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CHAPTER OVERVIEW

1: Charges and Conductors
1.1: Prelude to Electric Charges and Fields
1.2: Electric Charge
1.3: Conductors, Insulators, and Charging by Induction
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1.1: Prelude to Electric Charges and Fields
Back when we were studying Newton’s laws, we identified several physical phenomena as forces. We did so based on the effect
they had on a physical object: Specifically, they caused the object to accelerate. Later, when we studied impulse and momentum,
we expanded this idea to identify a force as any physical phenomenon that changed the momentum of an object. In either case, the
result is the same: We recognize a force by the effect that it has on an object.

Figure : Electric charges exist all around us. They can cause objects to be repelled from each other or to be attracted to each
other. (credit: modification of work by Sean McGrath)

In Gravitation, we examined the force of gravity, which acts on all objects with mass. In this chapter, we begin the study of the
electric force, which acts on all objects with a property called charge. The electric force is much stronger than gravity (in most
systems where both appear), but it can be a force of attraction or a force of repulsion, which leads to very different effects on
objects. The electric force helps keep atoms together, so it is of fundamental importance in matter. But it also governs most
everyday interactions we deal with, from chemical interactions to biological processes.

This page titled 1.1: Prelude to Electric Charges and Fields is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

5.1: Prelude to Electric Charges and Fields by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-2.
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1.2: Electric Charge

By the end of this section, you will be able to:

Describe the concept of electric charge
Explain qualitatively the force electric charge creates

You are certainly familiar with electronic devices that you activate with the click of a switch, from computers to cell phones to
television. And you have certainly seen electricity in a flash of lightning during a heavy thunderstorm. But you have also most
likely experienced electrical effects in other ways, maybe without realizing that an electric force was involved. Let’s take a look at
some of these activities and see what we can learn from them about electric charges and forces.

Discoveries
You have probably experienced the phenomenon of static electricity: When you first take clothes out of a dryer, many (not all) of
them tend to stick together; for some fabrics, they can be very difficult to separate. Another example occurs if you take a woolen
sweater off quickly—you can feel (and hear) the static electricity pulling on your clothes, and perhaps even your hair. If you comb
your hair on a dry day and then put the comb close to a thin stream of water coming out of a faucet, you will find that the water
stream bends toward (is attracted to) the comb (Figure ).

Figure : An electrically charged comb attracts a stream of water from a distance. Note that the water is not touching the comb.
(credit: Jane Whitney)

Suppose you bring the comb close to some small strips of paper; the strips of paper are attracted to the comb and even cling to it
(Figure ). In the kitchen, quickly pull a length of plastic cling wrap off the roll; it will tend to cling to most any nonmetallic
material (such as plastic, glass, or food). If you rub a balloon on a wall for a few seconds, it will stick to the wall. Probably the most
annoying effect of static electricity is getting shocked by a doorknob (or a friend) after shuffling your feet on some types of
carpeting.

 Learning Objectives

1.2.1

1.2.1

1.2.2
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Figure : After being used to comb hair, this comb attracts small strips of paper from a distance, without physical contact.
Investigation of this behavior helped lead to the concept of the electric force.

Many of these phenomena have been known for centuries. The ancient Greek philosopher Thales of Miletus (624–546 BCE)
recorded that when amber (a hard, translucent, fossilized resin from extinct trees) was vigorously rubbed with a piece of fur, a force
was created that caused the fur and the amber to be attracted to each other (Figure ). Additionally, he found that the rubbed
amber would not only attract the fur, and the fur attract the amber, but they both could affect other (nonmetallic) objects, even if not
in contact with those objects (Figure ).

Figure : Borneo amber is mined in Sabah, Malaysia, from shale-sandstone-mudstone veins. When a piece of amber is rubbed
with a piece of fur, the amber gains more electrons, giving it a net negative charge. At the same time, the fur, having lost electrons,
becomes positively charged. (credit: “Sebakoamber”/Wikimedia Commons)

The English physicist William Gilbert (1544–1603) also studied this attractive force, using various substances. He worked with
amber, and, in addition, he experimented with rock crystal and various precious and semi-precious gemstones. He also
experimented with several metals. He found that the metals never exhibited this force, whereas the minerals did. Moreover,
although an electrified amber rod would attract a piece of fur, it would repel another electrified amber rod; similarly, two electrified
pieces of fur would repel each other.

1.2.2

1.2.3

1.2.4

1.2.3
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Figure : When materials are rubbed together, charges can be separated, particularly if one material has a greater affinity for
electrons than another. (a) Both the amber and cloth are originally neutral, with equal positive and negative charges. Only a tiny
fraction of the charges are involved, and only a few of them are shown here. (b) When rubbed together, some negative charge is
transferred to the amber, leaving the cloth with a net positive charge. (c) When separated, the amber and cloth now have net
charges, but the absolute value of the net positive and negative charges will be equal.

This suggested there were two types of an electric property; this property eventually came to be called electric charge. The
difference between the two types of electric charge is in the directions of the electric forces that each type of charge causes: These
forces are repulsive when the same type of charge exists on two interacting objects and attractive when the charges are of opposite
types. The SI unit of electric charge is the coulomb (C), after the French physicist Charles Augustine de Coulomb (1736–1806).

The most peculiar aspect of this new force is that it does not require physical contact between the two objects in order to cause an
acceleration. This is an example of a so-called “long-range” force. (Or, as James Clerk Maxwell later phrased it, “action at a
distance.”) With the exception of gravity, all other forces we have discussed so far act only when the two interacting objects
actually touch.

The American physicist and statesman Benjamin Franklin found that he could concentrate charge in a “Leyden jar,” which was
essentially a glass jar with two sheets of metal foil, one inside and one outside, with the glass between them (Figure        ). This
created a large electric force between the two foil sheets.

1.2.4

1.2.4
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Figure        : A Leyden jar (an early version of what is now called a capacitor) allowed experimenters to store large amounts of
electric charge. Benjamin Franklin used such a jar to demonstrate that lightning behaved exactly like the electricity he got from the
equipment in his laboratory.

Franklin pointed out that the observed behavior could be explained by supposing that one of the two types of charge remained
motionless, while the other type of charge flowed from one piece of foil to the other. He further suggested that an excess of what he
called this “electrical fluid” be called “positive electricity” and the deficiency of it be called “negative electricity.” His suggestion,
with some minor modifications, is the model we use today. (With the experiments that he was able to do, this was a pure guess; he
had no way of actually determining the sign of the moving charge. Unfortunately, he guessed wrong; we now know that the charges
that flow are the ones Franklin labeled negative, and the positive charges remain largely motionless. Fortunately, as we’ll see, it
makes no practical or theoretical difference which choice we make, as long as we stay consistent with our choice.)

Let’s list the specific observations that we have of this electric force:

The force acts without physical contact between the two objects.
The force can be either attractive or repulsive: If two interacting objects carry the same sign of charge, the force is repulsive; if
the charges are of opposite sign, the force is attractive. These interactions are referred to as electrostatic repulsion and
electrostatic attraction, respectively.
Not all objects are affected by this force.
The magnitude of the force decreases (rapidly) with increasing separation distance between the objects.

To be more precise, we find experimentally that the magnitude of the force decreases as the square of the distance between the two
interacting objects increases. Thus, for example, when the distance between two interacting objects is doubled, the force between
them decreases to one fourth what it was in the original system. We can also observe that the surroundings of the charged objects
affect the magnitude of the force. However, we will explore this issue in a later chapter.

Properties of Electric Charge
In addition to the existence of two types of charge, several other properties of charge have been discovered.

Charge is quantized. This means that electric charge comes in discrete amounts, and there is a smallest possible amount of
charge that an object can have. In the SI system, this smallest amount is . No free particle can have less
charge than this, and, therefore, the charge on any object—the charge on all objects—must be an integer multiple of this

1.2.4

e ≡ 1.602 × C10−19
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amount. All macroscopic, charged objects have charge because electrons have either been added or taken away from them,
resulting in a net charge.
The magnitude of the charge is independent of the type. Phrased another way, the smallest possible positive charge (to four
significant figures) is , and the smallest possible negative charge is ; these values are
exactly equal. This is simply how the laws of physics in our universe turned out.
Charge is conserved. Charge can neither be created nor destroyed; it can only be transferred from place to place, from one
object to another. Frequently, we speak of two charges “canceling”; this is verbal shorthand. It means that if two objects that
have equal and opposite charges are physically close to each other, then the (oppositely directed) forces they apply on some
other charged object cancel, for a net force of zero. It is important that you understand that the charges on the objects by no
means disappear, however. The net charge of the universe is constant.
Charge is conserved in closed systems. In principle, if a negative charge disappeared from your lab bench and reappeared on
the Moon, conservation of charge would still hold. However, this never happens. If the total charge you have in your local
system on your lab bench is changing, there will be a measurable flow of charge into or out of the system. Again, charges can
and do move around, and their effects can and do cancel, but the net charge in your local environment (if closed) is conserved.
The last two items are both referred to as the law of conservation of charge.

The Source of Charges: The Structure of the Atom
Once it became clear that all matter was composed of particles that came to be called atoms, it also quickly became clear that the
constituents of the atom included both positively charged particles and negatively charged particles. The next question was, what
are the physical properties of those electrically charged particles?

The negatively charged particle was the first one to be discovered. In 1897, the English physicist J. J. Thomson was studying what
was then known as cathode rays. Some years before, the English physicist William Crookes had shown that these “rays” were
negatively charged, but his experiments were unable to tell any more than that. (The fact that they carried a negative electric charge
was strong evidence that these were not rays at all, but particles.) Thomson prepared a pure beam of these particles and sent them
through crossed electric and magnetic fields, and adjusted the various field strengths until the net deflection of the beam was zero.
With this experiment, he was able to determine the charge-to-mass ratio of the particle. This ratio showed that the mass of the
particle was much smaller than that of any other previously known particle—1837 times smaller, in fact. Eventually, this particle
came to be called the electron.

Since the atom as a whole is electrically neutral, the next question was to determine how the positive and negative charges are
distributed within the atom. Thomson himself imagined that his electrons were embedded within a sort of positively charged paste,
smeared out throughout the volume of the atom. However, in 1908, the New Zealand physicist Ernest Rutherford showed that the
positive charges of the atom existed within a tiny core—called a nucleus—that took up only a very tiny fraction of the overall
volume of the atom, but held over 99% of the mass (see Linear Momentum and Collisions.) In addition, he showed that the
negatively charged electrons perpetually orbited about this nucleus, forming a sort of electrically charged cloud that surrounds the
nucleus (Figure        ). Rutherford concluded that the nucleus was constructed of small, massive particles that he named protons.

+1.602 × C10−19 −1.602 ×10−19
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Figure        : This simplified model of a hydrogen atom shows a positively charged nucleus (consisting, in the case of hydrogen, of
a single proton), surrounded by an electron “cloud.” The charge of the electron cloud is equal (and opposite in sign) to the charge of
the nucleus, but the electron does not have a definite location in space; hence, its representation here is as a cloud. Normal
macroscopic amounts of matter contain immense numbers of atoms and molecules, and, hence, even greater numbers of individual
negative and positive charges.

Since it was known that different atoms have different masses, and that ordinarily atoms are electrically neutral, it was natural to
suppose that different atoms have different numbers of protons in their nucleus, with an equal number of negatively charged
electrons orbiting about the positively charged nucleus, thus making the atoms overall electrically neutral. However, it was soon
discovered that although the lightest atom, hydrogen, did indeed have a single proton as its nucleus, the next heaviest atom—
helium—has twice the number of protons (two), but four times the mass of hydrogen.

This mystery was resolved in 1932 by the English physicist James Chadwick, with the discovery of the neutron. The neutron is,
essentially, an electrically neutral twin of the proton, with no electric charge, but (nearly) identical mass to the proton. The helium
nucleus therefore has two neutrons along with its two protons. (Later experiments were to show that although the neutron is
electrically neutral overall, it does have an internal charge structure. Furthermore, although the masses of the neutron and the
proton are nearly equal, they aren’t exactly equal: The neutron’s mass is very slightly larger than the mass of the proton. That slight
mass excess turned out to be of great importance. That, however, is a story that will have to wait until our study of modern physics
in Nuclear Physics.)

Thus, in 1932, the picture of the atom was of a small, massive nucleus constructed of a combination of protons and neutrons,
surrounded by a collection of electrons whose combined motion formed a sort of negatively charged “cloud” around the nucleus
(Figure        ). In an electrically neutral atom, the total negative charge of the collection of electrons is equal to the total positive
charge in the nucleus. The very low-mass electrons can be more or less easily removed or added to an atom, changing the net
charge on the atom (though without changing its type). An atom that has had the charge altered in this way is called an ion. Positive
ions have had electrons removed, whereas negative ions have had excess electrons added. We also use this term to describe
molecules that are not electrically neutral.
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Figure        : The nucleus of a carbon atom is composed of six protons and six neutrons. As in hydrogen, the surrounding six
electrons do not have definite locations and so can be considered to be a sort of cloud surrounding the nucleus.

The story of the atom does not stop there, however. In the latter part of the twentieth century, many more subatomic particles were
discovered in the nucleus of the atom: pions, neutrinos, and quarks, among others. With the exception of the photon, none of these
particles are directly relevant to the study of electromagnetism, so we defer further discussion of them until the chapter on particle
physics (Particle Physics and Cosmology).

As noted previously, electric charge is a property that an object can have. This is similar to how an object can have a property
that we call mass, a property that we call density, a property that we call temperature, and so on. Technically, we should always
say something like, “Suppose we have a particle that carries a charge of .” However, it is very common to say instead,
“Suppose we have a  charge.” Similarly, we often say something like, “Six charges are located at the vertices of a regular
hexagon.” A charge is not a particle; rather, it is a property of a particle. Nevertheless, this terminology is extremely common
(and is frequently used in this book, as it is everywhere else). So, keep in the back of your mind what we really mean when we
refer to a “charge.”

This page titled 1.2: Electric Charge is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

5.2: Electric Charge by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-2.
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1.3: Conductors, Insulators, and Charging by Induction

By the end of this section, you will be able to:

Explain what a conductor is
Explain what an insulator is
List the differences and similarities between conductors and insulators
Describe the process of charging by induction

In the preceding section, we said that scientists were able to create electric charge only on nonmetallic materials and never on
metals. To understand why this is the case, you have to understand more about the nature and structure of atoms. In this section, we
discuss how and why electric charges do—or do not—move through materials (Figure ). A more complete description is
given in a later chapter.

Figure : This power adapter uses metal wires and connectors to conduct electricity from the wall socket to a laptop computer.
The conducting wires allow electrons to move freely through the cables, which are shielded by rubber and plastic. These materials
act as insulators that don’t allow electric charge to escape outward. (credit: modification of work by “Evan-Amos”/Wikimedia
Commons)

Conductors and Insulators
As discussed in the previous section, electrons surround the tiny nucleus in the form of a (comparatively) vast cloud of negative
charge. However, this cloud does have a definite structure to it. Let’s consider an atom of the most commonly used conductor,
copper.

For reasons that will become clear in Atomic Structure, there is an outermost electron that is only loosely bound to the atom’s
nucleus. It can be easily dislodged; it then moves to a neighboring atom. In a large mass of copper atoms (such as a copper wire or
a sheet of copper), these vast numbers of outermost electrons (one per atom) wander from atom to atom, and are the electrons that
do the moving when electricity flows. These wandering, or “free,” electrons are called conduction electrons, and copper is
therefore an excellent conductor (of electric charge). All conducting elements have a similar arrangement of their electrons, with
one or two conduction electrons. This includes most metals.

Insulators, in contrast, are made from materials that lack conduction electrons; charge flows only with great difficulty, if at all.
Even if excess charge is added to an insulating material, it cannot move, remaining indefinitely in place. This is why insulating
materials exhibit the electrical attraction and repulsion forces described earlier, whereas conductors do not; any excess charge
placed on a conductor would instantly flow away (due to mutual repulsion from existing charges), leaving no excess charge around
to create forces. Charge cannot flow along or through an insulator, so its electric forces remain for long periods of time. (Charge
will dissipate from an insulator, given enough time.) As it happens, amber, fur, and most semi-precious gems are insulators, as are
materials like wood, glass, and plastic.
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Charging by Induction
Let’s examine in more detail what happens in a conductor when an electrically charged object is brought close to it. As mentioned,
the conduction electrons in the conductor are able to move with nearly complete freedom. As a result, when a charged insulator
(such as a positively charged glass rod) is brought close to the conductor, the (total) charge on the insulator exerts an electric force
on the conduction electrons. Since the rod is positively charged, the conduction electrons (which themselves are negatively
charged) are attracted, flowing toward the insulator to the near side of the conductor (Figure ).

Now, the conductor is still overall electrically neutral; the conduction electrons have changed position, but they are still in the
conducting material. However, the conductor now has a charge distribution; the near end (the portion of the conductor closest to the
insulator) now has more negative charge than positive charge, and the reverse is true of the end farthest from the insulator. The
relocation of negative charges to the near side of the conductor results in an overall positive charge in the part of the conductor
farthest from the insulator. We have thus created an electric charge distribution where one did not exist before. This process is
referred to as inducing polarization—in this case, polarizing the conductor. The resulting separation of positive and negative charge
is called polarization, and a material, or even a molecule, that exhibits polarization is said to be polarized. A similar situation
occurs with a negatively charged insulator, but the resulting polarization is in the opposite direction.

Figure : Induced polarization. A positively charged glass rod is brought near the left side of the conducting sphere, attracting
negative charge and leaving the other side of the sphere positively charged. Although the sphere is overall still electrically neutral,
it now has a charge distribution, so it can exert an electric force on other nearby charges. Furthermore, the distribution is such that
it will be attracted to the glass rod.

The result is the formation of what is called an electric dipole, from a Latin phrase meaning “two ends.” The presence of electric
charges on the insulator—and the electric forces they apply to the conduction electrons—creates, or “induces,” the dipole in the
conductor.

Neutral objects can be attracted to any charged object. The pieces of straw attracted to polished amber are neutral, for example. If
you run a plastic comb through your hair, the charged comb can pick up neutral pieces of paper. Figure  shows how the
polarization of atoms and molecules in neutral objects results in their attraction to a charged object.

Figure : Both positive and negative objects attract a neutral object by polarizing its molecules. (a) A positive object brought
near a neutral insulator polarizes its molecules. There is a slight shift in the distribution of the electrons orbiting the molecule, with
unlike charges being brought nearer and like charges moved away. Since the electrostatic force decreases with distance, there is a
net attraction. (b) A negative object produces the opposite polarization, but again attracts the neutral object. (c) The same effect
occurs for a conductor; since the unlike charges are closer, there is a net attraction.

When a charged rod is brought near a neutral substance, an insulator in this case, the distribution of charge in atoms and molecules
is shifted slightly. Opposite charge is attracted nearer the external charged rod, while like charge is repelled. Since the electrostatic
force decreases with distance, the repulsion of like charges is weaker than the attraction of unlike charges, and so there is a net
attraction. Thus, a positively charged glass rod attracts neutral pieces of paper, as will a negatively charged rubber rod. Some
molecules, like water, are polar molecules. Polar molecules have a natural or inherent separation of charge, although they are
neutral overall. Polar molecules are particularly affected by other charged objects and show greater polarization effects than
molecules with naturally uniform charge distributions.
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When the two ends of a dipole can be separated, this method of charging by induction may be used to create charged objects
without transferring charge. In Figure , we see two neutral metal spheres in contact with one another but insulated from the
rest of the world. A positively charged rod is brought near one of them, attracting negative charge to that side, leaving the other
sphere positively charged.

Figure : Charging by induction. (a) Two uncharged or neutral metal spheres are in contact with each other but insulated from
the rest of the world. (b) A positively charged glass rod is brought near the sphere on the left, attracting negative charge and leaving
the other sphere positively charged. (c) The spheres are separated before the rod is removed, thus separating negative and positive
charges. (d) The spheres retain net charges after the inducing rod is removed—without ever having been touched by a charged
object.

Another method of charging by induction is shown in Figure . The neutral metal sphere is polarized when a charged rod is
brought near it. The sphere is then grounded, meaning that a conducting wire is run from the sphere to the ground. Since Earth is
large and most of the ground is a good conductor, it can supply or accept excess charge easily. In this case, electrons are attracted to
the sphere through a wire called the ground wire, because it supplies a conducting path to the ground. The ground connection is
broken before the charged rod is removed, leaving the sphere with an excess charge opposite to that of the rod. Again, an opposite
charge is achieved when charging by induction, and the charged rod loses none of its excess charge.
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Figure : Charging by induction using a ground connection. (a) A positively charged rod is brought near a neutral metal sphere,
polarizing it. (b) The sphere is grounded, allowing electrons to be attracted from Earth’s ample supply. (c) The ground connection
is broken. (d) The positive rod is removed, leaving the sphere with an induced negative charge.

This page titled 1.3: Conductors, Insulators, and Charging by Induction is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

5.3: Conductors, Insulators, and Charging by Induction by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-2.
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2.1: Coulomb's Law

By the end of this section, you will be able to:

Describe the electric force, both qualitatively and quantitatively
Calculate the force that charges exert on each other
Determine the direction of the electric force for different source charges
Correctly describe and apply the superposition principle for multiple source charges

Experiments with electric charges have shown that if two objects each have electric charge, then they exert an electric force on
each other. The magnitude of the force is linearly proportional to the net charge on each object and inversely proportional to the
square of the distance between them. (Interestingly, the force does not depend on the mass of the objects.) The direction of the
force vector is along the imaginary line joining the two objects and is dictated by the signs of the charges involved.

Let

 the net electric charge of the two objects;
 the vector displacement from  to .

The electric force  on one of the charges is proportional to the magnitude of its own charge and the magnitude of the other
charge, and is inversely proportional to the square of the distance between them:

This proportionality becomes an equality with the introduction of a proportionality constant. For reasons that will become clear in a
later chapter, the proportionality constant that we use is actually a collection of constants. (We discuss this constant shortly.)

The magnitude of the electric force (or Coulomb force) between two electrically charged particles is equal to

The unit vector  has a magnitude of 1 and points along the axis as the charges. If the charges have the same sign, the force is in the
same direction as  showing a repelling force. If the charges have different signs, the force is in the opposite direction of  showing
an attracting force. (Figure ).

Figure : The electrostatic force  between point charges  and  separated by a distance  is given by Coulomb’s law. Note
that Newton’s third law (every force exerted creates an equal and opposite force) applies as usual—the force on  is equal in
magnitude and opposite in direction to the force it exerts on . (a) Like charges; (b) unlike charges.

It is important to note that the electric force is not constant; it is a function of the separation distance between the two charges. If
either the test charge or the source charge (or both) move, then  changes, and therefore so does the force. An immediate
consequence of this is that direct application of Newton’s laws with this force can be mathematically difficult, depending on the
specific problem at hand. It can (usually) be done, but we almost always look for easier methods of calculating whatever physical
quantity we are interested in. (Conservation of energy is the most common choice.)

Finally, the new constant  in Coulomb’s law is called the permittivity of free space, or (better) the permittivity of vacuum. It has
a very important physical meaning that we will discuss in a later chapter; for now, it is simply an empirical proportionality
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constant. Its numerical value (to three significant figures) turns out to be

These units are required to give the force in Coulomb’s law the correct units of newtons. Note that in Coulomb’s law, the
permittivity of vacuum is only part of the proportionality constant. For convenience, we often define a Coulomb’s constant:

A hydrogen atom consists of a single proton and a single electron. The proton has a charge of  and the electron has . In
the “ground state” of the atom, the electron orbits the proton at most probable distance of  (Figure ).
Calculate the electric force on the electron due to the proton.

Figure : A schematic depiction of a hydrogen atom, showing the force on the electron. This depiction is only to enable us
to calculate the force; the hydrogen atom does not really look like this.

Strategy
For the purposes of this example, we are treating the electron and proton as two point particles, each with an electric charge,
and we are told the distance between them; we are asked to calculate the force on the electron. We thus use Coulomb’s law
(Equation ).

Solution
Our two charges are,

and the distance between them

The magnitude of the force on the electron (Equation ) is

= 8.85 × .ϵ0 10−12 C2
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As for the direction, since the charges on the two particles are opposite, the force is attractive; the force on the electron points
radially directly toward the proton, everywhere in the electron’s orbit. The force is thus expressed as

Significance
This is a three-dimensional system, so the electron (and therefore the force on it) can be anywhere in an imaginary spherical
shell around the proton. In this “classical” model of the hydrogen atom, the electrostatic force on the electron points in the
inward centripetal direction, thus maintaining the electron’s orbit. But note that the quantum mechanical model of hydrogen
(discussed in Quantum Mechanics) is utterly different.

What would be different if the electron also had a positive charge?

Answer

The force would point outward.

Multiple Source Charges
The analysis that we have done for two particles can be extended to an arbitrary number of particles; we simply repeat the analysis,
two charges at a time. Specifically, we ask the question: Given  charges (which we refer to as source charge), what is the net
electric force that they exert on some other point charge (which we call the test charge)? Note that we use these terms because we
can think of the test charge being used to test the strength of the force provided by the source charges.

Like all forces that we have seen up to now, the net electric force on our test charge is simply the vector sum of each individual
electric force exerted on it by each of the individual test charges. Thus, we can calculate the net force on the test charge  by
calculating the force on it from each source charge, taken one at a time, and then adding all those forces together (as vectors). This
ability to simply add up individual forces in this way is referred to as the principle of superposition, and is one of the more
important features of the electric force. In mathematical form, this becomes

In this expression,  represents the charge of the particle that is experiencing the electric force , and is located at  from the
origin; the 's are the  source charges, and the vectors  are the displacements from the position of the th charge to the
position of . Each of the  unit vectors points directly from its associated source charge toward the test charge. All of this is
depicted in Figure . Please note that there is no physical difference between  and ; the difference in labels is merely to
allow clear discussion, with  being the charge we are determining the force on.
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Figure : The eight source charges each apply a force on the single test charge Q. Each force can be calculated independently
of the other seven forces. This is the essence of the superposition principle.

(Note that the force vector  does not necessarily point in the same direction as the unit vector ; it may point in the opposite
direction, . The signs of the source charge and test charge determine the direction of the force on the test charge.)

There is a complication, however. Just as the source charges each exert a force on the test charge, so too (by Newton’s third law)
does the test charge exert an equal and opposite force on each of the source charges. As a consequence, each source charge would
change position. However, by Equation , the force on the test charge is a function of position; thus, as the positions of the
source charges change, the net force on the test charge necessarily changes, which changes the force, which again changes the
positions. Thus, the entire mathematical analysis quickly becomes intractable. Later, we will learn techniques for handling this
situation, but for now, we make the simplifying assumption that the source charges are fixed in place somehow, so that their
positions are constant in time. (The test charge is allowed to move.) With this restriction in place, the analysis of charges is known
as electrostatics, where “statics” refers to the constant (that is, static) positions of the source charges and the force is referred to as
an electrostatic force.

Three different, small charged objects are placed as shown in Figure . The charges  and  are fixed in place;  is free
to move. Given  and  and that , what is the net force on the middle charge 

?

Figure : Source charges  and  each apply a force on .

Strategy
We use Coulomb’s law again. The way the question is phrased indicates that  is our test charge, so that  and  are source
charges. The principle of superposition says that the force on  from each of the other charges is unaffected by the presence of
the other charge. Therefore, we write down the force on  from each and add them together as vectors.

Solution
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We have two source charges  and  a test charge , distances  and  and we are asked to find a force. This calls for
Coulomb’s law and superposition of forces. There are two forces:

We cannot add these forces directly because they don’t point in the same direction:  points only in the -direction, while 
 points only in the -direction. The net force is obtained from applying the Pythagorean theorem to its - and -

components:

and

and

We find that

at an angle of

that is,  above the − -axis, as shown in the diagram.

Significance
Notice that when we substituted the numerical values of the charges, we did not include the negative sign of either  or .
Recall that negative signs on vector quantities indicate a reversal of direction of the vector in question. But for electric forces,
the direction of the force is determined by the types (signs) of both interacting charges; we determine the force directions by
considering whether the signs of the two charges are the same or are opposite. If you also include negative signs from negative
charges when you substitute numbers, you run the risk of mathematically reversing the direction of the force you are
calculating. Thus, the safest thing to do is to calculate just the magnitude of the force, using the absolute values of the charges,
and determine the directions physically.

It’s also worth noting that the only new concept in this example is how to calculate the electric forces; everything else (getting
the net force from its components, breaking the forces into their components, finding the direction of the net force) is the same
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as force problems you have done earlier.

What would be different in Example  if  were negative rather than positive?

Answer

The net force would point  below the -axis.

This page titled 2.1: Coulomb's Law is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

5.4: Coulomb's Law by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-2.

 Exercise 2.1.2
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2.2: Electric Field

By the end of this section, you will be able to:

Explain the purpose of the electric field concept
Describe the properties of the electric field
Calculate the field of a collection of source charges of either sign

As we showed in the preceding section, the net electric force on a test charge is the vector sum of all the electric forces acting on it,
from all of the various source charges, located at their various positions. But what if we use a different test charge, one with a
different magnitude, or sign, or both? Or suppose we have a dozen different test charges we wish to try at the same location? We
would have to calculate the sum of the forces from scratch. Fortunately, it is possible to define a quantity, called the electric field,
which is independent of the test charge. It only depends on the configuration of the source charges, and once found, allows us to
calculate the force on any test charge.

Defining a Field
Suppose we have  source charges  located at positions , applying  electrostatic forces on a
test charge . The net force on  is

We can rewrite this as

where

or, more compactly,

This expression is called the electric field at position  of the  source charges. Here,  is the location of the point
in space where you are calculating the field and is relative to the positions  of the source charges (Figure ). Note that we
have to impose a coordinate system to solve actual problems.

 LEARNING OBJECTIVES
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Figure : Each of these five source charges creates its own electric field at every point in space; shown here are the field
vectors at an arbitrary point P. Like the electric force, the net electric field obeys the superposition principle.

Notice that the calculation of the electric field makes no reference to the test charge. Thus, the physically useful approach is to
calculate the electric field and then use it to calculate the force on some test charge later, if needed. Different test charges
experience different forces Equation , but it is the same electric field Equation . That being said, recall that there is no
fundamental difference between a test charge and a source charge; these are merely convenient labels for the system of interest.
Any charge produces an electric field; however, just as Earth’s orbit is not affected by Earth’s own gravity, a charge is not subject to
a force due to the electric field it generates. Charges are only subject to forces from the electric fields of other charges.

In this respect, the electric field  of a point charge is similar to the gravitational field  of Earth; once we have calculated the
gravitational field at some point in space, we can use it any time we want to calculate the resulting force on any mass we choose to
place at that point. In fact, this is exactly what we do when we say the gravitational field of Earth (near Earth’s surface) has a value
of  and then we calculate the resulting force (i.e., weight) on different masses. Also, the general expression for
calculating  at arbitrary distances from the center of Earth (i.e., not just near Earth’s surface) is very similar to the expression for 

:

where  is a proportionality constant, playing the same role for  as  does for . The value of  is calculated once and is

then used in an endless number of problems.

To push the analogy further, notice the units of the electric field: From , the units of E are newtons per coulomb, N/C, that
is, the electric field applies a force on each unit charge. Now notice the units of : From  the units of  are newtons per
kilogram, N/kg, that is, the gravitational field applies a force on each unit mass. We could say that the gravitational field of Earth,
near Earth’s surface, has a value of 9.81 N/kg.
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The Meaning of "Field"
Recall from your studies of gravity that the word “field” in this context has a precise meaning. A field, in physics, is a physical
quantity whose value depends on (is a function of) position, relative to the source of the field. In the case of the electric field,
Equation  shows that the value of  (both the magnitude and the direction) depends on where in space the point  is located,
measured from the locations  of the source charges .

In addition, since the electric field is a vector quantity, the electric field is referred to as a vector field. (The gravitational field is
also a vector field.) In contrast, a field that has only a magnitude at every point is a scalar field. The temperature in a room is an
example of a scalar field. It is a field because the temperature, in general, is different at different locations in the room, and it is a
scalar field because temperature is a scalar quantity.

Also, as you did with the gravitational field of an object with mass, you should picture the electric field of a charge-bearing object
(the source charge) as a continuous, immaterial substance that surrounds the source charge, filling all of space—in principle, to 

 in all directions. The field exists at every physical point in space. To put it another way, the electric charge on an object alters
the space around the charged object in such a way that all other electrically charged objects in space experience an electric force as
a result of being in that field. The electric field, then, is the mechanism by which the electric properties of the source charge are
transmitted to and through the rest of the universe. (Again, the range of the electric force is infinite.)

We will see in subsequent chapters that the speed at which electrical phenomena travel is the same as the speed of light. There is a
deep connection between the electric field and light.

Superposition
Yet another experimental fact about the field is that it obeys the superposition principle. In this context, that means that we can (in
principle) calculate the total electric field of many source charges by calculating the electric field of only  at position P, then
calculate the field of  at P, while—and this is the crucial idea—ignoring the field of, and indeed even the existence of, . We can
repeat this process, calculating the field of each individual source charge, independently of the existence of any of the other
charges. The total electric field, then, is the vector sum of all these fields. That, in essence, is what Equation  says.

In the next section, we describe how to determine the shape of an electric field of a source charge distribution and how to sketch it.

The Direction of the Field
Equation  enables us to determine the magnitude of the electric field, but we need the direction also. We use the convention
that the direction of any electric field vector is the same as the direction of the electric force vector that the field would apply to a
positive test charge placed in that field. Such a charge would be repelled by positive source charges (the force on it would point
away from the positive source charge) but attracted to negative charges (the force points toward the negative source).

By convention, all electric fields  point away from positive source charges and point toward negative source charges.

Download the Electric Field of Dreams PhET simulation and add charges to the and see how they react to the electric field.
Turn on a background electric field and adjust the direction and magnitude.

In an ionized helium atom, the most probable distance between the nucleus and the electron is . What is
the electric field due to the nucleus at the location of the electron?

Strategy

Note that although the electron is mentioned, it is not used in any calculation. The problem asks for an electric field, not a
force; hence, there is only one charge involved, and the problem specifically asks for the field due to the nucleus. Thus, the
electron is a red herring; only its distance matters. Also, since the distance between the two protons in the nucleus is much,

2.2.6 E ⃗  P

r ⃗ i qi

±∞

q1

q2 q1

2.2.6

2.2.6

 Direction of the Electric Field

E ⃗ 

 Phet Simulation: Electric Field of Dreams

 Example : The E-field of an Atom2.2.1A
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much smaller than the distance of the electron from the nucleus, we can treat the two protons as a single charge +2  (Figure 
).

Figure : A schematic representation of a helium atom. Again, helium physically looks nothing like this, but this sort of
diagram is helpful for calculating the electric field of the nucleus.

Solution

The electric field is calculated by

Since there is only one source charge (the nucleus), this expression simplifies to

Here,  (since there are two protons) and   is given; substituting gives

The direction of  is radially away from the nucleus in all directions. Why? Because a positive test charge placed in this field
would accelerate radially away from the nucleus (since it is also positively charged), and again, the convention is that the
direction of the electric field vector is defined in terms of the direction of the force it would apply to positive test charges.

a. Find the electric field (magnitude and direction) a distance  above the midpoint between two equal charges  that are a
distance  apart (Figure ). Check that your result is consistent with what you’d expect when .

b. The same as part (a), only this time make the right-hand charge  instead of .
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Figure : Finding the field of two identical source charges at the point . Due to the symmetry, the net field at  is
entirely vertical. (Notice that this is not true away from the midline between the charges.)

Strategy

We add the two fields as vectors, per Equation . Notice that the system (and therefore the field) is symmetrical about the
vertical axis; as a result, the horizontal components of the field vectors cancel. This simplifies the math. Also, we take care to
express our final answer in terms of only quantities that are given in the original statement of the problem: , , , and
constants .

Figure . Note that the horizontal components of the electric fields from the two charges cancel each other out, while the
vertical components add together.

Solution

a. By symmetry, the horizontal ( )-components of  cancel (Figure );

The vertical ( )-component is given by
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Since none of the other components survive, this is the entire electric field, and it points in the  direction. Notice that this
calculation uses the principle of superposition; we calculate the fields of the two charges independently and then add them
together.

What we want to do now is replace the quantities in this expression that we don’t know (such as ), or can’t easily measure
(such as  with quantities that we do know, or can measure. In this case, by geometry,

and

Thus, substituting,

Simplifying, the desired answer is

b. If the source charges are equal and opposite, the vertical components cancel because

and we get, for the horizontal component of .

Significance

It is a very common and very useful technique in physics to check whether your answer is reasonable by evaluating it at
extreme cases. In this example, we should evaluate the field expressions for the cases , and , and confirm
that the resulting expressions match our physical expectations. Let’s do so:

Let’s start with Equation , the field of two identical charges. From far away (i.e., ), the two source charges should
“merge” and we should then “see” the field of just one charge, of size 2  . So, let ; then we can neglect  in Equation 

 to obtain

which is the correct expression for a field at a distance  away from a charge .
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Next, we consider the field of equal and opposite charges, Equation . It can be shown (via a Taylor expansion) that for 
, , this becomes

which is the field of a dipole, a system that we will study in more detail later. (Note that the units of  are still correct in this
expression, since the units of   in the numerator cancel the unit of the “extra”  in the denominator.) If  is very large 

, then , as it should; the two charges “merge” and so cancel out.

What is the electric field due to a single point particle?

Answer

Try this simulation of electric field hockey to get the charge in the goal by placing other charges on the field.

 

This page titled 2.2: Electric Field is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

5.5: Electric Field by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-2.
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2.3: Calculating Electric Fields of Charge Distributions

By the end of this section, you will be able to:

Explain what a continuous source charge distribution is and how it is related to the concept of quantization of charge
Describe line charges, surface charges, and volume charges
Calculate the field of a continuous source charge distribution of either sign

The charge distributions we have seen so far have been discrete: made up of individual point particles. This is in contrast with a
continuous charge distribution, which has at least one nonzero dimension. If a charge distribution is continuous rather than
discrete, we can generalize the definition of the electric field. We simply divide the charge into infinitesimal pieces and treat each
piece as a point charge.

Note that because charge is quantized, there is no such thing as a “truly” continuous charge distribution. However, in most practical
cases, the total charge creating the field involves such a huge number of discrete charges that we can safely ignore the discrete
nature of the charge and consider it to be continuous. This is exactly the kind of approximation we make when we deal with a
bucket of water as a continuous fluid, rather than a collection of  molecules.

Our first step is to define a charge density for a charge distribution along a line, across a surface, or within a volume, as shown in
Figure .

Figure : The configuration of charge differential elements for a (a) line charge, (b) sheet of charge, and (c) a volume of charge.
Also note that (d) some of the components of the total electric field cancel out, with the remainder resulting in a net electric field.

Definitions of charge density:

linear charge density:  charge per unit length (Figure ); units are coulombs per meter ( )
surface charge density:  charge per unit area (Figure ); units are coulombs per square meter 
volume charge density:  charge per unit volume (Figure ); units are coulombs per square meter 

For a line charge, a surface charge, and a volume charge, the summation in the definition of an Electric field discussed previously
becomes an integral and  is replaced by , , or , respectively:

 LEARNING OBJECTIVES

OH2
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2.3.1

 Definitions: Charge Densities

λ ≡ 2.3.1a C/m
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The integrals in Equations -  are generalizations of the expression for the field of a point charge. They implicitly include
and assume the principle of superposition. The “trick” to using them is almost always in coming up with correct expressions for , 

, or , as the case may be, expressed in terms of r, and also expressing the charge density function appropriately. It may be
constant; it might be dependent on location.

Note carefully the meaning of  in these equations: It is the distance from the charge element ( ) to the location
of interest,  (the point in space where you want to determine the field). However, don’t confuse this with the meaning of 

; we are using it and the vector notation  to write three integrals at once. That is, Equation  is actually

Find the electric field a distance  above the midpoint of a straight line segment of length  that carries a uniform line charge
density .

Strategy

Since this is a continuous charge distribution, we conceptually break the wire segment into differential pieces of length , each
of which carries a differential amount of charge

Then, we calculate the differential field created by two symmetrically placed pieces of the wire, using the symmetry of the
setup to simplify the calculation (Figure ). Finally, we integrate this differential field expression over the length of the
wire (half of it, actually, as we explain below) to obtain the complete electric field expression.
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Surface charge

= ( )
1

4πϵ0
∫

volume

ρ dV

r2
r̂

  
Volume charge

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

2.3.1 2.3.4
dl

dA dV

r , λ dl, σ dA, ρ dVqi
P (x, y, z)

r̂ E ⃗  2.3.2

(P )Ex

(P )Ey

(P )Ez

= ,
1

4πϵ0
∫

line
( )
λ dl

r2
x

= ,
1

4πϵ0
∫

line
( )
λ dl

r2
y

=
1

4πϵ0
∫

line
( )
λ dl

r2
z

(2.3.5)

(2.3.6)

(2.3.7)

 Example : Electric Field of a Line Segment2.3.1

z L
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dq = λ dl.
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Figure : A uniformly charged segment of wire. The electric field at point  can be found by applying the superposition
principle to symmetrically placed charge elements and integrating.

Solution

Before we jump into it, what do we expect the field to “look like” from far away? Since it is a finite line segment, from far
away, it should look like a point charge. We will check the expression we get to see if it meets this expectation.

The electric field for a line charge is given by the general expression

The symmetry of the situation (our choice of the two identical differential pieces of charge) implies the horizontal ( )-
components of the field cancel, so that the net field points in the -direction. Let’s check this formally.

The total field  is the vector sum of the fields from each of the two charge elements (call them  and , for now):

Because the two charge elements are identical and are the same distance away from the point  where we want to calculate the
field, , so those components cancel. This leaves

These components are also equal, so we have

where our differential line element  is , in this example, since we are integrating along a line of charge that lies on the -
axis. (The limits of integration are 0 to , not  to , because we have constructed the net field from two differential
pieces of charge . If we integrated along the entire length, we would pick up an erroneous factor of 2.)

In principle, this is complete. However, to actually calculate this integral, we need to eliminate all the variables that are not
given. In this case, both  and  change as we integrate outward to the end of the line charge, so those are the variables to get
rid of. We can do that the same way we did for the two point charges: by noticing that

and

2.3.2 P

(P ) = .E ⃗  1

4πϵ0
∫

line

λdl

r2
r̂

x

z

(P )E ⃗  E ⃗ 
1 E ⃗ 

2

(P )E ⃗  = +E ⃗ 
1 E ⃗ 

2

= + + (− ) + .E1x î E1zk̂ E2x î E2zk̂

P

=E1x E2x

(P )E ⃗  = +E1zk̂ E2zk̂

= cosθ + cosθ .E1 k̂ E2 k̂

(P )E ⃗  = ∫ cosθ + ∫ cosθ
1

4πϵ0

λdl

r2
k̂

1

4πϵ0

λdl

r2
k̂

= cosθ
1

4πϵ0
∫

L/2

0

2λdx

r2
k̂

dl dx x
L

2
− L

2
+ L

2
dq

r θ

r = ( +z2 x2)1/2

cosθ = = .
z

r

z

( +z2 x2)1/2
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Substituting, we obtain

which simplifies to

Significance

Notice, once again, the use of symmetry to simplify the problem. This is a very common strategy for calculating electric fields.
The fields of nonsymmetrical charge distributions have to be handled with multiple integrals and may need to be calculated
numerically by a computer.

How would the strategy used above change to calculate the electric field at a point a distance  above one end of the finite line
segment?

Answer

We will no longer be able to take advantage of symmetry. Instead, we will need to calculate each of the two components of
the electric field with their own integral.

Find the electric field a distance  above the midpoint of an infinite line of charge that carries a uniform line charge density .

Strategy

This is exactly like the preceding example, except the limits of integration will be  to .

Solution

Again, the horizontal components cancel out, so we wind up with

where our differential line element  is , in this example, since we are integrating along a line of charge that lies on the -
axis. Again,

Substituting, we obtain

(P )E ⃗  =
1

4πϵ0
∫

L/2

0

2λdx

( + )z2 x2

z

( +z2 x2)1/2
k̂

= dx
1

4πϵ0
∫

L/2

0

2λz

( +z2 x2)3/2
k̂

= .
2λz

4πϵ0
[ ]

x

z2 +z2 x2
− −−−−−

√

L/2

0

k̂

(z) = .E ⃗  1

4πϵ0

λL

z +z2
L2

4

− −−−−−−
√

k̂ (2.3.8)

 Exercise 2.3.1

z

 Example : Electric Field of an Infinite Line of Charge2.3.2

z λ

−∞ +∞

(P ) = cos θE ⃗  1

4πϵ0
∫

∞

−∞

λdx

r2
k̂

dl dx x

cosθ =
z

r

= .
z
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which simplifies to

Significance

Our strategy for working with continuous charge distributions also gives useful results for charges with infinite dimension.

In the case of a finite line of charge, note that for ,  dominates the  in the denominator, so that Equation  simplifies
to

If you recall that  the total charge on the wire, we have retrieved the expression for the field of a point charge, as expected.

In the limit  on the other hand, we get the field of an infinite straight wire, which is a straight wire whose length is much,
much greater than either of its other dimensions, and also much, much greater than the distance at which the field is to be
calculated:

An interesting artifact of this infinite limit is that we have lost the usual  dependence that we are used to. This will become
even more intriguing in the case of an infinite plane.

A ring has a uniform charge density , with units of coulomb per unit meter of arc. Find the electric field at a point on the axis
passing through the center of the ring.

Strategy

We use the same procedure as for the charged wire. The difference here is that the charge is distributed on a circle. We divide
the circle into infinitesimal elements shaped as arcs on the circle and use polar coordinates shown in Figure .

Figure : The system and variable for calculating the electric field due to a ring of charge.

(P )E ⃗  =
1

4πϵ0
∫

∞

−∞

λdx

( + )z2 x2

z

( +z2 x2)1/2
k̂

= dx
1

4πϵ0
∫

∞

−∞

λz

( +z2 x2)3/2
k̂

=
1

4πϵ0
[ ]

x

z2 +z2 x2
− −−−−−

√

∞

−∞

k̂

(z) = .E ⃗  1

4πϵ0

2λ

z
k̂

z ≫ L z2 L 2.3.8

≈ .E ⃗  1

4πϵ0

λL

z2
k̂ (2.3.9)

λL = q

L → ∞

(z) = .E ⃗  1

4πϵ0

2λ

z
k̂ (2.3.10)

1/r2

 Example : Electric Field due to a Ring of Charge2.3.3A
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Solution

The electric field for a line charge is given by the general expression

A general element of the arc between  and  is of length  and therefore contains a charge equal to . The

element is at a distance of  from , the angle is  and therefore the electric field is

Significance

As usual, symmetry simplified this problem, in this particular case resulting in a trivial integral. Also, when we take the limit
of , we find that

as we expect.

Find the electric field of a circular thin disk of radius  and uniform charge density at a distance  above the center of the disk
(Figure )

Figure : A uniformly charged disk. As in the line charge example, the field above the center of this disk can be calculated
by taking advantage of the symmetry of the charge distribution.

Strategy

The electric field for a surface charge is given by

(P ) = .E ⃗  1

4πϵ0
∫

line

λdl

r2
r̂

θ θ+dθ Rdθ λRdθ
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√
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√
ẑ
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qtot

z2
ẑ

 Example : The Field of a Disk2.3.3B

R z

2.3.4

2.3.4

(P ) = .E ⃗  1

4πϵ0
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To solve surface charge problems, we break the surface into symmetrical differential “stripes” that match the shape of the
surface; here, we’ll use rings, as shown in the figure. Again, by symmetry, the horizontal components cancel and the field is
entirely in the vertical  direction. The vertical component of the electric field is extracted by multiplying by , so

As before, we need to rewrite the unknown factors in the integrand in terms of the given quantities. In this case,

(Please take note of the two different “ ’s” here;  is the distance from the differential ring of charge to the point  where we
wish to determine the field, whereas  is the distance from the center of the disk to the differential ring of charge.) Also, we
already performed the polar angle integral in writing down .

Solution

Substituting all this in, we get

or, more simply,

Significance

Again, it can be shown (via a Taylor expansion) that when , this reduces to

which is the expression for a point charge .

How would the above limit change with a uniformly charged rectangle instead of a disk?

Answer

The point charge would be  where  and  are the sides of the rectangle but otherwise identical.

As , Equation  reduces to the field of an infinite plane, which is a flat sheet whose area is much, much greater than
its thickness, and also much, much greater than the distance at which the field is to be calculated:

( )k̂ θ

(P ) = cosθ .E ⃗  1

4πϵ0
∫
surface

σ dA

r2
k̂

dA = 2π dr′ r′ (2.3.11)

= +r2 r′2 z2 (2.3.12)

cosθ = .
z

( +r′2 z2)1/2
(2.3.13)

r r P

r′

dA

(P )E ⃗  = (z)E ⃗ 

=
1

4πϵ0
∫

R

0

σ(2π d )zr′ r′

( +r′2 z2)3/2
k̂

= (2πσz)( − )
1

4πϵ0

1

z

1

+R2 z2
− −−−−−

√
k̂

(z) = (2πσ− ) .E ⃗  1

4πϵ0

2πσz

+R2 z2
− −−−−−

√
k̂ (2.3.14)

z ≫ R

(z) ≈ ,E ⃗  1

4πϵ0

σπR2

z2
k̂

Q = σπR2

 Exercise 2.3.3

Q = σab a b

R → ∞ 2.3.14

E ⃗ = (2πσ− )lim
R→∞

1

4πϵ0

2πσz

+R2 z2
− −−−−−

√
k̂

= .
σ

2ϵ0
k̂
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(2.3.16)
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Note that this field is constant. This surprising result is, again, an artifact of our limit, although one that we will make use of
repeatedly in the future. To understand why this happens, imagine being placed above an infinite plane of constant charge. Does the
plane look any different if you vary your altitude? No—you still see the plane going off to infinity, no matter how far you are from
it. It is important to note that Equation  is because we are above the plane. If we were below, the field would point in the 
direction.

Find the electric field everywhere resulting from two infinite planes with equal but opposite charge densities (Figure ).

Figure : Two charged infinite planes. Note the direction of the electric field.

Strategy

We already know the electric field resulting from a single infinite plane, so we may use the principle of superposition to find
the field from two.

Solution
The electric field points away from the positively charged plane and toward the negatively charged plane. Since the  are equal
and opposite, this means that in the region outside of the two planes, the electric fields cancel each other out to zero. However,
in the region between the planes, the electric fields add, and we get

for the electric field. The  is because in the figure, the field is pointing in the -direction.

Significance

Systems that may be approximated as two infinite planes of this sort provide a useful means of creating uniform electric fields.

What would the electric field look like in a system with two parallel positively charged planes with equal charge densities?

Answer

The electric field would be zero in between, and have magnitude  everywhere else.

This page titled 2.3: Calculating Electric Fields of Charge Distributions is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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 Example : The Field of Two Infinite Planes2.3.4

2.3.5

2.3.5

σ

=E ⃗  σ

ϵ0
î

î +x

 Exercise 2.3.1
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2.4: Electric Field Lines

By the end of this section, you will be able to:

Explain the purpose of an electric field diagram
Describe the relationship between a vector diagram and a field line diagram
Explain the rules for creating a field diagram and why these rules make physical sense
Sketch the field of an arbitrary source charge

Now that we have some experience calculating electric fields, let’s try to gain some insight into the geometry of electric fields. As
mentioned earlier, our model is that the charge on an object (the source charge) alters space in the region around it in such a way
that when another charged object (the test charge) is placed in that region of space, that test charge experiences an electric force.
The concept of electric field lines, and of electric field line diagrams, enables us to visualize the way in which the space is altered,
allowing us to visualize the field. The purpose of this section is to enable you to create sketches of this geometry, so we will list the
specific steps and rules involved in creating an accurate and useful sketch of an electric field.

It is important to remember that electric fields are three-dimensional. Although in this book we include some pseudo-three-
dimensional images, several of the diagrams that you’ll see (both here, and in subsequent chapters) will be two-dimensional
projections, or cross-sections. Always keep in mind that in fact, you’re looking at a three-dimensional phenomenon.

Our starting point is the physical fact that the electric field of the source charge causes a test charge in that field to experience a
force. By definition, electric field vectors point in the same direction as the electric force that a (hypothetical) positive test charge
would experience, if placed in the field (Figure ).

Figure : The electric field of a positive point charge. A large number of field vectors are shown. Like all vector arrows, the
length of each vector is proportional to the magnitude of the field at each point. (a) Field in two dimensions; (b) field in three
dimensions.

We’ve plotted many field vectors in the figure, which are distributed uniformly around the source charge. Since the electric field is
a vector, the arrows that we draw correspond at every point in space to both the magnitude and the direction of the field at that
point. As always, the length of the arrow that we draw corresponds to the magnitude of the field vector at that point. For a point
source charge, the length decreases by the square of the distance from the source charge. In addition, the direction of the field
vector is radially away from the source charge, because the direction of the electric field is defined by the direction of the force that
a positive test charge would experience in that field. (Again, keep in mind that the actual field is three-dimensional; there are also
field lines pointing out of and into the page.)

 Learning Objectives
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This diagram is correct, but it becomes less useful as the source charge distribution becomes more complicated. For example,
consider the vector field diagram of a dipole (Figure ).

Figure : The vector field of a dipole. Even with just two identical charges, the vector field diagram becomes difficult to
understand.

There is a more useful way to present the same information. Rather than drawing a large number of increasingly smaller vector
arrows, we instead connect all of them together, forming continuous lines and curves, as shown in Figure .

Figure : (a) The electric field line diagram of a positive point charge. (b) The field line diagram of a dipole. In both diagrams,
the magnitude of the field is indicated by the field line density. The field vectors (not shown here) are everywhere tangent to the
field lines.

Although it may not be obvious at first glance, these field diagrams convey the same information about the electric field as do the
vector diagrams. First, the direction of the field at every point is simply the direction of the field vector at that same point. In other
words, at any point in space, the field vector at each point is tangent to the field line at that same point. The arrowhead placed on a
field line indicates its direction.

As for the magnitude of the field, that is indicated by the field line density—that is, the number of field lines per unit area passing
through a small cross-sectional area perpendicular to the electric field. This field line density is drawn to be proportional to the
magnitude of the field at that cross-section. As a result, if the field lines are close together (that is, the field line density is greater),

2.4.2

2.4.2

2.4.3

2.4.3
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this indicates that the magnitude of the field is large at that point. If the field lines are far apart at the cross-section, this indicates
the magnitude of the field is small. Figure  shows the idea.

Figure : Electric field lines passing through imaginary areas. Since the number of lines passing through each area is the same,
but the areas themselves are different, the field line density is different. This indicates different magnitudes of the electric field at
these points.

In Figure , the same number of field lines passes through both surfaces  and , but the surface  is larger than surface .
Therefore, the density of field lines (number of lines per unit area) is larger at the location of , indicating that the electric field is
stronger at the location of  than at . The rules for creating an electric field diagram are as follows.

1. Electric field lines either originate on positive charges or come in from infinity, and either terminate on negative charges or
extend out to infinity.

2. The number of field lines originating or terminating at a charge is proportional to the magnitude of that charge. A charge of
2  will have twice as many lines as a charge of .

3. At every point in space, the field vector at that point is tangent to the field line at that same point.
4. The field line density at any point in space is proportional to (and therefore is representative of) the magnitude of the field

at that point in space.
5. Field lines can never cross. Since a field line represents the direction of the field at a given point, if two field lines crossed

at some point, that would imply that the electric field was pointing in two different directions at a single point. This in turn
would suggest that the (net) force on a test charge placed at that point would point in two different directions. Since this is
obviously impossible, it follows that field lines must never cross.

Always keep in mind that field lines serve only as a convenient way to visualize the electric field; they are not physical entities.
Although the direction and relative intensity of the electric field can be deduced from a set of field lines, the lines can also be
misleading. For example, the field lines drawn to represent the electric field in a region must, by necessity, be discrete. However,
the actual electric field in that region exists at every point in space.

Field lines for three groups of discrete charges are shown in Figure . Since the charges in parts (a) and (b) have the same
magnitude, the same number of field lines are shown starting from or terminating on each charge. In (c), however, we draw three

2.4.4
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 Problem-Solving Strategy: Drawing Electric Field Lines
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times as many field lines leaving the  charge as entering the . The field lines that do not terminate at  emanate outward
from the charge configuration, to infinity.

Figure : Three typical electric field diagrams. (a) A dipole. (b) Two identical charges. (c) Two charges with opposite signs and
different magnitudes. Can you tell from the diagram which charge has the larger magnitude?

The ability to construct an accurate electric field diagram is an important, useful skill; it makes it much easier to estimate, predict,
and therefore calculate the electric field of a source charge. The best way to develop this skill is with software that allows you to
place source charges and then will draw the net field upon request. We strongly urge you to search the Internet for a program. Once
you’ve found one you like, run several simulations to get the essential ideas of field diagram construction. Then practice drawing
field diagrams, and checking your predictions with the computer-drawn diagrams.

Arrange positive and negative charges in space and view the resulting electric field and electrostatic potential. Plot
equipotential lines and discover their relationship to the electric field. Create models of dipoles, capacitors, and more!

This page titled 2.4: Electric Field Lines is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

5.7: Electric Field Lines by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-
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3.1: Prelude to Electric Potential
In Electric Charges and Fields, we just scratched the surface (or at least rubbed it) of electrical phenomena. Two terms commonly
used to describe electricity are its energy and voltage, which we show in this chapter is directly related to the potential energy in a
system. We know, for example, that great amounts of electrical energy can be stored in batteries, are transmitted cross-country via
currents through power lines, and may jump from clouds to explode the sap of trees. In a similar manner, at the molecular level,
ions cross cell membranes and transfer information.

Figure : The energy released in a lightning strike is an excellent illustration of the vast quantities of energy that may be stored
and released by an electric potential difference. In this chapter, we calculate just how much energy can be released in a lightning
strike and how this varies with the height of the clouds from the ground. (credit: Anthony Quintano)

We also know about voltages associated with electricity. Batteries are typically a few volts, the outlets in your home frequently
produce 120 volts, and power lines can be as high as hundreds of thousands of volts. But energy and voltage are not the same thing.
A motorcycle battery, for example, is small and would not be very successful in replacing a much larger car battery, yet each has
the same voltage. In this chapter, we examine the relationship between voltage and electrical energy, and begin to explore some of
the many applications of electricity.

This page titled 3.1: Prelude to Electric Potential is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.
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3.2: Electric Potential Energy

By the end of this section, you will be able to:

Define the work done by an electric force
Define electric potential energy
Apply work and potential energy in systems with electric charges

When a free positive charge  is accelerated by an electric field, it is given kinetic energy (Figure ). The process is analogous
to an object being accelerated by a gravitational field, as if the charge were going down an electrical hill where its electric potential
energy is converted into kinetic energy, although of course the sources of the forces are very different. Let us explore the work done
on a charge  by the electric field in this process, so that we may develop a definition of electric potential energy.

Figure : A charge accelerated by an electric field is analogous to a mass going down a hill. In both cases, potential energy
decreases as kinetic energy increases, . Work is done by a force, but since this force is conservative, we can write 

.

The electrostatic or Coulomb force is conservative, which means that the work done on  is independent of the path taken, as we
will demonstrate later. This is exactly analogous to the gravitational force. When a force is conservative, it is possible to define a
potential energy associated with the force. It is usually easier to work with the potential energy (because it depends only on
position) than to calculate the work directly.

To show this explicitly, consider an electric charge  fixed at the origin and move another charge  toward  in such a manner
that, at each instant, the applied force  exactly balances the electric force  on  (Figure ). The work done by the applied
force  on the charge  changes the potential energy of . We call this potential energy the electrical potential energy of .

Figure : Displacement of “test” charge  in the presence of fixed “source” charge .

The work  done by the applied force  when the particle moves from  to  may be calculated by

Since the applied force  balances the electric force  on , the two forces have equal magnitude and opposite directions.
Therefore, the applied force is
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where we have defined positive to be pointing away from the origin and  is the distance from the origin. The directions of both the
displacement and the applied force in the system in Figure  are parallel, and thus the work done on the system is positive.

We use the letter  to denote electric potential energy, which has units of joules (J). When a conservative force does negative
work, the system gains potential energy. When a conservative force does positive work, the system loses potential energy, 

. In the system in Figure , the Coulomb force acts in the opposite direction to the displacement; therefore, the
work is negative. However, we have increased the potential energy in the two-charge system.

A  charge  is initially at rest a distance of 10 cm ( ) from a  charge  fixed at the origin (Figure ).
Naturally, the Coulomb force accelerates  away from , eventually reaching 15 cm ( ).

Figure : The charge  is repelled by , thus having work done on it and gaining kinetic energy.

a. What is the work done by the electric field between  and ?
b. How much kinetic energy does  have at ?

Strategy
Calculate the work with the usual definition. Since  started from rest, this is the same as the kinetic energy.

Solution
Integrating force over distance, we obtain

This is also the value of the kinetic energy at .

Significance
Charge  was initially at rest; the electric field of  did work on , so now  has kinetic energy equal to the work done by the
electric field.

If  has a mass of , what is the speed of  at ?

Answer

, 
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In this example, the work  done to accelerate a positive charge from rest is positive and results from a loss in , or a negative 
. A value for  can be found at any point by taking one point as a reference and calculating the work needed to move a charge

to the other point.

Work  done to accelerate a positive charge from rest is positive and results from a loss in , or a negative .
Mathematically,

Gravitational potential energy and electric potential energy are quite analogous. Potential energy accounts for work done by a
conservative force and gives added insight regarding energy and energy transformation without the necessity of dealing with the
force directly. It is much more common, for example, to use the concept of electric potential energy than to deal with the Coulomb
force directly in real-world applications.

In polar coordinates with  at the origin and  located at , the displacement element vector is  and thus the work
becomes

Notice that this result only depends on the endpoints and is otherwise independent of the path taken. To explore this further,
compare path  to  with path  in Figure .

Figure :Two paths for displacement  to . The work on segments  and  are zero due to the electrical force
being perpendicular to the displacement along these paths. Therefore, work on paths  and  are equal.

The segments  and  are arcs of circles centered at . Since the force on  points either toward or away from , no work
is done by a force balancing the electric force, because it is perpendicular to the displacement along these arcs. Therefore, the only
work done is along segment  which is identical to .

One implication of this work calculation is that if we were to go around the path , the net work would be zero (Figure 
). Recall that this is how we determine whether a force is conservative or not. Hence, because the electric force is related to

the electric field by , the electric field is itself conservative. That is,

Note that  is a constant.
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Figure : A closed path in an electric field. The net work around this path is zero.

Another implication is that we may define an electric potential energy. Recall that the work done by a conservative force is also
expressed as the difference in the potential energy corresponding to that force. Therefore, the work  to bring a charge from a
reference point to a point of interest may be written as

and, by Equation , the difference in potential energy ( ) of the test charge  between the two points is

Therefore, we can write a general expression for the potential energy of two point charges (in spherical coordinates):

We may take the second term to be an arbitrary constant reference level, which serves as the zero reference:

A convenient choice of reference that relies on our common sense is that when the two charges are infinitely far apart, there is no
interaction between them. (Recall the discussion of reference potential energy in Potential Energy and Conservation of Energy.)
Taking the potential energy of this state to be zero removes the term  from the equation (just like when we say the ground is
zero potential energy in a gravitational potential energy problem), and the potential energy of  when it is separated from  by a
distance  assumes the form

This formula is symmetrical with respect to  and , so it is best described as the potential energy of the two-charge system.

A  charge  is initially at rest a distance of 10 cm  from a  charge  fixed at the origin (Figure ).
Naturally, the Coulomb force accelerates  away from , eventually reaching 15 cm .

Figure : The charge  is repelled by , thus having work done on it and losing potential energy.

What is the change in the potential energy of the two-charge system from  to ?

Strategy
Calculate the potential energy with the definition given above:

. Since  started from rest, this is the same as the kinetic energy.
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Solution
We have

Significance
The change in the potential energy is negative, as expected, and equal in magnitude to the change in kinetic energy in this
system. Recall from Example  that the change in kinetic energy was positive.

What is the potential energy of  relative to the zero reference at infinity at  in the above example?

Answer

It has kinetic energy of  at point  and potential energy of , which means that as  approaches
infinity, its kinetic energy totals three times the kinetic energy at , since all of the potential energy gets converted to
kinetic.

Due to Coulomb’s law, the forces due to multiple charges on a test charge  superimpose; they may be calculated individually and
then added. This implies that the work integrals and hence the resulting potential energies exhibit the same behavior. To
demonstrate this, we consider an example of assembling a system of four charges.

Find the amount of work an external agent must do in assembling four charges , ,  and  at
the vertices of a square of side 1.0 cm, starting each charge from infinity (Figure ).

Figure : How much work is needed to assemble this charge configuration?

Strategy
We bring in the charges one at a time, giving them starting locations at infinity and calculating the work to bring them in from
infinity to their final location. We do this in order of increasing charge.
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Solution
Step 1. First bring the  charge to the origin. Since there are no other charges at a finite distance from this charge yet,
no work is done in bringing it from infinity,

Step 2. While keeping the  charge fixed at the origin, bring the  charge to  (Figure 
). Now, the applied force must do work against the force exerted by the  charge fixed at the origin. The work

done equals the change in the potential energy of the  charge:

Figure : Step 2. Work  to bring the  charge from infinity.

Step 3. While keeping the charges of  and  fixed in their places, bring in the  charge to 
 (Figure ). The work done in this step is

Figure : Step 3. The work  to bring the  charge from infinity.

Step 4. Finally, while keeping the first three charges in their places, bring the  charge to 
(Figure ). The work done here is
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Figure : Step 4. The work  to bring the  charge from infinity.

Hence, the total work done by the applied force in assembling the four charges is equal to the sum of the work in bringing each
charge from infinity to its final position:

Significance
The work on each charge depends only on its pairwise interactions with the other charges. No more complicated interactions
need to be considered; the work on the third charge only depends on its interaction with the first and second charges, the
interaction between the first and second charge does not affect the third.

Is the electrical potential energy of two point charges positive or negative if the charges are of the same sign? Opposite signs?
How does this relate to the work necessary to bring the charges into proximity from infinity?

Answer

Positive, negative, and these quantities are the same as the work you would need to do to bring the charges in from infinity

Note that the electrical potential energy is positive if the two charges are of the same type, either positive or negative, and negative
if the two charges are of opposite types. This makes sense if you think of the change in the potential energy  as you bring the
two charges closer or move them farther apart. Depending on the relative types of charges, you may have to work on the system or
the system would do work on you, that is, your work is either positive or negative. If you have to do positive work on the system
(actually push the charges closer), then the energy of the system should increase. If you bring two positive charges or two negative
charges closer, you have to do positive work on the system, which raises their potential energy. Since potential energy is
proportional to , the potential energy goes up when  goes down between two positive or two negative charges.

On the other hand, if you bring a positive and a negative charge nearer, you have to do negative work on the system (the charges
are pulling you), which means that you take energy away from the system. This reduces the potential energy. Since potential energy
is negative in the case of a positive and a negative charge pair, the increase in  makes the potential energy more negative, which
is the same as a reduction in potential energy.

The result from Example  may be extended to systems with any arbitrary number of charges. In this case, it is most
convenient to write the formula as

The factor of 1/2 accounts for adding each pair of charges twice.

This page titled 3.2: Electric Potential Energy is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.
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3.3: Electric Potential and Potential Difference

By the end of this section, you will be able to:

Define electric potential, voltage, and potential difference
Define the electron-volt
Calculate electric potential and potential difference from potential energy and electric field
Describe systems in which the electron-volt is a useful unit
Apply conservation of energy to electric systems

Recall that earlier we defined electric field to be a quantity independent of the test charge in a given system, which would
nonetheless allow us to calculate the force that would result on an arbitrary test charge. (The default assumption in the absence of
other information is that the test charge is positive.) We briefly defined a field for gravity, but gravity is always attractive, whereas
the electric force can be either attractive or repulsive. Therefore, although potential energy is perfectly adequate in a gravitational
system, it is convenient to define a quantity that allows us to calculate the work on a charge independent of the magnitude of the
charge. Calculating the work directly may be difficult, since  and the direction and magnitude of  can be complex for
multiple charges, for odd-shaped objects, and along arbitrary paths. But we do know that because , the work, and hence  is
proportional to the test charge . To have a physical quantity that is independent of test charge, we define electric potential  (or
simply potential, since electric is understood) to be the potential energy per unit charge:

The electric potential energy per unit charge is

Since  is proportional to , the dependence on  cancels. Thus,  does not depend on . The change in potential energy  is
crucial, so we are concerned with the difference in potential or potential difference  between two points, where

The electric potential difference between points  and ,  is defined to be the change in potential energy of a
charge  moved from  to , divided by the charge. Units of potential difference are joules per coulomb, given the name volt
(V) after Alessandro Volta.

The familiar term voltage is the common name for electric potential difference. Keep in mind that whenever a voltage is quoted, it
is understood to be the potential difference between two points. For example, every battery has two terminals, and its voltage is the
potential difference between them. More fundamentally, the point you choose to be zero volts is arbitrary. This is analogous to the
fact that gravitational potential energy has an arbitrary zero, such as sea level or perhaps a lecture hall floor. It is worthwhile to
emphasize the distinction between potential difference and electrical potential energy.

The relationship between potential difference (or voltage) and electrical potential energy is given by

or
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Voltage is not the same as energy. Voltage is the energy per unit charge. Thus, a motorcycle battery and a car battery can both have
the same voltage (more precisely, the same potential difference between battery terminals), yet one stores much more energy than
the other because . The car battery can move more charge than the motorcycle battery, although both are 12-V
batteries.

You have a 12.0-V motorcycle battery that can move 5000 C of charge, and a 12.0-V car battery that can move 60,000 C of
charge. How much energy does each deliver? (Assume that the numerical value of each charge is accurate to three significant
figures.)

Strategy
To say we have a 12.0-V battery means that its terminals have a 12.0-V potential difference. When such a battery moves
charge, it puts the charge through a potential difference of 12.0 V, and the charge is given a change in potential energy equal to 

. To find the energy output, we multiply the charge moved by the potential difference.

Solution
For the motorcycle battery,  and . The total energy delivered by the motorcycle battery is

Similarly, for the car battery,  and

Significance
Voltage and energy are related, but they are not the same thing. The voltages of the batteries are identical, but the energy
supplied by each is quite different. A car battery has a much larger engine to start than a motorcycle. Note also that as a battery
is discharged, some of its energy is used internally and its terminal voltage drops, such as when headlights dim because of a
depleted car battery. The energy supplied by the battery is still calculated as in this example, but not all of the energy is
available for external use.

How much energy does a 1.5-V AAA battery have that can move 100 C?

Answer

Note that the energies calculated in the previous example are absolute values. The change in potential energy for the battery is
negative, since it loses energy. These batteries, like many electrical systems, actually move negative charge—electrons in
particular. The batteries repel electrons from their negative terminals ( ) through whatever circuitry is involved and attract them to
their positive terminals ( ), as shown in Figure . The change in potential is  and the charge  is
negative, so that  is negative, meaning the potential energy of the battery has decreased when  has moved from  to 

.

ΔU = qΔV

 Example : Calculating Energy3.3.1

ΔU = qΔV

q = 5000 C ΔV = 12.0 V

Δ = (5000 C)(12.0 V) = (5000 C)(12.0 J/C) = 6.00 × J.Ucycle 104

q = 60, 000 C

Δ = (60, 000 C)(12.0 V) = 7.20 × J.Ucar 105

 Exercise 3.3.1

ΔU = qΔV = (100 C)(1.5 V) = 150 J

A

B 3.3.1 ΔV = − = +12 VVB VA q

ΔU = qΔV q A

B
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Figure : A battery moves negative charge from its negative terminal through a headlight to its positive terminal. Appropriate
combinations of chemicals in the battery separate charges so that the negative terminal has an excess of negative charge, which is
repelled by it and attracted to the excess positive charge on the other terminal. In terms of potential, the positive terminal is at a
higher voltage than the negative terminal. Inside the battery, both positive and negative charges move.

When a 12.0-V car battery powers a single 30.0-W headlight, how many electrons pass through it each second?

Strategy
To find the number of electrons, we must first find the charge that moves in 1.00 s. The charge moved is related to voltage and
energy through the equations . A 30.0-W lamp uses 30.0 joules per second. Since the battery loses energy, we
have  and, since the electrons are going from the negative terminal to the positive, we see that .

Solution
To find the charge  moved, we solve the equation :

Entering the values for  and , we get

The number of electrons  is the total charge divided by the charge per electron. That is,

Significance
This is a very large number. It is no wonder that we do not ordinarily observe individual electrons with so many being present
in ordinary systems. In fact, electricity had been in use for many decades before it was determined that the moving charges in
many circumstances were negative. Positive charge moving in the opposite direction of negative charge often produces
identical effects; this makes it difficult to determine which is moving or whether both are moving.

How many electrons would go through a 24.0-W lamp?

Answer

The Electron-Volt
The energy per electron is very small in macroscopic situations like that in the previous example—a tiny fraction of a joule. But on
a submicroscopic scale, such energy per particle (electron, proton, or ion) can be of great importance. For example, even a tiny

3.3.1

 Example : How Many Electrons Move through a Headlight Each Second?3.3.2

ΔU = qΔV

ΔU = −30 J ΔV = +12.0 V

q ΔU = qΔV

q = .
ΔU

ΔV

ΔU ΔV

q = = = −2.50 C.
−30.0 J

+12.0 V

−30.0 J

+12.0 J/C

ne

= = 1.56 × electrons.ne

−2.50 C

−1.60 × C/10−19 e−
1019

 Exercise 3.3.2

−2.00 C, = 1.25 × electronsne 1019
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fraction of a joule can be great enough for these particles to destroy organic molecules and harm living tissue. The particle may do
its damage by direct collision, or it may create harmful X-rays, which can also inflict damage. It is useful to have an energy unit
related to submicroscopic effects.

Figure  shows a situation related to the definition of such an energy unit. An electron is accelerated between two charged
metal plates, as it might be in an old-model television tube or oscilloscope. The electron gains kinetic energy that is later converted
into another form—light in the television tube, for example. (Note that in terms of energy, “downhill” for the electron is “uphill”
for a positive charge.) Since energy is related to voltage by , we can think of the joule as a coulomb-volt.

Figure : A typical electron gun accelerates electrons using a potential difference between two separated metal plates. By
conservation of energy, the kinetic energy has to equal the change in potential energy, so . The energy of the electron in
electron-volts is numerically the same as the voltage between the plates. For example, a 5000-V potential difference produces
5000-eV electrons. The conceptual construct, namely two parallel plates with a hole in one, is shown in (a), while a real electron
gun is shown in (b).

On the submicroscopic scale, it is more convenient to define an energy unit called the electron-volt (eV), which is the energy
given to a fundamental charge accelerated through a potential difference of 1 V. In equation form,

An electron accelerated through a potential difference of 1 V is given an energy of 1 eV. It follows that an electron accelerated
through 50 V gains 50 eV. A potential difference of 100,000 V (100 kV) gives an electron an energy of 100,000 eV (100 keV), and
so on. Similarly, an ion with a double positive charge accelerated through 100 V gains 200 eV of energy. These simple relationships
between accelerating voltage and particle charges make the electron-volt a simple and convenient energy unit in such
circumstances.

The electron-volt is commonly employed in submicroscopic processes—chemical valence energies and molecular and nuclear
binding energies are among the quantities often expressed in electron-volts. For example, about 5 eV of energy is required to break
up certain organic molecules. If a proton is accelerated from rest through a potential difference of 30 kV, it acquires an energy of 30
keV (30,000 eV) and can break up as many as 6000 of these molecules .
Nuclear decay energies are on the order of 1 MeV (1,000,000 eV) per event and can thus produce significant biological damage.

3.3.2

ΔU = qΔV

3.3.2
KE = qV

 The Electron-Volt Unit

1 eV = (1.60 × C)(1 V) = (1.60 × C)(1 J/C) = 1.60 × J.10−19 10−19 10−19

(30, 000 eV ÷5 eV per molecule = 6000 molecules)
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Conservation of Energy
The total energy of a system is conserved if there is no net addition (or subtraction) due to work or heat transfer. For conservative
forces, such as the electrostatic force, conservation of energy states that mechanical energy is a constant.

Mechanical energy is the sum of the kinetic energy and potential energy of a system; that is, . A loss of (\U\)
for a charged particle becomes an increase in its (\K\). Conservation of energy is stated in equation form as

or

where i and f stand for initial and final conditions. As we have found many times before, considering energy can give us insights
and facilitate problem solving.

Calculate the final speed of a free electron accelerated from rest through a potential difference of 100 V. (Assume that this
numerical value is accurate to three significant figures.)

Strategy
We have a system with only conservative forces. Assuming the electron is accelerated in a vacuum, and neglecting the
gravitational force (we will check on this assumption later), all of the electrical potential energy is converted into kinetic
energy. We can identify the initial and final forms of energy to be

, , , .

Solution
Conservation of energy states that

Entering the forms identified above, we obtain

We solve this for (\v\):

Entering values for (\q\), (\V\), and (\m\) gives

Significance
Note that both the charge and the initial voltage are negative, as in Figure . From the discussion of electric charge and
electric field, we know that electrostatic forces on small particles are generally very large compared with the gravitational
force. The large final speed confirms that the gravitational force is indeed negligible here. The large speed also indicates how
easy it is to accelerate electrons with small voltages because of their very small mass. Voltages much higher than the 100 V in
this problem are typically used in electron guns. These higher voltages produce electron speeds so great that effects from
special relativity must be taken into account and will be discussed elsewhere. That is why we consider a low voltage
(accurately) in this example.

K+U = constant

K+U = constant

+ = +Ki Ui Kf Uf

 Example : Electrical Potential Energy Converted into Kinetic Energy3.3.3

= 0Ki = mKf
1
2

v2 = qVUi = 0Uf

+ = + .Ki Ui Kf Uf

qV = .
mv2

2

v= .
2qV

m

− −−−
√

v= = 5.93 × m/s.
2(−1.60 × C)(−100 J/C)10−19

9.11 × kg10−31

− −−−−−−−−−−−−−−−−−−−−−−−

√ 106

3.3.2
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How would this example change with a positron? A positron is identical to an electron except the charge is positive.

Answer

It would be going in the opposite direction, with no effect on the calculations as presented.

Voltage and Electric Field
So far, we have explored the relationship between voltage and energy. Now we want to explore the relationship between voltage
and electric field. We will start with the general case for a non-uniform  field. Recall that our general formula for the potential
energy of a test charge  at point  relative to reference point  is

When we substitute in the definition of electric field , this becomes

Applying our definition of potential  to this potential energy, we find that, in general,

From our previous discussion of the potential energy of a charge in an electric field, the result is independent of the path chosen,
and hence we can pick the integral path that is most convenient.

Consider the special case of a positive point charge  at the origin. To calculate the potential caused by  at a distance  from the
origin relative to a reference of 0 at infinity (recall that we did the same for potential energy), let  and , with 

 and use . When we evaluate the integral

for this system, we have

This result,

is the standard form of the potential of a point charge. This will be explored further in the next section.

To examine another interesting special case, suppose a uniform electric field  is produced by placing a potential difference (or
voltage)  across two parallel metal plates, labeled  and  (Figure ). Examining this situation will tell us what voltage is
needed to produce a certain electric field strength. It will also reveal a more fundamental relationship between electric potential and
electric field.

 Exercise 3.3.3

E ⃗ 

q P R

= − ⋅ d .Up ∫
p

R

F ⃗  l ⃗ 

( = /q)E ⃗  F ⃗ 

= −q ⋅ d .Up ∫
p

R

E ⃗  l ⃗ 

(V = U/q)

= − ⋅ d .Vp ∫
p

R

E ⃗  l ⃗ 

q q r

P = r R = ∞

d = d = drl ⃗  r ⃗  r̂ =E ⃗  kq

r2 r̂

= − ⋅ dVp ∫
p

R

E ⃗  l ⃗ 

= − dr = − = .Vr ∫
r

∞

kq

r2

kq

r

kq

∞

kq

r

=Vr
kq

r

E ⃗ 

ΔV A B 3.3.3
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Figure : The relationship between  and  for parallel conducting plates is . (Note that  in magnitude.
For a charge that is moved from plate  at higher potential to plate  at lower potential, a minus sign needs to be included as
follows: .)

From a physicist’s point of view, either  or  can be used to describe any interaction between charges. However,  is a scalar
quantity and has no direction, whereas  is a vector quantity, having both magnitude and direction. (Note that the magnitude of the
electric field, a scalar quantity, is represented by .) The relationship between  and  is revealed by calculating the work done
by the electric force in moving a charge from point  to point . But, as noted earlier, arbitrary charge distributions require
calculus. We therefore look at a uniform electric field as an interesting special case.

The work done by the electric field in Figure  to move a positive charge  from , the positive plate, higher potential, to ,
the negative plate, lower potential, is

The potential difference between points  and  is

Entering this into the expression for work yields

Work is : here , since the path is parallel to the field. Thus, . Since  we see that 
.

Substituting this expression for work into the previous equation gives

The charge cancels, so we obtain for the voltage between points  and .

In uniform E-field only:

3.3.3 V E E = V /d ΔV = VAB
A B

−ΔV = − =VA VB VAB

ΔV E ⃗  ΔV

E ⃗ 

E ΔV E ⃗ 

A B

3.3.3 q A B

W = −ΔU = −qΔV .

A B

−ΔV = −( − ) = − = .VB VA VA VB VAB

W = q .VAB

W = ⋅ = Fd cosθF ⃗  d ⃗  cosθ = 1 W = Fd F = qE

W = qEd

qEd = q .VAB

A B

= EdVAB

E =
VAB

d
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where  is the distance from  to , or the distance between the plates in Figure . Note that this equation implies that the
units for electric field are volts per meter. We already know the units for electric field are newtons per coulomb; thus, the following
relation among units is valid:

Furthermore, we may extend this to the integral form. Substituting Equation  into our definition for the potential difference
between points  and  we obtain

which simplifies to

As a demonstration, from this we may calculate the potential difference between two points (  and ) equidistant from a point
charge  at the origin, as shown in Figure .

Figure : The arc for calculating the potential difference between two points that are equidistant from a point charge at the
origin.

To do this, we integrate around an arc of the circle of constant radius r between  and , which means we let , while
using . Thus,

for this system becomes

However,  and therefore

This result, that there is no difference in potential along a constant radius from a point charge, will come in handy when we map
potentials.

Dry air can support a maximum electric field strength of about . Above that value, the field creates enough
ionization in the air to make the air a conductor. This allows a discharge or spark that reduces the field. What, then, is the
maximum voltage between two parallel conducting plates separated by 2.5 cm of dry air?

Strategy
We are given the maximum electric field  between the plates and the distance  between them. We can use the equation 

 to calculate the maximum voltage.

Solution
The potential difference or voltage between the plates is

d A B 3.3.3

1 N/C = 1 V/m.

3.3.3

A B

= − = − ⋅ d + ⋅ dVAB VB VA ∫
B

R

E ⃗  l ⃗  ∫
A

R

E ⃗  l ⃗ 

− = − ⋅ d .VB VA ∫
B

A

E ⃗  l ⃗ 

A B

q 3.3.4

3.3.4

A B d = r dφl ⃗  φ̂

=E ⃗  kq

r2 r̂

ΔV = − = − ⋅ d .VB VA ∫
B

A

E ⃗  l ⃗ 

− = − ⋅ r dφ.VB VA ∫
B

A

kq

r2
r̂ φ̂

⋅r̂ φ̂

− = 0.VB VA

 Example : What Is the Highest Voltage Possible between Two Plates?3.3.4A

3.0 ×  V/m106

E d

= EdVAB
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Entering the given values for  and  gives

or

(The answer is quoted to only two digits, since the maximum field strength is approximate.)

Significance
One of the implications of this result is that it takes about 75 kV to make a spark jump across a 2.5-cm (1-in.) gap, or 150 kV
for a 5-cm spark. This limits the voltages that can exist between conductors, perhaps on a power transmission line. A smaller
voltage can cause a spark if there are spines on the surface, since sharp points have larger field strengths than smooth surfaces.
Humid air breaks down at a lower field strength, meaning that a smaller voltage will make a spark jump through humid air. The
largest voltages can be built up with static electricity on dry days (Figure ).

Figure : A spark chamber is used to trace the paths of high-energy particles. Ionization created by the particles as they
pass through the gas between the plates allows a spark to jump. The sparks are perpendicular to the plates, following electric
field lines between them. The potential difference between adjacent plates is not high enough to cause sparks without the
ionization produced by particles from accelerator experiments (or cosmic rays). This form of detector is now archaic and no
longer in use except for demonstration purposes. (credit b: modification of work by Jack Collins)

An electron gun (Figure ) has parallel plates separated by 4.00 cm and gives electrons 25.0 keV of energy. (a) What is the
electric field strength between the plates? (b) What force would this field exert on a piece of plastic with a  charge
that gets between the plates?

Strategy
Since the voltage and plate separation are given, the electric field strength can be calculated directly from the expression 

. Once we know the electric field strength, we can find the force on a charge by using . Since the electric
field is in only one direction, we can write this equation in terms of the magnitudes, .

Solution
a. The expression for the magnitude of the electric field between two uniform metal plates is

Since the electron is a single charge and is given 25.0 keV of energy, the potential difference must be 25.0 kV. Entering this
value for  and the plate separation of 0.0400 m, we obtain

b. The magnitude of the force on a charge in an electric field is obtained from the equation

= Ed.VAB

E d

= (3.0 ×  V/m)(0.025 m) = 7.5 × VVAB 106 104

= 75 kV.VAB

3.3.5

3.3.5

 Example : Field and Force inside an Electron Gun3.3.1B

3.3.2

0.500 μC

E =
VAB
d

= qF ⃗  E ⃗ 

F = qE

E = .
VAB

d

VAB

E = = 6.25 × V/m.
25.0 kV

0.0400 m
105
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Substituting known values gives

Significance Note that the units are newtons, since . Because the electric field is uniform between the plates,
the force on the charge is the same no matter where the charge is located between the plates.

Given a point charge  at the origin, calculate the potential difference between point  a distance 
from , and  a distance  from , where the two points have an angle of  between them (Figure ).

Figure : Find the difference in potential between  and .

Strategy Do this in two steps. The first step is to use  and let  and ,
with  and  Then perform the integral. The second step is to integrate 

around an arc of constant radius , which means we let  with limits , still using .

Then add the two results together.

Solution For the first part,  for this system becomes  which computes to

.

For the second step,  becomes , but  and therefore .
Adding the two parts together, we get 300 V.

Significance
We have demonstrated the use of the integral form of the potential difference to obtain a numerical result. Notice that, in this
particular system, we could have also used the formula for the potential due to a point charge at the two points and simply
taken the difference.

From the examples, how does the energy of a lightning strike vary with the height of the clouds from the ground? Consider the
cloud-ground system to be two parallel plates.

Answer

Given a fixed maximum electric field strength, the potential at which a strike occurs increases with increasing height above
the ground. Hence, each electron will carry more energy. Determining if there is an effect on the total number of electrons
lies in the future.

Before presenting problems involving electrostatics, we suggest a problem-solving strategy to follow for this topic.

F = qE.

F = (0.500 × C)(6.25 × V/m) = 0.313 N.10−6 105

1 V/m = 1 N/C

 Example : Calculating Potential of a Point Charge3.3.4C

q = +2.0 nC P1 a = 4.0 cm

q P2 b = 12.0 cm q φ = 24∘ 3.3.6

3.3.6 P1 P2

− = − ⋅ dVB VA ∫
B

A E ⃗  l ⃗  A = a = 4.0 cm B = b = 12.0 cm

d = d = drl ⃗  r ⃗  r̂ = .E ⃗  kq

r2
r̂ − = − ⋅ dVB VA ∫ B

A
E ⃗  l ⃗ 

r d = r dφl ⃗  φ ⃗  0 ≤ φ ≤ 24∘ =E ⃗  kq

r2 r̂

− = − ⋅ dVB VA ∫ B

A E ⃗  l ⃗  − = − ⋅ drVb Va ∫ b

a

kq

r2 r̂ r̂

ΔV = − dr = kq [ − ]∫ b

a

kq

r2

1
a

1
b

= (8.99 × N / )(2.0 × C) [ − ] = 300 V109 m2 C2 10−9 1
0.040 m

1
0.12 m

− = − ⋅ dVB VA ∫ B

A E ⃗  l ⃗  ΔV = − ⋅ r dφ∫ 24∘

0o
kq

r2 r̂ φ̂ ⋅ = 0r̂ φ̂ ΔV = 0

 Exercise 3.3.4
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1. Examine the situation to determine if static electricity is involved; this may concern separated stationary charges, the forces
among them, and the electric fields they create.

2. Identify the system of interest. This includes noting the number, locations, and types of charges involved.
3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful. Determine

whether the Coulomb force is to be considered directly—if so, it may be useful to draw a free-body diagram, using electric
field lines.

4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). It is important to
distinguish the Coulomb force  from the electric field , for example.

5. Solve the appropriate equation for the quantity to be determined (the unknown) or draw the field lines as requested.
6. Examine the answer to see if it is reasonable: Does it make sense? Are units correct and the numbers involved reasonable?

This page titled 3.3: Electric Potential and Potential Difference is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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4.1: Prelude to Current and Resistance
In this chapter, we study the electrical current through a material, where the electrical current is the rate of flow of charge. We also
examine a characteristic of materials known as the resistance. Resistance is a measure of how much a material impedes the flow of
charge, and it will be shown that the resistance depends on temperature. In general, a good conductor, such as copper, gold, or
silver, has very low resistance. Some materials, called superconductors, have zero resistance at very low temperatures.

Figure : Magnetic resonance imaging (MRI) uses superconducting magnets and produces high-resolution images without the
danger of radiation. The image on the left shows the spacing of vertebrae along a human spinal column, with the circle indicating
where the vertebrae are too close due to a ruptured disc. On the right is a picture of the MRI instrument, which surrounds the
patient on all sides. A large amount of electrical current is required to operate the electromagnets (credit right: modification of work
by “digital cat”/Flickr).

High currents are required for the operation of electromagnets. Superconductors can be used to make electromagnets that are 10
times stronger than the strongest conventional electromagnets. These superconducting magnets are used in the construction of
magnetic resonance imaging (MRI) devices that can be used to make high-resolution images of the human body. The chapter-
opening picture shows an MRI image of the vertebrae of a human subject and the MRI device itself. Superconducting magnets
have many other uses. For example, superconducting magnets are used in the Large Hadron Collider (LHC) to curve the path of
protons in the ring.

This page titled 4.1: Prelude to Current and Resistance is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

9.1: Prelude to Current and Resistance by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.
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4.2: Electrical Current

By the end of this section, you will be able to:

Describe an electrical current
Define the unit of electrical current
Explain the direction of current flow

Up to now, we have considered primarily static charges. When charges did move, they were accelerated in response to an electrical
field created by a voltage difference. The charges lost potential energy and gained kinetic energy as they traveled through a
potential difference where the electrical field did work on the charge.

Although charges do not require a material to flow through, the majority of this chapter deals with understanding the movement of
charges through a material. The rate at which the charges flow past a location—that is, the amount of charge per unit time—is
known as the electrical current. When charges flow through a medium, the current depends on the voltage applied, the material
through which the charges flow, and the state of the material. Of particular interest is the motion of charges in a conducting wire. In
previous chapters, charges were accelerated due to the force provided by an electrical field, losing potential energy and gaining
kinetic energy. In this chapter, we discuss the situation of the force provided by an electrical field in a conductor, where charges
lose kinetic energy to the material reaching a constant velocity, known as the “drift velocity.” This is analogous to an object falling
through the atmosphere and losing kinetic energy to the air, reaching a constant terminal velocity.

If you have ever taken a course in first aid or safety, you may have heard that in the event of electric shock, it is the current, not the
voltage, which is the important factor on the severity of the shock and the amount of damage to the human body. Current is
measured in units called amperes; you may have noticed that circuit breakers in your home and fuses in your car are rated in amps
(or amperes). But what is the ampere and what does it measure?

Defining Current and the Ampere
Electrical current is defined to be the rate at which charge flows. When there is a large current present, such as that used to run a
refrigerator, a large amount of charge moves through the wire in a small amount of time. If the current is small, such as that used to
operate a handheld calculator, a small amount of charge moves through the circuit over a long period of time.

The average electrical current  is the rate at which charge flows,

where  is the amount of net charge passing through a given cross-sectional area in time  (Figure ). The SI unit for

current is the ampere (A), named for the French physicist André-Marie Ampère (1775–1836). Since , we see that an

ampere is defined as one coulomb of charge passing through a given area per second:

The instantaneous electrical current, or simply the electrical current, is the time derivative of the charge that flows and is
found by taking the limit of the average electrical current as .

Most electrical appliances are rated in amperes (or amps) required for proper operation, as are fuses and circuit breakers.

 LEARNING OBJECTIVES
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Figure : The rate of flow of charge is current. An ampere is the flow of one coulomb of charge through an area in one second.
A current of one amp would result from  electrons flowing through the area A each second.

The main purpose of a battery in a car or truck is to run the electric starter motor, which starts the engine. The operation of
starting the vehicle requires a large current to be supplied by the battery. Once the engine starts, a device called an alternator
takes over supplying the electric power required for running the vehicle and for charging the battery.

a. What is the average current involved when a truck battery sets in motion 720 C of charge in 4.00 s while starting an engine?
b. How long does it take 1.00 C of charge to flow from the battery?

Strategy
We can use the definition of the average current in Equation  to find the average current in part (a), since charge and time
are given. For part (b), once we know the average current, we use Equation  to find the time required for 1.00 C of charge
to flow from the battery.

Solution
a. Entering the given values for charge and time into the definition of current gives

b. Solving the relationship  for time  and entering the known values for charge and current gives

Significance
a. This large value for current illustrates the fact that a large charge is moved in a small amount of time. The currents in these

“starter motors” are fairly large to overcome the inertia of the engine.
b. A high current requires a short time to supply a large amount of charge. This large current is needed to supply the large

amount of energy needed to start the engine.
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Consider a charge moving through a cross-section of a wire where the charge is modeled as . Here, 
 is the charge after a long period of time, as time approaches infinity, with units of coulombs, and  is a time constant with

units of seconds (Figure ). What is the current through the wire?

Figure : A graph of the charge moving through a cross-section of a wire over time.

Strategy

The current through the cross-section can be found from . Notice from the figure that the charge increases to  and

the derivative decreases, approaching zero, as time increases (Figure ).

Solution

The derivative can be found using .

Figure : A graph of the current flowing through the wire over time.

Significance
The current through the wire in question decreases exponentially, as shown in Figure . In later chapters, it will be shown
that a time-dependent current appears when a capacitor charges or discharges through a resistor. Recall that a capacitor is a
device that stores charge. You will learn about the resistor in Model of Conduction in Metals.

 Calculating Instantaneous Currents
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Handheld calculators often use small solar cells to supply the energy required to complete the calculations needed to complete
your next physics exam. The current needed to run your calculator can be as small as 0.30 mA. How long would it take for
1.00 C of charge to flow from the solar cells? Can solar cells be used, instead of batteries, to start traditional internal
combustion engines presently used in most cars and trucks?

Answer

The time for 1.00 C of charge to flow would be

This is slightly less than an hour. This is quite different from the 5.55 ms for the truck battery. The calculator takes a very
small amount of energy to operate, unlike the truck’s starter motor. There are several reasons that vehicles use batteries and
not solar cells. Aside from the obvious fact that a light source to run the solar cells for a car or truck is not always available,
the large amount of current needed to start the engine cannot easily be supplied by present-day solar cells. Solar cells can
possibly be used to charge the batteries. Charging the battery requires a small amount of energy when compared to the
energy required to run the engine and the other accessories such as the heater and air conditioner. Present day solar-
powered cars are powered by solar panels, which may power an electric motor, instead of an internal combustion engine.

Circuit breakers in a home are rated in amperes, normally in a range from 10 amps to 30 amps, and are used to protect the
residents from harm and their appliances from damage due to large currents. A single 15-amp circuit breaker may be used to
protect several outlets in the living room, whereas a single 20-amp circuit breaker may be used to protect the refrigerator in the
kitchen. What can you deduce from this about current used by the various appliances?

Answer

The total current needed by all the appliances in the living room (a few lamps, a television, and your laptop) draw less
current and require less power than the refrigerator.

Current in a Circuit
In the previous paragraphs, we defined the current as the charge that flows through a cross-sectional area per unit time. In order for
charge to flow through an appliance, such as the headlight shown in Figure , there must be a complete path (or circuit) from
the positive terminal to the negative terminal. Consider a simple circuit of a car battery, a switch, a headlight lamp, and wires that
provide a current path between the components. In order for the lamp to light, there must be a complete path for current flow. In
other words, a charge must be able to leave the positive terminal of the battery, travel through the component, and back to the
negative terminal of the battery. The switch is there to control the circuit. Part (a) of the figure shows the simple circuit of a car
battery, a switch, a conducting path, and a headlight lamp. Also shown is the schematic of the circuit [part (b)]. A schematic is a
graphical representation of a circuit and is very useful in visualizing the main features of a circuit. Schematics use standardized
symbols to represent the components in a circuits and solid lines to represent the wires connecting the components. The battery is
shown as a series of long and short lines, representing the historic voltaic pile. The lamp is shown as a circle with a loop inside,
representing the filament of an incandescent bulb. The switch is shown as two points with a conducting bar to connect the two
points and the wires connecting the components are shown as solid lines. The schematic in part (c) shows the direction of current
flow when the switch is closed.

 Exercise 4.2.1A
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Figure : (a) A simple electric circuit of a headlight (lamp), a battery, and a switch. When the switch is closed, an uninterrupted
path for current to flow through is supplied by conducting wires connecting a load to the terminals of a battery. (b) In this
schematic, the battery is represented by parallel lines, which resemble plates in the original design of a battery. The longer lines
indicate the positive terminal. The conducting wires are shown as solid lines. The switch is shown, in the open position, as two
terminals with a line representing a conducting bar that can make contact between the two terminals. The lamp is represented by a
circle encompassing a filament, as would be seen in an incandescent light bulb. (c) When the switch is closed, the circuit is
complete and current flows from the positive terminal to the negative terminal of the battery.

When the switch is closed in Figure , there is a complete path for charges to flow, from the positive terminal of the battery,
through the switch, then through the headlight and back to the negative terminal of the battery. Note that the direction of current
flow is from positive to negative. The direction of conventional current is always represented in the direction that positive charge
would flow, from the positive terminal to the negative terminal.

The conventional current flows from the positive terminal to the negative terminal, but depending on the actual situation, positive
charges, negative charges, or both may move. In metal wires, for example, current is carried by electrons—that is, negative charges
move. In ionic solutions, such as salt water, both positive and negative charges move. This is also true in nerve cells. A Van de
Graaff generator, used for nuclear research, can produce a current of pure positive charges, such as protons. In the Tevatron
Accelerator at Fermilab, before it was shut down in 2011, beams of protons and antiprotons traveling in opposite directions were
collided. The protons are positive and therefore their current is in the same direction as they travel. The antiprotons are negativity
charged and thus their current is in the opposite direction that the actual particles travel.

A closer look at the current flowing through a wire is shown in Figure . The figure illustrates the movement of charged
particles that compose a current. The fact that conventional current is taken to be in the direction that positive charge would flow
can be traced back to American scientist and statesman Benjamin Franklin in the 1700s. Having no knowledge of the particles that
make up the atom (namely the proton, electron, and neutron), Franklin believed that electrical current flowed from a material that
had more of an “electrical fluid” and to a material that had less of this “electrical fluid.” He coined the term positive for the
material that had more of this electrical fluid and negative for the material that lacked the electrical fluid. He surmised that current
would flow from the material with more electrical fluid—the positive material—to the negative material, which has less electrical
fluid. Franklin called this direction of current a positive current flow. This was pretty advanced thinking for a man who knew
nothing about the atom.

Figure : Current I is the rate at which charge moves through an area A, such as the cross-section of a wire. Conventional
current is defined to move in the direction of the electrical field. (a) Positive charges move in the direction of the electrical field,
which is the same direction as conventional current. (b) Negative charges move in the direction opposite to the electrical field.
Conventional current is in the direction opposite to the movement of negative charge. The flow of electrons is sometimes referred
to as electronic flow.
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We now know that a material is positive if it has a greater number of protons than electrons, and it is negative if it has a greater
number of electrons than protons. In a conducting metal, the current flow is due primarily to electrons flowing from the negative
material to the positive material, but for historical reasons, we consider the positive current flow and the current is shown to flow
from the positive terminal of the battery to the negative terminal.

It is important to realize that an electrical field is present in conductors and is responsible for producing the current (Figure ).
In previous chapters, we considered the static electrical case, where charges in a conductor quickly redistribute themselves on the
surface of the conductor in order to cancel out the external electrical field and restore equilibrium. In the case of an electrical
circuit, the charges are prevented from ever reaching equilibrium by an external source of electric potential, such as a battery. The
energy needed to move the charge is supplied by the electric potential from the battery.

Although the electrical field is responsible for the motion of the charges in the conductor, the work done on the charges by the
electrical field does not increase the kinetic energy of the charges. We will show that the electrical field is responsible for keeping
the electric charges moving at a “drift velocity.”

This page titled 4.2: Electrical Current is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

9.2: Electrical Current by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-2.
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4.3: Model of Conduction in Metals

By the end of this section, you will be able to:

Define the drift velocity of charges moving through a metal
Define the vector current density
Describe the operation of an incandescent lamp

When electrons move through a conducting wire, they do not move at a constant velocity, that is, the electrons do not move in a
straight line at a constant speed. Rather, they interact with and collide with atoms and other free electrons in the conductor. Thus,
the electrons move in a zig-zag fashion and drift through the wire. We should also note that even though it is convenient to discuss
the direction of current, current is a scalar quantity. When discussing the velocity of charges in a current, it is more appropriate to
discuss the current density. We will come back to this idea at the end of this section.

Drift Velocity
Electrical signals move very rapidly. Telephone conversations carried by currents in wires cover large distances without noticeable
delays. Lights come on as soon as a light switch is moved to the ‘on’ position. Most electrical signals carried by currents travel at
speeds on the order of  a significant fraction of the speed of light. Interestingly, the individual charges that make up the
current move much slower on average, typically drifting at speeds on the order of . How do we reconcile these two
speeds, and what does it tell us about standard conductors?

The high speed of electrical signals results from the fact that the force between charges acts rapidly at a distance. Thus, when a free
charge is forced into a wire, as in Figure , the incoming charge pushes other charges ahead of it due to the repulsive force
between like charges. These moving charges push on charges farther down the line. The density of charge in a system cannot easily
be increased, so the signal is passed on rapidly. The resulting electrical shock wave moves through the system at nearly the speed of
light. To be precise, this fast-moving signal, or shock wave, is a rapidly propagating change in the electrical field.

Figure : When charged particles are forced into this volume of a conductor, an equal number are quickly forced to leave. The
repulsion between like charges makes it difficult to increase the number of charges in a volume. Thus, as one charge enters, another
leaves almost immediately, carrying the signal rapidly forward.

Good conductors have large numbers of free charges. In metals, the free charges are free electrons. (In fact, good electrical
conductors are often good heat conductors too, because large numbers of free electrons can transport thermal energy as well as
carry electrical current.) Figure  shows how free electrons move through an ordinary conductor. The distance that an
individual electron can move between collisions with atoms or other electrons is quite small. The electron paths thus appear nearly
random, like the motion of atoms in a gas. But there is an electrical field in the conductor that causes the electrons to drift in the
direction shown (opposite to the field, since they are negative). The drift velocity  is the average velocity of the free charges.
Drift velocity is quite small, since there are so many free charges. If we have an estimate of the density of free electrons in a
conductor, we can calculate the drift velocity for a given current. The larger the density, the lower the velocity required for a given
current.

 LEARNING OBJECTIVES

m/s108

m/s10−4

4.3.1

4.3.1

4.3.2

v ⃗ d

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/63102?pdf
https://phys.libretexts.org/Courses/Bowdoin_College/Phys1140%3A_Introductory_Physics_II%3A_Part_1/04%3A_Current_and_Resistance/4.03%3A_Model_of_Conduction_in_Metals


4.3.2 https://phys.libretexts.org/@go/page/63102

Figure : Free electrons moving in a conductor make many collisions with other electrons and other particles. A typical path of
one electron is shown. The average velocity of the free charges is called the drift velocity  and for electrons, it is in the direction
opposite to the electrical field. The collisions normally transfer energy to the conductor, requiring a constant supply of energy to
maintain a steady current.

Free-electron collisions transfer energy to the atoms of the conductor. The electrical field does work in moving the electrons
through a distance, but that work does not increase the kinetic energy (nor speed) of the electrons. The work is transferred to the
conductor’s atoms, often increasing temperature. Thus, a continuous power input is required to keep a current flowing. (An
exception is superconductors, for reasons we shall explore in a later chapter. Superconductors can have a steady current without a
continual supply of energy—a great energy savings.) For a conductor that is not a superconductor, the supply of energy can be
useful, as in an incandescent light bulb filament (Figure ). The supply of energy is necessary to increase the temperature of the
tungsten filament, so that the filament glows.

Figure : The incandescent lamp is a simple design. A tungsten filament is placed in a partially evacuated glass envelope. One
end of the filament is attached to the screw base, which is made out of a conducting material. The second end of the filament is
attached to a second contact in the base of the bulb. The two contacts are separated by an insulating material. Current flows through
the filament, and the temperature of the filament becomes large enough to cause the filament to glow and produce light. However,
these bulbs are not very energy efficient, as evident from the heat coming from the bulb. In the year 2012, the United States, along
with many other countries, began to phase out incandescent lamps in favor of more energy-efficient lamps, such as light-emitting
diode (LED) lamps and compact fluorescent lamps (CFL) (credit right: modification of work by Serge Saint).

We can obtain an expression for the relationship between current and drift velocity by considering the number of free charges in a
segment of wire, as illustrated in Figure . The number of free charges per unit volume, or the number density of free charges,
is given the symbol  where

The value of  depends on the material. The shaded segment has a volume , so that the number of free charges in the
volume is . The charge  in this segment is thus , where  is the amount of charge on each carrier. (The
magnitude of the charge of electrons is .) Current is charge moved per unit time; thus, if all the original
charges move out of this segment in time dt, the current is
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Rearranging terms gives

where

 is the drift velocity,
 is the free charge density,
 is the cross-sectional area of the wire, and

 is the current through the wire.

The carriers of the current each have charge q and move with a drift velocity of magnitude .

Figure : All the charges in the shaded volume of this wire move out in a time dt, having a drift velocity of magnitude .

Note that simple drift velocity is not the entire story. The speed of an electron is sometimes much greater than its drift velocity. In
addition, not all of the electrons in a conductor can move freely, and those that do move might move somewhat faster or slower
than the drift velocity. So what do we mean by free electrons?

Atoms in a metallic conductor are packed in the form of a lattice structure. Some electrons are far enough away from the atomic
nuclei that they do not experience the attraction of the nuclei as strongly as the inner electrons do. These are the free electrons.
They are not bound to a single atom but can instead move freely among the atoms in a “sea” of electrons. When an electrical field
is applied, these free electrons respond by accelerating. As they move, they collide with the atoms in the lattice and with other
electrons, generating thermal energy, and the conductor gets warmer. In an insulator, the organization of the atoms and the structure
do not allow for such free electrons.

As you know, electric power is usually supplied to equipment and appliances through round wires made of a conducting material
(copper, aluminum, silver, or gold) that are stranded or solid. The diameter of the wire determines the current-carrying capacity—
the larger the diameter, the greater the current-carrying capacity. Even though the current-carrying capacity is determined by the
diameter, wire is not normally characterized by the diameter directly. Instead, wire is commonly sold in a unit known as “gauge.”
Wires are manufactured by passing the material through circular forms called “drawing dies.” In order to make thinner wires,
manufacturers draw the wires through multiple dies of successively thinner diameter. Historically, the gauge of the wire was related
to the number of drawing processes required to manufacture the wire. For this reason, the larger the gauge, the smaller the
diameter. In the United States, the American Wire Gauge (AWG) was developed to standardize the system. Household wiring
commonly consists of 10-gauge (2.588-mm diameter) to 14-gauge (1.628-mm diameter) wire. A device used to measure the gauge
of wire is shown in Figure .
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Figure : A device for measuring the gauge of electrical wire. As you can see, higher gauge numbers indicate thinner wires.

Calculate the drift velocity of electrons in a copper wire with a diameter of 2.053 mm (12-gauge) carrying a 20.0-A current,
given that there is one free electron per copper atom. (Household wiring often contains 12-gauge copper wire, and the
maximum current allowed in such wire is usually 20.0 A.) The density of copper is  and the atomic mass of
copper is 63.54 g/mol.

Strategy
We can calculate the drift velocity using the equation . The current is  and  is the
charge of an electron. We can calculate the area of a cross-section of the wire using the formula , where  is one-half
the diameter. The given diameter is 2.053 mm, so r is 1.0265 mm. We are given the density of copper, , and
the atomic mass of copper is . We can use these two quantities along with Avogadro’s number, 

, to determine n, the number of free electrons per cubic meter.

Solution
First, we calculate the density of free electrons in copper. There is one free electron per copper atom. Therefore, the number of
free electrons is the same as the number of copper atoms per . We can now find n as follows:

The cross-sectional area of the wire is

Rearranging  to isolate drift velocity gives

4.3.5

 Example : Calculating Drift Velocity in a Common Wire4.3.1

8.80 × kg/103 m3

I = nqAvd I = 20.00 A q = 1.60 ×10−19C

A = πr2 r

8.80 × kg/103 m3

63.54 g/mol

6.02 × atoms/mol1023

m3

n = × × × ×
1 e−

atom

6.02 × atoms1023

mol

1 mol

63.54 g

1000 g

kg

8.80 × kg103

1 m3

= 8.34 × / .1028e− m3

A = πr2

= π( )
2.05 × m10−3

2

2

= 3.30 × .10−6m2

I = nqAvd

vd =
I

nqA

=
20.00 A

(8.34 × / )(−1.60 × C)(3.30 × )1028 m3 10−19 10−6m2

= −4.54 × m/s.10−4
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Significance
The minus sign indicates that the negative charges are moving in the direction opposite to conventional current. The small
value for drift velocity (on the order of  confirms that the signal moves on the order of  times faster (about 

 than the charges that carry it.

In Example , the drift velocity was calculated for a 2.053-mm diameter (12-gauge) copper wire carrying a 20-amp
current. Would the drift velocity change for a 1.628-mm diameter (14-gauge) wire carrying the same 20-amp current?

Answer

The diameter of the 14-gauge wire is smaller than the diameter of the 12-gauge wire. Since the drift velocity is inversely
proportional to the cross-sectional area, the drift velocity in the 14-gauge wire is larger than the drift velocity in the 12-
gauge wire carrying the same current. The number of electrons per cubic meter will remain constant.

Current Density
Although it is often convenient to attach a negative or positive sign to indicate the overall direction of motion of the charges,

current is a scalar quantity,  It is often necessary to discuss the details of the motion of the charge, instead of discussing

the overall motion of the charges. In such cases, it is necessary to discuss the current density, , a vector quantity. The current
density is the flow of charge through an infinitesimal area, divided by the area. The current density must take into account the local
magnitude and direction of the charge flow, which varies from point to point. The unit of current density is ampere per meter
squared, and the direction is defined as the direction of net flow of positive charges through the area.

Figure : The current density  is defined as the current passing through an infinitesimal cross-sectional area divided by the
area. The direction of the current density is the direction of the net flow of positive charges and the magnitude is equal to the
current divided by the infinitesimal area.

The relationship between the current and the current density can be seen in Figure . The differential current flow through the
area  is found as

where  is the angle between the area and the current density. The total current passing through area  can be found by
integrating over the area,

Consider the magnitude of the current density, which is the current divided by the area:

Thus, the current density is . If q is positive,  is in the same direction as the electrical field . If q is negative,  is in
the opposite direction of . Either way, the direction of the current density  is in the direction of the electrical field .

m/s10−4 1012

m/s108

 Exercise 4.3.1
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4.3.6

dA ⃗ 
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The current supplied to a lamp with a 100-W light bulb is 0.87 amps. The lamp is wired using a copper wire with diameter
2.588 mm (10-gauge). Find the magnitude of the current density.

Strategy
The current density is the current moving through an infinitesimal cross-sectional area divided by the area. We can calculate

the magnitude of the current density using . The current is given as 0.87 A. The cross-sectional area can be calculated

to be .

Solution
Calculate the current density using the given current  and the area, found to be .

Significance
The current density in a conducting wire depends on the current through the conducting wire and the cross-sectional area of the
wire. For a given current, as the diameter of the wire increases, the charge density decreases.

The current density is proportional to the current and inversely proportional to the area. If the current density in a conducting
wire increases, what would happen to the drift velocity of the charges in the wire?

Answer

The current density in a conducting wire increases due to an increase in current. The drift velocity is inversely proportional

to the current , so the drift velocity would decrease.

What is the significance of the current density? The current density is proportional to the current, and the current is the number of
charges that pass through a cross-sectional area per second. The charges move through the conductor, accelerated by the electric
force provided by the electrical field. The electrical field is created when a voltage is applied across the conductor. In Ohm’s Law,
we will use this relationship between the current density and the electrical field to examine the relationship between the current
through a conductor and the voltage applied.

This page titled 4.3: Model of Conduction in Metals is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.

9.3: Model of Conduction in Metals by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.

 Example : Calculating the Current Density in a Wire4.3.2

J =
I

A
A = 5.26 mm2

I = 0.87 A A = 5.26 mm2

J = = = 1.65 × .
I

A

0.87 A

5.26 ×10−6m2
105 A

m2

 Exercise 4.3.2
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4.4: Resistivity and Resistance

By the end of this section, you will be able to:

Differentiate between resistance and resistivity
Define the term conductivity
Describe the electrical component known as a resistor
State the relationship between resistance of a resistor and its length, cross-sectional area, and resistivity
State the relationship between resistivity and temperature

What drives current? We can think of various devices—such as batteries, generators, wall outlets, and so on—that are necessary to
maintain a current. All such devices create a potential difference and are referred to as voltage sources. When a voltage source is
connected to a conductor, it applies a potential difference V that creates an electrical field. The electrical field, in turn, exerts force
on free charges, causing current. The amount of current depends not only on the magnitude of the voltage, but also on the
characteristics of the material that the current is flowing through. The material can resist the flow of the charges, and the measure
of how much a material resists the flow of charges is known as the resistivity. This resistivity is crudely analogous to the friction
between two materials that resists motion.

Resistivity

When a voltage is applied to a conductor, an electrical field  is created, and charges in the conductor feel a force due to the
electrical field. The current density  that results depends on the electrical field and the properties of the material. This dependence
can be very complex. In some materials, including metals at a given temperature, the current density is approximately proportional
to the electrical field. In these cases, the current density can be modeled as

where  is the electrical conductivity. The electrical conductivity is analogous to thermal conductivity and is a measure of a
material’s ability to conduct or transmit electricity. Conductors have a higher electrical conductivity than insulators. Since the
electrical conductivity is , the units are

Here, we define a unit named the ohm with the Greek symbol uppercase omega, . The unit is named after Georg Simon Ohm,
whom we will discuss later in this chapter. The  is used to avoid confusion with the number 0. One ohm equals one volt per amp: 

. The units of electrical conductivity are therefore .

Conductivity is an intrinsic property of a material. Another intrinsic property of a material is the resistivity, or electrical resistivity.
The resistivity of a material is a measure of how strongly a material opposes the flow of electrical current. The symbol for
resistivity is the lowercase Greek letter rho, , and resistivity is the reciprocal of electrical conductivity:

The unit of resistivity in SI units is the ohm-meter . We can define the resistivity in terms of the electrical field and the
current density.

The greater the resistivity, the larger the field needed to produce a given current density. The lower the resistivity, the larger the
current density produced by a given electrical field. Good conductors have a high conductivity and low resistivity. Good insulators
have a low conductivity and a high resistivity. Table  lists resistivity and conductivity values for various materials.

Table : Resistivities and Conductivities of Various Materials at 20 °C[1] Values depend strongly on amounts and types of impurities.

 Learning Objectives
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Material Conductivity,  Resistivity,  
Temperature Coefficient  

Material Conductivity,  Resistivity,  
Temperature Coefficient  

Conductors

Silver 0.0038

Copper 0.0039

Gold 0.0034

Aluminum 0.0039

Tungsten 0.0045

Iron 0.0065

Platinum 0.0039

Steel  

Lead  

Manganin (Cu, Mn. Ni alloy) 0.000002

Constantan (Cu, Ni alloy) 0.00003

Mercury 0.0009

Nichrome (Ni, Fe, Cr alloy) 0.0004

Semiconductors [1]

Carbon (pure) -0.0005

Carbon -0.0005

Germanium (pure)   -0.048

Germanium   -0.050

Silicon (pure)   2300 -0.075

Silicon   0.1 - 2300 -0.07

Insulators

Amber  

Glass  

Lucite  

Mica  

Quartz (fused)  

Rubber (hard)  

Sulfur  

Teflon  

Wood  

The materials listed in the table are separated into categories of conductors, semiconductors, and insulators, based on broad
groupings of resistivity. Conductors have the smallest resistivity, and insulators have the largest; semiconductors have intermediate
resistivity. Conductors have varying but large, free charge densities, whereas most charges in insulators are bound to atoms and are

σσ (Ω ⋅ m(Ω ⋅ m))−1−1 ρρ (Ω ⋅ m)(Ω ⋅ m)
αα

CC((oo ))−1−1

6.29 × 107 1.59 × 10−8

5.95 × 107 1.68 × 10−8

4.10 × 107 2.44 × 10−8

3.77 × 107 2.65 × 10−8

1.79 × 107 5.60 × 10−8

1.03 × 107 9.71 × 10−8

0.94 × 107 10.60 × 10−8

0.50 × 107 20.00 × 10−8

0.45 × 107 22.00 × 10−8

0.21 × 107 48.20 × 10−8

0.20 × 107 49.00 × 10−8

0.10 × 107 98.00 × 10−8

0.10 × 107 100.00 × 10−8

2.86 × 104 3.50 × 10−5

(2.86 − 1.67) × 10−6 (3.5 − 60) × 10−5

600 × 10−3

(1 − 600) × 10−3

2.00 × 10−15 5 × 1014

−10−9 19−14 −109 1014

< 10−13 > 1013

−10−11 10−15 −1011 1015

1.33 × 10−18 75 × 1016

−10−13 10−16 −1013 1016

10−15 1015

TM < 10−13 > 1013

−10−8 10−11 −108 1011
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not free to move. Semiconductors are intermediate, having far fewer free charges than conductors, but having properties that make
the number of free charges depend strongly on the type and amount of impurities in the semiconductor. These unique properties of
semiconductors are put to use in modern electronics, as we will explore in later chapters.

Calculate the current density, resistance, and electrical field of a 5-m length of copper wire with a diameter of 2.053 mm (12-
gauge) carrying a current of .

Strategy
We can calculate the current density by first finding the cross-sectional area of the wire, which is , and the

definition of current density . The resistance can be found using the length of the wire , the area, and the

resistivity of copper , where . The resistivity and current density can be used to find the

electrical field.

Solution
First, we calculate the current density:

The resistance of the wire is

Finally, we can find the electrical field:

Significance
From these results, it is not surprising that copper is used for wires for carrying current because the resistance is quite small.
Note that the current density and electrical field are independent of the length of the wire, but the voltage depends on the
length.

Copper wires use routinely used for extension cords and house wiring for several reasons. Copper has the highest electrical
conductivity rating, and therefore the lowest resistivity rating, of all nonprecious metals. Also important is the tensile strength,
where the tensile strength is a measure of the force required to pull an object to the point where it breaks. The tensile strength
of a material is the maximum amount of tensile stress it can take before breaking. Copper has a high tensile strength, 

. A third important characteristic is ductility. Ductility is a measure of a material’s ability to be drawn into wires

 Example : Current Density, Resistance, and Electrical field for a Current-Carrying Wire4.4.1

I −10 mA

A = 3.31 mm2

J =
I

A
L = 5.00 m

ρ = 1.68 × Ω ⋅m10−8 R = ρ
L

A

J =
I

A

=
10 × A10−3

3.31 ×10−6m2

= 3.02 × .103 A

m2

R = ρ
L

A

= (1.68 × Ω ⋅m)10−8 5.00 m

3.31 ×10−6m2

= 0.025 Ω.

E = ρJ

= 1.68 × Ω ⋅m(3.02 × )10−8 103 A

m2

= 5.07 × .10−5 V

m

 Exercise 4.4.1

2 ×108 N
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and a measure of the flexibility of the material, and copper has a high ductility. Summarizing, for a conductor to be a suitable
candidate for making wire, there are at least three important characteristics: low resistivity, high tensile strength, and high
ductility. What other materials are used for wiring and what are the advantages and disadvantages?

Answer

Silver, gold, and aluminum are all used for making wires. All four materials have a high conductivity, silver having the
highest. All four can easily be drawn into wires and have a high tensile strength, though not as high as copper. The obvious
disadvantage of gold and silver is the cost, but silver and gold wires are used for special applications, such as speaker wires.
Gold does not oxidize, making better connections between components. Aluminum wires do have their drawbacks.
Aluminum has a higher resistivity than copper, so a larger diameter is needed to match the resistance per length of copper
wires, but aluminum is cheaper than copper, so this is not a major drawback. Aluminum wires do not have as high of a
ductility and tensile strength as copper, but the ductility and tensile strength is within acceptable levels. There are a few
concerns that must be addressed in using aluminum and care must be used when making connections. Aluminum has a
higher rate of thermal expansion than copper, which can lead to loose connections and a possible fire hazard. The oxidation
of aluminum does not conduct and can cause problems. Special techniques must be used when using aluminum wires and
components, such as electrical outlets, must be designed to accept aluminum wires.

View this interactive simulation to see what the effects of the cross-sectional area, the length, and the resistivity of a wire are
on the resistance of a conductor. Adjust the variables using slide bars and see if the resistance becomes smaller or larger.

 PhET
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Temperature Dependence of Resistivity
Looking back at Table , you will see a column labeled “Temperature Coefficient.” The resistivity of some materials has a
strong temperature dependence. In some materials, such as copper, the resistivity increases with increasing temperature. In fact, in
most conducting metals, the resistivity increases with increasing temperature. The increasing temperature causes increased
vibrations of the atoms in the lattice structure of the metals, which impede the motion of the electrons. In other materials, such as
carbon, the resistivity decreases with increasing temperature. In many materials, the dependence is approximately linear and can be
modeled using a linear equation:

where  is the resistivity of the material at temperature T,  is the temperature coefficient of the material, and  is the resistivity
at , usually taken as .

Note also that the temperature coefficient  is negative for the semiconductors listed in Table , meaning that their resistivity
decreases with increasing temperature. They become better conductors at higher temperature, because increased thermal agitation

 R 
 ρ  L 
 A 

=
  resista

 ρ 
 resistivity 

0.50
 Ω  cm 

 Resistance in a Wire 

4.4.1

ρ ≈ [1 +α(T − )],ρ0 T0
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increases the number of free charges available to carry current. This property of decreasing  with temperature is also related to the
type and amount of impurities present in the semiconductors.

Resistance
We now consider the resistance of a wire or component. The resistance is a measure of how difficult it is to pass current through a
wire or component. Resistance depends on the resistivity. The resistivity is a characteristic of the material used to fabricate a wire
or other electrical component, whereas the resistance is a characteristic of the wire or component.

To calculate the resistance, consider a section of conducting wire with cross-sectional area A, length L, and resistivity . A battery
is connected across the conductor, providing a potential difference  across it (Figure ). The potential difference produces
an electrical field that is proportional to the current density, according to .

Figure : A potential provided by a battery is applied to a segment of a conductor with a cross-sectional area  and a length .

The magnitude of the electrical field across the segment of the conductor is equal to the voltage divided by the length, ,
and the magnitude of the current density is equal to the current divided by the cross-sectional area, . Using this
information and recalling that the electrical field is proportional to the resistivity and the current density, we can see that the voltage
is proportional to the current:

The ratio of the voltage to the current is defined as the resistance :

The resistance of a cylindrical segment of a conductor is equal to the resistivity of the material times the length divided by the
area:

The unit of resistance is the ohm, . For a given voltage, the higher the resistance, the lower the current.

Resistors

A common component in electronic circuits is the resistor. The resistor can be used to reduce current flow or provide a voltage
drop. Figure  shows the symbols used for a resistor in schematic diagrams of a circuit. Two commonly used standards for
circuit diagrams are provided by the American National Standard Institute (ANSI, pronounced “AN-see”) and the International
Electrotechnical Commission (IEC). Both systems are commonly used. We use the ANSI standard in this text for its visual
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recognition, but we note that for larger, more complex circuits, the IEC standard may have a cleaner presentation, making it easier
to read.

Figure : Symbols for a resistor used in circuit diagrams. (a) The ANSI symbol; (b) the IEC symbol.

Material and shape dependence of resistance

A resistor can be modeled as a cylinder with a cross-sectional area A and a length L, made of a material with a resistivity  (Figure 

). The resistance of the resistor is 

Figure : A model of a resistor as a uniform cylinder of length L and cross-sectional area A. Its resistance to the flow of current
is analogous to the resistance posed by a pipe to fluid flow. The longer the cylinder, the greater its resistance. The larger its cross-
sectional area A, the smaller its resistance.

The most common material used to make a resistor is carbon. A carbon track is wrapped around a ceramic core, and two copper
leads are attached. A second type of resistor is the metal film resistor, which also has a ceramic core. The track is made from a
metal oxide material, which has semiconductive properties similar to carbon. Again, copper leads are inserted into the ends of the
resistor. The resistor is then painted and marked for identification. A resistor has four colored bands, as shown in Figure .

Figure : Many resistors resemble the figure shown above. The four bands are used to identify the resistor. The first two
colored bands represent the first two digits of the resistance of the resistor. The third color is the multiplier. The fourth color
represents the tolerance of the resistor. The resistor shown has a resistance of 

Resistances range over many orders of magnitude. Some ceramic insulators, such as those used to support power lines, have
resistances of  or more. A dry person may have a hand-to-foot resistance of  whereas the resistance of the human heart
is about  A meter-long piece of large-diameter copper wire may have a resistance of , and superconductors have no
resistance at all at low temperatures. As we have seen, resistance is related to the shape of an object and the material of which it is
composed.
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The resistance of an object also depends on temperature, since  is directly proportional to . For a cylinder, we know ,

so if L and A do not change greatly with temperature, R has the same temperature dependence as . (Examination of the
coefficients of linear expansion shows them to be about two orders of magnitude less than typical temperature coefficients of
resistivity, so the effect of temperature on L and A is about two orders of magnitude less than on .) Thus,

is the temperature dependence of the resistance of an object, where  is the original resistance (usually taken to be 
and R is the resistance after a temperature change . The color code gives the resistance of the resistor at a temperature of 

.

Numerous thermometers are based on the effect of temperature on resistance (Figure ). One of the most common
thermometers is based on the thermistor, a semiconductor crystal with a strong temperature dependence, the resistance of which is
measured to obtain its temperature. The device is small, so that it quickly comes into thermal equilibrium with the part of a person
it touches.

Figure : These familiar thermometers are based on the automated measurement of a thermistor’s temperature-dependent
resistance.

Although caution must be used in applying  and  for temperature changes greater than 
, for tungsten, the equations work reasonably well for very large temperature changes. A tungsten filament at  has

a resistance of . What would the resistance be if the temperature is increased to ?

Strategy
This is a straightforward application of Equation , since the original resistance of the filament is given as 
and the temperature change is .

Solution
The resistance of the hotter filament  is obtained by entering known values into the above equation:

Significance
Notice that the resistance changes by more than a factor of 10 as the filament warms to the high temperature and the current
through the filament depends on the resistance of the filament and the voltage applied. If the filament is used in an
incandescent light bulb, the initial current through the filament when the bulb is first energized will be higher than the current
after the filament reaches the operating temperature.

R0 ρ R = ρ
L

A
ρ

ρ

R = (1 +αΔT )R0 (4.4.1)

R0 T = C20.00o

ΔT

T = C20.00o

4.4.5

4.4.5

 Example : Calculating Resistance4.4.2

ρ = (1 +αΔT )ρ0 R = (1 +αΔT )R0
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0.350 Ω C2850o
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R
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A strain gauge is an electrical device to measure strain, as shown below. It consists of a flexible, insulating backing that
supports a conduction foil pattern. The resistance of the foil changes as the backing is stretched. How does the strain gauge
resistance change? Is the strain gauge affected by temperature changes?

Answer

The foil pattern stretches as the backing stretches, and the foil tracks become longer and thinner. Since the resistance is

calculated as , the resistance increases as the foil tracks are stretched. When the temperature changes, so does the

resistivity of the foil tracks, changing the resistance. One way to combat this is to use two strain gauges, one used as a
reference and the other used to measure the strain. The two strain gauges are kept at a constant temperature

Long cables can sometimes act like antennas, picking up electronic noise, which are signals from other equipment and
appliances. Coaxial cables are used for many applications that require this noise to be eliminated. For example, they can be
found in the home in cable TV connections or other audiovisual connections. Coaxial cables consist of an inner conductor of
radius  surrounded by a second, outer concentric conductor with radius  (Figure ). The space between the two is
normally filled with an insulator such as polyethylene plastic. A small amount of radial leakage current occurs between the two
conductors. Determine the resistance of a coaxial cable of length L.

Figure : Coaxial cables consist of two concentric conductors separated by insulation. They are often used in cable TV or
other audiovisual connections.

Strategy

 Exercise 4.4.2

R = ρ
L

A

 The Resistance of Coaxial Cable

ri r0 4.4.6

4.4.6
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We cannot use the equation  directly. Instead, we look at concentric cylindrical shells, with thickness dr, and

integrate.

Solution
We first find an expression for  and then integrate from  to ,

Integrating both sides

Significance
The resistance of a coaxial cable depends on its length, the inner and outer radii, and the resistivity of the material separating
the two conductors. Since this resistance is not infinite, a small leakage current occurs between the two conductors. This
leakage current leads to the attenuation (or weakening) of the signal being sent through the cable.

The resistance between the two conductors of a coaxial cable depends on the resistivity of the material separating the two
conductors, the length of the cable and the inner and outer radius of the two conductor. If you are designing a coaxial cable,
how does the resistance between the two conductors depend on these variables?

Answer

The longer the length, the smaller the resistance. The greater the resistivity, the higher the resistance. The larger the
difference between the outer radius and the inner radius, that is, the greater the ratio between the two, the greater the
resistance. If you are attempting to maximize the resistance, the choice of the values for these variables will depend on the
application. For example, if the cable must be flexible, the choice of materials may be limited.

View this simulation to see how the voltage applied and the resistance of the material the current flows through affects the
current through the material. You can visualize the collisions of the electrons and the atoms of the material effect the
temperature of the material.

This page titled 4.4: Resistivity and Resistance is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

9.4: Resistivity and Resistance by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-2.
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4.5: Ohm's Law

By the end of this section, you will be able to:

Describe Ohm’s law
Recognize when Ohm’s law applies and when it does not

We have been discussing three electrical properties so far in this chapter: current, voltage, and resistance. It turns out that many
materials exhibit a simple relationship among the values for these properties, known as Ohm’s law. Many other materials do not
show this relationship, so despite being called Ohm’s law, it is not considered a law of nature, like Newton’s laws or the laws of
thermodynamics. But it is very useful for calculations involving materials that do obey Ohm’s law.

Description of Ohm’s Law
The current that flows through most substances is directly proportional to the voltage  applied to it. The German physicist Georg
Simon Ohm (1787–1854) was the first to demonstrate experimentally that the current in a metal wire is directly proportional to
the voltage applied:

This important relationship is the basis for Ohm’s law. It can be viewed as a cause-and-effect relationship, with voltage the cause
and current the effect. This is an empirical law, which is to say that it is an experimentally observed phenomenon, like friction.
Such a linear relationship doesn’t always occur. Any material, component, or device that obeys Ohm’s law, where the current
through the device is proportional to the voltage applied, is known as an ohmic material or ohmic component. Any material or
component that does not obey Ohm’s law is known as a nonohmic material or nonohmic component.

Ohm’s Experiment
In a paper published in 1827, Georg Ohm described an experiment in which he measured voltage across and current through
various simple electrical circuits containing various lengths of wire. A similar experiment is shown in Figure . This
experiment is used to observe the current through a resistor that results from an applied voltage. In this simple circuit, a resistor is
connected in series with a battery. The voltage is measured with a voltmeter, which must be placed across the resistor (in parallel
with the resistor). The current is measured with an ammeter, which must be in line with the resistor (in series with the resistor).

Figure : The experimental set-up used to determine if a resistor is an ohmic or nonohmic device. (a) When the battery is
attached, the current flows in the clockwise direction and the voltmeter and ammeter have positive readings. (b) When the leads of
the battery are switched, the current flows in the counterclockwise direction and the voltmeter and ammeter have negative readings.

In this updated version of Ohm’s original experiment, several measurements of the current were made for several different
voltages. When the battery was hooked up as in Figure , the current flowed in the clockwise direction and the readings of the
voltmeter and ammeter were positive. Does the behavior of the current change if the current flowed in the opposite direction? To
get the current to flow in the opposite direction, the leads of the battery can be switched. When the leads of the battery were

 Learning Objectives

V

I ∝ V .
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switched, the readings of the voltmeter and ammeter readings were negative because the current flowed in the opposite direction, in
this case, counterclockwise. Results of a similar experiment are shown in Figure .

Figure : A resistor is placed in a circuit with a battery. The voltage applied varies from −10.00 V to +10.00 V, increased by
1.00-V increments. A plot shows values of the voltage versus the current typical of what a casual experimenter might find.

In this experiment, the voltage applied across the resistor varies from −10.00 to +10.00 V, by increments of 1.00 V. The current
through the resistor and the voltage across the resistor are measured. A plot is made of the voltage versus the current, and the result
is approximately linear. The slope of the line is the resistance, or the voltage divided by the current. This result is known as Ohm’s
law:

where  is the voltage measured in volts across the object in question,  is the current measured through the object in amps, and 
is the resistance in units of ohms. As stated previously, any device that shows a linear relationship between the voltage and the
current is known as an ohmic device. A resistor is therefore an ohmic device.

A carbon resistor at room temperature  is attached to a 9.00-V battery and the current measured through the resistor is
3.00 mA.

a. What is the resistance of the resistor measured in ohms?
b. If the temperature of the resistor is increased to  by heating the resistor, what is the current through the resistor?

Strategy
a. The resistance can be found using Ohm’s law. Ohm’s law states that , so the resistance can be found using 

.
b. First, the resistance is temperature dependent so the new resistance after the resistor has been heated can be found using 

. The current can be found using Ohm’s law in the form .

Solution
a. Using Ohm’s law and solving for the resistance yields the resistance at room temperature:

b. The resistance at  can be found using  where the temperature coefficient for carbon is 
.

4.5.2

4.5.1

V = IR (4.5.1)

V I R

 Example : Measuring Resistance4.5.1

( C)20o

C60o

V = IR

R = V /I

R = (1 +αΔT )R0 I = V /R

R = = = 3.00 × Ω = 3.00kΩ
V

I

9.00 V

3.00 × A10−3
103

C60o R = (1 +αΔT )R0

α = −0.0005

R = (1 +αΔT ) = 3.00 × (1 −0.0005( C − C)) = 2.94 kΩ.R0 103 60o 20o
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The current through the heated resistor is

Significance
A change in temperature of  resulted in a 2.00% change in current. This may not seem like a very great change, but
changing electrical characteristics can have a strong effect on the circuits. For this reason, many electronic appliances, such as
computers, contain fans to remove the heat dissipated by components in the electric circuits.

The voltage supplied to your house varies as . If a resistor is connected across this voltage, will
Ohm’s law  still be valid?

Answer

Yes, Ohm’s law is still valid. At every point in time the current is equal to , so the current is also a function

of time, .

See how Ohm’s law (Equation ) relates to a simple circuit. Adjust the voltage and resistance, and see the current change
according to Ohm’s law. The sizes of the symbols in the equation change to match the circuit diagram.

Nonohmic devices do not exhibit a linear relationship between the voltage and the current. One such device is the semiconducting
circuit element known as a diode. A diode is a circuit device that allows current flow in only one direction. A diagram of a simple
circuit consisting of a battery, a diode, and a resistor is shown in Figure . Although we do not cover the theory of the diode in
this section, the diode can be tested to see if it is an ohmic or a nonohmic device.

Figure : A diode is a semiconducting device that allows current flow only if the diode is forward biased, which means that the
anode is positive and the cathode is negative.

A plot of current versus voltage is shown in Figure . Note that the behavior of the diode is shown as current versus voltage,
whereas the resistor operation was shown as voltage versus current. A diode consists of an anode and a cathode. When the anode is
at a negative potential and the cathode is at a positive potential, as shown in part (a), the diode is said to have reverse bias. With
reverse bias, the diode has an extremely large resistance and there is very little current flow—essentially zero current—through the
diode and the resistor. As the voltage applied to the circuit increases, the current remains essentially zero, until the voltage reaches
the breakdown voltage and the diode conducts current. When the battery and the potential across the diode are reversed, making the
anode positive and the cathode negative, the diode conducts and current flows through the diode if the voltage is greater than 0.7 V.
The resistance of the diode is close to zero. (This is the reason for the resistor in the circuit; if it were not there, the current would
become very large.) You can see from the graph in Figure  that the voltage and the current do not have a linear relationship.
Thus, the diode is an example of a nonohmic device.

I = = = 3.06 × A = 3.06 mA.
V

R

9.00 V

2.94 × Ω103
10−3

C40o

 Exercise 4.5.1

V (t) = sin (2π ft)Vmax

V = IR

I(t) = V (t)/R

I(t) = sin (2π ft)
Vmax

R

 Simulation: PhET
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Figure : When the voltage across the diode is negative and small, there is very little current flow through the diode. As the
voltage reaches the breakdown voltage, the diode conducts. When the voltage across the diode is positive and greater than 0.7 V
(the actual voltage value depends on the diode), the diode conducts. As the voltage applied increases, the current through the diode
increases, but the voltage across the diode remains approximately 0.7 V.

Ohm’s law is commonly stated as , but originally it was stated as a microscopic view, in terms of the current density, the
conductivity, and the electrical field. This microscopic view suggests the proportionality  comes from the drift velocity of
the free electrons in the metal that results from an applied electrical field. As stated earlier, the current density is proportional to the
applied electrical field. The reformulation of Ohm’s law is credited to Gustav Kirchhoff, whose name we will see again in the next
chapter.

This page titled 4.5: Ohm's Law is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content
that was edited to the style and standards of the LibreTexts platform.

9.5: Ohm's Law by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-2.
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4.6: Electrical Energy and Power

By the end of this section, you will be able to:

Express electrical power in terms of the voltage and the current
Describe the power dissipated by a resistor in an electric circuit
Calculate the energy efficiency and cost effectiveness of appliances and equipment

In an electric circuit, electrical energy is continuously converted into other forms of energy. For example, when a current flows in a
conductor, electrical energy is converted into thermal energy within the conductor. The electrical field, supplied by the voltage
source, accelerates the free electrons, increasing their kinetic energy for a short time. This increased kinetic energy is converted
into thermal energy through collisions with the ions of the lattice structure of the conductor. Previously, we defined power as the
rate at which work is done by a force measured in watts. Power can also be defined as the rate at which energy is transferred. In this
section, we discuss the time rate of energy transfer, or power, in an electric circuit.

Power in Electric Circuits
Power is associated by many people with electricity. Power transmission lines might come to mind. We also think of light bulbs in
terms of their power ratings in watts. What is the expression for electric power?

Let us compare a 25-W bulb with a 60-W bulb (Figure ). The 60-W bulb glows brighter than the 25-W bulb. Although it is
not shown, a 60-W light bulb is also warmer than the 25-W bulb. The heat and light is produced by from the conversion of
electrical energy. The kinetic energy lost by the electrons in collisions is converted into the internal energy of the conductor and
radiation. How are voltage, current, and resistance related to electric power?

Figure : (a) Pictured above are two incandescent bulbs: a 25-W bulb (left) and a 60-W bulb (right). The 60-W bulb provides a
higher intensity light than the 25-W bulb. The electrical energy supplied to the light bulbs is converted into heat and light. (b) This
compact fluorescent light (CFL) bulb puts out the same intensity of light as the 60-W bulb, but at 1/4 to 1/10 the input power.
(credit a: modification of works by “Dickbauch”/Wikimedia Commons and Greg Westfall; credit b: modification of work by
“dbgg1979”/Flickr)

To calculate electric power, consider a voltage difference existing across a material (Figure ). The electric potential  is
higher than the electric potential at , and the voltage difference is negative . As discussed in Electric Potential, an
electrical field exists between the two potentials, which points from the higher potential to the lower potential. Recall that the
electrical potential is defined as the potential energy per charge, , and the charge  loses potential energy moving
through the potential difference.

 LEARNING OBJECTIVES
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Figure : When there is a potential difference across a conductor, an electrical field is present that points in the direction from
the higher potential to the lower potential.

If the charge is positive, the charge experiences a force due to the electrical field . This force is necessary to keep
the charge moving. This force does not act to accelerate the charge through the entire distance  because of the interactions of
the charge with atoms and free electrons in the material. The speed, and therefore the kinetic energy, of the charge do not increase
during the entire trip across , and charge passing through area  has the same drift velocity  as the charge that passes
through area . However, work is done on the charge, by the electrical field, which changes the potential energy. Since the change
in the electrical potential difference is negative, the electrical field is found to be

The work done on the charge is equal to the electric force times the length at which the force is applied,

The charge moves at a drift velocity  so the work done on the charge results in a loss of potential energy, but the average kinetic
energy remains constant. The lost electrical potential energy appears as thermal energy in the material. On a microscopic scale, the
energy transfer is due to collisions between the charge and the molecules of the material, which leads to an increase in temperature
in the material. The loss of potential energy results in an increase in the temperature of the material, which is dissipated as
radiation. In a resistor, it is dissipated as heat, and in a light bulb, it is dissipated as heat and light.

The power dissipated by the material as heat and light is equal to the time rate of change of the work:

or

If a resistor is connected to a battery, the power dissipated as radiant energy by the wires and the resistor is equal to

The power supplied from the battery is equal to current times the voltage, .

The electric power gained or lost by any device has the form

The power dissipated by a resistor has the form

4.6.2

= m = ΔQF ⃗  a⃗  E ⃗ 
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 Definition: Electric Power
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Different insights can be gained from the three different expressions for electric power. For example,  implies that the
lower the resistance connected to a given voltage source, the greater the power delivered. Furthermore, since voltage is squared in 

, the effect of applying a higher voltage is perhaps greater than expected. Thus, when the voltage is doubled to a 25-W
bulb, its power nearly quadruples to about 100 W, burning it out. If the bulb’s resistance remained constant, its power would be
exactly 100 W, but at the higher temperature, its resistance is higher, too.

A DC winch motor is rated at 20.00 A with a voltage of 115 V. When the motor is running at its maximum power, it can lift an
object with a weight of 4900.00 N a distance of 10.00 m, in 30.00 s, at a constant speed.

a. What is the power consumed by the motor?
b. What is the power used in lifting the object? Ignore air resistance. (c) Assuming that the difference in the power consumed

by the motor and the power used lifting the object are dissipated as heat by the resistance of the motor, estimate the
resistance of the motor?

Strategy
a. The power consumed by the motor can be found using .
b. The power used in lifting the object at a constant speed can be found using , where the speed is the distance

divided by the time. The upward force supplied by the motor is equal to the weight of the object because the acceleration is
zero. (c) The resistance of the motor can be found using .

Solution
1. The power consumed by the motor is equal to  and the current is given as 20.00 A and the voltage is 115.00 V:

2. The power used lifting the object is equal to  where the force is equal to the weight of the object (1960 N) and the
magnitude of the velocity is

3. The difference in the power equals  and the resistance can be found using 
:

Significance The resistance of the motor is quite small. The resistance of the motor is due to many windings of copper wire.
The power dissipated by the motor can be significant since the thermal power dissipated by the motor is proportional to the
square of the current .

Electric motors have a reasonably high efficiency. A 100-hp motor can have an efficiency of 90% and a 1-hp motor can have
an efficiency of 80%. Why is it important to use high-performance motors?

Answer

Even though electric motors are highly efficient 10–20% of the power consumed is wasted, not being used for doing useful
work. Most of the 10–20% of the power lost is transferred into heat dissipated by the copper wires used to make the coils of
the motor. This heat adds to the heat of the environment and adds to the demand on power plants providing the power. The
demand on the power plant can lead to increased greenhouse gases, particularly if the power plant uses coal or gas as fuel.

A fuse (Figure ) is a device that protects a circuit from currents that are too high. A fuse is basically a short piece of wire
between two contacts. As we have seen, when a current is running through a conductor, the kinetic energy of the charge carriers is

P = /RV 2

P = /RV 2

 Example : Calculating Power in Electric Devices4.6.1

P = IV

P = Fv

P = RI 2

P = IV

P = IV = (20.00 A)115.00 V = 2300.00 W .

P = Fv

v= = 0.33
10.00 m

30.00 s

m

s

P = Fv= (4900 N)0.33 m/s = 1633.33 W .

2300.00 W −1633.33 W = 666.67 W

P = RI 2

R = = = 1.67 Ω.
P

I 2

666.67 W

(20.00 A)2

(P = R)I 2
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converted into thermal energy in the conductor. The piece of wire in the fuse is under tension and has a low melting point. The wire
is designed to heat up and break at the rated current. The fuse is destroyed and must be replaced, but it protects the rest of the
circuit. Fuses act quickly, but there is a small time delay while the wire heats up and breaks.

Figure : A fuse consists of a piece of wire between two contacts. When a current passes through the wire that is greater than
the rated current, the wire melts, breaking the connection. Pictured is a “blown” fuse where the wire broke protecting a circuit
(credit: modification of work by “Shardayyy”/Flickr).

Circuit breakers are also rated for a maximum current, and open to protect the circuit, but can be reset. Circuit breakers react much
faster. The operation of circuit breakers is not within the scope of this chapter and will be discussed in later chapters. Another
method of protecting equipment and people is the ground fault circuit interrupter (GFCI), which is common in bathrooms and
kitchens. The GFCI outlets respond very quickly to changes in current. These outlets open when there is a change in magnetic field
produced by current-carrying conductors, which is also beyond the scope of this chapter and is covered in a later chapter.

The Cost of Electricity
The more electric appliances you use and the longer they are left on, the higher your electric bill. This familiar fact is based on the

relationship between energy and power. You pay for the energy used. Since , we see that

is the energy used by a device using power P for a time interval t. If power is delivered at a constant rate, then then the energy can
be found by . For example, the more light bulbs burning, the greater P used; the longer they are on, the greater t is.

The energy unit on electric bills is the kilowatt-hour , consistent with the relationship . It is easy to estimate the
cost of operating electrical appliances if you have some idea of their power consumption rate in watts or kilowatts, the time they
are on in hours, and the cost per kilowatt-hour for your electric utility. Kilowatt-hours, like all other specialized energy units such
as food calories, can be converted into joules. You can prove to yourself that .

The electrical energy (E) used can be reduced either by reducing the time of use or by reducing the power consumption of that
appliance or fixture. This not only reduces the cost but also results in a reduced impact on the environment. Improvements to
lighting are some of the fastest ways to reduce the electrical energy used in a home or business. About 20% of a home’s use of
energy goes to lighting, and the number for commercial establishments is closer to 40%. Fluorescent lights are about four times
more efficient than incandescent lights—this is true for both the long tubes and the compact fluorescent lights (CFLs), e.g., Figure 

. Thus, a 60-W incandescent bulb can be replaced by a 15-W CFL, which has the same brightness and color. CFLs have a
bent tube inside a globe or a spiral-shaped tube, all connected to a standard screw-in base that fits standard incandescent light
sockets. (Original problems with color, flicker, shape, and high initial investment for CFLs have been addressed in recent years.)

The heat transfer from these CFLs is less, and they last up to 10 times longer than incandescent bulbs. The significance of an
investment in such bulbs is addressed in the next example. New white LED lights (which are clusters of small LED bulbs) are even
more efficient (twice that of CFLs) and last five times longer than CFLs.

The typical replacement for a 100-W incandescent bulb is a 20-W LED bulb. The 20-W LED bulb can provide the same
amount of light output as the 100-W incandescent light bulb. What is the cost savings for using the LED bulb in place of the
incandescent bulb for one year, assuming $0.10 per kilowatt-hour is the average energy rate charged by the power company?
Assume that the bulb is turned on for three hours a day.

4.6.3

P =
dE

dt

E = ∫ Pdt

E = Pt

(kW ⋅h) E = Pt

1 kW ⋅h = 3.6 × J106

4.6.1b

 Example \(\PageIndex{2\): Calculating the Cost Effectiveness of LED Bulb
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Strategy
a. Calculate the energy used during the year for each bulb, using .
b. Multiply the energy by the cost.

Solution
a. Calculate the power for each bulb.

b. Calculate the cost for each.

Significance
A LED bulb uses 80% less energy than the incandescent bulb, saving $8.76 over the incandescent bulb for one year. The LED
bulb can cost $20.00 and the 100-W incandescent bulb can cost $0.75, which should be calculated into the computation. A
typical lifespan of an incandescent bulb is 1200 hours and is 50,000 hours for the LED bulb. The incandescent bulb would last
1.08 years at 3 hours a day and the LED bulb would last 45.66 years. The initial cost of the LED bulb is high, but the cost to
the home owner will be $0.69 for the incandescent bulbs versus $0.44 for the LED bulbs per year. (Note that the LED bulbs are
coming down in price.) The cost savings per year is approximately $8.50, and that is just for one bulb.

Is the efficiency of the various light bulbs the only consideration when comparing the various light bulbs?

Answer

No, the efficiency is a very important consideration of the light bulbs, but there are many other considerations. As
mentioned above, the cost of the bulbs and the life span of the bulbs are important considerations. For example, CFL bulbs
contain mercury, a neurotoxin, and must be disposed of as hazardous waste. When replacing incandescent bulbs that are
being controlled by a dimmer switch with LED, the dimmer switch may need to be replaced. The dimmer switches for LED
lights are comparably priced to the incandescent light switches, but this is an initial cost which should be considered. The
spectrum of light should also be considered, but there is a broad range of color temperatures available, so you should be
able to find one that fits your needs. None of these considerations mentioned are meant to discourage the use of LED or
CFL light bulbs, but they are considerations.

Changing light bulbs from incandescent bulbs to CFL or LED bulbs is a simple way to reduce energy consumption in homes and
commercial sites. CFL bulbs operate with a much different mechanism than do incandescent lights. The mechanism is complex and
beyond the scope of this chapter, but here is a very general description of the mechanism. CFL bulbs contain argon and mercury
vapor housed within a spiral-shaped tube. The CFL bulbs use a “ballast” that increases the voltage used by the CFL bulb. The
ballast produce an electrical current, which passes through the gas mixture and excites the gas molecules. The excited gas
molecules produce ultraviolet (UV) light, which in turn stimulates the fluorescent coating on the inside of the tube. This coating
fluoresces in the visible spectrum, emitting visible light. Traditional fluorescent tubes and CFL bulbs had a short time delay of up
to a few seconds while the mixture was being “warmed up” and the molecules reached an excited state. It should be noted that
these bulbs do contain mercury, which is poisonous, but if the bulb is broken, the mercury is never released. Even if the bulb is
broken, the mercury tends to remain in the fluorescent coating. The amount is also quite small and the advantage of the energy
saving may outweigh the disadvantage of using mercury.

E = Pt

= Pt = 100 W ( )( ) (365 days) = 109.5 kW ⋅hEIncandescent

1 kW

1000 W

3 h

day

= Pt = 20 W ( )( ) (365 days) = 21.9 kW ⋅hELED

1 kW

1000 W

3 h

day

cos = 109.5 kW ⋅h( ) = $10.95tIncandescent
$0.10

kW ⋅h

cos = 21.90 kW ⋅h( ) = $2.19tLED
$0.10

kW ⋅h

 Exercise 4.6.2
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The CFL light bulbs are being replaced with LED light bulbs, where LED stands for “light-emitting diode.” The diode was briefly
discussed as a nonohmic device, made of semiconducting material, which essentially permits current flow in one direction. LEDs
are a special type of diode made of semiconducting materials infused with impurities in combinations and concentrations that
enable the extra energy from the movement of the electrons during electrical excitation to be converted into visible light.
Semiconducting devices will be explained in greater detail in Condensed Matter Physics.

Commercial LEDs are quickly becoming the standard for commercial and residential lighting, replacing incandescent and CFL
bulbs. They are designed for the visible spectrum and are constructed from gallium doped with arsenic and phosphorous atoms.
The color emitted from an LED depends on the materials used in the semiconductor and the current. In the early years of LED
development, small LEDs found on circuit boards were red, green, and yellow, but LED light bulbs can now be programmed to
produce millions of colors of light as well as many different hues of white light.

Comparison of Incandescent, CFL, and LED Light Bulbs
The energy savings can be significant when replacing an incandescent light bulb or a CFL light bulb with an LED light. Light bulbs
are rated by the amount of power that the bulb consumes, and the amount of light output is measured in lumens. The lumen (lm) is
the SI -derived unit of luminous flux and is a measure of the total quantity of visible light emitted by a source. A 60-W
incandescent light bulb can be replaced with a 13- to 15-W CFL bulb or a 6- to 8-W LED bulb, all three of which have a light
output of approximately 800 lm. A table of light output for some commonly used light bulbs appears in Table .

The life spans of the three types of bulbs are significantly different. An LED bulb has a life span of 50,000 hours, whereas the CFL
has a lifespan of 8000 hours and the incandescent lasts a mere 1200 hours. The LED bulb is the most durable, easily withstanding
rough treatment such as jarring and bumping. The incandescent light bulb has little tolerance to the same treatment since the
filament and glass can easily break. The CFL bulb is also less durable than the LED bulb because of its glass construction. The
amount of heat emitted is 3.4 btu/h for the 8-W LED bulb, 85 btu/h for the 60-W incandescent bulb, and 30 btu/h for the CFL bulb.
As mentioned earlier, a major drawback of the CFL bulb is that it contains mercury, a neurotoxin, and must be disposed of as
hazardous waste. From these data, it is easy to understand why the LED light bulb is quickly becoming the standard in lighting.

Table : Light Output of LED, Incandescent, and CFL Light Bulbs

Light Output (lumens) LED Light Bulbs (watts)
Incandescent Light Bulbs

(watts)
CFL Light Bulbs (watts)

450 4−5 40 9−13

800 6−8 60 13−15

1100 9−13 75 18−25

1600 16−20 100 23−30

2600 25−28 150 30−55

Summary of Relationships

In this chapter, we have discussed relationships between voltages, current, resistance, and power. Figure  shows a summary of
the relationships between these measurable quantities for ohmic devices. (Recall that ohmic devices follow Ohm’s law .)

For example, if you need to calculate the power, use the pink section, which shows that , and .

4.6.1

4.6.1

4.6.4

V = IR
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V 2
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Figure : This circle shows a summary of the equations for the relationships between power, current, voltage, and resistance.

Which equation you use depends on what values you are given, or you measure. For example if you are given the current and the
resistance, use . Although all the possible combinations may seem overwhelming, don’t forget that they all are
combinations of just two equations, Ohm’s law  and power .

This page titled 4.6: Electrical Energy and Power is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

9.6: Electrical Energy and Power by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.
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4.7: Superconductors

By the end of this section, you will be able to:
Describe the phenomenon of superconductivity
List applications of superconductivity

Touch the power supply of your laptop computer or some other device. It probably feels slightly warm. That heat is an unwanted
byproduct of the process of converting household electric power into a current that can be used by your device. Although electric
power is reasonably efficient, other losses are associated with it. As discussed in the section on power and energy, transmission of
electric power produces  line losses. These line losses exist whether the power is generated from conventional power plants
(using coal, oil, or gas), nuclear plants, solar plants, hydroelectric plants, or wind farms. These losses can be reduced, but not
eliminated, by transmitting using a higher voltage. It would be wonderful if these line losses could be eliminated, but that would
require transmission lines that have zero resistance. In a world that has a global interest in not wasting energy, the reduction or
elimination of this unwanted thermal energy would be a significant achievement. Is this possible?

The Resistance of Mercury
In 1911, Heike Kamerlingh Onnes of Leiden University, a Dutch physicist, was looking at the temperature dependence of the
resistance of the element mercury. He cooled the sample of mercury and noticed the familiar behavior of a linear dependence of
resistance on temperature; as the temperature decreased, the resistance decreased. Kamerlingh Onnes continued to cool the sample
of mercury, using liquid helium. As the temperature approached , the resistance abruptly went to zero (Figure 

). This temperature is known as the critical temperature  for mercury. The sample of mercury entered into a phase where
the resistance was absolutely zero. This phenomenon is known as superconductivity. (Note: If you connect the leads of a three-
digit ohmmeter across a conductor, the reading commonly shows up as . The resistance of the conductor is not actually zero,
it is less than .) There are various methods to measure very small resistances, such as the four-point method, but an
ohmmeter is not an acceptable method to use for testing resistance in superconductivity.

Figure : The resistance of a sample of mercury is zero at very low temperatures—it is a superconductor up to the temperature
of about 4.2 K. Above that critical temperature, its resistance makes a sudden jump and then increases nearly linearly with
temperature.

Other Superconducting Materials
As research continued, several other materials were found to enter a superconducting phase, when the temperature reached near
absolute zero. In 1941, an alloy of niobium-nitride was found that could become superconducting at  and in
1953, vanadium-silicon was found to become superconductive at . The temperatures for the transition
into superconductivity were slowly creeping higher. Strangely, many materials that make good conductors, such as copper, silver,
and gold, do not exhibit superconductivity. Imagine the energy savings if transmission lines for electric power-generating stations
could be made to be superconducting at temperatures near room temperature! A resistance of zero ohms means no  losses and
a great boost to reducing energy consumption. The problem is that  is still very cold and in the range of liquid helium
temperatures. At this temperature, it is not cost effective to transmit electrical energy because of the cooling requirements.

 LEARNING OBJECTIVES
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A large jump was seen in 1986, when a team of researchers, headed by Dr. Ching Wu Chu of Houston University, fabricated a
brittle, ceramic compound with a transition temperature of . The ceramic material, composed of yttrium
barium copper oxide (YBCO), was an insulator at room temperature. Although this temperature still seems quite cold, it is near the
boiling point of liquid nitrogen, a liquid commonly used in refrigeration. You may have noticed refrigerated trucks traveling down
the highway labeled as “Liquid Nitrogen Cooled.”

YBCO ceramic is a material that could be useful for transmitting electrical energy because the cost saving of reducing the 
losses are larger than the cost of cooling the superconducting cable, making it financially feasible. There were and are many
engineering problems to overcome. For example, unlike traditional electrical cables, which are flexible and have a decent tensile
strength, ceramics are brittle and would break rather than stretch under pressure. Processes that are rather simple with traditional
cables, such as making connections, become difficult when working with ceramics. The problems are difficult and complex, and
material scientists and engineers are coming up with innovative solutions.

An interesting consequence of the resistance going to zero is that once a current is established in a superconductor, it persists
without an applied voltage source. Current loops in a superconductor have been set up and the current loops have been observed to
persist for years without decaying.

Zero resistance is not the only interesting phenomenon that occurs as the materials reach their transition temperatures. A second
effect is the exclusion of magnetic fields. This is known as the Meissner effect (Figure ). A light, permanent magnet placed
over a superconducting sample will levitate in a stable position above the superconductor. High-speed trains have been developed
that levitate on strong superconducting magnets, eliminating the friction normally experienced between the train and the tracks. In
Japan, the Yamanashi Maglev test line opened on April 3, 1997. In April 2015, the MLX01 test vehicle attained a speed of 374 mph
(603 km/h).

Figure : A small, strong magnet levitates over a superconductor cooled to liquid nitrogen temperature. The magnet levitates
because the superconductor excludes magnetic fields.

Table  shows a select list of elements, compounds, and high-temperature superconductors, along with the critical temperatures
for which they become superconducting. Each section is sorted from the highest critical temperature to the lowest. Also listed is the
critical magnetic field for some of the materials. This is the strength of the magnetic field that destroys superconductivity. Finally,
the type of the superconductor is listed.

There are two types of superconductors. There are 30 pure metals that exhibit zero resistivity below their critical temperature and
exhibit the Meissner effect, the property of excluding magnetic fields from the interior of the superconductor while the
superconductor is at a temperature below the critical temperature. These metals are called Type I superconductors. The
superconductivity exists only below their critical temperatures and below a critical magnetic field strength. Type I superconductors
are well described by the BCS theory (described next). Type I superconductors have limited practical applications because the
strength of the critical magnetic field needed to destroy the superconductivity is quite low.

Type II superconductors are found to have much higher critical magnetic fields and therefore can carry much higher current
densities while remaining in the superconducting state. A collection of various ceramics containing barium-copper-oxide have
much higher critical temperatures for the transition into a superconducting state. Superconducting materials that belong to this
subcategory of the Type II superconductors are often categorized as high-temperature superconductors.

Introduction to BCS Theory
Type I superconductors, along with some Type II superconductors can be modeled using the BCS theory, proposed by John
Bardeen, Leon Cooper, and Robert Schrieffer. Although the theory is beyond the scope of this chapter, a short summary of the
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theory is provided here. (More detail is provided in Condensed Matter Physics.) The theory considers pairs of electrons and how
they are coupled together through lattice-vibration interactions. Through the interactions with the crystalline lattice, electrons near
the Fermi energy level feel a small attractive force and form pairs (Cooper pairs), and the coupling is known as a phonon
interaction. Single electrons are fermions, which are particles that obey the Pauli exclusion principle. The Pauli exclusion principle
in quantum mechanics states that two identical fermions (particles with half-integer spin) cannot occupy the same quantum state
simultaneously. Each electron has four quantum numbers . The principal quantum number ( ) describes the energy
of the electron, the orbital angular momentum quantum number ( ) indicates the most probable distance from the nucleus, the
magnetic quantum number  describes the energy levels in the subshell, and the electron spin quantum number  describes the
orientation of the spin of the electron, either up or down. As the material enters a superconducting state, pairs of electrons act more
like bosons, which can condense into the same energy level and need not obey the Pauli exclusion principle. The electron pairs
have a slightly lower energy and leave an energy gap above them on the order of 0.001 eV. This energy gap inhibits collision
interactions that lead to ordinary resistivity. When the material is below the critical temperature, the thermal energy is less than the
band gap and the material exhibits zero resistivity.

Table : Superconductor Critical Temperatures

Material Symbol or Formula
Critical Temperature Critical Magnetic Field 

Type

Elements

Lead Pb 7.19 0.08 I

Lanthanum La  4.90 -  6.30   I

Tantalum Ta 4.48 0.09 I

Mercury Hg  4.15 -  3.95 0.04 I

Tin Sn 3.72 0.03 I

Indium In 3.40 0.03 I

Thallium Tl 2.39 0.03 I

Rhenium Re 2.40 0.03 I

Thorium Th 1.37 0.013 I

Protactinium Pa 1.40   I

Aluminum Al 1.20 0.01 I

Gallium Ga 1.10 0.005 I

Zinc Zn 0.86 0.014 I

Titanium Ti 0.39 0.01 I

Uranium U  0.68 -  1.80   I

Cadmium Cd 11.4 4.00 I

Compounds

Niobium-germanium 23.20 37.00 II

Niobium-tin 18.30 30.00 II

Niobium-nitrite NbN 16.00   II

Niobium-titanium NbTi 10.00 15.00 II

High-Temperature
Oxides

       

(n, ℓ, , )mℓ ms n

ℓ

mℓ ms
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Material Symbol or Formula
Critical Temperature Critical Magnetic Field 

Type

  134.00   II

  125.00   II

  92.00 120.00 II

Applications of Superconductors
Superconductors can be used to make superconducting magnets. These magnets are 10 times stronger than the strongest
electromagnets. These magnets are currently in use in magnetic resonance imaging (MRI), which produces high-quality images of
the body interior without dangerous radiation.

Another interesting application of superconductivity is the SQUID (superconducting quantum interference device). A SQUID is a
very sensitive magnetometer used to measure extremely subtle magnetic fields. The operation of the SQUID is based on
superconducting loops containing Josephson junctions. A Josephson junction is the result of a theoretical prediction made by B.
D. Josephson in an article published in 1962. In the article, Josephson described how a supercurrent can flow between two pieces of
superconductor separated by a thin layer of insulator. This phenomenon is now called the Josephson effect. The SQUID consists of
a superconducting current loop containing two Josephson junctions, as shown in Figure . When the loop is placed in even a
very weak magnetic field, there is an interference effect that depends on the strength of the magnetic field.

Figure : The SQUID (superconducting quantum interference device) uses a superconducting current loop and two Josephson
junctions to detect magnetic fields as low as  (Earth’s magnet field is on the order of ).

Superconductivity is a fascinating and useful phenomenon. At critical temperatures near the boiling point of liquid nitrogen,
superconductivity has special applications in MRIs, particle accelerators, and high-speed trains. Will we reach a state where we can
have materials enter the superconducting phase at near room temperatures? It seems a long way off, but if scientists in 1911 were
asked if we would reach liquid-nitrogen temperatures with a ceramic, they might have thought it implausible.

This page titled 4.7: Superconductors is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

9.7: Superconductors by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-2.
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5.1: Prelude to Direct-Current Circuits
In the preceding few chapters, we discussed electric components, including capacitors, resistors, and diodes. In this chapter, we use
these electric components in circuits. A circuit is a collection of electrical components connected to accomplish a specific task.
Figure  shows an amplifier circuit, which takes a small-amplitude signal and amplifies it to power the speakers in earbuds.
Although the circuit looks complex, it actually consists of a set of series, parallel, and series-parallel circuits. The second section of
this chapter covers the analysis of series and parallel circuits that consist of resistors. Later in this chapter, we introduce the basic
equations and techniques to analyze any circuit, including those that are not reducible through simplifying parallel and series
elements. But first, we need to understand how to power a circuit.

Figure : This circuit shown is used to amplify small signals and power the earbud speakers attached to a cellular phone. This
circuit’s components include resistors, capacitors, and diodes, all of which have been covered in previous chapters, as well as
transistors, which are semi-conducting devices covered in Condensed Matter Physics. Circuits using similar components are found
in all types of equipment and appliances you encounter in everyday life, such as alarm clocks, televisions, computers, and
refrigerators. (credit: Jane Whitney)

This page titled 5.1: Prelude to Direct-Current Circuits is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

10.1: Prelude to Direct-Current Circuits by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
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5.2: Electromotive Force

By the end of the section, you will be able to:

Describe the electromotive force (emf) and the internal resistance of a battery
Explain the basic operation of a battery

If you forget to turn off your car lights, they slowly dim as the battery runs down. Why don’t they suddenly blink off when the
battery’s energy is gone? Their gradual dimming implies that the battery output voltage decreases as the battery is depleted. The
reason for the decrease in output voltage for depleted batteries is that all voltage sources have two fundamental parts—a source of
electrical energy and an internal resistance. In this section, we examine the energy source and the internal resistance.

Introduction to Electromotive Force
Voltage has many sources, a few of which are shown in Figure . All such devices create a potential difference and can supply
current if connected to a circuit. A special type of potential difference is known as electromotive force (emf). The emf is not a
force at all, but the term ‘electromotive force’ is used for historical reasons. It was coined by Alessandro Volta in the 1800s, when
he invented the first battery, also known as the voltaic pile. Because the electromotive force is not a force, it is common to refer to
these sources simply as sources of emf (pronounced as the letters “ee-em-eff”), instead of sources of electromotive force.

Figure : A variety of voltage sources. (a) The Brazos Wind Farm in Fluvanna, Texas; (b) the Krasnoyarsk Dam in Russia; (c)
a solar farm; (d) a group of nickel metal hydride batteries. The voltage output of each device depends on its construction and load.
The voltage output equals emf only if there is no load. (credit a: modification of work by “Leaflet”/Wikimedia Commons; credit b:
modification of work by Alex Polezhaev; credit c: modification of work by US Department of Energy; credit d: modification of
work by Tiaa Monto)

If the electromotive force is not a force at all, then what is the emf and what is a source of emf? To answer these questions, consider
a simple circuit of a 12-V lamp attached to a 12-V battery, as shown in Figure . The battery can be modeled as a two-terminal
device that keeps one terminal at a higher electric potential than the second terminal. The higher electric potential is sometimes
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called the positive terminal and is labeled with a plus sign. The lower-potential terminal is sometimes called the negative terminal
and labeled with a minus sign. This is the source of the emf.

Figure : A source of emf maintains one terminal at a higher electric potential than the other terminal, acting as a source of
current in a circuit.

When the emf source is not connected to the lamp, there is no net flow of charge within the emf source. Once the battery is
connected to the lamp, charges flow from one terminal of the battery, through the lamp (causing the lamp to light), and back to the
other terminal of the battery. If we consider positive (conventional) current flow, positive charges leave the positive terminal, travel
through the lamp, and enter the negative terminal.

Positive current flow is useful for most of the circuit analysis in this chapter, but in metallic wires and resistors, electrons contribute
the most to current, flowing in the opposite direction of positive current flow. Therefore, it is more realistic to consider the
movement of electrons for the analysis of the circuit in Figure . The electrons leave the negative terminal, travel through the
lamp, and return to the positive terminal. In order for the emf source to maintain the potential difference between the two terminals,
negative charges (electrons) must be moved from the positive terminal to the negative terminal. The emf source acts as a charge
pump, moving negative charges from the positive terminal to the negative terminal to maintain the potential difference. This
increases the potential energy of the charges and, therefore, the electric potential of the charges.

The force on the negative charge from the electric field is in the opposite direction of the electric field, as shown in Figure . In
order for the negative charges to be moved to the negative terminal, work must be done on the negative charges. This requires
energy, which comes from chemical reactions in the battery. The potential is kept high on the positive terminal and low on the
negative terminal to maintain the potential difference between the two terminals. The emf is equal to the work done on the charge

per unit charge  when there is no current flowing. Since the unit for work is the joule and the unit for charge is the

coulomb, the unit for emf is the volt .

The terminal voltage  of a battery is voltage measured across the terminals of the battery when there is no load connected
to the terminal. An ideal battery is an emf source that maintains a constant terminal voltage, independent of the current between the
two terminals. An ideal battery has no internal resistance, and the terminal voltage is equal to the emf of the battery. In the next
section, we will show that a real battery does have internal resistance and the terminal voltage is always less than the emf of the
battery.

The Origin of Battery Potential
The combination of chemicals and the makeup of the terminals in a battery determine its emf. The lead acid battery used in cars
and other vehicles is one of the most common combinations of chemicals. Figure  shows a single cell (one of six) of this
battery. The cathode (positive) terminal of the cell is connected to a lead oxide plate, whereas the anode (negative) terminal is
connected to a lead plate. Both plates are immersed in sulfuric acid, the electrolyte for the system.

5.2.2

5.2.2

5.2.2
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Figure : Chemical reactions in a lead-acid cell separate charge, sending negative charge to the anode, which is connected to
the lead plates. The lead oxide plates are connected to the positive or cathode terminal of the cell. Sulfuric acid conducts the charge,
as well as participates in the chemical reaction.

Knowing a little about how the chemicals in a lead-acid battery interact helps in understanding the potential created by the battery.
Figure  shows the result of a single chemical reaction. Two electrons are placed on the anode, making it negative, provided
that the cathode supplies two electrons. This leaves the cathode positively charged, because it has lost two electrons. In short, a
separation of charge has been driven by a chemical reaction.

Note that the reaction does not take place unless there is a complete circuit to allow two electrons to be supplied to the cathode.
Under many circumstances, these electrons come from the anode, flow through a resistance, and return to the cathode. Note also
that since the chemical reactions involve substances with resistance, it is not possible to create the emf without an internal
resistance.

Figure : In a lead-acid battery, two electrons are forced onto the anode of a cell, and two electrons are removed from the
cathode of the cell. The chemical reaction in a lead-acid battery places two electrons on the anode and removes two from the
cathode. It requires a closed circuit to proceed, since the two electrons must be supplied to the cathode.

Internal Resistance and Terminal Voltage
The amount of resistance to the flow of current within the voltage source is called the internal resistance. The internal resistance r
of a battery can behave in complex ways. It generally increases as a battery is depleted, due to the oxidation of the plates or the
reduction of the acidity of the electrolyte. However, internal resistance may also depend on the magnitude and direction of the
current through a voltage source, its temperature, and even its history. The internal resistance of rechargeable nickel-cadmium cells,
for example, depends on how many times and how deeply they have been depleted. A simple model for a battery consists of an
idealized emf source  and an internal resistance r (Figure ).
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Figure : A battery can be modeled as an idealized emf  with an internal resistance (r). The terminal voltage of the battery is
.

Suppose an external resistor, known as the load resistance R, is connected to a voltage source such as a battery, as in Figure .
The figure shows a model of a battery with an emf , an internal resistance r, and a load resistor R connected across its terminals.
Using conventional current flow, positive charges leave the positive terminal of the battery, travel through the resistor, and return to
the negative terminal of the battery. The terminal voltage of the battery depends on the emf, the internal resistance, and the current,
and is equal to

For a given emf and internal resistance, the terminal voltage decreases as the current increases due to the potential drop Ir of the
internal resistance.

Figure : Schematic of a voltage source and its load resistor R. Since the internal resistance r is in series with the load, it can
significantly affect the terminal voltage and the current delivered to the load.

A graph of the potential difference across each element the circuit is shown in Figure . A current I runs through the circuit,
and the potential drop across the internal resistor is equal to Ir. The terminal voltage is equal to , which is equal to the
potential drop across the load resistor . As with potential energy, it is the change in voltage that is important. When
the term “voltage” is used, we assume that it is actually the change in the potential, or . However,  is often omitted for
convenience.
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Figure : A graph of the voltage through the circuit of a battery and a load resistance. The electric potential increases the emf
of the battery due to the chemical reactions doing work on the charges. There is a decrease in the electric potential in the battery
due to the internal resistance. The potential decreases due to the internal resistance , making the terminal voltage of the battery
equal to . The voltage then decreases by (IR). The current is equal to .

The current through the load resistor is . We see from this expression that the smaller the internal resistance r, the greater
the current the voltage source supplies to its load R. As batteries are depleted, r increases. If r becomes a significant fraction of the
load resistance, then the current is significantly reduced, as the following example illustrates.

A given battery has a 12.00-V emf and an internal resistance of . (a) Calculate its terminal voltage when connected to a
 load. (b) What is the terminal voltage when connected to a  load? (c) What power does the  load

dissipate? (d) If the internal resistance grows to , find the current, terminal voltage, and power dissipated by a 
load.

Strategy
The analysis above gave an expression for current when internal resistance is taken into account. Once the current is found, the
terminal voltage can be calculated by using the equation . Once current is found, we can also find the power
dissipated by the resistor.

Solution
1. Entering the given values for the emf, load resistance, and internal resistance into the expression above yields

Enter the known values into the equation  to get the terminal voltage:

The terminal voltage here is only slightly lower than the emf, implying that the current drawn by this light load is not
significant.

2. Similarly, with , the current is

The terminal voltage is now

The terminal voltage exhibits a more significant reduction compared with emf, implying  is a heavy load for this
battery. A “heavy load” signifies a larger draw of current from the source but not a larger resistance.

3. The power dissipated by the  load can be found using the formula . Entering the known values gives

5.2.7

−Ir
(ϵ− Ir) I = ϵ

r+R

I = ϵ
r+R

 Example : Analyzing a Circuit with a Battery and a Load5.2.1
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Note that this power can also be obtained using the expression  or , where V is the terminal voltage (10.0 V in this
case).

4. Here, the internal resistance has increased, perhaps due to the depletion of the battery, to the point where it is as great as the
load resistance. As before, we first find the current by entering the known values into the expression, yielding

Now the terminal voltage is

and the power dissipated by the load is

We see that the increased internal resistance has significantly decreased the terminal voltage, current, and power delivered
to a load.

Significance
The internal resistance of a battery can increase for many reasons. For example, the internal resistance of a rechargeable battery
increases as the number of times the battery is recharged increases. The increased internal resistance may have two effects on
the battery. First, the terminal voltage will decrease. Second, the battery may overheat due to the increased power dissipated by
the internal resistance.

If you place a wire directly across the two terminal of a battery, effectively shorting out the terminals, the battery will begin to
get hot. Why do you suppose this happens?

Solution

If a wire is connected across the terminals, the load resistance is close to zero, or at least considerably less than the internal
resistance of the battery. Since the internal resistance is small, the current through the circuit will be large, 

. The large current causes a high power to be dissipated by the internal resistance . The
power is dissipated as heat.

Battery Testers
Battery testers, such as those in Figure , use small load resistors to intentionally draw current to determine whether the
terminal potential drops below an acceptable level. Although it is difficult to measure the internal resistance of a battery, battery
testers can provide a measurement of the internal resistance of the battery. If internal resistance is high, the battery is weak, as
evidenced by its low terminal voltage.

V 2

R
IV

I = = = 12.00 A.
ϵ

R+r

12.00 V

1.00 Ω

= ϵ−Ir = 12.00 V −(12.00 A)(0.500 Ω) = 6.00 V ,Vterminal

P = R = (12.00 A (0.500 Ω) = 72.00 W .I 2 )2

 Exercise 5.2.1
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Figure : Battery testers measure terminal voltage under a load to determine the condition of a battery. (a) A US Navy
electronics technician uses a battery tester to test large batteries aboard the aircraft carrier USS Nimitz. The battery tester she uses
has a small resistance that can dissipate large amounts of power. (b) The small device shown is used on small batteries and has a
digital display to indicate the acceptability of the terminal voltage. (credit a: modification of work by Jason A. Johnston; credit b:
modification of work by Keith Williamson)

Some batteries can be recharged by passing a current through them in the direction opposite to the current they supply to an
appliance. This is done routinely in cars and in batteries for small electrical appliances and electronic devices (Figure ). The
voltage output of the battery charger must be greater than the emf of the battery to reverse the current through it. This causes the
terminal voltage of the battery to be greater than the emf, since  and I is now negative.

Figure : A car battery charger reverses the normal direction of current through a battery, reversing its chemical reaction and
replenishing its chemical potential.

It is important to understand the consequences of the internal resistance of emf sources, such as batteries and solar cells, but often,
the analysis of circuits is done with the terminal voltage of the battery, as we have done in the previous sections. The terminal
voltage is referred to as simply as V, dropping the subscript “terminal.” This is because the internal resistance of the battery is
difficult to measure directly and can change over time.

This page titled 5.2: Electromotive Force is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

10.2: Electromotive Force by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-2.
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5.3: Resistors in Series and Parallel

By the end of the section, you will be able to:

Define the term equivalent resistance
Calculate the equivalent resistance of resistors connected in series
Calculate the equivalent resistance of resistors connected in parallel

In Current and Resistance, we described the term ‘resistance’ and explained the basic design of a resistor. Basically, a resistor limits
the flow of charge in a circuit and is an ohmic device where . Most circuits have more than one resistor. If several resistors
are connected together and connected to a battery, the current supplied by the battery depends on the equivalent resistance of the
circuit.

The equivalent resistance of a combination of resistors depends on both their individual values and how they are connected. The
simplest combinations of resistors are series and parallel connections (Figure ). In a series circuit, the output current of the
first resistor flows into the input of the second resistor; therefore, the current is the same in each resistor. In a parallel circuit, all of
the resistor leads on one side of the resistors are connected together and all the leads on the other side are connected together. In the
case of a parallel configuration, each resistor has the same potential drop across it, and the currents through each resistor may be
different, depending on the resistor. The sum of the individual currents equals the current that flows into the parallel connections.

Figure : (a) For a series connection of resistors, the current is the same in each resistor. (b) For a parallel connection of
resistors, the voltage is the same across each resistor.

Resistors in Series
Resistors are said to be in series whenever the current flows through the resistors sequentially. Consider Figure , which shows
three resistors in series with an applied voltage equal to . Since there is only one path for the charges to flow through, the
current is the same through each resistor. The equivalent resistance of a set of resistors in a series connection is equal to the
algebraic sum of the individual resistances.
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Figure : (a) Three resistors connected in series to a voltage source. (b) The original circuit is reduced to an equivalent
resistance and a voltage source.

In Figure , the current coming from the voltage source flows through each resistor, so the current through each resistor is the
same. The current through the circuit depends on the voltage supplied by the voltage source and the resistance of the resistors. For
each resistor, a potential drop occurs that is equal to the loss of electric potential energy as a current travels through each resistor.
According to Ohm’s law, the potential drop  across a resistor when a current flows through it is calculated using the equation 

, where  is the current in amps ( ) and  is the resistance in ohms . Since energy is conserved, and the voltage is
equal to the potential energy per charge, the sum of the voltage applied to the circuit by the source and the potential drops across
the individual resistors around a loop should be equal to zero:

This equation is often referred to as Kirchhoff’s loop law, which we will look at in more detail later in this chapter. For Figure 
, the sum of the potential drop of each resistor and the voltage supplied by the voltage source should equal zero:

Solving for 

Since the current through each component is the same, the equality can be simplified to an equivalent resistance ( ), which is just
the sum of the resistances of the individual resistors.

Any number of resistors can be connected in series. If  resistors are connected in series, the equivalent resistance is

One result of components connected in a series circuit is that if something happens to one component, it affects all the other
components. For example, if several lamps are connected in series and one bulb burns out, all the other lamps go dark.
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A battery with a terminal voltage of 9 V is connected to a circuit consisting of four  and one  resistors all in series
(Figure ). Assume the battery has negligible internal resistance.

a. Calculate the equivalent resistance of the circuit.
b. Calculate the current through each resistor.
c. Calculate the potential drop across each resistor.
d. Determine the total power dissipated by the resistors and the power supplied by the battery.

Figure : A simple series circuit with five resistors.

Strategy
In a series circuit, the equivalent resistance is the algebraic sum of the resistances. The current through the circuit can be found
from Ohm’s law and is equal to the voltage divided by the equivalent resistance. The potential drop across each resistor can be
found using Ohm’s law. The power dissipated by each resistor can be found using , and the total power dissipated by
the resistors is equal to the sum of the power dissipated by each resistor. The power supplied by the battery can be found using 

.

Solution
1. The equivalent resistance is the algebraic sum of the resistances (Equation ):

2. The current through the circuit is the same for each resistor in a series circuit and is equal to the applied voltage divided by
the equivalent resistance:

Note that the sum of the potential drops across each resistor is equal to the voltage supplied by the battery.
3. The power dissipated by a resistor is equal to , and the power supplied by the battery is equal to .

Significance
There are several reasons why we would use multiple resistors instead of just one resistor with a resistance equal to the
equivalent resistance of the circuit. Perhaps a resistor of the required size is not available, or we need to dissipate the heat
generated, or we want to minimize the cost of resistors. Each resistor may cost a few cents to a few dollars, but when
multiplied by thousands of units, the cost saving may be appreciable.

Some strings of miniature holiday lights are made to short out when a bulb burns out. The device that causes the short is called
a shunt, which allows current to flow around the open circuit. A “short” is like putting a piece of wire across the component.

 Example : Equivalent Resistance, Current, and Power in a Series Circuit5.3.1
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= Iϵ = (0.1 A)(9 V ) = 0.9 W .Psource
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The bulbs are usually grouped in series of nine bulbs. If too many bulbs burn out, the shunts eventually open. What causes
this?

Answer

The equivalent resistance of nine bulbs connected in series is 9R. The current is . If one bulb burns out, the
equivalent resistance is 8R, and the voltage does not change, but the current increases . As more bulbs burn
out, the current becomes even higher. Eventually, the current becomes too high, burning out the shunt.

Let’s briefly summarize the major features of resistors in series:

1. Series resistances add together to get the equivalent resistance (Equation ):

2. The same current flows through each resistor in series.
3. Individual resistors in series do not get the total source voltage, but divide it. The total potential drop across a series

configuration of resistors is equal to the sum of the potential drops across each resistor.

Resistors in Parallel
Figure  shows resistors in parallel, wired to a voltage source. Resistors are in parallel when one end of all the resistors are
connected by a continuous wire of negligible resistance and the other end of all the resistors are also connected to one another
through a continuous wire of negligible resistance. The potential drop across each resistor is the same. Current through each
resistor can be found using Ohm’s law , where the voltage is constant across each resistor. For example, an automobile’s
headlights, radio, and other systems are wired in parallel, so that each subsystem utilizes the full voltage of the source and can
operate completely independently. The same is true of the wiring in your house or any building.

Figure : Two resistors connected in parallel to a voltage source. (b) The original circuit is reduced to an equivalent resistance
and a voltage source.

The current flowing from the voltage source in Figure  depends on the voltage supplied by the voltage source and the
equivalent resistance of the circuit. In this case, the current flows from the voltage source and enters a junction, or node, where the
circuit splits flowing through resistors  and . As the charges flow from the battery, some go through resistor  and some
flow through resistor . The sum of the currents flowing into a junction must be equal to the sum of the currents flowing out of
the junction:

This equation is referred to as Kirchhoff’s junction rule and will be discussed in detail in the next section. In Figure , the
junction rule gives . There are two loops in this circuit, which leads to the equations  and .
Note the voltage across the resistors in parallel are the same ( ) and the current is additive:

I = V /9 R

(I = V /8 R
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Solving for the 

Generalizing to any number of  resistors, the equivalent resistance  of a parallel connection is related to the individual
resistances by

This relationship results in an equivalent resistance  that is less than the smallest of the individual resistances. When resistors
are connected in parallel, more current flows from the source than would flow for any of them individually, so the total resistance is
lower.

Three resistors , , and , are connected in parallel. The parallel connection is attached to
a  voltage source.

a. What is the equivalent resistance?
b. Find the current supplied by the source to the parallel circuit.
c. Calculate the currents in each resistor and show that these add together to equal the current output of the source.
d. Calculate the power dissipated by each resistor.
e. Find the power output of the source and show that it equals the total power dissipated by the resistors.

Strategy
(a) The total resistance for a parallel combination of resistors is found using Equation . (Note that in these calculations,
each intermediate answer is shown with an extra digit.)

(b) The current supplied by the source can be found from Ohm’s law, substituting  for the total resistance .

(c) The individual currents are easily calculated from Ohm’s law , since each resistor gets the full voltage. The total

current is the sum of the individual currents:

(d) The power dissipated by each resistor can be found using any of the equations relating power to current, voltage, and
resistance, since all three are known. Let us use , since each resistor gets full voltage.

(e) The total power can also be calculated in several ways, use .

Solution
1. The total resistance for a parallel combination of resistors is found using Equation . Entering known values gives

I = +I1 I2
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 Equivalent Resistance in Parallel Circuits
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 Example : Analysis of a parallel circuit5.3.2
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V = 3.00 V

5.3.2

RP I = V

RP

( = )Ii
Vi

Ri

I = .∑
i

Ii

= /Pi V 2 Ri

P = IV
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The total resistance with the correct number of significant digits is . As predicted,  is less than the smallest
individual resistance.

2. The total current can be found from Ohm’s law, substituting  for the total resistance. This gives

Current I for each device is much larger than for the same devices connected in series (see the previous example). A circuit
with parallel connections has a smaller total resistance than the resistors connected in series.

3. The individual currents are easily calculated from Ohm’s law, since each resistor gets the full voltage. Thus,

Similarly,

and

The total current is the sum of the individual currents:

4. The power dissipated by each resistor can be found using any of the equations relating power to current, voltage, and
resistance, since all three are known. Let us use , since each resistor gets full voltage. Thus,

Similarly,

and

5. The total power can also be calculated in several ways. Choosing  and entering the total current yields

Significance
Total power dissipated by the resistors is also 18.00 W:

Notice that the total power dissipated by the resistors equals the power supplied by the source.

Consider the same potential difference  applied to the same three resistors connected in series. Would the
equivalent resistance of the series circuit be higher, lower, or equal to the three resistor in parallel? Would the current through

= = = 0.50 Ω.RP ( + + )
1

R1

1

R2

1

R3

−1

( + + )
1

1.00 Ω

1

2.00 Ω

1

2.00 Ω

−1

= 0.50 ΩReq RP

RP

I = = = 6.00 A.
V

RP

3.00 V

0.50 Ω

= = = 3.00 A.I1
V

R1

3.00 V

1.00 Ω

= = = 1.50 AI2
V

R2

3.00 V

2.00 Ω

= = = 1.50 A.I3
V

R3

3.00 V

2.00 Ω

+ + = 6.00 A.I1 I2 I3

P = /RV 2

= = = 9.00 W .P1
V 2

R1

(3.00 V )2

1.00 Ω

= = = 4.50 W .P2
V 2

R2

(3.00 V )2

2.00 Ω

= = = 4.50 W .P3
V 2

R3

(3.00 V )2

2.00 Ω

P = IV

P = IV = (6.00 A)(3.00 V ) = 18.00 W .

+ + = 9.00 W +4.50 W +4.50 W = 18.00 W .P1 P2 P3

 Exercise 5.3.2A

(V = 3.00 V )
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the series circuit be higher, lower, or equal to the current provided by the same voltage applied to the parallel circuit? How
would the power dissipated by the resistor in series compare to the power dissipated by the resistors in parallel?

Solution

The equivalent of the series circuit would be , which is higher than the
equivalent resistance of the parallel circuit . The equivalent resistor of any number of resistors is always
higher than the equivalent resistance of the same resistors connected in parallel. The current through for the series circuit
would be , which is lower than the sum of the currents through each resistor in the parallel circuit, 

. This is not surprising since the equivalent resistance of the series circuit is higher. The current through a series
connection of any number of resistors will always be lower than the current into a parallel connection of the same resistors,
since the equivalent resistance of the series circuit will be higher than the parallel circuit. The power dissipated by the
resistors in series would be , which is lower than the power dissipated in the parallel circuit .

How would you use a river and two waterfalls to model a parallel configuration of two resistors? How does this analogy break
down?

Solution

A river, flowing horizontally at a constant rate, splits in two and flows over two waterfalls. The water molecules are
analogous to the electrons in the parallel circuits. The number of water molecules that flow in the river and falls must be
equal to the number of molecules that flow over each waterfall, just like sum of the current through each resistor must be
equal to the current flowing into the parallel circuit. The water molecules in the river have energy due to their motion and
height. The potential energy of the water molecules in the river is constant due to their equal heights. This is analogous to
the constant change in voltage across a parallel circuit. Voltage is the potential energy across each resistor.

The analogy quickly breaks down when considering the energy. In the waterfall, the potential energy is converted into
kinetic energy of the water molecules. In the case of electrons flowing through a resistor, the potential drop is converted
into heat and light, not into the kinetic energy of the electrons.

Let us summarize the major features of resistors in parallel:

1. Equivalent resistance is found from Equation  and is smaller than any individual resistance in the combination.
2. The potential drop across each resistor in parallel is the same.
3. Parallel resistors do not each get the total current; they divide it. The current entering a parallel combination of resistors is equal

to the sum of the current through each resistor in parallel.

In this chapter, we introduced the equivalent resistance of resistors connect in series and resistors connected in parallel. You may
recall from the Section on Capacitance, we introduced the equivalent capacitance of capacitors connected in series and parallel.
Circuits often contain both capacitors and resistors. Table  summarizes the equations used for the equivalent resistance and
equivalent capacitance for series and parallel connections.

Table : Summary for Equivalent Resistance and Capacitance in Series and Parallel Combinations

Series combination Parallel combination

Equivalent capacitance

Equivalent resistance

= 1.00 Ω +2.00 Ω +2.00 Ω = 5.00 ΩReq

= 0.50 ΩReq

I = = 0.60 A
3.00 V

5.00 Ω

I = 6.00 A

P = 1.800 W P = 18.00 W

 Exercise 5.3.2B

5.3.2
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5.3.1
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= + + +. . . =RS R1 R2 R3 ∑
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N

Ri = + + +. . .
1
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Combinations of Series and Parallel
More complex connections of resistors are often just combinations of series and parallel connections. Such combinations are
common, especially when wire resistance is considered. In that case, wire resistance is in series with other resistances that are in
parallel.

Combinations of series and parallel can be reduced to a single equivalent resistance using the technique illustrated in Figure .
Various parts can be identified as either series or parallel connections, reduced to their equivalent resistances, and then further
reduced until a single equivalent resistance is left. The process is more time consuming than difficult. Here, we note the equivalent
resistance as .

Figure : (a) The original circuit of four resistors. (b) Step 1: The resistors  and  are in series and the equivalent
resistance is  (c) Step 2: The reduced circuit shows resistors  and  are in parallel, with an equivalent resistance
of . (d) Step 3: The reduced circuit shows that  and  are in series with an equivalent resistance of 
which is the equivalent resistance . (e) The reduced circuit with a voltage source of  with an equivalent resistance of 

. This results in a current of  from the voltage source.

Notice that resistors  and  are in series. They can be combined into a single equivalent resistance. One method of keeping
track of the process is to include the resistors as subscripts. Here the equivalent resistance of  and  is

The circuit now reduces to three resistors, shown in Figure . Redrawing, we now see that resistors  and  constitute a
parallel circuit. Those two resistors can be reduced to an equivalent resistance:

5.3.5

Req

5.3.5 R3 R4

= 10 ΩR34 R2 R34

= 5 ΩR234 R1 R234 = 12 ΩR1234

Req V = 24V
= 12 ΩReq I = 2A

R3 R4

R3 R4

= + = 6 Ω +4 Ω = 10 Ω.R34 R3 R4

5.3.5c R2 R34

= = = 5 Ω.R234 ( + )
1

R2

1

R34

−1

( + )
1

10 Ω

1

10 Ω

−1
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This step of the process reduces the circuit to two resistors, shown in in Figure . Here, the circuit reduces to two resistors,
which in this case are in series. These two resistors can be reduced to an equivalent resistance, which is the equivalent resistance of
the circuit:

The main goal of this circuit analysis is reached, and the circuit is now reduced to a single resistor and single voltage source.

Now we can analyze the circuit. The current provided by the voltage source is . This current runs through

resistor  and is designated as . The potential drop across  can be found using Ohm’s law:

Looking at Figure , this leaves  to be dropped across the parallel combination of  and . The
current through  can be found using Ohm’s law:

The resistors  and  are in series so the currents  and  are equal to

Using Ohm’s law, we can find the potential drop across the last two resistors. The potential drops are  and 
. The final analysis is to look at the power supplied by the voltage source and the power dissipated by the

resistors. The power dissipated by the resistors is

The total energy is constant in any process. Therefore, the power supplied by the voltage source is

Analyzing the power supplied to the circuit and the power dissipated by the resistors is a good check for the validity of the analysis;
they should be equal.

Figure  shows resistors wired in a combination of series and parallel. We can consider  to be the resistance of wires
leading to  and .

a. Find the equivalent resistance of the circuit.
b. What is the potential drop  across resistor ?
c. Find the current  through resistor .
d. What power is dissipated by ?

5.3.5d

= = + = 7 Ω +5Ω = 12 Ω.Req R1234 R1 R234

I = = = 2 AV

Req

24 V

12 Ω

R1 I1 R1

= = (2 A)(7 Ω) = 14 V .V1 I1R1

5.3.5c 24 V −14 V = 10 V R2 R34

R2

= = = 1 A.I2
V2

R2

10 V

10 Ω

R3 R4 I3 I4

= = I − = 2 A−1 A = 1 A.I3 I4 I2

= = 6 VV3 I3R3

= = 4 VV4 I4R4

P1

P2

P3

P4

Pdissipated

= = (2 A (7 Ω) = 28 W ,I 2
1 R1 )2

= = (1 A (10 Ω) = 10 W ,I 2
2 R2 )2

= = (1 A (6 Ω) = 6 W ,I 2
3 R3 )2

= = (1 A (4 Ω) = 4 W ,I 2
4
R4 )2

= + + + = 48 W .P1 P2 P3 P4

Ps = IV

= (2 A)(24 V ) = 48 W

 Example : Combining Series and parallel circuits5.3.3

5.3.6 R1

R2 R3

V1 R1

I2 R2

R2
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Figure : These three resistors are connected to a voltage source so that  and  are in parallel with one another and
that combination is in series with .

Strategy
(a) To find the equivalent resistance, first find the equivalent resistance of the parallel connection of  and . Then use this
result to find the equivalent resistance of the series connection with .

(b) The current through  can be found using Ohm’s law and the voltage applied. The current through  is equal to the
current from the battery. The potential drop  across the resistor  (which represents the resistance in the connecting wires)
can be found using Ohm’s law.

(c) The current through  can be found using Ohm’s law . The voltage across  can be found using .

(d) Using Ohm’s law , the power dissipated by the resistor can also be found using .

Solution

1. To find the equivalent resistance of the circuit, notice that the parallel connection of  and  is in series with , so the
equivalent resistance is

The total resistance of this combination is intermediate between the pure series and pure parallel values (  and 
, respectively).

2. The current through  is equal to the current supplied by the battery:

The voltage across  is

The voltage applied to  and  is less than the voltage supplied by the battery by an amount . When wire resistance is
large, it can significantly affect the operation of the devices represented by  and .

3. To find the current through , we must first find the voltage applied to it. The voltage across the two resistors in parallel is
the same:

Now we can find the current  through resistance  using Ohm’s law:

The current is less than the 2.00 A that flowed through  when it was connected in parallel to the battery in the previous
parallel circuit example.

5.3.6 R2 R3

R1

R2 R3

R1

R1 R1

V1 R1

R2 =I2
V2

R2
R2 = V −V2 V1

( = )V2 I2R2 = =P2 I 2
2 R2

V 2
2

R2

R2 R3 R1

= + = 1.00 Ω + = 5.10 Ω.Req R1 ( + )
1

R2

1

R3

−1

( + )
1

6.00 Ω

1

13.00 Ω

−1

20.0 Ω

0.804 Ω

R1

= I = = = 2.35 A.I1
V

Req

12.0 V

5.10 Ω

R1

= = (2.35 A)(1 Ω) = 2.35 V .V1 I1R1

R2 R3 V1

R2 R3

R2

= = V − = 12.0 V −2.35 V = 9.65 V .V2 V3 V1

I2 R2

= = = 1.61 A.I2
V2

R2

9.65 V

6.00 Ω

R2
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4. The power dissipated by  is given by

Significance
The analysis of complex circuits can often be simplified by reducing the circuit to a voltage source and an equivalent
resistance. Even if the entire circuit cannot be reduced to a single voltage source and a single equivalent resistance, portions of
the circuit may be reduced, greatly simplifying the analysis.

Consider the electrical circuits in your home. Give at least two examples of circuits that must use a combination of series and
parallel circuits to operate efficiently.

Solution

All the overhead lighting circuits are in parallel and connected to the main supply line, so when one bulb burns out, all the
overhead lighting does not go dark. Each overhead light will have at least one switch in series with the light, so you can
turn it on and off.

A refrigerator has a compressor and a light that goes on when the door opens. There is usually only one cord for the
refrigerator to plug into the wall. The circuit containing the compressor and the circuit containing the lighting circuit are in
parallel, but there is a switch in series with the light. A thermostat controls a switch that is in series with the compressor to
control the temperature of the refrigerator.

Practical Implications
One implication of this last example is that resistance in wires reduces the current and power delivered to a resistor. If wire
resistance is relatively large, as in a worn (or a very long) extension cord, then this loss can be significant. If a large current is
drawn, the IR drop in the wires can also be significant and may become apparent from the heat generated in the cord.

For example, when you are rummaging in the refrigerator and the motor comes on, the refrigerator light dims momentarily.
Similarly, you can see the passenger compartment light dim when you start the engine of your car (although this may be due to
resistance inside the battery itself).

What is happening in these high-current situations is illustrated in Figure . The device represented by  has a very low
resistance, so when it is switched on, a large current flows. This increased current causes a larger IR drop in the wires represented
by , reducing the voltage across the light bulb (which is ), which then dims noticeably.

R2

= = (1.61 A (6.00 Ω) = 15.5 W .P2 I 2
2
R2 )2

 Exercise 5.3.3

5.3.7 R3

R1 R2
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Figure : Why do lights dim when a large appliance is switched on? The answer is that the large current the appliance motor
draws causes a significant IR drop in the wires and reduces the voltage across the light.

1. Draw a clear circuit diagram, labeling all resistors and voltage sources. This step includes a list of the known values for the
problem, since they are labeled in your circuit diagram.

2. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.
3. Determine whether resistors are in series, parallel, or a combination of both series and parallel. Examine the circuit diagram

to make this assessment. Resistors are in series if the same current must pass sequentially through them.
4. Use the appropriate list of major features for series or parallel connections to solve for the unknowns. There is one list for

series and another for parallel.
5. Check to see whether the answers are reasonable and consistent.

Two resistors connected in series  are connected to two resistors that are connected in parallel . The series-
parallel combination is connected to a battery. Each resistor has a resistance of 10.00 Ohms. The wires connecting the resistors
and battery have negligible resistance. A current of 2.00 Amps runs through resistor . What is the voltage supplied by the
voltage source?

Strategy
Use the steps in the preceding problem-solving strategy to find the solution for this example.

Solution

5.3.7

 Problem-Solving Strategy: Series and Parallel Resistors

 Example : Combining Series and Parallel circuits5.3.4

( , )R1 R2 ( , )R3 R4

R1

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/63110?pdf


5.3.13 https://phys.libretexts.org/@go/page/63110

Figure : To find the unknown voltage, we must first find the equivalent resistance of the circuit.

1. Draw a clear circuit diagram (Figure ).
2. The unknown is the voltage of the battery. In order to find the voltage supplied by the battery, the equivalent resistance

must be found.
3. In this circuit, we already know that the resistors  and  are in series and the resistors  and  are in parallel. The

equivalent resistance of the parallel configuration of the resistors  and  is in series with the series configuration of
resistors  and .

4. The voltage supplied by the battery can be found by multiplying the current from the battery and the equivalent resistance
of the circuit. The current from the battery is equal to the current through  and is equal to 2.00 A. We need to find the
equivalent resistance by reducing the circuit. To reduce the circuit, first consider the two resistors in parallel. The
equivalent resistance is

This parallel combination is in series with the other two resistors, so the equivalent resistance of the circuit is 
. The voltage supplied by the battery is therefore 

.
5. One way to check the consistency of your results is to calculate the power supplied by the battery and the power dissipated

by the resistors. The power supplied by the battery is .

Since they are in series, the current through  equals the current through . Since , the current through each will
be 1.00 Amps. The power dissipated by the resistors is equal to the sum of the power dissipated by each resistor:

Since the power dissipated by the resistors equals the power supplied by the battery, our solution seems consistent.

Significance
If a problem has a combination of series and parallel, as in this example, it can be reduced in steps by using the preceding
problem-solving strategy and by considering individual groups of series or parallel connections. When finding  for a
parallel connection, the reciprocal must be taken with care. In addition, units and numerical results must be reasonable.
Equivalent series resistance should be greater, whereas equivalent parallel resistance should be smaller, for example. Power
should be greater for the same devices in parallel compared with series, and so on.

This page titled 5.3: Resistors in Series and Parallel is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.

10.3: Resistors in Series and Parallel by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.
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CHAPTER OVERVIEW

6: Magnetic Fields
For the past few chapters, we have been studying electrostatic forces and fields, which are caused by electric charges at rest. These
electric fields can move other free charges, such as producing a current in a circuit; however, the electrostatic forces and fields
themselves come from other static charges. In this chapter, we see that when an electric charge moves, it generates other forces and
fields. These additional forces and fields are what we commonly call magnetism.

6.1: Prelude to Magnetic Forces and Fields
6.2: Magnetism and Its Historical Discoveries
6.3: Magnetic Fields and Lines
6.4: Force and Torque on a Current Loop
6.5: The Hall Effect
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6.1: Prelude to Magnetic Forces and Fields
For the past few chapters, we have been studying electrostatic forces and fields, which are caused by electric charges at rest. These
electric fields can move other free charges, such as producing a current in a circuit; however, the electrostatic forces and fields
themselves come from other static charges. In this chapter, we see that when an electric charge moves, it generates other forces and
fields. These additional forces and fields are what we commonly call magnetism.

Figure : An industrial electromagnet is capable of lifting thousands of pounds of metallic waste. (credit: modification of work
by “BedfordAl”/Flickr)

Before we examine the origins of magnetism, we first describe what it is and how magnetic fields behave. Once we are more
familiar with magnetic effects, we can explain how they arise from the behavior of atoms and molecules, and how magnetism is
related to electricity. The connection between electricity and magnetism is fascinating from a theoretical point of view, but it is also
immensely practical, as shown by an industrial electromagnet that can lift thousands of pounds of metal.

This page titled 6.1: Prelude to Magnetic Forces and Fields is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

11.1: Prelude to Magnetic Forces and Fields by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-2.
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6.2: Magnetism and Its Historical Discoveries

By the end of this section, you will be able to:

Explain attraction and repulsion by magnets
Describe the historical and contemporary applications of magnetism

Magnetism has been known since the time of the ancient Greeks, but it has always been a bit mysterious. You can see electricity in
the flash of a lightning bolt, but when a compass needle points to magnetic north, you can’t see any force causing it to rotate.
People learned about magnetic properties gradually, over many years, before several physicists of the nineteenth century connected
magnetism with electricity. In this section, we review the basic ideas of magnetism and describe how they fit into the picture of a
magnetic field.

Brief History of Magnetism
Magnets are commonly found in everyday objects, such as toys, hangers, elevators, doorbells, and computer devices.
Experimentation on these magnets shows that all magnets have two poles: One is labeled north (N) and the other is labeled south
(S). Magnetic poles repel if they are alike (both N or both S), they attract if they are opposite (one N and the other S), and both
poles of a magnet attract unmagnetized pieces of iron. An important point to note here is that you cannot isolate an individual
magnetic pole. Every piece of a magnet, no matter how small, which contains a north pole must also contain a south pole.

Visit this website for an interactive demonstration of magnetic north and south poles.

An example of a magnet is a compass needle. It is simply a thin bar magnet suspended at its center, so it is free to rotate in a
horizontal plane. Earth itself also acts like a very large bar magnet, with its south-seeking pole near the geographic North Pole
(Figure ). The north pole of a compass is attracted toward Earth’s geographic North Pole because the magnetic pole that is
near the geographic North Pole is actually a south magnetic pole. Confusion arises because the geographic term “North Pole” has
come to be used (incorrectly) for the magnetic pole that is near the North Pole. Thus, “north magnetic pole” is actually a
misnomer—it should be called the south magnetic pole. [Note that the orientation of Earth’s magnetic field is not permanent but
changes (“flips”) after long time intervals. Eventually, Earth’s north magnetic pole may be located near its geographic North Pole.]

Figure : The north pole of a compass needle points toward the south pole of a magnet, which is how today’s magnetic field is
oriented from inside Earth. It also points toward Earth’s geographic North Pole because the geographic North Pole is near the
magnetic south pole.

 Learning Objectives
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Back in 1819, the Danish physicist Hans Oersted was performing a lecture demonstration for some students and noticed that a
compass needle moved whenever current flowed in a nearby wire. Further investigation of this phenomenon convinced Oersted that
an electric current could somehow cause a magnetic force. He reported this finding to an 1820 meeting of the French Academy of
Science.

Soon after this report, Oersted’s investigations were repeated and expanded upon by other scientists. Among those whose work was
especially important were Jean-Baptiste Biot and Felix Savart, who investigated the forces exerted on magnets by currents; André
Marie Ampère, who studied the forces exerted by one current on another; François Arago, who found that iron could be
magnetized by a current; and Humphry Davy, who discovered that a magnet exerts a force on a wire carrying an electric current.
Within 10 years of Oersted’s discovery, Michael Faraday found that the relative motion of a magnet and a metallic wire induced
current in the wire. This finding showed not only that a current has a magnetic effect, but that a magnet can generate electric
current. You will see later that the names of Biot, Savart, Ampère, and Faraday are linked to some of the fundamental laws of
electromagnetism.

The evidence from these various experiments led Ampère to propose that electric current is the source of all magnetic phenomena.
To explain permanent magnets, he suggested that matter contains microscopic current loops that are somehow aligned when a
material is magnetized. Today, we know that permanent magnets are actually created by the alignment of spinning electrons, a
situation quite similar to that proposed by Ampère. This model of permanent magnets was developed by Ampère almost a century
before the atomic nature of matter was understood. (For a full quantum mechanical treatment of magnetic spins, see Quantum
Mechanics and Atomic Structure.)

Contemporary Applications of Magnetism
Today, magnetism plays many important roles in our lives. Physicists’ understanding of magnetism has enabled the development of
technologies that affect both individuals and society. The electronic tablet in your purse or backpack, for example, wouldn’t have
been possible without the applications of magnetism and electricity on a small scale (Figure ). Weak changes in a magnetic
field in a thin film of iron and chromium were discovered to bring about much larger changes in resistance, called giant
magnetoresistance. Information can then be recorded magnetically based on the direction in which the iron layer is magnetized.
As a result of the discovery of giant magnetoresistance and its applications to digital storage, the 2007 Nobel Prize in Physics was
awarded to Albert Fert from France and Peter Grunberg from Germany.

Figure : Engineering technology like computer storage would not be possible without a deep understanding of magnetism.
(credit: Klaus Eifert)

All electric motors—with uses as diverse as powering refrigerators, starting cars, and moving elevators—contain magnets.
Generators, whether producing hydroelectric power or running bicycle lights, use magnetic fields. Recycling facilities employ
magnets to separate iron from other refuse. Research into using magnetic containment of fusion as a future energy source has been
continuing for several years. Magnetic resonance imaging (MRI) has become an important diagnostic tool in the field of medicine,
and the use of magnetism to explore brain activity is a subject of contemporary research and development. The list of applications
also includes computer hard drives, tape recording, detection of inhaled asbestos, and levitation of high-speed trains. Magnetism is
involved in the structure of atomic energy levels, as well as the motion of cosmic rays and charged particles trapped in the Van
Allen belts around Earth. Once again, we see that all these disparate phenomena are linked by a small number of underlying
physical principles.
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6.3: Magnetic Fields and Lines

By the end of this section, you will be able to:

Define the magnetic field based on a moving charge experiencing a force
Apply the right-hand rule to determine the direction of a magnetic force based on the motion of a charge in a magnetic field
Sketch magnetic field lines to understand which way the magnetic field points and how strong it is in a region of space

We have outlined the properties of magnets, described how they behave, and listed some of the applications of magnetic properties.
Even though there are no such things as isolated magnetic charges, we can still define the attraction and repulsion of magnets as
based on a field. In this section, we define the magnetic field, determine its direction based on the right-hand rule, and discuss how
to draw magnetic field lines.

Defining the Magnetic Field
A magnetic field is defined by the force that a charged particle experiences moving in this field, after we account for the
gravitational and any additional electric forces possible on the charge. The magnitude of this force is proportional to the amount of
charge q, the speed of the charged particle v, and the magnitude of the applied magnetic field. The direction of this force is
perpendicular to both the direction of the moving charged particle and the direction of the applied magnetic field. Based on these
observations, we define the magnetic field strength B based on the magnetic force  on a charge q moving at velocity as the cross
product of the velocity and magnetic field, that is,

In fact, this is how we define the magnetic field  - in terms of the force on a charged particle moving in a magnetic field. The
magnitude of the force is determined from the definition of the cross product as it relates to the magnitudes of each of the vectors.
In other words, the magnitude of the force satisfies

where θ is the angle between the velocity and the magnetic field.

The SI unit for magnetic field strength  is called the tesla (T) after the eccentric, but brilliant inventor Nikola Tesla (1856–1943),
where

A smaller unit, called the gauss (G) is sometimes used, where

The strongest permanent magnets have fields near 2 T; superconducting electromagnets may attain 10 T or more. Earth’s magnetic
field on its surface is only about  or .

The direction of the magnetic force  is perpendicular to the plane formed by  and  as determined by the right-hand rule-1
(or RHR-1), which is illustrated in Figure .

1. Orient your right hand so that your fingers curl in the plane defined by the velocity and magnetic field vectors.
2. Using your right hand, sweep from the velocity toward the magnetic field with your fingers through the smallest angle

possible.
3. The magnetic force is directed where your thumb is pointing.
4. If the charge was negative, reverse the direction found by these steps.

 Learning Objectives

F ⃗ 

= q × .F ⃗  v ⃗  B⃗  (6.3.1)

B⃗ 

F = qv B sin θ (6.3.2)

B

1 T = .
1 N

A ⋅ m

1 G = T10−4

5 × T10−5 0.5 G

 Problem-Solving Strategy: Direction of the Magnetic Field by the Right-Hand Rule

F ⃗  v ⃗  B⃗ 
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Figure : Magnetic fields exert forces on moving charges. The direction of the magnetic force on a moving charge is
perpendicular to the plane formed by b  and  and follows the right-hand rule-1 (RHR-1) as shown. The magnitude of the
force is proportional to  and the sine of the angle between  and .

Visit this website for additional practice with the direction of magnetic fields.

There is no magnetic force on static charges. However, there is a magnetic force on charges moving at an angle to a magnetic field.
When charges are stationary, their electric fields do not affect magnets. However, when charges move, they produce magnetic fields
that exert forces on other magnets. When there is relative motion, a connection between electric and magnetic forces emerges -
each affects the other.

An alpha-particle  moves through a uniform magnetic field whose magnitude is 1.5 T. The field is directly
parallel to the positive z-axis of the rectangular coordinate system of Figure . What is the magnetic force on the alpha-
particle when it is moving (a) in the positive x-direction with a speed of ? (b) in the negative y-direction with a
speed of ? (c) in the positive z-direction with a speed of ? (d) with a velocity 

?

6.3.1

v ⃗  B⃗ 

q, v, B, v ⃗  B⃗ 

 Note

 Example : An Alpha-Particle Moving in a Magnetic Field6.3.1

(q = 3.2 × C)10−19

6.3.2
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Figure : The magnetic forces on an alpha-particle moving in a uniform magnetic field. The field is the same in each
drawing, but the velocity is different.

Strategy
We are given the charge, its velocity, and the magnetic field strength and direction. We can thus use the equation 
or  to calculate the force. The direction of the force is determined by RHR-1.

Solution
1. First, to determine the direction, start with your fingers pointing in the positive x-direction. Sweep your fingers upward in

the direction of magnetic field. Your thumb should point in the negative y-direction. This should match the mathematical
answer. To calculate the force, we use the given charge, velocity, and magnetic field and the definition of the magnetic
force in cross-product form to calculate:

2. First, to determine the directionality, start with your fingers pointing in the negative y-direction. Sweep your fingers upward
in the direction of magnetic field as in the previous problem. Your thumb should be open in the negative x-direction. This
should match the mathematical answer. To calculate the force, we use the given charge, velocity, and magnetic field and the
definition of the magnetic force in cross-product form to calculate:

An alternative approach is to use Equation  to find the magnitude of the force. This applies for both parts (a) and (b).
Since the velocity is perpendicular to the magnetic field, the angle between them is 90 degrees. Therefore, the magnitude of
the force is:

6.3.2

= q ×F ⃗  v ⃗  B⃗ 

F = qv Bsin θ

= q × = (3.2 × C)(5.0 × m/s ) ×(1.5 T ) = −2.4 × NF ⃗  v ⃗  B⃗  10−19 104 î k̂ 10−14 ĵ

= q × = (3.2 × C)(−5.0 × m/s ) ×(1.5 T ) = −2.4 × NF ⃗  v ⃗  B⃗  10−19 104 î k̂ 10−14 î

6.3.2

F = qv B sin θ = (3.2 × C)(5.0 × m/s)(1.5 T )sin( )) = 2.4 × N .10−19 104 90o 10−14
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3. Since the velocity and magnetic field are parallel to each other, there is no orientation of your hand that will result in a force
direction. Therefore, the force on this moving charge is zero. This is confirmed by the cross product. When you cross two
vectors pointing in the same direction, the result is equal to zero.

4. First, to determine the direction, your fingers could point in any orientation; however, you must sweep your fingers upward
in the direction of the magnetic field. As you rotate your hand, notice that the thumb can point in any x- or y-direction
possible, but not in the z-direction. This should match the mathematical answer. To calculate the force, we use the given
charge, velocity, and magnetic field and the definition of the magnetic force in cross-product form to calculate:

This solution can be rewritten in terms of a magnitude and angle in the xy-plane:

The magnitude of the force can also be calculated using Equation . The velocity in this question, however, has three
components. The z-component of the velocity can be neglected, because it is parallel to the magnetic field and therefore
generates no force. The magnitude of the velocity is calculated from the x- and y-components. The angle between the
velocity in the xy-plane and the magnetic field in the z-plane is 90 degrees. Therefore, the force is calculated to be:

This is the same magnitude of force calculated by unit vectors.

Significance
The cross product in this formula results in a third vector that must be perpendicular to the other two. Other physical quantities,
such as angular momentum, also have three vectors that are related by the cross product. Note that typical force values in magnetic
force problems are much larger than the gravitational force. Therefore, for an isolated charge, the magnetic force is the dominant
force governing the charge’s motion.

Repeat the previous problem with the magnetic field in the x-direction rather than in the z-direction. Check your answers with
RHR-1.

Answer a

0 N

Answer b

Answer c

Answer d

= q × = (3.2 × C)((2.0 −3.0 +1.0 ) × m/s) ×(1.5 T )F ⃗  v ⃗  B⃗  10−19 î ĵ k̂ 104 k̂

(−14.4 −9.6 ) × N .î ĵ 10−15

| | = = × N = 1.7 × NF ⃗  +F 2
x F 2

y

− −−−−−−
√ (−14.4 +(−9.6)2 )2

− −−−−−−−−−−−−−−
√ 10−15 10−14

θ = ta ( ) = ta ( ) = .n−1
Fy

Fx

n−1 −9.6 × N10−15

−14.4 × N10−15
34o
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s

F = qv Bsin θ = (3.2 × C)(3.6 × m/s)(1.5 T )sin( ) = 1.7 × N10−19 104 90o 10−14
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https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/63114?pdf


6.3.5 https://phys.libretexts.org/@go/page/63114

Representing Magnetic Fields
The representation of magnetic fields by magnetic field lines is very useful in visualizing the strength and direction of the
magnetic field. As shown in Figure , each of these lines forms a closed loop, even if not shown by the constraints of the space
available for the figure. The field lines emerge from the north pole (N), loop around to the south pole (S), and continue through the
bar magnet back to the north pole.

Magnetic field lines have several hard-and-fast rules:

1. The direction of the magnetic field is tangent to the field line at any point in space. A small compass will point in the direction
of the field line.

2. The strength of the field is proportional to the closeness of the lines. It is exactly proportional to the number of lines per unit
area perpendicular to the lines (called the areal density).

3. Magnetic field lines can never cross, meaning that the field is unique at any point in space.
4. Magnetic field lines are continuous, forming closed loops without a beginning or end. They are directed from the north pole to

the south pole.

The last property is related to the fact that the north and south poles cannot be separated. It is a distinct difference from electric
field lines, which generally begin on positive charges and end on negative charges or at infinity. If isolated magnetic charges
(referred to as magnetic monopoles) existed, then magnetic field lines would begin and end on them.

Figure : Magnetic field lines are defined to have the direction in which a small compass points when placed at a location in
the field. The strength of the field is proportional to the closeness (or density) of the lines. If the interior of the magnet could be
probed, the field lines would be found to form continuous, closed loops. To fit in a reasonable space, some of these drawings may
not show the closing of the loops; however, if enough space were provided, the loops would be closed.

This page titled 6.3: Magnetic Fields and Lines is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.

11.3: Magnetic Fields and Lines by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-2.
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6.4: Force and Torque on a Current Loop

By the end of this section, you will be able to:

Evaluate the net force on a current loop in an external magnetic field
Evaluate the net torque on a current loop in an external magnetic field
Define the magnetic dipole moment of a current loop

Motors are the most common application of magnetic force on current-carrying wires. Motors contain loops of wire in a magnetic
field. When current is passed through the loops, the magnetic field exerts torque on the loops, which rotates a shaft. Electrical
energy is converted into mechanical work in the process. Once the loop’s surface area is aligned with the magnetic field, the
direction of current is reversed, so there is a continual torque on the loop (Figure ). This reversal of the current is done with
commutators and brushes. The commutator is set to reverse the current flow at set points to keep continual motion in the motor. A
basic commutator has three contact areas to avoid and dead spots where the loop would have zero instantaneous torque at that
point. The brushes press against the commutator, creating electrical contact between parts of the commutator during the spinning
motion.

Figure : A simplified version of a dc electric motor. (a) The rectangular wire loop is placed in a magnetic field. The forces on
the wires closest to the magnetic poles (N and S) are opposite in direction as determined by the right-hand rule-1. Therefore, the
loop has a net torque and rotates to the position shown in (b). (b) The brushes now touch the commutator segments so that no
current flows through the loop. No torque acts on the loop, but the loop continues to spin from the initial velocity given to it in part
(a). By the time the loop flips over, current flows through the wires again but now in the opposite direction, and the process repeats
as in part (a). This causes continual rotation of the loop.

In a uniform magnetic field, a current-carrying loop of wire, such as a loop in a motor, experiences both forces and torques on the
loop. Figure  shows a rectangular loop of wire that carries a current I and has sides of lengths a and b. The loop is in a
uniform magnetic field: . The magnetic force on a straight current-carrying wire of length l is given by . To find the
net force on the loop, we have to apply this equation to each of the four sides. The force on side 1 is

where the direction has been determined with the RHR-1. The current in side 3 flows in the opposite direction to that of side 1, so

The currents in sides 2 and 4 are perpendicular to  and the forces on these sides are

 Learning Objectives
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We can now find the net force on the loop:

Although this result  has been obtained for a rectangular loop, it is far more general and holds for current-carrying
loops of arbitrary shapes; that is, there is no net force on a current loop in a uniform magnetic field.

Figure : (a) A rectangular current loop in a uniform magnetic field is subjected to a net torque but not a net force. (b) A side
view of the coil.

To find the net torque on the current loop shown in Figure , we first consider  and . Since they have the same line of
action and are equal and opposite, the sum of their torques about any axis is zero (see Fixed-Axis Rotation). Thus, if there is any
torque on the loop, it must be furnished by  and . Let’s calculate the torques around the axis that passes through point O of
Figure  (a side view of the coil) and is perpendicular to the plane of the page. The point O is a distance x from side 2 and a
distance  from side 4 of the loop. The moment arms of  and  are  and , respectively, so the net
torque on the loop is

This simplifies to

where  is the area of the loop.

Notice that this torque is independent of x; it is therefore independent of where point O is located in the plane of the current loop.
Consequently, the loop experiences the same torque from the magnetic field about any axis in the plane of the loop and parallel to
the x-axis.

A closed-current loop is commonly referred to as a magnetic dipole and the term IA is known as its magnetic dipole moment .
Actually, the magnetic dipole moment is a vector that is defined as

where  is a unit vector directed perpendicular to the plane of the loop (see Figure ). The direction of  is obtained with the
RHR-2—if you curl the fingers of your right hand in the direction of current flow in the loop, then your thumb points along . If
the loop contains N turns of wire, then its magnetic dipole moment is given by

In terms of the magnetic dipole moment, the torque on a current loop due to a uniform magnetic field can be written simply as

This equation holds for a current loop in a two-dimensional plane of arbitrary shape.

Using a calculation analogous to that found in Capacitance for an electric dipole, the potential energy of a magnetic dipole is

∑ = + + + = 0.F ⃗ 
net F ⃗ 

1 F ⃗ 
2 F ⃗ 

3 F ⃗ 
4

(∑F = 0)
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A circular current loop of radius 2.0 cm carries a current of 2.0 mA. (a) What is the magnitude of its magnetic dipole moment?
(b) If the dipole is oriented at 30 degrees to a uniform magnetic field of magnitude 0.50 T, what is the magnitude of the torque
it experiences and what is its potential energy?

Strategy
The dipole moment is defined by the current times the area of the loop. The area of the loop can be calculated from the area of
the circle. The torque on the loop and potential energy are calculated from identifying the magnetic moment, magnetic field,
and angle oriented in the field.

Solution
1. The magnetic moment μ is calculated by the current times the area of the loop or .

2. The torque and potential energy are calculated by identifying the magnetic moment, magnetic field, and the angle between
these two vectors. The calculations of these quantities are:

Significance
The concept of magnetic moment at the atomic level is discussed in the next chapter. The concept of aligning the magnetic
moment with the magnetic field is the functionality of devices like magnetic motors, whereby switching the external magnetic
field results in a constant spinning of the loop as it tries to align with the field to minimize its potential energy.

In what orientation would a magnetic dipole have to be to produce (a) a maximum torque in a magnetic field? (b) A maximum
energy of the dipole?

Solution

a. aligned or anti-aligned; b. perpendicular

This page titled 6.4: Force and Torque on a Current Loop is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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U = − ⋅ .μ⃗  B⃗ 

 Example : Forces and Torques on Current-Carrying Loops6.4.1

πr2

μ = IA = (2.0 × A)(π(0.02 m ) = 2.5 × A ⋅10−3 )2 10−6 m2

τ = × = μB sin θ = (2.5 × A ⋅ )(0.50T )sin( ) = 6.3 × N ⋅ mμ⃗  B⃗  10−6 m2 30o 10−7

U = − ⋅ = −μBcosθ = −(2.5 × A ⋅ )(0.50T )cos( ) = −1.1 × J.μ⃗  B⃗  10−6 m2 30o 10−6
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6.5: The Hall Effect

By the end of this section, you will be able to:

Explain a scenario where the magnetic and electric fields are crossed and their forces balance each other as a charged
particle moves through a velocity selector
Compare how charge carriers move in a conductive material and explain how this relates to the Hall effect

In 1879, E.H. Hall devised an experiment that can be used to identify the sign of the predominant charge carriers in a conducting
material. From a historical perspective, this experiment was the first to demonstrate that the charge carriers in most metals are
negative.

Visit this website to find more information about the Hall effect.

We investigate the Hall effect by studying the motion of the free electrons along a metallic strip of width l in a constant magnetic
field (Figure ). The electrons are moving from left to right, so the magnetic force they experience pushes them to the bottom
edge of the strip. This leaves an excess of positive charge at the top edge of the strip, resulting in an electric field E directed from
top to bottom. The charge concentration at both edges builds up until the electric force on the electrons in one direction is balanced
by the magnetic force on them in the opposite direction. Equilibrium is reached when:

where e is the magnitude of the electron charge,  is the drift speed of the electrons, and E is the magnitude of the electric field
created by the separated charge. Solving this for the drift speed results in

Figure : In the Hall effect, a potential difference between the top and bottom edges of the metal strip is produced when
moving charge carriers are deflected by the magnetic field. (a) Hall effect for negative charge carriers; (b) Hall effect for positive
charge carriers.

A scenario where the electric and magnetic fields are perpendicular to one another is called a crossed-field situation. If these fields
produce equal and opposite forces on a charged particle with the velocity that equates the forces, these particles are able to pass
through an apparatus, called a velocity selector, undeflected. This velocity is represented in Equation . Any other velocity of a
charged particle sent into the same fields would be deflected by the magnetic force or electric force.

Going back to the Hall effect, if the current in the strip is I, then from Current and Resistance, we know that

where n is the number of charge carriers per volume and A is the cross-sectional area of the strip. Combining the equations for 
and I results in
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The field E is related to the potential difference V between the edges of the strip by

The quantity  is called the Hall potential and can be measured with a voltmeter. Finally, combining the equations for I and E
gives us

where the upper edge of the strip in Figure  is positive with respect to the lower edge.

We can also combine Equation  and Equation  to get an expression for the Hall voltage in terms of the magnetic field:

What if the charge carriers are positive, as in Figure ? For the same current I, the magnitude of V is still given by Equation 
. However, the upper edge is now negative with respect to the lower edge. Therefore, by simply measuring the sign of V, we

can determine the sign of the majority charge carriers in a metal.

Hall potential measurements show that electrons are the dominant charge carriers in most metals. However, Hall potentials indicate
that for a few metals, such as tungsten, beryllium, and many semiconductors, the majority of charge carriers are positive. It turns
out that conduction by positive charge is caused by the migration of missing electron sites (called holes) on ions. Conduction by
holes is studied later in Condensed Matter Physics.

The Hall effect can be used to measure magnetic fields. If a material with a known density of charge carriers n is placed in a
magnetic field and V is measured, then the field can be determined from Equation . In research laboratories where the fields of
electromagnets used for precise measurements have to be extremely steady, a “Hall probe” is commonly used as part of an
electronic circuit that regulates the field.

An electron beam enters a crossed-field velocity selector with magnetic and electric fields of 2.0 mT and ,
respectively. (a) What must the velocity of the electron beam be to traverse the crossed fields undeflected? If the electric field
is turned off, (b) what is the acceleration of the electron beam and (c) what is the radius of the circular motion that results?

Strategy
The electron beam is not deflected by either of the magnetic or electric fields if these forces are balanced. Based on these
balanced forces, we calculate the velocity of the beam. Without the electric field, only the magnetic force is used in Newton’s
second law to find the acceleration. Lastly, the radius of the path is based on the resulting circular motion from the magnetic
force.

Solution
1. The velocity of the unperturbed beam of electrons with crossed fields is calculated by Equation :

2. The acceleration is calculated from the net force from the magnetic field, equal to mass times acceleration. The magnitude
of the acceleration is:

3. The radius of the path comes from a balance of the circular and magnetic forces, or Equation :

E = .
V

l
(6.5.5)
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Significance
If electrons in the beam had velocities above or below the answer in part (a), those electrons would have a stronger net force
exerted by either the magnetic or electric field. Therefore, only those electrons at this specific velocity would make it through.

Figure  shows a silver ribbon whose cross section is 1.0 cm by 0.20 cm. The ribbon carries a current of 100 A from left to
right, and it lies in a uniform magnetic field of magnitude 1.5 T. Using a density value of  electrons per cubic
meter for silver, find the Hall potential between the edges of the ribbon.

Figure : Finding the Hall potential in a silver ribbon in a magnetic field is shown.

Strategy
Since the majority of charge carriers are electrons, the polarity of the Hall voltage is that indicated in the figure. The value of
the Hall voltage is calculated using Equation .

Solution
When calculating the Hall voltage, we need to know the current through the material, the magnetic field, the length, the
number of charge carriers, and the area. Since all of these are given, the Hall voltage is calculated as:

Significance
As in this example, the Hall potential is generally very small, and careful experimentation with sensitive equipment is required
for its measurement.

A Hall probe consists of a copper strip,  electrons per cubic meter, which is 2.0 cm wide and 0.10 cm thick.
What is the magnetic field when I = 50 A and the Hall potential is

a.  and
b. ?

Answer a

1.1 T

Answer b

1.6 T

This page titled 6.5: The Hall Effect is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

 The Hall Potential in a Silver Ribbon
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 Exercise 6.5.1
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CHAPTER OVERVIEW

7: Electromagnetic Waves
In this chapter, we explain Maxwell’s theory and show how it leads to his prediction of electromagnetic waves. We use his theory
to examine what electromagnetic waves are, how they are produced, and how they transport energy and momentum. We conclude
by summarizing some of the many practical applications of electromagnetic waves.

7.1: Prelude to Electromagnetic Waves
7.2: Maxwell’s Equations and Electromagnetic Waves
7.3: Plane Electromagnetic Waves
7.4: Energy Carried by Electromagnetic Waves
7.5: The Electromagnetic Spectrum
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7.1: Prelude to Electromagnetic Waves
Our view of objects in the sky at night, the warm radiance of sunshine, the sting of sunburn, our cell phone conversations, and the
X-rays revealing a broken bone—all are brought to us by electromagnetic waves. It would be hard to overstate the practical
importance of electromagnetic waves, through their role in vision, through countless technological applications, and through their
ability to transport the energy from the Sun through space to sustain life and almost all of its activities on Earth.

Figure : The pressure from sunlight predicted by Maxwell’s equations helped produce the tail of Comet McNaught. (credit:
modification of work by Sebastian Deiries—ESO)

Theory predicted the general phenomenon of electromagnetic waves before anyone realized that light is a form of an
electromagnetic wave. In the mid-nineteenth century, James Clerk Maxwell formulated a single theory combining all the electric
and magnetic effects known at that time. Maxwell’s equations, summarizing this theory, predicted the existence of electromagnetic
waves that travel at the speed of light. His theory also predicted how these waves behave, and how they carry both energy and
momentum. The tails of comets, such as Comet McNaught in Figure 16.1, provide a spectacular example. Energy carried by light
from the Sun warms the comet to release dust and gas. The momentum carried by the light exerts a weak force that shapes the dust
into a tail of the kind seen here. The flux of particles emitted by the Sun, called the solar wind, typically produces an additional,
second tail, as described in detail in this chapter.

In this chapter, we explain Maxwell’s theory and show how it leads to his prediction of electromagnetic waves. We use his theory
to examine what electromagnetic waves are, how they are produced, and how they transport energy and momentum. We conclude
by summarizing some of the many practical applications of electromagnetic waves.

This page titled 7.1: Prelude to Electromagnetic Waves is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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7.2: Maxwell’s Equations and Electromagnetic Waves

By the end of this section, you will be able to:

Explain Maxwell’s correction of Ampère’s law by including the displacement current
State and apply Maxwell’s equations in integral form
Describe how the symmetry between changing electric and changing magnetic fields explains Maxwell’s prediction of
electromagnetic waves
Describe how Hertz confirmed Maxwell’s prediction of electromagnetic waves

James Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century (Figure ). Although
he died young, he made major contributions to the development of the kinetic theory of gases, to the understanding of color vision,
and to the nature of Saturn’s rings. He is probably best known for having combined existing knowledge of the laws of electricity
and of magnetism with insights of his own into a complete overarching electromagnetic theory, represented by Maxwell’s
equations.

Figure : James Clerk Maxwell, a nineteenth-century physicist, developed a theory that explained the relationship between
electricity and magnetism, and correctly predicted that visible light consists of electromagnetic waves.

Maxwell’s Correction to the Laws of Electricity and Magnetism
The four basic laws of electricity and magnetism had been discovered experimentally through the work of physicists such as
Oersted, Coulomb, Gauss, and Faraday. Maxwell discovered logical inconsistencies in these earlier results and identified the
incompleteness of Ampère’s law as their cause.

Recall that according to Ampère’s law, the integral of the magnetic field around a closed loop C is proportional to the current I
passing through any surface whose boundary is loop C itself:

There are infinitely many surfaces that can be attached to any loop, and Ampère’s law stated in Equation  is independent of
the choice of surface.

Consider the set-up in Figure . A source of emf is abruptly connected across a parallel-plate capacitor so that a time-dependent
current I develops in the wire. Suppose we apply Ampère’s law to loop C shown at a time before the capacitor is fully charged, so
that . Surface  gives a nonzero value for the enclosed current I, whereas surface  gives zero for the enclosed current
because no current passes through it:
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Clearly, Ampère’s law in its usual form does not work here. This may not be surprising, because Ampère’s law as applied in earlier
chapters required a steady current, whereas the current in this experiment is changing with time and is not steady at all.

Figure : The currents through surface  and surface  are unequal, despite having the same boundary loop C.

How can Ampère’s law be modified so that it works in all situations? Maxwell suggested including an additional contribution,
called the displacement current , to the real current I,

where the displacement current is defined to be

Here  is the permittivity of free space and  is the electric flux, defined as

The displacement current is analogous to a real current in Ampère’s law, entering into Ampère’s law in the same way. It is
produced, however, by a changing electric field. It accounts for a changing electric field producing a magnetic field, just as a real
current does, but the displacement current can produce a magnetic field even where no real current is present. When this extra term
is included, the modified Ampère’s law equation becomes

and is independent of the surface S through which the current I is measured.

We can now examine this modified version of Ampère’s law to confirm that it holds independent of whether the surface  or the
surface  in Figure  is chosen. The electric field  corresponding to the flux  in Equation  is between the capacitor
plates. Therefore, the  field and the displacement current through the surface  are both zero, and Equation  takes the form
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We must now show that for surface , through which no actual current flows, the displacement current leads to the same value 
 for the right side of the Ampère’s law equation. For surface  the equation becomes

Gauss’s law for electric charge requires a closed surface and cannot ordinarily be applied to a surface like  alone or  alone. But
the two surfaces  and  form a closed surface in Figure  and can be used in Gauss’s law. Because the electric field is zero
on , the flux contribution through  is zero. This gives us

Therefore, we can replace the integral over  in Equation  with the closed Gaussian surface  and apply Gauss’s law
to obtain

Thus, the modified Ampère’s law equation is the same using surface , where the right-hand side results from the displacement
current, as it is for the surface , where the contribution comes from the actual flow of electric charge.

A parallel-plate capacitor with capacitance C whose plates have area A and separation distance d is connected to a resistor R
and a battery of voltage V. The current starts to flow at .

a. Find the displacement current between the capacitor plates at time t.

b. From the properties of the capacitor, find the corresponding real current , and compare the answer to the expected

current in the wires of the corresponding RC circuit.

Strategy
We can use the equations from the analysis of an RC circuit (Alternating-Current Circuits) plus Maxwell’s version of
Ampère’s law.

Solution
a. The voltage between the plates at time t is given by

Let the z-axis point from the positive plate to the negative plate. Then the z-component of the electric field between the
plates as a function of time t is

Therefore, the z-component of the displacement current  between the plates is

where we have used  for the capacitance.

b. From the expression for  the charge on the capacitor is
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The current into the capacitor after the circuit is closed, is therefore

This current is the same as  found in (a).

Maxwell’s Equations
With the correction for the displacement current, Maxwell’s equations take the form

Once the fields have been calculated using these four equations, the Lorentz force equation

gives the force that the fields exert on a particle with charge q moving with velocity . The Lorentz force equation combines the
force of the electric field and of the magnetic field on the moving charge. The magnetic and electric forces have been examined in
earlier modules. These four Maxwell’s equations are, respectively:

1. Gauss’s law

The electric flux through any closed surface is equal to the electric charge  enclosed by the surface. Gauss’s law (Equation 
) describes the relation between an electric charge and the electric field it produces. This is often pictured in terms of

electric field lines originating from positive charges and terminating on negative charges, and indicating the direction of the
electric field at each point in space.

2. Gauss’s law for magnetism

The magnetic field flux through any closed surface is zero (Equation ). This is equivalent to the statement that magnetic
field lines are continuous, having no beginning or end. Any magnetic field line entering the region enclosed by the surface
must also leave it. No magnetic monopoles, where magnetic field lines would terminate, are known to exist (see section on
Magnetic Fields and Lines).

3. Faraday’s law

A changing magnetic field induces an electromotive force (emf) and, hence, an electric field. The direction of the emf opposes
the change. Equation  is Faraday’s law of induction and includes Lenz’s law. The electric field from a changing magnetic
field has field lines that form closed loops, without any beginning or end.

4. Ampère-Maxwell law

Magnetic fields are generated by moving charges or by changing electric fields. This fourth of Maxwell’s equations, Equation 
, encompasses Ampère’s law and adds another source of magnetic fields, namely changing electric fields.

Maxwell’s equations and the Lorentz force law together encompass all the laws of electricity and magnetism. The symmetry that
Maxwell introduced into his mathematical framework may not be immediately apparent. Faraday’s law describes how changing
magnetic fields produce electric fields. The displacement current introduced by Maxwell results instead from a changing electric
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field and accounts for a changing electric field producing a magnetic field. The equations for the effects of both changing electric
fields and changing magnetic fields differ in form only where the absence of magnetic monopoles leads to missing terms. This
symmetry between the effects of changing magnetic and electric fields is essential in explaining the nature of electromagnetic
waves.

Later application of Einstein’s theory of relativity to Maxwell’s complete and symmetric theory showed that electric and magnetic
forces are not separate but are different manifestations of the same thing—the electromagnetic force. The electromagnetic force and
weak nuclear force are similarly unified as the electroweak force. This unification of forces has been one motivation for attempts to
unify all of the four basic forces in nature—the gravitational, electrical, strong, and weak nuclear forces (see Particle Physics and
Cosmology).

The Mechanism of Electromagnetic Wave Propagation

To see how the symmetry introduced by Maxwell accounts for the existence of combined electric and magnetic waves that
propagate through space, imagine a time-varying magnetic field  produced by the high-frequency alternating current seen in
Figure . We represent  in the diagram by one of its field lines. From Faraday’s law, the changing magnetic field through
a surface induces a time-varying electric field  at the boundary of that surface. The displacement current source for the
electric field, like the Faraday’s law source for the magnetic field, produces only closed loops of field lines, because of the
mathematical symmetry involved in the equations for the induced electric and induced magnetic fields. A field line representation
of  is shown. In turn, the changing electric field  creates a magnetic field  according to the modified Ampère’s
law. This changing field induces  which induces  and so on. We then have a self-continuing process that leads to the
creation of time-varying electric and magnetic fields in regions farther and farther away from O. This process may be visualized as
the propagation of an electromagnetic wave through space.

Figure : How changing  and  fields propagate through space.

In the next section, we show in more precise mathematical terms how Maxwell’s equations lead to the prediction of
electromagnetic waves that can travel through space without a material medium, implying a speed of electromagnetic waves equal
to the speed of light.

Prior to Maxwell’s work, experiments had already indicated that light was a wave phenomenon, although the nature of the waves
was yet unknown. In 1801, Thomas Young (1773–1829) showed that when a light beam was separated by two narrow slits and then
recombined, a pattern made up of bright and dark fringes was formed on a screen. Young explained this behavior by assuming that
light was composed of waves that added constructively at some points and destructively at others (see Interference). Subsequently,
Jean Foucault (1819–1868), with measurements of the speed of light in various media, and Augustin Fresnel (1788–1827), with
detailed experiments involving interference and diffraction of light, provided further conclusive evidence that light was a wave. So,
light was known to be a wave, and Maxwell had predicted the existence of electromagnetic waves that traveled at the speed of
light. The conclusion seemed inescapable: Light must be a form of electromagnetic radiation. But Maxwell’s theory showed that
other wavelengths and frequencies than those of light were possible for electromagnetic waves. He showed that electromagnetic
radiation with the same fundamental properties as visible light should exist at any frequency. It remained for others to test, and
confirm, this prediction.

When the emf across a capacitor is turned on and the capacitor is allowed to charge, when does the magnetic field induced by
the displacement current have the greatest magnitude?

Solution

(t)B⃗ 
0

7.2.3 (t)B⃗ 
0

(t)E ⃗ 
0

(t)E ⃗ 
0 (t)E ⃗ 

0 (t)B⃗ 
1

(t)E ⃗ 
1 (t)B⃗ 

2

7.2.3 E ⃗  B⃗ 
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It is greatest immediately after the current is switched on. The displacement current and the magnetic field from it are proportional
to the rate of change of electric field between the plates, which is greatest when the plates first begin to charge.

Hertz’s Observations
The German physicist Heinrich Hertz (1857–1894) was the first to generate and detect certain types of electromagnetic waves in
the laboratory. Starting in 1887, he performed a series of experiments that not only confirmed the existence of electromagnetic
waves but also verified that they travel at the speed of light.

Hertz used an alternating-current RLC (resistor-inductor-capacitor) circuit that resonates at a known frequency  and

connected it to a loop of wire, as shown in Figure . High voltages induced across the gap in the loop produced sparks that
were visible evidence of the current in the circuit and helped generate electromagnetic waves.

Across the laboratory, Hertz placed another loop attached to another RLC circuit, which could be tuned (as the dial on a radio) to
the same resonant frequency as the first and could thus be made to receive electromagnetic waves. This loop also had a gap across
which sparks were generated, giving solid evidence that electromagnetic waves had been received.

Figure : The apparatus used by Hertz in 1887 to generate and detect electromagnetic waves.

Hertz also studied the reflection, refraction, and interference patterns of the electromagnetic waves he generated, confirming their
wave character. He was able to determine the wavelengths from the interference patterns, and knowing their frequencies, he could
calculate the propagation speed using the equation , where v is the speed of a wave, f is its frequency, and  is its
wavelength. Hertz was thus able to prove that electromagnetic waves travel at the speed of light. The SI unit for frequency, the
hertz , is named in his honor.

Could a purely electric field propagate as a wave through a vacuum without a magnetic field? Justify your answer.

Solution

No. The changing electric field according to the modified version of Ampère’s law would necessarily induce a changing magnetic
field.

This page titled 7.2: Maxwell’s Equations and Electromagnetic Waves is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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7.3: Plane Electromagnetic Waves

By the end of this section, you will be able to:

Describe how Maxwell’s equations predict the relative directions of the electric fields and magnetic fields, and the direction
of propagation of plane electromagnetic waves
Explain how Maxwell’s equations predict that the speed of propagation of electromagnetic waves in free space is exactly
the speed of light
Calculate the relative magnitude of the electric and magnetic fields in an electromagnetic plane wave
Describe how electromagnetic waves are produced and detected

Mechanical waves travel through a medium such as a string, water, or air. Perhaps the most significant prediction of Maxwell’s
equations is the existence of combined electric and magnetic (or electromagnetic) fields that propagate through space as
electromagnetic waves. Because Maxwell’s equations hold in free space, the predicted electromagnetic waves, unlike mechanical
waves, do not require a medium for their propagation.

A general treatment of the physics of electromagnetic waves is beyond the scope of this textbook. We can, however, investigate the
special case of an electromagnetic wave that propagates through free space along the x-axis of a given coordinate system.

Electromagnetic Waves in One Direction

An electromagnetic wave consists of an electric field, defined as usual in terms of the force per charge on a stationary charge, and a
magnetic field, defined in terms of the force per charge on a moving charge. The electromagnetic field is assumed to be a function
of only the x-coordinate and time. The y-component of the electric field is then written as , the z-component of the
magnetic field as , etc. Because we are assuming free space, there are no free charges or currents, so we can set 
and  in Maxwell’s equations.

The transverse nature of electromagnetic waves

We examine first what Gauss’s law for electric fields implies about the relative directions of the electric field and the propagation
direction in an electromagnetic wave. Assume the Gaussian surface to be the surface of a rectangular box whose cross-section is a
square of side l and whose third side has length , as shown in Figure . Because the electric field is a function only of x and
t, the y-component of the electric field is the same on both the top (labeled Side 2) and bottom (labeled Side 1) of the box, so that
these two contributions to the flux cancel. The corresponding argument also holds for the net flux from the z-component of the
electric field through Sides 3 and 4. Any net flux through the surface therefore comes entirely from the x-component of the electric
field. Because the electric field has no y- or z-dependence,  is constant over the face of the box with area A and has a
possibly different value  that is constant over the opposite face of the box.

Applying Gauss’s law gives

where  is the area of the front and back faces of the rectangular surface. But the charge enclosed is , so this
component’s net flux is also zero, and Equation  implies  for any . Therefore, if there is an x-
component of the electric field, it cannot vary with x. A uniform field of that kind would merely be superposed artificially on the
traveling wave, for example, by having a pair of parallel-charged plates. Such a component  would not be part of an
electromagnetic wave propagating along the x-axis; so  for this wave. Therefore, the only nonzero components of the
electric field are  and  perpendicular to the direction of propagation of the wave.

 LEARNING OBJECTIVES
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Figure : The surface of a rectangular box of dimensions  is our Gaussian surface. The electric field shown is from
an electromagnetic wave propagating along the x-axis.

A similar argument holds by substituting E for B and using Gauss’s law for magnetism instead of Gauss’s law for electric fields.
This shows that the B field is also perpendicular to the direction of propagation of the wave. The electromagnetic wave is therefore
a transverse wave, with its oscillating electric and magnetic fields perpendicular to its direction of propagation.

The speed of propagation of electromagnetic waves

We can next apply Maxwell’s equations to the description given in connection with Figure 16.2.3 in the previous section to obtain
an equation for the E field from the changing B field, and for the B field from a changing E field. We then combine the two
equations to show how the changing E and B fields propagate through space at a speed precisely equal to the speed of light.

First, we apply Faraday’s law over Side 3 of the Gaussian surface, using the path shown in Figure . Because , we
have

Assuming  is small and approximating  by

we obtain

7.3.1 l × l × Δx

7.3.2 (x, t) = 0Ex
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Figure : We apply Faraday’s law to the front of the rectangle by evaluating  along the rectangular edge of Side 3 in
the direction indicated, taking the B field crossing the face to be approximately its value in the middle of the area traversed.

Because  is small, the magnetic flux through the face can be approximated by its value in the center of the area traversed,

namely . The flux of the B field through Face 3 is then the B field times the area,

From Faraday’s law,

Therefore, from Equations  and ,

Canceling  and taking the limit as , we are left with

We could have applied Faraday’s law instead to the top surface (numbered 2) in Figure , to obtain the resulting equation

This is the equation describing the spatially dependent E field produced by the time-dependent B field.

Next we apply the Ampère-Maxwell law (with ) over the same two faces (Surface 3 and then Surface 2) of the rectangular
box of Figure . Applying Equation 16.2.16,
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to Surface 3, and then to Surface 2, yields the two equations

and

These equations describe the spatially dependent B field produced by the time-dependent E field.

We next combine the equations showing the changing B field producing an E field with the equation showing the changing E field
producing a B field. Taking the derivative of Equation  with respect to x and using Equation  gives

or

This is the form taken by the general wave equation for our plane wave. Because the equations describe a wave traveling at some
as-yet-unspecified speed c, we can assume the field components are each functions of x – ct for the wave traveling in the +x-
direction, that is,

It is left as a mathematical exercise to show, using the chain rule for differentiation, that Equations  and  imply

The speed of the electromagnetic wave in free space is therefore given in terms of the permeability and the permittivity of free
space by

We could just as easily have assumed an electromagnetic wave with field components  and . The same type of
analysis with Equation  and  would also show that the speed of an electromagnetic wave is .

The physics of traveling electromagnetic fields was worked out by Maxwell in 1873. He showed in a more general way than our
derivation that electromagnetic waves always travel in free space with a speed given by Equation . If we evaluate the speed 

, we find that

which is the speed of light. Imagine the excitement that Maxwell must have felt when he discovered this equation! He had found a
fundamental connection between two seemingly unrelated phenomena: electromagnetic fields and light.

The wave equation was obtained by (1) finding the E field produced by the changing B field, (2) finding the B field produced
by the changing E field, and combining the two results. Which of Maxwell’s equations was the basis of step (1) and which of
step (2)?
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Answer (step 1)

Faraday’s law

Answer (step 2)

the Ampère-Maxwell law

How the E and B Fields Are Related
So far, we have seen that the rates of change of different components of the E and B fields are related, that the electromagnetic
wave is transverse, and that the wave propagates at speed c. We next show what Maxwell’s equations imply about the ratio of the E
and B field magnitudes and the relative directions of the E and B fields.

We now consider solutions to Equation  in the form of plane waves for the electric field:

We have arbitrarily taken the wave to be traveling in the +x-direction and chosen its phase so that the maximum field strength
occurs at the origin at time . We are justified in considering only sines and cosines in this way, and generalizing the results,
because Fourier’s theorem implies we can express any wave, including even square step functions, as a superposition of sines and
cosines.

At any one specific point in space, the E field oscillates sinusoidally at angular frequency  between  and  and similarly,
the B field oscillates between  and . The amplitude of the wave is the maximum value of . The period of
oscillation T is the time required for a complete oscillation. The frequency f is the number of complete oscillations per unit of time,
and is related to the angular frequency  by . The wavelength  is the distance covered by one complete cycle of the
wave, and the wavenumber k is the number of wavelengths that fit into a distance of  in the units being used. These quantities
are related in the same way as for a mechanical wave:

Given that the solution of  has the form shown in Equation , we need to determine the  field that accompanies it. From
Equation , the magnetic field component  must obey

Because the solution for the B-field pattern of the wave propagates in the +x-direction at the same speed c as the E-field pattern, it
must be a function of . Thus, we conclude from Equation  that  is

These results may be written as

Therefore, the peaks of the E and B fields coincide, as do the troughs of the wave, and at each point, the E and B fields are in the
same ratio equal to the speed of light c. The plane wave has the form shown in Figure .
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Figure : The plane wave solution of Maxwell’s equations has the B field directly proportional to the E field at each point, with
the relative directions shown.

What is the maximum strength of the B field in an electromagnetic wave that has a maximum E-field strength of 1000 V/m?

Strategy
To find the B-field strength, we rearrange Equation  to solve for , yielding

Solution We are given E, and c is the speed of light. Entering these into the expression for B yields

Significance

The B-field strength is less than a tenth of Earth’s admittedly weak magnetic field. This means that a relatively strong electric
field of 1000 V/m is accompanied by a relatively weak magnetic field.

Changing electric fields create relatively weak magnetic fields. The combined electric and magnetic fields can be detected in
electromagnetic waves, however, by taking advantage of the phenomenon of resonance, as Hertz did. A system with the same
natural frequency as the electromagnetic wave can be made to oscillate. All radio and TV receivers use this principle to pick up and
then amplify weak electromagnetic waves, while rejecting all others not at their resonant frequency.

What conclusions did our analysis of Maxwell’s equations lead to about these properties of a plane electromagnetic wave:

a. the relative directions of wave propagation, of the E field, and of B field,
b. the speed of travel of the wave and how the speed depends on frequency, and
c. the relative magnitudes of the E and B fields.

Answer a

The directions of wave propagation, of the E field, and of B field are all mutually perpendicular.

Answer b

The speed of the electromagnetic wave is the speed of light  independent of frequency.

7.3.3

 Example : Calculating B-Field Strength in an Electromagnetic Wave7.3.1
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Answer c

The ratio of electric and magnetic field amplitudes is .

Production and Detection of Electromagnetic Waves

A steady electric current produces a magnetic field that is constant in time and which does not propagate as a wave. Accelerating
charges, however, produce electromagnetic waves. An electric charge oscillating up and down, or an alternating current or flow of
charge in a conductor, emit radiation at the frequencies of their oscillations. The electromagnetic field of a dipole antenna is
shown in Figure . The positive and negative charges on the two conductors are made to reverse at the desired frequency by the
output of a transmitter as the power source. The continually changing current accelerates charge in the antenna, and this results in
an oscillating electric field a distance away from the antenna. The changing electric fields produce changing magnetic fields that in
turn produce changing electric fields, which thereby propagate as electromagnetic waves. The frequency of this radiation is the
same as the frequency of the ac source that is accelerating the electrons in the antenna. The two conducting elements of the dipole
antenna are commonly straight wires. The total length of the two wires is typically about one-half of the desired wavelength (hence,
the alternative name half-wave antenna), because this allows standing waves to be set up and enhances the effectiveness of the
radiation.

Figure : The oscillatory motion of the charges in a dipole antenna produces electromagnetic radiation.

The electric field lines in one plane are shown. The magnetic field is perpendicular to this plane. This radiation field has cylindrical
symmetry around the axis of the dipole. Field lines near the dipole are not shown. The pattern is not at all uniform in all directions.
The strongest signal is in directions perpendicular to the axis of the antenna, which would be horizontal if the antenna is mounted
vertically. There is zero intensity along the axis of the antenna. The fields detected far from the antenna are from the changing
electric and magnetic fields inducing each other and traveling as electromagnetic waves. Far from the antenna, the wave fronts, or
surfaces of equal phase for the electromagnetic wave, are almost spherical. Even farther from the antenna, the radiation propagates
like electromagnetic plane waves.

The electromagnetic waves carry energy away from their source, similar to a sound wave carrying energy away from a standing
wave on a guitar string. An antenna for receiving electromagnetic signals works in reverse. Incoming electromagnetic waves
induce oscillating currents in the antenna, each at its own frequency. The radio receiver includes a tuner circuit, whose resonant
frequency can be adjusted. The tuner responds strongly to tshe desired frequency but not others, allowing the user to tune to the
desired broadcast. Electrical components amplify the signal formed by the moving electrons. The signal is then converted into an
audio and/or video format.

Use this simulation to broadcast radio waves. Wiggle the transmitter electron manually or have it oscillate automatically.
Display the field as a curve or vectors. The strip chart shows the electron positions at the transmitter and at the receiver.

This page titled 7.3: Plane Electromagnetic Waves is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.
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7.4: Energy Carried by Electromagnetic Waves

By the end of this section, you will be able to:

Express the time-averaged energy density of electromagnetic waves in terms of their electric and magnetic field amplitudes
Calculate the Poynting vector and the energy intensity of electromagnetic waves
Explain how the energy of an electromagnetic wave depends on its amplitude, whereas the energy of a photon is
proportional to its frequency

Anyone who has used a microwave oven knows there is energy in electromagnetic waves. Sometimes this energy is obvious, such
as in the warmth of the summer Sun. Other times, it is subtle, such as the unfelt energy of gamma rays, which can destroy living
cells.

Electromagnetic waves bring energy into a system by virtue of their electric and magnetic fields. These fields can exert forces and
move charges in the system and, thus, do work on them. However, there is energy in an electromagnetic wave itself, whether it is
absorbed or not. Once created, the fields carry energy away from a source. If some energy is later absorbed, the field strengths are
diminished and anything left travels on.

Clearly, the larger the strength of the electric and magnetic fields, the more work they can do and the greater the energy the
electromagnetic wave carries. In electromagnetic waves, the amplitude is the maximum field strength of the electric and magnetic
fields (Figure ). The wave energy is determined by the wave amplitude.

Figure : Energy carried by a wave depends on its amplitude. With electromagnetic waves, doubling the E fields and B fields
quadruples the energy density u and the energy flux uc.

For a plane wave traveling in the direction of the positive x-axis with the phase of the wave chosen so that the wave maximum is at
the origin at , the electric and magnetic fields obey the equations

The energy in any part of the electromagnetic wave is the sum of the energies of the electric and magnetic fields. This energy per
unit volume, or energy density u, is the sum of the energy density from the electric field and the energy density from the magnetic
field. Expressions for both field energy densities were discussed earlier (  in Capacitance and  in Inductance). Combining
these the contributions, we obtain
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The expression  then shows that the magnetic energy density  and electric energy density  are equal,

despite the fact that changing electric fields generally produce only small magnetic fields. The equality of the electric and magnetic
energy densities leads to

The energy density moves with the electric and magnetic fields in a similar manner to the waves themselves.

We can find the rate of transport of energy by considering a small time interval . As shown in Figure , the energy contained
in a cylinder of length  and cross-sectional area A passes through the cross-sectional plane in the interval .

Figure : The energy  contained in the electric and magnetic fields of the electromagnetic wave in the volume 
passes through the area  in time .

The energy passing through area  in time  is

The energy per unit area per unit time passing through a plane perpendicular to the wave, called the energy flux and denoted by ,
can be calculated by dividing the energy by the area  and the time interval .

More generally, the flux of energy through any surface also depends on the orientation of the surface. To take the direction into
account, we introduce a vector , called the Poynting vector, with the following definition:

The cross-product of  and  points in the direction perpendicular to both vectors. To confirm that the direction of  is that of
wave propagation, and not its negative, return to Figure 16.3.2. Note that Lenz’s and Faraday’s laws imply that when the magnetic
field shown is increasing in time, the electric field is greater at  than at . The electric field is decreasing with increasing 
at the given time and location. The proportionality between electric and magnetic fields requires the electric field to increase in
time along with the magnetic field. This is possible only if the wave is propagating to the right in the diagram, in which case, the
relative orientations show that  is specifically in the direction of propagation of the electromagnetic wave.

The energy flux at any place also varies in time, as can be seen by substituting  from Equation 16.3.19 into Equation .

Because the frequency of visible light is very high, of the order of , the energy flux for visible light through any area is an
extremely rapidly varying quantity. Most measuring devices, including our eyes, detect only an average over many cycles. The time
average of the energy flux is the intensity  of the electromagnetic wave and is the power per unit area. It can be expressed by
averaging the cosine function in Equation  over one complete cycle, which is the same as time-averaging over many cycles
(here,  is one period):

We can either evaluate the integral, or else note that because the sine and cosine differ merely in phase, the average over a complete
cycle for  is the same as for , to obtain
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where the angle brackets  stand for the time-averaging operation. The intensity of light moving at speed  in vacuum is then
found to be

in terms of the maximum electric field strength , which is also the electric field amplitude. Algebraic manipulation produces the
relationship

where  is the magnetic field amplitude, which is the same as the maximum magnetic field strength. One more expression for 
 in terms of both electric and magnetic field strengths is useful. Substituting the fact that , the previous expression

becomes

We can use whichever of the three preceding equations is most convenient, because the three equations are really just different
versions of the same result: The energy in a wave is related to amplitude squared. Furthermore, because these equations are based
on the assumption that the electromagnetic waves are sinusoidal, the peak intensity is twice the average intensity; that is, .

The beam from a small laboratory laser typically has an intensity of about . Assuming that the beam is
composed of plane waves, calculate the amplitudes of the electric and magnetic fields in the beam.

Strategy
Use the equation expressing intensity in terms of electric field to calculate the electric field from the intensity.

Solution
From Equation , the intensity of the laser beam is

The amplitude of the electric field is therefore

The amplitude of the magnetic field can be obtained from:

A light bulb emits 5.00 W of power as visible light. What are the average electric and magnetic fields from the light at a
distance of 3.0 m?

Strategy

⟨ ξ⟩ = [⟨ ξ⟩+ ⟨ ξ⟩] = ⟨1⟩ = .cos2 1

2
cos2 sin2 1

2

1

2

⟨. . . ⟩ c

I = = cSavg

1

2
ϵ0E

2
0 (7.4.4)

E0

I =
cB2

0

2μ0
(7.4.5)

B0

Iavg c =B0 E0

I = .
E0B0

2μ0
(7.4.6)

= 2II0

 Example : A Laser Beam7.4.1

1.0 × W/10−3 m2

7.4.4

I = c .
1

2
ϵ0E2

0

E0 = I
2

cϵ0

− −−−

√

= (1.0 × W/ )
2

(3.00 × m/s)(8.85 × F/m)108 10−12
10−3 m2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= 0.87 V /m.

= = 2.9 × T .B0
E0

c
10−9

 Light Bulb Fields

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/63121?pdf


7.4.4 https://phys.libretexts.org/@go/page/63121

Assume the bulb’s power output P is distributed uniformly over a sphere of radius 3.0 m to calculate the intensity, and from it,
the electric field.

Solution
The power radiated as visible light is then

.

Significance
The intensity I falls off as the distance squared if the radiation is dispersed uniformly in all directions.

A 60-kW radio transmitter on Earth sends its signal to a satellite 100 km away (Figure ). At what distance in the same
direction would the signal have the same maximum field strength if the transmitter’s output power were increased to 90 kW?
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Figure : In three dimensions, a signal spreads over a solid angle as it travels outward from its source.

Strategy
The area over which the power in a particular direction is dispersed increases as distance squared, as illustrated in Figure .

Change the power output P by a factor of (90 kW/60 kW) and change the area by the same factor to keep  the
same. Then use the proportion of area A in the diagram to distance squared to find the distance that produces the calculated
change in area.

Solution
Using the proportionality of the areas to the squares of the distances, and solving, we obtain from the diagram

Significance
The range of a radio signal is the maximum distance between the transmitter and receiver that allows for normal operation. In
the absence of complications such as reflections from obstacles, the intensity follows an inverse square law, and doubling the
range would require multiplying the power by four.

This page titled 7.4: Energy Carried by Electromagnetic Waves is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

16.4: Energy Carried by Electromagnetic Waves by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-2.

7.4.3

7.4.3

I = =P

A

cϵ0E
2
0

2

r2
2

r2
1

r2

= = ,
A2

A1

90 W

60 W

= (100 km)
90

60

−−−
√

= 122 km.

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/63121?pdf
https://phys.libretexts.org/Courses/Bowdoin_College/Phys1140%3A_Introductory_Physics_II%3A_Part_1/07%3A_Electromagnetic_Waves/7.04%3A_Energy_Carried_by_Electromagnetic_Waves
https://creativecommons.org/licenses/by/4.0
https://openstax.org/
https://openstax.org/details/books/university-physics-volume-2
https://phys.libretexts.org/@go/page/4451
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-2


7.5.1 https://phys.libretexts.org/@go/page/63122

7.5: The Electromagnetic Spectrum

By the end of this section, you will be able to:

Explain how electromagnetic waves are divided into different ranges, depending on wavelength and corresponding
frequency
Describe how electromagnetic waves in different categories are produced
Describe some of the many practical everyday applications of electromagnetic waves

Electromagnetic waves have a vast range of practical everyday applications that includes such diverse uses as communication by
cell phone and radio broadcasting, WiFi, cooking, vision, medical imaging, and treating cancer. In this module, we discuss how
electromagnetic waves are classified into categories such as radio, infrared, ultraviolet, and so on. We also summarize some of the
main applications for each range.

The different categories of electromagnetic waves differ in their wavelength range, or equivalently, in their corresponding
frequency ranges. Their properties change smoothly from one frequency range to the next, with different applications in each
range. A brief overview of the production and utilization of electromagnetic waves is found in Table .

Table : Electromagnetic Waves

Type of wave Production Applications Issues

Radio Accelerating charges
Communications, Remote

controls, MRI
Requires control for band use

Microwaves
Accelerating charges and

thermal agitation
Communications, Ovens,

Radar, Cell phone use
 

Infrared
Thermal agitation and
electronic transitions

Thermal imaging, Heating
Absorbed by atmosphere,

Greenhouse effect

Visible light
Thermal agitation and
electronic transitions

Photosynthesis, Human vision  

Ultraviolet
Thermal agitation and
electronic transitions

Sterilization, Vitamin D
production

Ozone depletion, Cancer
causing

X-rays
Inner electronic transitions and

fast collisions
Security, Medical diagnosis,

Cancer therapy
Cancer causing

Gamma rays Nuclear decay
Nuclear medicine, Security,
Medical diagnosis, Cancer

therapy

Cancer causing, Radiation
damage

The relationship  between frequency f and wavelength  applies to all waves and ensures that greater frequency means
smaller wavelength. Figure  shows how the various types of electromagnetic waves are categorized according to their
wavelengths and frequencies - that is, it shows the electromagnetic spectrum.

 Learning Objectives

7.5.1

7.5.1

c = fλ λ

7.5.2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/63122?pdf
https://phys.libretexts.org/Courses/Bowdoin_College/Phys1140%3A_Introductory_Physics_II%3A_Part_1/07%3A_Electromagnetic_Waves/7.05%3A_The_Electromagnetic_Spectrum


7.5.2 https://phys.libretexts.org/@go/page/63122

Figure : The electromagnetic spectrum, showing the major categories of electromagnetic waves.

Radio Waves
The term radio waves refers to electromagnetic radiation with wavelengths greater than about 0.1 m. Radio waves are commonly
used for audio communications (i.e., for radios), but the term is used for electromagnetic waves in this range regardless of their
application. Radio waves typically result from an alternating current in the wires of a broadcast antenna. They cover a very broad
wavelength range and are divided into many subranges, including microwaves, electromagnetic waves used for AM and FM radio,
cellular telephones, and TV signals.

There is no lowest frequency of radio waves, but ELF waves, or “extremely low frequency” are among the lowest frequencies
commonly encountered, from 3 Hz to 3 kHz. The accelerating charge in the ac currents of electrical power lines produce
electromagnetic waves in this range. ELF waves are able to penetrate sea water, which strongly absorbs electromagnetic waves of
higher frequency, and therefore are useful for submarine communications.

In order to use an electromagnetic wave to transmit information, the amplitude, frequency, or phase of the wave is modulated, or
varied in a controlled way that encodes the intended information into the wave. In AM radio transmission, the amplitude of the
wave is modulated to mimic the vibrations of the sound being conveyed. Fourier’s theorem implies that the modulated AM wave
amounts to a superposition of waves covering some narrow frequency range. Each AM station is assigned a specific carrier
frequency that, by international agreement, is allowed to vary by . In FM radio transmission, the frequency of the wave is
modulated to carry this information, as illustrated in Figure , and the frequency of each station is allowed to use 100 kHz on
each side of its carrier frequency. The electromagnetic wave produces a current in a receiving antenna, and the radio or television
processes the signal to produce the sound and any image. The higher the frequency of the radio wave used to carry the data, the
greater the detailed variation of the wave that can be carried by modulating it over each time unit, and the more data that can be
transmitted per unit of time. The assigned frequencies for AM broadcasting are 540 to 1600 kHz, and for FM are 88 MHz to108
MHz.

Figure : Electromagnetic waves are used to carry communications signals by varying the wave’s amplitude (AM), its
frequency (FM), or its phase.
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Cell phone conversations, and television voice and video images are commonly transmitted as digital data, by converting the
signal into a sequence of binary ones and zeros. This allows clearer data transmission when the signal is weak, and allows using
computer algorithms to compress the digital data to transmit more data in each frequency range. Computer data as well is
transmitted as a sequence of binary ones and zeros, each one or zero constituting one bit of data.

Microwaves
Microwaves are the highest-frequency electromagnetic waves that can be produced by currents in macroscopic circuits and
devices. Microwave frequencies range from about  to nearly . Their high frequencies correspond to short
wavelengths compared with other radio waves—hence the name “microwave.” Microwaves also occur naturally as the cosmic
background radiation left over from the origin of the universe. Along with other ranges of electromagnetic waves, they are part of
the radiation that any object above absolute zero emits and absorbs because of thermal agitation, that is, from the thermal motion
of its atoms and molecules.

Most satellite-transmitted information is carried on microwaves. Radar is a common application of microwaves. By detecting and
timing microwave echoes, radar systems can determine the distance to objects as diverse as clouds, aircraft, or even the surface of
Venus.

Microwaves of 2.45 GHz are commonly used in microwave ovens. The electrons in a water molecule tend to remain closer to the
oxygen nucleus than the hydrogen nuclei (Figure ). This creates two separated centers of equal and opposite charges, giving
the molecule a dipole moment. The oscillating electric field of the microwaves inside the oven exerts a torque that tends to align
each molecule first in one direction and then in the other, with the motion of each molecule coupled to others around it. This pumps
energy into the continual thermal motion of the water to heat the food. The plate under the food contains no water, and remains
relatively unheated.

Figure : The oscillating electric field in a microwave oven exerts a torque on water molecules because of their dipole moment,
and the torque reverses direction  times per second. Interactions between the molecules distributes the energy being
pumped into them. The  and  denote the charge distribution on the molecules.

The microwaves in a microwave oven reflect off the walls of the oven, so that the superposition of waves produces standing waves,
similar to the standing waves of a vibrating guitar or violin string (Normal Modes of a Standing Sound Wave). A rotating fan acts
as a stirrer by reflecting the microwaves in different directions, and food turntables, help spread out the hot spots.

How far apart are the hotspots in a 2.45-GHz microwave oven?

Strategy
Consider the waves along one direction in the oven, being reflected at the opposite wall from where they are generated.

Solution
The antinodes, where maximum intensity occurs, are half the wavelength apart, with separation
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Significance
The distance between the hot spots in a microwave oven are determined by the wavelength of the microwaves.

A cell phone has a radio receiver and a weak radio transmitter, both of which can quickly tune to hundreds of specifically assigned
microwave frequencies. The low intensity of the transmitted signal gives it an intentionally limited range. A ground-based system
links the phone to only to the broadcast tower assigned to the specific small area, or cell, and smoothly transitions its connection to
the next cell when the signal reception there is the stronger one. This enables a cell phone to be used while changing location.

Microwaves also provide the WiFi that enables owners of cell phones, laptop computers, and similar devices to connect wirelessly
to the Internet at home and at coffee shops and airports. A wireless WiFi router is a device that exchanges data over the Internet
through the cable or another connection, and uses microwaves to exchange the data wirelessly with devices such as cell phones and
computers. The term WiFi itself refers to the standards followed in modulating and analyzing the microwaves so that wireless
routers and devices from different manufacturers work compatibly with one another. The computer data in each direction consist of
sequences of binary zeros and ones, each corresponding to a binary bit. The microwaves are in the range of 2.4 GHz to 5.0 GHz
range.

Other wireless technologies also use microwaves to provide everyday communications between devices. Bluetooth developed
alongside WiFi as a standard for radio communication in the 2.4-GHz range between nearby devices, for example, to link to
headphones and audio earpieces to devices such as radios, or a driver’s cell phone to a hands-free device to allow answering phone
calls without fumbling directly with the cell phone.

Microwaves find use also in radio tagging, using RFID (radio frequency identification) technology. Examples are RFID tags
attached to store merchandize, transponder for toll booths use attached to the windshield of a car, or even a chip embedded into a
pet’s skin. The device responds to a microwave signal by emitting a signal of its own with encoded information, allowing stores to
quickly ring up items at their cash registers, drivers to charge tolls to their account without stopping, and lost pets to be reunited
with their owners. NFC (near field communication) works similarly, except it is much shorter range. Its mechanism of interaction is
the induced magnetic field at microwave frequencies between two coils. Cell phones that have NFC capability and the right
software can supply information for purchases using the cell phone instead of a physical credit card. The very short range of the
data transfer is a desired security feature in this case.

Infrared Radiation
The boundary between the microwave and infrared regions of the electromagnetic spectrum is not well defined (Figure ).
Infrared radiation is generally produced by thermal motion, and the vibration and rotation of atoms and molecules. Electronic
transitions in atoms and molecules can also produce infrared radiation. About half of the solar energy arriving at Earth is in the
infrared region, with most of the rest in the visible part of the spectrum. About 23% of the solar energy is absorbed in the
atmosphere, about 48% is absorbed at Earth’s surface, and about 29% is reflected back into space.

The range of infrared frequencies extends up to the lower limit of visible light, just below red. In fact, infrared means “below red.”
Water molecules rotate and vibrate particularly well at infrared frequencies. Reconnaissance satellites can detect buildings,
vehicles, and even individual humans by their infrared emissions, whose power radiation is proportional to the fourth power of the
absolute temperature. More mundanely, we use infrared lamps, including those called quartz heaters, to preferentially warm us
because we absorb infrared better than our surroundings.

The familiar handheld “remotes” for changing channels and settings on television sets often transmit their signal by modulating an
infrared beam. If you try to use a TV remote without the infrared emitter being in direct line of sight with the infrared detector, you
may find the television not responding. Some remotes use Bluetooth instead and reduce this annoyance.
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Visible Light
Visible light is the narrow segment of the electromagnetic spectrum between about 400 nm and about 750 nm to which the normal
human eye responds. Visible light is produced by vibrations and rotations of atoms and molecules, as well as by electronic
transitions within atoms and molecules. The receivers or detectors of light largely utilize electronic transitions.

Red light has the lowest frequencies and longest wavelengths, whereas violet has the highest frequencies and shortest wavelengths
(Figure ). Blackbody radiation from the Sun peaks in the visible part of the spectrum but is more intense in the red than in the
violet, making the sun yellowish in appearance.

Figure . A small part of the electromagnetic spectrum that includes its visible components. The divisions between infrared,
visible, and ultraviolet are not perfectly distinct, nor are those between the seven rainbow colors.

Living things - plants and animals - have evolved to utilize and respond to parts of the electromagnetic spectrum in which they are
embedded. We enjoy the beauty of nature through visible light. Plants are more selective. Photosynthesis uses parts of the visible
spectrum to make sugars.

Ultraviolet Radiation

Ultraviolet means “above violet.” The electromagnetic frequencies of ultraviolet radiation (UV) extend upward from violet, the
highest-frequency visible light. The highest-frequency ultraviolet overlaps with the lowest-frequency X-rays. The wavelengths of
ultraviolet extend from 400 nm down to about 10 nm at its highest frequencies. Ultraviolet is produced by atomic and molecular
motions and electronic transitions.

UV radiation from the Sun is broadly subdivided into three wavelength ranges: UV-A (320–400 nm) is the lowest frequency, then
UV-B (290–320 nm) and UV-C (220–290 nm). Most UV-B and all UV-C are absorbed by ozone (  molecules in the upper
atmosphere. Consequently, 99% of the solar UV radiation reaching Earth’s surface is UV-A.

Sunburn is caused by large exposures to UV-B and UV-C, and repeated exposure can increase the likelihood of skin cancer. The
tanning response is a defense mechanism in which the body produces pigments in inert skin layers to reduce exposure of the living
cells below.

As examined in a later chapter, the shorter the wavelength of light, the greater the energy change of an atom or molecule that
absorbs the light in an electronic transition. This makes short-wavelength ultraviolet light damaging to living cells. It also explains
why ultraviolet radiation is better able than visible light to cause some materials to glow, or fluoresce.

Besides the adverse effects of ultraviolet radiation, there are also benefits of exposure in nature and uses in technology. Vitamin D
production in the skin results from exposure to UV-B radiation, generally from sunlight. Several studies suggest vitamin D
deficiency is associated with the development of a range of cancers (prostate, breast, colon), as well as osteoporosis. Low-intensity
ultraviolet has applications such as providing the energy to cause certain dyes to fluoresce and emit visible light, for example, in
printed money to display hidden watermarks as counterfeit protection.

X-Rays

X-rays have wavelengths from about  to . They have shorter wavelengths, and higher frequencies, than ultraviolet,
so that the energy they transfer at an atomic level is greater. As a result, X-rays have adverse effects on living cells similar to those
of ultraviolet radiation, but they are more penetrating. Cancer and genetic defects can be induced by X-rays. Because of their effect
on rapidly dividing cells, X-rays can also be used to treat and even cure cancer.

The widest use of X-rays is for imaging objects that are opaque to visible light, such as the human body or aircraft parts. In
humans, the risk of cell damage is weighed carefully against the benefit of the diagnostic information obtained.
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Gamma Rays
Soon after nuclear radioactivity was first detected in 1896, it was found that at least three distinct types of radiation were being
emitted, and these were designated as alpha, beta, and gamma rays. The most penetrating nuclear radiation, the gamma ray  -ray)
was later found to be an extremely high-frequency electromagnetic wave.

The lower end of the -ray frequency range overlaps the upper end of the X-ray range. Gamma rays have characteristics identical
to X-rays of the same frequency—they differ only in source. The name “gamma rays” is generally used for electromagnetic
radiation emitted by a nucleus, while X-rays are generally produced by bombarding a target with energetic electrons in an X-ray
tube. At higher frequencies, -rays are more penetrating and more damaging to living tissue. They have many of the same uses as
X-rays, including cancer therapy. Gamma radiation from radioactive materials is used in nuclear medicine.

Use this simulation to explore how light interacts with molecules in our atmosphere.

Explore how light interacts with molecules in our atmosphere.
Identify that absorption of light depends on the molecule and the type of light.
Relate the energy of the light to the resulting motion.
Identify that energy increases from microwave to ultraviolet.
Predict the motion of a molecule based on the type of light it absorbs.

How do the electromagnetic waves for the different kinds of electromagnetic radiation differ?

Answer

They fall into different ranges of wavelength, and therefore also different corresponding ranges of frequency.

This page titled 7.5: The Electromagnetic Spectrum is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform.

16.6: The Electromagnetic Spectrum by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-2.
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