,   ,    mass of bead  . The bead travels
counterclockwise around the loop, and  makes it all the way around the circle without stopping,  with  its minimum
speed measured to be: . Find the maximum speed attained by the bead.

Solution

We determined in the analysis the maximum and minimum potential energies, and these correspond to the minimum and
maximum kinetic energies, respectively. We are also given the minimum speed of the bead, so if we apply the conservation of
energy to the change that occurs between the maxes and mins, we get:

Putting in the expressions for the kinetic energies and the results from the analysis for the potential energies, we get:

And finally, plugging in the values gives:

Problem 3.9
A ball is launched straight up into the air with the apparatus shown below. The ball is pushed upward so that it compresses the
spring, and is released from rest. It then travels around a frictionless half-circle track, at the bottom of which is a scale that
measures the contact force the ball exerts on the track at that point.

The mass of the ball is , the stiffness of the spring is , the radius of the track is , and at the
moment the ball is above the scale, the scale reads .
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a. Find the speed of the ball as it passes the scale.
b. Find the height  reached by the ball when it comes to rest.
c. Find the amount that the spring was compressed before the ball was released.

Solution

a. In the analysis, we found the relationship between the speed of the ball and the scale reading. We now know the ball's
mass and the radius of the track, so:

b. There is no friction force by the track, and the contact force it exerts is perpendicular to the motion, so it does no work,
which means that mechanical energy is conserved. With the speed of the ball at the bottom, we can therefore compute the
height it reaches, where it comes to rest:

c. We know the total energy in the system, either from the KE at the scale, or the PE at the peak height:

When the ball compressed the spring, it had no KE, so all of this energy was stored in the PE of gravity and the elastic PE of
the spring. Calling the compression , then the height of the ball at the start is . Summing the two PE’s and setting
the sum equal to the total energy gives a quadratic equation, which we then solve for :

Problem 3.10
A puck slides down a frictionless track, over a short horizontal rough (frictional) patch, around a frictionless loop-de-loop, and
into an ideal spring fixed to a wall, where it bounces off and goes back the other way, returning through the loop-de-loop, over
the rough patch, and back up the ramp.
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The coefficient of kinetic friction for the rough patch is , and the length of that patch is . The puck bounces off the
spring one time, and eventually comes to rest, without ever falling off the loop-de-loop.

a. Find the maximum value possible for the radius the loop-de-loop.
b. If the radius of the loop-de-loop is the maximum value found in part (a), find the height at which the puck was released from

rest.

Solution

a. The analysis shows that the amount of mechanical energy converted to thermal energy by a single trip across the patch is
equal to . The puck bounces off the spring once, and makes it around the loop, but never makes it back to the loop
after passing over the patch, going up the ramp, and then reentering the patch. The most kinetic energy it can have after
passing through the loop-de-loop the second time is therefore the amount of energy converted to thermal after two full trips
across the patch:

The puck must also get around the loop, and the larger the radius of the loop is, the more total energy the puck must have.
But we have an upper-limit on the puck's kinetic energy at the bottom of the loop, so this gives us an upper limit on the
radius of the loop. From the analysis we found that the puck barely makes it around the loop if its kinetic energy at the
bottom of the loop is . Setting this equal to the quantity found above gives us our answer:

b. In order for the situation above to occur, the puck must come to rest after passing over the patch exactly three times (once
coming down the ramp the first time, then two more times, as described above). Therefore all of the potential energy of the
unmoving puck at the release point is converted to thermal energy, and the solution is quick:

Problem 3.11
A block slides along a horizontal frictionless surface until it runs into a spring at its equilibrium length.  Just as it starts to
compress the spring, the surface becomes rough.

0.30 0.80cm

mgxμk

kinetic energy at bottom of loop after bouncing off the spring  = 2 mgxμk

mgR5
2

mg = 2 mgx ⇒ = x = (0.30) (80cm) = 19.2cm
5

2
Rmax μk Rmax

4

5
μk

4

5

= Δ ⇒ mgh = 3 mgx ⇒ h = 3 (0.3) (80cm) = 72cmUstart Ethermal μk
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The mass of the block is , and it approaches the spring at a speed of . The spring stiffness is , and the
coefficient of kinetic friction is a constant value of 0.3. The block eventually comes to rest and remains there.

a. Find the distance that the spring is compressed when the block comes to rest.
b. Find the fraction of the block's kinetic energy that has become thermal by the time the block comes to rest.
c. Find the minimum coefficient of static friction that the rough surface can have.

Solution

a. In the analysis we derived an expression that relates the compression of the spring to all the other quantities:

The final speed is  and this is a quadratic equation in the value we are looking for ( ), so the answer is immediate:

Plugging in the numbers:

b. The thermal energy is the work done by friction:

We can also compute the incoming kinetic energy:

So the fraction of energy converted to thermal is:

c. The fact that the block has stopped and has not started sliding back means that the net force on the block is zero, which
means that the static friction force is equal to the push of the spring. We can compute this force:

The maximum static friction force must be this much, so setting the maximum equal to this number gives us the minimum
possible coefficient of static friction:

Problem 3.12
A particle starts from rest and experiences a net force that has a constant magnitude. This force does change direction, however,
such that the particle is made to move in a circular path. Find the power delivered to the particle when it reaches half of its
maximum speed, in terms of its mass , the net  force magnitude , and the radius   of the circle to which the particle is
confined.

Solution
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We have an expression for the maximum velocity of the particle from the analysis, so half this amount is:

At this speed, the force component that is radially inward to maintain circular motion is:

The part of the net force that is tangential can then be found using the Pythagorean theorem, as the radial and tangential
parts are the two components of the total:

The power delivered is the force component in the direction of motion multiplied by the speed, so:
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4.1: Repackaging Newton's Second Law

Definition of Impulse
In chapter 2, we made a point of emphasizing that force is not possessed by objects – it is an interaction between them. One way
we know this is that if the same force is exerted on identical objects that start at rest, the two objects are not necessarily moving the
same afterward. There is an important ingredient missing here – the duration that the force acts. Since the force causes an
acceleration, the longer it acts, the more the velocity is affected. So multiplying the force by the amount of time it acts may provide
us with a useful quantity. The force may be changing magnitude or direction while it acts, but over a very short time this product is:

If we want to know the totality of this quantity over a finite time interval, we need to add up all these little contributions. We give
this quantity the name impulse.

Definition: Impulse

This quantity is the sum of the product of the forces and the times over which those forces act. This certainly sounds very similar to
work, which takes a product of forces and displacements. Also, impulse will have an impact on the motion of the object, as work
did. But there are also many differences between these two quantities.

The first difference between impulse and work is that they obviously represent different physical quantities, because they have
different units. While work has units of energy which we measure in Joules (or Newton-meters), impulse has units of force-times-
time, measured in Newton-seconds. A second difference is that the impulse integral (mercifully) is not a line integral – there is no
"path" to concern ourselves with when computing impulse. And third, because there is no dot product involved with the impulse
integral, the result is a vector, in contrast to work, which is a scalar.

Definition of Momentum
The definition of impulse is not the end of the story, any more than the definition of work was. It needs to be related to the effect it
has on the motion of the object. In the case of work, this relationship was expressed as the work-energy theorem:

For the case of impulse, we find this relationship again by coming back to Newton's second law, and noting that the integral of
acceleration is velocity:

d = dtJ
→

F
→

(4.1.1)

( → ) ≡ dtJ
→
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=

=

=

=
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ΔKE
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We call the quantity  the momentum of the collection of particles on which the net force is acting, defined in terms of the total
mass of the collection of particles and the velocity (magnitude and direction) of the collection's center of mass. As we saw in
chapter 2, Newton's 2nd law works for any  collection of particles, whether they  form  a solid object or are completely non-
interacting, like a gas. So since this result is derived from the 2nd law, the same is true here. While this definition applies to a
collection of particles, it is useful to define this same quantity for individual particles as well.

Definition: Momentum

It turns out that if we do happen to have a collection of particles, each with their own individual momentum, then computing the

collective momentum  is a simple matter of summing the individual momenta:

Equation 4.1.3 is known as the impulse-momentum theorem. Like kinetic energy, momentum is related to the motion of the object
(and the mass), but besides being a different function of mass and velocity than kinetic energy, it is also different in that momentum
is a vector while kinetic energy is not. This means that the total impulse can lead to a change in the magnitude or direction (or both)
of the momentum vector.

The astute reader will undoubtedly realize that all we have really done here is to introduce a new vector, and use it to repackage
Newton's 2nd law. Indeed, we can rewrite the 2nd law thus:

The Link to Internal Energy
Given that we are making comparisons of work with impulse and momentum with kinetic energy, it is useful to point out a direct
mathematical relationship, which not only points out the difference between the two quantities, but will also be quite useful later
on. For an individual particle we have:

Analyze This
Two pairs of identical blocks on identical springs are side-by-side as shown in the diagram below.  They are set into motion
such that just as they reach their (equal) maximum displacements toward each other, they barely come into contact (there is no
collision – their springs stop them just as they touch).  When they contact, one of the blocks is transferred to the other, and their
motion continues.
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=

=

=
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Analysis

Let's start by defining two separate systems here: One that includes the left spring and the blocks it is moving, and one that
includes the right spring and the block(s) it is moving. At the moment the blocks touch, all of the potential energy of both
systems is stored in the stretch of their respective springs. Losing or adding a block has no effect on this energy, because at
the time of the exchange the blocks are not moving, and therefore have no kinetic energy.

So the left side has the same total energy with three blocks as it previously had with two blocks, and the right side has the
same total energy that it started with as well. What does that tell us about how the motions of the two systems change, if at
all, after the block exchange? We can start by asking about the maximum speeds the blocks attain on each side, before and
after. First of all, this occurs when the spring reaches its equilibrium position, because at that moment the potential energy is
as low as it can be.  Both before and after, this maximum kinetic energy is the same, but the masses are different, so the
speeds will not be the same. In order for the kinetic energy to be the same with three blocks as with two, the ratio of the
velocities must be:

Note that this means that the left side is moving slower overall than the right side, and they will not complete a full cycle at
the same time. Even though each side will reach far enough at their maximum spring stretched for the blocks to once again
touch, the motions are no longer synchronized, so the blocks will not touch again.

One can also compare the momentum of the left side blocks at the equilibrium point to the momentum of the right side blocks
at their equilibrium point. The kinetic energies are the same, so since the left side has 3 times the mass, we have:

Consider now a collection of particles, each with their own momentum (for simplicity, we will assume that the collection is an ideal
gas – the particles are not interacting with each other). Above, we showed that the total momentum of the collection is just the sum
of the momenta of the individual particles. But in the previous chapter, we found that the sum of the individual particle kinetic
energies is not equal to the collection's (center of mass) kinetic energy. This is easiest to see in the center of mass reference frame.
In this frame, , which means that the collection's total momentum is zero. But the individual particles can be moving in this
frame, so the sum of their kinetic energies is not zero. The difference between adding kinetic energies and momenta is that the
kinetic energy of every particle is positive, but momentum vectors of multiple particles add like vectors, and can cancel to zero.

The short summary of this is that in the center of mass frame there is zero momentum for the collection, but there is still non-
zero internal energy. Let's see how it works mathematically with a simple two-particle system, like we discussed in Section 3.2. We
start by defining the momentum of the particle as  and  . The total momentum of the two-particle collection is just the sum of
these:

The total energy of this group of particles is just the sum of their kinetic energies:
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right spring:
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The kinetic energy of the group (defined in terms of its total mass and center-of-mass speed) is:

The internal energy is the total energy minus the group's (center of mass) kinetic energy, so using the last two equations we get,
after some algebra:

The general features of this equation match what we already know about internal energy for a two-particle combination. For
example, if the particles are moving in the same direction, then they are moving slower in the center of mass frame, and the internal
energy is smaller than if they happened to be moving the same speeds toward each other. This fact is reflected in the last term
above – if  and  are pointing in the same direction, then the dot product is positive, and the minus sign indicates that the
internal energy is reduced. If the two momentum vector directions are in opposite directions, then the dot product is negative, and
the last term increases the internal energy.

One thing that is not obvious is whether this equation allows for a negative internal energy for some choice of momentum vectors.
This is of course impossible physically, as the smallest the internal energy can be is zero, when the particles are stationary relative
to each other. Let's check this in the following way: Start with one particle having a momentum of , and then let the internal
energy be a function of the momentum  that we choose for the second particle. Then minimize the internal energy function with
respect to this variable. Obviously the minimum will occur when the negative term is as large as possible, and this occurs when 

, so we have:

Taking a derivative of this function with respect to  (remember,  was selected at the beginning, so it is not varying) and setting
it equal to zero gives:

Noting that , this result gives that the internal energy is a minimum when  – both particles moving at the same speed
in the same direction. We can confirm by plugging this back in that this gives us the expected result of zero internal energy, so
indeed it can never be negative.

Systems and Momentum Conservation
Let's return to following the trajectory of our discussion of work-energy, by revisiting the notion of a system. As before, we define
a system as an arbitrarily-grouped collection of objects (which themselves can have internal energies), that can experience forces
between themselves, or from outside the system. Previously we said that forces between objects within the system were responsible
for internal work and forces exerted on objects within the system from outside provide external work. We will now similarly define
internal impulse as coming from forces between objects within the system, and external impulse as coming from objects outside the
system.

When it comes to forces between objects within our defined system, we know that the work done on one object does not cancel the
work done on the other object. If the internal force is conservative, then the non-zero total work done between the objects can be
accounted-for through a change of potential energy. If the internal force is non-conservative, then the non-zero total work done
between the objects can be accounted-for through a change of thermal energy. Is there an analogous process for impulse?

To answer this question, we need to determine whether impulses internal to a system don't cancel out, as in the case of work. We
again start with Newton's 3rd law, which ensures that the two forces involved in creating the pair of impulses are equal-and-
opposite. Impulse vectors have the same directions as their associated force vectors, so the 3rd law pair of forces results in a pair of
impulses that are in opposite directions. But what about the magnitudes? Well, the force magnitudes are equal thanks to the third
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law, so all that remains is the time interval. There is never a moment when a force is acting that its third law pair isn't also acting,
so the time intervals are the same. This leads to the following very important result: All of the impulses internal to a system cancel
each other out. This means that there is no momentum analog to potential or thermal energy within a system. There is only
momentum, and if the system experiences no external impulses, then momentum is conserved for the system. Comparing to what
we got for energy, it looks like this:

There are two important features of this result:

1. It doesn't matter what forces are acting internally. The result we obtained made no mention of whether the internal force was
conservative or non-conservative – all forces satisfy Newton's third law, and the pairs act for equal periods of time, so the
impulses cancel regardless of the nature of the force.

2. The quantity (momentum) that is conserved within the closed system is a vector. This means that adding up all of the
momentum vectors of a system at one point in time, then doing so again at another point in time, will give the same total vector
in both cases, if the system is isolated from external impulses. This means that the total magnitude and direction don't change,
or equivalently that the components measured in a given coordinate system don't change.

Conceptual Question
Two blocks of different masses are attached to identical springs that are horizontal to the frictionless surface on which the block
rests. If the springs are compressed the same distance and the blocks are released from rest, how do the following quantities
compare for the two blocks when they reach the equilibrium point?

a. kinetic energy
b. momentum
c. velocity

Solution

a. The springs are stretched an equal amount, which means they both store the same potential energy. That means that when
they get to the equilibrium point where they both have zero potential energy, they must have the same kinetic energy, since
the mechanical energy is conserved.

b. We can determine the difference in momenta for the two blocks in two ways. First, we can consider the impulse given to
each block by the spring. In the case of the more massive block, the spring force will accelerate it less, which means it will
take longer to get to the equilibrium point. At every point during their journeys, the two blocks experience the same amount
of force, but since the time interval for the heavier block is longer, it must experience the greater impulse. Therefore the

work-energy

= ΔKEWext − −Wcons Wnon−cons
  

from internal forces

= ΔKE+ΔPE+ΔWext Ethermal

impulse-momentum

= ΔJ
→

ext p
→

cm − −J
→
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→

non−cons
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heavier block gains more momentum, and since both blocks started with zero momentum, the heavier block must have more
momentum at the equilibrium point. The second solution is much simpler: We already know that the two blocks end with the
same , so since , the block with the greater mass must have more momentum.

c. With the same kinetic energy, using , we see that the block with the greater mass must have the lower
velocity.

The moral of this story: Although we tend to use kinetic energy, momentum, and velocity as proxies for motion, they are all
quite different quantities.

Partial Momentum Conservation
We have to give some extra thought to what we mean by a conserved vector. Since a vector has both magnitude and direction, then
to be conserved, both of those properties must remain unchanged. An equivalent way of saying this is that for the vector to be
conserved, every component of that vector must be individually conserved. If the full momentum vector is not conserved, it is still
possible for one or two of its components to be conserved, if the components of the external impulse in those directions is zero. So
for example, a projectile (with no air resistance) conserves momentum in the two horizontal directions, but not in the vertical
direction. This allows us to use momentum conservation to solve a much broader range of problems than if we can only consider
complete momentum conservation.

This page titled 4.1: Repackaging Newton's Second Law is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Tom Weideman directly on the LibreTexts platform.
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4.2: Center of Mass

Center of Mass Again
It should be clear by now how important the concept of center of mass is in classical mechanics. First it appeared in Newton's 2nd
law, then in the discussion of internal energy, and now again in the topic of momentum. So far our only exposure to center of mass
as a calculated quantity comes from Equation 2.4.10, which we will repeat here:

In this chapter, we will have a closer look at this quantity, to see how we can compute it for cases more general than a collection of
a few point particles. In particular, we are going to look at objects that we treat as continuous distributions of mass, rather than
collections of discrete particles. Of course, real matter is a collection of discrete particles, but a continuous model is much more
practical to handle mathematically.

Center of Mass of a Collection of Objects
Suppose now we want to know the center of mass of multiple extended objects, where all the heavy-lifting has already been done –
the centers of mass of the objects are already known (see below for how to do this heavy-lifting). How do we determine the center
of mass of such a system? It turns out to be pretty easy when you know the locations of the centers of mass of the two objects – just
treat them as if they are point particles with all of their mass concentrated at their own centers of mass, and then do the calculation
above.

Figure 4.2.2 – Center of Mass for Two extended objects

For proof of this, let's treat two extended objects (A and B) as collections of lots of point particles (atoms, if you like), and write
down their centers of mass (measured from a common origin) in terms of the masses and positions of their atoms.

The left-hand side equations are those of the center of mass for each object in terms of its atoms' masses and positions. The right-
hand side gives the center of mass of the two-object system in terms of the masses of the objects and the positions of their
individual centers of mass. When the expressions for  and  from the left side are plugged into the right-hand side
equation, then all the atoms of both objects are come together into a single center of mass formula, as if they were part of a single
system with total mass , proving the contention above.
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Two thin circular disks made from the same material lie flat on a horizontal surface, with their outer edges in contact with each
other. One disk has a larger radius ( ) than the other ( ), and have equal thicknesses. Find how far the center of mass of the
two-disk system lies from the center of the larger disk.

Solution

The disks are made from the same uniform material, so they have equal mass densities. That means that the mass of the
larger disk is larger than that of the smaller disk by the same factor as the ratio of their areas. That is, if the larger disk has
twice the area of the smaller one, then it has twice as much mass. We therefore have the following relationship between the
masses and radii of the disks:

Let's choose the center of the larger disk as the origin, and have the center of the other disk lie on the -axis. The disks are
uniform, so their individual centers of mass lie at their geometric centers, and we can compute the center of mass of the
system by treating the disks as point masses located at these centers. The distance of the center of mass from the origin is
what we are looking for, so:

We can double-check this answer by looking at an obvious special case: . If the disks are identical, then the center of
mass must be halfway between their centers, which is the point where they are in contact, a distance  from the center of the
larger disk. Plugging in  for  indeed gives this answer.

Center of Mass of Continuous Objects
We now turn to the problem of computing the position of the center of mass of an object whose distribution of mass is known.
What follows is pure math, but it is important math that returns over and over in physics.

Alert
The important thing to gain from this discussion is to understand how the set-up process works. It culminates in an integral, but
performing the integral is mere busywork compared to the task of setting it up. It's easy to be overwhelmed by the thought of the
integral that is being constructed, but if you understand each step that leads up to it (and don't try to just jump to an answer that
looks like something you have seen before), it will go fine.

We will keep this simple by restricting ourselves to objects for which the position of the center of mass in two of the three
dimensions is obvious, which means we don't need to concern ourselves with the whole vector described in Equation 2.4.10 – just
the -component will do. A good model for this is a simple thin, cylindrical rod. This rod's mass distribution is completely
cylindrically symmetric, which means that the center of mass lies on the axis passing through its center. But the mass distribution
as a function of position on this axis may not be uniform. For example, it may be more dense on one end than on the other. Put
another way, the particles located within the rod may be packed together more tightly in one region of the rod than in another,
which means that the center of mass will not necessarily lie at the point halfway between the ends.

We need to say a few words about mass density before we proceed. Density is a measure of how closely-packed in space a quantity
of something is. This quantity can be many different things. Here we will be considering mass, but in later physics classes you will
deal with density of electric charge (and even, bizarrely, probability!). A uniform density for a region in space means that the
quantity (whatever it happens to be) is evenly-distributed everywhere within that region. The way we define an average density for
a region in space is to add up how much "stuff" is there, and then divide it by the total space it occupies. This gives an average
density, but of course densities can vary from one point in space to another, in which case a density function is defined. We will
deal with only the simplest variable densities here. As we will mainly be looking at thin rods for our examples, we will only
consider densities that might vary along the length of the rod – this simplifies the process to a single dimension.

The mass density function in this case is a function of a single variable, has units of , and is called a linear mass density. This
mass density function is typically denoted as . If it is uniform, then the function is a constant , and the amount of mass 
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within a given length  is simply given by:

If the density is not uniform, then it is only a constant over an infinitesimal length , so the equation above can only apply to a
tiny piece of mass , and the relationship is different at every position  because the density is different at every position:

Now that we can write down how much mass is at every position, we are ready to do our calculation. We begin by drawing a
diagram with the rod in a coordinate system along the -axis such that one end is at the origin and the other is at . The figure
below provides a fully-labeled diagram that is very helpful for solving such problems.

Figure 4.2.3 – Setup Diagram for Computations Involving Mass Density of a Thin Rod

The center of mass is found by multiplying the amount of mass at each point by the -coordinate of that mass, then adding up all of
those products and dividing by the total mass. Of course, in this case we have an infinite number of point masses, so the sum is
infinitely long, but the masses are infinitesimally small, so we solve this by converting the sum into an integral, in which we add up
all the pieces from  to :

Now we plug in Equation 4.2.4 to give the following formula for center of mass (in one dimension) for a thin rod with a linear
mass density that varies with :

Okay, so let's do a couple of examples...

A Uniform Rod

As was stated above, if the rod is uniform, then the density is a constant (which we will call simply ). Plugging this into Equation
4.2.7 leads to a simple calculation and an unsurprising result:

So we have calculated what we already knew – that for a thin rod with a uniform mass density, the center of mass is at its center
(which on our coordinate system lies at ).

l
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A Non-Uniform Rod

Next we'll look at an example of a rod which has a mass density that varies from one end to the other. This variable density is
expressed in its density function:

Before we do the math, let's try to make sense of this function. The easiest way to do this is to consider the endpoints. At , the
density equals the constant , while at  that density has grown to twice that much. This increase of density happens linearly
with the variable . What should we expect to see when we compute the center of mass? Well, the rod is more dense near the 

 end than the  end, so the center of mass should be at an  value greater than . Okay, so let's plug the density
function into Equation 4.2.6 and see what we get:

Interestingly, the center of mass doesn't depend upon the density constant .

Analyze This
Two identical rods of mass  and length  have the same non-uniform density profile. When one of these rods is placed along
the -axis with one end of the rod at the origin, the density as a function of  is proportional to the following function:

Analysis

The first thing we can do is determine the constant of proportionality in terms of the mass and length of the rods. Calling this
constant , we have:

The total mass of the object is the density integrated over the whole length of the rod:

Next we can compute the position of the center of mass of a rod with the lower-density end placed at the origin:

Objects with More Dimensions

We have only discussed the simplest of continuous objects - thin rods that are more-or-less one-dimensional, and computing their
centers of mass requires only an integral over a single variable.  Real-world objects are three-dimensional, and computing their
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centers of mass is more complicated in two ways. First, the density function can be a function of three variables, rather than just
one. And second, integration of the mass elements requires a three-dimensional integral. We will not go into the details of these
sorts of calculations here, as they are heavily steeped in mathematics with very little physics content. The reader can expect to start
encountering these types of integrals (in a different context – not center of mass) we they get to Physics 9C.

This page titled 4.2: Center of Mass is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman
directly on the LibreTexts platform.
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4.3: Momenta of Systems

Using Momentum Conservation
When we examined the work-energy theorem, we found that it was not much more than a reformulation of Newton's 2nd Law for
cases where we are only interested in speed (not direction) changes. As such, it had only limited usefulness. But when we went a
little deeper, we found that this theorem spawned a very useful "shortcut" (the principle of energy conservation) that allowed us to
solve certain types of problems much more easily than we could otherwise. We have already expressed a conservation principle for
momentum, but let's do so again here, comparing it to the familiar counterpart in energy.

Energy: In isolated system (one where there is not external work being done on any of the objects in it), the total energy of the
system remains constant.

Momentum: In isolated system (one where there is not external impulse delivered to any of the objects in it), the total (vector)
momentum of the system remains constant.

The sum on each side is over the several objects in the system. So adding up the momentum vectors of all the objects before some
event, and then doing it again after the event gives the same vector. This of course assumes that the "event" does not involve an
external impulse, though it can include as many internal impulses as you like.

Alert
It is important to remember that this equation does not mean that each of the terms remains unchanged. Rather, they change in
such a way that the changes all compensate for each other, and the vector sum of the all-new momentum vectors comes out to
the same that came out before.

Analyze This
A child sits on the rear end of a sled (whose mass is uniformly-distributed along its length) with a block of frozen snow at rest in
her lap. The sled is sliding forward on the horizontal, frictionless snow at constant a speed, when the child suddenly shoves the
block forward in the sled (she remains firmly planted on the sled). After a period of time, the block comes to rest in the front of
the sled.

Analysis

The forces between the girl, the block of snow, and the sled are all internal to that system of those three objects. With no
friction coming from the snow, this means that there are no external forces on this system, and its total momentum remains
unchanged. This means that the center of mass of the system of the child, the sled, and the ice, continues sliding at the same
constant rate as before. This does not mean that the sled+child combination slides at the same rate throughout this process,
because the increased speed of the ice means that the remaining mass of the system must change speed to keep the center of
mass speed unchanged.

=KE +P E +Ethermal
  

before

KE +P E +Ethermal
  

after

(4.3.1)
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Once the ice reaches the front of the sled, however, the whole system is moving at the same speed again, which means that it
returns to the speed it had before the ice was pushed. Without knowing the masses of the parts of this system, we don't know
the specific effect of the sliding ice – it could just slow the sled+child, stop the sled+child, or even cause them to move
backward. The graph of speeds as a function of time below expresses this well:

A few things to note here:

The graph assumes that the mass of the sled+child is greater than the mass of the ice, because the internal force between
them delivers the same impulse to both, which means that they change their momenta by the same amount. The graph
shows the speed of the ice changing more, so to experience the same change of momentum, it must have less mass.
Even though the ice and sled+child have different speeds for a short period of time, even during that time, the speed of
the center of mass doesn't change (depicted by the dotted purple line).
We don't know the actual speeds, so we can't place the time axis on the graph. If it happens to coincide with the
horizontal red line segment, then the sled+child come to rest while the ice slides forward. If the time axis is above this
horizontal red line (it must be below the purple line, as we have defined the starting velocity to be in the positive
direction), then the sled+child actually moves backward while the ice slides forward.

Using Center of Mass
Let's look at an example of how we can use what we know about center of mass the analyze a case of two blocks of different
masses that squeeze a (massless) spring between them until they are released from rest.

Figure 4.3.1 – Repelling Masses

Intuitively one can probably tell that for this situation . When a light object pushes off a heavy one (a flea jumping off a
dog, a bullet leaving a gun, etc.), the lighter object's motion is always affected more. With our physics training, we can explain it
with Newton's second and third laws: The blocks push on each other with equal forces (third law), and with equal forces, the block
with less mass will accelerate more. They both start from rest and are pushed for equal periods of time, so the one with the greater
acceleration will be going faster when they separate, sending it a greater distance in the same time period.

Okay, now let's look at it from the perspective of momentum conservation. Treating the two blocks as a single system, the spring
force produces only internal impulses, which means that the momentum of the system is conserved. The momentum before the
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spring unloads is zero, so it must be zero afterward. If  and  are the speeds of the two blocks (i.e. these are positive numbers),
then we have for our conservation equation:

Since it's clear from the diagram that , it must be that . We can also use what we know about center of mass here.
The system experiences no external net impulse and its center of mass is stationary, so it must remain stationary! We don't know
exactly where the center of mass is before the repulsion, but since it stays put, we can draw a vertical line down into the second
diagram to find where it is after the repulsion. This clearly results in the center of mass being closer to , which means that is the
larger mass.Center of Mass Acceleration

Let's see if we can incorporate what we have learned about center of mass to make sense of Newton's second law. Consider the two
systems shown in Figure 4.3.2. Each consists of a collection of 8 identical particles in close proximity to each other (the boxes
shown are just used as a reference for later motion – they are not physical objects). In the left system, the particles are floating
freely (there is no gravity or other forces), while in the right diagram, the particles are bound together with rigid, massless rods. The
two systems are identical in every way except for the presence of these rods – the particle all have the same positions and masses as
their counterparts, and are all at rest.

Now for the experiment: Suppose we exert the same force on the same particle in both systems. Clearly the reaction is different in
the two cases – in the left case, only the particle given the push accelerates away, while in the right cases the entire group of
particles accelerates. The question is, in which case does the center of mass of the system of particles accelerate more?

Figure 4.3.2 – Forces on Free and Rigid Systems

Here is the short answer: The forces that are (or are not) between the particles defining the system are internal, and therefore have

no effect on the velocity of the system's center of mass. The only external force on each system is , and each system has the
same mass, so Newton's second law says that both systems should react with the same acceleration of their center of mass.

But that is unconvincing when we see only one particle move in one case, and the whole conglomerate move in the other! Let's
suppose the forces act for some small period of time. The acceleration of the single particle will be eight times greater than that of
the conglomerate, so in the same time interval it will move eight times as far as the conglomerate. Let's call the initial position of
the center of mass the origin. The seven particles left behind experience no change in their position relative to this origin, and the
one particle's position relative to the origin travels eight units of distance, while all eight of the particles in the other system travel
just one unit from their original positions relative to the origin. Treating the direction of motion as the  direction, and plugging
the masses and distances into Equation 4.2.1, it should be immediately clear that both centers of mass move by the same amount.
As strange as it sounds, Newton's second law works for any system of particles, whether they bond together to form a solid object,
or are completely independent of each other, like particles in a gas.

Conceptual Question
A system of four balls of varying relative masses is shown in the left diagram below, and there is a force exerted on one of the
balls as indicated. In the right diagram are a few options for other forces that can be exerted on balls in this system.  Which of
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these forces will assure that the center of mass of this system does not accelerate?  The forces shown are the only forces present
(i.e. there is no gravity or other forces to worry about here).

a. D only
b. B or D only
c. B, C, or D only
d. A, B, or D only
e. There needs to be a force  exerted to the right on every ball at at the same time.

Solution

d

For the center of mass to not accelerate, the net force on the system must be zero. This means that a force must be applied to
the system in the opposite direction. It doesn’t matter where in the system this force is applied.

Analyze This
Two different particles are confined by the same potential, shown in the diagram.  Both particles have the same total energy,
also depicted in the diagram.  At one moment the particles pass each other precisely at the origin, with one particle moving in
the -direction and the other moving in the -direction.

Analysis

There is a lot unpack here. We'll start by labeling the particles: The particle moving in the  direction we'll call "particle
A", and the one moving the other way "particle B". Clearly at the moment that they cross each other at the origin, the center
of mass is at the origin. But does it remain there as they continue moving away from each other?

To answer this question, we consider the net force on the two particle system. If it is zero, then the center of mass does not
accelerate. The system experiences two forces, one on each particle. These forces can be computed from the slope of the
potential energy function . The left side of the potential curve affects particle A (pushing it in the -direction), and
the right side affects particle B (pushing it in the -direction). The slopes of the two sides are not equal, so the forces on
the particles are not equal, which means that there is in fact a net force on the two-particle system, and the center of mass is
accelerating. With more force being applied in the -direction, the center of mass is accelerating in that direction. We even
have enough information to determine the ratio of these two forces, thanks to the grid lines:
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Does this mean that a short time later the center of mass is on the  side of the origin? No! We don't know which way the
center of mass is moving when it is at the origin. If it is stationary or moving in the -direction, then of course the center
of mass speed is increasing in the -direction and the center of mass will later be on the  side. But the center of mass
may be moving in the -direction, which would mean that it is slowing down, but will still be on the  side a short time
later.

Is there any way to know the direction of the center of mass motion when both particles are at the origin? Another way to ask
this is, in which direction is the momentum of the system? One thing we do know is that both particles have the same total
energy, and when they are both at the origin, they have the same potential energy as well. This means that at the moment
they pass each other, they have equal kinetic energies. We know a relationship between kinetic energy (Equation 4.1.6):

With both particles having the same kinetic energy, the particle with more mass is the one with more momentum, and when
these momenta are summed, the direction of motion of the particle with more mass is the direction in which the center of
mass is moving.

Center of Mass Frame
Sometimes analysis of problems that involve multiple objects interacting with each other is simplified by using what is called the
center of mass frame of reference. Here’s an example.

A child's toy called a "hot potato" consists of two hemispherical shells that close on a spring and are held together by a latch on a
timer. When the time expires, the latch is released and the spring is allowed to expand, shooting the two shells in opposite
directions, exposing the toy company to a product liability lawsuit from the family of the child that holds the hot potato when it
goes off.

Let's suppose a child throws this hot potato through the air, and the peak of its projectile motion, it explodes so that the two shells
are propelled horizontally, as shown in Figure 4.3.3. The landing point of the shell that lands closest to where the toy was thrown is
noted, but the other shell flies off into some tall grass and is lost. Naturally the child knows the starting speed they gave the toy as
well as the exit angle, and she can easily measure the distance that the closer shell travels form the launch point. From this
information and her vast knowledge of physics, she conceives of a plan to find the other shell that is far more elegant than
searching for it in the tall grass.

Figure 4.3.3 – Exploding Projectile

The forces on the shells by the spring are internal to the two-shell system, so assuming air resistance is negligible, the center of
mass of the system will behave exactly as it would if the internal forces didn't exist. With the starting angle and speed known, the
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child can use the range equation (see Example 1.7.4) to calculate the landing point of the center of mass of the system. Then with
the actual landing point of one piece of the toy, she can use the center of mass formula to compute the landing point of the other
piece.

You might think we can do the same even if the spring unloads in an orientation that is other than horizontal, but this is not the
case. The center of mass motion still follows the same parabolic trajectory, but naturally the center of mass is always between the
two shells. In the case above, the shells land simultaneously (they both start with zero vertical component of velocity when the
explosion occurs), so the center of mass lands at the same time, between the shells. When the explosion is not horizontal, one shell
lands before the other, then friction stops is horizontal motion while the other shell keeps moving horizontally. This makes
calculating the landing point of the center of mass using the usual range equation impossible.

Analyze This
A block slides along a frictionless horizontal surface at a speed , starting at position  and time . An identical block
dropped from rest lands directly on top of it. The surfaces of the blocks are sticky, so the top block adheres to the bottom block
when it lands on it, and they continue along together. The blocks slide together into a curtained-off area, during which a spring
noise and a “thud” are heard. At a later time, the bottom block emerges from the curtain without the top block on it, after
apparently having its top lid sprung open from within.

Analysis

The collision of the falling block and the sliding block is an example of a case where the momentum of the a system is only
conserved for one component. The blocks experience internal forces (normal force and static friction), and these have no
effect on the two-block system momentum, but the horizontal surface pushing up on the bottom block is external, so although
the two-block system had downward momentum just before the landing, the external force provides an impulse to take it
away. However, the surface is frictionless, so there is no external force along the -direction, and momentum is conserved
along that direction. We can apply momentum conservation along that direction to write their combined speed  in terms of
the bottom block's initial speed :

We don't know the details of what happens behind the curtain – we don't know when the lid of the lower box sprung open, or
where ((x\) position) it happened. But assuming that there are no external forces occurring behind the curtain, we can
assume that the velocity of the center of mass of the two-block system along the -direction is unchanged – the internal force
from the spring-loaded box does not affect the center of mass motion.

We actually know the speed of the center of mass of the system behind the curtain, since both blocks are moving at the same
speed as they enter. It is , computed in terms of  above:

v x = 0 t = 0

x

v1

vo

m +m (0) = 2m ⇒ =vo v1 v1
1

2
vo

x

v1 vo

=vcm

1

2
vo

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/62999?pdf


4.3.7 https://phys.libretexts.org/@go/page/62999

If we happen to know the speed  at which the bottom block emerges from the curtain, then we can use the known center of
mass speed and speed of the bottom block to derive information about the other block.

If we are given more information like the times  and  and the positions  and , we can derive more than just
relationships between speeds.  For example, with the whole system located at  at , and knowing its center of mass speed,
we know where the center of mass is at the later time . And combining this knowledge with the position of the bottom block
( ) allows us to locate the position of the top block, even though it is hidden behind the curtain.

Rocketry
While we are on the topic of two parts of a system going their separate ways by pushed off each other, this brings us to the topic of
rocketry. A rocket that is stationary in space somehow is able to accelerate itself by firing its engines. How can the center of mass
of the rocket system accelerate without any external forces acting on it? Well, it can't of course, but the rocket (or rather, its
fuselage) is not an isolated system. It expels fuel (in the form of very hot gas) backward. If we include the fuel as part of the
system, then the center of mass of the system doesn't accelerate at all! All that matters in the end is that the fuselage of the rocket is
propelled forward. Note also that the rocket has more mass than the fuel, but the ignited fuel sends particles away at very high
speeds, and this momentum balances the momentum of the fuselage in the opposite direction (which has more mass and lower
velocity).

This page titled 4.3: Momenta of Systems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman
directly on the LibreTexts platform.
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4.4: Momentum and Energy

Collisions

For the remainder of this chapter we will focus on what is the most common application of momentum conservation – collisions. A
collision event can be a very complicated process, with lots of different objects taking part and interacting with each other with all
sorts of different forces. Momentum conservation is very useful in these cases, because if every object involved is included in the
system, the total incoming and outgoing momenta are equal, since the complicated internal forces don't affect the system's total
momentum. This allows us to focus only on "before" and "after" conditions, as we can ignore what goes on in the intervening time.

In studying collisions, we will naturally not start with wildly complex cases. As always, we will start as simply as possible – with a
head-on collision between one moving "projectile" object and another stationary "target" object. Because the collision is head-on,
the motions of the objects will remain along the same line as the original motion of the projectile object. Later, we will allow both
objects to move as they enter the collision, and we will extend the geometry of the collisions to include motions in two dimensions.

If the collisions are between two individual particles, then when they collide there is no way to move any of the original energy in
the form of kinetic energy of the particles into internal energy (an object must consist of more than one particle to have internal
energy). This means that the sum of the kinetic energies of the particles before the collision must equal the sum of their kinetic
energies after the collision. If the collision is between two objects (collections of particles), then there is no way to avoid
introducing internal energy to these objects, but if the particles in these objects are held in their positions very rigidly, then very
little internal energy is introduced into the objects, and to a very good approximation the same " " property
that applies to particles also applies to macroscopic objects. We call such collisions elastic. Collisions between objects where this is
not the case we call inelastic.

System Rest Frame Energy

In Section 3.2, we discussed the concept of internal energy for a collection of particles. We defined this as the total energy (kinetic
and potential) of a group of particles as measured in the reference frame of the collection. We eventually noted that this internal
energy virtually always manifests itself as thermal energy – energy randomly and unpredictably distributed amongst a large number
of particles. Now that we are talking about collections (which we now call "systems") of larger objects, we will find it useful to
introduce a concept similar to internal energy for these systems. If we define a group of objects to be a closed system, then we can
define this system's rest frame energy as the total energy of that system measured in the reference frame where the system's center
of mass is at rest.

Clearly this definition is identical to that of internal energy for particles, but we give it a new name to distinguish it from the case
where we don't ever actually look at the detailed motions and potential energies between the constituent particles. The reason for
defining this quantity at all will become obvious in its usefulness shortly. The main thing we need to keep in mind is that this
quantity can only change if forces act on the system from outside – interactions between objects in the system change the forms of
energy within the system, but never the amount of rest frame energy. In this regard it has much in common with momentum, and
we will next see how intertwined these two physical properties are.

"Perfectly" Inelastic Collisions

Let's solve a simple collision problem using conservation of momentum, and make an accounting of what happens to the energy as
a result of this collision. This collision consists of two clay balls. Initially ball #1 is moving toward ball #2, which is stationary. The
collision is direct, and the two lumps of clay deform and mash together into one mass of clay, moving-off together. Collisions of
this kind where the two objects end up with the same velocity at the end are called perfectly (or totally) inelastic.

Figure 4.4.1 – Perfectly Inelastic Collision

If we know the two masses  and  and the incoming velocity , momentum conservation gives us the final velocity :
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Comparing this to Equation 3.2.3 (with ), we see that  is just the center of mass velocity. This is actually not that
surprising. With no external forces, the center of mass of this two-object system should not change speed, and since the two balls
combined are moving at a single speed, that speed would have to be the center of mass velocity of the system before the collision,
and this is exactly what we recognize it to be. Next let's look at what happens to the kinetic energy:

The negative sign indicates that kinetic energy is lost during the collision, and the last quantity in parentheses is the original kinetic
energy, so the fractional amount of kinetic energy lost is:

Where does this kinetic energy go? Well, the two-object system is isolated, so it cannot simply vanish - it can only change form. In
particular, it has to go into the internal energy of the two clay balls. The particles that comprise the clay balls start vibrating faster
in a random fashion, i.e. the thermal energy of the clay balls goes up.

Okay, now let's approach the same collision from the perspective of the rest frame energy of the system. The first thing we need is
the velocities of the two clay balls before the collision as measured in the center of mass frame. We know the velocity of the center
of mass already, so we just need to subtract this from the velocities of the two clay balls to get their velocities in the new frame:

The rest frame energy of this system is the sum of the kinetic energies derived from these velocities (ignoring for now the
contribution of whatever thermal energy is in the clay balls prior to the collision):

This is exactly the amount of lost kinetic energy that we calculated above. We interpret this result as follows:

1. The system in the "before" state possesses a certain amount of rest frame energy. In this case, this rest frame energy is the sum
of the kinetic energies of the clay balls (measured in the center of mass frame) as well as their starting thermal energies.

2. When objects within a closed system collide, the forces involved in the collision reshape the form this energy, but since the
system is closed, the total energy remains the same. In this case, the two clay balls stick together and their amalgamation
remains at rest (again, in the center of mass reference frame). There is no longer any kinetic energy present – it has all be
reshaped into thermal energy, which is added to whatever thermal energy the clay balls started with.

3. In the previous calculation, performed in the frame where clay ball #2 was stationary (often referred to as the laboratory frame),
the system still has the same rest frame energy (this quantity, like internal energy for collections of particles, is intrinsic to the
system), and since all of this is converted into thermal energy, we see the total kinetic energy in the laboratory frame drop by
exactly this much.

In short, perfectly inelastic collisions simply have the effect of converting all of the rest frame energy from easily observable
kinetic energy of macroscopic objects into random, microscopic kinetic and potential energies of particles (thermal energy). One
can compute this kinetic energy "loss" by either computing the rest frame energy (by changing reference frames), or by using
momentum conservation. It is a subtle thing, but these ultimately boil down to the same physical principle.

Analyze This
Two blocks slide down opposite sides of a frictionless curved ramp from different heights, colliding at the exact bottom, as
shown in the diagram below. Upon colliding, they stick together, and move as a single entity thereafter (if they move at all).
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Analysis

Although we know the blocks collide at the bottom, we are not given any information about the timing here. They travel
different distances to get to the bottom, so they may be released from rest at different times, or  may be given more initial
downward speed than , or any number of other possibilities could account for the blocks meeting at the bottom. But we
can nevertheless say a few things about what happens here.

The first thing we can say is that if we define the bottom of ramp as , then all of the energy in the two-block system
is kinetic. The total system energy is therefore:

We also know that the momentum is conserved for the collision, so the momentum of the two-block combination (which is
moving as one mass after the collision) is the sum of the momenta of the two blocks. Calling rightward the -direction, the
value of  below is a negative number:

If the momentum of the left block at the bottom is greater than the momentum of the right block, then  and the
combination will continue to the right, and if the right block's momentum is greater, then  and it will continue to
the left.  We can determine how high on the ramp the two-block combination will go (in either direction) by using
mechanical energy conservation. At the moment of the collision, all of the double-block's energy is kinetic, and when it stops
on the ramp, it is all potential, so conservation demands:

We can speculate about some possible extensions to this problem. One that comes to mind is having the two blocks coming to
a dead stop upon colliding. In this case, the final momentum is zero, which means that the blocks have equal magnitudes
of momenta at the bottom: . If this is true, then it means that the ratio of the their collision kinetic energies (and
therefore their total energies at earlier times is related to the ratios of their masses:

So for the blocks to stop dead at the center, if  is  times as much mass as , then block #1 must enter the collision with

 as much kinetic energy as block #2. If they both happen to start from rest (at different times, so that they reach the
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bottom at the same time), then the kinetic energy comes is directly related to the heights from which they start (since they
start with energy that is entirely potential), which gives us a ratio of the starting heights in terms of the mass ratio:

We can of course speculate about different scenarios as well, such as knowing the starting heights and calculating the final
height if the blocks do not stop dead, or perhaps giving the blocks some initial speeds.

Other Inelastic Collisions
As we noted above, all collisions involving objects (as opposed to particles) are to some degree inelastic, as the particles in the
object can never be held perfectly rigidly in place. Let's have a look at inelastic collisions where the objects don't stick together and
have the same speed at the end. In these cases only some of the system rest energy is converted from kinetic energy into thermal
energy. Some of it remains in the form of kinetic energy of the objects. This is best demonstrated with a simple example. Consider
a collision between two unequal masses where a projectile object hits a target (stationary) object head-on, and the result is that the
projectile stops entirely, while the target moves off.

Figure 4.4.2 – Another Inelastic Collision

Let's start by solving for the kinetic energy converted to thermal energy in this collision using momentum conservation. Setting the
before and after momenta equal, we get:

The change in the system's kinetic energy is therefore:

This result tells us a couple of things. First, if the two masses happen to be equal ( ), then when the incoming object stops
and the other continues, all of the energy remains kinetic, as the change equals zero (the collision is elastic). Of course, with the
diagram showing deformation of the two objects requires that internal energy is given to the two objects (the particles in the
objects are pushed closer together, making them interact differently with each other).

Second, this kind of collision can only have a loss of kinetic energy if , so that the change is negative. If there is a spring
compressed on object #2, waiting to be triggered by the collision, then it is possible for the energy stored in that spring to go into
the kinetic energies of the two objects, making the change in kinetic energy positive. In this case, to have the projectile stop and the
target move away, we would need . Most collisions we encounter in the real world do not involve stored potential energy
waiting to be released, so we will continue to focus on the one described above.

Okay, so how does this fit with the system rest energy description? Well, we first note that in this case the kinetic energy in the rest
frame of the center of mass is non-zero both before and after the collision. So unlike the perfectly inelastic case, not all of this rest
frame kinetic energy is converted to thermal. With a bit of math, we can confirm that once again the kinetic energy lost from the
system rest energy is the amount converted to thermal. Noting that the starting rest frame kinetic energy before the collision is the
same as before, given by Equation 4.4.5 above. Next, we can avoid some math by noting that after the collision, the situation is the
similar to before, with  swapped with  and  in place of , so the rest frame kinetic energy can be just written-down by
making these swaps. The change in the rest frame kinetic energy is therefore:
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Plugging-in Equation 4.4.6 gives:

So we see that the amount of kinetic energy that is lost in the lab frame all comes from the kinetic energy in the rest frame. This
makes perfect sense, given that the collision doesn't change the center of mass velocity, which means the system's center of mass
kinetic energy  doesn't change.

In summary, we find that in any collision of two objects, the energy converted from kinetic to thermal comes from the system's rest
frame kinetic energy, and the fraction of that energy converted depends upon the details of the collision itself. It can range from
zero (when the two objects are very rigid, so the collision is elastic) to all of the rest frame kinetic energy (when the two objects
merge, and the collision is perfectly inelastic), but the amount converted can never exceed the rest frame kinetic energy.

Analyze This
The diagram below depicts a moment just before a collision of two balls made of bouncetech™, a material made by an
engineering firm that develops new materials. This experiment was set up as a head-on collision in the center of mass reference
frame of the balls. The company's goal is to lose as little kinetic energy as possible to thermal energy in the bounce. To their
absolute horror, the two balls stick together! They determine the kinetic energy converted to thermal in this collision to be .
They re-check their bouncetech™ formula, and realize that they left out an important ingredient, bounconium. When they
repeated the experiment with the corrected mix, they got a much better result.

Analysis

This experiment takes place in the center of mass frame, so there is a lot we can extract from what is given. First of all, when
the balls stick together in the first experiment, they stop moving altogether, because by definition the center of mass cannot
be moving in this frame, and the collision doesn't change this fact, so when they are stuck together, they cannot be moving.

The center of mass is not moving before the collision, so we can determine the speed of the blue ball:

Given that they stop, all of the initial kinetic energy is converted to thermal, so in terms of these values, we can compute the
thermal energy:

What if bouncetech™ achieved the impossible, and the collision cam out perfectly elastic? What would the motion look like
after the collision? Well, first of all, in this center of mass frame, the balls would have to be going in opposite directions, or
the center of mass could not remain stationary. Second, the ratios of the speeds of the two balls would have to remain the
same as when they approached each other in order for the center of mass to remain stationary. And finally, the total kinetic
energy has to add up to the same. Without even doing the math, there is a simple solution that satisfies all these criteria: The
balls bounce back at the same speeds at which they came in.
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The analysis of the elastic collision gives us an upper limit on the speeds at which we can expect to see the balls moving
after the collision. Anything more is impossible, as the kinetic energy would have to increase. But anything less (all the way
down to zero) is possible.

The Ballistic Pendulum
When it comes to perfectly inelastic collisions, there is one problem that stands out as a classic – the ballistic pendulum. The idea is
to measure the muzzle velocity of a gun, and it goes like this:

A bullet is fired into a block of wood that is hanging by a string from the ceiling. The mass of the bullet and the block are
given, as is the height to which the block rises. Find the incoming velocity of the bullet.

Figure 4.4.3 – The Ballistic Pendulum

If we break down the motion of the bullet and the block during the short span of time that the bullet is working its way into the
block, things get very complicated, because the block begins to swing before the bullet comes to rest inside it, which means that the
center of mass of the system is not quite moving in a circle yet. This is a problem because we will assume that the tension force
does no work here, and we can only assume that if it acts perpendicular to the block+bullet system's motion, which must therefore
be in a circle. Thankfully, the bullet is moving very fast, and gets imbedded into the block in a very short time, leaving very little
time for the non-conservative part of the tension force to do damage to our results. We therefore neglect the time that the bullet
takes to get into the block, and treat the block/bullet interaction as instantaneous.

Clearly this is an inelastic collision, and we can do this calculation in two parts. The first part consists of the momentum
conservation problem that derives the speed of the block+bullet system immediately after the collision in terms of the incoming
speed of the bullet and the two masses. Then the second part involves the mechanical energy conservation of the bullet+block
swinging up to a new height and coming to rest.

Figure 4.4.4 – The Usual Breakdown of the Ballistic Pendulum

This is the way you will see this problem solved in virtually every textbook that covers this problem. But there is another way,
which doesn't require these steps. The block+bullet system starts with some rest frame kinetic energy, and because their collision is
perfectly inelastic, all of this energy goes into thermal. This leaves behind the energy of the system's center of mass, and since we
are assuming that the tension does negligible work on the system, all of this goes from kinetic into potential. So:

Solving for  gives:
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There is nothing magical about this approach. It simply avoids re-solving the perfectly inelastic collision case, by noting that all the
rest frame kinetic energy becomes thermal, and jumping straight to the center of mass kinetic energy. Both of these methods
involve the same physical principals of momentum and energy conservation.

Analyze This
A large sled is at rest on a horizontal, frictionless sheet of ice, when a heavy rock is thrown onto it from behind. The rock is
moving purely horizontally when it comes into contact with the sled, and it skids across the rough top surface of the sled until it
and the sled are moving forward together at the same speed.

Analysis

While we have significantly more detail about the force interaction of the two colliding objects, this collision is still perfectly
inelastic, with a stationary target, just like the two clay balls discussed at the start of this section. We can therefore use the
same conclusion about the fraction of initial KE converted into thermal energy that we found then:

Suppose we are given the mass of the rock and the coefficient of kinetic friction between the rock and the sled. We then know
the amount of the kinetic friction force between the two colliding objects. From here, we can be given one of two pieces of
information about the rock's trip across the surface of the sled. If we know how long it takes the rock to stop sliding, then
from the constant friction force and the time, we know the impulse the rock delivers to the sled, and from that the new
momentum of the sled, and if we know the mass of the sled, then we also know its speed at the end.

The final speed of the rock is the same as the final speed of the sled, and the rock experiences the same impulse as the sled
(except that it is negative), so we can compute the incoming speed of the rock:

The other thing we can be given regarding the rock's trip across the sled is the distance it skids, . In this case, we can use
what we previously found when we examined the case shown in Figure 3.5.2: The work done by kinetic friction as the rock
slides across the sled is the amount of energy converted to thermal. We know from the very first example above with a
stationary target, the fraction of the total energy this is:

This page titled 4.4: Momentum and Energy is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom
Weideman directly on the LibreTexts platform.
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4.5: More Collisions

Elastic Collisions

In the previous section, we focused on inelastic collisions. Here we will look at elastic collisions, where the kinetic energy of the system
remains unchanged, meaning none of the rest frame kinetic energy is converted into thermal energy. This kind of collision is standard between
particles, but between macroscopic objects, this is really only an approximation. When we are told that a given collision is elastic (or at least
can be approximated as such), then that gives us an additional condition that we can use to solve the problem. We'll go through a few
examples of elastic collisions in one dimension below. In each case, the diagram will show the experimental result, which we will then show
mathematically using the combination of momentum and kinetic energy conservation.

Figure 4.5.1 – Elastic Collision of Equal Masses, Target Stationary

We see that the incoming cart stops completely and the target cart moves off with the same velocity as the original cart (note that the center of
mass continues moving at a constant speed, as it should). We now show this mathematically... Dropping the vector arrows, since the motion is
in one dimension, and choosing to the right as the (+) direction, we have:

Wait, why do we get two solutions? That is, why can either velocity equal zero? Well, if the incoming cart were to miss the target cart, then
that too is an elastic “collision,” inasmuch as the momentum and kinetic are both conserved, so the math takes into account that as a
possibility.

Figure 4.5.2 – Elastic Collision of Unequal Masses, Target Lighter and Stationary

The algebra is only a little tougher this time:
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Both carts continue forward, the lighter one at 4 times the speed of the heavier one. Note that once again  is a solution (the
incoming cart misses the target).

Let's consider an application of this in the real world. Suppose we are passengers in one of two vehicles involved in a head-on collision.
Which vehicle would we rather be in, the lighter one or the heavier one? Intuitively we know we would rather be in the heavier vehicle, but
why? Well, we would want to experience as little force as possible (force is what breaks bones). The force that our dashboard or steering
column exerts on us is going to equal our mass times our acceleration (as it constitutes our net horizontal force), and we are constrained to
experience the same acceleration as our car. So compare the accelerations of the two carts here. The heavier cart goes from a speed v down to
a speed of v/3, for a change of 2v/3. The lighter cart’s velocity changes from 0 to 4v/3 in the same period of time, which means it experiences
twice the acceleration. More acceleration for our car means more acceleration for us, which means more force on us, which is bad.

Lastly, we look at the lighter object bouncing off the heavier one:

Figure 4.5.3 – Elastic Collision of Unequal Masses, Target Heavier and Stationary

The math:

The lighter cart bounces off the heavier one at half the speed that the heavier one continues forward (or the incoming cart misses the target).
There is actually a clever way we could have solved this case more quickly by using the solution of the previous case and what we know about
relative motion. If we move along with the incoming block and declare ourselves to be "stationary," then we see the heavier mass coming
toward us at a speed , which is exactly the same physical situation as we had above. After the collision, we will see the heavier mass
continuing in the same direction at a speed of , while the target block moves in the same direction at a speed of . That is what we see.
Going back to the original frame, these two speeds change by , which means the heavy object is not going left at  – it is going right at 

, while the smaller block is moving left at a speed of .

Kinetic Energy Distribution Within a System
Let’s return once again to an example we looked at in the previous section (Figure 4.3.1), and ask a new question about it (the example has
been simplified slightly by giving one block exactly twice the mass of the second block).

Figure 4.5.4 – Kinetic Energy Distribution for Repelling Blocks

The spring stored some potential energy when it was compressed, and it gave this energy to the kinetic energy of the two blocks. What fraction
of this energy is given to each of the blocks? One might be inclined to believe that since the spring exerts equal forces on both blocks, they
both get equal amounts of kinetic energy. But by now we know better! They only get the same amount of energy if the spring does the same
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amount of work on both, and it's clear here that the lighter mass is pushed a longer distance before losing contact with the spring than the
heavier mass, so with equal forces acting on each, more work is done on the lighter mass. Specifically, the lighter mass is accelerated twice as
much by the equal force, so it displaces twice as far, and therefore gets twice as much energy as the heavier block.

Another way to see it is to note that both blocks must have the same magnitude of momentum after the spring expands (since the momenta
must cancel to equal zero and remain conserved), so using Equation 4.1.6 we can compare their kinetic energies:

This confirms what we reasoned above.

Now we can see more clearly why we are able to refer to the gravitational potential energy of the system of a small stone and the earth as
simply the gravitational potential energy "of the stone," ignoring the fact that the earth is also involved. This is because when the potential
energy is converted to kinetic energy, virtually all of the kinetic energy goes to the stone, and none of it to the earth (imagine the heavier block
above being much heavier).

Source of Inelasticity
We have said more than once that all collisions between particles are elastic, while collisions between objects are not. But objects are made of
particles, which means that when they collide, it involves the collision of particles. How is this not a contradiction? Let's see if we can sort this
out with the simplest possible example imaginable. Let's look at a collision between object made up of a single particle, and another object
made up of two particles. The latter object we will model as two particles of different masses, bound together by a spring. We will further
simplify things by assuming that the two particles are separated by the equilibrium length of the spring, and they are not vibrating (i.e. this
two-particle object has zero internal energy). A diagram of the collision is shown in the figure below.

Figure 4.5.5 – Microscopic View of Two Object Collision 

When the blue particles collide, they will do so elastically. As we saw in the example above, when a projectile collides head-on elastically
with a stationary target of equal mass, the incoming particle stops, and the target particle continues forward at the same speed that the
incoming particle had. This means that object 1 will stop, and one of the particles in object 2 will start moving toward the other particle. This
will compress the spring, which will cause the other particle to also move to the right. That is, object 2 as a whole will start moving to the
right. Its particles will also vibrate back-and-forth within the object – the object will have internal energy. This is precisely the recipe for an
inelastic collision. In the case of bigger objects with trillions upon trillions of particles, this internal energy is spread throughout the particles,
and their motions are randomly-distributed, which is to say that this internal energy is thermal. The simplicity of this example, by contrast,
allows us to precisely track this energy. Let's do that.

The motion of object 2 after the collision is measured by its center of mass velocity, which the spring will not affect, as it provides only an
internal force within the collection of particles. Therefore the center of mass velocity can simply be computed using the initial condition when
the blue particle is moving and the red particle is not:

The total energy of the two-object system is unchanged, and initially it was just the kinetic energy of the incoming particle, so it is:

The kinetic energies of the two objects after the collision are: Zero for object 1 (which stops), and for object 2:

So we see that this collision between two objects is inelastic, because only one-third of the original kinetic energy remains in the objects. The
remaining two thirds is stored in the internal energy of object 2 as its particles vibrate.
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Suppose the same two objects as above collide again, but this time the incoming object strikes the other side. They are the same two
objects, so would you expect the result to be the same? Confirm or refute your intuition mathematically.

Solution

Repeating the process above, we have the same total system energy as before. The elastic collision between the incoming blue particle
and the larger red particle gives a different result, however. We calculated earlier what happens when an object collides elastically with
another object twice as heavy. The incoming object bounces-back with one-third its incoming speed, and the heavier one moves forward
with two thirds the incoming speed.

The center of mass velocity of the two-particle object can be computed from the red particle's new speed:

Now we can use the reflected speed of the incoming object and the center of mass speed of the target object to determine the kinetic
energy in the system after the collision:

So it appears that considerably less energy goes into the internal energy of the two-particle object in this case than when the smaller
particles collide.

General Two-Dimensional Collisions
We have been saying for awhile now that one of the big differences between momentum conservation and energy conservation is the fact that
momentum is a vector while energy is not. This means that there are actually three momentum quantities that are equal before and after (if the
full momentum vector is conserved). Here we will look at what this entails.

Let's look at a standard two-dimensional collision. In this example, we will have a stationary ball struck by another. The two balls have
different masses, and they collide off-center, so that they emerge from the collision in directions angled off the original direction of motion.
We'll set up the geometry and label all the known and unknown variables with a diagram, and then do the physics:

Figure 4.5.6 – General Two-Dimensional Collision in the Target Frame

Now we need to apply momentum conservation. Since momentum is a conserved vector, each of its components are individually conserved,
which means that momentum conservation provides us two separate equations to work with. In the "before" case, we have an -component of
momentum that is simply the incoming mass times the incoming velocity ( ), while the -component of momentum is zero. in the "after"
case, we need to resolve the momenta into components. Setting before equal to after gives:
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You'll note the minus sign for the component in the -direction. This is not strictly necessary, as this negative sign could be absorbed into ,
but it is generally less confusing to put the signs in explicitly, and let all the angle values be positive.

Let's consider what would be required to solve a problem that looks like this. We have two equations, and seven distinct variables. If this is all
we know about the collision, then to completely unravel this physical situation, we need to know five of these quantities. So for example, we
could be given the two masses, the incoming speed, and the outgoing speed and direction of one of the balls, and we can solve for the
outgoing speed and direction of the other ball. If we also provided the target ball a starting velocity, or a -component to the incoming ball's
velocity, then there would be even more unknowns. But we can quickly reduce this problem back to the one above, by first rotating our
coordinate system so that the incoming velocity is once again in the  direction, and then changing the reference frame to the rest frame of the
target ball. It is also sometimes useful to change to the center of mass reference frame.

Notice that once such a problem is solved, once can then check to see if the collision is elastic, by comparing the kinetic energy before and
after the collision:

This comparison could be a difference (determining how much kinetic energy is lost), or a fraction (determining the percentage of kinetic
energy remaining or the percentage lost). Note that a collision can result in an increase of kinetic energy, but this can only happen if there is
some potential energy stored within the colliding objects that is unleashed by the collision. This is such an uncommon occurrence (the
circumstances need to be quite contrived), that it is safe to assume that a collision is either elastic (conserves kinetic energy) or is inelastic
such that kinetic energy is lost.

Not all problems are posed with five of the seven variables given. The energy condition can be given instead, which provides a third equation,
requiring only four of the seven variables in the statement of the problem. Needless to say, these problems can require a lot of tedious algebra,
but getting the equations set up using momentum conservation and the fate of the system's kinetic energy is where the physics is.

Elastic Two-Dimensional Collisions
As daunting as the full-blown problem shown above can be, there are cases where shortcuts or simplifications exist. We look first at the case
of elastic collisions. If we want to know all the information shown above, we have no choice but to go through the algebra involved. But we
can achieve an interesting result without recourse to the coordinate system at all. Namely, it turns out that the ratios of the masses of the
colliding objects and their outgoing speeds completely determine the angle between the outgoing velocity vectors, . To get this result,
we will use Equation 4.1.5 extensively...

Let's call the incoming momentum  and the mass of the incoming object . Then the kinetic energy of the system (in the frame where the
target is stationary) is:

Now let's define the outgoing momenta of the two objects as  and , with the latter being for the target object after collision. The kinetic
energy after the collision is therefore:

Now we apply momentum conservation:

Applying kinetic energy conservation (remember, we are assuming an elastic collision):

Now multiply through by  and rearrange things a bit to get:

Now write the dot products in terms of the magnitudes of the vectors and the angles between them:
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The angle  is of course the angle between the two outgoing velocity vectors (which point the same direction as the momentum vectors). The 
 solution to this corresponds to the case of the incoming object missing the target entirely (because the target remains stationary), so

assuming the target is not missed, we can divide both sides by  and if we also plug in  and , we get the promised
relationship of the scattering angle in terms of the masses and outgoing speeds:

We can extract some interesting information from this result:

We see that if the masses are equal, then the scattering angle is precisely , since the cosine of this angle vanishes. In this case, the
scattering angle doesn't depend at all on how off-center the collision is (except that a direct head-on hit naturally leads to an angle of  or 

). The degree of how off-center the collision is (which is measured by a quantity known as the impact parameter) does effect the
angles  and  in Figure 4.5.6, but not the sum of those angles. If the masses are not equal, then the impact parameter does play a role in
the scattering angle, because it has a say in the ratio of the outgoing speeds.
If , the argument of the inverse cosine is negative, so the angle must be greater than . This makes sense, because if the target
mass is greater than the incoming mass, the incoming mass "bounces back," rather than "plowing through" (a result we found for the one-
dimensional elastic collisions we examined above), and since the target mass has a forward component to its final velocity, the angle is
greater than .
The argument of the inverse cosine can never be larger than +1 or smaller than –1, which places limits on the outgoing speeds given the
masses. For example, if the incoming mass  is twice the target mass , then the largest possible ratio of the two outgoing velocities is
4. This ratio occurs when , and indeed we have seen this result already above (Equation 4.5.2).

It should be noted that this result could also be achieved using the formulas resulting from Figure 4.5.5, but it would require an unnatural
desire to slog through trigonometric identities.

Perfectly Inelastic Two-Dimensional Collisions
As much as we were able to do with elastic collisions, perfectly inelastic collisions are even easier to handle. This is because the outgoing
motions of the two objects are constrained to be the same (i.e. they stick together and have the same final speed and direction). This constraint
means that if we are given all of the incoming conditions (the masses of the two objects, and their incoming velocity vectors), we can
determine the result completely. That is, the amount of energy lost in the collision does not need to be given – it is unique and can in fact be
computed. The figure below is a diagram for an example of a perfectly inelastic collision. [This is somewhat simplified by having the incoming
objects approach each other at right angles, but not as simple as the case of looking at it from the target frame, which makes the collision one-
dimensional!]

Figure 4.5.7 – A Perfectly Inelastic Two-Dimensional Collision

We follow the same procedure as we did for Figure 4.5.6, this time with the simplification that we have a single outgoing momentum:
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The amount of energy converted to thermal from this collision equals the loss of kinetic energy from the system, and as we saw in the one-
dimensional case, this amount doesn't depend upon the details of the internal non-conservative force. It only matters that eventually (after the
two objects end their tumultuous collision) settle into moving off together with a common velocity. The amount of energy converted is:

For the case above where the two incoming objects have velocities are right angles to each other, we can turn this into an equation that
includes only the masses and incoming speeds. Sparing the reader the algebra, the result is:

Notice that since the two velocities are perpendicular, the sum of their squares is actually the square of their relative velocity. This is not a
surprising result, and in fact will translate into collisions at any angle (though the equation will look different), because we would not expect
the post-collision blob to be any hotter when the collision is viewed in one frame as opposed to another. As mentioned above, we can always
view this collision from the target frame, making the collision one-dimensional, and the total kinetic energy of the system before the collision
is a function of the relative velocity. In that case, we can use Equation 4.4.3 to compute the energy converted to thermal.

So suppose we drop a ball of clay to the ground. Viewing this from the earth's rest frame, the earth becomes the stationary target with mass 
, and essentially all of the clay's incoming kinetic energy is converted to thermal (because ), and the clay's (and earth's)

temperature goes up a bit. If we view it from the clay's rest frame, then the kinetic energy of the earth is enormous (same relative speed, much
larger mass), and after the collision we might therefore expect the temperatures to go up a lot, but making the clay the stationary target now
makes the target mass  very small compared to , which makes the fraction multiplying the earth's kinetic energy very small –
exactly small enough to give the same energy change as before.

Analyze This
A cart slides along a frictionless surface in an easterly direction. The cart contains a person and a medicine ball. The cart slides past an
identical (but empty) stationary cart, also on the frictionless surface. When the carts are side-by-side, the person throws the medicine ball
into the other cart by pushing the ball in the north direction.

Analysis

This situation is a bit more complicated than a simple two-object collision, but the principles behind it are the same. Treating both
carts, the person, and the medicine ball together as a single system, there are not external forces on the system, and the total momentum
vector is conserved – the  and  components of momentum are each separately conserved.

Let's call the magnitude of the initial easterly velocity of the cart .  This gives us the initial momentum (which will remain
unchanged):

Next we need to think about the "after" situation. Now we have two separate components to deal with, as the objects involved will have
some  components to their motion. Calling the incoming cart #1, and the other cart #2, we have:

Invoking momentum conservation gives:
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With the push being in the north direction, the -component of person + cart 1 is not changed, which means we can put in ,
giving:

This is all fine if we are given the velocities of the carts after the ball has been transferred, but it seems clear that in such a problem the
details of the ball transfer itself might be given. If this is the case, then really we have two momentum problems to solve – the problem
of the first cart ejecting the ball, and the second of the second car receiving the ball.

We in fact already know that the ball is thrown northward by the person. Does this mean we can write the momentum of the ball as
being purely in the -direction? No! The person throws the ball northward, but it was already moving eastward when it was thrown, so
its momentum actually has both  and  components. So for the ball-is-thrown half of the problem, the ball, person, and cart #1 will not
change their speeds in the -direction at all.

How to compute the effects on the -components of the velocities of the ball and cart #1 depends upon what is given about the medicine
ball's motion. If the northward component of its velocity relative to the ground is given, then things are pretty straightforward. Just use
this quantity and the mass of the ball to compute its -component of momentum, and that same amount of momentum is what cart #1 +
person must have in the southerly direction, to conserve the momentum in the -direction (which was initially zero). But if the
velocity of the medicine ball as seen by the person is given, then it gets considerably trickier, because this is the speed of the medicine
ball north relative to the person + cart #1, which will recoil south.

Calling the northward component of the ball's velocity relative to the person , the ball relative to earth , and the southward
component of the person + cart #1 after the ball is released  (which has a negative value), we can use the -components of the usual
relative motion formula (Equation 1.8.3) to get:

We then just need to use the quantities  and  in the -component parts of our momentum conservation equations. We already noted
that the -component for the throwing part is not very interesting, so the -component part looks like:

For the second part, where cart #2 receives the ball, both the  and  components of the ball's motion are important, and the
momentum conservation equations are:

This page titled 4.5: More Collisions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman directly on the
LibreTexts platform.

Current page by Tom Weideman is licensed CC BY-SA 4.0. Original source: native.
4.4: Momentum and Energy by Tom Weideman is licensed CC BY-SA 4.0. Original source: native.
3.1: The Work - Energy Theorem by Tom Weideman is licensed CC BY-SA 4.0. Original source: native.
4.2: Center of Mass by Tom Weideman is licensed CC BY-SA 4.0. Original source: native.

x-direction:

y-direction:

( + + )mcart mperson mball vo

0

= ( + ) +( + )mcart mperson v1x mcart mball v2x

= ( + ) +( + )mcart mperson v1y mcart mball v2y

x =v1x vo

= ( + )mballvo mcart mball v2x

y

x y

x

y

y

y

vbp vb
vp y

= +vb vbp vp

vb vp y

x y

0 = +( + )mballvb mcart mperson vp

x y

x-direction:

y-direction:

+0 = ( + )mballvo mball mcart v2x

+0 = ( + )mballvb mball mcart v2y

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63001?pdf
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/1%3A_Motion/1.8%3A_Relative_Motion#relative_velocity_addition
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/4%3A_Linear_Momentum/4.5%3A_More_Collisions
https://creativecommons.org/licenses/by-sa/4.0
http://physics.ucdavis.edu/people/adjunct-faculty-and-lecturers/tom-weideman
https://phys.libretexts.org/@go/page/63001
http://physics.ucdavis.edu/people/adjunct-faculty-and-lecturers/tom-weideman
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/4%3A_Linear_Momentum/native
https://phys.libretexts.org/@go/page/63000
http://physics.ucdavis.edu/people/adjunct-faculty-and-lecturers/tom-weideman
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/4%3A_Linear_Momentum/native
https://phys.libretexts.org/@go/page/62989
http://physics.ucdavis.edu/people/adjunct-faculty-and-lecturers/tom-weideman
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/4%3A_Linear_Momentum/native
https://phys.libretexts.org/@go/page/62998
http://physics.ucdavis.edu/people/adjunct-faculty-and-lecturers/tom-weideman
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/4%3A_Linear_Momentum/native


1 https://phys.libretexts.org/@go/page/63407

Sample Problems
All of the problems below have had their basic features discussed in an "Analyze This" box in this chapter. This means that the
solutions provided here are incomplete, as they will refer back to the analysis performed for information (i.e. the full solution is
essentially split between the analysis earlier and details here). If you have not yet spent time working on (not simply reading!) the
analysis of these situations, these sample problems will be of little benefit to your studies.

Problem 4.1
Two pairs of identical blocks on identical springs are side-by-side as shown in the diagram below.  They are set into motion
such that just as they reach their (equal) maximum displacements toward each other, they barely come into contact (there is no
collision – their springs stop them just as they touch).  When they contact, one of the blocks is transferred to the other, and their
motion continues.

Explain what happens to the momentum of the four block system shortly after the blocks separate into three and one.

Solution

The momentum of the four block system starts at zero, and at the point when the blocks separate, the two spring forces on the
system are equal and in opposite directions, so one might think that the momentum remains zero, because there is no net
force on the system. But this doesn't last for long, because the single block starts moving faster than the three blocks, which
means that a short time later, the spring of the single block is not stretched as much as the spring for the three blocks. At this
moment in time, there is a net force on the 4-block system (to the left), so the momentum will be increasing to the left, due to
this net impulse.

Without doing any math, we can see that the forces that act on each side one their way from full stretch to the equilibrium
point are the same (they only depend upon the stretch of the spring), but since the three block group takes longer to get to the
equilibrium point, is experiences more impulse, which is why the analysis shows that it experiences a greater change in
momentum than the single block.

Problem 4.2
Two identical rods of mass  and length  have the same non-uniform density profile. When one of these rods is placed along
the -axis with one end of the rod at the origin, the density as a function of  is proportional to the following function:

The two rods are laid end-to-end. Describe the possible locations of the center of mass of the two-rod system.

Solution

If the ends of the rods that are connected are of the same density (either both are the less-dense ends, or both are the most-
dense ends), then the mass is distributed symmetrically about opposite sides of the connection point of the rods, and the
center of mass is right at the connection point. But if the more-dense end of one rod (which we will call rod "A") is connected
to the less-dense end of the other rod (rod "B"), then the total mass is not symmetrically-placed across the connection point.
In the analysis, we found that the center of mass of each rod is 9/16 of its length from the less-dense end.  This means that
the center of mass of rod A is at , and the center of mass of rod B is at . These two centers
of mass are for objects of equal mass, so the center of mass of the system is simply halfway between their centers, which is
at:
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So the center of mass is 1/16th of the length of a rod from the connection point, located on the rod whose less-dense end it at
the connection point.

Problem 4.3
A child sits on the rear end of a sled (whose mass is uniformly-distributed along its length) with a block of frozen snow at rest in
her lap. The sled is sliding forward on the horizontal, frictionless snow at constant a speed, when the child suddenly shoves the
block forward in the sled (she remains firmly planted on the sled). After a period of time, the block comes to rest in the front of
the sled.

Assume that the mass of the sled is uniformly distributed along its length. Here are the physical properties associated with this
situation:

a. Find the speed of the sled after the ice block stops sliding forward.
b. Find the position of the center of mass of the child+ sled + block before the block is pushed. Reference this position from the

rear of the sled.
c. Find the distance (relative to the ground) that the center of mass of the child + sled + block moves during the period of time

that the block slides forward.
d. Find the distance that the sled moves during the period of time that the block slides forward.

Solution

a. As we stated in the analysis, when all three objects are again moving together, they must have the same speed that they
started with, so .

b. This is just the usual center of mass calculation, and the positions of the child :

c. The speed of the system remains unchanged during this time (as indicated in part a), so the distance that the center of
mass moves during this period is just the speed times the time:

d. However far the sled travels, the child travels the same distance, and the snow travels that distance plus the length of the
sled. Plugging in all these changes into the equation for the change of center of mass (of the whole system) gives:

Solving for the displacement of the sled gives:

Problem 4.4
Two different particles are confined by the same potential, shown in the diagram.  Both particles have the same total energy,
also depicted in the diagram.  At one moment the particles pass each other precisely at the origin, with one particle moving in
the -direction and the other moving in the -direction.
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A short time later, both particles come to rest at the same instant.  Find the location of the center of mass of the two particles at
the moment that they come to rest.  Express the answer in terms of the units defined by the grid lines in the diagram.

Solution

In the analysis, we found the ratio of the forces on the two particles. We are told here that the particles take the same period
of time to come to rest. If the forces are applied for the same period of time, then the force that is twice as great  imparts
twice as much impulse on particle B as the lesser force imparts on particle A. Experiencing twice the impulse, the change of
particle B's momentum is twice as great. Both particles come to rest, so particle B must start with twice as much momentum
as particle A when they are at the origin: . 

In the analysis we also noted the relationship between momentum and kinetic energy, and reasoned that the particles have
the same kinetic energy when they are at the origin. We can therefore draw a conclusion about their masses:

With the relative masses of the two particles now known, all we need is their positions when they come to rest. We can
determine this by realizing that at rest they have no kinetic energy, so their total energy equals their potential energy – the
points of intersection between the horizontal total energy line and the potential energy curve (which we have previously
called the "turnaround points"). So when they come to rest, particle A is at the position  and particle B is at the
position . Now we just plug into the center of mass formula:

So the center of mass moves two units in the -direction in the time that the particles move from the origin to the
turnaround points.

Problem 4.5
A block slides along a frictionless horizontal surface at a speed , starting at position  and time . An identical block
dropped from rest lands directly on top of it. The surfaces of the blocks are sticky, so the top block adheres to the bottom block
when it lands on it, and they continue along together. The blocks slide together into a curtained-off area, during which a spring
noise and a “thud” are heard. At a later time, the bottom block emerges from the curtain without the top block on it, after
apparently having its top lid sprung open from within.
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The falling block is dropped at  from a height of  above the top of the sliding block (the diagram distances are not to
scale). The labeled positions are  and , and the bottom block emerges at time . Find the
location of the top block at the moment the bottom block emerges from behind the curtain.

Solution

In the analysis we found the velocity of the center of mass of the two block system in terms of the initial velocity of the sliding
block, but we are not given that here. We know that the falling block was released from rest at , and how far it drops, so
we can compute :

The sliding block travels a known distance in this time, so we can compute its speed:

The result from the analysis gives us the center of mass speed:

With the speed of the center of mass of the system we can compute the position of the center of mass when the bottom block
emerges. The bottom block spends a time  behind the curtain. At the start of this time span, the center of mass
is at , so at the end its position is:

The blocks are equal masses, so their center of mass is halfway between them, giving us the locaton of the top block:

Problem 4.6
Two blocks slide down opposite sides of a frictionless  curved ramp from different heights, colliding at the exact bottom, as
shown in the diagram below. Upon colliding, they stick together, and move as a single entity thereafter (if they move at all).
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The masses of the blocks are equal, and both blocks are released from rest. After they collide, their center of mass returns to the
starting height of the left block.

a. Find how many times higher the right block is released than the left block.
b. Find the fraction of the original mechanical energy is converted into thermal energy.

Solution

a. The analysis showed that the height the double-block rises before stopping is related to the momentum of the two-block
system, which can be determined from the individual momenta of the blocks. So calling the equal masses just " ", the
starting height of the left block " ", and choosing rightward as the positive direction (so the starting momentum of the right
block and final momentum of the two blocks are negative):

b. The original mechanical energy is . After the double-block comes to rest, the
mechanical energy of the system is . Therefore the percentage of mechanical energy converted to thermal in the
collision is:

This is a perfectly inelastic collision, so the reader may be confused about why this fraction is equal to , according to
Equation 4.4.3. Be careful! That equation applies specifically to the frame where  is the projectile and  is a stationary
target. If we wanted to do lots of extra work, we could change to the rest frame of the left block (making the right block the
projectile, which in this frame has all of the system's incoming energy), and use Equation 4.4.3 to obtain the same result.

Problem 4.7
The diagram below depicts a moment just before a collision of two balls made of bouncetech™, a material made by an
engineering firm that develops new materials. This experiment was set up as a head-on collision in the center of mass reference
frame of the balls. The company's goal is to lose as little kinetic energy as possible to thermal energy in the bounce. To their
absolute horror, the two balls stick together! They determine the kinetic energy converted to thermal in this collision to be .
They re-check their bouncetech™  formula, and realize that they left out an important ingredient, bounconium. When they
repeated the experiment with the corrected mix, they got a much better result.

The red ball bounces back with two-thirds the speed at which it came into the collision.

a. Find the fraction of kinetic energy that is lost to thermal.
b. To please shareholders, the company unscrupulously decides to report to the fraction of kinetic energy lost to thermal as

measured in the lab frame where the blue ball was a stationary target. Compute this fraction.

Solution

a. In the analysis we found that the total kinetic energy in the center of mass frame is . The red ball slows to two-
thirds of its initial speed, and since the speeds of the red and blue balls must have the same ratio of speeds to maintain zero
system momentum in this frame, it too must bounce away with two-thirds of its initial speed. The kinetic energies of the balls
are proportional to the squares of their speeds, so the  kinetic energy of both (and therefore their sum) must drop to 

 of its original value. Thus  of the rest frame kinetic energy is converted to thermal.

b. The actual amount of energy converted to thermal can be computed from the fraction found above:
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The thermal energy converted is the same in any frame, but the combined kinetic energy of the balls in frames other than the
center of mass frame is greater, so the ratio of energy converted to thermal is smaller. We determined in the analysis that the
blue ball is moving at a speed of , so changing frames to one where it is stationary changes the speed of the red ball to 

, moving to the right. The blue ball contributes no kinetic energy in this frame, so the system's total kinetic
energy in this frame is:

The fraction of energy converted in this reference frame is thus:

Losing 22% of its kinetic energy sure looks a lot better in shareholder reports than losing 56% of it!

Problem 4.8
A large sled is at rest on a horizontal, frictionless sheet of ice, when a heavy rock is thrown onto it from behind. The rock is
moving purely horizontally when it comes into contact with the sled, and it skids across the rough top surface of the sled until it
and the sled are moving forward together at the same speed.

The mass of the rock is 6.5kg, and it is moving at a speed of  when it lands on the  sled.

a. Find the amount of energy converted to thermal from kinetic.
b. Find the ratio of the distance the sled slides on the ice to the length of the rock's skid-mark on the top of the sled.

Solution

a. From the analysis, we have the fraction of the energy converted in this stationary target case, and since we have the rock's
mass and initial speed, we know the starting energy, so:

b. The friction force exerted on the rock is the same magnitude as the friction force exerted on the sled (Newton's 3rd law).
The energy converted to thermal is the work done on the rock by friction over the distance of the skid-mark:

The work done on the sled by the friction force is its change in kinetic energy, and it starts from rest, so:

Dividing these two equations causes the friction force to cancel out, leaving the ratio we are looking for:

So the ratio we are looking for is the same as the ratio of the thermal energy created to the final kinetic energy of the sled.
We can put both of these quantities in terms of the initial energy carried-in by the rock. The relationship between the thermal
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energy and the initial energy is given above. For the sled's kinetic energy, we use momentum conservation for the perfectly
inelastic case that relates the final velocity in terms of initial:

Now form the ratio, and perform algebra:

So the sled slides along the ice a distance that is one third the length of the skid-mark.

Problem 4.9
A cart slides along a frictionless surface in an easterly direction. The cart contains a person and a medicine ball. The cart slides
past an identical (but empty) stationary cart, also on the frictionless surface. When the carts are side-by-side, the person throws
the medicine ball into the other cart by pushing the ball in the north direction.

Both carts have masses of , the person's mass is , and the medicine ball has a mass of . The speed of the
cart before is . The person sees the ball move away from them at a speed of , and it comes to rest inside the other
cart. Find the speed and direction of both carts after the medicine ball has been exchanged. Express the directions as angles
that are north or south (indicate which) of east.

Solution

We'll start with what we know immediately – the -component of the velocity of cart #1 never changes, since the ball is
thrown in the -direction:

We anticipated this in the analysis – the relative motion of the person and medicine ball are given. We'll start by computing
the -component of the motion of cart #2 + ball. We can do this because we know that the ball does not change its -
component of velocity after being pushed:

As we found in the analysis:

We are not given  (which is the -component of the ball's velocity relative to the Earth), but we can write it in terms of
person's -component of velocity  and the relative speed , as we did in the analysis:

Plugging this in above gives us the -component of the person + cart 1:
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With the two components of the final velocity for cart 1 now known, we can write its magnitude and direction:

Now we turn to cart 2 + ball. We have already solved for the -component of velocity for cart 1 + person, and since the total
system started with no total momentum in the -direction, cart 2 + ball must have a momentum that cancels that of cart 1 +
person:

We already have the velocity of cart 2 in the -direction, so we put it together with this  direction result to get our answers:

This page titled Sample Problems is shared under a CC BY-SA license and was authored, remixed, and/or curated by Tom Weideman.
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5.1: Rotational Kinematics
Our first foray into linear motion was with kinematics, and we start our discussion of rotation with the same topic.

Rigid Body Rotation
Whenever we talk about “rotation,” there is something that is generally implied – we are not talking about a point mass or a
collection of independently-moving point masses. Instead, we are generally referring to the rotation of a rigid object. A rigid object
is nothing more than a collection of particles that are confined to stay at specific positions relative to each other. When we talk
about rotation, all these particles follow different paths and travel different distances, but they all have something in common.

Figure 5.1.1 – Motion of Two Points on a Rotating Rigid Body

Drawing a straight line from the fixed point (called the pivot) to two different points on the object, we see that the angles through
which these straight lines sweep are the same, and indeed this is true for every point on the object. So as we talk about rigid body
rotation, our old language of linear motion (displacement, velocity, acceleration) that is based on units of distance and time, will
have to give way to a new language for rotational motion, based on the units of radians (the most common unit of angular measure)
and time. This language will be very similar to what we used for the linear case, usually with the word "angular" or "rotational"
appended in front of the usual words.

Just because we are going to a new language, it doesn't mean we throw out the physical principles we have learned so far. But to
apply them in our new area of study, we need to develop some way to translate between the two. Back in Section 1.7, in our
discussion of circular motion, we came up with a translation between the arclength traveled by an object in circular motion and the
angle is motion sweeps out. Certainly the points A and B in the figure above are following a circular path (they remain a fixed
distance from the pivot), so this relation applies to them. If a given point on a rigid body is a distance  from the pivot, then the
relationship between the distance it travels along the arclength and the angle measured in radians is given by Equation 1.7.2, and
the relationship between its linear speed and the rate at which the angle is changing (in radians per second) is given by Equation
1.7.3, both of which we'll reiterate here:

While  and  are different for every point on the rigid object, we see that  and  are common to all of them. We therefore
embrace these as our angular displacement and angular velocity measurements, respectively, for the rigid body as a whole. We can
similarly define an angular acceleration ( ) in terms of the change of the linear speed of a spot on the rotating object:

While each point mass comprising the rigid object may have its own linear velocity/acceleration, they all share a common angular
velocity/acceleration. We therefore can simplify our discussion of rigid body rotation from tracking the many different motions of
all of the individual parts of the object to one simple parameter common to all of them. We therefore (for the moment) step away
from the translation between linear and angular motion – which we have already discussed in earlier sections – and instead focus
on purely rotational motion, following exactly the same path as we did for linear motion. You'll note that as a rule the convention
for rotational motion, we stick with Greek variables, in contrast to the Latin variables we used for linear motion.
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Whenever the word "acceleration" is combined with circular motion, one naturally thinks of centripetal acceleration. Be careful
not to make that association here! The link between linear acceleration and angular acceleration is through the component of
acceleration responsible for speeding up the spot on the rigid object, not the acceleration responsible for changing its direction
of motion (which is centripetal acceleration). So for example, an object rotating at a constant rate has no point on it that is
speeding up (and has zero angular acceleration), but every point on it (except at the pivot) experiencing a centripetal
acceleration. Conversely, a rotating object that slows down, stops, and reverses its direction of motion is experiencing angular
acceleration at all times, including the moment it stops, but the centripetal acceleration of points on the object is zero at the
moment that it stops.

We can fully clarify the role of angular and centripetal acceleration mathematically. For a point on the object, its acceleration has
two components:

Rotational Equations of Motion
We define the following angular (rotational) versions of what we studied previously in kinematics:

The calculus that leads to the equations of motion works out exactly the same way as before (we have only changed the variable
names), giving us:

Note that like the case of one-dimensional linear motion, we need to define at the outset a "positive" direction, but for rotation, this
means choosing clockwise or counterclockwise from a specific perspective.

Analyze This
A bug stands on the outer edge of a turntable as it begins to spin, accelerating rotationally in the horizontal plane from rest at a
constant rate. The bug is held on the turntable by static friction, but as the turntable spins ever faster, this will not remain the
case forever.

Analysis

The static friction force is responsible for the bug's acceleration, which can be broken into two components – radial and
tangential. These acceleration components are shown in Equation 5.1.3. The bug will slide off the turntable when the static
friction force is insufficient to maintain this acceleration. The maximum static friction force is the coefficient of static friction
multiplied by the normal force between the turntable and the bug, and since the turntable is horizontal and not accelerating
up or down, this normal force equals the weight of the bug. We therefore can say that the bug will start to fall off the
turntable when the following holds:
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The magnitude of the net force can be written in terms of the magnitude of the acceleration, so:

And finally, we should note that the angular acceleration and angular velocity are related. The turntable starts from rest, so
putting this into the usual kinematics equations gives:

Whichever of these relationships is more useful can then be plugged back in above to reduce the number of unknowns.

Directions of Rotational Kinematics Vectors
When we did all of this previously, we found it was easy to keep track of directions in one dimension, simply by checking the sign
of the value, but when we had to go to more dimensions, we needed to treat these quantities like vectors. How can we do that for
this rotational vectors?

The answer comes from all the way back in Chapter 1 – the Right Hand Rule! It goes like this: curl the fingers of your right hand
(in their natural finger-curling manner) in the direction that the object is rotating, and your thumb points the direction of the vector.
The direction is perpendicular to the plane of rotation.

This direction applies to all of the angular motion vectors – displacement, velocity, and acceleration. But be careful about the
acceleration vector! Just as in the linear case, the acceleration vector points in the direction of the changing velocity vector, not the
direction of the velocity vector itself. So if a rotating object is slowing down, the angular acceleration vector points in the opposite
direction as the angular velocity vector.

Conceptual Question
The graph below depicts the rotational velocity of a merry-go-round as a function of time, where the positive direction is defined
to be downward (into the surface of the Earth). You are standing near the merry-go-round, watching children go by. At the point
indicated in the graph, which of the following are you seeing?

a. The kids closest to you are moving to the right and are speeding up.
b. The kids closest to you are moving to the right and are slowing down.
c. The kids closest to you are moving to the left and are speeding up.
d. The kids closest to you are moving to the left and are slowing down.
e. The kids closest to you are moving to the left, but their speed is not changing.

Solution

(a) From the RHR, we determine that the positive rotational direction is clockwise as you look at the merry-go-round from
above (the kids on the merry-go-round are wondering why you are apparently giving their ride a thumbs-down!). Looking at
it from ground level, this means that rotation in a positive direction results in seeing the nearest kids go by from right-to-left.
At the point in question, the sign of the rotational velocity is negative, which means the kids are going by left-to-right. A
short time later, the rotational velocity will be more negative, which means they are speeding up.

This page titled 5.1: Rotational Kinematics is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman
directly on the LibreTexts platform.
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5.2: Rotational Inertia

Rotational Kinetic Energy and Rotational Inertia
While our first approach to studying dynamics for linear motion was Newton's laws (forces cause accelerations), we will find it
easier to examine rotational dynamics from a standpoint of energy first. Consider an object that is rotating around a stationary
center of mass. Does such an object possess kinetic energy? We might be inclined to say that it does, but with the center of mass
not moving, its momentum is zero, which would make the quantity  also equal to zero.

Rigid objects are collections of multiple particles, and when they are rotating, all those particles (except those right at the pivot
point) are moving, which means they all have kinetic energy. At any given moment, there are particles moving in opposite
directions, and if the center of mass of the object is stationary, these opposite momenta (which are vectors) cancel, Their kinetic
energies, on the other hand, are not vectors, and are all positive numbers, so they can never cancel out.

In some sense, the particles comprising a rotating object can be thought of as contributing to the "internal" energy of the object as
we discussed back in Section 3.2. But doing this runs contrary to the main reason for the introduction of the mechanical/internal
energy idea, which was to separate the kinetic energy of the system that we can clearly see from the kinetic energy that is
concealed from us inside the confines of the system. We can clearly see rotational motion of an object, so we choose to include
rotational kinetic energy in the category of "mechanical energy."

Okay, so a rotating object does possess kinetic energy. Our task now is to express that kinetic energy in terms of the rotation
variables we have already defined, but all we know about kinetic energy is the linear version. In the figure below we consider the
motion of a single particle within a rigid rotating object.

Figure 5.2.1 – Motion of a Single Particle in a Rotating Rigid Body

This is particle #1 – one of many within the rigid object. We can write down its kinetic energy, and in fact we can express it in
terms of a rotational variable and the particle's distance from the pivot:

If we want the total kinetic energy of the object, we need to add up the kinetic energy of all the particles. Thanks to our definition
of angular velocity, we can factor that part out of all the terms:

Notice that the quantity in brackets in the final equality is determined solely by the distribution of mass throughout the object. That
is, it is an intrinsic property of the object and the choice of pivot, not dependent upon how it is moving. We generally abbreviate
this quantity with an , which gives us a familiar form for the kinetic energy formula:

This looks just like the linear kinetic energy formula, with the angular speed replacing the linear speed, and  replacing the mass.
This quantity certainly contains some information about the mass of the object, but it is more complicated than just the mass, and is
called the rotational inertia, or more commonly (and less descriptively), the moment of inertia. Notice that this “inertia” depends
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not only upon the amount of stuff (mass), but also where that mass is. This means that two different objects can actually weigh
exactly the same amount, but when they are rotated at equal speeds, one of them has more KE than the other. As you might guess,
this occurs when more of the mass is concentrated farther from the pivot for the former object than the latter.

Alert
It is important to note that we will only be considering rotations around axes, not points. In our two-dimensional figures, an axis
that is perpendicular to the plane of the figure is indistinguishable from a single point, but we will not discuss motion that
involves an object's motion changing its plane of rotation. So rotational inertia for three-dimensional objects involves the
distances of the tiny masses from a common axis, not a common point.

Calculating Rotational Inertia for Continuous Objects
Our task is to compute the rotational inertia, for which the formula in terms of masses and their positions is different from the one
for center of mass (see Section 4.2), but the procedure is exactly the same. We start with the same picture (Figure 4.2.3, which is
reproduced below), and convert the sums into integrals, as before.

Figure 5.2.2 – Setup Diagram for Computations Involving Mass Density of a Thin Rod

Note that the rotational inertia is calculated around a specific pivot point, which we have chosen to be our origin for the calculation.

As before, we replace the  with , and we have our formula for the rotational inertia along the -axis around the pivot
point at the origin:

Let's return to the cases for which we computed the centers of mass in Section 4.2 – the uniform and non-uniform rod. Unlike the
case of center of mass, where the answer is a location on the rod, the final answer for the rotational inertia will have units of 

, and the formula for it will involve the total mass of the rod and its length. Also it is important to remember that while the
center of mass is a location that doesn't depend upon where we put our coordinate system to calculate it, the rotational inertia is
only defined relative to a specific pivot point.

A Uniform Rod of Mass M and Length L, Pivoted About an End

Plugging the constant  into Equation 5.2.5 and performing the integral gives:

We are not finished yet, because this answer is not in terms of the rod's mass. Since this rod is uniform, the mass is simply the
(constant) density multiplied by its length, which gives:

We will find that every rotational inertia we encounter has this basic form: A constant (usually written as a fraction) multiplied by
the mass of the object and the square of some natural length dimension of the object. In this case it is the length of the rod, but it
may also be something like the radius of a disk or sphere.
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A Non-Uniform Rod of Mass M and Length L, Pivoted About Its Lighter End

Now we repeat the process for the non-uniform density function for which we computed the center of mass in Section 4.2:

Note that unlike the uniform case, the results should not come out the same for both ends of the rod, since more of the mass is
concentrated near the end at . We are calculating this rotational inertia about the lighter end, since all of the  values in the
integral are measured from that end.

We are not done yet, because we are given the mass of the rod, not the constant . We therefore need to compute the total mass in
terms of this constant. We do this by integrating density function over the length of the rod:

Plugging this back in above gives our answer:

Exercise
Find the rotational inertia of the non-uniform rod of mass  and length  whose mass density function is given by Equation
5.2.8, when rotated about its heavier end ( ).

Solution

The difference between this calculation and the one above is that the variable  that appears in Equation 5.3.5 doesn't
match the  that appears in the density formula. The density formula is referenced to our coordinate system, but the  in the
rotational inertia integral represents the distance of each tiny piece of mass  from the pivot point at . So we need
to make a change in the integral so that the  variable that appears in it matches the  in the density function. Making the
substitution  (so ), into the integral does the trick, because then the integrand is zero at the pivot
point ( ) as it should be:

We need to plug in for  (which was computed above) to get our final answer:

Principal Axes
It’s clear that the choice of the pivot is important to the calculation of the rotational inertia, but so is the axis. Real objects are 3-
dimensional, so they actually have 3 independent rotation axes, each of which has its own rotational inertia around it. These axes
are called the principal axes. The origin of these axes is located at – what else? – the center of mass of the object. The principal
axes are only easy to identify for objects with some degree of symmetry. Some objects are so symmetric that more than one set of
axes will work. For example, a uniform sphere has so much symmetry that any set of three mutually perpendicular axes whose
origin coincides with the center of the sphere will work, and of course the rotational inertias around all these axes are the same.
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The reason it is natural to define the origin of the principal axes to be at the center of mass is that if an object is rotating freely in
space with no forces on it, its axis of rotation must pass through its center of mass (though it doesn't need to be around one of the
principal axes). This is actually surprisingly easy to prove. Suppose an object was rotating around an axis that does not pass
through the center of mass. This would mean that the center of mass is moving in a circle around the axis of rotation. But circular
motion is accelerated motion. According to Newton's second law, the center of mass cannot be accelerating if there are no forces on
the object, which contradicts our assumption.

Computing Rotational Inertia Without Integration
Throughout our study of mechanics, our goal has been to develop shortcut tools to help us deal with physical systems in simpler
ways. We developed work-energy so that we could solve problems that pay no attention to direction or time without slogging
through Newton's laws (such as speed at a given height on a loop-de-loop). We developed impulse-momentum so that we could
more easily solve problems involving systems in which the internal forces are complicated (such as collisions). Now we are
developing a tools related to rigid body rotations so that we don't have to track the linear motions of all the particles in the system.
With this very practical mindset, it is not surprising that physicists have developed tools for computing rotational inertia that avoid
the ugliness of always having to perform integrals. The first such shortcut is simply a collection of rotational inertias that are
associated with common symmetric geometries, such as rods, disks, and spheres. Our collection is given at the end of the section.
There are two tools that we can combine with our collection of rotational inertias that will allow us to "bootstrap" our way to
determining many more.

Additivity Around a Common Axis

Suppose we know the rotational inertias of two separate objects around a common axis. If these two objects are attached so that
they rotate together rigidly around that common axis, then the rotational inertia of the combined object is simply the sum of their
rotational inertias. This is evident from the formula for rotational inertia: Each object has its own sum of  terms, and when the
objects are combined such that their  axes are common, then the new sum of  terms is simply the combination of the two
individual sums. To summarize:

Exercise
Use the additive property of rotational inertia and the result given by Equation 5.2.7 to find the rotational inertia of a uniform
thin rod of mass  and length  about its center of mass.

Solution

We can treat a rod rotated around an axis through its center as if it is two separate half-rods of half the mass and half the
length, attached at their ends. The axis that passes though the center of the rod passes through the ends of these two half-
rods, and we know the rotational inertia of each half-rod. The additivity property then gives us the rotational inertia of the
whole rod about its center:

Parallel Axis Theorem

As we have seen multiple times already, just changing the axis around which an object is rotated will result in a different rotational
inertia. Suppose we calculate the rotational inertia of an object about an axis, then slide that axis in a parallel fashion on the object,
and calculate the new rotational inertia, then do it over and over, recording the new values each time. One might ask, "Where is the
axis (parallel to the original one) for which the rotational inertia is the smallest?" Is there any way to guess where this might be, and
is it unique, or might there be multiple places where the rotational inertia hits a minimum?

To answer this question, let's look at a one-dimensional object that lies along the -axis, and consider its rotational inertia around
the -axis. Writing it as a sum rather than an integral, it is:
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Now let's suppose we decide to change where we place the origin, moving it a distance  along the -axis. When we do this, the
distance from the axis to mass  changes from  to . Also, since the original axis went through the origin, this new axis is
no longer the -axis – now it intersects the -axis at . The new rotational inertia is, therefore:

We can consider this to be a function of . That is, this formula provides the rotational inertia of the object about the axis located at
. We can now answer our question about where the rotational inertia is a minimum by using calculus. The value of  for which

the function  is a minimum satisfies:

Solving for  here provides a familiar result:

The rotational inertia of an object for all axes parallel to each other is a minimum for the axis that passes through the center of
mass! Actually, this should not be too surprising. The rotational inertia of an object will be minimized around an axis that is as
close as possible to as much of the object's mass as possible, and the center of mass is the "average location of mass," so it makes
sense that this would be "as close to as much of the object's mass as possible."

Given this information, we can write the rotational inertia of an object around an axis parallel to an axis passing through the center
of mass a positive-valued "adjustment" to the rotational inertia around the center of mass. It turns out (we will not prove it here)
that this adjustment is quite simple – it is just the mass of the object multiplied by the square of the offset distance between the new
axis and the axis through the center of mass. This is called the parallel axis theorem:

where  is the distance separating the new axis and the center of mass.

Exercise
Use the parallel axis theorem and the result given by Equation 5.2.7 to find the rotational inertia of a uniform thin rod of mass 

 and length  about its center of mass.

Solution

The distance that the end of the rod is separated from the rod's center of mass is . Plugging this into the parallel
axis theorem gives our answer, which agrees with what we got in the previous Exercise:

Conceptual Question
Two straight metal rods with equal lengths but differing masses are firmly welded together at their centers of mass so that they
make an angle , as in the diagram below.  The mass of one of the rods is uniformly-distributed along its length, while the other
has a non-uniform mass distribution.  If this rigid object is now rotated around one of the points A or B at some fixed rotational
speed , around which point will the object have the most kinetic energy?
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b. B
c. It could be either A or B, depending upon which rod has more mass.
d. It could be either A or B, depending upon the value of .
e. Both (c) and (d) are true.

Solution

(b) The centers of mass of the two rods coincide, so the center of mass of the two rod system is at the same place (where they
are welded together).   The rotational inertia around some pivot is (by the parallel axis theorem) equal to the rotational
inertia around the center of mass plus , where  is the mass of the object and  is the distance from the center of mass
to the pivot.  So for this object, the rotational inertia will be greater around the point that is farther from the center of mass.
 In this case, that point is B.  It doesn’t matter which rod has more mass, as the total mass is the same in either case, and it
doesn’t matter what the angle is, as the two points A and B don’t change their distance from the center of mass when the
angle is changed.

Rotational Inertias of Some Common Geometries
In all of the cases indicated below, the mass of the object is , and the material making up the object has uniform density. The
reader is encouraged (as an exercise) to navigate their way between various relations using the additivity and parallel axes theorem
tools. [Note: When it comes to rotating two-dimensional objects such as rings and disks, we will confine our studies to axes
perpendicular to the two-dimensional planes in which these objects lie. For rotations around axes parallel to this plane, one would
need yet another useful tool, known as the perpendicular axes theorem.]

Thin Rods

Figure 5.2.3 – Thin Straight Rod Rotated About One end

Figure 5.2.4 – Thin Straight Rod Rotated About Center

Figure 5.2.5 – Thin Circular Ring (or Thin Cylindrical Shell) Rotated About Center

Figure 5.2.6 – Thin Circular Ring (or Thin Cylindrical Shell) Rotated About Edge
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Disks (or Cylinders)

Figure 5.2.7 – Solid Disk (or Cylinder) Rotated About Center

Figure 5.2.8 – Solid Disk (or Cylinder) Rotated About Edge

Figure 5.2.9 – Hollow Disk (or Cylinder) Rotated About Center

Spheres

Figure 5.2.10 – Solid Sphere Rotated About Center
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Figure 5.2.11 – Solid Sphere Rotated About Edge

Figure 5.2.12 – Thin Spherical Shell Rotated About Center

Exercise
The frame of a badminton racquet is constructed from two identical thin aluminum rods of uniform density, mass M, and length
L. One of the rods is bent into a circle and is welded to the end of the other rod. Find the moment of inertia of the
racquet around the axis that passes through the welded spot perpendicular to the plane of the raquet.

Solution

The circumference of the loop is , so its radius is this number divided by .We can use the shortcuts given above to
determine the moments of inertia of the rod about its end and the loop around its edge, and then use the additive property of
moment of inertia to get the total:
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An equilateral triangle is cut out of a circular piece of metal with a mass  and radius , and the pieces are welded back
together as shown below. Find the moment of inertia about the axis perpendicular to the plane of the object at the pivot point
indicated.

Solution

Let’s call the mass and rotational inertia around the CM of the triangle  and  respectively, and the mass and rotational
inertia around the CM of the Circle with the hole  and  respectively.  From the parallel axis theorem and the property
of additivity at a common axis, we have that the rotational inertia around the pivot (which is a distance  from both CMs)
is:

When the metal disk was whole, the two pieces  shared their CM, and the sum of their CM rotational inertias was the
rotational inertia of the full disk, so:

Also, the masses of of the two pieces sum to the mass of the full disk:

Putting it together gives:
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5.3: Dynamics of Rotating Objects

Rolling Without Slipping and Pulleys
A very large number of the mechanical energy conservation problems we will do involve the relation we discussed previously that relates rotational
motion to linear motion. Specifically we will apply this to what is referred to as rolling without slipping, or perfect rolling. There are two reasons this
is an important condition to understand:

When two surfaces slip across each other, thermal energy is the result. So when an object rolls without slipping, there may be static friction
present, but there is no kinetic friction, which means that no thermal energy is produced and mechanical energy is conserved.
When a round object rolls perfectly, the distance it travels in a straight line is directly related to the angle through which it rotates.

We’ll keep the first observation in mind for later, but right now let’s focus on the second condition:

Figure 5.3.1 – Perfect Rolling

The linear distance traveled equals the arclength of the shaded region if the wheel is rolling without slipping, so we have:

Imagine now that instead of this being a wheel, it is a spool that is unwinding. Then the blue line represents string that is coming off the spool. We
can therefore conclude that the relation  also applies to the linear speed of a rope that is either unraveling from a rotating spool or passing
over a turning pulley.

Total Kinetic Energy as a Sum of Linear and Rotational
It’s time we considered the case of an object whose center of mass is moving while it rotates. Let’s start with a simple case of two rocks of different
masses attached by a string:

Figure 5.3.2 – Unbalanced Dumbell Spinning as It Moves

This system is rotating as its center of mass moves in a straight line (assume there is no gravity present). We are given its rotational speed  and the
velocity of its center of mass, and wish to answer the question, "How much kinetic energy does this system possess at the moment depicted in the
diagram?"

We could easily answer this question if we knew the speeds of the two rocks, but we are not given those numbers. We have to extract them from what
is given, and this requires some thought. We know three things that get us to this answer:

The velocity of a rock relative to us equals its velocity relative to the center of mass, plus the velocity of the center of mass (see Section 1.8 for a
refresher).
The center of mass lies at the point two-thirds of the distance from  to .
The rotational velocities of both rocks are the same, but the linear velocities relative to the center of mass depend upon their distances from the
center of mass according to the usual .

Let us label the bottom rock as #1, and the top rock as #2. Putting the first and third conditions together first gives us:

x = arclength = Rθ ⇒ v= = R = Rω
dx

dt

dθ

dt
(5.3.1)

v= Rω

ω

m 2m

v= rω

= − ω = + ωv1 vcm r1 v2 vcm r2 (5.3.2)
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The sign of the second term in each equation is determined by whether the rotational motion adds to or takes away from the linear motion of the
center of mass. Next we invoke the second condition. The fact that the center of mass is two-thirds of the distance from  to  means:

Putting all of the above into the kinetic energy of the system gives an expression for the total kinetic energy in terms of the values given. Collecting
terms proportional to the squares of center of mass velocity and angular velocity gives:

The  in the first term is the total mass of the system, so the first term is the kinetic energy of system if was not spinning. That means that the
second term is the amount of kinetic energy added to the system by virtue of its spinning. The part of the second term in parentheses looks
suspiciously like a rotational inertia, and in fact it equals the rotational inertia of the system about its center of mass:

This turns out to be a completely general rule for the kinetic energy of an object that is rotating as its center of mass moves:

Exercise
Show the same result (Equation 5.3.6) for two general point masses  and  separated by an unknown distance (call their distances from the
center of mass  and ), this time using the moment in time when  is directly in front of  (i.e. the line joining them is horizontal).

Solution

At the moment when the two masses form a horizontal line, their linear motions due to rotation are perpendicular to the center of mass motion.
Determining their total speeds is therefore a simple application of the Pythagorean theorem, and the result follows surprisingly quickly:

Now plug this into the kinetic energy for the system as the sum of the kinetic energies of the two masses:

While the above equation is generally true for any object, if the object is rotating about a fixed point, the expression for total KE can be simpler to
write. Specifically, it is what we have written before, in terms of the rotational inertia about the fixed point:

It's not hard to show that this is equivalent to Equation 5.3.6. Assuming the fixed point is not the center of mass (or the assertion is proved trivially),
then let’s call the distance from the center of mass to the fixed point “ .” The center of mass is following a circular path of radius  around the fixed
point, which means we can relate the linear velocity of the center of mass to its angular velocity around the fixed point:

Putting this into our center-of-mass energy equation gives:

Where in the final step we employed the parallel-axis theorem.

Analyze This

m 2m

= L = Lr1
2

3
r2

1

3
(5.3.3)
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2
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2
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d d

= ωdvcm (5.3.8)
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The Blort Corporation makes a special widget that consists of a uniform disk pivoted around an axle at the end of a rod of negligible mass, which
in turn rotates about its other end. This widget has two settings: It can be set in the "locked" position so that the disk does not rotate around its
axle, or the "free" position so that the disk rotates frictionlessly about the axle. The difference these settings have on the motion of the disk as the
rod rotates is depicted in the figure below.

Analysis

If we call the mass of the disk , the radius of the disk , the length of the rod , and the rate at which the rod is rotating , we can compute
the kinetic energies of these two settings. In the case of the free setting, the disk is simply moving in a circle without rotating, so it has only the
linear component of kinetic energy:

For the locked axle case, we can find the energy two ways. The first is to treat the rod + disk as a single rigid object (which of course it is),
with a fixed point for the rotation. The rod has no mass, but we can find the moment of inertia of this rigid object using the parallel-axis
theorem:

Alternatively, we can use the linear + rotational form of kinetic energy, and the same result as this is attained. To use this method, one needs to
figure out the rotational speed of the disk. It's not immediately obvious that it is the same as the rotational speed of the rod, so consider this: In
one full revolution of the rod with the locked axle, the disk also makes exactly one full revolution. So the rotational rate of the disk is also .

What is clear about this result is that for the same rotational speed for the rod, a different amount of kinetic energy is in the system for the two
settings. The way we put energy into a system is to do work on it, so it appears that to achieve the same rotational speed of the rod, more work
is required for the locked setting than for the free setting.

Mechanical Energy Conservation with Perfect Rolling
Let's put together what we have concluded so far in this section. We begin by noting that two cylinders with equal masses do not possess the same
rotational inertia about their central axes if one is hollow and the other is solid. Now imagine rolling both of these cylinders (without slipping) down
an inclined plane. Can you guess which one would reach the bottom of the incline with the greater speed? The main point to be made here is that the
energy that comes from gravitational PE goes into KE, but now the KE has two different forms: linear and rotational. The linear and angular speeds
are directly related through the "no slipping" condition, so the energy will convert into the two forms of kinetic energy in a fixed ratio. We will soon
see how the rotational inertia affects the ratio, but it seems clear that the hollow cylinder puts more of its energy into rotation (for the same velocity)
than the solid cylinder. This would seem to indicate that the hollow will have the same kinetic energy as the solid cylinder only if it is turning (and
therefore moving) more slowly.

It's easy to trick oneself in such situations, so let's solve the math carefully to be sure.

Figure 5.3.3 – Comparing Hollow and Solid Cylinder Rolling Dynamics
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We will work both problems in parallel, to make the difference more evident. Start with mechanical energy conservation from the top of the plane to
the bottom. We can invoke this because without slipping there is no rubbing, which means no mechanical energy is converted to thermal energy.

If we choose the zero point of potential energy to be the bottom of the incline, the initial and final potential energies in both cases are  and zero,
respectively. The initial kinetic energy is zero in both cases, and the final kinetic energy is the sum of the linear and rotational kinetic energies
(Equation 5.3.6):

So in fact the solid cylinder is moving faster than the hollow one, as we predicted. What is especially interesting is that with the perfect rolling
condition in place, the masses and radii of the cylinders are irrelevant! We are used to final speeds of objects accelerated by gravity being independent
of the mass, but here we see that when we impose perfect rolling, the radius also plays no role, but the distribution of the mass within the cylinder is
all that matters.

Alert
As we are discussing mechanical energy conservation again, it is a good time to remind ourselves that our conclusions only tell us how to compare
speeds before and after – what goes on between these two moments and direction of motion are lost bits of information. This is as true now that
rotation is involved as it was when it wasn't. For example, if we were to race the two cylinders down identical ramps, then naturally the solid
cylinder would get to the bottom first, since they both start at rest and accelerate at constant rates. The object with the faster final speed must have
taken less time to get to the bottom because it had a greater average velocity. The math shown above doesn't take into account the paths the two
cylinders take, so if the ramps are not identical (but still result in the same height change), the conclusion about speeds at the bottom is the same
as before, but the winner of the race may not be the solid cylinder!

Analyze This
A solid uniform sphere starts from rest and rolls down a flat ramp without slipping. 

Analysis

ΔKE+ΔP = 0 ⇒ K +P = K +PEgrav Eo Eo Ef Ef (5.3.10)
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Calling the height that the sphere descends , we can compute its final speed using mechanical energy conservation. Following the usual
method of including both the linear and rotational kinetic energy, we get:

The moment of inertia of a solid sphere is , so putting this in and noting that perfect rolling means , we have:

Another thing we can note in the analysis is that the free-body diagram of the sphere never changes during its time on the ramp, so its
acceleration must remain constant. With a constant linear  acceleration, and the starting and ending speeds, we  can  possibly  extract more
information from kinematics equations.

Analyze This
A solid and a hollow sphere roll without slipping simultaneously (one behind the other) down a ramp and around a loop-de-loop. The radii of the
spheres are negligible compared to the radius of the loop.

Analysis

The rolling-without-slipping condition relates the linear speeds of the spheres to their rotational speeds according to . This results in
an amount of kinetic energy for each sphere that is different for a given linear speed, because they have different moments of inertia:

The typical thing to think about in cases where a loop-de-loop is involved whether the object has enough speed to make it around. With the
spheres having very small radii, they are essentially moving in a circular path with a radius equal to that of the loop as they go around. In
order to make it around, they have to be barely moving fast enough that the gravitational force is providing all the pull necessary to keep them
going in a circle at the top of the loop – any faster and there would be normal force from the loop, and any slower and the sphere would fall off
the loop. This condition therefore requires that the sphere has speed of:

Massive Spools
Another example that falls into this same category of mechanical energy conservation with perfect rolling is a falling mass unwinding a massive
spool. Let's assume the spool is frictionless and is a uniform disk, and determine the speed of the falling block after it has dropped a known distance.
We are also assuming – as always – that the string is massless, but we should also point out that it is very thin, so that its departure from the spool
does not reduce the radius of the spool.

Figure 5.3.4 – Falling Block Unwinds Spool
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Once again, we can solve this using mechanical energy conservation, as there are no non-conservative forces present. What is new here is that some
of the potential energy lost by the block as it drops goes into the rotational kinetic energy of the spool. The math is strikingly similar to the rolling
cylinder case above:

Analyze This
One end of a massless rope is wound around a uniform solid cylinder, while the other end passes over a massless, frictionless pulley and is
attached to a hanging block, as in the diagram below. The block is released from rest, pulling the cylinder along the horizontal surface such that it
rolls without slipping.

Analysis

The amount that the block falls equals the distance traveled by the cylinder plus the length of rope that unwinds from it. Since the cylinder rolls
without slipping, the amount that unwinds is also equal to the distance it travels, so the sum of the distance traveled by the cylinder and the
rope unwound is just double the distance that the cylinder travels. Therefore, the speed of the block is at all times twice the linear speed of the
cylinder.

With no non-conservative forces present, the mechanical energy of the system is conserved, so subscripting the masses and velocities with 'b'
for block, and 'c' for cylinder, we get:

We know the rotational inertia of the cylinder in terms of its mass and radius, that the block moves twice as fast as the cylinder, and that the
cylinder rolls without slipping. Putting all of these constraints into the equation above gives us our answer:

Solving for the speed of the cylinder (and the speed of the block is twice this much):
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The linear acceleration of the block and spool are constant, so knowing the final velocity allows us to use kinematics equations if we are given
additional information.

Massive Pulleys
The result for this example may remind you of an assumption we made long ago regarding pulleys. We have always assumed that they were
frictionless and massless. We said that the result of these assumptions was that the tension for the rope was the same everywhere (namely on both
sides of the pulley). We are now equipped to look at what happens if the pulley has mass. We'll do so with a simple model physical system. In Figure
5.3.5, the hanging block accelerates as it falls, linearly accelerating the block on the frictionless horizontal surface and rotationally accelerating the
pulley in the process.

Figure 5.3.5 – Effect of a Massive Pulley on Rope Tension

We are interested in comparing the tension force by the rope on both sides of this pulley, so let's use the work-energy theorem, which takes into
account the forces. Treating each block as a separate system, on which the tension in each end of the rope performs work (and gravity does work on
block #2 as well), and noting that both move at the same speed at all times, we have:

Let's compare the two tensions by computing the difference:

For the tensions to be equal, all of the gravitational potential energy lost by the falling block must go into the two blocks. But we now know that a
massive pulley will have kinetic energy. Let's add the pulley's increase in kinetic energy to both sides of the equation, and invoke mechanical energy
conservation:

The tensions can only be equal when the rotational inertia of the pulley is zero, which means it must be massless.

Analyze This
Two disks are cut out of the same material, as shown in the diagram below. They are pivoted around stationary axles such that the two disks lie in
the vertical plane, with their outer rims pinching a massless rope between them. The rope is pulled downward, causing both disks to turn without
the rope slipping.
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Analysis

Let's call the radii of the large disk   and of the small disk . We are given that they are made of the same uniform material, so their masses
are proportional to their areas, which means their masses have the following ratio:

The ratio of their moments of inertia can therefore also be written in terms of their radii:

When the rope is pulled, the disks don't slip, which means that their edges are moving at the same linear speed. Because of the perfect rolling
condition, this means that they do not rotate at the same angular speed, and the ratios of these speeds is also expressible in terms of the ratio of
radii:

Digression: Energy Storage
One of the big issues today with green energy like solar and wind-generated electricity, is storage. The advantage to fossil fuel production of
electricity is that we can produce it whenever we like, but for solar and wind power, we are at the mercy of when the sun shines or the wind blows.
So storing the energy generated from these green sources is of paramount importance. Batteries are coming along, but they have their own
environmental issues (lithium mining, waste when they degrade, etc.), so other means of storage are sought.

There are many ideas that have been put forth, such as using spare electricity to pump water above a dam so that it can be released when needed;
pressurizing tanks of air with spare electricity, then allowing the pressurized air to drive a generator later; and using spare electricity to
desalinate water, followed by using the osmotic pressure between the new fresh water and the salty water to drive a generator. But possibly the
best idea (which has been around a long time) is to simply store the energy in the form of kinetic energy – spin a flywheel. A flywheel is just a disk
created for the sole purpose of spinning so that it holds kinetic energy until it can be used later. The idea is for the spare electricity to get this thing
spinning (with as little friction as possible), so that later when we need the energy back, the flywheel can be connected to a generator and the
kinetic energy can be converted back into electrical energy. The beauty of this idea is in its simplicity – it is inexpensive and scalable. And
reducing the friction to a very low value is something we can do quite well with today’s technology (think maglev and evacuated chambers). In
order to be as efficient with our use of space as possible, and so that we don’t reach rotational speeds that are insanely high, we will of course
want flywheels with very large rotational inertias.

Swinging Around Fixed Points
There is one other common physical situation involving mechanical energy conservation and rotation that needs to be addressed. If a rigid extended
object is pivoted around a fixed point that is not the center of mass, and it is allowed to swing around that pivot under the influence of gravity, then
how do we use mechanical energy conservation to describe its motion? Specifically, as the object swings, some points of the object may move
upward (increasing gravitational potential energy), while others may swing downward (decreasing gravitational potential energy). How can we deal
with the overall change in gravitational potential energy in such a case?

The answer will likely be unsurprising. Write the change of potential energy of the whole object as the sum of the potential energies of each tiny mass
that makes up the object, and the result follows immediately:
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where  is the mass of the whole object and  is the change in height of the center of mass of the object.

Analyze This
One end of a uniform metal thin rod is welded to the outer edge of a metal disk. The masses of these two objects are the same, and the length of the
rod is equal to the diameter of the disk. The disk is suspended on a frictionless axle positioned at its center, and the rod is released from rest from a
horizontal orientation and allowed to swing down to the vertical position.

Analysis

This system experiences a loss of gravitational potential energy during this swing, which can be measured in two different ways. First, we can
just use the method above, where we find the center of mass of the whole system before and after, and use its full mass and that drop. In this
case, with the length of rod equaling the diameter of the disk, the center of mass of the rod is a distance  (the radius of the disk) from the weld
point. The center of mass of the disk is also this distance from the weld point, and since the masses of the disk and rod are equal, the weld point
must be its center of mass. This point drops a distance of , so the loss of potential energy (with  defined as the mass of each object) is just:

A second way to do this, which may be a bit simpler to use, is to note that the center of mass of the rod drops a distance , while the center of
mass of the disk does not change at all, giving the same potential energy change:

This potential energy becomes kinetic energy. The object swings around a fixed point, so we can compute the moment of inertia about the fixed
point and use the usual formula. To get this moment of inertia, we'll need the additivity of moments of inertia and the parallel axis theorem.
The disk about the axle has a well-known moment of inertia. To get the contribution of the rod, we use its moment of inertia about its center of
mass, and displace it a distance of  using the parallel axis theorem:

Putting this into the energy conservation equation and solving for the angular speed of the swing at the bottom of the arc gives:
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the LibreTexts platform.
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5.4: Torque

Rotational Newton's Second Law

As we saw for linear motion, we can only go so far with energy conservation. If we want to analyze aspects of motion such as elapsed time and
direction of motion, we need more than mechanical energy conservation to work with. In the linear case, we found that this meant that we had to
use Newton's Second Law. We now seek the rotational equivalent of that law.

The rotational equivalent of the Newton's Second Law must relate the reaction of the system (rotational acceleration) to an external influence
(rotational force), with the degree of this effect being determined by an internal property of the system (rotational mass). That is, we need a
rotational substitute for all of the participants of this formula:

We already found a rotational version of acceleration in our discussion of rotational kinematics – it is the angular acceleration. We even defined a
direction for this vector using the right-hand rule. The center of mass qualification in the case above is unneeded for the rotational case, because the
angular acceleration is the same about every point on a rigid object.

We have also determined an appropriate candidate for the "rotational mass" – the rotational inertia. This is certainly a reasonable choice, for a
couple of reasons. First, from our direct experience we know that it is easier to swing an object (e.g. a baseball bat) when holding the heavier end
than when holding the lighter end, so the degree to which an extended object "resists" angular acceleration is determined by the distribution of
mass. Second, if the physics is to remain consistent, why would the quantity that plays the role of mass in kinetic energy be different from the
quantity that plays the role of mass for the second law?

With those two quantities established, we can now get a glimpse into what the "rotational force" is by examining the units:

This is weird... These are units of energy! We'll need to chalk this up to coincidence, since clearly the vector quantity of rotational force cannot be a
measure of energy. One way to see the difference is to remember the presence of radians in the numerator, even though they are not physical units.
We will soon see the source of this coincidence, and it shouldn't take long before the apparent ambiguity between this quantity and energy fades
away.

Alert
While the physical units are the same as energy, we never refer to the SI units of this quantity as "Joules." Using this term implies that we are
talking about energy, which we are not. Generally we stick to "Newton-meters."

We can't continue calling this vector "rotational force" forever, so we will henceforth refer to it by its proper name: torque. In keeping with our
tradition of using Greek variables for rotational quantities, we will represent torque with , giving as our rotational Newton's second law:

Torque

In the cases of acceleration and inertia, we found a direct relationship between the linear and rotational quantities, so we would expect there to be a
similar relationship between force and torque. Furthermore, since the linear/rotational bridge for acceleration and inertia both require a point of
reference (the pivot), we would expect the same to be true for the bridge between force and torque.

The first thing we notice is that an object can experience no net force and yet still experience a nonzero rotational acceleration:

Figure 5.4.1 – Zero Net Force Can Accelerate Rotationally

If the two forces shown in the figure above are moved so that act at the same point on the object, then it's clear that they also cancel rotationally. So
apparently the place where the force acts is important to computing torque. If we choose a reference point (we will refer to this as a "pivot" in cases
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when it happens to be a fixed point, but in general it does not), then the application point of a force can be described by a position vector  that
points from the reference point to the point where the force is applied. But there is still more that we have to worry about here. If two forces with
the same magnitudes as those in the figure above were applied at the ends of the bar, but were pointing vertically, then no angular acceleration
would result. Let's put all this together...

Figure 5.4.2 – Parts of a Force that Cause Angular Acceleration

The force vector can be decomposed into two perpendicular vectors – one that is parallel to the position vector, and one perpendicular to it. When it

comes to causing the object to accelerate its rotation around the pivot, it's clear that the part of the force that is parallel to the position vector 

will have no effect, while the perpendicular part of the force  will.

If we were to perform experiments to test the effects of various force magnitudes, we would find that the angular acceleration is proportional to the
magnitude of the force – push twice as hard in the same direction at the same point on the object, and its angular acceleration is twice as great
around the same pivot. If we were to perform further experiments to test the effects of applying the force at different positions, we would find that
the angular acceleration is proportional to the magnitude of the position vector – extend the position vector in the same direction to twice its
original length and apply the same force in the same direction, and the angular acceleration is once again twice as great around the same pivot.
Mathematically, we express the results of these experiments this way:

Notice that the units of this product work out correctly, so all we need to do is incorporate the "only the perpendicular part of  has an effect" into
the math. If we call the angle between the position vector and the force vector , then the perpendicular component is . Assuming there are
no other constants involved (and there aren't any), we get, for the magnitude of the torque:

This looks familiar – we actually saw something just like it, way back in Equation 1.2.8. Torque is a vector that is derived from the product of two
other vectors. Is it possible that it is simply a cross-product of these two vectors? The magnitude works, but what about direction? In Figure 5.4.2,
the force will accelerate the rotation counterclockwise, which means that according to the right-hand-rule, the acceleration vector points out of the
page. If we perform a cross-product of the position vector (up to the right) and the force vector (up to the left), the right-hand-rule results in a vector
that also points out of the page. We therefore write:

Exercise
A rigid object is pivoted around the origin. The force vector given below acts on this object at the position also indicated below. Find the torque
vector exerted on the object due to this force.

Solution

This is a straightforward calculation of a cross product:

Analyze This
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A small marble is attached to the end of a thin rigid rod with an equal mass, whose other end is held fixed at the origin. The rod starts at rest in
the  plane, and makes an angle  up from the -axis, as shown in the diagram.  There is no gravity present, but the marble (not the rod) is
subjected to a force from a potential energy field given by:

Analysis

We can use the potential energy function to determine the force at every point in space:

The torque exerted relative to the origin at the point  is the cross-product of the position vector there and the force vector there:

Let's call the length of the rod .  Then the coordinates of the marble in terms of  and  are:

Plugging these in gives us the torque on the object in terms of .

If we call the mass of the marble (and rod) , we can also compute the moment of inertia of the object, and combine it with the torque to
obtain its angular acceleration at any angle . When doing so, it is important to remember that the reference point for the moment of inertia
must be the same as for the torque, which in this case is the origin. Here we have a rod pivoted about its end and a point mass a known
distance from the pivot, so the moment of inertia is the sum of these contributions:

So now, from Newton's 2nd Law for rotations:

The math is correct, and we have obtained a formula, but the exploration of our "analysis" can go much further. For example, we note that at
, this acceleration is zero – there is no torque on the object. Does this make sense? Well, this angle occurs when , and

plugging this back into the force vector that we found reveals that the force  on the marble is not zero, but its direction in space is parallel to 
. When the marble is at , that direction is pointed directly at the origin. A force exerted on the marble that points directly

through the rod is not going to cause the rod to accelerate rotationally, so this makes sense!

Another thing we note is that if the rod is turned slightly clockwise from , then there is a torque in the clockwise direction (the torque
vector points in the  direction, which is into the page, and from the RHR is clockwise). So a small clockwise nudge from  will
cause the rotation to speed up. We similarly find that a small nudge from  in a counterclockwise direction results in a
counterclockwise torque, speeding it up in that direction as well.  Back in Section 3.7 we called a position like  a point of unstable
equilibrium.

Finally, we note that since the sign of  changes between positive and negative as  goes around a full circle, the torque alternates
direction. It makes sense that the torque would not be in s single direction, because if the object makes a full turn in the direction of this
torque and returns to where it started, it would have to be turning faster, as the single-direction torque keeps speeding it up. But this is
impossible, because that would mean it gained KE, while the potential energy for a full  turn comes back to its original value. Indeed we
can therefore conclude that any potential energy function whatsoever that we care to use must result in torques that alternate between
clockwise and counterclockwise!
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(x, y)

= × = (x +y )×[−β (y +x )] = β ( − )τ ⃗  r ⃗  F ⃗  î ĵ î ĵ y2 x2 k̂
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Linking Rotational and Linear
Let’s do a sanity check on our definition of torque and its role in the rotational second law. We can do it very simply by choosing a single point
mass tied to a string whose other end is held as a fixed pivot (we'll leave gravity out of this). We'll start with the linear version of Newton’s second
law, and translate it into the rotational version.

Figure 5.4.3 – A Simple System Solved Two Ways

The forces in the  and  directions provide two equations through Newton's second law:

Now we translate to rotational motion by first converting the parallel part of the acceleration into angular acceleration:

Then convert mass into rotational inertia:

Plugging Equation 5.4.9 and Equation 5.4.10 into Equation 5.4.7 gives:

One important thing to note here is that while the torque and rotational inertia depend upon the pivot point (i.e. they are different values if we use a
new reference point), the translation between the angular acceleration and linear acceleration exactly balances this difference. For example, if we
replace the pivot defined above with a new one that is a distance  from the object, all of the math works out exactly the same. That is, the torque
is twice as great and the rotational inertia is four times as great, resulting in a rotational acceleration that is half as large as before, but when it is
multiplied by twice the radius to get the linear acceleration, the same result occurs, as it must.

Solving Problems
Now we can do a whole set of problems involving torque causing rotational acceleration. There are many similarities with solving problems
involving linear forces and accelerations, but here are some differences:

Free-body diagrams now require that forces be placed appropriately on the objects, since torque depends upon force placement (no more using
dots to represent the object).
There usually is no need to resolve the torque vector into components. In fact, most problems can limit torque (and angular acceleration) to just
"clockwise" and "counterclockwise" – the direction of the torque vector can be left until the end.
One must either know or be able to calculate the rotational inertia of the object on which the torques acts.
The perfect rolling condition is sometimes applied.

To get an idea of the process, we'll re-work the problem of the falling block unwinding a spool, this time using rotational second law instead of
energy conservation:

Figure 5.4.4 – Falling Block Unwinds Spool (Redux)
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Start with free-body diagrams:

Figure 5.4.5 – FBD's of Block and Spool

Next we need to right down the equations for Newton's second law for each object. The block is moving in a straight line, so we are already
familiar with that one:

The spool is rotating, so we need to use the rotational version for it. Before we can sum the torques for the spool, we need to select a reference
point, and its axle is a pretty obvious choice. The length of the position vector from this reference point to the where the gravity and normal forces
act is zero, so those forces produce no torque around the axle (which makes sense – pushing on an axle should not cause something to spin around
it). This leaves only the tension force. It acts tangent to the spool, so this force is perpendicular to the position vector connecting the pivot to the
point where the force acts, which makes the magnitude of torque it produces equal to simply the product of the tension and the radius of the spool.
The direction of this torque is positive, since it causes a clockwise acceleration and our FBD defines that as the positive direction. As this is the
only torque, it is the net torque, and we have:

Now we have to incorporate our constraints (our "other information"). We know that the spool is a uniform solid disk with mass , giving us its
rotational inertia. Also, we know that the rate at which the string exits the spool is related to the rotation rate of the spool according to the usual "no
slipping" condition, so we have an equation relating the block's linear acceleration  to the spool's angular acceleration :

Putting these constraints into Equation 5.4.13 and combining this with Equation 5.4.12 gives:

We see that the acceleration of the block is constant, so we can use a kinematics equation to determine the velocity after displacing a distance 
from rest:

This agrees with our previous answer.

Analyze This (Again!)
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Now that we have some new tools to work with, we can return to a physical system that we previously analyzed with energy conservation and re-
analyze it using what we now know. As before, the spool rolls without slipping as the block descends, and here we will immediately assume that
the mass of the block equals the mass of the spool.

Analysis

We will only include in this analysis information we did not already obtain when we looked at this case previously. Since we are now
interested in the effects of individual forces on linear and rotational motion, we can point out that rolling without slipping is only possible if
static friction is acting between the horizontal surface and the spool. This introduces a limiting factor on the friction force, based on the
coefficient of friction and the normal force between the surfaces. In particular, the maximum static friction force is given by:

The final equality here comes from the fact that the surface is horizontal, so the normal force and gravitational forces must be exactly equal,
with zero vertical acceleration.

Okay, now let's tackle the equations that come from Newton's second law. We of course start with force diagrams:

You might ask how we know that the friction force points in the direction indicated in the diagram. Technically, we don't yet know this, but we
don't have to. If, in the course of our calculations, we find that the only way a solution can work out is if the value of  is negative, then the
friction force must point the other way. We will see shortly that the direction on the diagram is in fact the only direction it can point.

Remembering from the previous time we analyzed this that the block at all times moves twice as fast as the spool (and therefore accelerates
twice as much), there are three equations that come from Newton's second law for the cylinder (the horizontal and vertical linear net force
equations, and the net torque equation), and there is one equation that comes out for the block:

Plugging in for the rotational inertia and the angular acceleration gives:

Adding this equation to the -direction equation for the cylinder gives:

Now combine this result with the -direction equation for the block to get:
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In our previous analysis, if the masses of the spool and block were equal, we would find that after the block falls a distance , the final
velocity of the cylinder is:

From the kinematic equation we have:

It appears at first blush that if we plug in the acceleration found above, that it disagrees with this answer by a factor of two within the
radical. But there is one other thing to remember: The quantity  is the displacement of the accelerated object (in this case, the cylinder),
but the drop of the block  is twice as great as the displacement of the cylinder, so putting in  confirms the answer.

Analyze This
Two ends of a massless rope are wound around two spools with equal masses and radii. One of the spools is a solid, uniform disk, while the
other is a thin, hollow cylinder. The rope between them goes over a massless, frictionless pulley in a vertical plane. The spools are released from
rest from the same height, and the rope does not slip over the pulley.

Analysis

There are a lot of potentially "moving parts" here (both spools and the pulley are free to turn), and keeping the motion constraints straight
can be a bit daunting. At first blush, one might think that the solid spool will unwind faster than the hollow one, causing it to fall faster, just
as it rolls faster down a slope. But making such generalizations is dangerous without careful analysis, so let's forge ahead with that, starting
as we so often do, with free-body diagrams. The pulley is massless, which means the tension in the rope is the same on both sides, and since
the pulley is held in place by the axle, a free-body diagram of it will not prove particularly useful. The two spools are another matter. Calling
their common mass , we get:

Well this is interesting – both spools have the same FBD's! With the same mass, and same starting conditions (starting at rest), Newton's 2nd
law for linear motion ensures that they will have identical motions. Therefore they must remain side-by-side as they fall.

But wait, we know that both spools also experience the same torques about their centers, because the only force that exerts any torque about
the centers is the tension, and this is the same for both spools, as is the radius of each spool. But equal torques will not result in equal
angular accelerations, because they have different moments of inertia – the hollow spool (with the higher moment of inertia) will have to be
unwinding slower than the solid spool at any given moment in time. How is this possible, if they have the same radius and are falling linearly
at the same rate?

The answer is that the rope is moving! The solid spool is giving up rope faster than the hollow one, but the amount of rope between each of
these and the pulley is the same. So some of the rope given up by the solid spool must be passing over the pulley to the other side – the pulley
is rotating clockwise.

We have already gained a lot of insight into the physics of this situation, but the power of analysis is not to be underestimated - let's see if we
can take it further...

First, let's apply Newton's 2nd law to the FBDs above:

Next we need to think about the rope constraints. We'll call the radius of the pulley  and the radii of the spools . When the solid spool
unwinds and angle , it gives up an amount of rope equal to . Similarly, for the hollow spool, we know that it gives up a length
of rope equal to . The sum of these quantities is the additional rope put into the system. The spools both drop equal distances at the
same time, so on each side of the pulley, the rope gets longer by half this total:
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Two time derivatives of the  value is the linear acceleration of the spools (the same acceleration that appears in the first  equation above).
Two derivatives of the angles the spools rotate through are the angular accelerations of the spools, so we have:

These angular accelerations come from torques exerted on the spools about their centers by the tension force (the gravity force acts through
their centers, so it provides no torque about that axis). So from Newton's 2nd Law for rotational motion, and using what we know about their
moments of inertia, we get:

Plugging these values back in above gives:

And using this in the first equation gives us the exact linear acceleration of the falling spools:

Remarkable that we know the exact numerical answer without knowing the mass of a spool or the radii of the spools or the pulley.

Rotational Work
We have now discussed the rotational version of energy conservation and Newton's second law, so the link between these two topics – the work-
energy theorem – should follow naturally. Rather than provide a derivation (which would really just resemble what we have done before for the
linear case), we'll just write down the answer that makes sense from following our linear/rotational parallel.

If we were so inclined, we could do the same unwinding-the-spool problem for a third time, this time with the rotational work-energy theorem. The
approach looks slightly different, but when you actually sit down to do it, you see the same things come out of it as before. This time instead of
relating the accelerations, we would relate the distance the mass drops to the angle the spool rotates.

Back when we discussed objects rolling down an inclined plane without slipping, we avoided talking about one potentially confusing point that we
are now equipped to deal with. For a ball or cylinder to roll down, there has to be a friction force (otherwise it would merely slide). This friction
force can only be static friction, because we are assuming there is no slipping, and we said that without any rubbing, the mechanical energy must be
conserved. But this friction force acts up the plane while the object moves down it, which means that it does negative work on the object. This
would seem to imply that mechanical energy should not be conserved, so how were we able to make the assumption that it is conserved?

The answer is, "Because the static friction force also does positive rotational work which adds energy to the object in rotational form, and this
addition exactly balances the loss in linear form." This is not hard to prove. Start with a diagram and a FBD:

Figure 5.4.6 – Work Done on Cylinder by Static Friction as It Rolls Down Plane

Computing the work done by static friction for linear motion is very simple, since the friction force is constant and the motion is in a straight line:
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As expected, this work takes energy out of the cylinder system. Next we compute the rotational work done on the cylinder. The torque is a constant
equal to , and is acting in the same direction as the rotational displacement, so

Putting these together gives us the total work done on the cylinder by the static friction force. Note that since it rolls without slipping, the linear
distance it travels is related to the angle through which it rotates by the usual relation:

So we see that in fact the work done by static friction here only serves to convert linear kinetic energy into rotational kinetic energy, and our
understanding of how thermal energy is generated remains intact.

Rotational Power
We spoke before about how sometimes we are interested in the rate at which work is done, calling this value “power.” Well, as with everything else
we studied in linear motion, there is of course a rotational version:

You sometimes hear the silly “debate” about torque vs. horsepower for car & truck engines. This should make it clear what the difference is. Power
delivered to the wheels is directly related to torque exerted on them, but it is dependent upon how fast they are turning. Engines that can still
produce a lot of torque at high speeds are powerful. To get an idea of why it might be hard to maintain torque at high speeds, imagine pedaling a
bike downhill – when you get going fast enough, it’s difficult to push hard on (provide torque to) your pedals. So generally the effectiveness of an
engine is defined by torque at low speeds and power at high speeds. If you want fast acceleration off the line or the ability to pull a stump out of the
ground, you want torque. If you want to go fast or tow a heavy trailer up a hill at a steady speed, you want power.

This page titled 5.4: Torque is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman directly on the LibreTexts
platform.
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5.5: Static Equilibrium

Pivots and Torque Reference Points

The definition of torque (Equation 5.4.6) includes the position vector , which points from a reference point to the point where the
force is applied. When we are interested in how the torque is accelerating the object rotationally around a fixed point ("pivot"), it is
convenient to choose the reference point to be that fixed point. This is because the forces applied at that fixed point (to keep it
fixed) provide zero torque when referenced there, and those forces are generally not known. We explore here the effect of changing
the reference point in the particular case when there is no net force, though perhaps there could be a net torque. The net torque
around a given reference point is:

The reference point is located at the tails of the  vectors, but suppose we want to change that reference point. We can do this by

simply adding the same constant vector  to every position vector. This has the effect of shifting the reference point from the
point of  to its tail, as shown in the figure below [Note: The figure shows only two of the many forces applied.]

Figure 5.5.1 – Changing the Reference Point

The net torque around this new reference point is:

But we assumed that the net force was zero, so we get the remarkable result that the net torque is the same around every reference
point!

Alert
As amazing as this result is, be careful not to mistake it for too general of a result. The net torque on an object by a collection of
forces is only independent of the reference point if those forces result in zero net force.

Analyze This
A board starts at rest and is free of any attachments (it is not pivoted on anything). It is pushed in opposite directions on both of
its ends with forces of equal magnitude, at right angles to the board. The forces continue to be applied at right angles with the
same magnitude, causing the board to rotate in the manner depicted in the diagram until the board has rotated by .
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Analysis

The first thing we notice here is that at all times the board experiences two equal-and-opposite forces. This means that the
net force on the board is always zero, and thanks to Newton's 2nd Law, we know that the center of mass of the board cannot
accelerate. The board started at rest, so its center of mass in fact never moves. This means that the fixed point on the board
(around which the board appears to pivot) is in fact its center of mass.  The mass of the board is therefore not uniformly-
distributed, and its red end in the diagram is more dense than the blue end.

Suppose we only know the length of the board:  . We cannot determine the torques about the center of mass exerted by each
force, because we don't know how far from the ends of the board the center of mass is. But we can determine the sum of
these torques. From the result derived above, the zero net force allows us to measure the net torque around any point.
Choosing one end of the board, the force applied there provides zero torque, and the force on the other end provides a torque
of . If one wanted to do more work, this same result could be obtained less "cleverly" by calling the
distance from one end to the center of mass , making the distance from the other end to the center of mass . Then
multiplying each by  and adding them together (the torques are in the same direction) gives the same result.

Static Equilibrium
We have spent a great deal of time studying motion in all its forms, but now we’re going to step back and look at something called
static equilibrium. Simply put, this means unmoving (static), and not about to move (equilibrium). This is a particularly important
subject for engineers who aspire to build things that won’t (easily) fall down. From Newton’s laws for linear and rotational motion,
we have two conditions for the equilibrium part of this condition:

net force on object is zero
net torque on object is zero

We are quite familiar with the net force part of this, but we need to do a bit of work on net torque. We know the formal definition of
torque, but there is more we need to understand in order to apply this to static equilibrium problems. The first tool that we can
immediately add to our toolbox for solving such problems is the result we got above. If the object is in static equilibrium, then it is
experiencing zero net force, which means that no matter what reference point we choose, the net torque will be the same. But the
net torque is zero for equilibrium, so we will have the following condition to work with:

For objects in static equilibrium, the net torque calculated around any reference point whatsoever is zero.

We will find the flexibility to choose any point we like as a reference to point to be very useful in what is to come.

Conceptual Question
For the force diagram below, the force vectors are drawn in the proper locations on the object, and are pointing in the proper
directions, but the lengths of the vectors are not to scale. Which of the following statements are true about the effects these
forces can have on the motion of this object? Assume that none of the force magnitudes can be set to zero.
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a. The force magnitudes can be set so that the object will not accelerate rotationally, while at the same time its center of mass
does not accelerate linearly.

b. There is no way to set the force magnitudes to prevent either linear or rotational acceleration.
c. The force magnitudes can be set so that either there is no linear acceleration of the object’s center of mass, or there is no

rotational acceleration of the object, but both cannot be achieved at the same time.
d. The force magnitudes can be set so that the object’s center of mass will not accelerate linearly, but there is no way to prevent

its rotational acceleration.
e. The force magnitudes can be set so that the object will not accelerate rotationally, but there is no way to prevent linear

acceleration of its center of mass.

Solution

(d) 
The two force vectors can be adjusted relative to each other so that their horizontal components cancel. Then both of their
magnitudes can be adjusted in the same proportions so that the horizontal net force remains zero, while their combined
vertical component of force cancels the other force vector. So zero net force is achievable. However, if we consider a
reference point where the middle force acts on the object (giving that middle force zero contribution to torque), the torque of
the other two forces will never cancel, no matter what adjustments are made to the force magnitudes. With no way to make
the torque vanish, there is no way to prevent rotational acceleration.

Using Geometry to Determine Torque
Our definition of torque is all well-and-good, but in practice we rarely define a position vector and take a cross product. Instead, we
tend to use the concept behind torque, and then some geometry. The figure below shows two ways to geometrically get to the same
torque due to an applied force.

Figure 5.5.2 – Alternative Methods of Computing Torque

The left version consists of taking only the component of force that is perpendicular to the line joining the reference point and the
point where the force is applied, giving the torque magnitude calculation:

The right side of the figure shows another useful way to compute the same torque magnitude. Rather than finding the part of , it
involves finding the perpendicular part of . This is done by extending the line of force and then geometrically determining the
perpendiular distance from the reference point to that line. The result is the same as above:

The perpendicular distance from the reference point to the line of force is often referred to as the moment-arm, or lever-arm. We
will find this to often be the method of choice of computing torques when it comes to solving problems.

Conceptual Question

τ = d = (F sinθ)dF⊥ (5.5.3)
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What can you say about the torque applied to the object due to the force  about the red pivot in the diagram?

a. it equals 
b. it equals 
c. it is greater than 
d. it is less than , but greater than zero
e. net torques always sum to zero

Solution

(c) 
There are a couple of ways to answer this. This first is to extend the force line along  and look at the perpendicular
distance from the pivot to that line (this is the moment arm). It should be clear from the geometry that this moment arm
exceeds , which means the torque must be greater than . Another way to see it is to break  into two separate
vectors, one pointing left and the other pointing down. Both of these forces produce clockwise torques, and the horizontal
force has a moment arm of , while the vertical force has a moment arm of . Since the sum of these two force
components exceeds the magnitude of the original force, and since one of them has a moment arm larger than , then the
combined torques must exceed .

Analyze This
The blob in the figure below is rigid and in static equilibrium. The two forces shown are two of the total of three forces exerted
on the object.

Analysis

The two conditions of equilibrium require that the net force and net torque equal zero. It doesn't take much to find the third
force's magnitude and direction from what is given, as it just needs to make a sum that equals zero, which means the third
force must be:

With the two forces at right angles to each other, the magnitude of their sum is:
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We also easily get the angle. Clearly the balancing force  points to-the-left-and-down to cancel these forces. Measuring
the angle down from the -axis:

But of course knowing the force vector is not the whole story. What about where it is applied? Well, clearly it can be applied
at many points on the object and still provide the same cancelling torque. Once the force's direction is known, the slope of
the "force line" is determined. This line then just needs to be shifted so that the resulting torque cancels the others. And since
the net force is already known to be zero, any reference point for this torque can be used.

Center of Gravity
Up to now, whenever we have drawn a force diagram of an object, we have always placed the force vector for gravity at its center,
while other forces are placed wherever they happen to act on the object. Gravity is somewhat special in that the force actually acts
on every single atom in the object, but we can’t draw all of those individual force vectors. Drawing it at the center of mass makes
sense from the standpoint of Newton’s second law, since if gravity is the only force, then it accelerates the object, and the part of
the object that accelerates is the center of mass.

Wherever it happens to be appropriate to locate a single gravity force vector on a free-body diagram, it is called the object's center
of gravity. We are currently dealing with torque, and the position at which a force acts has become quite important, so we need to
examine more closely whether we can declare the center of mass of an object to be its center of gravity.

We choose as our test subject a horizontal non-uniform rod of length , and select one of its ends as a reference point. The plan is
to add up all of the infinitesimal torques that occur about this reference point due to gravity acting on every particle in the rod, and
see if this total torque can be replaced by the entire gravity force acting at a single point (so that we can draw our free-body
diagrams with only one gravity force vector!). An arbitrary piece of the rod will be a distance  from the reference point, and the
torque exerted there will be the weight of that piece multiplied by :

Figure 5.5.3 – Center of Gravity of a Non-Uniform Rod

Sure enough, we get the same torque around the reference point if we put a single force vector with magnitude  (the object's
full weight) acting at the object's center of mass.

Alert
It should be mentioned that there was a rather subtle assumption made in the above discussion – the gravity force is assumed to
be the same at all points on the rod. If the gravity force can somehow vary from one end of the rod to the other, then the
positions of these two centers will not coincide. If you are wondering how this can ever be the case, the answer is that the scale
of distances must be very large, so that there are measurable differences in the gravity force from one point on the object to the
other. This will not be an issue for our typically terrestrially-constrained studies, but can arise when talking about orbits of
large bodies like moons.

Note that like center of mass, the center of gravity of an object does not have to lie on the object. For example, a hoop’s center of
gravity is located in the empty space at its center. We now know how to locate the position of the gravity force on an object, and
locating most other forces will be fairly intuitive (with one notable exception, which we will address next). This will enable us to
use torque to analyze a whole range of real-world problems.
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Placement of the Normal Force
Like the gravity force, the normal force can act at many places at once. When two surfaces come into contact, all of the particles at
one surface repel all of the particles at the other. So once again we have the problem of where to draw a single force vector, this
time for the normal force. The normal force is different from the gravity force, in one important way – it just compensates for other
forces. That is, it adjusts according to other circumstances. Let's use what we know about static equilibrium to see how to place the
normal force properly.

Consider the oddly-shaped object shown in figure below. We'll assume that the object sits at rest on a horizontal surface, the density
of this object is not uniform, and that the center of gravity is at the position indicated in the diagram.

Figure 5.5.4 – Deducing the Normal Force Placement Balancing Only Gravity

A (rather unsystematic) process for locating the position of the normal force goes like this:

1. Note that the object is in static equilibrium, which means that the normal force is equal to the weight (net force is zero), and that
the net torque around any reference point we care to choose is also zero.

2. Try various positions for the normal force, and if we can prove that there must be a non-zero net torque around a reference
point, then throw that position out.

3. Repeat step (2) for various positions until one is found that cannot be ruled-out.

For this object, we could try a normal force vector acting at the center of the base of the object. But then if we choose a reference
point between the normal force vector and the weight vector, see see that those two forces must produce a non-zero counter-
clockwise torque. We can similarly rule out any position to the right of the weight vector. If we try a position to the left of the
weight vector, we get a similar result, this time with the torque being clockwise. We therefore conclude that for this case the normal
force vector must be applied exactly where the weight vector intersects the base. No matter where we choose a reference point in
that case, the two forces result in equal-and-opposite torques.

Let's complicate matters some by introducing a second force to our object – suppose we push down on the right side of the object
with our thumb, as shown in the figure below.

Figure 5.5.5a – Deducing the Normal Force Placement Balancing Two Forces

Let's try the same position for the normal force as before – in line with the gravity force. If we choose as a reference a point in line
with these two forces, then they create no torque between the two of them, and the added force by the thumb creates a net
clockwise torque. This isn't possible for an object in static equilibrium, so the normal force placement has moved from its original
placement as a result of the added thumb force. It's easy to see that the normal force hasn't moved left, as placing the reference

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63008?pdf


5.5.7 https://phys.libretexts.org/@go/page/63008

point at the normal force results in both the weight and the thumb force producing clockwise torques. So the normal force must
move right, but how far? Perhaps it moves into line with the thumb force? No... We can choose the reference point to be in line
with these two forces (so they both create zero torque), and the gravity force would yield a net counterclockwise torque.

Figure 5.5.5b – Deducing the Normal Force Placement Balancing Two Forces

So we conclude that the normal force must act somewhere between the gravity and thumb forces. If we know the magnitudes of
these two forces, then we know the magnitude of the normal force (the net force is zero), and in fact we can also determine
precisely where a single normal force is acting on the object. Calling the distance between the weight and normal force vector
placements  and the distance between the normal force and thumb force vector placements , we can sum the torques around a
reference point where the normal force acts (so it contributes no torque) to get:

[Note: In the torque sum, clockwise was chosen as the positive direction.]

In the diagram, the weight is shown to be greater than the thumb force, making the ratio less than 1, which means the placement of
the normal force is closer to the placement of the weight vector than the thumb force vector. If the thumb pushes down more, then
the normal force placement moves to the right. Note also that the same result arises if the reference point is chosen elsewhere. For
example, if the reference point is chosen to be where the weight force acts, then the net torque equation gives zero contribution
from the weight, and contributions from both the normal force (counterclockwise), and the thumb force (clockwise). The normal
force can then be written in terms of the weight and thumb force (the net force is zero), giving:

Conceptual Question
Two different blocks are at rest on opposite ends of a smooth uniform wooden plank, which balances at a point that is two-thirds
of the length of the plank from one end, as shown in the diagram.  A force of  is applied to the block farthest from the balance
point, and a force of  is applied to the other block. Both forces are horizontal and point toward the center of the plank.  As the
blocks accelerate due to their respective forces (without friction from the plank), the plank remains balanced. Which of the
following can be concluded about the magnitudes of the two forces?

a. 
b. 
c. 
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d.  (the exact proportion depends upon the mass of the plank)
e.  (the exact proportion depends upon the mass of the plank)

Solution

(a) 
The system starts at static equilibrium, which means the center of mass of the two blocks + plank system lies directly above
the balance point. For the center of mass of this system to not accelerate away from this location, the net force on the system
must be zero. This is achieved when the two forces (which are in opposite directions) have equal magnitudes.

Conceptual Question
Below is a diagram of a sign hanging from a wall with a boom and a support wire. If the boom is uniform in density (its center
of mass represented by the black dot) and weighs about the same as the sign, which of the force vectors shown most closely
approximates the direction of the total force on the boom by the wall?

a. A
b. B
c. C
d. D
e. E

Solution

(d)

The mass of the boom and sign are equal, so their combined center of gravity is three-quarters of the boom length from the
wall. We can replace those two weights with a single gravity force acting at that center of gravity. If we choose as our pivot
the point of intersection between the line of that gravity force and the tension force, then they both contribute zero torque.
The only force left is that of the wall, and for it to not create a net torque around that pivot, it must also pass through that
point. It does this if it points in direction D.

Conditions for Tipping
Let’s make a slight change to the situation just described. Suppose I push horizontally on the top of the object. What happens to the
normal force position as the magnitude of the push increases? Assuming there is a static friction force to prevent the object from
sliding, we have a free-body diagram (missing the normal force) that looks like this:

Figure 5.5.5c – Deducing the Normal Force Placement Balancing Two Forces

>F1 F2

<F1 F2
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Choosing a pivot point at the intersection point of the gravity and friction forces, we see that the push force exerts a net
counterclockwise torque. For the normal force to counteract this (and given that it must push straight up), we find that it must be
placed to the left of the center of gravity.

Let's take a moment to consider the magnitudes of these forces. So long as the object doesn't slide, the static friction force must
equal the push. The object doesn't accelerate up or down, so the normal force must have the same magnitude as the gravity force.
Both of these conditions are important when we consider what happens when the push force is increased. The friction force also
increases until it hits its maximum, at which point the object starts sliding. If we suppose the static friction force doesn't hit its
maximum, how is the increased torque by the push compensated by the normal force, if it can't change magnitude? It must move
left. But it can only move left for so long, and when it has gone as far as it can go, any added push results in angular acceleration –
the object tips.

Figure 5.5.6 – Tipping

Suppose you want to push an object across the floor without tipping it over. To get it to slide, you have to push with a force at least
equal to the static friction force, so to avoid tipping, this given amount of force needs to provide as little torque as possible – push
at a point close to the bottom. With very little torque from the push force, the normal force can easily remain inside of the edge of
the object, and the object won't tip before it slides.

Stable/Unstable Equilibrium
If the object is oddly-shaped and the only forces acting on it are gravity and the normal force, then this analysis gives us an answer
as to whether the object falls over – if the normal force can be directly beneath the center of gravity, then it will stand up. By “can,”
of course we mean that some part of the base that is in contact with the surface (where the normal force acts) must be below the
center of gravity.

In Section 3.7 we discussed stable and unstable equilibrium from the perspective of energy diagrams, and the concept of whether
an equilibrium is stable or unstable was first addressed. The idea is that if the system is moved slightly from its equilibrium state,
do the forces (or, in our current case, torques) act to return the system to equilibrium (stable), or to continue moving the system
away from equilibrium (unstable). How these definitions apply to tipped objects is clear from the free-body diagrams, as shown in
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the figure below. We can also define a degree of stability to a standing object. We define it as the angle through which we can rotate
it such that if we let it go, restoring torques act to return it to its original position.

Figure 5.5.7 – Stable and Unstable Equilibrium

Note that this definition of stability matches with what we saw in energy diagrams. Recall that an equilibrium was a point where
the potential energy function has zero slope, and the equilibrium is stable if the potential energy grows on both sides of the
equilibrium, and is unstable if the potential energy falls off on both sides. Consider what happens to the gravitational potential
energy of the object in both cases shown above. In the stable case, tipping the object slightly raises the center of mass of the object
(increasing its gravitational potential energy), while in the unstable case a slight tip lowers the center of gravity (decreasing its
gravitational potential energy).

Problem-Solving
Problems involving static equilibrium can be approached in a very systematic way, the steps of which are outlined below:

1. Determine the object in static equilibrium you need to analyze and isolate it in a force diagram. This can sometimes be easier
said than done. Sometimes the problem involves more than one extended object in contact with each other. In this case,
determining the object you choose (or perhaps the combination of both objects) depends upon what you are asked to solve for
(usually a force). You can’t really go wrong here, though – if you choose an object that will not give you the answer you need, it
should occur to you as you draw the force diagram. Also, you may find that a “wrong” choice of object may simply make your
task a bit longer (more simultaneous equations) – annoying, but no real harm done.

2. Define a linear  coordinate system for force components, and a rotational coordinate system (positive rotation direction)
for torques.

3. Extend each force vector with a dotted line as far as it will go on the page in both directions.
4. Choose a reference point. For now we won’t worry about choosing a “good” one, choose any – but stick with it for the

remaining steps. When you get better at these problems (which you can only achieve by doing them, especially if you do the
same problem in multiple ways), you will get better at choosing convenient reference points. Please note that not all static
equilibrium problems involve hinges or other “natural” pivots – The reference point doesn't need to be one of these!

5. Ignoring distractions like the object itself, use geometry to find the perpendicular distance from every force line to the pivot
point (i.e. all the moment arms). Do not worry about what angle you use to find these (i.e. it doesn’t have to be the angle from
the torque equation ) – just use geometry.

6. Multiply the moment arm by the magnitude of each force, and this is the magnitude of the torque due to each force.
7. Determine whether each torque is clockwise or counterclockwise, and give each the appropriate sign when summing the torques

and setting that sum equal to zero for the equilibrium torque condition. Note that you could simply alternatively add up all the

(x, y)

τ = rf sinθ
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CW torques, place them on one side of the equation, and set them equal to the sum of the CCW torques on the other side of the
equation. This is easier to implement, but loses the “flavor” of what equilibrium is (zero net torque), so I describe it both ways.

8. If you are lucky (or were clever at the outset), this equation may be all you need in order to find what you are looking for. If it
isn’t, you have two alternatives from here...

Write out the sum of the forces in the  and  directions (or just one of those directions, if that is all you need), and set the
net forces equal to zero (another condition for equilibrium). These additional equations should be all you need to find what
you are looking for.
Choose a new reference point and repeat the torque method described above. Recall that the torques should sum to zero
around any point, so this is completely valid. The thing to keep in mind is that wherever you choose your reference point, if
a force line goes through it, then that force won’t appear in the torque equation because the moment arm for it is zero.
Therefore you can choose your reference point at a spot through which lines for unknown forces pass, eliminating the need
to eliminate them using simultaneous equations later. Whatever you do, don’t choose a reference point that lies along a line
of the force that you are actually looking for – it doesn’t give you an equation that includes that force!

What follows is a set of several physical examples of static equilibrium for you to analyze. While they all look quite different, they
can all be effectively analyzed in the manner described above. While analysis always goes quite far in solving a problem without
even knowing what the question is, this is especially true of these types of problems, so understanding the analysis portion is even
more critical for these types of problems than usual.

Analyze This
Two painters carry a plank of plywood that they use for scaffolding over their heads on their way to the job site. The plank has a
uniform mass distribution. Atop the plank is a can of paint weighing one third as much as the plank. The painter in the rear is
holding the plank at the very end and the painter in front is holding the plank one quarter of the the plank length from the front.
The can of paint is two-fifths of the plank length from the front. The plank remains horizontal as they carry it.

Analysis

We start by identifying the object in equilibrium (the plank), and drawing a free-body diagram for it (we'll call the length of
the plank ). We will choose the pivot to be the back of the plank, and will refer to the weights of the can of paint and plank
as W and 3W, respectively. Also we have chosen an  coordinate system and the positive direction of rotation to be
clockwise, as shown in the diagram.

Next apply the conditions of equilibrium. Clearly the -direction forces are not meaningful, and the -direction force
equation and torque equations are:

x y

L

(x, y)

x y
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The 's cancel out of the torque equation, resulting in a relation between the force exerted by the front painter and the
weight of the can:

The total weight carried by the two painters is found from the force equation (or from common sense), and equals . So
we can compute the percentage of the total load carried by each painter.

The front painter carries 70% of the load, and the rear painter 30%.

Analyze This
The diagram below depicts a yo-yo on an inclined plane with its string over a massless pulley and attached to a hanging block.
The whole system is in static equilibrium. 

Analysis

We start, as always, with a FBD. We are not told about the frictional condition of the surface, so we will leave off a friction
force on the yo-yo for now, and see what happens...

Let's take a close look at the FBD of the yo-yo. If we choose its center as a reference point, we see that the gravity force and
the normal force don't produce torques, but the tension force does. So this FBD is not correct, as the yo-yo cannot be in
static equilibrium with a net torque. There must therefore be a static friction force acting on its outer edge. We even know the
direction. About the center  of the yo-yo, the torque from the tension is counterclockwise, and to produce a balancing
clocwise torque, the static friction force must act down the plane. The new, corrected FBD for the yo-yo is:

vertical forces :

torques :

0 = −3W −W +N1 N2

0 = (0) +3W ( L)+W ( L)− ( L)N1
1
2

3
5

N2
3
4

L

= WN2
14

5

4W

= 0.7
N2

4W
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Next we apply the conditions of equilibrium – the sum of the forces and torques add up to zero. Clearly, doing this for the
block gives us that the tension equals the weight of the block. The FBD of the yo-yo gives three equations. Calling the radius
of the yo-yo's hub  and the radius of the yo-yo's outer rim , we have:

With static friction in play, we can also write down the constraint:

As usual, this relation becomes useful if we are told that the system is at some extreme, so that the friction force is
maximized. We can now start solving simultaneous equations, but with no knowledge of what we are looking for, we don't
know what variables to start eliminating with the algebra, so we will end the anlysis here.

This page titled 5.5: Static Equilibrium is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman
directly on the LibreTexts platform.

r R

:Fx

:Fy

τ (about center):

T −f −Mg sinθ = 0

N −Mgcosθ

fR−Tr = 0

f ≤ Nμs
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Sample Problems
All of the problems below have had their basic features discussed in an "Analyze This" box in this chapter. This means that the
solutions provided here are incomplete, as they will refer back to the analysis performed for information (i.e. the full solution is
essentially split between the analysis earlier and details here). If you have not yet spent time working on (not simply reading!) the
analysis of these situations, these sample problems will be of little benefit to your studies.

Problem 5.1
A bug stands on the outer edge of a turntable as it begins to spin, accelerating rotationally in the horizontal plane from rest at a
constant rate. The bug is held on the turntable by static friction, but as the turntable spins ever faster, this will not remain the
case forever.   The turntable, which has a radius of , has its rotational speed increase  at a steady rate from rest,
and reaches a speed of   after its first full revolution.

a. Find the linear speed of the bug after the turntable makes  full revolutions.
b. Find the coefficient of static friction if the bug falls off after the turntable makes  full revolutions.

Solution

a. In the analysis, we indicated a kinematics relationship between , , and . The angular acceleration is constant, so it
does not depend on the number of revolutions, and for  revolutions, , so the angular velocity after  revolutions is:

The linear speed is the angular speed multiplied by the radius, so:

b. In the analysis we derived a formula for the coefficient of static friction in terms of the angular velocity and acceleration.
Incorporating what we found above in terms of the number of full revolutions, we get:

Notice that unless the angular acceleration is very large so that the bug falls off very quickly –  in much less than a full
revolution ( ) – virtually all of the static friction force goes into maintaining the centripetal acceleration, and only a
very tiny fraction of the total static friction is involved with speeding up the bug.

Problem 5.2
The Blort Corporation makes a special widget that consists of a uniform disk pivoted around an axle at the end of a rod of
negligible mass, which in turn rotates about its other end. This widget has two settings: It can be set in the "locked" position so
that the disk does not rotate around its axle, or the "free" position so that the disk rotates frictionlessly about the axle. The
difference these settings have on the motion of the disk as the rod rotates is depicted in the figure below.
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An engineer for a company that uses the Blort widgets in their manufacturing wants to make sure that the power output of the
motor that turns the rod automatically adjusts so that the rod's rotation is the same  whether the axle is in the fixed or free
setting. The specifications of the widget indicates that the rod's length is equal to the diameter of the disk. By what factor must
the power output of the motor be adjusted between these two settings?

Solution

In the analysis, we calculated the kinetic energies for a given rotational speed for each of these settings. The power from the
motor goes directly into the kinetic energy of the widget, so the ratio of the kinetic energies will match the ratio of the power
outputs:

The length of the rod is the diameter of the disk, so it is twice the radius, giving:

Problem 5.3
A solid uniform sphere starts from rest and rolls down a flat ramp without slipping.

The sphere descends a vertical distance of  by the time it reaches the bottom, and it takes  to make the journey. Find
the angle that the ramp makes with the horizontal.

Solution

We know the final speed of the sphere from our analysis:
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The sphere started from rest, and as noted in the analysis, the acceleration is constant, so the average velocity is:

This number, along with the time, gives us the straight-line (along the ramp) distance traveled by the ball:

We now have the hypothenuse and opposite side of a right triangle, so we can get the angle:

Problem 5.4
A solid and a hollow sphere roll without slipping simultaneously (one behind the other) down a ramp and around a loop-de-
loop. The radii of the spheres are negligible compared to the radius of the loop.

Both spheres are released simultaneously from rest, and both barely make it around the loop. Find which sphere is in front of the
other, and the ratio of their starting heights.

Solution

In the analysis we found that if they have  the same velocity, the two spheres will have different kinetic energies. We also
found the speed either sphere must have in order to get all the way around the loop. Plugging this value into the kinetic
energies of the spheres tells us how much kinetic energy they must have to make it around:

Referencing zero gravitational potential energy at the bottom of the loop, at the top of the loop, the spheres alsoi have a
potential energy of . Given that they start from rest, they start with only potential energy, so that equals their total
energy:
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The hollow sphere needs to start higher, and since they start simultaneously from rest, the leading sphere is the solid one.
The ratio of their starting heights is:

Problem 5.5
One end of a massless rope is wound around a uniform solid cylinder, while the other end passes over a massless, frictionless
pulley and is attached to a hanging block, as in the diagram below. The block is released from rest, pulling the cylinder along
the horizontal surface such that it rolls without slipping.

The cylinder and block are both weigh . Find the tension in the string.

Solution

In the analysis, we found the final velocity of the cylinder after the block drops a distance . Plugging in equal masses for
the block and cylinder gives, and solving for the velocity of the block using, :

The acceleration of the block is constant, so from the kinematics equation with no time variable, we can get the acceleration:

The acceleration is a result of the net force, which is the vector sum of the downward gravitational force and the upward
tension force, so setting upward as the positive direction (making the acceleration negative), we get:

Problem 5.6
Two disks are cut out of the same material, as shown in the diagram below. They are pivoted around stationary axles such that
the two disks lie in the vertical plane, with their outer rims pinching a massless rope between them. The rope is pulled
downward, causing both disks to turn without the rope slipping.
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The smaller disk has one-third the radius of the larger disk. As the rope is pulled, power is delivered to the two-disk system. Find
the fraction of the total power delivered to the larger disk.

Solution

To find the fraction of the power delivered, we only need to figure out the ratio of the energy of the small disk to the large
disk at a given speed.  This ratio is:

We found these ratios in terms of the ratios of the radii of the disks in the analysis.

Nine times as much power goes to the large disk as the small disk, which means that 90% of the total power delivered by the
pulled rope is going to the large disk.

Problem 5.7
One end of a uniform metal thin rod is welded to the outer edge of a metal disk. The masses of these two objects are the same,
and the length of the rod is equal to the diameter of the disk. The disk is suspended on a frictionless axle positioned at its center,
and the rod is released from rest from a horizontal orientation and allowed to swing down to the vertical position.

The linear speed of the open end of the rod at the bottom of the swing is measured to be . The pendulum is then removed
from the axle and is swung in the same manner (from rest horizontally) with the open end of the rod now attached to the axle (so
the disk is swinging down). Find the linear speed of the bottom edge of the disk when it gets to the bottom of the swing.

Solution

Let's start by using our result from the analysis to determine what is given. We know that the linear speed of the bottom of
the rod is the angular velocity multiplied by the distance to the axle, so:
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We can solve for the value of  here, but as we will soon see, this is not necessary. We do, however, have to follow all the
same steps from the analysis for the new setup.  First, when pivoted at the open end of the rod, the center of mass of the
whole object descends a distance of  (twice as far as the previous case), giving:

The moment of inertia also changes. This time we have the rod about its end and the disk extended by the parallel axis
theorem:

Putting this into the energy conservation gives:

This is a bit slower than the previous case. The ratio of the two angular velocities are:

But we are interested in the linear velocity of the bottom of the disk. This is a distance of  from the axle, so using the
result above, its linear velocity is:

Problem 5.8
A small marble is attached to the end of a thin rigid rod with an equal mass, whose other end is held fixed at the origin. The rod
starts at rest in the  plane, and makes an angle  up from the -axis, as shown in the diagram.  There is no gravity present,
but the marble (not the rod) is subjected to a force from a potential energy field given by:

The values of the variables given above are:

a. Find the magnitude and direction of the angular acceleration when the rod is released. Express the direction of this
acceleration both as a unit vector and as either clockwise or counterclockwise from the perspective of this diagram.

b. Find the maximum angular velocity attained by the rod, and the orientation angle of the rod when this maximum is reached.

Solution
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a. As usual, most of the heavy-lifting in this problem was already done in the analysis. Using the expression for the angular
acceleration derived in the analysis, we have:

This vector is in the  direction, which points into the page, as we are using a right-handed coordinate system. From the
RHR, this direction is clockwise from the perspective looking at the diagram.

b. Note that the linear velocity is a maximum when the rotational velocity is a maximum, so if we write the rotational velocity
as a function of , we just need to do calculus to find where the maximum occurs:

From the result for the angular acceleration, we see that the extrema occur at , so  or  . All
of these angles satisfy   Next  we need to determine which ones  correspond  to the  maximum speed. Clearly the
maximum kinetic energy occurs when the potential energy is a minimum, and looking at the potential energy function, this
occurs when either  or  (but not both!) is negative. These two cases correspond to  and .  The other
two angles correspond to maximum potential energies, but since the marble starts with zero kinetic energy at a lower
potential energy, it can never reach these points. Therefore the only place where the marble (which starts at  and
accelerates clockwise) can reach a maximum speed is .

Let's call the length of the rod , as in the analysis.  When the marble gets to , the potential energy is:

Initially we had:

The object starts from rest, so its final kinetic energy is just equal to the amount of potential energy lost:

Plugging in for the moment of inertia of the whole object as found in the analysis, we get:

 

Problem 5.9
Returning to the physical system of problem 5.6, we consider a new question. As before, the cylinder rolls without slipping, and
the masses are equal (though here their exact values are not known).
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Find the minimum coefficient of static friction between the cylinder and the horizontal surface that will allow for this perfect
rolling to occur.

Solution

In the analysis we wrote down the equations that come from Newton's 2nd Law (for linear and rotational motion), and found
the accelerations of the cylinder and block. The if the cylinder is just barely rolling because the coefficient of friction is as
low as it can be, that means that the largest possible static friction is occurring:

Putting this into the -direction equation for the cylinder from Newton's 2nd Law, and plugging in the tension in the rope
and the acceleration (both found in the analysis) gives:

 

Problem 5.10
Two ends of a massless rope are wound around two spools with equal masses and radii. One of the spools is a solid, uniform
disk, while the other is a thin, hollow cylinder. The rope between them goes over a massless, frictionless pulley in a vertical
plane. The spools are released from rest from the same height, and the rope does not slip over the pulley.

The radius of the pulley is . Find the angle through which the pulley has turned when  has elapsed.

Solution

From the result in the analysis, we can compute how much additional rope is in play. It is simply twice the distance that the
spools fall:

The torques are the same on both spools, but the solid spool has one-half the moment of inertia of the hollow one, so it has
twice the angular acceleration, which means that over the same time period, it loses twice as much  rope. Let's call the
amount of rope lost by the hollow spool , so the amount lost by the solid spool is . The rotation of the pulley makes up for
this difference, which means it takes  from the side where the solid spool is, and places it on the side of the hollow spool.
Noting that the total rope lost by both spools combined is , and using the no-slipping condition, we have:

 

Problem 5.11
A board starts at rest and is free of any attachments (it is not pivoted on anything). It is pushed in opposite directions on both of
its ends with forces of equal magnitude, at right angles to the board. The forces continue to be applied at right angles with the
same magnitude, causing the board to rotate in the manner depicted in the diagram until the board has rotated by .
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The time it takes the board to rotate the  is . Derive an expression for the moment of inertia of this board in terms of , the
length of board , and the force .

Solution

The analysis showed us that wherever the center of mass happens to be, the torque applied is still equal to . Newton's
2nd Law for rotations gives:

The board starts from rest, and the torque remains constant, so it accelerates rotationally at a constant rate, which means its
motion satisfies the usual kinematics equation:

We know that the rod rotates through an angle of  radians, and we know the time elapsed is , so we can solve for  and
this gives our final answer:

Problem 5.12
The blob in the figure below is rigid and in static equilibrium. The two forces shown are two of the total of three forces exerted
on the object.

The magnitude of  is three-quarters the magnitude of . Find the equation of the line along which the third force acts. 

Solution

For this object to remain in equilibrium, the net torque about every point in space must vanish. Consider the reference point 
, . Both of the given forces act through this point, so neither of them provides a torque around this reference

point. There is only one more force present, and for the net torque around that reference point to be zero, the third force must
also contribute zero torque, and this is only possible if that third force passes through the reference point.

In the analysis we found the tangent of the angle the force vector makes with the -axis. This is the slope of the force line,
and we are given the ratio of these two force magnitudes:
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Now we know one point on the line and its slope, and these two quantities completely define it. Putting an arbitrary 
point and the reference point into the slope equation gives us the equation of the line:

Problem 5.13
Two painters carry a plank of plywood that they use for scaffolding over their heads on their way to the job site. The plank has a
uniform mass distribution. Atop the plank is a can of paint weighing one third as much as the plank. The painter in the rear is
holding the plank at the very end and the painter in front is holding the plank one quarter of the the plank length from the front.
The can of paint is two-fifths of the plank length from the front. The plank is horizontal as they carry it.

The can of paint weighs . Find how much force each painter is exerting on the plank.

Solution

As is typical for these types of problems, the analysis often solves the whole thing. In this case, we know that the plank
weighs three times as much as the paint, so the total weight carried is . We found in the analysis how the load is
distributed, so we have our answers already:

Problem 5.14
The diagram below depicts a yo-yo on an inclined plane with its string over a massless pulley and attached to a hanging block.
The whole system is in static equilibrium.

The inner radius of the yo-yo is half the outer radius, and the coefficient of friction is 0.40.

a. Find the maximum angle  for which this system can be at static equilibrium (assume that the hanging mass can be adjusted
to whatever is necessary).

b. The mass of the yo-yo is . If the angle  is at its maximum, find the hanging weight.

Solution

a. We have the equations of equilibrium from the analysis already. As the angle gets larger, the  equation shows that the
normal force on the yo-yo by the plane gets smaller. This reduces the value of the maximum static friction force available.
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When the angle is so great that the new maximum friction force equals the actual friction force, then making the angle any
larger would cause the yo-yo to slip. So the maximum angle without slippage means that . Now we do some
algebra.

Eliminate the tension first:

Next eliminate the friction force:

And now the normal force:

Plugging-in the given  and solving for  gives:

b. Now to find the hanging mass, we need the tension. From the three equations above, we see that we can get the normal
force from the mass of the yo-yo, the friction force from the normal force, and the tension from the friction:

This page titled Sample Problems is shared under a CC BY-SA license and was authored, remixed, and/or curated by Tom Weideman.
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6.1: Linking Linear and Angular Momentum

Rotational Impulse-Momentum Theorem
By now we have a very good sense of how to develop the formalism for rotational motion in parallel with what we already know about
linear motion. We turn now to momentum. Replacing the mass with rotational inertia and the linear velocity with angular velocity, we get:

The vector  is called angular momentum, and it has units of:

Continuing the parallel with the linear case, the momentum is relates to the force through the impulse-momentum theorem, which is:

While there is no need to append "cm" to the angular momentum as we do with the linear momentum, we do have to keep in mind that all of
the quantities in the rotational case must be referenced to the same point. That is, the net torque requires a reference point, and the angular
momentum contains a rotational inertia, which also requires a reference point.

Recall that the impulse-momentum theorem is just a repackaging of Newton's second law, and so it is with the rotational case, though there
is a twist, as we will see shortly:

Analyze This
Two uniform disks are free to rotate frictionlessly around vertical axles. Initially one of the disks is rotating, while the other is not.  They
are then brought together so that their outer edges rub against each other. Kinetic friction between the two rubbing surfaces slows down
disk #1, while speeding up disk #2.   This continues until their rotational speeds are such that no slipping occurs between the two
surfaces. With kinetic friction no longer present, they continue with constant rotational motion from this point forward.

Analysis

The surfaces stop slipping when the outer edges of the two disks are moving at the same linear (tangential) speed. We therefore have
the "after" constraint:

The friction force exerts torques on both disks. Newton's 3rd law ensures that each disk experiences the same magnitude of kinetic
friction, and for the same period of time, but the torques about their axles are different, because the moment-arms are not equal (the
disks have different radii). So the two disks experience different magnitudes of rotational impulse, and the ratio of the magnitudes of
these impulses is:

These rotational impulses equal the changes in the angular momenta of their respective disks, which we can write in terms of the
before & after values:
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Plugging these angular momentum changes into the impulse ratios above gives:

We can now use our constraint on the two "after" angular speeds to solve for each of them:

Link Between Angular and Linear Momentum
When there are several particles in a system, we find the momentum of the system by adding the momenta of the particles:

We have a definition for the angular momentum of a rigid object, but can we define the angular momentum of a single particle, and then add
up all of the angular momenta of the particles to get the angular momentum of the system, in the same way that we do it for linear
momentum? The answer is yes, but we have to be careful about our reference point. That is, to add the angular momentum of every particle
together to get a total angular momentum, the individual angular momenta must be measured around the same reference.

So how do we define the angular momentum of an individual particle around a certain reference point? Let's look at a picture of the

situation. The particle has a mass , a velocity , and is located at a position  with the tail of that position vector at the reference point.

Figure 6.1.1a – Angular Momentum of a Point Particle

If this particle was a part of a rigid body rotating around the reference point, the parallel component of the velocity vector would be zero. So
it makes sense to exclude that part of the velocity vector when defining the angular momentum of this particle. We know the rotational
inertia of the point particle, and the relation between  and , so we get for the magnitude of the angular momentum:

Suppose the particle continues moving free of any forces. What happens to its angular momentum? Let's look at what happens to the picture:

Figure 6.1.1b – Angular Momentum of a Point Particle
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What a mess! The mass and velocity vector remain the same, but everything else changes. How can we determine what happens to the
angular momentum? Well, have a look at Equation 6.1.2. With no force on the particle, there can't be any torque on the system, so the
angular momentum must remain unchanged. It turns out there is a simpler way to look at the angular momentum, to see why this must be
the case.

Figure 6.1.1c – Angular Momentum of a Point Particle

We can define the quantity  in a manner similar to how we defined moment arm – it is the perpendicular distance from the reference point
to the line along which the particle is moving. Doing this gives us an alternative way of writing the magnitude of the particle's angular
momentum. Using the fact that , we have:

Now it is quite easy to see that the angular momentum of the particle doesn't change while it moves – it keeps the same mass and speed, and
stays on the same line, so  doesn't change either.

Angular momentum is a vector, so what direction does it have here? Going back to the idea of this particle being part of a rigid object, it's
clear that this object would be rotating clockwise around the reference, so from the right hand rule, the vector must point into the page. We
would like a mathematical expression of this, and as with the case of torque, it comes from the cross product. The two vectors involved are
the position vector and the velocity vector, and indeed we see that the following cross product results in the correct direction, and takes care
of the  contribution as well:

This is a nice, compact expression of the relation between the linear momentum of a particle and its angular momentum around a reference
point. To see this relation come full circle, imagine that a force is exerted on the particle. This would cause the momentum to change. It
would also result in a torque on the system about the reference point, causing the angular momentum to change. Taking the derivative of
Equation 6.1.7 with respect to time gives:

The velocity vector is parallel to the momentum vector, so the cross product in the first term is zero, leaving us with a relation between
torque and force that we have seen before (Equation 5.4.6).

Now that we can deal with the angular momentum of a single particle relative to some reference point, we can simply add the contributions
of many such particles within a system, relative to the same reference point:
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Note that these particles may be part of a rigid object, or may not be bound to each other at all. If they happen to be bound into a single rigid
object rotating around a fixed point on the object, then the result is more easily expressed in terms of the rigid object's rotational inertia and
angular velocity (Equation 6.1.1):

Consider next an extended object that is not rotating, but is moving in a straight line relative to some reference point. Despite the fact that it
is not rotating, it can have angular momentum relative to that reference point. Writing the angular momentum of the whole object as a sum
of the angular momenta of its particles, we get:

With the object not rotating and all the particles held rigidly in place, every particle has the same velocity, which equals the velocity of the
object's center of mass, so this can be factored out of all the cross products, giving:

What this means is that an extended object moving in a straight line has the same angular momentum relative to a reference point as a point
particle located at the object's center of mass, with the same mass and velocity.

If the extended object has both its center of mass moving at a constant velocity relative to the reference point and it is also rotating around
an axis through its own center of mass, then things get complicated. We won't into the details of the most general case, but it is not
unreasonable to consider the case of the linear velocity lying in the plane perpendicular to the rotation vector (e.g. an object moving within
this screen while rotating around an axis perpendicular to this screen – see Figure 6.1.2).

Figure 6.1.2 – Total Angular Momentum

The total angular momentum comes out to be reminiscent of the parallel-axis theorem and of the kinetic energy being the sum of linear and
rotational parts:

An interesting and important consequence of this is that an object that is only rotating around its center of mass (but not moving linearly)
has the same angular momentum measured relative to every reference point.

Analyze This
The center of a uniform solid disk is threaded onto an axle at the end of a thin uniform rod. The rod and the disk have equal masses, and
the radius of the disk is one-third the length of the rod. The rod is attached to a fixed pivot point at its other end, around which it is free to
rotate. With the rod and disk both starting from rest, a force of constant magnitude is exerted tangent to the edge of the disk at the point
farthest from the pivot for a short time. There is no gravity present.
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Analysis

We'll start by creating a couple of labels. The mass of the disk and the rod are the same, and we will call this mass . The radius of
the disk we will call , and the rod is three times this long, so its length is .

The disk + rod system is given a rotational impulse about the pivot point, so its angular momentum will change. The force exerted is a
distance  from the pivot, and is directed perpendicular to the line joining the pivot and the point where it acts, so it delivers a total
torque of . Multiplying this constant torque by the time span over which it acts gives the total impulse, and therefore the
total angular momentum of the system.

This angular momentum is manifested in three ways: 1. The disk rotates around its center, 2. The disk moves in a circular path around
the pivoted end of the rod, 3. The rod rotates around its pivoted end. The rotational speeds for the last two cases are the same, and
we'll call this speed . The rotational speed of the disk about its center we'll call . With these definitions in place, the magnitude
of the angular momentum of the system about the fixed pivot is:

Plugging-in  (the center of mass of the disk is one rod-length from the pivot) and the moments of inertia of the rod and disk,
we get:

We know this equals the impulse delivered by the torque, but the problem is well-specified, so we should be able to to do more than
write the answer in terms of two angular speeds – they should be related to each other somehow. To work this out, we have to deal
with the disk and rod as separate systems. A couple of free-body diagrams are therefore called-for:

A quick explanation of these FBDs:  is the normal force by the axle on the disk, reacting to the applied force .  is the "tension"
force keeping the disk moving in a circle.  is the vertical force by the pivot that makes sure there is a net force which keeps the
center of mass of the rod moving in a circle. Neither  nor  contribute to any torques. We'll say that  and  act for a time  to
contribute to their respective rotational impulses.

The net torque on the rod about the pivot is . Multiply this by the time it acts (and remembering that it starts from rest), we have,
from the impulse-momentum theorem:

The net torque on the disk about its center is , so:
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[Note: While it might appear as though this rotational impulse determines the rotational motion of the disk relative to the rod, it does
not. The resulting motion is the total angular velocity (relative to the lab). If this force was zero, and the rod is made to turn without
any torque on the disk (i.e. the force is applied to the rod instead of the disk), the disk would maintain its orientation relative to the
lab as the rod rotates, turning relative to the rod in the opposite direction at the same rate that the rod rotates. In this case,  would
be zero, which matches the zero value of .]

We need one more equation, and it comes from the linear impulse-momentum theorem for the disk. From the FBD, we see that the net
force on the disk is , and this results in a change of (tangential) momentum of . The final linear velocity of the disk's
center of mass is directly related to  (it moves with the end of the rod) so:

Putting these last three equations together gives a relationship between  and :

This can be put back into the equation for the system's total angular momentum to get:

This page titled 6.1: Linking Linear and Angular Momentum is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom
Weideman directly on the LibreTexts platform.
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6.2: Effects of Torque

Gyroscopic Precession
Back in Section 1.6 and Section 1.7, we discussed circular motion at constant speed as motion that occurs because a net force
pulling an object toward a central point causes the object's velocity vector to only change direction, and not magnitude. At the time,
we hadn't yet discussed momentum, but clearly we can now replace "velocity vector" in the previous sentence with "momentum
vector." We can write Newton's second law (Equation 4.1.4) in terms of the changing magnitude and direction of the momentum:

Circular motion at a constant speed would exhibit no change in the magnitude of momentum – the first term in Equation 6.2.1 is
zero – while all of the force would go into changing the direction of momentum. As we saw back in Section 1.6, the two terms in
Equation 6.2.1 are always perpendicular to each other, which means that the net force on an object going in a circle at a constant
speed is always perpendicular to the momentum vector.

None of this is new to us, but as we have been doing for the last two chapters, we will now look at the rotational equivalent of this
behavior. Switching Equation 6.2.1 to the rotational equivalent gives:

We are already aware of how a net torque can change the magnitude of an object's angular momentum – speeding up and slowing
down rotation is something we have already looked at in detail. But what if we insist that the magnitude remain constant (the object
maintains the same rotational inertia and keeps spinning at a constant rate), while only the the direction of motion changes? That is,
what if the first term in Equation 6.2.2 is zero, while the second term is not? How can we construct a physical system that behaves
this way? Answering this last question will require quite a lot of facility with the right hand rule, but here goes...

We start with a rotating object. We'll use as our model a bike wheel turning around an axle. The angular momentum vector will
point along the axis of the wheel according to the right hand rule. Now we need a net torque that points perpendicular to the
angular momentum. We can achieve this by placing on end of the wheel's axle on a support and allowing the weight of the wheel to
pull it down as the support pushes up.

Figure 6.2.1 – Gyroscopic Precession

There is clearly a net torque around the pivot at the point of support, trying to turn the wheel clockwise in Figure 6.2.1. But the
direction of the torque vector, according to the right hand rule, is into the page. This torque vector points in a direction that is
perpendicular to the angular momentum vector, exactly as we required above.

The next question is, how does this system behave? In the case of the object going in a circle at a constant speed, the momentum
vector of the object never changed length, it only rotated its direction. The way that it rotated was the change of the linear velocity
vector pointed in the direction of the force (see Figure 1.7.1). To follow this same behavior, the point of the angular momentum
vector must turn in the direction of the torque vector, which is into the page. That is, to behave Newton's second law for rotations,
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this wheel should not fall down, but instead should rotate into the page! In fact it does exactly this, rotating around the pivot in a
counterclockwise direction as viewed from above. This phenomenon is known as gyroscopic precession.

While this is certainly a striking phenomenon to witness first-hand, it is quite ubiquitous in everyday life. Everyone who rides a
bicycle knows that getting it to turn is a matter of leaning, not turning the handle bars. To see how this is an example of gyroscopic
precession, consider the following force diagram of a tilted wheel:

Figure 6.2.2 – Free-Body Diagram of a Tilted Wheel (Forces, End View)

The fact that there is only one force in the horizontal direction (the friction force) means that this wheel's center of mass must be
accelerating to the left. If this wheel is stationary, then this is certainly happening as the wheel falls over to the left. On the other
hand, if the wheel is rolling forward (into the page), and this tilt is a result of turning, then it is not falling over, but its center is
mass is still accelerating to the left (centripetally, toward the center of the turn).

This explains how the tilt results in a change of the wheel's direction of motion, but not its change of orientation. That is, why does
the wheel turn as its center of mass changes direction? For an explanation of this, we can look at the torques and the angular
momentum vector. Again assuming that the wheel in the diagram is rolling into the page, the angular momentum vector measured
around the center of mass points to the left (and slightly downward).

Figure 6.2.3 – Free-Body Diagram of a Tilted Wheel (Torques, Rear View)

The direction of the net torque around the center of mass is difficult to determine directly. Gravity provides no torque, and the
friction and normal forces give opposing torques. But if we choose a reference point where the wheel contacts the road, it is clear
that about that point the torque is counterclockwise (only gravity contributes). If the forces act to torque the wheel
counterclockwise around that reference point, clearly the net torque around the center of mass will be counterclockwise as well.
[Note: It won't be as large of a torque around the center of mass as there is around the road contact point. The weight and normal
forces are equal (the wheel is not accelerating vertically), and the moment arm for gravity around the road contact is the same as
the moment arm for the normal force around the center of mass, so those provide equal counterclockwise torques. But for the
center of mass reference point there is an additional torque applied by the friction force, and it is clockwise, reducing the net
counterclockwise torque.]

A counterclockwise net torque gives (through the right hand rule) a torque vector that points out of the page. This causes a change

in the angular momentum vector out of the page, according to the second law. For  to gain a component pointing out of the
page, the wheel has to turn left.

It turns out, however, that the change of angular momentum of the spinning wheel about its center is not the only way that this
phenomenon is manifest here. In fact, it's not even the greatest contributor to turning-by-leaning. Consider ice skaters. They too
change direction by leaning, but they don't have rotating wheels to perform this gyroscopic effect for them. In this case, the
diagram is the same (to avoid sketching an entire ice skater, we'll draw just the ice skate):

L
→

cm
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Figure 6.2.4 – Free-Body Diagram of a Tilted Ice Skate (Rear View)

While there is no rotating wheel here, there is angular momentum relative to the reference point. The ice skate is moving into the
page, and as we know, objects moving in straight lines do have angular momentum relative to reference points that don't lie along
the line of linear motion. The magnitude of this angular momentum is  about the reference point indicated, but we are
more interested in its direction. The position vector points from the reference point to the center of mass of the skate, and the

momentum vector points into the page, so  points to the left and slightly down, just like it was for the bike wheel's
rotation. The result is the same – the torque about the reference point causes this angular momentum vector to turn in a direction
that is out of the page, which means the skate turns left.

Note that the bicycle has this same thing going on – the center of mass of the bike + rider has an angular momentum relative to the
point where the wheel contacts the ground, and leaning to one side or the other will turn the entire system, not just the wheel.

Let's return to the original example of the precession of a wheel pivoted about an end of its axle. The torque remains constant in
magnitude, which means that the angular momentum vector changes at a constant rate – the wheel therefore precesses around the
pivot at a constant rate. Let's see if we can determine the rate of this precession, i.e. its rotational velocity around the vertical axis
(not around the axle of the wheel - we already know that). Rather than try to slog through all the vector calculus, let's do this by
following our circular motion analogy.

Figure 6.2.5 depicts a stone tied to a string going in a counterclockwise circle at a constant speed. The four diagrams are snapshots
of the motion at four different times, separated by one-eight of a rotational period. Below each diagram is a depiction of the net
force vector on the stone and its linear momentum vectors at that moment in time (note these vectors are always perpendicular, as
they should be).

Figure 6.2.5 – Force and Momentum Vectors for Stone in Circular Motion

Let's compute the angular rate (which we will call  to avoid later confusion with the  for the wheel) of the rock going around the

circle in terms of the magnitudes of  and . The magnitude of the force is the mass of the rock multiplied by the centripetal
acceleration:
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That's quite compact! Okay, let's follow precisely this path for the precessing wheel. We start with a similar diagram of a top view
(gravity is acting into the page).

Figure 6.2.6 – Torque and Angular Momentum Vectors for Precessing Wheel

The main difference that jumps out between Figure 6.2.5 and Figure 6.2.6 is that for the stone, the momentum is tangent to the
circle while the force is radial, while for the wheel, the angular momentum is radial and the torque is tangent. Other than that,
however, these follow each other exactly – the force/torque is perpendicular to and "leads" the momentum, as they both revolve
together. Given that they follow the same behavior and have exactly the same differential relationship (the force/torque is the time
derivative of the momentum), it's perfectly reasonable to expect that the rotational frequency would have the same relationship.
Namely:

If you are not comfortable with this "derivation by analogy," then you can reach the same result quickly using Equation 6.2.2.  The
rate at which the wheel is spinning about its axle  doesn't change, which means that the magnitude of its angular momentum
remains constant, and the first term is zero. Solving the remainder of the equation for the rate at which the direction is changing
requires only a division of both sides by the magnitude of the angular momentum, giving the same result as above.

We can write this in terms of the rotational inertia of the wheel about its axis , the rotational speed of the wheel , the length of
the axle  (the distance from the pivot to the center of mass of the wheel + axle), and the mass of the wheel . The torque can be
quickly calculated with a quick look at Figure 6.2.1, and plugging in for the angular momentum of the wheel, we get the precession
speed:

It should be noted that when the wheel precesses, the system is now also rotating it a horizontal plane, which gives it a component
of angular momentum vector in the upward direction, and this angular momentum is also affected by the torque. This effect
becomes progressively easier to ignore for a given setup as the wheel spins faster about its axis, because according to Equation
6.2.5, the faster the wheel spins about its axis, the slower it precesses, and the slower it precesses, the smaller the upward
component of angular momentum. In any case, this secondary effect manifests itself as a bobbing up-and-down of the wheel as it
precesses, and is known as nutation.

Conceptual Question
A wheel whose axis is vertical (i.e. the plane of the wheel is parallel to the ground) rotates clockwise as viewed by someone
looking down at it. If a small nudge is given to the top of the axis of this wheel toward the south, which way does the top of the
axis move in its immediate response to this nudge?

a. south
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b. north
c. east
d. west
e. It does not move, the gyroscopic effect prevents it from moving at all.

Solution

(d)  Using the RHR, the clockwise rotation when looking down on it corresponds to an angular momentum vector that points
downward. Imagine you are facing the spinning wheel from the north side (i.e. you are facing south), and push it at its top
with the fingers of your right hand pointing upward. Your right hand will curl such that your thumb is pointing to the left,
and that is the direction of the torque you are imparting on the wheel. The angular momentum vector that points down will
change in the direction of the torque, so the axis of the wheel will tilt such that its bottom rotates in the direction of your
thumb, which means the top of the axis will rotate the other way (to your right). If you are facing south, then a tilt to the right
is toward the west.

Central Forces
Consider a flat disk rotating around its center. Every particle in this object is following a circular path, and so every particle is
experiencing a net force. We might therefore ask how angular momentum can be conserved – with net forces on every particle, the
forces on them are not cancelling-out. The answer is that net force is not the same thing as net torque. Measured from the fixed
reference point, the force vector on every particle in the object points parallel to the position vector, which means the torque (the
cross product of position and force) on every particle is zero. We can in fact elevate this idea to a very general rule, which first
requires a definition:

Definition: Central Force
A central force is a force (which can act on many objects) that is directed directly toward or directly away from a single fixed
point in space.

And from the preceding discussion, we saw that whenever the force vector is parallel to the position vector, if we choose the
“source” of the force to be our reference point, we conclude:

Central forces do not exert torques (relative to the central point) on the objects they influence, and therefore angular momentum
around the central reference point is conserved.

Analyze This
Consider this position-dependent force:

A rock is tied to a string whose other end is held fixed at the origin, and is then set into circular motion in the  plane (there
is no gravity present). While the rock is moving at a constant speed in a circle, the force described above is turned on.  The
string later breaks and the rock eventually crosses the -axis.

Analysis

This force can be rewritten in terms of the position vector relative to the origin as:

Clearly this force points directly away from a single point (the origin), which makes it a central force. This means that it
exerts no torque around the origin, which also means that it cannot change the angular momentum relative to this point.
When the force is turned on, it therefore has no effect on the speed of the rock while the rock remains attached to the string.
When the string breaks, the rock will neither follow a straight line, nor will it maintain a constant speed, but with only the
central force acting on it, the angular momentum remains constant. We can easily compute the angular momentum it started
with in terms of its speed while on the string, its mass, and the length of the string. It is:
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After the string breaks, when the rock reaches the -axis, its position on the axis and the angle its velocity vector makes with
the axis are related to the perpendicular distance , as can be seen in this diagram:

The angular momentum at the -axis is , so setting this equal to the starting angular momentum, we can solve for :

This page titled 6.2: Effects of Torque is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman
directly on the LibreTexts platform.
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6.3: Applications of Angular Momentum Conservation
If we continue to follow the trail we blazed in linear motion, our next step is to consider what happens when we choose a system
for which there are no external rotational impulses. For such a system, we can declare the angular momentum to be conserved
before and after any event, however complicated the internal interactions might be.

In the linear case, we saw that the primary application of momentum conservation was related to collisions, because it was useful to
ignore the complicated forces that come about between the colliding objects. What sorts of problems might angular momentum
conservation be useful for solving? There are actually three basic varieties that commonly arise in classical mechanics, and we will
look each one in turn.

Spinning Collisions
Two uniform solid disks with small holes in their centers, are threaded onto the same frictionless vertical cylindrical rod. One of the
disks lies flat on a frictionless horizontal surface and is rotating at a speed  around the rod, while the other disk is held at rest
directly above it. Both disks are made from the same material, and have the same thickness, but the spinning disk has twice the
radius of the stationary disk. The smaller disk is then dropped on top of the larger one, and after a short time the kinetic friction
force between the two disks brings them both to the same rotational speed, which is a fraction of the larger disk's original speed.
Find this fraction, and the fraction of the original kinetic energy still left the system afterward (it loses some from work done by
kinetic friction).

Figure 6.3.1 – Rotating Disk Inelastic Collision

This is clearly the rotational version of a perfectly inelastic collision, as both of the objects end up moving together. We solve it in
the same way that we solve the linear counterpart – by noting that the only torques involved are internal to the two-disk system,
which means that the total angular momentum is the same before and after the collision.

Because it has the same thickness and is made from the same material, the ratio of the two disks' masses equals the ratio of their
areas. With one-half the radius, the smaller disk therefore has one-fourth the mass, and we get:

Now for the fraction of kinetic energy leftover:

We can actually achieve this last answer even more easily using :

ωo

} ⇒ =
before :

after :

= + (0)Ltot I1ωo I2

= ( + )Ltot I1 I2 ωf

ωf

I1

+I1 I2
ωo (6.3.1)

= M ⇒ = ( M) = ⇒ = =I1
1

2
R2 I2

1

2

1

4
( R)

1

2

2 1

16
I1 ωf

I1

+I1
1

16
I1

ωo

16

17
ωo (6.3.2)

} ⇒ = = =
K =Eo

1
2
I1ω

2
o

K = ( + )Ef
1
2
I1 I2 ω2

f

KEf

KEo

( + )1
2
I1 I2 ω2

f

1
2
I1ω

2
o

( )17
16
I1 ( )16

17
ωo

2

I1ω2
o

16

17
(6.3.3)

=Lo Lf

= = = =
KEf

KEo

1
2
Ifω

2
f

1
2
Ioω

2
o

Io

If

( )Ifωf
2

( )Ioωo
2

Io

If

L2
f

L2
o

I1

+I1 I2

(6.3.4)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63012?pdf
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD:_Classical_Mechanics/6:_Angular_Momentum/6.3:_Applications_of_Angular_Momentum_Conservation


6.3.2 https://phys.libretexts.org/@go/page/63012

Analyze This
A large uniform-density disk of radius  rotates in a horizontal plane around a frictionless axle with a rotational speed . This
disk includes a vertical post located a distance half its radius from its axle, and onto this axle is placed (very suddenly) a second
disk with half the radius of the larger disk. The second disk is made of the same uniform material as the larger disk, and has the
same thickness.

Analysis

The angular momentum about the axle of the two-disk system is conserved, as there are no external torques introduced. The
starting angular momentum is clear: The smaller disk starts with zero angular momentum, and the larger disk's angular
momentum is:

Expressing the angular momentum after depends upon whether the two disks become a single "rigid body". A rigid body is
an object for which all of its parts remain at their same relative positions.  If there is no friction between the two disks, then
as the large disk rotates, the smaller disk retains its same orientation relative to the Earth. This is because without friction,
the large disk can only affect the motion of the smaller disk through its interaction at the axle, and this cannot produce any
torque with which to start the smaller disk rotating. On the other hand, if there is friction between the two disks, then
eventually they have no relative sliding, and the two are effectively behaving like a single rigid body.  Let's address each
case separately...

no friction

In this case, after the small disk is dropped onto the axle, it has only orbital angular momentum, as it does not spin on its
axis. If we call its mass , then this orbital angular momentum is found using its speed and the radius of its orbit, :

With half the radius, the area of the smaller disk is one quarter the area of the larger disk, which means it has one quarter
the mass of the larger disk. Putting  into the angular momentum of the smaller disk and adding it to the angular
momentum of the larger disk gives the "after" angular momentum:

Invoking angular momentum conservation gives the final angular velocity in terms of the initial angular velocity:

friction

If the two disks experience kinetic friction after they make contact, and we wait until they stop skidding across each other,
then the "after" situation is a rigid body. We can solve this in two equivalent ways: 1. We can compute the moment of inertia
of the two-disk system using the parallel axis theorem and the additivity property, then multiply this my the final angular
speed to get the final angular momentum. 2. We can continue to treat the disks separately, and add-in the spinning portion of
the smaller disk's angular momentum to the "after" tally. We will do method #2 here.
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Note that once the disks are no longer sliding, the rotation rate of the smaller disk about its axis in the Earth frame is the
same rate as the larger disk – it reaches the same orientation relative to the Earth that it started with after one full
revolution. The spin portion of the angular momentum is therefore the moment of inertia of the small disk about its center
times the final angular speed:

Adding this into the  and recomputing the final rotational speed gives:

Changing Rotational Inertia
A child stands on the outer edge of a merry-go-round, which is spinning around a fixed axle on a horizontal frictionless surface.
The merry-go-round is a solid, uniform disk with ten times the mass of the child, and is spinning at a rotational speed . The child
then slowly walks to the center of the merry-go-round. What, if anything, happens to the rotational speed of the merry-go-round?

Figure 6.3.2 – System Changes Rotational Inertia While Rotating

Before we invoke angular momentum conservation and launch into the mathematics, it might help to think about this in a "less
evolved" manner – let's think about the internal interactions in the child + merry-go-round system. When the child takes a step,
toward the center, they are moving from a faster moving part of the merry-go-round to a slower part. This means that the merry-go-
round will exert a static friction force on the feet of the child tangent to the circular motion, acting to slow them down. There is, of
course, a Newton's third law pair friction force on the merry-go-round by the feet of the child in the opposite direction, which
results in a torque that acts to speed up the merry-go-round's rotation. So we would expect the linear speed of the child to slow with
every step, as the merry-go-round's rotational speed increases. The details of these changes are hard to work out using the details of
the interaction, so now we turn to momentum conservation, which we know holds because the only forces/torques acting are
internal to the system.

Calling the mass of the child  and the radius of the merry-go-round , we can write down the angular momentum referenced at
the axis of the merry-go-round before and after, and invoking angular momentum conservation makes the rest easy:

The rotation rate of the merry-go-round increases by 20%. It's interesting to note that there is no physical equivalent of this
phenomenon in linear mechanics. That is, we don't see closed systems losing linear inertia (mass) and maintaining their momentum
by compensating with a larger linear velocity.

It's also interesting to consider what happens to the kinetic energy of the system during this process. Like kinetic energy for linear
motion, we can write it in terms of the momentum and inertia:

Given that the angular momentum doesn't change, the kinetic energy goes up in the same proportion that the rotational inertia goes
down. Where does this increase in kinetic energy come from? Where is work done? When the child just stands at the edge of the
merry-go-round, the static friction force acts toward the center of rotation, but it does no work, because it is acting perpendicular to
the direction of the child's motion. But as the child starts moving inward, this static friction is doing work. In the end, the kinetic

= = m = ( M) = MLspin Icenterωf

1

2
r2ωf

1

2

1

4
( R)

1

2

2

ωf

1

32
R2ωf

Lafter

= M ⇒ = ωLafter

19

32
R2ωf ωf

16

19

ωo

m R

} ⇒ =
before :

after :

= [ + ] = [m + (10m) ] = 6mLtot Ichild Imgr ωo R2 1
2

R2 ωo R2ωo

= [ + ] = [ 0 + (10m) ] = 5mLtot Ichild Imgr ωo
1
2

R2 ωo R2ωf

ωf

6

5
ωo (6.3.5)

KE = ⟺ KE =
p2

2m

L2

2I
(6.3.6)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63012?pdf


6.3.4 https://phys.libretexts.org/@go/page/63012

energy of the merry-go-round equals its starting kinetic energy, plus the starting kinetic energy of the child, plus the work done by
the static friction force.

It turns out that showing this for this case requires fancier integration to calculate the work than we want to do here, so let's try a
simpler example. Let's let the mass of the merry-go-round be negligible compared to the mass of the child. Furthermore, we'll have
the child walk halfway to the center of rotation (we can't let the child walk all the way in, or the massless merry-go-round will be
spinning infinitely fast!).

First, let's compute the kinetic energy change of the system using angular momentum conservation (note that the merry-go-round
doesn't contribute at all now, making things significantly easier):

As we saw above, the proportional increase in kinetic energy is the same as that of the rotational velocity, so the kinetic energy
increase of the system is:

Okay, now let's see if we can calculate the work done by the static friction force. The force that keeps the child going in a circle
equals the mass of the child multiplied by the centripetal acceleration, so a force barely exceeding this amount will get the child
moving inward. We don't want the child to accelerate appreciably in the radial direction (the child stops at the new radius and it
doesn't matter how long it takes to get there), so we can use this as the force that is doing work. The only trouble is, this force
changes as the child moves inward, because the rotational speed and distance from the center are changing all the way. We can
determine how the rotational speed varies with the child's distance from the center using angular momentum conservation, which
allows us to write the force as a function of  as follows:

Now we have only to do the work integral. The displacement is toward the center (  is getting smaller), so , and the force

is in the direction of displacement, so . And the limits of integration are from  to :

Comparing this with Equation 6.3.8, we see that the work done in moving the child inward is precisely equal to the change in the
system's kinetic energy.

Conceptual Question
A glass of ice water rests on the outer edge of a solid, uniform, rotating disk, which is spinning horizontally around its
frictionless axle. The glass is a cylinder with a mass equal to one half the mass of the disk, and a radius that is one third the
radius of the disk. Condensation at the bottom of the glass causes the coefficient of static friction on the top of the disk to go
down, and the glass suddenly slides off. After this occurs, the rotational speed of the disk:

a. slows down
b. speeds up
c. stays the same
d. There is no way to tell from the information given

Solution

(c)  Don't be fooled by all the details given – the rotational speed of the disk doesn't change! When the static friction force
goes away, the system continues with its angular momentum, but you can't erase the glass of water from the system just
because it slid away. Yes, the rotational inertia of what is going around the axis has changed, but as the glass slides away, it
still has angular momentum (it will be a combination of its rotation about its center and movement relative to the axle, see
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Equation 6.1.13 and Figure 6.1.2). In fact, the glass will continue to have the same angular momentum that it had right
before it started sliding, since there is no net torque on it. If the whole system maintains its angular momentum, and the glass
keeps the same angular momentum, then the disk must as well – it doesn't change speed at all.

Off-Center Collisions
Of all the problems that are solvable with angular momentum conservation, those that fall into the category of "off-center
collisions" are the most interesting and complex. One reason is that unlike the cases of spinning collisions and changing rotational
inertia, off-center collision problems often see cameo appearances from linear momentum conservation. Additionally, the fate of
the system's mechanical energy becomes more interesting.

We begin with a problem that we are already familiar with from Section 4.6 – the ballistic pendulum. We were able to solve that
problem by first solving the perfectly inelastic collision of the bullet & block to get their combined velocity, after which we used
mechanical energy conservation to get the height to which the bullet & block swing. We will be more careful about extension in
space (and the implications to rotational inertia) by replacing the bullet & block with two small clay balls that stick together. Also,
we will not bother to look at the second half of the problem where the pendulum swings up, as the mechanical energy conservation
portion of the problem is unchanged.

Figure 6.3.3 – Ballistic Pendulum with Two Small Clay Balls

If we choose the position where the string is attached to the ceiling as a reference point, we note that at the moment of the collision,
the gravity and tension forces both act through the reference point, which means that there are no external torques on the system.
The bullet and block exert torques on each other, but those are internal and cancel each other. Therefore, as an alternative to using
linear momentum conservation, we can use angular momentum conservation.

Before the collision, the pendulum (the length of which we will call ) has no angular momentum relative to the reference point, but
the bullet does, according to Equation 6.1.6:

After the collision, the pendulum is rotating, and has a rotational inertia around the reference point, resulting in a final angular
momentum of:

And setting the initial angular momentum equal to the final gives the same result as when we used linear momentum (Equation
4.6.1).

Using angular momentum conservation is no longer optional – it is a requirement – when the target is not just a small ball at the
end of a string, but is an extended object with a rotational inertia.

Figure 6.3.4 – Ballistic Pendulum with One Clay Ball
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We know that the rotational inertia for this target around the reference point is less than it was when the target was a clay ball, since
some of its mass is closer to the reference point. We will write the rotational inertia as some unknown fraction  multiplied by the
rotational inertia of a small ball at the end of a string:

For example, if this target is a uniform thin rod, then Equation 5.2.7 applies, and , or if the target is a uniform disk or
cylinder pivoted about an axis perpendicular to its flat side and about its edge, then Equation 5.2.23 applies, with , giving 

, and so on.

Applying angular momentum as we did above, we can find the final speed of the blob of clay and/or the rotational speed of the
pendulum. The initial angular momentum is the same as before, so:

The claim was made above that we no longer have the option of using linear momentum conservation for this problem. Before we
see why this must be true, let's show that it is true for the specific case of a uniform thin rod that has the same mass as the clay (

). If we use linear momentum conservation, then when the clay is stuck on the end of the rod, the center of mass velocity
of the rod + clay system is:

The center of mass of the rod + clay system is halfway between the center of mass of the rod and the position of the clay, so it is a
distance of  from the reference point. With a linear speed of , we get that the pendulum should have a rotational speed of:

Let's check to see if this is right by plugging  (for a thin rod rotated around its end) and  into Equation 6.3.14:

So we see that using linear momentum conservation does not agree with using angular momentum conservation in this case. The
reason is the presence of the pivot. The pivot will never exert a torque on the rod relative to the reference point, but it will exert a
force on it, thereby ruining linear momentum conservation. But this brings up another puzzle: Whatever force the pivot exerts, it
causes the speed of the center of mass to be greater after the collision than we found for conserved linear momentum, so the force
on the rod by the pivot must be forward. That doesn't sound right – doesn't the pivot slow down the rod? To solve this puzzle, we
get to look at yet another case – an off-center collision with no fixed pivot.
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Let's do the same clay-hits-end-of-uniform-thin-rod-with-same-mass problem as above, this time free of any pivot (we'll also
assume no gravity is present). First of all, we know that without a force coming from the pivot, the result we obtained in Equation
6.3.15 must be correct, as linear momentum must be conserved. Also we know that after the collision, with no forces on the clay +
rod system, it must rotate around its center of mass. This calls for a fresh new diagram:

Figure 6.3.5 – Off-Center Perfectly Inelastic Collision

With the rod rotating counterclockwise, the bottom of the rod must be moving forward faster than the system's center of mass,
while the top of the rod might actually be moving backward, depending upon the values of ,  and . If this turns out to be the
case, then it makes sense that a pivot could push the rod forward upon impact – the rod's rotation is fast enough compared to its
linear motion that the top "tries" to move backward, but is prevented from doing so by a forward push from the pivot. Okay, let's
see if this is the case mathematically.

At the moment of the impact, we have:

Now we need to come up with . Even though linear momentum is conserved in this case, Equation 6.3.16 still isn't correct, as it
assumes that the top end of the rod is held fixed. We need to use angular momentum conservation. Without a fixed pivot, what do
we use as a reference point? The answer is anywhere – the angular momentum is conserved relative to every reference point!
However, if we are carefree about this choice, we have to be extra careful when adding up the angular momentum after the
collision. In the case of a fixed pivot, it was easy because we were able to use the rotational inertia around that point. When we
have no fixed point on the object, we have to use Equation 6.1.13. So why not use the center of mass of the clay + rod system at the
time of collision as the reference point, and get rid of that pesky second term from Equation 6.1.13?

It's clear from the diagram that  is , but we need to do a little bit of work to determine the rotational inertia of the system
around its center of mass. This will be the sum of the rotational inertia of the point mass clay and the rotational inertia of the rod
about its center (Equation 5.2.19), offset (using the parallel-axis theorem) by :

Invoking angular momentum conservation and plugging in for  and  gives:

Plugging this back into Equation 6.3.18 confirms what we suspected, that without the top end fixed, its initial motion after the
collision is backward, which is why the force by the pivot must be forward when it is attached:
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This has been a long journey through off-center collisions, but we have one more stop – the fate of the system's mechanical energy.
We explored perfectly inelastic head-on collisions in Section 4.5, and found a simple relation between the starting and ending
kinetic energies of the system – Equation 4.5.7. Given that the final speed of the center of mass of the system has to be the same
regardless of whether the collision is head-on or off-center, Equation 4.5.7 clearly cannot work for off-center collisions, as these
result in rotations, and as we know, the total kinetic energy is the sum of linear and rotational parts. This means that perfectly
inelastic collisions that occur off-center do not lose as much mechanical energy as perfectly inelastic head-on collisions.

This actually makes some intuitive sense. Let's take as an example a bullet digging into a block of wood. The bullet is subject to a
non-conservative force that does enough work to slow the bullet to the same speed as the region of the block of wood it is entering
(i.e. the bullet stops inside the block). Now let's assume that the force exerted on the bullet by the wood is the same wherever it
enters the wood (it is something like " ," where the normal force is the wood squeezing the bullet). Whether the bullet enters
the block at its center of mass or at its edge, the center of mass of the block reaches the same final speed – we'll call the moment
when this final speed is reached " ." If the bullet hits the center of mass, at  the bullet will have slowed to the same speed as the
final speed of the center of mass. If the bullet hits the outer edge of the block and makes it spin, then the bullet is not slowed as
much at , because the edge of the block is moving faster than the final speed of center of mass of the block. If the bullet isn't
slowed as much when it hits the edge, then not as much work is done on it (smaller change in its kinetic energy) by the non-
conservative force, and less mechanical energy is converted to thermal.

Let's compute the fraction of kinetic energy that remains for the case above and compare it to the result if the collision occurs at the
center of mass.

As you can see, less energy is lost when the clay sticks to the end and spins the rod than when it hits the center and doesn't spin it.
Here is a nice demonstration of this phenomenon. First the puzzle:

And now the experimental evidence:
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Both blocks rise to the same height, because their upward linear velocities start off the same, due to conservation of linear
momentum, which is identical for both blocks, independent of where the bullet strikes. Our analysis above resolves the "puzzle" of
the difference in mechanical energies of the two systems.

Example 
A massless magnetic rod has a small steel ball (which does have mass, but a negligible radius) attached to one end, and is at
rest. Another small steel ball approaches the open end of this rod at a right-angle, and when it reaches the end of the rod, sticks
to it. The dumbbell-looking combination continues forward, spinning as it goes (see the diagram). Show the surprising result
that no kinetic energy is lost in this collision. The diagram provides labeling of quantities that you can use – you cannot make
any assumptions about the relative values of  and .

Solution

We are showing that kinetic energy is conserved, and the only principles that we can use are linear and angular momentum
conservation. Let's start with linear momentum conservation. We have done this a hundred times – the incoming momentum
equals the outgoing:

Now for conservation of angular momentum. Let's use the center of mass at the time of collision as the reference point. So
we need to determine the perpendicular distance of the incoming ball from the center of mass. This is a straightfoward
calculation (e.g. use the incoming ball as the origin), which gives:

For later reference, we also have for the distance of the other ball from the center of mass:

Bullet Block Experiment ResultBullet Block Experiment Result
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With this we get the starting angular momentum, and with the rotational inertia of the dumbbell about the center of mass, we
get an equation resulting from angular momentum conservation:

Now all we have to do is construct the final kinetic energy:

This page titled 6.3: Applications of Angular Momentum Conservation is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Tom Weideman directly on the LibreTexts platform.

Current page by Tom Weideman is licensed CC BY-SA 4.0. Original source: native.
5.1: Rotational Kinematics by Tom Weideman is licensed CC BY-SA 4.0. Original source: native.
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Sample Problems
All of the problems below have had their basic features discussed in an "Analyze This" box in this chapter. This means that the
solutions provided here are incomplete, as they will refer back to the analysis performed for information (i.e. the full solution is
essentially split between the analysis earlier and details here). If you have not yet spent time working on (not simply reading!) the
analysis of these situations, these sample problems will be of little benefit to your studies.

Problem 6.1
Two uniform disks are free to rotate frictionlessly around vertical axles. Initially one of the disks is rotating, while the other is
not.  They are then brought together so that their outer edges rub against each other. Kinetic friction between the two rubbing
surfaces slows down disk #1, while speeding up disk #2.  This continues until their rotational speeds are such that no slipping
occurs between the two surfaces. With kinetic friction no longer present, they continue with constant rotational motion from this
point forward.

The disks are the same thickness and are made from the same material. Disk #1 has a radius that is twice that of disk #2. Find
the percentage of the starting kinetic energy that is converted to thermal during the period that the edges of the disks rub
against each other.

Solution

With twice the radius, the larger disk has four times the horizontal surface area, and with equal thicknesses, then means that
there is four times as much mass for the larger disk than the smaller one. Calling the smaller disk's radius " " and mass "

", we have:

To find the thermal energy, we just need to subtract the "after" kinetic energy from the "before" kinetic energy. From the
analysis, we have the "after" rotational speeds of the disks in terms of initial speed of disk #1, so we have:

The "before" kinetic energy is:

The thermal energy created is therefore:

And as a fraction of the total initial kinetic energy this is:
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So 20% of the initial kinetic energy becomes thermal.

Problem 6.2
The center of a uniform solid disk is threaded onto an axle at the end of a thin uniform rod. The rod and the disk have equal
masses, and the radius of the disk is one-third the length of the rod. The rod is attached to a fixed pivot point at its other end,
around which it is free to rotate. With the rod and disk both starting from rest, a force of constant magnitude is exerted tangent
to the edge of the disk at the point farthest from the pivot for a short time. There is no gravity present.

After the applied force is removed, the disk and rod are spinning freely. Of the full system's angular momentum, determine what
fraction of it comes exclusively from the motion of the rod.

Solution

From the analysis, the total angular momentum of the system in terms of the mass of the rod and its rotational speed is:

The angular momentum of the rod only is its moment of inertia about the fixed pivot multiplied by its rotational speed:

The fraction of the system's angular momentum about the pivot that comes from just the rod's motion is therefore .

Problem 6.3
Consider this position-dependent force:

A rock is tied to a string whose other end is held fixed at the origin, and is then set into circular motion in the  plane (there
is no gravity present). While the rock is moving at a constant speed in a circle, the force described above is turned on.  The
string later breaks and the rock eventually crosses the -axis.

The string has a length of , the rock has a mass of , and rock revolves around at a speed of . After the string
breaks, when the rock crosses the -axis at , its does so moving at an angle of  with that axis. Find the work done
by the force  from the point when the string breaks to the point where the rock crosses the -axis.

Solution

We can determine the final speed of the rock using the result from the analysis:
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With the final speed of the rock, we can compute its kinetic energy, and the amount of kinetic energy gained from the point
when the string breaks equals the work done by the only force acting, :

Problem 6.4
A large uniform-density disk of radius  rotates in a horizontal plane around a frictionless axle with a rotational speed . This
disk includes a vertical post located a distance half its radius from its axle, and onto this axle is placed (very suddenly) a second
disk with half the radius of the larger disk. The second disk is made of the same uniform material as the larger disk, and has the
same thickness.

Kinetic friction between the disks acts until the smaller disk no longer spins on the lower disk, and instead turns with the larger
disk as if their surfaces were glued. The work done by this kinetic friction equals the increase in the thermal energy of the two
disks. Find this increase in thermal energy for the system as a fraction of its initial kinetic energy.

Solution

In the analysis we found the final rotational velocity in terms of the initial velocity for the "friction" case:

The angular momentum of the system remains conserved, and the kinetic energy can be written as:

Using this expression, we can compute the ratio of the kinetic energy after to the kinetic energy before:

The remaining fraction of the energy is what goes to thermal, so:

This page titled Sample Problems is shared under a CC BY-SA license and was authored, remixed, and/or curated by Tom Weideman.
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CHAPTER OVERVIEW

7: Gravitation
7.1: Universal Gravitation
7.2: Kepler's Laws
7.3: Energy in Gravitational Systems

Thumbnail: A simple swinging pendulum. Image used with permission (Public domain; Lucas V. Barbosa (Kieff)).
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7.1: Universal Gravitation

Newton Again

We return to a topic we have discussed only in the simplest of terms, but which has a great deal more depth. Of Newton’s many
achievements, one of his greatest has to have been the amazing realization that the gravity force is not simply a terrestrial
phenomenon. Until he came along, people thought that objects “naturally” fall when they are near the Earth, and that heavenly
bodies “naturally” do their little dance. To make the connection that the motions of planets could be explained using the very same
paradigm that explains why things fall to Earth is truly a great achievement in human thought. Newton (apocryphally after seeing
an apple fall from a tree) called this his law of universal gravitation, with emphasis on “universal,” as it points out that the law
applies both on Earth and in the heavens.

The key to Newton’s idea is that the gravitational force actually exists between two objects and depends upon the masses of each
and their separation in space. The Earth is no more special than the apple – both attract each other with equal force (which we
know from the third law already), and the magnitude of that force depends upon their masses and their separations.

This actually does not fit well with our current understanding of the gravity force. In particular, we have been saying that the force
equals , even as the height (distance from the Earth’s surface) changes, so how is this dependent upon separation? First of all, it
turns out that it is not the separation of the outer surfaces of the objects that matters, but rather their centers. In fact, it is even more
complicated than that, so to simplify it, let’s first just assume that the two gravitating objects are very small (point masses), so that
their separation is well-defined:

Figure 7.1.1 – Two Point Masses Separated by r

In this case, the basis for Newton’s law of universal gravitation can be described as follows:

the force is exclusively attractive – experimentally, we only see gravity act as a "pull."
the strength of the force grows linearly with the amount of each mass – experimentally, we find that the force doubles when we
double either of the two masses involved, triples when either mass is tripled, and so on.
the strength of the force varies in inverse proportion with the square of the separation – experimentally, we find that doubling
the separation of the two objects reduces the force by a factor of four, tripling the separation reduces the force by a factor of
nine, and so on.

Assuming these are the only factors that come into play for gravity (for example, the relative motions of the two objects doesn't
affect the force), then we can write a proportionality for the magnitude of the gravity force between two point masses:

This satisfies all the criteria given above. All that remains is to turn it into an equality by inserting a multiplicative constant that
turns it into units of force, with the correct observed magnitude:

With the strength of the force, and the knowledge that it is attractive in nature, we have Newton's law of gravity. As usual, we
would like to write this in a compact way that included the direction – as a vector equation. To do this, we temporarily discard the
"equal partner" view, and treat one of the point masses as the source of the force (the object that the force is "by"), and the other as
the recipient (the object the force is "on"). As an object's motion is determined by the forces on it, we treat the source of the force
as the "origin," and define the position vector as pointing from the origin to the object on which the force acts. Therefore the unit
vector of the position vector at the affected object always points away from the source of the gravity force.

Figure 7.1.2 – Defining Position Unit Vector for Gravity
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With this defined, we see that the attractive force on the recipient points in the  direction, giving us a nice, compact vector
equation for Newton's law of gravity:

Spherical Bodies

Now of course we really aren’t especially interested in gravity between point masses, when everything we see has some extension
in space. So really what we have to do is treat two bodies as collections of point particles, all of which are attracting every other
point particle. But this is quite cumbersome, and leads to all sorts of integral calculus. For our purposes, we will simply state the
result that in the case of spherically-symmetric objects, they can be treated (in terms of gravitation) as if all of their mass were
concentrated at their centers.

Figure 7.1.3 – Spheres Gravitate Like Point Masses at Their Centers

[Note: This "spherical symmetry" does not require that the density of the spheres be uniform – the density can still vary radially. So
the spheres can (for example) be more dense near their centers than near their surfaces, but the density cannot vary with the polar
or azimuthal angles. That is, sampling the density throughout the sphere must reveal the same density everywhere that the distance
from the sphere's center is held constant.]

This turns out to be a convenient consequence of the inverse-square law, as you will no doubt examine in greater detail in more
advanced math & physics classes. This result is something we will exploit greatly (at least as an approximation), since planets and
stars are very close to being spherical.

Gravity at the Earth's Surface
Imagine a very small object (which can be effectively treated as a point object) was pulled toward a large spherical body, and
stopped when it reached its surface. In that case, the gravitational force would be calculated using the radius of the large spherical
object. Now we'll let that large spherical object be the Earth, and let the small object be a human (you).

Figure 7.1.4 – Universal Gravitation at the Earth's Surface
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[Note that the separation  points to the center of the Earth, not to a point on the Earth's surface just off the coast of Florida.]

We can use now Newton's law of gravity to compute the force exerted on you. All we need is the radius of the Earth (
), and the mass of the Earth ( ):

So now you know where our constant  comes from. Now you might be concerned that our projectile calculations have not been
accurate, because g is only correct at the surface of the earth, and projectiles might go quite high. Let’s look at an example – how
much does the gravitational force decrease when we go high up in the sky in a commercial airline? Commercial flights typically fly
at an altitude of about  (about ), so making the adjustment to the gravitational force gives:

It’s hardly noticeable. If you weighed yourself on earth and were 150 lbs, then in the plane the scale would read 149.5lbs. Okay, so
let’s go to a place where we know the distance makes a big difference – all the way into outer space to the international space
station (ISS). The altitude in this case is about :

Wait just a minute… How can those people be floating around their space station if they have only lost about 11% of their weight?

Free-Fall and Orbits
Suppose you are at the top floor of a skyscraper in an elevator when suddenly, tragically, the cable breaks. Assuming you could see
past what I can only assume would be your abject terror, what would you see going on around you? The other screaming people
around you, the hat on your head, and the penny that was on the floor would all be accelerating at the same rate, . Since nothing is
accelerating faster than anything else, if you hold out your pencil and release it, it doesn’t drop to the floor of the elevator – it just
“floats” there in front of you. In effect, the entire contents of the elevator is experiencing zero gravity.
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Even conceding that being in a room in free-fall is equivalent to zero gravity, the space station is not plummeting to Earth, so how
does it apply? Well, we know from our study of projectile motion that the horizontal motion of an object doesn’t take away from
the fact that it is in free-fall vertically. Indeed, there exist companies that fly planes in parabolic projectile trajectories so that the
passengers can experience weightlessness for a couple minutes (before they have to pull out of the dive). So in fact if our elevator
were a projectile, we would have the same zero gravity experience. Newton knew this, and came up with the following incredibly
clever thought experiment:

If we fire a cannon horizontally, the cannonball follows the usual parabolic path, landing some distance away. If we increase the
muzzle velocity, it goes farther before landing. Increase the muzzle velocity even more, and the landing point approaches the
horizon. As we keep going this way, the projectile "falls over" the curvature of the Earth, and when the speed is finally fast enough,
it never actually lands! Orbits are just the most extreme case of projectile motion.

Figure 7.1.5 – Newton's Cannon
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So if being inside a container in free-fall is equivalent to being weightless, then a mouse inside a hollow cannonball fired by
Newton's cannon would conclude that there is "no gravity," because the orbiting cannonball is a projectile in free-fall at all times.
The astronauts on the space station experience weightlessness not because the Earth’s gravitational influence is zero out there, but
because that influence is the same on everything in the station, and everything is therefore in free-fall at the same rate. Indeed, if
there was no gravity out there, then there would be no force to keep the space station moving in a circle, and it would fly away
from Earth!

To understand how important this argument was in the context of his time, Newton used it to explain how a single phenomenon
(gravity) could explain both terrestrial (projectile) motion and heavenly (orbital) motion at the same time. What is more, he backed
it all up with mathematics! His law of universal gravitation predicted to very high precision the motions of the planets, even as it
predicts the motions of cannonballs.

This page titled 7.1: Universal Gravitation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman
directly on the LibreTexts platform.
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7.2: Kepler's Laws
More than 20 years before Newton was born, a fellow named Johannes Kepler took a shot at explaining the orbits of the planets.
He too posited that physical laws might be able to explain the motions, but didn’t possess the tools (mathematical and physical) at
Newton’s disposal decades later (though admittedly, Newton did develop these tools for himself). Instead, what Kepler had were
the remarkably detailed and accurate measurements of planetary motions made by an astronomer named Tycho Brahe, which he
used to look for patterns in the motions. Amazingly, he found that the planets indeed moved with mathematical precision, and
published his three laws of celestial motion, all of which are in exact accordance with the law of universal gravitation. While
reading about his three laws, consider what a monumental accomplishment this was. Tycho Brahe's data detailed the motions of the
planets as he viewed them from Earth (which itself is orbiting the sun).

Kepler’s First Law
Kepler's First Law: The paths of bodies trapped in orbits form closed ellipses, with the gravitating body at one of the foci.

The many elements of an ellipse and how an orbit fits into the picture are expressed in Figure 7.2.1.

Figure 7.2.1 – Elliptical Orbit

There are many ways to describe such an orbit mathematically. A common way is to write the distance between the two bodies as a
function of the angle that the line between them makes with the major (longer) axis:

Figure 7.2.2 – Polar Coordinate Description of Ellipse

The formula for the ellipse in these coordinates is:

[Note: It is also possible to measure the angle in the opposite direction (with  corresponding to the perihelion), in which case
the denominator is a sum rather than a difference.]

r (θ) =
a (1 − )e2

1 −e cosθ
(7.2.1)
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Circles are special cases of ellipses (eccentricity equal to zero), so naturally circular orbits are possible. Notice that if we plug in 
 above, we get the simple orbit equation . With a great deal of mathematics (first surmounted by Isaac Newton), one

can can show that in fact this is a natural consequence of the inverse-square force law we already stated for gravitation. While we
won't go quite so far as to perform this derivation, below we will make a closer examination of features of the ellipse (which we
have expressed as a purely mathematical object here) in terms of physical quantities.

Kepler’s Second Law
Kepler's Second Law: An orbiting planet sweeps out equal areas in equal times during its orbit.

Kepler noticed that the planet moved faster when it was near the perihelion than when it was near the aphelion, and through
painstaking examination of the data determined that in fact the amount of area the orbit sweeps out in a given period of time is the
same everywhere in the orbit.

Figure 7.2.3 – Equal Areas in Equal Times

Note that while the diagram compares areas swept out through the perihelion and aphelion, the result applies to any part of the orbit
– if we wait the same period of time, the area swept out will be the same: . We will soon look into the physical aspects of
gravitational orbits that lead to this result, but again one can't help but marvel at what it must have taken to derive this remarkable
discovery from the raw data.

Kepler’s Third Law
Kepler's Third Law: For every object orbiting the same gravitational source, the ratio of the cube of the semi-major axis of the

orbital ellipse and the square of the orbital period is the same constant: .

While the first law makes a general statement about all gravitational orbits, and the second law relates two different parts of a
specific gravitational orbit, the third law gives a way of comparing different orbits of the same gravitating object (in Kepler's case,
this gravitating object was the sun). Of the three laws, this one has the greatest practical value, because it means that even without
knowing anything about the law of gravitation, one can make a prediction about one orbiting body based on observations of
another orbiting body, if both are going around the same gravitating object. We will see what this mysterious constant is in terms of
physical details, but to solve certain problems, knowing the actual value of the constant isn't necessary.

Example 
An astronomer notices that an asteroid is positioned such that the Earth is directly between it and the Sun. It has a roughly
circular orbit (like the Earth), which is in the same plane and in the same direction as the Earth. This asteroid is far away from
the Earth – about 8 times farther from the Earth than the distance separating the Earth and the Sun. These are all
approximations, but about how long will this astronomer have to wait see these three bodies reach these same positions?

Solution

For a circular orbit, the semi-major axis of the orbit is simply the radius of the orbit, and since the asteroid and Earth are
both orbiting the same gravitational source (the sun), then Kepler's third law results in the same constant for both:

The period of the Earth's orbit is exactly 1 year, and the asteroid is 9 times farther from the sun as the Earth, so the time it
will take the asteroid to come back to the same spot will be:
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Of course, in 27 years, the Earth will also be in the spot where it started, so this is our answer.

Note that if the question asked for the time that elapses before the sun, Earth, and asteroid are all aligned again (which is
different from reaching their original positions), the answer is different: When they realign for the first time, the Earth will
have completed one orbit plus a bit more, while the asteroid will have completed a fraction of an orbit. Let's call the angle
that the asteroid moves through in that first year . The Earth catches up to it after a full revolution, so the angle the Earth
moves through is:

The Earth is moving 27 times as fast as the asteroid, so in this equal time frame the Earth has moved through an angle 27
times as great as the asteroid, which gives:

That is, the asteroid completes 1/26th of its orbit at the point when the Earth catches up to it. The asteroid's orbit takes 27
years, so the first alignment occurs at:

A nice application of Kepler’s 3rd law involves man-made satellites that orbit the Earth. Telecommunications satellites we like to
remain at a single position in the sky, so that we don’t have to turn our satellite dishes to find them – we just point them in the right
direction and leave it. To accomplish this, we need two things: The satellite has to be directly above the equator, and it has to be
orbiting the Earth in the same direction that the Earth is rotating, with an orbital period of exactly 1 day. This is known as a
geostationary orbit. We can use Kepler’s 3rd law to determine how high off the Earth’s surface this satellite needs to be.

Reconciling Kepler’s Laws with Universal Gravitation
There are a couple of things we can say about the physics of gravitational orbits. First, gravity is a conservative force, which means
that the mechanical energy of the system is conserved. We don't yet know how to describe the potential energy due to the
gravitational force (hopefully it is clear that our old " " treatment is no longer adequate, since this results in a
constant force), but we will look at this in Section 7.3. The point is that the mechanical energy is a "constant of the motion," which
we can use, for example, to describe the speed of the orbiting body as a function of the distance from the gravitational source.

Consider the Earth + sun system. The fraction of this system's mass that belongs to the Earth is about , which means that
the distance from the center of the sun to the center of mass of the system is this fraction multiplied by the (on average) 92 million
miles separating the two bodies. The distance from the center of the sun to the center of mass of the system is therefore:

The radius of the sun is about 432,000 miles, so the center of mass of the system lies less than one tenth of one percent of the sun's
radius from the sun's center. It's therefore a pretty good approximation to treat the center of the sun as a fixed point. [Note: Even the
center of mass of the Jupiter + sun system barely lies outside the sun's radius, even though Jupiter is much more massive than
Earth, and is much farther away.] The gravitational force is directed at this fixed point, so it constitutes a central force. As we
found in Section 6.2, central forces have the property of conserving the angular momentum of the system (since they produce no
torque). We therefore conclude that like the mechanical energy, the angular momentum of an orbiting body is also a constant of the
motion, when the gravitating body is significantly more massive than the orbiting body. [Note: The angular momentum of the
whole system is always conserved, even when the two masses are comparable, but in that case we can't treat one object as orbiting
another stationary one, which means we have to consider the motion of both objects, complicating our picture.]

Kepler's First Law

Showing that elliptical orbits are a direct result of the law of universal gravitation is a mathematical exercise that is somewhat
beyond the scope of this work. While this derivation could nevertheless be included here, the value of doing so is minimal, and will
therefore be left for the reader to explore in an upper-division treatment of classical mechanics. Instead, we will look at only small
– but very instructive – aspects of Kepler's first law.
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Never mind that we have no reason to expect that orbits will be elliptical... Why would we even expect them to be closed? That is,
it certainly isn't clear that when the polar angle  changes by , that the orbiting body's distance from the gravitating body will be
the same. It turns out, however, that this element of gravitational orbits is not hard to demonstrate. Start by applying Newton's
second law to the orbiting body on which a net force due to gravity is acting:

We can rewrite this in terms of how the velocity changes with the angle  by using the chain rule:

The angular momentum of the orbiting body can be written in terms of its mass, its angular velocity , and its distance from

the fixed point:

This angular momentum is a constant of the motion (i.e. it is conserved throughout the orbit), so we find that the rate at which the
velocity vector changes with respect to  is a vector with a constant magnitude:

We can write the position unit vector in terms of the angle relative to a cartesian coordinate system, as we did in Equation 1.6.11:

Integrating over the angle gives the velocity vector as a function of  (and an undetermined constant of integration ):

From this result we can conclude that the magnitude and direction of the velocity return to the same value every time  changes by 
. This means that the kinetic energy returns to its same value periodically as well. But the mechanical energy of this system is

conserved, so the potential energy also returns to its value with the same periodicity. But (as we will see in the next section), the
potential energy is defined by the separation of the two masses, so this separation also returns every time  changes by . Well, if
every time the angle changes by  the orbiting body is the same distance away from the gravitating body, is moving at the same
speed, and is moving in the same direction, then clearly its motion is being repeated – the orbit is closed.

Notice that if dependence on  in the law of gravitation was anything other than inverse-square, then the 's would not cancel as
they did in reaching Equation 7.2.6 (the angular momentum would still be the same constant of the motion, as the force would still
be central), which would give an equation for the velocity that depends on both  and . This ruins the argument above, and the
orbit would not be closed.

Digression: Orbits Are Not Quite Closed After All
As amazing as Newton's accomplishment was with his theory of gravity, roughly 230 years later, a fellow named Albert Einstein
provided an improved theory, called the General Theory of Relativity. It had been known for some time that observations of the
orbit of Mercury indicated that its orbit was in fact not closed. For a long time it was thought that the discrepancy was the result
of an unseen planet or other gravitating body that was pulling Mercury off course, but Einstein's theory showed that the inverse-
square theory of Newton, while a very good approximation, is not quite right, and his new theory predicted Mercury's motion
perfectly.

While we are skipping the mathematics detailing how we get to the equation of the ellipse, we can still extract some information
from Equation 7.2.8 that will be useful to us later. To simplify the discussion that follows, we will assume that we already know
that the elliptical orbit is the result.

θ 2π

m = −
d v

→

dt

GMm

r2
r̂ (7.2.3)

θ

m = −
d v

→

dθ

dθ

dt

GMm

r2
r̂ (7.2.4)

ω =
dθ

dt

L = m ωr2 (7.2.5)

θ

= −
d v

→

dθ

GMm

L
r̂ (7.2.6)

= − (cosθ   +sinθ )
d v

→

dθ

GMm

L
î ĵ (7.2.7)

θ v
→

o

(θ) = − (sinθ −cosθ )+v
→ GMm

L
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We haven't yet defined the orientation of the  coordinate system used in Equation 7.2.8 – so far we have only required that
the origin be at the gravitating body. Let's choose the -axis to lie along the major axis such that the point of maximum separation
(aphelion) lies on the positive side of the -axis (giving us Figure 7.2.2). With these axes, it is clear that at the point , the
velocity of the orbiting body is in the  direction. Looking at Equation 7.2.8, we see that this means that the constant vector 
must point parallel to the minor axis, otherwise it would give the body a component of velocity along the  direction. But which
way does this constant vector point,  or ?

Consider the velocity of the orbiting body at the perihelion ( ). In this case, the object is now moving in the  direction, but
because it is closer to the reference point at the gravitating body, it must be moving faster to conserve angular momentum. For the
constant vector  to make the orbiting body faster at ( ) than at ( ), we must have:

We can relate the maximum and minimum speeds of the orbit using angular momentum conservation. Looking at Figure 7.2.1, we
see that the value of  for the aphelion is: . At the perihelion: . Setting equal the angular
momenta at these two positions in the orbit gives:

Using this result and Equations 7.2.9, we can eliminate the troublesome , and get:

It will also be useful to have an expression for the angular momentum in terms of the masses, eccentricity, and major axis. To get
this, multiply the first of the Equations 7.2.11 by the orbiting body's mass and  [for  this is: ] to get:

Putting this back into Equation 7.2.1 simplifies it a bit in terms of physical constants, putting in a form that will be useful later:

One last thing to note before moving on to Kepler's second law. Looking at Equation 7.2.8, we see that if  happens to equal zero,
then the velocity vector has a constant magnitude, and its direction is always perpendicular to  (which can be confirmed quickly
by performing a dot product). So a non-zero constant of integration is responsible for making an otherwise circular orbit eccentric.

Example 
Show that the distance of closest approach (the perihelion distance) is given by:

Do this in two different ways:

a. Using calculus and Equation 7.2.13. [Note: There are two angles that result in extrema, but only one gives a minimum.]
b. Using the equation for angular momentum at  and one of the Equations 7.2.11.

Solution

a. We seek the minimum value of , so we start by finding the value of  where this minimum occurs:
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Note that  minimizes the denominator, so it gives a maximum for , not a minimum. On the other hand, 
maximizes the denominator, and therefore gives a minimum. This result makes sense when we look at how  is defined in
Figure 7.2.2. Plugging  into Equation 7.2.13 gives the desired answer.

b. The angular momentum at the point closest approach will involve the maximum speed, since it is conserved throughout the
orbit, so using the expression for the maximum speed in Equations 7.2.11 we get:

Kepler's Second Law

We look next at Kepler's equal-areas-swept-out-in-equal-times law. The geometry of measuring areas swept out of ellipses is
impossibly difficult to do mathematically, but an infinitesimal amount of area swept out in an infinitesimal time period is something
we can do. Figure 7.2.4 shows how we can mathematically describe the area swept out in an infinitesimal period of time. The
amount swept out can be broken into two triangles. Okay, so the sides of the triangles are curved, but when the curves are
infinitesimal in length, the amount they differ from straight lines is insignificant. The area of the two triangles are color-coded in
the diagram. We notice that while both have infinitesimal areas, the orange triangle includes a product of two infinitesimal
quantities. When the area is then divided by a small time span and the limit is taken as the time span goes to zero, the ratio of 
and  approaches a finite value (specifically, the angular velocity  at that moment in time), but in the second term there is still
another infinitesimal  that goes to zero in the limit. In other words, the orange triangle contributes nothing to the area swept out
in the infinitesimal time span . With a little mathematical manipulation, we see that the rate at which area is swept out is the
angular momentum of the orbiting body divided by twice its mass. We know that both the angular momentum and the mass remain
constant for the orbit, so the rate at which area is swept out also remains constant. Kepler's second law is equivalent to angular
momentum conservation.

Figure 7.2.4 – Kepler's Second Law Expresses Angular Momentum Conservation

Kepler's Third Law

It is quite straightforward to show that Kepler's third law holds for circular orbits, so let's do that first. The speed is constant for the
entire orbit, it equals the circumference of the orbit divided by the time it takes for a full orbit:
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We can use the fact that the gravitational force is causing centripetal acceleration to get the following expression for the square of
the constant speed of the orbiting body:

Plugging Equation 7.2.14 into Equation 7.2.15 and doing some algebra gives Kepler's third law, with the semi-major axis equaling
the radius of the circular orbit (zero eccentricity):

This gives us not only that the ratio is a constant, but specifically what the constant is. As we can now confirm, this constant
depends only upon the mass of the gravitating body.

It's quite remarkable that this law holds equally well for elliptical orbits, where  is replaced by . We can show this by starting
with a result we found from Kepler's second law. The rate at which area is swept out is constant, so the total area of the ellipse is
this rate multiplied by the time of a full orbit. Reviewing our conic sections, we plug in the area of an ellipse, and get:

The quantity  is the length of the semi-minor axis, which is related to the length of the semi-major axis in terms of the
eccentricity:

Squaring Equation 7.2.17 and eliminating  using Equation 7.2.18 gives us:

We had the good foresight to derive Equation 7.2.12, so plugging  from that equation into Equation 7.2.19 gives us our answer:

Example 
Attractive central forces that are not inverse-square do not produce closed orbits except when the orbit happens to be circular.
Whenever there is a closed orbit, a result like Kepler's third law (which relates the orbit period to the radius of the circular
orbit) will be the result. Derive the effective Kepler third law for an attractive central force that varies as the inverse-cube of the
separation.

Solution

Following the process used above for a gravitational circular orbit, we get:

This page titled 7.2: Kepler's Laws is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman directly
on the LibreTexts platform.
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7.3: Energy in Gravitational Systems

Gravitational Potential Energy

We showed in Section 3.2 that our terrestrial model of gravity is a conservative force, and it certainly seems reasonable to assume
that universal gravitation is as well, but really we should check to see if this is the case. In Section 3.6 we outlined a procedure for
determining whether a force is conservative or not – basically it consists of trying to construct a potential energy function whose
gradient equals the force, and if we succeed, then the force is conservative. If we can show that it is impossible to do this, then the
force is non-conservative. Let's see what happens when we bring this to bear on gravitation.

Let's start by writing the gravity force in cartesian coordinates:

Consider next the following partial derivative:

This is precisely the -component of the gravitational force. Obviously partial derivatives with respect to  and  yield similar
results – the  and  components of the gravitational force. This means we can immediately define a potential energy function
whose negative gradient is the force:

We could have saved ourselves a lot of trouble if we happened to know a useful fact from vector calculus: The gradient of a
function that is purely a function of  can be written as:

So:

As with other potential energy functions for another physical system that we have discussed (the intermolecular forces described by
the Lennard-Jones potential), we typically choose our arbitrary constant of integration such that the potential energy falls off to
zero at infinity. In the case of our gravitational potential energy, this gives what we will use for the potential energy function
henceforth:

A graph of this function looks like this:

Figure 7.3.1 – Gravitational Potential
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This function is significantly different from the " " that we have been using up to now. To reconcile these two models, we need
to make a note of the restriction of our terrestrial model of gravity – it holds for a region very close to the surface of the Earth, 

. Calling " " the height of the object from the ground, the gravitational potential function above is cut-off at ground
level. If we restrict ourselves to  values close to this point, the curve above is very close to a straight line:

Figure 7.3.2 – Gravitational Potential Near Earth's Surface

 

The negative slope of the potential energy curve is the force, so the slope of the straight line approximating the curve near 
 is the constant force in that region. Taking the negative derivative gives Newton's gravitational force, and when

evaluated at , this force comes out to be , as we saw in Equation 7.1.4.

Bound and Unbound Gravitational Systems

With a graph of the potential energy which goes to zero at infinity, we are naturally drawn again to energy diagrams. There is a
problem with jumping straight into this, however. Energy diagrams require 1-dimensional motion, and while  is a function of
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a single variable, the motion is not 1-dimensional. To see where things break down, consider a closed elliptical orbit. As the planet
moves toward the perihelion, the value of  gets smaller. If Figure 7.3.1 were the potential curve for an energy diagram, then when
the planet is moving toward smaller values of , it would keep speeding up indefinitely as it approaches . Okay, so in practice
it would hit the surface of the sun before it could "accelerate indefinitely," but still this does not represent orbital motion. In short,
there is no part of this potential energy graph that represents the turnaround point that is the perihelion.

Fortunately, we have a nice trick to take care of this shortcoming. When we draw energy diagrams, the kinetic energy comes from
the motion along the direction parallel to the one dimension. In this case of measuring energy along the radius, the kinetic energy
for the energy diagram can only come from the part of the velocity that is radial. The total kinetic energy is the sum of the radial
and tangential parts:

The tangential speed multiplied by the mass and the distance from the center is the angular momentum, which is a constant of the
motion, so we have:

If we now construct the total energy of the system, we have:

Note that this can now be treated as 1-dimensional system, by combining the last two terms into a single function of  that we call
an effective potential:

Graphing this allows us to work exactly as before, though we have to keep in mind that whatever we determine the kinetic energy
to be is really only a fraction of the kinetic energy. So, for example, at the turnaround points (where we have said the kinetic energy
is zero), the kinetic energy is in fact the tangential term. This makes sense for closed orbits, since the orbiting body never actually
stops moving entirely – it only stops moving radially. The graph of this effective potential has a rather familiar shape, and
including the total system energy makes it an energy diagram.

Figure 7.3.3 – Energy Diagram of a Gravitating System

Figure 7.3.3 labels the turnaround points as the perihelion and aphelion, but there is much more we can extract from this diagram:
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circular motion

If the total energy lies at the bottom of the dip, then according to what we know about about energy diagrams, the kinetic energy is
zero. But in this case, it means that the contribution to the kinetic energy by the radial component of velocity is zero. In other
words, the orbit is circular. This fits with the fact that there is only one turnaround point, making the perihelion and aphelion the
same distance.

semi-major axis

The semi-major axis is the average of the perihelion and aphelion distances, so it is the value of  halfway between the two
turnaround points on the graph.

eccentricity

Looking at Figure 7.2.1, we can write the perihelion and aphelion distances in terms of the eccentricity and the semi-major axis,
which we can then invert to get the eccentricity in terms of the perihelion and aphelion distances and the semi-major axis. Doing
this gives:

Looking at Figure 7.3.3, we see that raising the total energy (but keeping it negative, and doing it without increasing the angular
momentum, which would change the graph of the effective potential) increases the length of the semi-major axis, but much more of
this change comes from the increase of the aphelion distance than from the decrease of the perihelion distance (especially close to
the horizontal axis). This results in an increase of eccentricity. How does one increase the total energy without increasing the
angular momentum? By giving the orbiting body a "kick" that points radially (inward or outward). This exerts no torque (the force
is parallel to the position vector), so the angular momentum doesn't change, but the push increases the total energy, because it adds
a radial component of velocity without changing the tangential component.

When a radial kick is given, a polar angle of zero in the same coordinate system will no longer correspond to the aphelion of the
orbit – the orbital ellipse will be rotated. If the kick is outward, then at the position of the kick the orbiting body is still getting
farther from the gravitating body, which means it is heading for the new aphelion, and the orbit has rotated in the direction of the
orbit. That is, if the orbit was clockwise, then the major axis rotates clockwise. For a radially inward kick, the orbiting body is now
getting closer to the gravitating body, which means it is coming from the aphelion, so the major has rotated the direction opposite to
the orbit direction.

Figure 7.3.4 – Effect of Radial "Kicks" to Orbits
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A tangential kick in the direction of motion would also raise the total energy, but it would also increase the angular momentum,
increasing the positive term in the effective potential. This has the effect of raising the bottom of the curve, and if this is done
properly (at the aphelion), the bottom of the curve comes up faster than the energy line goes up, bringing the eccentricity down.
The eccentricity can even be brought all the way down to zero (i.e. a circular orbit) in this way (see Example 7.3.1).

hyperbolic trajectory – unbounded

If the total energy is greater than zero, the orbiting body is not "bound" to the gravitating body. That is, after the orbiting body
makes its closest approach, it zooms away, and although it slows down as it departs, it never stops moving away from the
gravitating body. The height of the total energy line above the horizontal axis represents the finite kinetic energy of the orbiting
body when it gets very far away, since the potential vanishes there. While the tangential part of the kinetic energy also goes to zero
very far away, the angular momentum does not vanish – it remains conserved. With a finite speed and a non-zero angular
momentum, the motion of the orbiting body must be asymptotically approaching a line that passes by the gravitating body, and we
get what is called a hyperbolic trajectory. [The word "trajectory" is generally preferred over "orbit," because the latter typically
implies that the affected body is trapped by the gravitating body.]

The orbit equation that we found for the elliptical orbit (Equation 7.2.13) still works, but for the hyperbolic trajectory the
eccentricity is greater than 1.

Figure 7.3.5 – Hyperbolic Trajectory

parabolic trajectory – barely (un)bounded

If the total energy of the system equals exactly zero, then the orbiting body just barely runs out of velocity as it reaches infinity. It
technically is neither bound nor unbound – it is at the borderline between the two. In this case, the eccentricity equals exactly 1.

Example 

An orbiting body is in an orbit where it is four times farther from the gravitating body at its aphelion than at its perihelion. By
what percentage must its speed be increased at the aphelion to make its orbit circular?

Solution

Since orbits are closed, if we instantaneously speed up the orbiting body at its aphelion, it will return to that same point with
the same speed and moving in the same direction (i.e. its motion will still be perpendicular to the radius). That means that
when the orbiting body returns, it will either be once again at its aphelion (if the speed was not increased substantially), or it
will be at its perihelion (if the speed was increased a great deal). There is also an "in-between" increase whereby the
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perihelion and aphelion are the same – a circular orbit. We can compute the required increase in speed by comparing the
speed at the aphelion of an eccentric orbit to the speed of a circular orbit whose radius is the same as the semi-major axis of
the eccentric orbit. Starting with Equation 7.2.11, we have:

For a circular orbit, the eccentricity is zero, which makes the ratio of the minimum velocity of the eccentric and circular
orbits:

The new circular orbit must have a radius equal to the aphelion distance of the previous orbit, so:

Now we need to know the eccentricity for an orbit where the aphelion distance is 4 times the perihelion distance. Writing
these distances in terms of the semi-major axis gives:

Plugging this in above gives us that the velocity must be increased by a factor of  at the aphelion of the eccentric orbit to

turn it into a circular orbit. This corresponds to a percentage increase of:

Suppose an orbiting body is bound by the gravitational attraction of a gravitating body that is a distance  away. If it is bound, it
must be that it possesses insufficient kinetic energy such that when it is added to the (negative) gravitational potential the total
energy makes it to zero. We define escape velocity as the minimum speed that an orbiting body must have in order to (barely) go
infinitely far away from a gravitational source. Setting the total energy equal to zero, for the case of the object moving at escape
velocity, we have:

Notice that whether or not an object can escape a gravitational attraction doesn't depend upon the would-be escaper's mass, but only
its velocity. This makes for an interesting discussion when it comes to light. Light has no mass, so we would think that Newton's
law of gravitation would indicate that it is unaffected by gravity. But when it comes to escape velocity, the mass does not factor in
at all, so is the conclusion that light is unaffected by gravity incorrect?

It turns out that in fact light is affected by gravity (and specifically how this happens requires Einstein's improved theory of
gravity), but what is more, we can compute whether light can escape a gravitating body. The speed of light is a well-defined
constant, so the question of whether light can escape boils down to how close the origination of the light is to the gravitating body,
and of course the mass of that body. The distance from which light will not escape is known as the Schwarzschild radius, and is
found by plugging the speed of light (typically designated as ) into the escape velocity formula:
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The Earth's mass is , and the speed of light is . Its Schwarzschild radius therefore comes out to equal
about 8.8 millimeters. Okay, that is quite small, and since the distance is measured from the center of the Earth, it is clear that we
will not witness the phenomenon of light being trapped by the Earth's gravity. For light to be trapped by gravity, the gravitating
body must fall inside the Schwarzschild radius. This requires that the gravitating body be incredibly dense, and since the only force
available to pull the matter into that kind of density is the same gravity force, generally a very large amount of mass is required.
Assuming this occurs, the object thus created is called a black hole. This is a nicely descriptive name, as "black" indicates that light
does not escape its gravitational influence. Explaining how appropriate the word "hole" is in this name requires some knowledge of
Einstein's theory, which is unfortunately beyond the scope of this work.

Gravitational Slingshots
Let's look at a simple model that demonstrates the process of a gravitational slingshot. This is the phenomenon that was exploited
by NASA scientists to get the Voyager probes past to escape velocity for the Sun, despite not being launched with sufficient kinetic
energy at the outset. It is also thought to be the likely candidate for so-called "rogue planets" that once orbited the sun, and are now
moving through interstellar space, no longer held in orbit.

Start with three gravitating particles, two of which initially are in orbit around the third, in opposite directions, roughly in the same
(circular) orbital path. One of these orbiting bodies (Jupiter) is much more massive than the other (Voyager), and of course the Sun
is much more massive than both of these. At this point Voyager, being in a closed orbit, does not have sufficient energy to escape
the Sun.

Figure 7.3.6 – Voyager Far from Jupiter (Sun's Perspective)

At this stage, voyager is quite far from Jupiter (say roughly the same distance as from the Sun), and since the mass of the Sun is so
much greater than that of Jupiter (about 1000 times greater), Voyager's motion is, to a very good approximation,
governed only by the gravitational force of the Sun. So it merrily continues along its orbital path, and since it is in roughly the same
orbit as Jupiter, it is moving at the same speed, which in the diagram we have called " ."

When voyager comes significantly closer to Jupiter, then even though Jupiter has much less mass than the Sun, the much closer
proximity to Jupiter makes it such that Voyager's motion is to a very good approximation governed entirely by Jupiter's
gravitational force. From Jupiter's perspective, Voyager is coming toward it at a relative speed of  (before Jupiter's gravity starts
to speed it up significantly).

Figure 7.3.7 – Voyager Close to Jupiter (Jupiter's Perspective)
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Naturally Voyager is not in exactly the same orbit as Jupiter, or it would crash into it. The slight offset results in Voyager slinging
around the planet and coming out the opposite direction. Since Voyager essentially only "knows" about Jupiter's presence,
(approximate) conservation of energy in this two-body system results in Voyager emerging with the same speed it had on its way
in, but in the opposite direction (this is essentially the same as an elastic collision between two objects, where one has much, much
less mass than the other).

So now Voyager is moving at the same speed as before relative to Jupiter, but in the opposite direction. As it gets farther away,
Jupiter's gravitational force wanes, and attention again returns to the Sun. But now Voyager has three times the speed it had before
relative to the Sun (  relative to Jupiter, plus Jupiter's , for a total of ), and it is the same distance away from the Sun as
before.

Figure 7.3.8 – Voyager After Jupiter's "Kick" (Sun's Perspective)

Jupiter naturally loses a little of its speed (  – a completely negligible amount, due to the vast difference in mass it has with
Voyager) in this exchange. But Voyager's new speed is now more than enough to escape the Sun's gravitational pull. The overall
energy of the system remains conserved, but it is redistributed so that voyager is no longer in a bound state. In the language of
Chapter 3, we can say that the total force exerted on Voyager by the solar system (Sun + Jupiter system) is non-conservative,
because when Voyager returns to its original position relative to this system, it has more kinetic energy than before, so the work
done for that closed path was not zero. The internal energy of the solar system goes down (Jupiter's motion slows), and it goes to
the kinetic energy of Voyager.

Exercise
Show that tripling the speed of any satellite in a circular orbit is enough to allow it to escape the gravitating body.

Solution
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From Kepler's Third Law for a circular orbit (Equation 7.2.16), we can compute the speed of a satellite in a circular orbit of
radius . It is the circumference divided by the period of the orbit, so:

Comparing this to the formula for escape velocity (Equation 7.3.12), we see that escape velocity is only greater than the
circular orbital speed by a factor of . So increasing the orbital speed by a factor of 3 is more than enough to get the job
done.

 

This page titled 7.3: Energy in Gravitational Systems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom
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R

= ⇒ v= =
R3

T 2

GM

4π2

2πR

T

GM

R

− −−−
√

2
–√

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63016?pdf
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/7%3A_Gravitation/7.2%3A_Kepler's_Laws#Kepler_3_circular
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/7%3A_Gravitation/7.3%3A_Energy_in_Gravitational_Systems
https://creativecommons.org/licenses/by-sa/4.0
http://physics.ucdavis.edu/people/adjunct-faculty-and-lecturers/tom-weideman


1

CHAPTER OVERVIEW

8: Small Oscillations
8.1: Simple Harmonic Motion
8.2: Other Restoring Forces
Sample Problems

This page titled 8: Small Oscillations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman
directly on the LibreTexts platform.

https://libretexts.org/
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/8%3A_Small_Oscillations/8.1%3A_Simple_Harmonic_Motion
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/8%3A_Small_Oscillations/8.2%3A_Other_Restoring_Forces
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/8%3A_Small_Oscillations/Sample_Problems
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Classical_Mechanics/8%3A_Small_Oscillations
https://creativecommons.org/licenses/by-sa/4.0
http://physics.ucdavis.edu/people/adjunct-faculty-and-lecturers/tom-weideman


8.1.1 https://phys.libretexts.org/@go/page/63018

8.1: Simple Harmonic Motion

Equation of Motion for an Elastic Force
We have discussed the idea of a restoring force a few times already. If such a force counteracts displacements in both directions of
one-dimensional motion, then it can cause the object to move back-and forth across the equilibrium point: An object subject to a
restoring force is displaced from its equilibrium point and released. It accelerates toward the equilibrium point thanks to the
restoring force. Upon arrival at the equilibrium point, it doesn't stop, because the restoring force is zero there. As it continues past,
the restoring force acts to slow down and eventually stop the object, whereupon the object accelerates back toward the equilibrium
point and the motion repeats in the opposite direction. This is called oscillatory motion, and it results from all two-way one-
dimensional restoring forces.

The most common sort of restoring force we study is the elastic force. Indeed, other restoring forces occurring in nature (such as
those between particles exhibiting a Lennard-Jones potential energy, as discussed at the end of Section 3.7) are often modeled as
masses on springs. The oscillatory motion induced by the elastic restoring force is quite special, as we will see, and is called simple
harmonic motion. We seek here the equation that relates the position of the mass as a function of time (with the equilibrium point
being the origin), usually referred to as the equation of motion for this force.

Start (naturally) with Newton's second law, where the net force is simply that of a spring (Hooke's law). As we are working in one
dimension, we once again have the luxury of treating our vector directions as simply (+) or (–):

We seek to determine the function  that satisfies this differential equation. This is actually simpler than it might at first appear,
if thought about in the following way: First, let's imagine that the ratio  is just the number 1. Can we think of a function that after
two derivatives becomes the negative of itself? We don't know a whole lot of special functions, but amazingly, there are actually a
couple that do satisfy this: sine and cosine. The derivative of sine is cosine, and then a second derivative brings it back to negative
sine.

There are lots of different features we can include with a sine (or cosine) function, so let's write one out in all its glory:

Two derivatives of this function gives:

Plugging this into the differential equation gives a solution if we have:

Total Phase
It may seem crazy at this point to introduce the greek letter  as a constant here when we so recently used it as a measure of
angular velocity, and there is no rotational motion going on here. But there is a good reason to do this. Consider a bead moving at a
constant speed on a circular loop of wire of radius .

Figure 8.1.1 – Bead Moving on a Circular Loop of Wire
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The equation describing its motion is something we are quite familiar with:

We have changed notation a bit here from what we used previously for circular or rotational motion:  represents the total angle
traversed, in place of our previous , and  represents the starting angle at , in place of our previous .

Next let's imagine placing a light source to the left of this loop, and a screen (the plane of which is perpendicular to the plane of the
loop) to the right of the loop. The light would project a shadow of the bead onto the screen, and the motion of this shadow can be
described mathematically:

Figure 8.1.2 – Motion of a Projection of a Bead moving on a Circular Loop

The motion of the shadow is simply a component of the motion of the bead – if we know the angle the bead makes on the circule,
we know the height of the shadow on the screen. In terms of the starting angle and angular velocity of the bead, the motion of the
shadow can be written explicitly as:

This is precisely the same as the equation of motion of a mass on a spring, Equation 8.1.2. That is, if we placed a mass on a spring
at the screen with the equilibrium position at , pulled the spring to a maximum stretch (or pushed it to a maximum
compression) of , and then waited for the shadow to land on the mass before releasing it, the shadow would remain on the
mass as it moves, if the angular velocity of the bead happens to equal .

We can now discard our bead-on-circular-loop model, but we keep the mathematical structure it leaves behind. The argument of the
sine function  is called the total phase of the harmonic motion of the mass-on-spring. The maximum expansion/compression
of the spring  is called the amplitude of the harmonic motion. The constant  is referred to as the angular frequency (not angular
velocity – we've left the bead model behind), and still is expressed in units of radians per second. This constant sometimes gives
way to a frequency  that is measured in cycles per second (or hertz), with the translation between the two being:

Φ (t) = ωt+ϕ (8.1.5)
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The period of oscillation is the time it takes the system to come all the way back to where it started, and as the time per cycle, it is
the inverse of the frequency:

Alert
The period is the time required for the system to complete a full cycle, which is not the same as the time required for the mass to
return to a previous position. The mass must return to the same position and it must be moving in the same direction. In other
words, the total phase  must change by .

And finally, the constant  is called the phase constant, and it carries the information of where the mass is at time .

Kinematics of Harmonic Motion
Once we have a formula for the position of an object following simple harmonic motion, we can use the usual calculus tools to
determine the velocity and acceleration at various times as well. The velocity as a function of time is:

We note a couple of features of this result. First, since the cosine function never exceeds 1, we have the maximum speed of the
object:

And second, this maximum speed is achieved at  (the equilibrium point), which makes sense, since the spring was
accelerating it toward that point, and immediately after passing it, the spring starts slowing it down.

The acceleration of the mass as a function of time we get from another derivative:

The fact that this result is only different from the position function by a factor of  brings us back to what started all of this,

Equation 8.1.1.

Mechanical Energy
We already know that the elastic force is conservative, so mechanical energy is conserved during simple harmonic motion. At any
given time during the motion, the mass will have kinetic and potential energy, with its total energy remaining constant. It's easy to
write an expression for the total energy in this system by choosing a convenient point in the motion – when the mass is stationary.
This occurs when it reaches its maximum separation from the equilibrium point, i.e. when the displacement equals the amplitude:

We can double-check this result by looking at the moment in time when there is zero potential energy and all of the mechanical
energy is kinetic – at the equilibrium point. Using Equation 8.1.9, we get:

This page titled 8.1: Simple Harmonic Motion is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom
Weideman directly on the LibreTexts platform.
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8.2: Other Restoring Forces

Pendulums

A mass on a spring is not the only physical system that exhibits simple harmonic motion. Another example is – at least to a good
approximation for small amplitudes – pendulums. To say that a pendulum has a restoring force is imprecise – a pendulum is
characterized by angular motion, and therefore it is affected by a restoring torque. The first type of pendulum we will consider is
the simple pendulum. This is exactly as it sounds – it consists of a point mass under the influence of gravity at the end of a massless
string which is attached to a fixed point.

It's clear that if one defines the motion of the simple pendulum in terms of angular position, the motion is oscillatory – gravity
keeps producing a torque that seeks to restore vertical alignment. But is it simple harmonic motion? We need to do the analysis to
figure it out. Figure 8.2.1 gives a diagram with lots of labeling, along with a free-body diagram.

Figure 8.2.1 – The Simple Pendulum

We wish to describe the motion of the pendulum, which means finding the function . We do this using Newton's second law, as
we did with the mass-on-spring. We can use either the linear or the rotational form of Newton's second law – naturally both lead to
the same result. Let's use the rotational version, as we will need to do later when the pendulum is not "simple." Choosing
counterclockwise as the positive direction (so the pendulum to the right of the vertical is in the positive region), we see that the
torque for the diagram above is negative – the restoring force has the opposite sign of the displacement, as it must.

This is not the same as the differential equation for the mass-on-spring, given in Equation 8.1.1. However, if we assume the
pendulum exhibits a small amplitude, then the value of  is very close to the value of , when measured in radians. For
example, for a  angle, the sine is 0.5000, and in radians this angle is  = 0.5236, for a deviation of less than 5%.

Alert
If you are not comfortable with this  approximation, start getting used to it – it is used all the time in physics!

Applying this approximation, we get the differential equation:

This does match the differential equation we found for the mass-on-spring, so the solution is the same (simple harmonic motion):
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Note that the  used in the argument of the sine function above is the angular frequency of the motion, and is a constant value.

It is not the angular velocity of the pendulum , which is constantly changing.

All of the same things that we followed with for the mass-on-spring follows here, such as the velocity and acceleration functions
and their maximum values, as well as the energy stored in the system. This last item bears some examination before we move on.
The energy in the system is the gravitational potential energy stored at the maximum angle (measured relative to the bottom of the
swing). Doing some geometry, we can get the height of the mass above the bottom of the swing, and from it the total energy:

Okay, now we get to use the approximation of the cosine function for small angles:

Plugging this in above gives:

The reader will note that this bears a resemblance to Equation 8.1.12, which also indicates that the total energy in the system is
proportional to the square of the amplitude.

The leap to other pendulums (those that are not "simple") is not a difficult one to take, if the restoring torque is also based on
gravity (i.e. the pendulum swings). All this requires is replacing the point mass's rotational inertia of  with whatever the
pendulum's rotational inertia around the fixed point happens to be, and computing the restoring torque based on wherever the
center of mass happens to be. Calling the rotational inertia  and the distance of the center of mass from the fixed point , and
following the same procedure as above, we get for the differential equation:

The angular frequency is still the square root of the coefficient of , so the period of oscillation for this more general pendulum is:

Example 
A thin, uniform rod with a length of  is suspended vertically from one end, from which it is free to rotate without friction. If
it is rotated a small angle from the vertical and released from rest, find how long it takes to reach a vertical orientation.

Solution

The rod is displaced a small angle, so we can treat it as a pendulum. When it starts from rest, it starts at its maximum
angular displacement, and are asked to find the time it takes to get to its equilibrium point. This constitutes exactly one
fourth of a cycle (it takes the same time to swing up to its maximum angular displacement from the equilibrium point), so all
we need to compute is one fourth of a period. The rotational inertia is that of a rod about its end, and the center of mass is at
the middle of the rod, so:

Potential Wells

At the end of Section 3.7, we looked at how we can model chemical bonds as springs. A program was outlined there which
provided a way to derive an effective spring constant for any potential with a local minimum. It turns out that the "natural"
vibration frequencies of these bonds are quite important when it comes to things like wavelengths of light that the material will

ω
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absorb or emit, so being able to derive an effective spring constant from the potential function gives us a lot of information about
how the material will behave.

There is one complication that arises with these bonds-as-springs models, however. The two molecules attached by the spring are
both moving. How do we even fit this into our model where a single mass is oscillating through an equilibrium point? It turns out
that there is a nice trick we can use for all two-body problems like this by considering the center of mass frame. [Note: This trick is
also used for gravitation when the orbiting body and gravitating body have comparable masses.]

Consider a spring with masses at both ends. There is no net external force on the system, so as they vibrate, the center of mass
remains at rest (we are assuming it started off at rest). We can therefore break this into two separate mass-on-spring systems, with
the center of mass being a fixed point for each of them.

Figure 8.2.2 – Two Masses Connected By a Spring

There are a number of things we can say about this model. First, there is a relationship between the variables  and  and the
amount each of these changes. They are both measured from the center of mass in the left diagram, and are both positive values in
the right diagram, giving:

The amount of force exerted on each mass by the spring is the same at every moment (Newton's third law), and the magnitude of
this force is determined by the stretch (or compression) of the full spring according to Hooke's law. The stretch/compression of the
full spring is equal to the sum of the stretches/compressions of the two springs in the separated diagram, so:

But looking at this force from the perspective of just  in the right diagram, the force exerted on it is due to its own spring and its
displacement. Making this comparison gives us  in terms of :

The angular frequency of oscillation for  is determined by its mass and the spring constant of the elastic force acting on it:

The motion of  mirrors that of , except with a different (smaller) amplitude. We know this because the two masses have to
reach their maximum and minimum displacements at the same time to keep the center of mass stationary. So the angular frequency
of oscillation for  should come out to be the same as it is for , and sure enough, it does (repeat all of the steps above with the
subscripts 1 and 2 reversed).

The quantity  has units of mass, and is commonly referred to as the reduced mass of the system. Its use is a common shortcut for
reducing two-body problems to one-body problems. The angular frequency here takes on the usual form for a one-dimensional
simple harmonic oscillator, and all that needs to be done is to calculate the reduced mass from the two masses involved and use the
full spring constant (possibly computed from a potential function with a local minimum).

8.2: Other Restoring Forces is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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Sample Problems
All of the problems below have had their basic features discussed in an "Analyze This" box in this chapter. This means that the
solutions provided here are incomplete, as they will refer back to the analysis performed for information (i.e. the full solution is
essentially split between the analysis earlier and details here). If you have not yet spent time working on (not simply reading!) the
analysis of these situations, these sample problems will be of little benefit to your studies.
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