
3.3.1 https://phys.libretexts.org/@go/page/63098

3.3: Electric Potential and Potential Difference

By the end of this section, you will be able to:

Define electric potential, voltage, and potential difference
Define the electron-volt
Calculate electric potential and potential difference from potential energy and electric field
Describe systems in which the electron-volt is a useful unit
Apply conservation of energy to electric systems

Recall that earlier we defined electric field to be a quantity independent of the test charge in a given system, which would
nonetheless allow us to calculate the force that would result on an arbitrary test charge. (The default assumption in the absence of
other information is that the test charge is positive.) We briefly defined a field for gravity, but gravity is always attractive, whereas
the electric force can be either attractive or repulsive. Therefore, although potential energy is perfectly adequate in a gravitational
system, it is convenient to define a quantity that allows us to calculate the work on a charge independent of the magnitude of the
charge. Calculating the work directly may be difficult, since  and the direction and magnitude of  can be complex for
multiple charges, for odd-shaped objects, and along arbitrary paths. But we do know that because , the work, and hence  is
proportional to the test charge . To have a physical quantity that is independent of test charge, we define electric potential  (or
simply potential, since electric is understood) to be the potential energy per unit charge:

The electric potential energy per unit charge is

Since  is proportional to , the dependence on  cancels. Thus,  does not depend on . The change in potential energy  is
crucial, so we are concerned with the difference in potential or potential difference  between two points, where

The electric potential difference between points  and ,  is defined to be the change in potential energy of a
charge  moved from  to , divided by the charge. Units of potential difference are joules per coulomb, given the name volt
(V) after Alessandro Volta.

The familiar term voltage is the common name for electric potential difference. Keep in mind that whenever a voltage is quoted, it
is understood to be the potential difference between two points. For example, every battery has two terminals, and its voltage is the
potential difference between them. More fundamentally, the point you choose to be zero volts is arbitrary. This is analogous to the
fact that gravitational potential energy has an arbitrary zero, such as sea level or perhaps a lecture hall floor. It is worthwhile to
emphasize the distinction between potential difference and electrical potential energy.

The relationship between potential difference (or voltage) and electrical potential energy is given by

or
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Voltage is not the same as energy. Voltage is the energy per unit charge. Thus, a motorcycle battery and a car battery can both have
the same voltage (more precisely, the same potential difference between battery terminals), yet one stores much more energy than
the other because . The car battery can move more charge than the motorcycle battery, although both are 12-V
batteries.

You have a 12.0-V motorcycle battery that can move 5000 C of charge, and a 12.0-V car battery that can move 60,000 C of
charge. How much energy does each deliver? (Assume that the numerical value of each charge is accurate to three significant
figures.)

Strategy
To say we have a 12.0-V battery means that its terminals have a 12.0-V potential difference. When such a battery moves
charge, it puts the charge through a potential difference of 12.0 V, and the charge is given a change in potential energy equal to 

. To find the energy output, we multiply the charge moved by the potential difference.

Solution
For the motorcycle battery,  and . The total energy delivered by the motorcycle battery is

Similarly, for the car battery,  and

Significance
Voltage and energy are related, but they are not the same thing. The voltages of the batteries are identical, but the energy
supplied by each is quite different. A car battery has a much larger engine to start than a motorcycle. Note also that as a battery
is discharged, some of its energy is used internally and its terminal voltage drops, such as when headlights dim because of a
depleted car battery. The energy supplied by the battery is still calculated as in this example, but not all of the energy is
available for external use.

How much energy does a 1.5-V AAA battery have that can move 100 C?

Answer

Note that the energies calculated in the previous example are absolute values. The change in potential energy for the battery is
negative, since it loses energy. These batteries, like many electrical systems, actually move negative charge—electrons in
particular. The batteries repel electrons from their negative terminals ( ) through whatever circuitry is involved and attract them to
their positive terminals ( ), as shown in Figure . The change in potential is  and the charge  is
negative, so that  is negative, meaning the potential energy of the battery has decreased when  has moved from  to 

.

ΔU = qΔV

 Example : Calculating Energy3.3.1

ΔU = qΔV

q = 5000 C ΔV = 12.0 V

Δ = (5000 C)(12.0 V) = (5000 C)(12.0 J/C) = 6.00 × J.Ucycle 104

q = 60, 000 C

Δ = (60, 000 C)(12.0 V) = 7.20 × J.Ucar 105

 Exercise 3.3.1

ΔU = qΔV = (100 C)(1.5 V) = 150 J
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Figure : A battery moves negative charge from its negative terminal through a headlight to its positive terminal. Appropriate
combinations of chemicals in the battery separate charges so that the negative terminal has an excess of negative charge, which is
repelled by it and attracted to the excess positive charge on the other terminal. In terms of potential, the positive terminal is at a
higher voltage than the negative terminal. Inside the battery, both positive and negative charges move.

When a 12.0-V car battery powers a single 30.0-W headlight, how many electrons pass through it each second?

Strategy
To find the number of electrons, we must first find the charge that moves in 1.00 s. The charge moved is related to voltage and
energy through the equations . A 30.0-W lamp uses 30.0 joules per second. Since the battery loses energy, we
have  and, since the electrons are going from the negative terminal to the positive, we see that .

Solution
To find the charge  moved, we solve the equation :

Entering the values for  and , we get

The number of electrons  is the total charge divided by the charge per electron. That is,

Significance
This is a very large number. It is no wonder that we do not ordinarily observe individual electrons with so many being present
in ordinary systems. In fact, electricity had been in use for many decades before it was determined that the moving charges in
many circumstances were negative. Positive charge moving in the opposite direction of negative charge often produces
identical effects; this makes it difficult to determine which is moving or whether both are moving.

How many electrons would go through a 24.0-W lamp?

Answer

The Electron-Volt
The energy per electron is very small in macroscopic situations like that in the previous example—a tiny fraction of a joule. But on
a submicroscopic scale, such energy per particle (electron, proton, or ion) can be of great importance. For example, even a tiny

3.3.1

 Example : How Many Electrons Move through a Headlight Each Second?3.3.2

ΔU = qΔV

ΔU = −30 J ΔV = +12.0 V

q ΔU = qΔV

q = .
ΔU

ΔV

ΔU ΔV

q = = = −2.50 C.
−30.0 J

+12.0 V

−30.0 J

+12.0 J/C

ne

= = 1.56 × electrons.ne

−2.50 C

−1.60 × C/10−19 e−
1019

 Exercise 3.3.2

−2.00 C, = 1.25 × electronsne 1019
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fraction of a joule can be great enough for these particles to destroy organic molecules and harm living tissue. The particle may do
its damage by direct collision, or it may create harmful X-rays, which can also inflict damage. It is useful to have an energy unit
related to submicroscopic effects.

Figure  shows a situation related to the definition of such an energy unit. An electron is accelerated between two charged
metal plates, as it might be in an old-model television tube or oscilloscope. The electron gains kinetic energy that is later converted
into another form—light in the television tube, for example. (Note that in terms of energy, “downhill” for the electron is “uphill”
for a positive charge.) Since energy is related to voltage by , we can think of the joule as a coulomb-volt.

Figure : A typical electron gun accelerates electrons using a potential difference between two separated metal plates. By
conservation of energy, the kinetic energy has to equal the change in potential energy, so . The energy of the electron in
electron-volts is numerically the same as the voltage between the plates. For example, a 5000-V potential difference produces
5000-eV electrons. The conceptual construct, namely two parallel plates with a hole in one, is shown in (a), while a real electron
gun is shown in (b).

On the submicroscopic scale, it is more convenient to define an energy unit called the electron-volt (eV), which is the energy
given to a fundamental charge accelerated through a potential difference of 1 V. In equation form,

An electron accelerated through a potential difference of 1 V is given an energy of 1 eV. It follows that an electron accelerated
through 50 V gains 50 eV. A potential difference of 100,000 V (100 kV) gives an electron an energy of 100,000 eV (100 keV), and
so on. Similarly, an ion with a double positive charge accelerated through 100 V gains 200 eV of energy. These simple relationships
between accelerating voltage and particle charges make the electron-volt a simple and convenient energy unit in such
circumstances.

The electron-volt is commonly employed in submicroscopic processes—chemical valence energies and molecular and nuclear
binding energies are among the quantities often expressed in electron-volts. For example, about 5 eV of energy is required to break
up certain organic molecules. If a proton is accelerated from rest through a potential difference of 30 kV, it acquires an energy of 30
keV (30,000 eV) and can break up as many as 6000 of these molecules .
Nuclear decay energies are on the order of 1 MeV (1,000,000 eV) per event and can thus produce significant biological damage.

3.3.2

ΔU = qΔV

3.3.2
KE = qV

 The Electron-Volt Unit

1 eV = (1.60 × C)(1 V) = (1.60 × C)(1 J/C) = 1.60 × J.10−19 10−19 10−19

(30, 000 eV ÷5 eV per molecule = 6000 molecules)
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Conservation of Energy
The total energy of a system is conserved if there is no net addition (or subtraction) due to work or heat transfer. For conservative
forces, such as the electrostatic force, conservation of energy states that mechanical energy is a constant.

Mechanical energy is the sum of the kinetic energy and potential energy of a system; that is, . A loss of (\U\)
for a charged particle becomes an increase in its (\K\). Conservation of energy is stated in equation form as

or

where i and f stand for initial and final conditions. As we have found many times before, considering energy can give us insights
and facilitate problem solving.

Calculate the final speed of a free electron accelerated from rest through a potential difference of 100 V. (Assume that this
numerical value is accurate to three significant figures.)

Strategy
We have a system with only conservative forces. Assuming the electron is accelerated in a vacuum, and neglecting the
gravitational force (we will check on this assumption later), all of the electrical potential energy is converted into kinetic
energy. We can identify the initial and final forms of energy to be

, , , .

Solution
Conservation of energy states that

Entering the forms identified above, we obtain

We solve this for (\v\):

Entering values for (\q\), (\V\), and (\m\) gives

Significance
Note that both the charge and the initial voltage are negative, as in Figure . From the discussion of electric charge and
electric field, we know that electrostatic forces on small particles are generally very large compared with the gravitational
force. The large final speed confirms that the gravitational force is indeed negligible here. The large speed also indicates how
easy it is to accelerate electrons with small voltages because of their very small mass. Voltages much higher than the 100 V in
this problem are typically used in electron guns. These higher voltages produce electron speeds so great that effects from
special relativity must be taken into account and will be discussed elsewhere. That is why we consider a low voltage
(accurately) in this example.

K+U = constant

K+U = constant

+ = +Ki Ui Kf Uf

 Example : Electrical Potential Energy Converted into Kinetic Energy3.3.3

= 0Ki = mKf
1
2

v2 = qVUi = 0Uf

+ = + .Ki Ui Kf Uf

qV = .
mv2

2

v= .
2qV

m

− −−−
√

v= = 5.93 × m/s.
2(−1.60 × C)(−100 J/C)10−19

9.11 × kg10−31

− −−−−−−−−−−−−−−−−−−−−−−−

√ 106
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How would this example change with a positron? A positron is identical to an electron except the charge is positive.

Answer

It would be going in the opposite direction, with no effect on the calculations as presented.

Voltage and Electric Field
So far, we have explored the relationship between voltage and energy. Now we want to explore the relationship between voltage
and electric field. We will start with the general case for a non-uniform  field. Recall that our general formula for the potential
energy of a test charge  at point  relative to reference point  is

When we substitute in the definition of electric field , this becomes

Applying our definition of potential  to this potential energy, we find that, in general,

From our previous discussion of the potential energy of a charge in an electric field, the result is independent of the path chosen,
and hence we can pick the integral path that is most convenient.

Consider the special case of a positive point charge  at the origin. To calculate the potential caused by  at a distance  from the
origin relative to a reference of 0 at infinity (recall that we did the same for potential energy), let  and , with 

 and use . When we evaluate the integral

for this system, we have

This result,

is the standard form of the potential of a point charge. This will be explored further in the next section.

To examine another interesting special case, suppose a uniform electric field  is produced by placing a potential difference (or
voltage)  across two parallel metal plates, labeled  and  (Figure ). Examining this situation will tell us what voltage is
needed to produce a certain electric field strength. It will also reveal a more fundamental relationship between electric potential and
electric field.

 Exercise 3.3.3
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Figure : The relationship between  and  for parallel conducting plates is . (Note that  in magnitude.
For a charge that is moved from plate  at higher potential to plate  at lower potential, a minus sign needs to be included as
follows: .)

From a physicist’s point of view, either  or  can be used to describe any interaction between charges. However,  is a scalar
quantity and has no direction, whereas  is a vector quantity, having both magnitude and direction. (Note that the magnitude of the
electric field, a scalar quantity, is represented by .) The relationship between  and  is revealed by calculating the work done
by the electric force in moving a charge from point  to point . But, as noted earlier, arbitrary charge distributions require
calculus. We therefore look at a uniform electric field as an interesting special case.

The work done by the electric field in Figure  to move a positive charge  from , the positive plate, higher potential, to ,
the negative plate, lower potential, is

The potential difference between points  and  is

Entering this into the expression for work yields

Work is : here , since the path is parallel to the field. Thus, . Since  we see that 
.

Substituting this expression for work into the previous equation gives

The charge cancels, so we obtain for the voltage between points  and .

In uniform E-field only:

3.3.3 V E E = V /d ΔV = VAB
A B

−ΔV = − =VA VB VAB

ΔV E ⃗  ΔV

E ⃗ 

E ΔV E ⃗ 

A B

3.3.3 q A B

W = −ΔU = −qΔV .

A B

−ΔV = −( − ) = − = .VB VA VA VB VAB

W = q .VAB

W = ⋅ = Fd cosθF ⃗  d ⃗  cosθ = 1 W = Fd F = qE

W = qEd

qEd = q .VAB

A B

= EdVAB

E =
VAB

d
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where  is the distance from  to , or the distance between the plates in Figure . Note that this equation implies that the
units for electric field are volts per meter. We already know the units for electric field are newtons per coulomb; thus, the following
relation among units is valid:

Furthermore, we may extend this to the integral form. Substituting Equation  into our definition for the potential difference
between points  and  we obtain

which simplifies to

As a demonstration, from this we may calculate the potential difference between two points (  and ) equidistant from a point
charge  at the origin, as shown in Figure .

Figure : The arc for calculating the potential difference between two points that are equidistant from a point charge at the
origin.

To do this, we integrate around an arc of the circle of constant radius r between  and , which means we let , while
using . Thus,

for this system becomes

However,  and therefore

This result, that there is no difference in potential along a constant radius from a point charge, will come in handy when we map
potentials.

Dry air can support a maximum electric field strength of about . Above that value, the field creates enough
ionization in the air to make the air a conductor. This allows a discharge or spark that reduces the field. What, then, is the
maximum voltage between two parallel conducting plates separated by 2.5 cm of dry air?

Strategy
We are given the maximum electric field  between the plates and the distance  between them. We can use the equation 

 to calculate the maximum voltage.

Solution
The potential difference or voltage between the plates is

d A B 3.3.3

1 N/C = 1 V/m.

3.3.3

A B

= − = − ⋅ d + ⋅ dVAB VB VA ∫
B

R

E ⃗  l ⃗  ∫
A

R

E ⃗  l ⃗ 

− = − ⋅ d .VB VA ∫
B

A

E ⃗  l ⃗ 

A B

q 3.3.4

3.3.4

A B d = r dφl ⃗  φ̂

=E ⃗  kq

r2 r̂

ΔV = − = − ⋅ d .VB VA ∫
B

A

E ⃗  l ⃗ 

− = − ⋅ r dφ.VB VA ∫
B

A

kq

r2
r̂ φ̂

⋅r̂ φ̂

− = 0.VB VA

 Example : What Is the Highest Voltage Possible between Two Plates?3.3.4A

3.0 ×  V/m106

E d

= EdVAB
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Entering the given values for  and  gives

or

(The answer is quoted to only two digits, since the maximum field strength is approximate.)

Significance
One of the implications of this result is that it takes about 75 kV to make a spark jump across a 2.5-cm (1-in.) gap, or 150 kV
for a 5-cm spark. This limits the voltages that can exist between conductors, perhaps on a power transmission line. A smaller
voltage can cause a spark if there are spines on the surface, since sharp points have larger field strengths than smooth surfaces.
Humid air breaks down at a lower field strength, meaning that a smaller voltage will make a spark jump through humid air. The
largest voltages can be built up with static electricity on dry days (Figure ).

Figure : A spark chamber is used to trace the paths of high-energy particles. Ionization created by the particles as they
pass through the gas between the plates allows a spark to jump. The sparks are perpendicular to the plates, following electric
field lines between them. The potential difference between adjacent plates is not high enough to cause sparks without the
ionization produced by particles from accelerator experiments (or cosmic rays). This form of detector is now archaic and no
longer in use except for demonstration purposes. (credit b: modification of work by Jack Collins)

An electron gun (Figure ) has parallel plates separated by 4.00 cm and gives electrons 25.0 keV of energy. (a) What is the
electric field strength between the plates? (b) What force would this field exert on a piece of plastic with a  charge
that gets between the plates?

Strategy
Since the voltage and plate separation are given, the electric field strength can be calculated directly from the expression 

. Once we know the electric field strength, we can find the force on a charge by using . Since the electric
field is in only one direction, we can write this equation in terms of the magnitudes, .

Solution
a. The expression for the magnitude of the electric field between two uniform metal plates is

Since the electron is a single charge and is given 25.0 keV of energy, the potential difference must be 25.0 kV. Entering this
value for  and the plate separation of 0.0400 m, we obtain

b. The magnitude of the force on a charge in an electric field is obtained from the equation

= Ed.VAB

E d

= (3.0 ×  V/m)(0.025 m) = 7.5 × VVAB 106 104

= 75 kV.VAB

3.3.5

3.3.5

 Example : Field and Force inside an Electron Gun3.3.1B

3.3.2

0.500 μC

E =
VAB
d

= qF ⃗  E ⃗ 

F = qE

E = .
VAB

d

VAB

E = = 6.25 × V/m.
25.0 kV

0.0400 m
105
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Substituting known values gives

Significance Note that the units are newtons, since . Because the electric field is uniform between the plates,
the force on the charge is the same no matter where the charge is located between the plates.

Given a point charge  at the origin, calculate the potential difference between point  a distance 
from , and  a distance  from , where the two points have an angle of  between them (Figure ).

Figure : Find the difference in potential between  and .

Strategy Do this in two steps. The first step is to use  and let  and ,
with  and  Then perform the integral. The second step is to integrate 

around an arc of constant radius , which means we let  with limits , still using .

Then add the two results together.

Solution For the first part,  for this system becomes  which computes to

.

For the second step,  becomes , but  and therefore .
Adding the two parts together, we get 300 V.

Significance
We have demonstrated the use of the integral form of the potential difference to obtain a numerical result. Notice that, in this
particular system, we could have also used the formula for the potential due to a point charge at the two points and simply
taken the difference.

From the examples, how does the energy of a lightning strike vary with the height of the clouds from the ground? Consider the
cloud-ground system to be two parallel plates.

Answer

Given a fixed maximum electric field strength, the potential at which a strike occurs increases with increasing height above
the ground. Hence, each electron will carry more energy. Determining if there is an effect on the total number of electrons
lies in the future.

Before presenting problems involving electrostatics, we suggest a problem-solving strategy to follow for this topic.

F = qE.

F = (0.500 × C)(6.25 × V/m) = 0.313 N.10−6 105

1 V/m = 1 N/C

 Example : Calculating Potential of a Point Charge3.3.4C

q = +2.0 nC P1 a = 4.0 cm

q P2 b = 12.0 cm q φ = 24∘ 3.3.6

3.3.6 P1 P2

− = − ⋅ dVB VA ∫
B

A E ⃗  l ⃗  A = a = 4.0 cm B = b = 12.0 cm

d = d = drl ⃗  r ⃗  r̂ = .E ⃗  kq

r2
r̂ − = − ⋅ dVB VA ∫ B

A
E ⃗  l ⃗ 

r d = r dφl ⃗  φ ⃗  0 ≤ φ ≤ 24∘ =E ⃗  kq

r2 r̂

− = − ⋅ dVB VA ∫ B

A E ⃗  l ⃗  − = − ⋅ drVb Va ∫ b

a

kq

r2 r̂ r̂

ΔV = − dr = kq [ − ]∫ b

a

kq

r2

1
a

1
b

= (8.99 × N / )(2.0 × C) [ − ] = 300 V109 m2 C2 10−9 1
0.040 m

1
0.12 m

− = − ⋅ dVB VA ∫ B

A E ⃗  l ⃗  ΔV = − ⋅ r dφ∫ 24∘

0o
kq

r2 r̂ φ̂ ⋅ = 0r̂ φ̂ ΔV = 0

 Exercise 3.3.4
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1. Examine the situation to determine if static electricity is involved; this may concern separated stationary charges, the forces
among them, and the electric fields they create.

2. Identify the system of interest. This includes noting the number, locations, and types of charges involved.
3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful. Determine

whether the Coulomb force is to be considered directly—if so, it may be useful to draw a free-body diagram, using electric
field lines.

4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). It is important to
distinguish the Coulomb force  from the electric field , for example.

5. Solve the appropriate equation for the quantity to be determined (the unknown) or draw the field lines as requested.
6. Examine the answer to see if it is reasonable: Does it make sense? Are units correct and the numbers involved reasonable?

This page titled 3.3: Electric Potential and Potential Difference is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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