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5.1: Rotational Kinematics
Our first foray into linear motion was with kinematics, and we start our discussion of rotation with the same topic.

Rigid Body Rotation
Whenever we talk about “rotation,” there is something that is generally implied – we are not talking about a point mass or a
collection of independently-moving point masses. Instead, we are generally referring to the rotation of a rigid object. A rigid object
is nothing more than a collection of particles that are confined to stay at specific positions relative to each other. When we talk
about rotation, all these particles follow different paths and travel different distances, but they all have something in common.

Figure 5.1.1 – Motion of Two Points on a Rotating Rigid Body

Drawing a straight line from the fixed point (called the pivot) to two different points on the object, we see that the angles through
which these straight lines sweep are the same, and indeed this is true for every point on the object. So as we talk about rigid body
rotation, our old language of linear motion (displacement, velocity, acceleration) that is based on units of distance and time, will
have to give way to a new language for rotational motion, based on the units of radians (the most common unit of angular measure)
and time. This language will be very similar to what we used for the linear case, usually with the word "angular" or "rotational"
appended in front of the usual words.

Just because we are going to a new language, it doesn't mean we throw out the physical principles we have learned so far. But to
apply them in our new area of study, we need to develop some way to translate between the two. Back in Section 1.7, in our
discussion of circular motion, we came up with a translation between the arclength traveled by an object in circular motion and the
angle is motion sweeps out. Certainly the points A and B in the figure above are following a circular path (they remain a fixed
distance from the pivot), so this relation applies to them. If a given point on a rigid body is a distance  from the pivot, then the
relationship between the distance it travels along the arclength and the angle measured in radians is given by Equation 1.7.2, and
the relationship between its linear speed and the rate at which the angle is changing (in radians per second) is given by Equation
1.7.3, both of which we'll reiterate here:

While  and  are different for every point on the rigid object, we see that  and  are common to all of them. We therefore
embrace these as our angular displacement and angular velocity measurements, respectively, for the rigid body as a whole. We can
similarly define an angular acceleration ( ) in terms of the change of the linear speed of a spot on the rotating object:

While each point mass comprising the rigid object may have its own linear velocity/acceleration, they all share a common angular
velocity/acceleration. We therefore can simplify our discussion of rigid body rotation from tracking the many different motions of
all of the individual parts of the object to one simple parameter common to all of them. We therefore (for the moment) step away
from the translation between linear and angular motion – which we have already discussed in earlier sections – and instead focus
on purely rotational motion, following exactly the same path as we did for linear motion. You'll note that as a rule the convention
for rotational motion, we stick with Greek variables, in contrast to the Latin variables we used for linear motion.
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Whenever the word "acceleration" is combined with circular motion, one naturally thinks of centripetal acceleration. Be careful
not to make that association here! The link between linear acceleration and angular acceleration is through the component of
acceleration responsible for speeding up the spot on the rigid object, not the acceleration responsible for changing its direction
of motion (which is centripetal acceleration). So for example, an object rotating at a constant rate has no point on it that is
speeding up (and has zero angular acceleration), but every point on it (except at the pivot) experiencing a centripetal
acceleration. Conversely, a rotating object that slows down, stops, and reverses its direction of motion is experiencing angular
acceleration at all times, including the moment it stops, but the centripetal acceleration of points on the object is zero at the
moment that it stops.

We can fully clarify the role of angular and centripetal acceleration mathematically. For a point on the object, its acceleration has
two components:

Rotational Equations of Motion
We define the following angular (rotational) versions of what we studied previously in kinematics:

The calculus that leads to the equations of motion works out exactly the same way as before (we have only changed the variable
names), giving us:

Note that like the case of one-dimensional linear motion, we need to define at the outset a "positive" direction, but for rotation, this
means choosing clockwise or counterclockwise from a specific perspective.

Analyze This
A bug stands on the outer edge of a turntable as it begins to spin, accelerating rotationally in the horizontal plane from rest at a
constant rate. The bug is held on the turntable by static friction, but as the turntable spins ever faster, this will not remain the
case forever.

Analysis

The static friction force is responsible for the bug's acceleration, which can be broken into two components – radial and
tangential. These acceleration components are shown in Equation 5.1.3. The bug will slide off the turntable when the static
friction force is insufficient to maintain this acceleration. The maximum static friction force is the coefficient of static friction
multiplied by the normal force between the turntable and the bug, and since the turntable is horizontal and not accelerating
up or down, this normal force equals the weight of the bug. We therefore can say that the bug will start to fall off the
turntable when the following holds:
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The magnitude of the net force can be written in terms of the magnitude of the acceleration, so:

And finally, we should note that the angular acceleration and angular velocity are related. The turntable starts from rest, so
putting this into the usual kinematics equations gives:

Whichever of these relationships is more useful can then be plugged back in above to reduce the number of unknowns.

Directions of Rotational Kinematics Vectors
When we did all of this previously, we found it was easy to keep track of directions in one dimension, simply by checking the sign
of the value, but when we had to go to more dimensions, we needed to treat these quantities like vectors. How can we do that for
this rotational vectors?

The answer comes from all the way back in Chapter 1 – the Right Hand Rule! It goes like this: curl the fingers of your right hand
(in their natural finger-curling manner) in the direction that the object is rotating, and your thumb points the direction of the vector.
The direction is perpendicular to the plane of rotation.

This direction applies to all of the angular motion vectors – displacement, velocity, and acceleration. But be careful about the
acceleration vector! Just as in the linear case, the acceleration vector points in the direction of the changing velocity vector, not the
direction of the velocity vector itself. So if a rotating object is slowing down, the angular acceleration vector points in the opposite
direction as the angular velocity vector.

Conceptual Question
The graph below depicts the rotational velocity of a merry-go-round as a function of time, where the positive direction is defined
to be downward (into the surface of the Earth). You are standing near the merry-go-round, watching children go by. At the point
indicated in the graph, which of the following are you seeing?

a. The kids closest to you are moving to the right and are speeding up.
b. The kids closest to you are moving to the right and are slowing down.
c. The kids closest to you are moving to the left and are speeding up.
d. The kids closest to you are moving to the left and are slowing down.
e. The kids closest to you are moving to the left, but their speed is not changing.

Solution

(a) From the RHR, we determine that the positive rotational direction is clockwise as you look at the merry-go-round from
above (the kids on the merry-go-round are wondering why you are apparently giving their ride a thumbs-down!). Looking at
it from ground level, this means that rotation in a positive direction results in seeing the nearest kids go by from right-to-left.
At the point in question, the sign of the rotational velocity is negative, which means the kids are going by left-to-right. A
short time later, the rotational velocity will be more negative, which means they are speeding up.

This page titled 5.1: Rotational Kinematics is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman
directly on the LibreTexts platform.
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