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2.3: Calculating Electric Fields of Charge Distributions

By the end of this section, you will be able to:

Explain what a continuous source charge distribution is and how it is related to the concept of quantization of charge
Describe line charges, surface charges, and volume charges
Calculate the field of a continuous source charge distribution of either sign

The charge distributions we have seen so far have been discrete: made up of individual point particles. This is in contrast with a
continuous charge distribution, which has at least one nonzero dimension. If a charge distribution is continuous rather than
discrete, we can generalize the definition of the electric field. We simply divide the charge into infinitesimal pieces and treat each
piece as a point charge.

Note that because charge is quantized, there is no such thing as a “truly” continuous charge distribution. However, in most practical
cases, the total charge creating the field involves such a huge number of discrete charges that we can safely ignore the discrete
nature of the charge and consider it to be continuous. This is exactly the kind of approximation we make when we deal with a
bucket of water as a continuous fluid, rather than a collection of  molecules.

Our first step is to define a charge density for a charge distribution along a line, across a surface, or within a volume, as shown in
Figure .

Figure : The configuration of charge differential elements for a (a) line charge, (b) sheet of charge, and (c) a volume of charge.
Also note that (d) some of the components of the total electric field cancel out, with the remainder resulting in a net electric field.

Definitions of charge density:

linear charge density:  charge per unit length (Figure ); units are coulombs per meter ( )
surface charge density:  charge per unit area (Figure ); units are coulombs per square meter 
volume charge density:  charge per unit volume (Figure ); units are coulombs per square meter 

For a line charge, a surface charge, and a volume charge, the summation in the definition of an Electric field discussed previously
becomes an integral and  is replaced by , , or , respectively:
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 Definitions: Charge Densities

λ ≡ 2.3.1a C/m
σ ≡ 2.3.1b (C/ )m2

ρ ≡ 2.3.1c (C/ )m3

qi dq = λ dl σ dA ρ dV
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The integrals in Equations -  are generalizations of the expression for the field of a point charge. They implicitly include
and assume the principle of superposition. The “trick” to using them is almost always in coming up with correct expressions for , 

, or , as the case may be, expressed in terms of r, and also expressing the charge density function appropriately. It may be
constant; it might be dependent on location.

Note carefully the meaning of  in these equations: It is the distance from the charge element ( ) to the location
of interest,  (the point in space where you want to determine the field). However, don’t confuse this with the meaning of 

; we are using it and the vector notation  to write three integrals at once. That is, Equation  is actually

Find the electric field a distance  above the midpoint of a straight line segment of length  that carries a uniform line charge
density .

Strategy

Since this is a continuous charge distribution, we conceptually break the wire segment into differential pieces of length , each
of which carries a differential amount of charge

Then, we calculate the differential field created by two symmetrically placed pieces of the wire, using the symmetry of the
setup to simplify the calculation (Figure ). Finally, we integrate this differential field expression over the length of the
wire (half of it, actually, as we explain below) to obtain the complete electric field expression.
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 Example : Electric Field of a Line Segment2.3.1
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Figure : A uniformly charged segment of wire. The electric field at point  can be found by applying the superposition
principle to symmetrically placed charge elements and integrating.

Solution

Before we jump into it, what do we expect the field to “look like” from far away? Since it is a finite line segment, from far
away, it should look like a point charge. We will check the expression we get to see if it meets this expectation.

The electric field for a line charge is given by the general expression

The symmetry of the situation (our choice of the two identical differential pieces of charge) implies the horizontal ( )-
components of the field cancel, so that the net field points in the -direction. Let’s check this formally.

The total field  is the vector sum of the fields from each of the two charge elements (call them  and , for now):

Because the two charge elements are identical and are the same distance away from the point  where we want to calculate the
field, , so those components cancel. This leaves

These components are also equal, so we have

where our differential line element  is , in this example, since we are integrating along a line of charge that lies on the -
axis. (The limits of integration are 0 to , not  to , because we have constructed the net field from two differential
pieces of charge . If we integrated along the entire length, we would pick up an erroneous factor of 2.)

In principle, this is complete. However, to actually calculate this integral, we need to eliminate all the variables that are not
given. In this case, both  and  change as we integrate outward to the end of the line charge, so those are the variables to get
rid of. We can do that the same way we did for the two point charges: by noticing that

and
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Substituting, we obtain

which simplifies to

Significance

Notice, once again, the use of symmetry to simplify the problem. This is a very common strategy for calculating electric fields.
The fields of nonsymmetrical charge distributions have to be handled with multiple integrals and may need to be calculated
numerically by a computer.

How would the strategy used above change to calculate the electric field at a point a distance  above one end of the finite line
segment?

Answer

We will no longer be able to take advantage of symmetry. Instead, we will need to calculate each of the two components of
the electric field with their own integral.

Find the electric field a distance  above the midpoint of an infinite line of charge that carries a uniform line charge density .

Strategy

This is exactly like the preceding example, except the limits of integration will be  to .

Solution

Again, the horizontal components cancel out, so we wind up with

where our differential line element  is , in this example, since we are integrating along a line of charge that lies on the -
axis. Again,

Substituting, we obtain
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 Exercise 2.3.1
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 Example : Electric Field of an Infinite Line of Charge2.3.2
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which simplifies to

Significance

Our strategy for working with continuous charge distributions also gives useful results for charges with infinite dimension.

In the case of a finite line of charge, note that for ,  dominates the  in the denominator, so that Equation  simplifies
to

If you recall that  the total charge on the wire, we have retrieved the expression for the field of a point charge, as expected.

In the limit  on the other hand, we get the field of an infinite straight wire, which is a straight wire whose length is much,
much greater than either of its other dimensions, and also much, much greater than the distance at which the field is to be
calculated:

An interesting artifact of this infinite limit is that we have lost the usual  dependence that we are used to. This will become
even more intriguing in the case of an infinite plane.

A ring has a uniform charge density , with units of coulomb per unit meter of arc. Find the electric field at a point on the axis
passing through the center of the ring.

Strategy

We use the same procedure as for the charged wire. The difference here is that the charge is distributed on a circle. We divide
the circle into infinitesimal elements shaped as arcs on the circle and use polar coordinates shown in Figure .

Figure : The system and variable for calculating the electric field due to a ring of charge.
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 Example : Electric Field due to a Ring of Charge2.3.3A
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Solution

The electric field for a line charge is given by the general expression

A general element of the arc between  and  is of length  and therefore contains a charge equal to . The

element is at a distance of  from , the angle is  and therefore the electric field is

Significance

As usual, symmetry simplified this problem, in this particular case resulting in a trivial integral. Also, when we take the limit
of , we find that

as we expect.

Find the electric field of a circular thin disk of radius  and uniform charge density at a distance  above the center of the disk
(Figure )

Figure : A uniformly charged disk. As in the line charge example, the field above the center of this disk can be calculated
by taking advantage of the symmetry of the charge distribution.

Strategy

The electric field for a surface charge is given by
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To solve surface charge problems, we break the surface into symmetrical differential “stripes” that match the shape of the
surface; here, we’ll use rings, as shown in the figure. Again, by symmetry, the horizontal components cancel and the field is
entirely in the vertical  direction. The vertical component of the electric field is extracted by multiplying by , so

As before, we need to rewrite the unknown factors in the integrand in terms of the given quantities. In this case,

(Please take note of the two different “ ’s” here;  is the distance from the differential ring of charge to the point  where we
wish to determine the field, whereas  is the distance from the center of the disk to the differential ring of charge.) Also, we
already performed the polar angle integral in writing down .

Solution

Substituting all this in, we get

or, more simply,

Significance

Again, it can be shown (via a Taylor expansion) that when , this reduces to

which is the expression for a point charge .

How would the above limit change with a uniformly charged rectangle instead of a disk?

Answer

The point charge would be  where  and  are the sides of the rectangle but otherwise identical.

As , Equation  reduces to the field of an infinite plane, which is a flat sheet whose area is much, much greater than
its thickness, and also much, much greater than the distance at which the field is to be calculated:
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 Exercise 2.3.3
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Note that this field is constant. This surprising result is, again, an artifact of our limit, although one that we will make use of
repeatedly in the future. To understand why this happens, imagine being placed above an infinite plane of constant charge. Does the
plane look any different if you vary your altitude? No—you still see the plane going off to infinity, no matter how far you are from
it. It is important to note that Equation  is because we are above the plane. If we were below, the field would point in the 
direction.

Find the electric field everywhere resulting from two infinite planes with equal but opposite charge densities (Figure ).

Figure : Two charged infinite planes. Note the direction of the electric field.

Strategy

We already know the electric field resulting from a single infinite plane, so we may use the principle of superposition to find
the field from two.

Solution
The electric field points away from the positively charged plane and toward the negatively charged plane. Since the  are equal
and opposite, this means that in the region outside of the two planes, the electric fields cancel each other out to zero. However,
in the region between the planes, the electric fields add, and we get

for the electric field. The  is because in the figure, the field is pointing in the -direction.

Significance

Systems that may be approximated as two infinite planes of this sort provide a useful means of creating uniform electric fields.

What would the electric field look like in a system with two parallel positively charged planes with equal charge densities?

Answer

The electric field would be zero in between, and have magnitude  everywhere else.

This page titled 2.3: Calculating Electric Fields of Charge Distributions is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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 Example : The Field of Two Infinite Planes2.3.4
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