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6.4: Force and Torque on a Current Loop

By the end of this section, you will be able to:

Evaluate the net force on a current loop in an external magnetic field
Evaluate the net torque on a current loop in an external magnetic field
Define the magnetic dipole moment of a current loop

Motors are the most common application of magnetic force on current-carrying wires. Motors contain loops of wire in a magnetic
field. When current is passed through the loops, the magnetic field exerts torque on the loops, which rotates a shaft. Electrical
energy is converted into mechanical work in the process. Once the loop’s surface area is aligned with the magnetic field, the
direction of current is reversed, so there is a continual torque on the loop (Figure ). This reversal of the current is done with
commutators and brushes. The commutator is set to reverse the current flow at set points to keep continual motion in the motor. A
basic commutator has three contact areas to avoid and dead spots where the loop would have zero instantaneous torque at that
point. The brushes press against the commutator, creating electrical contact between parts of the commutator during the spinning
motion.

Figure : A simplified version of a dc electric motor. (a) The rectangular wire loop is placed in a magnetic field. The forces on
the wires closest to the magnetic poles (N and S) are opposite in direction as determined by the right-hand rule-1. Therefore, the
loop has a net torque and rotates to the position shown in (b). (b) The brushes now touch the commutator segments so that no
current flows through the loop. No torque acts on the loop, but the loop continues to spin from the initial velocity given to it in part
(a). By the time the loop flips over, current flows through the wires again but now in the opposite direction, and the process repeats
as in part (a). This causes continual rotation of the loop.

In a uniform magnetic field, a current-carrying loop of wire, such as a loop in a motor, experiences both forces and torques on the
loop. Figure  shows a rectangular loop of wire that carries a current I and has sides of lengths a and b. The loop is in a
uniform magnetic field: . The magnetic force on a straight current-carrying wire of length l is given by . To find the
net force on the loop, we have to apply this equation to each of the four sides. The force on side 1 is

where the direction has been determined with the RHR-1. The current in side 3 flows in the opposite direction to that of side 1, so

The currents in sides 2 and 4 are perpendicular to  and the forces on these sides are
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We can now find the net force on the loop:

Although this result  has been obtained for a rectangular loop, it is far more general and holds for current-carrying
loops of arbitrary shapes; that is, there is no net force on a current loop in a uniform magnetic field.

Figure : (a) A rectangular current loop in a uniform magnetic field is subjected to a net torque but not a net force. (b) A side
view of the coil.

To find the net torque on the current loop shown in Figure , we first consider  and . Since they have the same line of
action and are equal and opposite, the sum of their torques about any axis is zero (see Fixed-Axis Rotation). Thus, if there is any
torque on the loop, it must be furnished by  and . Let’s calculate the torques around the axis that passes through point O of
Figure  (a side view of the coil) and is perpendicular to the plane of the page. The point O is a distance x from side 2 and a
distance  from side 4 of the loop. The moment arms of  and  are  and , respectively, so the net
torque on the loop is

This simplifies to

where  is the area of the loop.

Notice that this torque is independent of x; it is therefore independent of where point O is located in the plane of the current loop.
Consequently, the loop experiences the same torque from the magnetic field about any axis in the plane of the loop and parallel to
the x-axis.

A closed-current loop is commonly referred to as a magnetic dipole and the term IA is known as its magnetic dipole moment .
Actually, the magnetic dipole moment is a vector that is defined as

where  is a unit vector directed perpendicular to the plane of the loop (see Figure ). The direction of  is obtained with the
RHR-2—if you curl the fingers of your right hand in the direction of current flow in the loop, then your thumb points along . If
the loop contains N turns of wire, then its magnetic dipole moment is given by

In terms of the magnetic dipole moment, the torque on a current loop due to a uniform magnetic field can be written simply as

This equation holds for a current loop in a two-dimensional plane of arbitrary shape.

Using a calculation analogous to that found in Capacitance for an electric dipole, the potential energy of a magnetic dipole is
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A circular current loop of radius 2.0 cm carries a current of 2.0 mA. (a) What is the magnitude of its magnetic dipole moment?
(b) If the dipole is oriented at 30 degrees to a uniform magnetic field of magnitude 0.50 T, what is the magnitude of the torque
it experiences and what is its potential energy?

Strategy
The dipole moment is defined by the current times the area of the loop. The area of the loop can be calculated from the area of
the circle. The torque on the loop and potential energy are calculated from identifying the magnetic moment, magnetic field,
and angle oriented in the field.

Solution
1. The magnetic moment μ is calculated by the current times the area of the loop or .

2. The torque and potential energy are calculated by identifying the magnetic moment, magnetic field, and the angle between
these two vectors. The calculations of these quantities are:

Significance
The concept of magnetic moment at the atomic level is discussed in the next chapter. The concept of aligning the magnetic
moment with the magnetic field is the functionality of devices like magnetic motors, whereby switching the external magnetic
field results in a constant spinning of the loop as it tries to align with the field to minimize its potential energy.

In what orientation would a magnetic dipole have to be to produce (a) a maximum torque in a magnetic field? (b) A maximum
energy of the dipole?

Solution

a. aligned or anti-aligned; b. perpendicular
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 Example : Forces and Torques on Current-Carrying Loops6.4.1

πr2

μ = IA = (2.0 × A)(π(0.02 m ) = 2.5 × A ⋅10−3 )2 10−6 m2

τ = × = μB sin θ = (2.5 × A ⋅ )(0.50T )sin( ) = 6.3 × N ⋅ mμ⃗  B⃗  10−6 m2 30o 10−7

U = − ⋅ = −μBcosθ = −(2.5 × A ⋅ )(0.50T )cos( ) = −1.1 × J.μ⃗  B⃗  10−6 m2 30o 10−6

 Exercise 6.4.1

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/63115?pdf
https://phys.libretexts.org/Courses/Bowdoin_College/Phys1140%3A_Introductory_Physics_II%3A_Part_1/06%3A_Magnetic_Fields/6.04%3A_Force_and_Torque_on_a_Current_Loop
https://creativecommons.org/licenses/by/4.0
https://openstax.org/
https://openstax.org/details/books/university-physics-volume-2
https://phys.libretexts.org/@go/page/4418
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-2

