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CHAPTER OVERVIEW

1: C1) Abstraction and Modeling
1.1: About this Text
1.2: Modeling in Physics
1.3: Units and Standards
1.4: Unit Conversion
1.5: Significant Figures

This first section is going to serve two purposes: first, introduce some of the key important concepts that we will need right from
the beginning, like units and significant figures. Second, we want to open up the question: "what is physics"? Like many such
open-ended questions, there are many ways to answer it. It is not going to be our intention to answer this fully in any sense - we
just want to answer it enough so that as a student, you know why this book exists and what you should be getting out of it. To get
right to the point: physics is the study of the abstraction of the physical world.

So that's a pretty obscure statement, so let's break it down a bit. When we say "abstraction", that's basically a way of replacing all
the real physical objects out there that we want to understand (balls, cars, airplanes, etc...objects!) with mathematical
representations of those objects. These representations are simple - sometimes they are just points, or maybe box-shaped things
with wheels to represent cars, etc. The point of the abstraction is both to simplify the problem (points are easier to deal with than
real life planes), and also to make it mathematically precise. "how a car moves" is actually a question far too complicated for a
simple introduction to the world of physics to handle. There are literally millions (way more!) of interactions taking place in the
motion of a car - things like the engine, the wheels, and the transmission - but even little things like the air molecules hitting the
outside of the car and slowing it down. By replacing the entire thing with "a point" or "a box with wheels", we make the problem
simple enough for us to actually perform some calculations to understand it's motion.

We should be clear what the kind of mathematical precision we are talking about here as well. We don't mean "calculating the exact
value of the speed of the car to 5 decimal places" (we'll see in this chapter that kind of precision is not actually what we are after).
We mean something more like "numerically well-defined". For example, if we said "The position of the car is 5 m from the end of
the race", we can't actually perform any calculations with that information, because which part of the car are we talking about? For
sure, you could say "the front", or "the back", or "30 cm from the driver", but now we might need to know even more things about
the car - how big is it, or how big the seats are (to determine the position of the driver relative to the finish line). The abstraction
avoids all this by the replacement of real objects with simple representations of them. If the car is represented as a point, then "5 m
from the end of the race" becomes very well-defined, because it can only refer to one location! Similarly for the representation of
the car as a box with wheels - more information is required (dimensions of the box and the wheels?), but it's still far less then what
might be required for the real, physical car.

Now that we've covered "abstraction", what does "study of the abstraction" mean? Well, it's often said that physics is "the study of
the fundamental interactions" - that's what we mean, but we mean it specifically within the abstraction. We aren't actually studying
how the fundamental interactions of the real world influence real physical objects - we are representing the world with an
abstraction, and studying the abstraction. The force of gravity is actually enormously complicated in the real world (it's
everywhere, it acts between each individual molecule and each other individual molecule....you'd be calculating for your entire
life!), but in our abstraction, it's just a simple force acting between two points. By proposing simple, fundamental interactions
between objects we are hoping to model the real world.

Of course, we claim that physics actually is the study of the real world, but you aren't ever going to see that connection by using
solely the abstraction - you have to go into the laboratory and perform experiments to verify that our abstraction is an "accurate and
precise" representation of the real world. We aren't going to talk much about that in this text, since it is primarily designed to give
you an introduction to the prediction and quantitative aspects of the field - hopefully, your theoretical experience with this text will
be coupled with a laboratory experience as well, so that you can see how well physics actually does at describing phenomena and
events in the real world.
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1.1: About this Text
This text has been written with several goals in mind:

Break sections into short chucks appropriate for reading before each class meeting, specifically for use in "studio physics"
classrooms.
Present conservation laws before kinematics.
Acknowledge that students may be co-enrolled in their first calculus course.

Before proceeding with the text, we will motivate and explain each of these goals. Being an open source resource, this text is
constantly in a state of improvement. Feel free to write to the editor, Professor Christopher Duston (dustonc at merrimack dot edu)
if you find significant errors that you think should be corrected.

This text has been written to support a so-called "studio" approach to teaching physics. There are many flavors of this pedagogy
(for example, SCALE-UP from North Carolina State, Studio Physics from Florida State, and Studio Physics at The Massachusetts
Institute of Technology), but an essential element is that class time is significantly devoted to problem solving over lecture time. To
support this, it is necessary for students to be exposed to the material at some level before even entering the classroom. There are
several ways to achieve that (this is the so-called "flipped classroom model"), but it is our feeling that student success is maximized
by designing this initial exposure around the studio model, rather then using a traditional textbook. A traditional and carefully
constructed 1000-page physics textbook is a beautiful thing, but if the material is broken into sections appropriate for the content,
rather then the delivery system, there will be a fundamental mismatch between the goals of the students and the goals of the
textbook. So the first goal of this text is to break the content into sections appropriate for single class meetings. At Merrimack
College (where this textbook was designed to be used), there are two class meetings per week, each class meeting is about two
hours long, and each meeting tackles one section of this text.

This text was also designed to be the initial source of exposure to the content. Another challenge when using a traditional physics
textbook in the studio model is that the first thing a novice reads about might be a completely well-thought out and well-motivated
description of a physical law, but a student is likely not prepared for that level of description. The process of learning is not linear
and hierarchical, but chaotic and varied. Of course, in the end we want students to be experts a la Bloom's Taxonomy, but starting
from the bottom and explaining how they get to the top will not service their own internalized development of the material. To that
end, the goal of this text is primarily to provide students with enough material to "soak the sponge", so that when they enter the
class they are prepared to learn (and make mistakes!), rather then prepared to solve problems on an exam. To achieve this, the
material is presented in a streamlined matter, with simplified motivations and only the first few initial steps spelled out. For sure,
this means more complicated material is occasionally only briefly touched upon, and in some cases left out completely. However,
we would argue that as a fundamental science, more complicated material in the field of physics can always be added in by
instructor demand, in a way that their own students can handle it. And, given that anything can be found on the internet, collecting
special topics in textbooks seems like something which has already been done by any number of a myriad of authors. If that's what
you want, this textbook is not for you!

The content order of this textbook (conservation laws before Newton's laws) is inspired by the wonderful texts of Eric Mazur and
Thomas Moore (in fact, the current version of this book blatantly steals the chapter order from Moore's Six Ideas In Physics, Units
C and N). For more well-thought out motivations, one can consult those admirable texts - for our part, we will simply motivate this
in two ways. First, in many ways conservation laws are more fundamental then Newton's laws. Indeed, the argument about the
invariance of specific quantities under time and space translations is so fundamental that it boarders on the Philosophical nature of
the Universe, rather then our particular approach to modeling it. More directly, equations like  are scalar and discrete, and
therefore typically easier for students to deal with then vector expressions that imply continuous change, like . Second, it
is our experience that students have already been exposed to Newton's laws and kinematics - and in some cases have built up
significant misunderstandings that are difficult to break down. (A trivial example might be the statement that "the force of gravity
is negative!", a viewpoint strongly held by many students. This concept is so rife with intellectual inconsistency that I regret even
bringing it up...) By starting students with new, consistently correct ideas about modeling and problem solving in the context of
conservation laws, we prepare them to tear down their previous knowledge and rebuild it on a more solid foundation.

Finally, this textbook is written with the knowledge that some (many?) students are going to be stepping into their first physics
class while simultaneously taking their first calculus class. This breaks the traditional "calculus before physics" mantra that has
been a part of our pedagogy for decades. The source of this change will not be covered here, but we are highly motivated to deal
with it rather then preach about its evils from the rooftops. Of course, as a textbook that primarily covers mechanics, it's absolutely
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true that most of what can be found in this textbook is actually directly derivable from simple ideas based in calculus. However,
that is also not usually where students coming to the field are, and it would be an injustice to ask them to climb that mountain
before demonstrating the joy of understanding basic concepts in the field. More practically, it is our experience that in so-called
"calculus-based physics classes", the biggest challenges for students is not the calculus itself, but the vector algebra and analysis
which is utilized in nearly no other field as extensively as physics. Therefore, we do not view the loss of a semester of calculus
before this class as a significant barrier, and do not start by assuming students have it. By the second half of the book (Newton's
laws), it is assumed that students have a grasp of all the basic notations from calculus.

Open Source Resources and the Construction of This Text

From the outset, we must acknowledge that this text fails in all the goals presented above. Writing a text from scratch is a lengthy
business, and we have students to teach! However, since the advent of free and open source educational resources, another avenue
has been opened - the "collect, evaluate, and modify" approach. Open source solutions have been available for some time
(University Physics by OpenStax is perhaps the most well-known example, as well as Calculus-Based Physics by Jeffrey Schnick),
but these followed the more traditional order of material. However, once Julio Gea-Banacloche published his fantastic University
Physics I: Classical Mechanics, the possibility of satisfying our goals via open source publication became realizable. However,
rearranging and breaking apart a textbook comes with it's own dangers, and we are squarely in the middle of those dangers with
this text, which was constructed in the following way:

1. Rearrange the Gea-Banacloche text to match the specific order of material, which closely follows Thomas Moore's book.
2. Supplement material which is lacking from OpenStax.
3. Write new material to fill in some gaps.

As such, we owe a great deal of gratitude to both Gea-Banacloche and the OpenStax organization, for making such an approach
feasible. However, the responsibility is now all on our shoulders, to continue to modify and develop this book so that eventually we
can satisfy the lofty pedagogical and practical goals we outlined at the beginning of this section.

Whiteboard Problems

In our studio classroom, over half the time is spent solving problems on whiteboards in groups. During this time, the instructor (and
typically one or two learning assistants) are on hand and available to assist if a group gets stuck. Over the years, we've developed
many more of these style problems then we will typically use (3-4 per class period, generally), so we've included the extras in this
text. At the end of each chapter we will have an "Example" section, and these whiteboard problems will be presented there (along
with some good examples from the two main source texts we discussed above). These can be used identically to example problems,
or they could be used as actual whiteboard problems for a studio classroom. In the future, we are planning on adding our entire set
of whiteboard problems to these sections - this will correspond with a generally shortening of the actual texts of the chapter, to
match our goal of being accessible as a pre-class reading assignment.

1.1: About this Text is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston, Merrimack College.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63356?pdf
https://openstax.org/details/books/university-physics-volume-1
https://phys.libretexts.org/Bookshelves/University_Physics/Calculus-Based_Physics_(Schnick)
https://open.umn.edu/opentextbooks/textbooks/768
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/01%3A_C1)_Abstraction_and_Modeling/1.01%3A_About_this_Text
https://creativecommons.org/licenses/by-sa/


1.2.1 https://phys.libretexts.org/@go/page/63138

1.2: Modeling in Physics
Classical mechanics is the branch of physics that deals with the study of the motion of anything (roughly speaking) larger than an
atom or a molecule. That is a lot of territory, and the methods and concepts of classical mechanics are at the foundation of any
branch of science or engineering that is concerned with the motion of anything from a star to an amoeba—fluids, rocks, animals,
planets, and any and all kinds of machines. Moreover, even though the accurate description of processes at the atomic level requires
the (formally very different) methods of quantum mechanics, at least three of the basic concepts of classical mechanics that we are
going to study this semester, namely, momentum, energy, and angular momentum, carry over into quantum mechanics as well, with
the last two playing, in fact, an essential role.

Particles in Classical Mechanics
In the study of motion, the most basic starting point is the concept of the position of an object. Clearly, if we want to describe
accurately the position of a macroscopic object such as a car, we may need a lot of information, including the precise shape of the
car, whether it is turned this way or that way, and so on; however, if all we want to know is how far the car is from Fort Smith or
Fayetteville, we do not need any of that: we can just treat the car as a dot, or mathematical point, on the map—which is the way
your GPS screen will show it, anyway. When we do this, we say that are describing the car (or whatever the macroscopic object
may be) as a particle.

In classical mechanics, an “ideal” particle is an object with no appreciable size—a mathematical point. In one dimension (that is to
say, along a straight line), its position can be specified just by giving a single number, the distance from some reference point, as
we shall see in a moment (in three dimensions, of course, three numbers are required). In terms of energy (which is perhaps the
most important concept in all of physics, and which we will introduce properly in due course), an ideal particle has only one kind
of energy, what we will later call translational kinetic energy; it cannot have, for instance, rotational kinetic energy (since it has “no
shape” for practical purposes), or any form of internal energy (elastic, thermal, etc.), since we assume it is too small to have any
internal structure in the first place.

The reason this is a useful concept is not just that we can often treat extended objects as particles in an approximate way (like the
car in the example above), but also, and most importantly, that if we want to be more precise in our calculations, we can always
treat an extended object (mathematically) as a collection of “particles.” The physical properties of the object, such as its energy,
momentum, rotational inertia, and so forth, can then be obtained by adding up the corresponding quantities for all the particles
making up the object. Not only that, but the interactions between two extended objects can also be calculated by adding up the
interactions between all the particles making up the two objects. This is how, once we know the form of the gravitational force
between two particles (which is fairly simple, as we will see in Section 8.7), we can use that to calculate the force of gravity
between a planet and its satellites, which can be fairly complicated in detail, depending, for instance, on the relative orientation of
the planet and the satellite.

The mathematical tool we use to calculate these “sums” is calculus—specifically, integration—and you will see many examples of
this... in your calculus courses. Calculus I is only a corequisite for this course, so we will not make a lot of use of it here, and in any
case you would need multidimensional integrals, which are an even more advanced subject, to do these kinds of calculations. But it
may be good for you to keep these ideas on the back of your mind. Calculus was, in fact, invented by Sir Isaac Newton precisely
for this purpose, and the developments of physics and mathematics have been closely linked together ever since.

Anyway, back to particles, the plan for this semester is as follows: we will start our description of motion by treating every object
(even fairly large ones, such as cars) as a “particle,” because we will only be concerned at first with its translational motion and the
corresponding energy. Then we will progressively make things more complex: by considering systems of two or more particles, we
will start to deal with the internal energy of a system. Then we will move to the study of rigid bodies, which are another important
idealization: extended objects whose parts all move together as the object undergoes a translation or a rotation. This will allow us to
introduce the concept of rotational kinetic energy. Eventually we will consider wave motion, where different parts of an extended
object (or “medium”) move relative to each other. So, you see, there is a logical progression here, with most parts of the course
building on top of the previous ones, and energy as one of the main connecting themes. The technical word for the process being
described in the preceding paragraphs is abstraction; the essence of which is to take the physical world and model it with abstract
mathematical quantities. We can then use these quantities to construct physical theories, make predictions, and verify them with
experiments. In this text we will primarily be interested in the middle section of this process - taking physical laws and making
predictions about how objects in the real world will behave.
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Aside: The Atomic Perspective
As an aside, it should perhaps be mentioned that the building up of classical mechanics around this concept of ideal particles had
nothing to do, initially, with any belief in “atoms,” or an atomic theory of matter. Indeed, for most 18th and 19th century physicists,
matter was supposed to be a continuous medium, and its (mental) division into particles was just a mathematical convenience.

The atomic hypothesis became increasingly more plausible as the 19th century wore on, and by the 1920’s, when quantum
mechanics came along, physicists had to face a surprising development: matter, it turned out, was indeed made up of “elementary
particles,” but these particles could not, in fact, be themselves described by the laws of classical mechanics. One could not, for
instance, attribute to them simultaneously well-defined positions and velocities. Yet, in spite of this, most of the conclusions of
classical mechanics remain valid for macroscopic objects, because, most of the time, it is OK to (formally) “break up” extended
objects into chunks that are small enough to be treated as particles, but large enough that one does not need quantum mechanics to
describe their behavior.

Quantum properties were first found to manifest themselves at the macroscopic level when dealing with thermal energy, because at
one point it really became necessary to figure out where and how the energy was stored at the truly microscopic (atomic) level.
Thus, after centuries of successes, classical mechanics met its first failure with the so-called problem of the specific heats, and a
completely new physical theory—quantum mechanics—had to be developed in order to deal with the newly-discovered atomic
world. But all this, as they say, is another story, and for our very brief dealings with thermal physics—the last chapter in this book
—we will just take specific heats as given, that is to say, something you measure (or look up in a table), rather than something you
try to calculate from theory.

This page titled 1.2: Modeling in Physics is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-
Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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1.3: Units and Standards

Describe how SI base units are defined.
Describe how derived units are created from base units.
Express quantities given in SI units using metric prefixes.

As we saw previously, the range of objects and phenomena studied in physics is immense. From the incredibly short lifetime of a
nucleus to the age of Earth, from the tiny sizes of subnuclear particles to the vast distance to the edges of the known universe, from
the force exerted by a jumping flea to the force between Earth and the Sun, there are enough factors of 10 to challenge the
imagination of even the most experienced scientist. Giving numerical values for physical quantities and equations for physical
principles allows us to understand nature much more deeply than qualitative descriptions alone. To comprehend these vast ranges,
we must also have accepted units in which to express them. We shall find that even in the potentially mundane discussion of
meters, kilograms, and seconds, a profound simplicity of nature appears: all physical quantities can be expressed as combinations
of only seven base physical quantities.

We define a physical quantity either by specifying how it is measured or by stating how it is calculated from other measurements.
For example, we might define distance and time by specifying methods for measuring them, such as using a meter stick and a
stopwatch. Then, we could define average speed by stating that it is calculated as the total distance traveled divided by time of
travel.

Measurements of physical quantities are expressed in terms of units, which are standardized values. For example, the length of a
race, which is a physical quantity, can be expressed in units of meters (for sprinters) or kilometers (for distance runners). Without
standardized units, it would be extremely difficult for scientists to express and compare measured values in a meaningful way
(Figure ).

Figure : Distances given in unknown units are maddeningly useless.

Two major systems of units are used in the world: SI units (for the French Système International d’Unités), also known as the
metric system, and English units (also known as the customary or imperial system). English units were historically used in
nations once ruled by the British Empire and are still widely used in the United States. English units may also be referred to as the
foot–pound–second (fps) system, as opposed to the centimeter–gram–second (cgs) system. You may also encounter the term
SAE units, named after the Society of Automotive Engineers. Products such as fasteners and automotive tools (for example,
wrenches) that are measured in inches rather than metric units are referred to as SAE fasteners or SAE wrenches.

Virtually every other country in the world (except the United States) now uses SI units as the standard. The metric system is also
the standard system agreed on by scientists and mathematicians.

SI Units: Base and Derived Units
In any system of units, the units for some physical quantities must be defined through a measurement process. These are called the
base quantities for that system and their units are the system’s base units. All other physical quantities can then be expressed as
algebraic combinations of the base quantities. Each of these physical quantities is then known as a derived quantity and each unit
is called a derived unit. The choice of base quantities is somewhat arbitrary, as long as they are independent of each other and all
other quantities can be derived from them. Typically, the goal is to choose physical quantities that can be measured accurately to a
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high precision as the base quantities. The reason for this is simple. Since the derived units can be expressed as algebraic
combinations of the base units, they can only be as accurate and precise as the base units from which they are derived.

Based on such considerations, the International Standards Organization recommends using seven base quantities, which form the
International System of Quantities (ISQ). These are the base quantities used to define the SI base units. Table  lists these seven
ISQ base quantities and the corresponding SI base units.

Table : ISQ Base Quantities and Their SI Units

ISQ Base Quantity SI Base Unit

Length meter (m)

Mass kilogram (kg)

Time second (s)

Electrical Current ampere (A)

Thermodynamic Temperature kelvin (K)

Amount of Substance mole (mol)

Luminous Intensity candela (cd)

You are probably already familiar with some derived quantities that can be formed from the base quantities in Table . For
example, the geometric concept of area is always calculated as the product of two lengths. Thus, area is a derived quantity that can
be expressed in terms of SI base units using square meters (m x m = m ). Similarly, volume is a derived quantity that can be
expressed in cubic meters (m ). Speed is length per time; so in terms of SI base units, we could measure it in meters per second
(m/s). Volume mass density (or just density) is mass per volume, which is expressed in terms of SI base units such as kilograms per
cubic meter (kg/m ). Angles can also be thought of as derived quantities because they can be defined as the ratio of the arc length
subtended by two radii of a circle to the radius of the circle. This is how the radian is defined. Depending on your background and
interests, you may be able to come up with other derived quantities, such as the mass flow rate (kg/s) or volume flow rate (m /s) of
a fluid, electric charge (A • s), mass flux density [kg/(m • s)], and so on. We will see many more examples throughout this text. For
now, the point is that every physical quantity can be derived from the seven base quantities in Table , and the units of every
physical quantity can be derived from the seven SI base units.

For the most part, we use SI units in this text. Non-SI units are used in a few applications in which they are in very common use,
such as the measurement of temperature in degrees Celsius (°C), the measurement of fluid volume in liters (L), and the
measurement of energies of elementary particles in electron-volts (eV). Whenever non-SI units are discussed, they are tied to SI
units through conversions. For example, 1 L is 10  m .

Check out a comprehensive source of information on SI units at the National Institute of Standards and Technology (NIST)
Reference on Constants, Units, and Uncertainty.

Units of Time, Length, and Mass: The Second, Meter, and Kilogram
The initial chapters in this textmap are concerned with mechanics, fluids, and waves. In these subjects all pertinent physical
quantities can be expressed in terms of the base units of length, mass, and time. Therefore, we now turn to a discussion of these
three base units, leaving discussion of the others until they are needed later.

The Second

The SI unit for time, the second (abbreviated s), has a long history. For many years it was defined as 1/86,400 of a mean solar day.
More recently, a new standard was adopted to gain greater accuracy and to define the second in terms of a nonvarying or constant
physical phenomenon (because the solar day is getting longer as a result of the very gradual slowing of Earth’s rotation). Cesium
atoms can be made to vibrate in a very steady way, and these vibrations can be readily observed and counted. In 1967, the second
was redefined as the time required for 9,192,631,770 of these vibrations to occur (Figure ). Note that this may seem like more
precision than you would ever need, but it isn’t—GPSs rely on the precision of atomic clocks to be able to give you turn-by-turn
directions on the surface of Earth, far from the satellites broadcasting their location.
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Figure : An atomic clock such as this one uses the vibrations of cesium atoms to keep time to a precision of better than a
microsecond per year. The fundamental unit of time, the second, is based on such clocks. This image looks down from the top of an
atomic fountain nearly 30 feet tall. (credit: Steve Jurvetson)

The Meter

The SI unit for length is the meter (abbreviated m); its definition has also changed over time to become more precise. The meter
was first defined in 1791 as 1/10,000,000 of the distance from the equator to the North Pole. This measurement was improved in
1889 by redefining the meter to be the distance between two engraved lines on a platinum–iridium bar now kept near Paris. By
1960, it had become possible to define the meter even more accurately in terms of the wavelength of light, so it was again redefined
as 1,650,763.73 wavelengths of orange light emitted by krypton atoms. In 1983, the meter was given its current definition (in part
for greater accuracy) as the distance light travels in a vacuum in 1/299,792,458 of a second (Figure ). This change came after
knowing the speed of light to be exactly 299,792,458 m/s. The length of the meter will change if the speed of light is someday
measured with greater accuracy.

Figure : The meter is defined to be the distance light travels in 1/299,792,458 of a second in a vacuum. Distance traveled is
speed multiplied by time.

The Kilogram

The SI unit for mass is the kilogram (abbreviated kg); From 1795–2018 it was defined to be the mass of a platinum–iridium
cylinder kept with the old meter standard at the International Bureau of Weights and Measures near Paris. However, this cylinder
has lost roughly 50 micrograms since it was created. Because this is the standard, this has shifted how we defined a kilogram.
Therefore, a new definition was adopted in May 2019 based on the Planck constant and other constants which will never change in
value. We will study Planck’s constant in quantum mechanics, which is an area of physics that describes how the smallest pieces of
the universe work. The kilogram is measured on a Kibble balance (see ). When a weight is placed on a Kibble balance, an
electrical current is produced that is proportional to Planck’s constant. Since Planck’s constant is defined, the exact current
measurements in the balance define the kilogram.
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Figure : Redefining the SI unit of mass. The U.S. National Institute of Standards and Technology’s Kibble balance is a
machine that balances the weight of a test mass with the resulting electrical current needed for a force to balance it.

Metric Prefixes
SI units are part of the metric system, which is convenient for scientific and engineering calculations because the units are
categorized by factors of 10. Table  lists the metric prefixes and symbols used to denote various factors of 10 in SI units. For
example, a centimeter is one-hundredth of a meter (in symbols, 1 cm = 10  m) and a kilometer is a thousand meters (1 km = 10
m). Similarly, a megagram is a million grams (1 Mg = 10  g), a nanosecond is a billionth of a second (1 ns = 10  s), and a
terameter is a trillion meters (1 Tm = 10  m).

Table : Metric Prefixes for Powers of 10 and Their Symbols

Prefix Symbol Meaning Prefix Symbol Meaning

yotta- Y 10 yocto- Y 10

zetta- Z 10 zepto- Z 10

exa- E 10 atto- E 10

peta- P 10 femto- P 10

tera- T 10 pico- T 10

giga- G 10 nano- G 10

mega- M 10 micro- M 10

kilo- k 10 milli- k 10

hecto- h 10 centi- h 10

deka- da 10 deci- da 10

The only rule when using metric prefixes is that you cannot “double them up.” For example, if you have measurements in
petameters (1 Pm = 10  m), it is not proper to talk about megagigameters, although 10  x 10  = 10 . In practice, the only time this
becomes a bit confusing is when discussing masses. As we have seen, the base SI unit of mass is the kilogram (kg), but metric
prefixes need to be applied to the gram (g), because we are not allowed to “double-up” prefixes. Thus, a thousand kilograms (10
kg) is written as a megagram (1 Mg) since
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Incidentally, 10  kg is also called a metric ton, abbreviated t. This is one of the units outside the SI system considered acceptable
for use with SI units.

As we see in the next section, metric systems have the advantage that conversions of units involve only powers of 10. There are
100 cm in 1 m, 1000 m in 1 km, and so on. In nonmetric systems, such as the English system of units, the relationships are not as
simple—there are 12 in in 1 ft, 5280 ft in 1 mi, and so on.

Another advantage of metric systems is that the same unit can be used over extremely large ranges of values simply by scaling it
with an appropriate metric prefix. The prefix is chosen by the order of magnitude of physical quantities commonly found in the task
at hand. For example, distances in meters are suitable in construction, whereas distances in kilometers are appropriate for air travel,
and nanometers are convenient in optical design. With the metric system there is no need to invent new units for particular
applications. Instead, we rescale the units with which we are already familiar.

Restate the mass 1.93 x 10  kg using a metric prefix such that the resulting numerical value is bigger than one but less than
1000.

Strategy

Since we are not allowed to “double-up” prefixes, we first need to restate the mass in grams by replacing the prefix symbol k
with a factor of 10  (Table ). Then, we should see which two prefixes in Table  are closest to the resulting power of
10 when the number is written in scientific notation. We use whichever of these two prefixes gives us a number between one
and 1000.

Solution
Replacing the k in kilogram with a factor of 10 , we find that

From Table , we see that 10  is between “peta-” (10 ) and “exa-” (10 ). If we use the “peta-” prefix, then we find that
1.93 × 10  g = 1.93 × 10  Pg, since 16 = 1 + 15. Alternatively, if we use the “exa-” prefix we find that 1.93 x 10  g = 1.93 x
10 Eg, since 16 = −2 + 18. Because the problem asks for the numerical value between one and 1000, we use the “peta-”
prefix and the answer is 19.3 Pg.

Significance
It is easy to make silly arithmetic errors when switching from one prefix to another, so it is always a good idea to check that
our final answer matches the number we started with. An easy way to do this is to put both numbers in scientific notation and
count powers of 10, including the ones hidden in prefixes. If we did not make a mistake, the powers of 10 should match up. In
this problem, we started with 1.93 x 10  kg, so we have 13 + 3 = 16 powers of 10. Our final answer in scientific notation is
1.93 x 10  Pg, so we have 1 + 15 = 16 powers of 10. So, everything checks out.

If this mass arose from a calculation, we would also want to check to determine whether a mass this large makes any sense in
the context of the problem. For this, Figure 1.4 might be helpful.

Restate 4.79 x 10  kg using a metric prefix such that the resulting number is bigger than one but less than 1000.

Answer

Add texts here. Do not delete this text first.

This page titled 1.3: Units and Standards is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.
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1.4: Unit Conversion

Use conversion factors to express the value of a given quantity in different units.

It is often necessary to convert from one unit to another. For example, if you are reading a European cookbook, some quantities
may be expressed in units of liters and you need to convert them to cups. Or perhaps you are reading walking directions from one
location to another and you are interested in how many miles you will be walking. In this case, you may need to convert units of
feet or meters to miles.

Let’s consider a simple example of how to convert units. Suppose we want to convert 80 m to kilometers. The first thing to do is to
list the units you have and the units to which you want to convert. In this case, we have units in meters and we want to convert to
kilometers. Next, we need to determine a conversion factor relating meters to kilometers. A conversion factor is a ratio that
expresses how many of one unit are equal to another unit. For example, there are 12 in. in 1 ft, 1609 m in 1 mi, 100 cm in 1 m, 60 s
in 1 min, and so on. Refer to Appendix B for a more complete list of conversion factors. In this case, we know that there are 1000
m in 1 km. Now we can set up our unit conversion. We write the units we have and then multiply them by the conversion factor so
the units cancel out, as shown:

Note that the unwanted meter unit cancels, leaving only the desired kilometer unit. You can use this method to convert between any
type of unit. Now, the conversion of 80 m to kilometers is simply the use of a metric prefix, as we saw in the preceding section, so
we can get the same answer just as easily by noting that

since “kilo-” means 10  and 1 = −2 + 3. However, using conversion factors is handy when converting between units that are not
metric or when converting between derived units, as the following examples illustrate.

The distance from the university to home is 10 mi and it usually takes 20 min to drive this distance. Calculate the average
speed in meters per second (m/s). (Note: Average speed is distance traveled divided by time of travel.)

Strategy

First we calculate the average speed using the given units, then we can get the average speed into the desired units by picking
the correct conversion factors and multiplying by them. The correct conversion factors are those that cancel the unwanted units
and leave the desired units in their place. In this case, we want to convert miles to meters, so we need to know the fact that
there are 1609 m in 1 mi. We also want to convert minutes to seconds, so we use the conversion of 60 s in 1 min.

Solution
1. Calculate average speed. Average speed is distance traveled divided by time of travel. (Take this definition as a given for

now. Average speed and other motion concepts are covered in later chapters.) In equation form,

2. Substitute the given values for distance and time:

3. Convert miles per minute to meters per second by multiplying by the conversion factor that cancels miles and leave meters,
and also by the conversion factor that cancels minutes and leave seconds:
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Significance
Check the answer in the following ways:

1. Be sure the units in the unit conversion cancel correctly. If the unit conversion factor was written upside down, the units do
not cancel correctly in the equation. We see the “miles” in the numerator in 0.50 mi/min cancels the “mile” in the
denominator in the first conversion factor. Also, the “min” in the denominator in 0.50 mi/min cancels the “min” in the
numerator in the second conversion factor.

2. Check that the units of the final answer are the desired units. The problem asked us to solve for average speed in units of
meters per second and, after the cancelations, the only units left are a meter (m) in the numerator and a second (s) in the
denominator, so we have indeed obtained these units.

Light travels about 9 Pm in a year. Given that a year is about 3 x 10  s, what is the speed of light in meters per second?

Answer

Add texts here. Do not delete this text first.

The density of iron is 7.86 g/cm  under standard conditions. Convert this to kg/m .

Strategy

We need to convert grams to kilograms and cubic centimeters to cubic meters. The conversion factors we need are 1 kg = 10  g
and 1 cm = 10 m. However, we are dealing with cubic centimeters (cm  = cm x cm x cm), so we have to use the second
conversion factor three times (that is, we need to cube it). The idea is still to multiply by the conversion factors in such a way
that they cancel the units we want to get rid of and introduce the units we want to keep.

Solution

Significance
Remember, it’s always important to check the answer.

1. Be sure to cancel the units in the unit conversion correctly. We see that the gram (“g”) in the numerator in 7.86 g/cm
cancels the “g” in the denominator in the first conversion factor. Also, the three factors of “cm” in the denominator in 7.86
g/cm  cancel with the three factors of “cm” in the numerator that we get by cubing the second conversion factor.

2. Check that the units of the final answer are the desired units. The problem asked for us to convert to kilograms per cubic
meter. After the cancelations just described, we see the only units we have left are “kg” in the numerator and three factors
of “m” in the denominator (that is, one factor of “m” cubed, or “m ”). Therefore, the units on the final answer are correct.

We know from Figure 1.4 that the diameter of Earth is on the order of 10  m, so the order of magnitude of its surface area is
10  m . What is that in square kilometers (that is, km )? (Try doing this both by converting 10  m to km and then squaring it
and then by converting 10  m  directly to square kilometers. You should get the same answer both ways.)

Answer

Add texts here. Do not delete this text first.

0.50 × × = m/s = 13 m/s.
mile

min

1609 m

1 mile

1 min

60 s

(0.50)(1609)

60
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−2 3

7.86 × × = kg/ = 7.86 × kg/
g

cm3

kg

103 g
( )

cm

m10−2

3
7.86

( )( )103 10−6
m3 103 m3

3

3
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Unit conversions may not seem very interesting, but not doing them can be costly. One famous example of this situation was seen
with the Mars Climate Orbiter. This probe was launched by NASA on December 11, 1998. On September 23, 1999, while
attempting to guide the probe into its planned orbit around Mars, NASA lost contact with it. Subsequent investigations showed a
piece of software called SM_FORCES (or “small forces”) was recording thruster performance data in the English units of pound-
seconds (lb • s). However, other pieces of software that used these values for course corrections expected them to be recorded in the
SI units of newton-seconds (N • s), as dictated in the software interface protocols. This error caused the probe to follow a very
different trajectory from what NASA thought it was following, which most likely caused the probe either to burn up in the Martian
atmosphere or to shoot out into space. This failure to pay attention to unit conversions cost hundreds of millions of dollars, not to
mention all the time invested by the scientists and engineers who worked on the project.

Given that 1 lb (pound) is 4.45 N, were the numbers being output by SM_FORCES too big or too small?

This page titled 1.4: Unit Conversion is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

1.4: Unit Conversion by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-1.
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1.5: Significant Figures

Determine the correct number of significant figures for the result of a computation.
Describe the relationship between the concepts of accuracy, precision, uncertainty, and discrepancy.
Calculate the percent uncertainty of a measurement, given its value and its uncertainty.
Determine the uncertainty of the result of a computation involving quantities with given uncertainties.

Figure  shows two instruments used to measure the mass of an object. The digital scale has mostly replaced the double-pan
balance in physics labs because it gives more accurate and precise measurements. But what exactly do we mean by accurate and
precise? Aren’t they the same thing? In this section we examine in detail the process of making and reporting a measurement.

Figure : (a) A double-pan mechanical balance is used to compare different masses. Usually
an object with unknown mass is placed in one pan and objects of known mass are placed in
the other pan. When the bar that connects the two pans is horizontal, then the masses in both
pans are equal. The “known masses” are typically metal cylinders of standard mass such as 1
g, 10 g, and 100 g. (b) Many mechanical balances, such as double-pan balances, have been
replaced by digital scales, which can typically measure the mass of an object more precisely.
A mechanical balance may read only the mass of an object to the nearest tenth of a gram, but
many digital scales can measure the mass of an object up to the nearest thousandth of a gram.
(credit a: modification of work by Serge Melki; credit b: modification of work by Karel
Jakubec)

Accuracy and Precision of a Measurement
Science is based on observation and experiment—that is, on measurements. Accuracy is how close a measurement is to the
accepted reference value for that measurement. For example, let’s say we want to measure the length of standard printer paper. The
packaging in which we purchased the paper states that it is 11.0 in. long. We then measure the length of the paper three times and
obtain the following measurements: 11.1 in., 11.2 in., and 10.9 in. These measurements are quite accurate because they are very
close to the reference value of 11.0 in. In contrast, if we had obtained a measurement of 12 in., our measurement would not be very
accurate. Notice that the concept of accuracy requires that an accepted reference value be given.

The precision of measurements refers to how close the agreement is between repeated independent measurements (which are
repeated under the same conditions). Consider the example of the paper measurements. The precision of the measurements refers to
the spread of the measured values. One way to analyze the precision of the measurements is to determine the range, or difference,
between the lowest and the highest measured values. In this case, the lowest value was 10.9 in. and the highest value was 11.2 in.
Thus, the measured values deviated from each other by, at most, 0.3 in. These measurements were relatively precise because they
did not vary too much in value. However, if the measured values had been 10.9 in., 11.1 in., and 11.9 in., then the measurements
would not be very precise because there would be significant variation from one measurement to another. Notice that the concept of
precision depends only on the actual measurements acquired and does not depend on an accepted reference value.

The measurements in the paper example are both accurate and precise, but in some cases, measurements are accurate but not
precise, or they are precise but not accurate. Let’s consider an example of a GPS attempting to locate the position of a restaurant in
a city. Think of the restaurant location as existing at the center of a bull’s-eye target and think of each GPS attempt to locate the
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restaurant as a black dot. In Figure , we see the GPS measurements are spread out far apart from each other, but they are all
relatively close to the actual location of the restaurant at the center of the target. This indicates a low-precision, high-accuracy
measuring system. However, in Figure , the GPS measurements are concentrated quite closely to one another, but they are far
away from the target location. This indicates a high-precision, low-accuracy measuring system.

Figure : A GPS attempts to locate a restaurant at the center of the bull’s-eye. The black dots represent each attempt to pinpoint
the location of the restaurant. (a) The dots are spread out quite far apart from one another, indicating low precision, but they are
each rather close to the actual location of the restaurant, indicating high accuracy. (b) The dots are concentrated rather closely to
one another, indicating high precision, but they are rather far away from the actual location of the restaurant, indicating low
accuracy. (credit a and credit b: modification of works by Dark Evil)

Accuracy, Precision, Uncertainty, and Discrepancy
The precision of a measuring system is related to the uncertainty in the measurements whereas the accuracy is related to the
discrepancy from the accepted reference value. Uncertainty is a quantitative measure of how much your measured values deviate
from one another. There are many different methods of calculating uncertainty, each of which is appropriate to different situations.
Some examples include taking the range (that is, the biggest less the smallest) or finding the standard deviation of the
measurements. Discrepancy (or “measurement error”) is the difference between the measured value and a given standard or
expected value. If the measurements are not very precise, then the uncertainty of the values is high. If the measurements are not
very accurate, then the discrepancy of the values is high.

Recall our example of measuring paper length; we obtained measurements of 11.1 in., 11.2 in., and 10.9 in., and the accepted value
was 11.0 in. We might average the three measurements to say our best guess is 11.1 in.; in this case, our discrepancy is 11.1 – 11.0
= 0.1 in., which provides a quantitative measure of accuracy. We might calculate the uncertainty in our best guess by using the
range of our measured values: 0.3 in. Then we would say the length of the paper is 11.1 in. plus or minus 0.3 in. The uncertainty in
a measurement, A, is often denoted as A (read “delta A”), so the measurement result would be recorded as A ± A. Returning to
our paper example, the measured length of the paper could be expressed as 11.1 ± 0.3 in. Since the discrepancy of 0.1 in. is less
than the uncertainty of 0.3 in., we might say the measured value agrees with the accepted reference value to within experimental
uncertainty.

Some factors that contribute to uncertainty in a measurement include the following:

Limitations of the measuring device
The skill of the person taking the measurement
Irregularities in the object being measured
Any other factors that affect the outcome (highly dependent on the situation)

In our example, such factors contributing to the uncertainty could be the smallest division on the ruler is 1/16 in., the person using
the ruler has bad eyesight, the ruler is worn down on one end, or one side of the paper is slightly longer than the other. At any rate,
the uncertainty in a measurement must be calculated to quantify its precision. If a reference value is known, it makes sense to
calculate the discrepancy as well to quantify its accuracy.

Percent uncertainty

Another method of expressing uncertainty is as a percent of the measured value. If a measurement A is expressed with uncertainty 
A, the percent uncertainty is defined as

1.5.1a

1.5.1b

1.5.2

δ δ

δ

P ercent uncertainty = ×100%
δA

A
(1.5.1)
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A grocery store sells 5-lb bags of apples. Let’s say we purchase four bags during the course of a month and weigh the bags
each time. We obtain the following measurements:

Week 1 weight: 4.8 lb
Week 2 weight: 5.3 lb
Week 3 weight: 4.9 lb
Week 4 weight: 5.4 lb

We then determine the average weight of the 5-lb bag of apples is 5.1 ± 0.3 lb. What is the percent uncertainty of the bag’s
weight?

Strategy

First, observe that the average value of the bag’s weight, A, is 5.1 lb. The uncertainty in this value, A, is 0.3 lb. We can use
the following equation to determine the percent uncertainty of the weight:

Solution
Substitute the values into the equation:

Significance
We can conclude the average weight of a bag of apples from this store is 5.1 lb ± 6%. Notice the percent uncertainty is
dimensionless because the units of weight in A = 0.3 lb canceled those inn A = 5.1 lb when we took the ratio.

A high school track coach has just purchased a new stopwatch. The stopwatch manual states the stopwatch has an uncertainty
of ±0.05 s. Runners on the track coach’s team regularly clock 100-m sprints of 11.49 s to 15.01 s. At the school’s last track
meet, the first-place sprinter came in at 12.04 s and the second-place sprinter came in at 12.07 s. Will the coach’s new
stopwatch be helpful in timing the sprint team? Why or why not?

Uncertainties in Calculations

Uncertainty exists in anything calculated from measured quantities. For example, the area of a floor calculated from measurements
of its length and width has an uncertainty because the length and width have uncertainties. How big is the uncertainty in something
you calculate by multiplication or division? If the measurements going into the calculation have small uncertainties (a few percent
or less), then the method of adding percents can be used for multiplication or division. This method states the percent
uncertainty in a quantity calculated by multiplication or division is the sum of the percent uncertainties in the items used to
make the calculation. For example, if a floor has a length of 4.00 m and a width of 3.00 m, with uncertainties of 2% and 1%,
respectively, then the area of the floor is 12.0 m  and has an uncertainty of 3%. (Expressed as an area, this is 0.36 m  [ 12.0 m  x
0.03 ], which we round to 0.4 m  since the area of the floor is given to a tenth of a square meter.)

Precision of Measuring Tools and Significant Figures
An important factor in the precision of measurements involves the precision of the measuring tool. In general, a precise measuring
tool is one that can measure values in very small increments. For example, a standard ruler can measure length to the nearest
millimeter whereas a caliper can measure length to the nearest 0.01 mm. The caliper is a more precise measuring tool because it
can measure extremely small differences in length. The more precise the measuring tool, the more precise the measurements.

When we express measured values, we can only list as many digits as we measured initially with our measuring tool. For example,
if we use a standard ruler to measure the length of a stick, we may measure it to be 36.7 cm. We can’t express this value as 36.71
cm because our measuring tool is not precise enough to measure a hundredth of a centimeter. It should be noted that the last digit in

 Example : Calculating Percent Uncertainty: A Bag of Apples1.5.1

δ

P ercent uncertainty = ×100%
δA

A
(1.5.2)

P ercent uncertainty = ×100% = ×100% = 5.9% ≈ 6%
δA

A

0.3 lb

5.1 lb
(1.5.3)
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a measured value has been estimated in some way by the person performing the measurement. For example, the person measuring
the length of a stick with a ruler notices the stick length seems to be somewhere in between 36.6 cm and 36.7 cm, and he or she
must estimate the value of the last digit. Using the method of significant figures, the rule is that the last digit written down in a
measurement is the first digit with some uncertainty. To determine the number of significant digits in a value, start with the first
measured value at the left and count the number of digits through the last digit written on the right. For example, the measured
value 36.7 cm has three digits, or three significant figures. Significant figures indicate the precision of the measuring tool used to
measure a value.

Zeros

Special consideration is given to zeros when counting significant figures. The zeros in 0.053 are not significant because they are
placeholders that locate the decimal point. There are two significant figures in 0.053. The zeros in 10.053 are not placeholders; they
are significant. This number has five significant figures. The zeros in 1300 may or may not be significant, depending on the style of
writing numbers. They could mean the number is known to the last digit or they could be placeholders. So 1300 could have two,
three, or four significant figures. To avoid this ambiguity, we should write 1300 in scientific notation as 1.3 x 10 , 1.30 x 10 , or
1.300 x 10 , depending on whether it has two, three, or four significant figures. Zeros are significant except when they serve
only as placeholders.

Significant Figures in Calculations

When combining measurements with different degrees of precision, the number of significant digits in the final answer can be
no greater than the number of significant digits in the least-precise measured value. There are two different rules, one for
multiplication and division and the other for addition and subtraction.

1. For multiplication and division, the result should have the same number of significant figures as the quantity with the
least number of significant figures entering into the calculation. For example, the area of a circle can be calculated from its
radius using A = . Let’s see how many significant figures the area has if the radius has only two—say, r = 1.2 m. Using a
calculator with an eight-digit output, we would calculate

But because the radius has only two significant figures, it limits the calculated quantity to two significant figures, or

although  is good to at least eight digits.
2. For addition and subtraction, the answer can contain no more decimal places than the least-precise measurement.

Suppose we buy 7.56 kg of potatoes in a grocery store as measured with a scale with precision 0.01 kg, then we drop off 6.052
kg of potatoes at your laboratory as measured by a scale with precision 0.001 kg. Then, we go home and add 13.7 kg of
potatoes as measured by a bathroom scale with precision 0.1 kg. How many kilograms of potatoes do we now have and how
many significant figures are appropriate in the answer? The mass is found by simple addition and subtraction:

Next, we identify the least-precise measurement: 13.7 kg. This measurement is expressed to the 0.1 decimal place, so our final
answer must also be expressed to the 0.1 decimal place. Thus, the answer is rounded to the tenths place, giving us 15.2 kg.

Significant Figures in This Text

In this text, most numbers are assumed to have three significant figures. Furthermore, consistent numbers of significant figures are
used in all worked examples. An answer given to three digits is based on input good to at least three digits, for example. If the input
has fewer significant figures, the answer will also have fewer significant figures. Care is also taken that the number of significant
figures is reasonable for the situation posed. In some topics, particularly in optics, more accurate numbers are needed and we use
more than three significant figures. Finally, if a number is exact, such as the two in the formula for the circumference of a circle, C
= , it does not affect the number of significant figures in a calculation. Likewise, conversion factors such as 100 cm/1 m are
considered exact and do not affect the number of significant figures in a calculation.

3 3

3

πr2

A = π = (3.1415927...) ×(1.2 m = 4.5238934 .r2 )2 m2 (1.5.4)

A = 4.5 .m2 (1.5.5)

π

7.56

−6.052

+13.7

15.208

kg

kg

kg

kg = 15.2 kg.

2πr
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CHAPTER OVERVIEW

2: C2) Particles and Interactions
2.1: Inertia
2.2: Momentum
2.3: Force and Impulse
2.4: Examples

In this chapter we will study particles and interactions. We will make our first step into the abstraction of the real world by
replacing any objects we want to describe with points. As we talked about in the last chapter, this is to make things not only 1)
simpler, but more importantly 2) mathematical well-defined. The way this works with points is dead simple - take a real object,
made up of many (essentially an infinite number of) points, and pick one of it's point to represent the entire thing. This is now well-
defined because we can now talk about the position  of the object as being exactly the position of the point we chose. And it's far
simpler, since we are only dealing with a single point instead of innumerably many.

So after we have a bunch of points, what then? Well, we want to understand the interactions between the points (remember, that
was one of the ways we described what physics is - the study of these interactions). While we might be tempted to call these
interactions "forces", in many cases the forces acting on a particular object are relatively complicated. So first, we are actually
going to choose the simplist possible interaction between two objects we can consider - a collision. This is simply when one object
comes into contact with another, changing the motion of both.

So what can happen in such a collision? Well, the position  and the velocity  of either object can change - and that's kind of it,
since our objects are just points! The points might have masses, for sure, but for now we are going to assume these masses don't
change. (Consider a two-car collision - for sure, some mass is moved back and forth if the collision is bad enough, but generally the
two cars keep all their points within each other and don't exchange them.) But how does (for example) the velocity change when
the objects interact? It turns out that the velocity is actually not the thing that tells us what happens when two objects collide, it's
actually the product of the mass and the velocity, the momentum . It's pretty intuitive that both the mass and the velocity
have to play a role here, since a heavy object hitting a light object is going to be different from two light objects hitting each other. 
This brings us to our first real principle of physics we are going to study:

Objects interact by transferring momentum

Although this statement seems quite trivial, it actually allows us to perform our first calculations. Consider a collision between two
points, each of mass 1 kg, and let's say one of the objects is at rest, while the other is moving towards the first at a speed of 10 m/s.
That means the first object has a momentum of 10 kg m/s, while the second has zero (since it's not moving). After they collide, let's
say the second object moved away at a speed of 2 m/s. That means it gained 2 kg m/s of momentum...and based on our principle of
momentum transfer, the first object must have lost that same 2 kg m/s, leaving it with 8 kg m/s. But that also means we know how
fast the object is moving after the collision - since it's mass is 1 kg, it's moving at 8 m/s! This simple example gives us all the
essential concepts we are going to be studying not just for this chapter, but for the entire first half of the text.

A brief final note - we didn't really consider anything about the directions that the two objects moved in that example, because it
was pretty clear they were moving in a straight line. However, some quantities in physics carry direction, like velocity  and
position  - what about momentum? Well, we defined momentum with a particular formula, . Velocity carries direction, but
mass does not, so the momentum will be in the same direction as the velocity. This makes perfect sense with our momentum
transfer principle above as well - an object with a particular momentum  in a particular direction will transfer that same
momentum to the other object, in the same direction.

This chapter is dedicated to a conceptual understanding of this principle - not that there are no calculations, but we are going to be a
little careless with things like vectors and directions. We first want to be sure we get some of the conceptual ideas surrounding
momentum transfer, and in later chapters we will add in the mathematical formalism required to handle the directions - and all
kinds of other interesting collisions!

r ⃗ 

r ⃗  v ⃗ 

= mp ⃗  v ⃗ 

 Principle of Momentum

v ⃗ 

r ⃗  mv ⃗ 
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2.1: Inertia
In everyday language, we speak of something or someone “having a large inertia” to mean, essentially, that they are very difficult
to set in motion. We do know, from experience, that lighter objects are easier to set in motion than heavier objects, but most of us
probably have an intuition that gravity (the force that pulls an object towards the earth and hence determines its weight) is not
involved in an essential way here. Imagine, for instance, the difference between slapping a volleyball and a bowling ball. It is not
hard to believe that the latter would hurt as much if we did it while floating in free fall in the space station (in a state of effective
“weightlessness”) as if we did it right here on the surface of the earth. In other words, it is not (necessarily) how heavy something
feels, but just how massive it is.

But just what is this “massiveness” quality that we associate intuitively with a large inertia? Is there a way (other than resorting to
the weight again) to assign to it a numerical value?

Relative Inertia and Collisions
One possible way to determine the relative inertias of two objects, conceptually, at least, is to try to use one of them to set the other
one in motion. Most of us are familiar with what happens when two identical objects (presumably, therefore, having the same
inertia) collide: if the collision is head-on (so the motion, before and after, is confined to a straight line), they basically exchange
velocities. For instance, a billiard ball hitting another one will stop dead and the second one will set off with the same speed as the
first one. The toy sometimes called “Newton’s balls” or “Newton’s cradle” also shows this effect. Intuitively, we understand that
what it takes to stop the first ball is exactly the same as it would take to set the second one in motion with the same velocity.

But what if the objects colliding have different inertias? We expect that the change in their velocities as a result of the collision will
be different: the velocity of the object with the largest inertia will not change very much, and conversely, the change in the velocity
of the object with the smallest inertia will be comparatively larger. A velocity vs. time graph for the two objects might look
somewhat like the one sketched in Figure .

Figure : An example of a velocity vs. time graph for a collision of two objects with different inertias.

In this picture, object 1, initially moving with velocity  = 1 m/s, collides with object 2, initially at rest. After the collision, which
here is assumed to take a millisecond or so, object 1 actually bounces back (notice it's velocity goes negative in the plot), so its
final velocity is  = −1/3 m/s, whereas object 2 ends up moving to the right with velocity  = 2/3 m/s. So the change in the
velocity of object 1 is  = −4/3 m/s, whereas for object 2 we have  = 2/3 m/s.

It is tempting to use this ratio, , as a measure of the relative inertia of the two objects, only we’d want to use it upside
down and with the opposite sign: that is, since  = −1/2 we would say that object 2 has twice the inertia of object 1. But
then we have to ask: is this a reliable, repeatable measure? Will it work for any kind of collision (within reason, of course: we
clearly need to stay in one dimension, and eliminate external influences such as friction), and for any initial velocity?

To begin with, we have reason to expect that it does not matter whether we shoot object 1 towards object 2 or object 2 towards
object 1, since the relative motion is the same in both cases. Consider, for instance, what the collision in Figure  appears like
to a hypothetical observer moving along with object 1, at 1 m/s. To him, object 1 appears to be at rest, and it is object 2 that is
coming towards him, with a velocity of −1 m/s. To see what the outcome of the collision looks like to him, just add the same −1
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m/s to the final velocities we obtained before: object 1 will end up moving at  = −4/3 m/s, and object 2 would move at  =
−1/3 m/s, and we would have a situation like the one shown in Figure , where both curves have simply been shifted down by 1
m/s:

Figure : Another example (really the same collision as in Figure , only as seen by an observer initially moving to the
right at 1 m/s).

But then, this is exactly what we should expect to find also in our laboratory if we actually did send the second object at 1 m/s
towards the first one sitting at rest. All the individual velocities have changed relative to Figure , but the velocity changes, 

 and , are clearly still the same, and therefore so is our (tentative) measure of the objects’ relative inertia.

Clearly, the same argument can be used to conclude that the same result will be obtained when both objects are initially moving
towards each other, as long as their relative velocity is the same as in these examples, namely, 1 m/s. However, unless we do the
experiments we cannot really predict what will happen if we increase (or decrease) their relative velocity. In fact, we could imagine
smashing the two objects at very high speed, so they might even become seriously mangled in the process. Yet, experimentally (and
this is not at all an obvious result!), we would still find the same value of −1/2 for the ratio , at least as long as the
collision is not so violent that the objects actually break up into pieces.

Perhaps the most surprising result of our experiments would be the following: imagine that the objects have a “sticky” side (for
instance, the small black rectangles shown in the pictures could be strips of Velcro), and we turn them around so that when they
collide they will end up stuck to each other. In this case (which, as we shall see later, is termed a completely inelastic collision),
the -vs-  graph might look like Figure  below.

Now the two objects end up moving together to the right, fairly slowly:  = 1/3 m/s. The velocity changes are  = −2/3
m/s and  = 1/3 m/s, both of which are different from what they were before, in Figs.  and : yet, the ratio  is
still equal to −1/2, just as in all the previous cases.
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Figure  became stuck together when they collided.

Inertial Mass: Definition and Properties
At this point, it would seem reasonable to assume that this ratio, , is, in fact, telling us something about an intrinsic
property of the two objects, what we have called above their “relative inertia.” It is easy, then, to see how one could assign a value
to the inertia of any object (at least, conceptually): choose a “standard” object, and decide, arbitrarily, that its inertia will have the
numerical value of 1, in whichever units you choose for it (these units will turn out, in fact, to be kilograms, as you will see in a
minute). Then, to determine the inertia of another object, which we will label with the subscript 1, just arrange a one-dimensional
collision between object 1 and the standard, under the right conditions (basically, no net external forces), measure the velocity
changes  and , and take the quantity  as the numerical value of the ratio of the inertia of object 1 to the inertia
of the standard object. In symbols, using the letter  to represent an object’s inertia,

But, since  = 1 by definition, this gives us directly the numerical value of .

The reason we use the letter  is, as you must have guessed, because, in fact, the inertia defined in this way turns out to be
identical to what we have traditionally called “mass.” More precisely, the quantity defined this way is an object’s inertial mass. The
remarkable fact, mentioned earlier, that the force of gravity between two objects turns out to be proportional to their inertial
masses, allows us to determine the inertial mass of an object by the more traditional procedure of simply weighing it, rather than
elaborately staging a collision between it and the standard kilogram on an ice-hockey rink. But, in principle, we could conceive of
the existence of two different quantities that should be called “inertial mass” and “gravitational mass,” and the identity (or more
precisely, the—so far as we know—exact proportionality) of the two is a rather mysterious experimental fact .

In any case, by the way we have constructed it, the inertial mass, defined as in Equation ( ), does capture, in a quantitative way,
the concept that we were trying to express at the beginning of the chapter: namely, how difficult it may be to set an object in
motion. In principle, however, other experiments would need to be conducted to make sure that it does have the properties we have
traditionally associated with the concept of mass. For instance, suppose we join together two objects of mass . Is the mass of the
resulting object ? Collision experiments would, indeed, show this to be the case with great accuracy in the macroscopic world
(with which we are concerned this semester), but this is a good example of how you cannot take anything for granted: at the
microscopic level, it is again a fact that the inertial mass of an atomic nucleus is a little less than the sum of the masses of all its
constituent protons and neutrons .

Probably the last thing that would need to be checked is that the ratio of inertias is independent of the standard. Suppose that we
have two objects, to which we have assigned masses  and  by arranging for each to collide with the “standard object”
independently. If we now arrange for a collision between objects 1 and 2 directly, will we actually find that the ratio of their
velocity changes is given by the ratio of the separately determined masses  and ? We certainly would need that to be the
case, in order for the concept of inertia to be truly useful; but again, we should not assume anything until we have tested it!
Fortunately, the tests would indeed reveal that, in every case, the expected relationship holds
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At this point, we are not just in possession of a useful definition of inertia, but also of a veritable law of nature, as we will explain
next.

This fact, elevated to the category of a principle by Einstein (the equivalence principle) is the starting point of the general theory
of relativity. 
And this is not just an unimportant bit of trivia: all of nuclear power depends on this small difference. 
Equation  actually is found to hold also at the microscopic (or quantum) level, although there we prefer to state the result by

saying that conservation of momentum holds (see the following section).

This page titled 2.1: Inertia is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

3.1: Inertia by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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2.2: Momentum
Inspired by Equation (2.1.2), let's define an objects momentum as

with mass  and velocity , moving in one dimension (the choice of the letter  for momentum is apparently related to the Latin
word “impetus”).

We can think of momentum as a sort of extension of the concept of inertia, from an object at rest to an object in motion. When we
speak of an object’s inertia, we typically think about what it may take to get it moving; when we speak of its momentum, we
typically think of that it may take to stop it (or perhaps deflect it). So, both the inertial mass  and the velocity  are involved in
the definition.

We may also observe that what looks like inertia in some reference frame may look like momentum in another. For instance, if you
are driving in a car towing a trailer behind you, the trailer has only a large amount of inertia, but no momentum, relative to you,
because its velocity relative to you is zero; however, the trailer definitely has a large amount of momentum (by virtue of both its
inertial mass and its velocity) relative to somebody standing by the side of the road.

Conservation of Momentum; Isolated Systems
For a system of objects, we treat the momentum as an additive quantity. So, if two colliding objects, of masses  and , have
initial velocities  and , we say that the total initial momentum of the system is , and similarly if the final
velocities are  and , the total final momentum will be .

We then assert that the total momentum of the system is not changed by the collision. Mathematically, this means

or

But this last equation, in fact, follows directly from Equation (2.1.2): to see this, move all the quantities in Equation ( ) having
to do with object 1 to one side of the equal sign, and those having to do with object 2 to the other side. You then get

which is just another way to write Equation (2.1.2). Hence, the result (2.1.2) ensures the conservation of the total momentum of a
system of any two interacting objects (“particles”), regardless of the form the interaction takes, as long as there are no external
forces acting on them.

Momentum conservation is one of the most important principles in all of physics, so let's take a little time to explain how we got
here and elaborate on this result. First, as just mentioned, we have been more or less implicitly assuming that the two interacting
objects form an isolated system, by which we mean that, throughout, they interact with nothing other than each other.
(Equivalently, there are no external forces acting on them.)

It is pretty much impossible to set up a system so that it is really isolated in this strict sense; instead, in practice, we settle for
making sure that the external forces on the two objects cancel out. This is what happens in the car collisions we have been
considering so far: gravity is acting on the carts, but that force is balanced out by the upwards push of the track. A system on which
there is no net external force is as good as isolated for practical purposes, and we will refer to it as such. (It is harder, of course, to
completely eliminate friction and drag forces, so we just have to settle for approximately isolated systems in practice.)

Secondly, we have assumed so far that the motion of the two objects is restricted to a straight line—one dimension. In fact,
momentum is a vector quantity (just like velocity is), so in general we should write

and conservation of momentum, in general, holds as a vector equation for any isolated system in three dimensions:

p = mv, (2.2.1)

m v p

m v
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What this means, in turn, is that each separate component ( ,  and ) of the momentum will be separately conserved (so Equation
( ) is equivalent to three scalar equations, in three dimensions). When we get to study the vector nature of forces, we will see
an interesting implication of this, namely, that it is possible for one component of the momentum vector to be conserved, but not
another—depending on whether there is or there isn’t a net external force in that direction or not. For example, anticipating things a
bit, when you throw an object horizontally, as long as you can ignore air drag, there is no horizontal force acting on it, and so that
component of the momentum vector is conserved, but the vertical component is changing all the time because of the (vertical) force
of gravity.

Thirdly, although this may not be immediately obvious, for an isolated system of two colliding objects the momentum is truly
conserved throughout the whole collision process. It is not just a matter of comparing the initial and final velocities: at any of the
times shown in Figures 2.1.1, 2.1.2, or 2.1.3, if we were to measure  and  and compute , we would obtain the
same result. In other words, the total momentum of an isolated system is constant: it has the same value at all times.

Finally, all these examples have involved interactions between only two particles. Can we really generalize this to conclude that the
total momentum of an isolated system of any number of particles is constant, even when all the particles may be interacting with
each other simultaneously? Here, again, the experimental evidence is overwhelmingly in favor of this hypothesis , but much of our
confidence on its validity comes in fact from a consideration of the nature of the internal interactions themselves. It is a
mathematical fact that all of the interactions so far known to physics have the property of conserving momentum, whether acting
individually or simultaneously. No experiments have ever suggested the existence of an interaction that does not have this property.

For an important piece of indirect evidence, just consider that any extended object is in reality a collection of interacting particles,
and the experiments establishing conservation of momentum almost always involve such extended objects. See the following
section for further thoughts on this matter.

This page titled 2.2: Momentum is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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2.3: Force and Impulse
In the previous section we looked at the quantity , but notice that if mass is now changing, this is the same as the change in
momentum of the object itself, . That makes Equation (2.2.4) look like , which is the statement that if one object
gains , the object that it's interacting with must have lost that same amount of momentum. This phenomena known as a
conservation law.

But of course we know that this is not the only way to describe interacting objects - in fact, perhaps the most intuitive way to
describe two objects interacting is actually using a force between them. We are going to talk a lot more about forces in the second
half of the this book, but right now we just want to acknowledge that if interactions can be described with either forces or
momentum transfer, there must be some relationship between these two quantities. In fact, the relationship can be made concrete
once you know the time period  over which the interaction occurs.

Specifically, if you have a change in momentum  resulting from an interaction that happens over a time period , we can
associate a force with this interaction via

Notice that this definition only really works for an average force , since we are talking about the changes in time being
possibly relatively large. If the change in time is very small (in the sense of an infinitesimal  from calculus), we can actually
write

for the instantaneous force, which is the usual notion of force we are used to (this relationship can also be derived from Newton's
second law).

Finally, we want to mention one more definition that comes up in this topic, the impulse , which is the amount of momentum
delivered by a particular interaction. In many ways, this is simply a renaming of the change in momentum , and in fact the
concrete mathematical definition of the impulse demonstrates this:

All of the above is a perfectly fine description of a force that does not depend on time, which is often what we are dealing with.
However, if a force does depend on time (think of throwing a baseball, or a "real" car crash - the force over the time period of those
interactions may not be constant at all), we can still find the impulse delivered by performing an integration,

2.3: Force and Impulse is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston, Merrimack
College.
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2.4: Examples

                                          

Consider an extra-heavy hockey puck, of mass 5.0 kg, traveling between points A and B in a straight line at a speed of 10.0
m/s. At point B, it gets hit by a hockey stick which delivers an impulse of  to the puck. Using meter sticks and protractors,
make scale drawings of this process on the whiteboards, and answer the following two questions:

1. In figure 1, the amount of impulse delivered is =30 kg m/s at an angle of 30 , as shown.
1. What is the final momentum of the hockey puck, ?

2. In figure 2, we measure the final momentum  to be 100 kg m/s, moving at an angle of 40 , as shown.
1. What was the impulse transferred to the hockey puck, ?
2. At what angle did the impulse act on the puck?

Suppose a cart with mass  is moving to the right at a speed of . It collides with a cart of mass , which is initially at rest.
After the collision, the first cart rebounds to the left with a speed of .

1. How much impulse did the first cart deliver to the second? Use  as the final speed of the second cart.
2. How much impulse did the second cart deliver to the first?
3. Assuming that these two impulse transfers are the same, determine the final speed  in terms of the initial speed .

I drop a golf ball of mass  g onto the floor, and right before it hits it has a velocity of  m/s.

1. What is the momentum of the ball right before it hits the ground?
2. If the speed of the ball after it bounces,  , is 75\% of the speed right before it hits, what was the impulse the floor

delivered to the ball?
3. If the ball interacts with the floor for a time period , find an expression for the ratio between the average force the floor

acted on the ball with to the weight of the ball , in terms of  ,  , , and .
4. Calculate this ratio using  = 150 ms and the other parameters of the problem.

The graph shows a collision between two carts (possibly equipped with magnets so that they repel each other before they
actually touch) on an air track. The inertia (mass) of cart 1 is 1 kg. Note: this is a position vs. time graph!

a. What are the initial velocities of the carts?
b. What are the final velocities of the carts?
c. What is the mass of the second cart?
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d. Does the air track appear to be level? Why? (Hint: does the graph show any evidence of acceleration, for either cart, outside
of the collision region?)

e. At the collision time, is the change in velocity (  )of the first cart positive or negative? How about the second cart?
(Justify your answers.)

f. For the system consisting of the two carts, what is its initial (total) momentum? What is its final momentum?
g. Imagine now that one of the magnets is reversed, so when the carts collide they stick to each other. What would then be the

final momentum of the system? What would be its final velocity?

Figure : A collision between two carts

Solution

(a) All the velocities are to be calculated by picking an easy straight part of each curve and calculating

for suitable intervals. In this way one gets

(b) Similarly, one gets

(c) Use this equation, or equivalent (conservation of momentum is OK)

so the mass of the second cart is 2 kg.

(d) Yes, the track appears to be level because the carts do not show any evidence of acceleration outside of the collision region
(the position vs. time curves are straight lines outside of the region approximately given by 4.5 s <  < 5.5 s).

(e) The change in velocity of the first cart is positive. You can see this either graphically (the curve is like a parabola that opens
upwards, i.e., concave), or algebraically (the cart’s velocity increases, going from −1 m/s to 1 m/s)

Similarly, the change in velocity of the second cart is negative. The curve is like a parabola that opens downwards, i.e., convex;
or, algebraically, the cart’s velocity decreases, going from 0.5 m/s to −0.5 m/s.

(f) The initial momentum of the system is

Δv

2.4.1

v =
Δx

Δt

= −1v1i

m

s

= 0.5v2i

m

s

= 1v1f

m

s

= −0.5v2f

m

s

= −
m2

m1

Δv1

Δv2

= − = 2
m2

m1

1 −(−1)

−0.5 −0.5

t
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The final momentum is

You could also just say that the final momentum should be the same as the initial momentum, since the system appears to be
isolated.

(g) The momentum should be conserved in this case as well, so  = 0. The velocity would be

This page titled 2.4: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

3.5: Examples by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.

= + = (1 kg) ×(−1 )+(2 kg) ×(0.5 ) = 0pi m1v1i m2v2i

m

s

m

s

= + = (1 kg) ×(1 )+(2 kg) ×(−0.5 ) = 0pf m1v1f m2v2f

m

s

m

s

pf

= = 0.vf

pf

+m1 m2
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CHAPTER OVERVIEW

3: C3) Vector Analysis
3.1: Coordinate Systems and Components of a Vector (Part 1)
3.2: Coordinate Systems and Components of a Vector (Part 2)
3.3: Examples

The language of physics is mathematics. This is not just a thing we tell ourselves, but is a basic fact that separates the physical
sciences from the social sciences. Although we may speak and write about physics using a spoken and written language (English,
in this case), this is just for descriptive convenience. Anytime we actually want to do anything with physics, we have to cast it into
mathematics. Part of this is a desire for precision - if I say "the acceleration due to gravity is 9.81 m/s ", I know exactly how
precise that number is (typically we assume the uncertainty is in the last decimal point, so that implies  on that
number). However, it's also a necessity, since no amount of words can actually be used to exactly describe any physical law, and
words don't inherently have precise meaning. Take even the most basic of physical laws - Newton's first law "An object in motion
remains in motion until acted on by an external force." What is "motion"? What does it mean to be "acted on"? What is "force"? No
amount of language is going to answer these questions, only mathematics is going to give us careful definitions of these concepts .

So, once we are convinced that we need to use mathematics to do physics, we know that we need to understand how to associate
physics quantities ("mass", "speed", "force") with mathematical variables. In some cases, this is very easy - for example, the
temperature of something is just a number, call it . Or the mass of something is a number . Single numbers are called scalars.
Sometimes these numbers have constraints on them that come from reality - for example, mass must be positive, and temperature
has a minimum value (absolute zero). But there are also quantities which need more than just a single variable, or additional
conditions on that variable - they actually must carry more information. The most important of these are vectors, which carry both
a number (the magnitude, or length of the vector), and a direction.

The length of a vector is a pretty straightforward idea - vectors are arrows, and the size of the arrow is the length. But direction is a
little bit more confusing, because it can be specified in several different ways. For example, I can be driving at a speed of 32 mph,
in the direction "north". Or maybe in the direction "towards you", or "90  from East". Because of this uncertainty, we will often
choose to represent vectors using components - that is, an -Cartesian coordinate system. Of course, this coordinate system is
something we created out of thin air to help us solve the problem, so which coordinate system we pick should not influence our
calculation in the slightest.

For a concrete example, consider a vector of length 5, that is pointed  above the horizontal (see the figure on bottom left). We
can choose to represent this vector in a number of ways. In a coordinate system fixed to the horizontal, the vector has components

Alternatively, if you pick a coordinate system with the x-axis along the vector itself (figure on bottom middle), the components
would be

In some cases one of these might be preferable to the other, but there is something important here: although the coordinate
representation changed, the magnitude and direction did not. No choice of coordinate system can change the magnitude and
direction of a physical variable like a vector, because coordinates are just helping tools to do physics.

There is one last point to make about vectors in coordinate systems, which is summed up by the last figure: performing
mathematics like addition on vectors means the same mathematics applies to the components. This makes working with
components very convenient - we don't actually need to go around making pictures of arrows and measuring them, we can just use
the components and get the results algebraically.

2

±0.01 m/s2

1

T m

∘

xy

45∘

= 5 cos(45) ≃ 3.53, = 5 sin(45) ≃ 3.53.vx vy (3.1)

= 5, = 0.vx vy (3.2)
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If you're interested, the mathematical statement of Newton's first law is something like " ", using the symbol 
 for "if".

3: C3) Vector Analysis is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston, Merrimack
College.
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3.1: Coordinate Systems and Components of a Vector (Part 1)
Vectors are usually described in terms of their components in a coordinate system. Even in everyday life we naturally invoke the
concept of orthogonal projections in a rectangular coordinate system. For example, if you ask someone for directions to a particular
location, you will more likely be told to go 40 km east and 30 km north than 50 km in the direction 37° north of east.

In a rectangular (Cartesian) xy-coordinate system in a plane, a point in a plane is described by a pair of coordinates (x, y). In a
similar fashion, a vector  in a plane is described by a pair of its vector coordinates. The x-coordinate of vector  is called its x-
component and the y-coordinate of vector  is called its y-component. The vector x-component is a vector denoted by . The
vector y-component is a vector denoted by . In the Cartesian system, the x and y vector components of a vector are the
orthogonal projections of this vector onto the - and -axes, respectively. In this way, following the parallelogram rule for vector
addition, each vector on a Cartesian plane can be expressed as the vector sum of its vector components:

As illustrated in Figure , vector  is the diagonal of the rectangle where the x-component  is the side parallel to the x-axis
and the y-component  is the side parallel to the y-axis. Vector component  is orthogonal to vector component .

Figure : Vector  in a plane in the Cartesian coordinate system is the vector sum of its vector x- and y-components. The x-
vector component  is the orthogonal projection of vector  onto the x-axis. The y-vector component  is the orthogonal
projection of vector  onto the y-axis. The numbers A  and A  that multiply the unit vectors are the scalar components of the
vector.

It is customary to denote the positive direction on the x-axis by the unit vector  and the positive direction on the y-axis by the unit
vector . Unit vectors of the axes,  and , define two orthogonal directions in the plane. As shown in Figure , the x- and y-
components of a vector can now be written in terms of the unit vectors of the axes:

The vectors  and  defined by  are the vector components of vector . The numbers A  and A  that define the vector
components in Equation  are the scalar components of vector . Combining Equation  with Equation , we obtain
the component form of a vector:

If we know the coordinates  of the origin point of a vector (where b stands for “beginning”) and the coordinates e(x , y )
of the end point of a vector (where e stands for “end”), we can obtain the scalar components of a vector simply by subtracting the
origin point coordinates from the end point coordinates:

A ⃗  A ⃗ 

A ⃗  A ⃗ 
x

A ⃗ 
y

x y

= + .A ⃗  A ⃗ 
x A ⃗ 

y (3.1.1)

3.1.1 A ⃗  A ⃗ 
x

A ⃗ 
y A ⃗ 

x A ⃗ 
y

3.1.1 A ⃗ 

A ⃗ 
x A ⃗  A ⃗ 

y

A ⃗ 
x y

î

ĵ î ĵ 3.1.1

{
=A ⃗ 

x Ax î

=A ⃗ 
y Ay ĵ

(3.1.2)

A ⃗ 
x A ⃗ 

y 3.1.2 A ⃗ 
x y

3.1.2 A ⃗  3.1.1 3.1.2

= + .A ⃗  Ax î Ay ĵ (3.1.3)

b( , )xb yb e e

{
= −Ax xe xb

= − .Ay ye yb
(3.1.4)
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A mouse pointer on the display monitor of a computer at its initial position is at point (6.0 cm, 1.6 cm) with respect to the
lower left-side corner. If you move the pointer to an icon located at point (2.0 cm, 4.5 cm), what is the displacement vector of
the pointer?

Strategy

The origin of the xy-coordinate system is the lower left-side corner of the computer monitor. Therefore, the unit vector  on the
x-axis points horizontally to the right and the unit vector  on the y-axis points vertically upward. The origin of the
displacement vector is located at point b(6.0, 1.6) and the end of the displacement vector is located at point e(2.0, 4.5).
Substitute the coordinates of these points into Equation  to find the scalar components D  and D of the displacement
vector . Finally, substitute the coordinates into Equation  to write the displacement vector in the vector component
form.

Solution

We identify x  = 6.0, x  = 2.0, y  = 1.6, and y  = 4.5, where the physical unit is 1 cm. The scalar x- and y-components of the
displacement vector are

The vector component form of the displacement vector is

This solution is shown in Figure .

Figure : The graph of the displacement vector. The vector points from the origin point at  to the end point at .

Significance

Notice that the physical unit—here, 1 cm—can be placed either with each component immediately before the unit vector or
globally for both components, as in Equation . Often, the latter way is more convenient because it is simpler.

The vector x-component  = −4.0  = 4.0( ) of the displacement vector has the magnitude | | = |− 4.0|| | = 4.0 because
the magnitude of the unit vector is | | = 1. Notice, too, that the direction of the x-component is , which is antiparallel to the
direction of the +x-axis; hence, the x-component vector  points to the left, as shown in Figure . The scalar x-
component of vector  is D  = −4.0. Similarly, the vector y-component  =  of the displacement vector has magnitude
| | = |2.9|| | = 2.9 because the magnitude of the unit vector is | | = 1. The direction of the y-component is , which is
parallel to the direction of the +y-axis. Therefore, the y-component vector  points up, as seen in Figure . The scalar y-
component of vector  is D  = + 2.9. The displacement vector  is the resultant of its two vector components.

The vector component form of the displacement vector Equation  tells us that the mouse pointer has been moved on the
monitor 4.0 cm to the left and 2.9 cm upward from its initial position.

Example : Displacement of a Mouse Pointer3.1.1

î

ĵ

3.1.4 x y 

D⃗  3.1.3

b e b e

= − = (2.0 −6.0) cm = −4.0 cm,Dx xe xb (3.1.5)

= − = (4.5 −1.6) cm = +2.9 cm.Dy ye yb (3.1.6)

= + = (−4.0 cm) +(2.9 cm) = (−4.0 +2.9 ) cm.D⃗  Dx î Dy ĵ î ĵ î ĵ (3.1.7)

3.1.2

3.1.2 b e

3.1.7

D⃗ 
x î −î D⃗ 

x î

î −î

D⃗ 
x 3.1.2

D⃗  x D⃗ 
y +2.9 ĵ

D⃗ 
y ĵ ĵ +ĵ

D⃗ 
y 3.1.2

D⃗  y D⃗ 

3.1.7

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63314?pdf


3.1.3 https://phys.libretexts.org/@go/page/63314

A blue fly lands on a sheet of graph paper at a point located 10.0 cm to the right of its left edge and 8.0 cm above its bottom
edge and walks slowly to a point located 5.0 cm from the left edge and 5.0 cm from the bottom edge. Choose the rectangular
coordinate system with the origin at the lower left-side corner of the paper and find the displacement vector of the fly. Illustrate
your solution by graphing.

When we know the scalar components A  and A  of a vector , we can find its magnitude A and its direction angle . The
direction angle—or direction, for short—is the angle the vector forms with the positive direction on the x-axis. The angle  is
measured in the counterclockwise direction from the +x-axis to the vector (Figure ). Because the lengths A, A , and A  form a
right triangle, they are related by the Pythagorean theorem:

This equation works even if the scalar components of a vector are negative. The direction angle  of a vector is defined via the
tangent function of angle  in the triangle shown in Figure :

Figure : For vector , its magnitude A and its direction angle  are related to the magnitudes of its scalar components
because A, A , and A  form a right triangle.

When the vector lies either in the first quadrant or in the fourth quadrant, where component A  is positive (Figure ), the angle 
 in Equation ) is identical to the direction angle . For vectors in the fourth quadrant, angle  is negative, which means that

for these vectors, direction angle  is measured clockwise from the positive x-axis. Similarly, for vectors in the second quadrant,
angle  is negative. When the vector lies in either the second or third quadrant, where component A  is negative, the direction
angle is  =  + 180° (Figure ).

Figure : Scalar components of a vector may be positive or negative. Vectors in the first quadrant (I) have both scalar
components positive and vectors in the third quadrant have both scalar components negative. For vectors in quadrants II and III, the
direction angle of a vector is  =  + 180°.

Exercise 3.1.2

x y A ⃗  θA

θA

3.1.3 x y

= + ⇔ A = .A2 A2
x A2

y +A2
x A2

y

− −−−−−−
√ (3.1.8)

θA

θA 3.1.3

tanθ = ⇒ θ = ( ).
Ay

Ax

tan−1
Ay

Ax

(3.1.9)

3.1.3 A ⃗  θA

x y

x 3.1.4

θ 3.1.9 θA θ

θA

θ x
θA θ 3.1.4

3.1.4

θA θ
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You move a mouse pointer on the display monitor from its initial position at point (6.0 cm, 1.6 cm) to an icon located at point
(2.0 cm, 4.5 cm). What is the magnitude and direction of the displacement vector of the pointer?

Strategy

In Example , we found the displacement vector  of the mouse pointer (see Equation ). We identify its scalar
components D  = −4.0 cm and D  = + 2.9 cm and substitute into Equation  and Equation  to find the magnitude D
and direction , respectively.

Solution

The magnitude of vector  is

The direction angle is

Vector  lies in the second quadrant, so its direction angle is

If the displacement vector of a blue fly walking on a sheet of graph paper is  cm, find its magnitude
and direction.

In many applications, the magnitudes and directions of vector quantities are known and we need to find the resultant of many
vectors. For example, imagine 400 cars moving on the Golden Gate Bridge in San Francisco in a strong wind. Each car gives the
bridge a different push in various directions and we would like to know how big the resultant push can possibly be. We have
already gained some experience with the geometric construction of vector sums, so we know the task of finding the resultant by
drawing the vectors and measuring their lengths and angles may become intractable pretty quickly, leading to huge errors. Worries
like this do not appear when we use analytical methods. The very first step in an analytical approach is to find vector components
when the direction and magnitude of a vector are known.

Let us return to the right triangle in Figure . The quotient of the adjacent side A  to the hypotenuse A is the cosine function of
direction angle , A /A = cos , and the quotient of the opposite side A  to the hypotenuse A is the sine function of , A /A =
sin . When magnitude A and direction  are known, we can solve these relations for the scalar components:

When calculating vector components with Equation , care must be taken with the angle. The direction angle  of a vector is
the angle measured counterclockwise from the positive direction on the x-axis to the vector. The clockwise measurement gives a
negative angle.

A rescue party for a missing child follows a search dog named Trooper. Trooper wanders a lot and makes many trial sniffs
along many different paths. Trooper eventually finds the child and the story has a happy ending, but his displacements on
various legs seem to be truly convoluted. On one of the legs he walks 200.0 m southeast, then he runs north some 300.0 m. On
the third leg, he examines the scents carefully for 50.0 m in the direction 30° west of north. On the fourth leg, Trooper goes
directly south for 80.0 m, picks up a fresh scent and turns 23° west of south for 150.0 m. Find the scalar components of
Trooper’s displacement vectors and his displacement vectors in vector component form for each leg.

Example : Magnitude and Direction of the Displacement Vector3.1.3

3.1.1 D⃗  3.1.7

x y 3.1.8 3.1.9

θD

D⃗ 

D = = = cm = 4.9 cm.+D2
x D2

y

− −−−−−−
√ (−4.0 cm +(2.9 cm)2 )2

− −−−−−−−−−−−−−−−−−−
√ (4.0 +(2.9)2 )2

− −−−−−−−−−−
√ (3.1.10)

tanθ = = = −0.725 ⇒ θ = (−0.725) = − .
Dy

Dx

+2.9 cm

−4.0 cm
tan−1 35.9o (3.1.11)

D⃗ 

= θ + = − + = .θD 180o 35.9o 180o 144.1o (3.1.12)

Exercise 3.1.4

= (−5.00 −3.00 )D⃗  î ĵ

3.1.3 x
θA x θA y θA y

θA θA

{
= A cosAx θA

= A sin .Ay θA

(3.1.13)

3.1.13 θA

Example : Components of Displacement Vectors3.1.5
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Strategy

Let’s adopt a rectangular coordinate system with the positive x-axis in the direction of geographic east, with the positive y-
direction pointed to geographic north. Explicitly, the unit vector  of the x-axis points east and the unit vector  of the y-axis
points north. Trooper makes five legs, so there are five displacement vectors. We start by identifying their magnitudes and
direction angles, then we use Equation  to find the scalar components of the displacements and Equation  for the
displacement vectors.

Solution

On the first leg, the displacement magnitude is L  = 200.0 m and the direction is southeast. For direction angle  we can take
either 45° measured clockwise from the east direction or 45° + 270° measured counterclockwise from the east direction. With
the first choice,  = −45°. With the second choice,  = + 315°. We can use either one of these two angles. The components
are

The displacement vector of the first leg is

On the second leg of Trooper’s wanderings, the magnitude of the displacement is L  = 300.0 m and the direction is north. The
direction angle is  = + 90°. We obtain the following results:

On the third leg, the displacement magnitude is L  = 50.0 m and the direction is 30° west of north. The direction angle
measured counterclockwise from the eastern direction is  = 30° + 90° = + 120°. This gives the following answers:

On the fourth leg of the excursion, the displacement magnitude is L  = 80.0 m and the direction is south. The direction angle
can be taken as either  = −90° or  = + 270°. We obtain

On the last leg, the magnitude is L  = 150.0 m and the angle is  = −23° + 270° = + 247° (23° west of south), which gives

If Trooper runs 20 m west before taking a rest, what is his displacement vector?

This page titled 3.1: Coordinate Systems and Components of a Vector (Part 1) is shared under a CC BY-SA 4.0 license and was authored,
remixed, and/or curated by Christopher Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of

î ĵ

3.1.13 3.1.3

1 θ1

θ1 θ1

= cos = (200.0 m) cos = 141.4 m,L1x L1 θ1 315o (3.1.14)

= sin = (200.0 m) sin = −141.4 m,L1y L1 θ1 315o (3.1.15)

= + = (14.4 −141.4 ) m.L⃗ 
1 L1x î L1y ĵ î ĵ (3.1.16)

2
θ2

= cos = (300.0 m) cos = 0.0,L2x L2 θ2 90o (3.1.17)

= sin = (300.0 m) sin = 300.0 m,L2y L2 θ2 90o (3.1.18)

= + = (300.0 m) .L⃗ 
2 L2x î L2y ĵ ĵ (3.1.19)

3
θ3

= cos = (50.0 m) cos = −25.0 m,L3x L3 θ3 120o (3.1.20)

= sin = (50.0 m) sin = +43.3 m,L3y L3 θ3 120o (3.1.21)

= + = (−25.0 +43.3 ) m.L⃗ 
3 L3x î L3y ĵ î ĵ (3.1.22)

4
θ4 θ4

= cos = (80.0 m) cos(− ) = 0,L4x L4 θ4 90o (3.1.23)

= sin = (80.0 m) sin(− ) = −80.0 m,L4y L4 θ4 90o (3.1.24)

= + = (−80.0 m) .L⃗ 
4 L4x î L4y ĵ ĵ (3.1.25)

5 θ5

= cos = (150.0 m) cos = −58.6 m,L5x L5 θ5 247o (3.1.26)

= sin = (150.0 m) sin = −138.1 m,L5y L5 θ5 247o (3.1.27)

= + = (−58.6 −138.1 ) m.L⃗ 
5 L5x î L5y ĵ î ĵ (3.1.28)

Exercise 3.1.6
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3.2: Coordinate Systems and Components of a Vector (Part 2)

Polar Coordinates
To describe locations of points or vectors in a plane, we need two orthogonal directions. In the Cartesian coordinate system these
directions are given by unit vectors  and  along the x-axis and the y-axis, respectively. The Cartesian coordinate system is very
convenient to use in describing displacements and velocities of objects and the forces acting on them. However, it becomes
cumbersome when we need to describe the rotation of objects. When describing rotation, we usually work in the polar coordinate
system.

In the polar coordinate system, the location of point P in a plane is given by two polar coordinates (Figure ). The first polar
coordinate is the radial coordinate r, which is the distance of point P from the origin. The second polar coordinate is an angle 
that the radial vector makes with some chosen direction, usually the positive x-direction. In polar coordinates, angles are measured
in radians, or rads. The radial vector is attached at the origin and points away from the origin to point P. This radial direction is
described by a unit radial vector . The second unit vector  is a vector orthogonal to the radial direction . The positive + 
direction indicates how the angle  changes in the counterclockwise direction. In this way, a point P that has coordinates (x, y) in
the rectangular system can be described equivalently in the polar coordinate system by the two polar coordinates (r, ). Equation
3.2.13 is valid for any vector, so we can use it to express the x- and y-coordinates of vector . In this way, we obtain the connection
between the polar coordinates and rectangular coordinates of point P:

Figure : Using polar coordinates, the unit vector  defines the positive direction along the radius r (radial direction) and,
orthogonal to it, the unit vector  defines the positive direction of rotation by the angle .

A treasure hunter finds one silver coin at a location 20.0 m away from a dry well in the direction 20° north of east and finds
one gold coin at a location 10.0 m away from the well in the direction 20° north of west. What are the polar and rectangular
coordinates of these findings with respect to the well?

Strategy

The well marks the origin of the coordinate system and east is the +x-direction. We identify radial distances from the locations
to the origin, which are r  = 20.0 m (for the silver coin) and r  = 10.0 m (for the gold coin). To find the angular coordinates, we
convert 20° to radians: 20° =  = . We use Equation  to find the x- and y-coordinates of the coins.

Solution

The angular coordinate of the silver coin is  = , whereas the angular coordinate of the gold coin is  =  −  = .
Hence, the polar coordinates of the silver coin are (r , ) = (20.0 m, ) and those of the gold coin are (r , ) = (10.0 m, 

). We substitute these coordinates into Equation  to obtain rectangular coordinates. For the gold coin, the coordinates
are

î ĵ

3.2.1

φ

r̂ t̂ r̂ t̂

φ

φ

r ⃗ 

{ .
x = r cos φ

y = r sinφ
(3.2.1)

3.2.1 r̂

t̂ φ

Example : Polar Coordinates3.2.1

S G
π 20
180

π

9
3.2.1

φS
π

9
φG π π

9
8π

9

S φS
π

9 G φG

8π
9

3.2.1

{ ⇒ ( , ) = (−9.4 m, 3.4 m).
= cos = (10.0 m) cos = −9.4 mxG rG φG

8π
9

= sin = (10.0 m) sin = 3.4 myG rG φG
8π
9

xG yG (3.2.2)
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For the silver coin, the coordinates are

Vectors in Three Dimensions
To specify the location of a point in space, we need three coordinates (x, y, z), where coordinates x and y specify locations in a
plane, and coordinate z gives a vertical positions above or below the plane. Three-dimensional space has three orthogonal
directions, so we need not two but three unit vectors to define a three-dimensional coordinate system. In the Cartesian coordinate
system, the first two unit vectors are the unit vector of the x-axis  and the unit vector of the y-axis . The third unit vector  is the
direction of the z-axis (Figure ). The order in which the axes are labeled, which is the order in which the three unit vectors
appear, is important because it defines the orientation of the coordinate system. The order x-y-z, which is equivalent to the order  -

 - , defines the standard right-handed coordinate system (positive orientation).

Figure : Three unit vectors define a Cartesian system in three-dimensional space. The order in which these unit vectors appear
defines the orientation of the coordinate system. The order shown here defines the right-handed orientation.

In three-dimensional space, vector  has three vector components: the x-component  = A  , which is the part of vector  along
the x-axis; the y-component  = A  , which is the part of  along the y-axis; and the z-component  = A  , which is the part
of the vector along the z-axis. A vector in three-dimensional space is the vector sum of its three vector components (Figure ):

If we know the coordinates of its origin b(x , y , z ) and of its end e(x  y , z ), its scalar components are obtained by taking their
differences: A  and A  are given by

and the z-component is given by

Magnitude A is obtained by generalizing Equation 2.4.8 to three dimensions:

This expression for the vector magnitude comes from applying the Pythagorean theorem twice. As seen in Figure , the

diagonal in the xy-plane has length  and its square adds to the square A  to give A . Note that when the z-component

is zero, the vector lies entirely in the xy-plane and its description is reduced to two dimensions.

{ ⇒ ( , ) = (18.9 m, 6.8 m).
= cos = (20.0 m) cos = 18.9 mxS rS φS

π
9

= sin = (20.0 m) sin = 6.8 myS rS φS
π

9

xS yS (3.2.3)

î ĵ k̂

3.2.2

î

ĵ k̂

3.2.2

A ⃗  A ⃗ 
x x î A ⃗ 

A ⃗ 
y y ĵ A ⃗  A ⃗ 

z z k̂

3.2.3

= + + .A ⃗  Ax î Ay ĵ Azk̂ (3.2.4)

b b b e e e

x y

{
= −Ax xe xb

= − .Ay ye yb

= − .Az ze zb (3.2.5)

A = .+ +A2
x A2

y A2
z

− −−−−−−−−−−
√ (3.2.6)

3.2.3

+A2
x A2

y

− −−−−−−
√ z

2 2
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Figure : A vector in three-dimensional space is the vector sum of its three vector components.

During a takeoff of IAI Heron (Figure ), its position with respect to a control tower is 100 m above the ground, 300 m to
the east, and 200 m to the north. One minute later, its position is 250 m above the ground, 1200 m to the east, and 2100 m to
the north. What is the drone’s displacement vector with respect to the control tower? What is the magnitude of its displacement
vector?

Figure : The drone IAI Heron in flight. (credit: SSgt Reynaldo Ramon, USAF)

Strategy

We take the origin of the Cartesian coordinate system as the control tower. The direction of the +x-axis is given by unit vector 
 to the east, the direction of the +y-axis is given by unit vector  to the north, and the direction of the +z-axis is given by unit

vector , which points up from the ground. The drone’s first position is the origin (or, equivalently, the beginning) of the
displacement vector and its second position is the end of the displacement vector.

Solution

We identify b(300.0 m, 200.0 m, 100.0 m) and e(480.0 m, 370.0 m, 250.0m), and Equation  to find the scalar components
of the drone’s displacement vector:

We substitute these components into Equation  to find the displacement vector:

We substitute into Equation  to find the magnitude of the displacement:

If the average velocity vector of the drone in the displacement in Example 2.7 is  = (15.0  + 31.7  + 2.5 ) m/s, what is the
magnitude of the drone’s velocity vector?

3.2.3

Example : Takeoff of a Drone3.2.2

3.2.4

3.2.4

î ĵ

k̂

3.2.5

⎧

⎩
⎨

= − = 1200.0 m −300.0 m = 900.0 m,Dx xe xb

= − = 2100.0 m −200.0 m = 1900.0 m,Dy ye yb

= − = 250.0 m −100.0 m = 150 m.Dz ze zb

(3.2.7)

3.2.4

= + + = 900.0 +1900.0 +150.0 = (0.90 +1.90 +0.15 ) km.D⃗  Dx î Dy ĵ Dz k̂ î ĵ k̂ î ĵ k̂ (3.2.8)

3.2.6

D = = = 4.44 km.+ +D2
x D2

y D2
z

− −−−−−−−−−−−
√ (0.90 km +(1.90 km +(0.15 km)2 )2 )2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√ (3.2.9)

Exercise 3.2.3

u⃗  î ĵ k̂
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3.3: Examples

You have escaped from your cell in a dungeon underneath the castle shown in the figure. If you can run through the tunnels and find
an exit on the other side of the river (30 m wide and 205 m north, as shown), you'll escape from the evil wizard!          

1. First you take a tunnel 180 m long traveling 30  north of east.
2. Then you make a right angle turn to the left, and travel another 180  m.

At the end of this tunnel, you see a hatch in the ceiling. Will you escape to the other side of the river if you take this hatch?

Solve the following two problems using vector components. 
  

1. Sandra drives her car directly North for 2.0 km, and then turns 20 degrees to the East and drives another 4.0 km. Find the vector
(magnitude and direction) from her initial location to her final location. 

2. Joe and Max shake hands and say goodbye.  Joe walks east 1.00  km to a coffee shop.  Max flags a cab and rides 5.00 km in a
direction 30 degrees north of east to a bookstore. Find the vector (magnitude and direction) from the coffee shop (Joe) to the
bookstore (Max).

 

Three displacement vectors , , and  in a plane are specified by their magnitudes A = 10.0, B = 7.0, and C = 8.0, respectively, and
by their respective direction angles with the horizontal direction  = 35°,  = −110°, and  = 30°. The physical units of the
magnitudes are centimeters. Resolve the vectors to their scalar components and find the following vector sums:

a.  =  +  + ,
b.  =  − , and
c.  =  − 3  + .

Strategy

First, we use Equation 3.2.13 to find the scalar components of each vector and then we express each vector in its vector component

form given by . Then, we use analytical methods of vector algebra to find the resultants.

Solution

We resolve the given vectors to their scalar components:

 Whiteboard Problem 3.3.1

∘

 Whiteboard Problem 3.3.2

Example : Analytical Computation of a Resultant3.3.3

A ⃗  B⃗  C ⃗ 

α β γ

R⃗  A ⃗  B⃗  C ⃗ 

D⃗  A ⃗  B⃗ 

S ⃗  A ⃗  B⃗  C ⃗ 

= +A
→

Ax î Ay ĵ

{
= A cosα = (10.0 cm) cos = 8.19 cmAx 35o

= A sinα = (10.0 cm) sin = 5.73 cmAy 35o
(3.3.1)
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For (a) we may substitute directly into the given expression to find the scalar components of the resultant:

Therefore, the resultant vector is cm. For (b), we may want to write the vector difference as

Hence the difference vector is cm.

For (c), we can write vector  in the following explicit form:

Then, the scalar components of  are

The vector is cm.

Significance

Having found the vector components, we can illustrate the vectors by graphing or we can compute magnitudes and direction angles, as
shown in Figure .

Figure : Graphical illustration of the solutions obtained analytically.

Three displacement vectors , , and  are specified by their magnitudes A = 10.00, B = 7.00, and F = 20.00, respectively, and by
their respective direction angles with the horizontal direction  = 35°,  = −110°, and  = 110°. The physical units of the magnitudes
are centimeters. Use the analytical method to find vector  =  + 2  − . Verify that G = 28.15 cm and that  = −68.65°.

Four dogs named Astro, Balto, Clifford, and Dug play a tug-of-war game with a toy (Figure ). Astro pulls on the toy in direction 
 = 55° south of east, Balto pulls in direction  = 60° east of north, and Clifford pulls in direction  = 55° west of north. Astro pulls

strongly with 160.0 units of force (N), which we abbreviate as A = 160.0 N. Balto pulls even stronger than Astro with a force of
magnitude B = 200.0 N, and Clifford pulls with a force of magnitude C = 140.0 N. When Dug pulls on the toy in such a way that his
force balances out the resultant of the other three forces, the toy does not move in any direction. With how big a force and in what
direction must Dug pull on the toy for this to happen?

{
= B cosβ = (7.0 cm) cos(− ) = −2.39 cmBx 110o

= B sinβ = (7.0 cm) sin(− ) = −6.58 cmBy 110o
(3.3.2)

{
= C cosγ = (8.0 cm) cos( ) = 6.93 cmCx 30o

= C sinγ = (8.0 cm) sin( ) = 4.00 cmCy 30o
(3.3.3)

{
= + + = 8.19 cm−2.39 cm+6.93 cm = 12.73 cmRx Ax Bx Cx

= + + = 5.73 cm−6.58 cm+4.00 cm = 3.15 cmRy Ay By Cy
(3.3.4)

= + = (12.7 +3.1 )R⃗  Rx î Ry ĵ î ĵ

= − = ( + ) −( + ) = ( − ) +( − ) .D⃗  A ⃗  B⃗  Ax î Ay ĵ Bx î By ĵ Ax Bx î Ay By ĵ (3.3.5)

= + = (10.6 +12.3 )D⃗  Dx î Dy ĵ î ĵ

S ⃗ 

= −3 + = ( + ) −3( + ) +( + ) = ( −3 + ) +( −3 + ) .S ⃗  A ⃗  B⃗  C ⃗  Ax î Ay ĵ Bx î By ĵ Cx î Cy ĵ Ax Bx Cx î Ay By Cy ĵ (3.3.6)

S ⃗ 

{
= −3 + = 8.19 cm−3(−2.39 cm) +6.93 cm = 22.29 cmSx Ax Bx Cx

= −3 + = 5.73 cm−3(−6.58 cm) +4.00 cm = 29.47 cmSy Ay By Cy
(3.3.7)

= + = (22.3 +29.5 )S ⃗  Sx î Sy ĵ î ĵ

3.3.1

3.3.1

Exercise 3.3.4

A ⃗  B⃗  F ⃗ 

α β φ

F ⃗  A ⃗  B⃗  F ⃗  θG

Example : The Tug-of-War Game3.3.5

3.3.2

α β γ
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Figure : Four dogs play a tug-of-war game with a toy.

Strategy

We assume that east is the direction of the positive x-axis and north is the direction of the positive y-axis. As in Example , we
have to resolve the three given forces —  (the pull from Astro),  (the pull from Balto), and  (the pull from Clifford)—into their
scalar components and then find the scalar components of the resultant vector  =  +  + . When the pulling force  from Dug
balances out this resultant, the sum of  and  must give the null vector  +  = . This means that  =  so the pull from Dug
must be antiparallel to .

Solution

The direction angles are  =  = −55°,  = 90° −  = 30°, and  = 90° +  = 145°, and substituting them into Equation 2.4.13
gives the scalar components of the three given forces:

Now we compute scalar components of the resultant vector :

The antiparallel vector to the resultant  is

The magnitude of Dug's pulling force is

The direction of Dug's pulling force is

Dug pulls in the direction 18.1° south of west because both components are negative, which means the pull vector lies in the third
quadrant.

3.3.2

3.3.1

A ⃗  B⃗  C ⃗ 

R⃗  A ⃗  B⃗  C ⃗  D⃗ 

D⃗  R⃗  D⃗  R⃗  0⃗  D⃗  −R⃗ 

R⃗ 

θA −α θB β θC γ

{
= A cos = (160.0 N) cos(− ) = +91.8 NAx θA 55o

= A sin = (160.0 N) sin(− ) = −131.1 NAy θA 55o
(3.3.8)

{
= B cos = (200.0 N) cos = +173.2 NBx θB 30o

= B sin = (200.0 N) sin = +100.0 NBy θB 30o
(3.3.9)

{
= C cos = (140.0 N) cos = −114.7 NCx θC 145o

= C sin = (140.0 N) sin = +80.3 NCy θC 145o
(3.3.10)

= + +R⃗  A ⃗  B⃗  C ⃗ 

{
= + + = +91.8 N +173.2 N −114.7 N = +150.3 NRx Ax Bx Cx

= + + = −131.1 N +100.0 N +80.3 N = +49.2 NRy Ay By Cy
(3.3.11)

R⃗ 

= − = − − = (−150.3 −49.2 )N .D⃗  R⃗  Rx î Ry ĵ î ĵ (3.3.12)

D = = N = 158.1 N .+D2
x D2

y

− −−−−−−
√ (−150.3 +(−49.2)2 )2

− −−−−−−−−−−−−−−−−
√ (3.3.13)

θ = ( ) = ( ) = ( ) = .tan−1
Dy

Dx

tan−1 −49.2 N

−150.3 N
tan−1 49.2

150.3
18.1o (3.3.14)
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Suppose that Balto in Example  leaves the game to attend to more important matters, but Astro, Clifford, and Dug continue
playing. Astro and Clifford’s pull on the toy does not change, but Dug runs around and bites on the toy in a different place. With how
big a force and in what direction must Dug pull on the toy now to balance out the combined pulls from Clifford and Astro? Illustrate
this situation by drawing a vector diagram indicating all forces involved.

Find the magnitude of the vector  that satisfies the equation 2  − 6  + 3  = 2 ,  =  − 2  and  = −  +  .

Strategy

We first solve the given equation for the unknown vector . Then we substitute  and ; group the terms along each of the three
directions , , and ; and identify the scalar components C , C , and C . Finally, we substitute into Equation 3.3.6 to find magnitude
C.

Solution

The components are C  = , C  = , and C  = , and substituting into Equation 3.3.6 gives

Starting at a ski lodge, a cross-country skier goes 5.0 km north, then 3.0 km west, and finally 4.0 km southwest before taking a rest.
Find his total displacement vector relative to the lodge when he is at the rest point. How far and in what direction must he ski from the
rest point to return directly to the lodge?

Strategy

We assume a rectangular coordinate system with the origin at the ski lodge and with the unit vector  pointing east and the unit vector 
 pointing north. There are three displacements: , , and . We identify their magnitudes as D  = 5.0 km , D  = 3.0 km , and D

= 4.0 km . We identify their directions are the angles  = 90°,  = 180°, and  = 180° + 45° = 225°. We resolve each displacement
vector to its scalar components and substitute the components into Equation 3.2.13 to obtain the scalar components of the resultant
displacement  from the lodge to the rest point. On the way back from the rest point to the lodge, the displacement is  = − .
Finally, we find the magnitude and direction of .

Solution

Scalar components of the displacement vectors are

Exercise 3.3.6

3.3.2

Example : Vector Algebra3.3.7

C ⃗  A ⃗  B⃗  C ⃗  ĵ A ⃗  î k̂ B⃗  ĵ k̂

2

C ⃗  A ⃗  B⃗ 

î ĵ k̂ x y z

2 −6 +A ⃗  B⃗  3 = 2C ⃗  ĵ

3 = 2 −2 +6C ⃗  ĵ A ⃗  B⃗ 

= − +2C ⃗  2

3
ĵ

2

3
A ⃗  B⃗ 

= − ( −2 ) +2(− + )
2

3
ĵ

2

3
î k̂ ĵ

k̂

2

= − + −2 +
2

3
ĵ

2

3
î

4

3
k̂ ĵ k̂

= − +( −2) +(   +1)
2

3
î

2

3
ĵ

4

3
k̂

= − − +
2

3
î

4

3
ĵ

7

3
k̂

x − 2
3 y − 4

3 z
7
3

C = = = .+ +C 2
x C 2

y C 2
z

− −−−−−−−−−−
√ + +(− )

2

3

2

(− )
4

3

2

( )
7

3

2
− −−−−−−−−−−−−−−−−−−−−−

√
23

3

−−−
√ (3.3.15)

Example : Displacement of a Skier3.3.8

î

ĵ D⃗ 
1 D⃗ 

2 D⃗ 
3 1 2 3

θ1 θ2 θ3

D⃗  B⃗  D⃗ 

B⃗ 

{
= cos = (5.0 km) cos = 0D1x D1 θ1 90o

= sin = (5.0 km) sin = 5.0 kmD1y D1 θ1 90o
(3.3.16)

{
= cos = (3.0 km) cos = −3.0 kmD2x D2 θ2 180o

= sin = (3.0 km) sin = 0D2y D2 θ2 180o
(3.3.17)
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Scalar components of the net displacement vector are

Hence, the skier’s net displacement vector is  = D   + D   = (−5.8  + 2.2 )km . On the way back to the lodge, his displacement

is  = −  = −(−5.8 + 2.2 )km = (5.8  − 2.2 )km. Its magnitude is B =  =  km = 6.2 km and its

direction angle is = tan  = −20.8°. Therefore, to return to the lodge, he must go 6.2 km in a direction about 21° south of

east.

Significance

Notice that no figure is needed to solve this problem by the analytical method. Figures are required when using a graphical method;
however, we can check if our solution makes sense by sketching it, which is a useful final step in solving any vector problem.

A jogger runs up a flight of 200 identical steps to the top of a hill and then runs along the top of the hill 50.0 m before he stops at a
drinking fountain (Figure ). His displacement vector from point A at the bottom of the steps to point B at the fountain is  =
(−90.0  + 30.0 )m. What is the height and width of each step in the flight? What is the actual distance the jogger covers? If he
makes a loop and returns to point A, what is his net displacement vector?

Figure : A jogger runs up a flight of steps.

Strategy

The displacement vector  is the vector sum of the jogger’s displacement vector  along the stairs (from point A at the bottom
of the stairs to point T at the top of the stairs) and his displacement vector  on the top of the hill (from point T at the top of the
stairs to the fountain at point B). We must find the horizontal and the vertical components of . If each step has width w and height
h, the horizontal component of  must have a length of 200w and the vertical component must have a length of 200h. The actual
distance the jogger covers is the sum of the distance he runs up the stairs and the distance of 50.0 m that he runs along the top of the
hill.

Solution

In the coordinate system indicated in Figure , the jogger’s displacement vector on the top of the hill is  = (−50.0 m) . His
net displacement vector is

Therefore, his displacement vector  along the stairs is

Its scalar components are D  = −40.0 m and D  = 30.0 m. Therefore, we must have

{
= cos = (4.0 km) cos = −2.8 kmD3x D3 θ3 225o

= sin = (4.0 km) sin = −2.8 kmD3y D3 θ3 225o
(3.3.18)

{
= + + = (0 −3.0 −2.8)km = −5.8 kmDx D1x D2x D3x

= + + = (5.0 +0 −2.8)km = +2.2 kmDy D1y D2y D3y
(3.3.19)

D⃗ 
x î y ĵ î ĵ

B⃗  D⃗  î ĵ î ĵ +B2
x B2

y

− −−−−−−
√ (5.8 +(−2.2)2 )2− −−−−−−−−−−−−

√

θ −1( )
−2.2

5.8

Example : Displacement of a Jogger3.3.9

3.3.3 D⃗ 
AB

î ĵ

3.3.3

D⃗ 
AB D⃗ 

AT

D⃗ 
RB

D⃗ 
TB

D⃗ 
TB

3.3.3 D⃗ 
RB î

= + .D⃗ 
AB D⃗ 

AT D⃗ 
TB

D⃗ 
TB

D⃗ 
AT = − = (−90.0 +30.0 )m−(−50.0m) ) = [(−90.050.0) +30.0 )]mD⃗ 

AB D⃗ 
TB î ĵ î î ĵ

= (−40.0 +30.0 )m.î ĵ

ATx ATy

200w = | −40.0|m and 200h = 30.0 m.
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Hence, the step width is w =  = 0.2 m = 20 cm, and the step height is w =  = 0.15 m = 15 cm. The distance that the jogger
covers along the stairs is

Thus, the actual distance he runs is D  + D  = 50.0 m + 50.0 m = 100.0 m. When he makes a loop and comes back from the
fountain to his initial position at point A, the total distance he covers is twice this distance,or 200.0 m. However, his net displacement
vector is zero, because when his final position is the same as his initial position, the scalar components of his net displacement vector
are zero.

In many physical situations, we often need to know the direction of a vector. For example, we may want to know the direction of a
magnetic field vector at some point or the direction of motion of an object. We have already said direction is given by a unit vector, which
is a dimensionless entity—that is, it has no physical units associated with it. When the vector in question lies along one of the axes in a
Cartesian system of coordinates, the answer is simple, because then its unit vector of direction is either parallel or antiparallel to the
direction of the unit vector of an axis. For example, the direction of vector  = -5 m  is unit vector  = - . The general rule of finding the
unit vector  of direction for any vector  is to divide it by its magnitude V:

We see from this expression that the unit vector of direction is indeed dimensionless because the numerator and the denominator in
Equation  have the same physical unit. In this way, Equation  allows us to express the unit vector of direction in terms of unit
vectors of the axes. The following example illustrates this principle.

If the velocity vector of a military convoy is  = (4.000  + 3.000  + 0.100 )km/h, what is the unit vector of its direction of motion.

Strategy

The unit vector of the convoy’s direction of motion is the unit vector  that is parallel to the velocity vector. The unit vector is
obtained by dividing a vector by its magnitude, in accordance with Equation .

Solution

The magnitude of the vector  is

To obtain the unit vector , divide  by its magnitude:

Significance

Note that when using the analytical method with a calculator, it is advisable to carry out your calculations to at least three decimal
places and then round off the final answer to the required number of significant figures, which is the way we performed calculations in
this example. If you round off your partial answer too early, you risk your final answer having a huge numerical error, and it may be
far off from the exact answer or from a value measured in an experiment.

Verify that vector  obtained in Example  is indeed a unit vector by computing its magnitude. If the convoy in Example 2.6.1
was moving across a desert flatland—that is, if the third component of its velocity was zero—what is the unit vector of its direction of
motion? Which geographic direction does it represent?

40.0 m

200
30.0 m

200

= = m = 50.0 m.D⃗ 
AT +D⃗ 2

ATx D⃗ 2
ATy

− −−−−−−−−−−
√ (−40.0 +(30.0)2 )2

− −−−−−−−−−−−−−−
√

AT TB

d ⃗  î d ⃗  î

V ⃗  V ⃗ 

= ⋅V̂
V
→

V
(3.3.20)

3.3.20 3.3.20

Example : The Unit Vector of Direction3.3.10

v ⃗  î ĵ k̂

v̂

3.3.20

v ⃗ 

v= = km/h = 5.001 km/h.+ +v2
x v2

y v2
z

− −−−−−−−−−
√ + +4.0002 3.0002 0.1002− −−−−−−−−−−−−−−−−−−

√

v̂ v ⃗ 

v̂ = =
v ⃗ 

v

(4.000 +3.00 +0.100 )km/hî ĵ k̂

5.001 km/h

=
(4.000 +3.000 +0.1100 )î ĵ k̂

5.001

= + +
4.000

5.001
î

3.000

5.001
ĵ

0.100

5.001
k̂

= (79.98 +59.99 +2.00 ) × .î ĵ k̂ 10−2

Exercise 3.3.11
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CHAPTER OVERVIEW

4: C4) Systems and The Center of Mass
4.1: The Law of Inertia
4.2: Extended Systems and Center of Mass
4.3: Reference Frame Changes and Relative Motion
4.4: Examples

There are two basic concepts we are going to cover in this chapter: what a system is, and the center of mass.

A system is a very generic word ("the system of the Earth and the Moon", "a fridge is a closed system","my computer system") that
we are going to make precise so that we can use it to describe our abstraction of the real world. Simply put, a system is a collection
of objects. When we turn our objects into points, we are going to describe specific collections of those points as the systems. For a
given problem, there may be multiple possible systems. For a simple example, consider the collision of two blocks sliding along
the ground. We replace the blocks with points, and say "the system is the two blocks." Well that's a fine system if we're going to
ignore friction, but if the blocks are experiencing friction between themselves and the ground, we had better include the ground in
our system as well. So maybe system A is the blocks, but system B is the blocks and the ground, and if we want to include the
effects of friction, we have to use system B. A simple idea, but really important for us as we start to think about how we model
interactions, and which interactions are present in any given physical problem.

The center of mass, in comparison, is a definite mathematical concept. It's the answer to "when we replace our objects with points,
what point do we actually use?" We use the center of mass because it's the balance point of the system, and therefore satisfies some
important properties that random other points in our system don't satisfy. For example, consider the motion of a runner. If we
replaced the runner with a point, and used the tip of their fingers as the point, we would have a very hard time confirming any of
our calculations, because a real runners fingers are flying back and forth as they run! However, if we described their motion using
their center of mass (a point inside their chest, at the center of their body), their motion would essentially be just a straight line -
much easier to understand and use in our calculations.

The specific mathematical definition of the center of mass is

In this formula, each  is the mass of an object, and each  is the position of the mass. If we were going to use this definition to
find the center of mass of the runner, we would break up their body into a bunch of little masses and find all their vector positions -
it would take a long time ! In this course, we will generally do things more like "find the center of mass between two objects of
mass  and , separated by a distance ". So what are  and  in this situation? They are position vectors, so you first have to
decide where the origin of your system is - where you are measuring the position relative to. It's often easy to pick one of the
masses as the origin, say the first one, so that , , and the center of mass is

Notice that I got rid of the vector signs in this example - we will generally be more careful and keep track of both x- and y-
directions separately, but here it's easy to see that the center of mass will be in a line between the two masses. If our numbers were 

 kg,  kg, and  m, the answer is  m. This makes sense as "the balance point", because it's much
closer to the larger mass.

Of course, if we really wanted to do that calculation, we would probably use an integral!

4: C4) Systems and The Center of Mass is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College.
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4.1: The Law of Inertia
There is something funny about motion with constant velocity: it is indistinguishable from rest. Of course, you can usually tell
whether you are moving relative to something else. But if you are enjoying a smooth airplane ride, without looking out the window,
you have no idea how fast you are moving, or even, indeed (if the flight is exceptionally smooth) whether you are moving at all.

If I were to drop something from such an airplane, I know from experience that it would fall on a straight line—relative to me, that
is. If it falls from my hand it will land at my feet, just as if we were all at rest. But we are not at rest. In the half second or so it takes
for the object to fall, the airplane has moved forward 111 meters relative to the ground. Yet the (hypothetical) object I drop does not
land 300 feet behind me! It moves forward with me as it falls, even though I am not touching it. It keeps its initial forward velocity,
even though it is no longer in contact with me or anything connected to the airplane.

This remarkable observation is one of the most fundamental principles of physics, which we call the law of inertia. It can be stated
as follows: in the absence of any external influence (or force) acting on it, an object at rest will stay at rest, while an object that is
already moving with some velocity will keep that same velocity (speed and direction of motion)—at least until it is, in fact, acted
upon by some force.

Please let that sink in for a moment, before we start backtracking, which we have to do now on several accounts. First, we used
repeatedly the term “force,” but we have not defined it properly. What if we just said that forces are precisely any “external
influences” that may cause a change in the velocity of an object? That will work until it is time to explore the concept in more
detail, a few chapters from now.

Next, I need to draw your attention to the fact that the object I (hypothetically) dropped did not actually keep its total initial
velocity: it only kept its initial forward velocity. In the downward direction, it was speeding up from the moment it left my hand, as
would any other falling object (and as we shall see later in this chapter). But this actually makes sense in a certain way: there was
no forward force, so the forward velocity remained constant; there was, however, a vertical force acting all along (the force of
gravity), and so the object did speed up in that direction. This observation is, in fact, telling us something profound about the
world’s geometry: namely, that forces and velocities are vectors, and laws such as the law of inertia will typically apply to the
vector as a whole, as well as to each component separately (that is to say, each dimension of space). This anticipates, in fact, the
way we will deal, later on, with motion in two or more dimensions; but we do not need to worry about that for a few chapters still.

Finally, it is worth spending a moment reflecting on how radically the law of inertia seems to contradict our intuition about the way
the world works. What it seems to be telling us is that, if we throw or push an object, it should continue to move forever with the
same speed and in the same direction with which it set out—something that we know is certainly not true. But what’s happening in
“real life” is that, just because we have left something alone, it doesn’t mean the world has left it alone. After we lose contact with
the object, all sorts of other forces will continue to act on it. A ball we throw, for instance, will experience air resistance or drag,
and that will slow it down. An object sliding on a surface will experience friction, and that will slow it down too. Perhaps the
closest thing to the law of inertia in action that you may get to see is a hockey puck sliding on the ice: it is remarkable (perhaps
even a bit frightening) to see how little it slows down, but even so the ice does a exert a (very small) frictional force that would
bring the puck to a stop eventually.

This is why, historically, the law of inertia was not discovered until people started developing an appreciation for frictional forces,
and the way they are constantly acting all around us to oppose the relative motion of any objects trying to slide past each other.

This mention of relative motion, in a way, brings us full circle. Yes, relative motion is certainly detectable, and for objects in
contact it actually results in the occurrence of forces of the frictional, or drag, variety. But absolute (that is, without reference to
anything external) motion with constant velocity is fundamentally undetectable. And in view of the law of inertia, it makes sense: if
no force is required to keep me moving with constant velocity, it follows that as long as I am moving with constant velocity I
should not be feeling any net force acting on me; nor would any other detection apparatus I might be carrying with me.

This is the next very interesting fact about the physical world that we are about to discover: forces cause accelerations, or changes
in velocity, but they do so in different degrees for different objects; and, moreover, the ultimate change in velocity takes time. The
first part of this statement has to do with the concept of inertial mass, to be introduced in the next chapter; the second part we are
going to explore right now, after a brief detour to define inertial reference frames.
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Inertial Reference Frames
The example we just gave you of what happens when a plane in flight experiences turbulence points to an important phenomenon,
namely, that there may be times where the law of inertia may not seem to apply in a certain reference frame. By this we mean that
an object left at rest, like the water in a cup, may suddenly start to move—relative to the reference frame coordinates—even though
nothing and nobody is acting on it. More dramatically still, if a car comes to a sudden stop, the passengers may be “projected
forward”—they were initially at rest relative to the car frame, but now they find themselves moving forward (always in the car
reference frame), to the point that, if they are not wearing seat belts, they may end up hitting the dashboard, or the seat in front of
them.

Again, nobody has pushed on them, and in fact what we can see in this case, from outside the car, is nothing but the law of inertia
at work: the passengers were just keeping their initial velocity, when the car suddenly slowed down under and around them. So
there is nothing wrong with the law of inertia, but there is a problem with the reference frame: if one wants to describe the motion
of objects in a reference frame like a plane being shaken up or a car that is speeding up or slowing down, we need to allow for the
fact that objects may move—always relative to that frame—in an apparent violation of the law of inertia.

The way we deal with this in physics is by introducing the very important concept of an inertial reference frame, by which we
mean a reference frame in which all objects will, at all times, be observed to move (or not move) in a way fully consistent with the
law of inertia. In other words, the law of inertia has to hold when we use that frame’s own coordinates to calculate the objects’
velocities. This, of course, is what we always do instinctively: when I am on a plane I locate the various objects around me relative
to the plane frame itself, not relative to the distant ground.

To ascertain whether a frame is inertial or not, we start by checking to see if the description of motion using that frame’s
coordinates obeys the law of inertia: does an object left at rest on the counter in the laboratory stay at rest? If set in motion, does it
move with constant velocity on a straight line? The Earth’s surface, as it turns out, is not quite a perfect inertial reference frame, but
it is good enough that it made it possible for us to discover the law of inertia in the first place!

What spoils the inertial-ness of an Earth-bound reference frame is the Earth’s rotation, which, as we shall see later, is an example of
accelerated motion. In fact, if you think about the grossly non-inertial frames I have introduced above—the bouncy plane, the
braking car—they all have this in common: that their velocities are changing; they are not moving with constant speed on a straight
line.

So, once you have found an inertial reference frame, to decide whether another one is inertial or not is simple: if it is moving with
constant velocity (relative to the first, inertial frame), then it is itself inertial; if not, it is not. We will show you how this works,
formally, in a little bit (Chapter 15), after we get around to properly introducing the concept of acceleration.

It is a fundamental principle of physics that the laws of physics take the same form in all inertial reference frames. The law of
inertia is, of course, an example of such a law. Since all inertial frames are moving with constant velocity relative to each other, this
is another way to say that absolute motion is undetectable, and all motion is ultimately relative. Accordingly, this principle is
known as the principle of relativity.

This page titled 4.1: The Law of Inertia is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher
Duston, Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts
platform.
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4.2: Extended Systems and Center of Mass
Consider a collection of particles with masses , ,..., and located, at some given instant, at positions , .... (We are still, for
the time being, considering only motion in one dimension, but all these results generalize easily to three dimensions.) The center of
mass of such a system is a mathematical point whose position coordinate is given by

Clearly, the denominator of ( ) is just the total mass of the system, which we may just denote by . If all the particles have the
same mass, the center of mass will be somehow “in the middle” of all of them; otherwise, it will tend to be closer to the more
massive particle(s). The “particles” in question could be spread apart, or they could literally be the “parts” into which we choose to
subdivide, for computational purposes, a single extended object.

If the particles are in motion, the position of the center of mass, , will in general change with time. For a solid object, where all
the parts are moving together, the displacement of the center of mass will just be the same as the displacement of any part of the
object. In the most general case, we will have (by subtracting  from )

Dividing Equation ( ) by  and taking the limit as , we get the instantaneous velocity of the center of mass:

But this is just

where  is the total momentum of the system.

Center of Mass Motion for an Isolated System
Equation ( ) is a very interesting result. Since the total momentum of an isolated system is constant, it tells us that the center of
mass of an isolated system of particles moves at constant velocity, regardless of the relative motion of the particles themselves or
their possible interactions with each other. As indicated above, this generalizes straightforwardly to more than one dimension, so
we can write . Thus, we can say that, for an isolated system in space, not only the speed, but also the direction of
motion of its center of mass does not change with time.

Clearly this result is a sort of generalization of the law of inertia. For a solid, extended object, it does, in fact, provide us with the
precise form that the law of inertia must take: in the absence of external forces, the center of mass will just move on a straight line
with constant velocity, whereas the object itself may be moving in any way that does not affect the center of mass trajectory.
Specifically, the most general motion of an isolated rigid body is a straight line motion of its center of mass at constant speed,
combined with a possible rotation of the object as a whole around the center of mass.

For a system that consists of separate parts, on the other hand, the center of mass is generally just a point in space, which may or
may not coincide at any time with the position of any of the parts, but which will nonetheless move at constant velocity as long as
the system is isolated. This is illustrated by Figure , where the position vs. time curves have been drawn for the colliding
objects of Figure 2.1.1. I have assumed that object 1 starts out at  = −5 mm at  = 0, and object 2 starts at  = 0 at  = 0.
Because object 2 has twice the inertia of object 1, the position of the center of mass, as given by Equation ( ), will always be

that is to say, the center of mass will always be in between objects 1 and 2, and its distance from object 2 will always be half its
distance to object 1:
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Figure  shows that this simple prescription does result in motion with constant velocity for the center of mass (the green
straight line), even though the -vs-  curves of the two objects themselves look relatively complicated. (Please check it out! Take a
ruler to Figure  and verify that the center of mass is, at every instant, where it is supposed to be.)

Figure . The green line shows the position of the center of mass as a function of time.

The concept of center of mass gives us an important way to simplify the description of the motion of potentially complicated
systems. We will make good use of it in forthcoming chapters.

A very nice demonstration of the motion of the center of mass in two-body one-dimensional collisions can be found at
https://phet.colorado.edu/sims/collision-lab/collision-lab_en.html (you need to check the “center of mass” box to see it).

Defining a System is not Unique
Although we will generally be studying relatively simple systems in the course of this class ("two carts", "a person pulling a sled",
etc), it turns out that specifying exactly what things are in the system, and how those things interact, will involve some choices. We
hope that these choices do not impact the answers we get, but in some cases they might determine which questions we can actually
ask. It will be easiest to illustrate this with a definite example, so we will try to determine the system in the figure shown below, of
a tennis racket hitting a ball.

The situation is straightforeward - a person is hitting a ball with a tennis racket. The figure in the center defines this system in what
is probably considered the "simplest" fashion, and is generally the approach we will take in this text. The system has two objects
("Ball" and "Racket"). The two objects are interacting with each other, and since both have mass, are also interacting with the Earth
via the gravitational force. This will allow us to answer basic questions like "how much force does the ball feel from the racket?"
and "how far does the ball travel after it is hit?"

However, consider the figure on the right - it's an alterative, completely correct, definition for this system. In this case, we've
broken the racket into three separate objects, "Strings", "Frame", and "Person", each with their own gravitational interactions with
the Earth. This is more complicated, but allows us to answer more interesting questions - like "how much force did the frame
absorb from the strings?" or, "how much force did the person deliver to the ball?" The original questions are still answerable, but
with this more complicated system, we've increased the number of questions we can answer about this seemingly simple system.

4.2.1

x t

4.2.1

4.2.1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63151?pdf
https://phet.colorado.edu/sims/collision-lab/collision-lab_en.html


4.2.3 https://phys.libretexts.org/@go/page/63151

As we said, we will generally be focused on the simpler of these systems - the middle one, with a single interaction between the
racket and the ball. However, it's worth it to keep in mind that there are tyically a great many other interesting questions that can be
answered with the same physical system, it's just a matter of altering the definition of the system. We will sometimes refer to this
type of thing as different models for the same physical situation, and we pick which model we want depending on what we want
to study about it.

This page titled 4.2: Extended Systems and Center of Mass is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the
LibreTexts platform.
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4.3: Reference Frame Changes and Relative Motion
Everything up to this point assumes that we are using a fixed, previously agreed upon reference frame. Basically, this is just an
origin and a set of axes along which to measure our coordinates.

There are, however, a number of situations in physics that call for the use of different reference frames, and, more importantly, that
require us to convert various physical quantities from one reference frame to another. For instance, imagine you are on a boat on a
river, rowing downstream. You are moving with a certain velocity relative to the water around you, but the water itself is flowing
with a different velocity relative to the shore, and your actual velocity relative to the shore is the sum of those two quantities. Ships
generally have to do this kind of calculation all the time, as do airplanes: the “airspeed” is the speed of a plane relative to the air
around it, but that air is usually moving at a substantial speed relative to the earth.

The way we deal with all these situations is by introducing two reference frames, which here I am going to call A and B. One of
them, say A, is “at rest” relative to the earth, and the other one is “at rest” relative to something else—which means, really, moving
along with that something else. (For instance, a reference frame at rest “relative to the river” would be a frame that’s moving along
with the river water, like a piece of driftwood that you could measure your progress relative to.)

In any case, graphically, this will look as in Figure , which we have drawn for the two-dimensional case:

Figure : Position vectors and coordinates of a point P in two different reference frames, A and B.

In the reference frame A, the point P has position coordinates . Likewise, in the reference frame B, its coordinates are 
. As you can see, the notation chosen is such that every coordinate in A will have an “A” as a first subscript, while the

second subscript indicates the object to which it refers, and similarly for coordinates in B.

The coordinates  are special: they are the coordinates, in the reference frame A, of the origin of reference frame B. This
is enough to fully locate the frame B in A, as long as the frames are not rotated relative to each other.

The thin colored lines I have drawn along the axes in Figure  are intended to make it clear that the following equations hold:

Although the figure is drawn for the easy case where all these quantities are positive, you should be able to convince yourself that
Eqs. ( ) hold also when one or more of the coordinates have negative values.

All these coordinates are also the components of the respective position vectors, shown in the figure and color-coded by reference
frame (so, for instance,  is the position vector of P in the frame A), so the equations ( ) can be written more compactly as
the single vector equation

4.3.1

4.3.1

( , )xAP yAP

( , )xBP yBP

( , )xAB yAB

4.3.1

= +xAP xAB xBP

= +xAP xAB xBP

(4.3.1)

4.3.1

r ⃗ AP 4.3.1

= + .r ⃗ AP r ⃗ AB r ⃗ BP (4.3.2)
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From all this you can see how to add vectors: algebraically, you just add their components separately, as in Eqs. ( );
graphically, you draw them so the tip of one vector coincides with the tail of the other (we call this “tip-to-tail”), and then draw the
sum vector from the tail of the first one to the tip of the other one.

Of course, I showed you already how to subtract vectors with Figure 1.2.3: again, algebraically, you just subtract the corresponding
coordinates, whereas graphically you draw them with a common origin, and then draw the vector from the tip of the vector you are
subtracting to the tip of the other one. If you read the previous paragraph again, you can see that Figure 1.2.3 can equally well be
used to show that , as to show that .

In a similar way, you can see graphically from Figure  (or algebraically from Equation ( )) that the position vector of P in
the frame B is given by . The last term in this expression can be written in a different way, as follows. If I follow
the convention I have introduced above, the quantity  (with the order of the subscripts reversed) would be the  coordinate of
the origin of frame A in frame B, and algebraically that would be equal to , and similarly . Hence the vector
equality  holds. Then,

This is, in a way, the “inverse” of Equation ( ): it tells us how to get the position of P in the frame B if we know its position in
the frame A.

Let's show next how all this extends to displacements and velocities. Suppose the point P indicates the position of a particle at the
time . Over a time interval , both the position of the particle and the relative position of the two reference frames may change.
We can add yet another subscript,  or , (for initial and final) to the coordinates, and write, for example,

Subtracting these equations gives us the corresponding displacements:

Dividing Equation ( ) by  we get the average velocities , and then taking the limit  we get the instantaneous
velocities. This applies in the same way to the  coordinates, and the result is the vector equation

We have rearranged the terms on the right-hand side to (hopefully) make it easier to visualize what’s going on. In words: the
velocity of the particle P relative to (or measured in) frame A is equal to the (vector) sum of the velocity of the particle as measured
in frame B, plus the velocity of frame B relative to frame A.

The result ( ) is just what we would have expected from the examples mentioned at the beginning of this section, like rowing
in a river or an airplane flying in the wind. For instance, for the airplane  could be its “airspeed” (only it has to be a vector, so it
would be more like its “airvelocity”: that is, its velocity relative to the air around it), and  would be the velocity of the air
relative to the earth (the wind velocity, at the location of the airplane). In other words, A represents the earth frame of reference and
B the air, or wind, frame of reference. Then,  would be the “true” velocity of the airplane relative to the earth. You can see how
it would be important to add these quantities as vectors, in general, by considering what happens when you fly in a cross wind, or
try to row across a river, as in Figure  below.

4.3.1

Δ = −r ⃗  r ⃗ f r ⃗ i = +Δr ⃗ f r ⃗ i r ⃗ 

4.3.1 4.3.2

= −r ⃗ BP r ⃗ AP r ⃗ AB

xBA x

−xAB = −yBA yAB

= −r ⃗ AB r ⃗ BA

= − = + .r ⃗ BP r ⃗ AP r ⃗ AB r ⃗ AP r ⃗ BA (4.3.3)
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Figure : Rowing across a river. If you head “straight across” the river (with velocity vector  in the moving frame of the
river, which is flowing with velocity  in the frame of the earth), your actual velocity relative to the shore will be the vector .
This is an instance of Equation ( ), with frame A being E (the earth), frame B being R (the river), and “b” (for “boat”) standing

for the point P we are tracking.

As you can see from this couple of examples, Equation ( ) is often useful as it is written, but sometimes the information we
have is given to us in a different way: for instance, we could be given the velocity of the object in frame A , and the velocity
of frame B as seen in frame A , and told to calculate the velocity of the object as seen in frame B. This can be easily
accomplished if we note that the vector  is equal to ; that is to say, the velocity of frame B as seen from frame A is just
the opposite of the velocity of frame A as seen from frame B. Hence, Equation ( ) can be rewritten as

For most of the next few chapters we are going to be considering only motion in one dimension, and so we will write Equation (
) (or ( )) without the vector symbols, and it will be understood that  refers to the component of the vector  along the

coordinate axis of interest.

A quantity that will be particularly important later on is the relative velocity of two objects, which we could label 1 and 2. The
velocity of object 2 relative to object 1 is, by definition, the velocity which an observer moving along with 1 would measure for
object 2. So it is just a simple frame change: let the earth frame be frame E and the frame moving with object 1 be frame 1, then the
velocity we want is  (“velocity of object 2 in frame 1”). If we make the change A  1, B  E, and P  2 in Equation ( ),
we get

In other words, the velocity of 2 relative to 1 is just the velocity of 2 minus the velocity of 1. This is again a familiar effect: if you
are driving down the highway at 50 miles per hour, and the car in front of you is driving at 55, then its velocity relative to you is 5
mph, which is the rate at which it is moving away from you (in the forward direction, assumed to be the positive one).

It is important to realize that all these velocities are real velocities, each in its own reference frame. Something may be said to be
truly moving at some velocity in one reference frame, and just as truly moving with a different velocity in a different reference
frame. I will have a lot more to say about this in the next chapter, but in the meantime you can reflect on the fact that, if a car
moving at 55 mph collides with another one moving at 50 mph in the same direction, the damage will be basically the same as if
the first car had been moving at 5 mph and the second one had been at rest. For practical purposes, where you are concerned,
another car’s velocity relative to yours is that car’s “real” velocity.

Resources
A good app for practicing how to add vectors (and how to break them up into components, magnitude and direction, etc.) may be
found here:https://phet.colorado.edu/en/simulation/vector-addition.

Perhaps the most dramatic demonstration of how Equation ( ) works in the real world is in this episode of Mythbusters:
https://www.youtube.com/watch?v=BLuI118nhzc. (If this link does not work, do a search for “Mythbusters cancel momentum.”)
They shoot a ball from the bed of a truck, with a velocity (relative to the truck) of 60 mph backwards, while the truck is moving
forward at 60 mph. I think the result is worth watching.

A very old, but also very good, educational video about different frames of reference is this one: https://www.youtube.com/watch?
v=sS17fCom0Ns. You should try to watch at least part of it. Many things will be relevant to later parts of the course, including
projectile motion.

 We have made a very natural assumption, that the time interval  is the same for observers tracking the particle’s motion in
frames A and B, respectively (where each observer is understood to be moving along with his or her frame). This, however, turns
out to be not true when any of the velocities involved is close to the speed of light, and so the simple addition of velocities formula
( ) does not hold in Einstein’s relativity theory.

This page titled 4.3: Reference Frame Changes and Relative Motion is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Julio Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts
platform.
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4.4: Examples

Two blocks, of mass  and , are compressed on either side of a spring and tied together with a rope. They are sitting at rest
on a frictionless surface, as shown in the figure.

1. The rope breaks and the larger block flies away from the smaller one at a speed of 2.00 m/s. If =0.450 kg, what is the
speed of the smaller block?

2. Now retie the rope and perform the experiment again, but slide the blocks along the surface with an initial speed of 3.5 m/s
to the right. The rope breaks and the spring acts in the same way on the blocks. What is the speed of the smaller block?

3. For both parts (a) and (b): What is the speed of the center of mass of the system both before and after the rope breaks? 

 

Using data from text appendix, determine how far the center of mass of the Earth-moon system is from the center of Earth.
Compare this distance to the radius of Earth, and comment on the result. Ignore the other objects in the solar system.

Strategy

We get the masses and separation distance of the Earth and moon, impose a coordinate system, and use Equation 4.3.1 with just
N = 2 objects. We use a subscript “e” to refer to Earth, and subscript “m” to refer to the moon.

Solution

Define the origin of the coordinate system as the center of Earth. Then, with just two objects, Equation 4.3.1 becomes

We can find the values of the distances and masses from the Internet,

We defined the center of Earth as the origin, so r  = 0 m. Inserting these into the equation for R gives

Significance

The radius of Earth is 6.37 x 10  m, so the center of mass of the Earth-moon system is (6.37 − 4.64) x 10  m = 1.73 x 10 m =
1730 km (roughly 1080 miles) below the surface of Earth. The location of the center of mass is shown (not to scale).

 Whiteboard Problem 4.4.1

m 3m

m

 Example : Center of Mass of the Earth-Moon System4.4.2

R = .
+mcrc mmrm

+mc mm

(4.4.1)

= 5.97 × kgmc 1024 (4.4.2)

= 7.36 × kgmm 1022 (4.4.3)

= 3.82 × m.rm 105 (4.4.4)

e

R =
(5.97 × kg)(0 m) +(7.36 × kg)(3.82 × m)1024 1022 108

(5.98 × kg) +(7.36 × kg)1024 1022

= 4.64 × m.106

6 6 6 
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Suppose we included the sun in the system. Approximately where would the center of mass of the Earth-moon-sun system be
located? (Feel free to actually calculate it.)

Figure  shows a single crystal of sodium chloride—ordinary table salt. The sodium and chloride ions form a single unit,
NaCl. When multiple NaCl units group together, they form a cubic lattice. The smallest possible cube (called the unit cell)
consists of four sodium ions and four chloride ions, alternating. The length of one edge of this cube (i.e., the bond length) is
2.36 x 10  m. Find the location of the center of mass of the unit cell. Specify it either by its coordinates (r , r , r ),
or by r  and two angles.

Figure : A drawing of a sodium chloride (NaCl) crystal.

Strategy

We can look up all the ion masses. If we impose a coordinate system on the unit cell, this will give us the positions of the ions.
We can then apply Equation 4.3.1 in each direction (along with the Pythagorean theorem).

Solution

Define the origin to be at the location of the chloride ion at the bottom left of the unit cell. Figure  shows the coordinate
system.

Figure : A single unit cell of a NaCl crystal.

There are eight ions in this crystal, so N = 8:

The mass of each of the chloride ions is

so we have

 Exercise 4.4.3

 Example : Center of Mass of a Salt Crystal4.4.4

4.4.3

−10
CM,x CM,y CM,z

CM

4.4.3

4.4.4

4.4.4

= .r ⃗ CM

1

M
∑
j=1

8

mjr ⃗ j (4.4.5)

35.453u × = 5.885 × kg
1.660 × kg10−27

u
10−26 (4.4.6)
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For the sodium ions,

The total mass of the unit cell is therefore

From the geometry, the locations are

Substituting:

Similar calculations give r  = r  = 1.18 x 10  m (you could argue that this must be true, by symmetry, but it’s a good
idea to check).

Significance

As it turns out, it was not really necessary to convert the mass from atomic mass units (u) to kilograms, since the units divide
out when calculating r  anyway.

To express r  in terms of magnitude and direction, first apply the three-dimensional Pythagorean theorem to the vector
components:

Since this is a three-dimensional problem, it takes two angles to specify the direction of . Let  be the angle in the x,y-
plane, measured from the +x-axis, counterclockwise as viewed from above; then:

Let  be the angle in the y,z-plane, measured downward from the +z-axis; this is (not surprisingly):

= = = = 5.885 × kg.m1 m3 m6 m8 10−26 (4.4.7)

= = = = 3.816 × kg.m2 m4 m5 m7 10−26 (4.4.8)

M = (4)(5.885 × kg) +(4)(3.816 × kg) = 3.880 × kg.10−26 10−26 10−25 (4.4.9)

r ⃗ 1

r ⃗ 2

r ⃗ 3

r ⃗ 4

r ⃗ 5

r ⃗ 6

r ⃗ 7

r ⃗ 8

= 0

= (2.36 × m)10−10 î

= + = (2.36 × m) +(2.36 × m)r3x î r3y ĵ 10−10 î 10−10 ĵ

= (2.36 × m)10−10 ĵ
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Thus, the center of mass is at the geometric center of the unit cell. Again, you could argue this on the basis of symmetry

Suppose you have a macroscopic salt crystal (that is, a crystal that is large enough to be visible with your unaided eye). It is
made up of a huge number of unit cells. Is the center of mass of this crystal necessarily at the geometric center of the crystal?

Two crucial concepts come out of these examples:

1. 1. As with all problems, you must define your coordinate system and origin. For center-of-mass calculations, it often makes
sense to choose your origin to be located at one of the masses of your system. That choice automatically defines its distance in
Equation 4.3.1 to be zero. However, you must still include the mass of the object at your origin in your calculation of M, the
total mass Equation 4.3.1. In the Earth-moon system example, this means including the mass of Earth. If you hadn’t, you’d have
ended up with the center of mass of the system being at the center of the moon, which is clearly wrong.

2. In the second example (the salt crystal), notice that there is no mass at all at the location of the center of mass. This is an
example of what we stated above, that there does not have to be any actual mass at the center of mass of an object.

This page titled 4.4: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

9.9: Center of Mass (Part 1) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.

θ = ( ) = .tan−1 Rz

Ry

45o (4.4.11)
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CHAPTER OVERVIEW

5: C5) Conservation of Momentum
5.1: Conservation of Linear Momentum
5.2: The Problem Solving Framework
5.3: Examples
5.4: More Examples

In this chapter we are going to combine what we've done in Chapter 2 and Chapter 3, and introduce the law of conservation of
momentum, which is the first real "rule" of nature that we are going to study in this book. In Chapter 2 we used this law in the
form "interactions transfer momentum". That is the core concept, but it turns out that really implementing this is challenging
without some mathematical tools - primarily that of vectors. Now that we have a better understanding of (and some practice doing)
vector analysis, we are ready to state the full law of conservation of momentum: the momentum of an isolated system does not
change in time. This is a seemingly simple statement, but it turns out to be extraordinarily powerful, because you can use it to make
predictions about the systems you are studying - the final velocity of an object in a collision, for instance.

Of course, to make quantitative predictions, we need cast this law into mathematics, which is the following:

(You should convince yourself that all three of those statements say exactly the same thing, using the definition of the delta and
basic algebra!)

We should take note that this is a vector equation, which means there are actually two parts to it:  and . These
two equations are independent, in the sense that they always both true at the same time, but aren't directly related.

Let's also just briefly note how we should understand this mathematical statement in conjunction with our old "interactions transfer
momentum" concept. If a system is isolated, there are no interactions between the system and the outside world, so there is no
momentum transfer into or out of the system. That's exactly the same information contained in the equation above, since that says
the change in momentum of an isolated system is zero.

Let's try some examples. Say you have a hockey puck (mass 0.5 kg) sliding on ice at a speed of 10 m/s, and it collides head on into
another puck moving at 14 m/s. After the collision, the second puck moves away at 6 m/s, and we can use our laws to determine the
final speed of the first. The equation says "final equals initial", so let's try to calculate the initial. The first puck has a momentum of
5 kg m/s, the second has 7 kg m/s - but it's moving the opposite direction, so the initial momentum in the x-direction is 

. We can also try to calculate the final momentum - the second puck has 3 kg m/s, in
the positive direction, but we don't know the final speed of the first. However, using the equation above we can write

This equation can be solved for the unknown variable to get , which is negative because apparently the first puck
bounces off the second and moves backward after the collision.

That example was pretty simple, since the collision only took place in a single direction (we chose x). However, our conservation
of momentum law tells us that the vector (magnitude and direction) of the momentum must remain unchanged during a collision.
The figure below illustrates that for the collision of two objects of similar masses (note the grey arrows are just helping us to make
sure we add the vectors head to tail). The final momentum must be equal to the initial, and even though some of the collisions
below look totally reasonable, they are prohibited by the law of conservation of momentum.

 Conservation of Momentum

Δ = 0 ⇔ − = 0 ⇔ =p ⃗  p ⃗ f p ⃗ i p ⃗ f p ⃗ i (5.1)

Δ = 0px Δ = 0py

= 5 kg m/s −7 kg m/s = −2 kg m/spi,x

−2 kg m/s = (0.5 kg) +3 kg m/s.v1,f (5.2)

= −10 m/sv1,f
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5.1: Conservation of Linear Momentum

Explain the meaning of “conservation of momentum”
Correctly identify if a system is, or is not, closed
Define a system whose momentum is conserved
Mathematically express conservation of momentum for a given system
Calculate an unknown quantity using conservation of momentum

Recall what we learned about momentum transfer in Chapter 2: when objects interact with each other (like in a collision), they do
so by transferring momentum between each other. What's more, this momentum is conserved - in that chapter, we expressed this
conservation by noting the amount that one object lost was the same that the other object gained. Mathematically, we could write
this as

for two objects. If this collison happens over some time period , we can write this change as rate of change,

So now one object gains or looses momentum as the same rate that the other looses or gains it. Now performing some simple
manipulations on this expression:

Using the definition of , the top of this expression can be written as

Now looking at this expression, if we now define the total momentum of the system to be , we can see that what
we just wrote was

and combined with equation , we see this gives us

Or, in other words, the total momentum of the system does not change in time. This is the best statement of conservation of
momentum we have gotten so far, and is the best one to remember going forward. It does not matter "when" the initial and final
states happen, all that matters is the amount of momentum does not change between those initial and final states.

Since momentum is a vector, both the magnitude and direction of this momentum must be conserved, as shown in Figure , the
total momentum of the system before and after the collision remains the same, in both magnitude and direction. 
 

 Learning Objectives

Δ = −Δ ,p ⃗ 1 p ⃗ 2 (5.1.1)

Δt

= − .
Δp ⃗ 1
Δt

Δp ⃗ 2
Δt

(5.1.2)

= − → + = 0 → = 0.
Δp ⃗ 1
Δt

Δp ⃗ 2
Δt

Δp ⃗ 1
Δt

Δp ⃗ 2
Δt

Δ +Δp ⃗ 1 p ⃗ 2
Δt

(5.1.3)

Δ

Δ +Δ = ( − ) +( − ) = ( + ) −( + ).p ⃗ 1 p ⃗ 2 p ⃗ 1f p ⃗ 1i p ⃗ 2f p ⃗ 2i p ⃗ 1f p ⃗ 2f p ⃗ 1i p ⃗ 2i (5.1.4)

= +P ⃗ 
sys p ⃗ 1 p ⃗ 2

− ,P ⃗ 
sys,f P ⃗ 

sys,i (5.1.5)

5.1.3

− = 0 → Δ = 0.P ⃗ 
sys,f P ⃗ 

sys,i P ⃗ 
sys (5.1.6)
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Figure : Before the collision, the two billiard balls travel with momenta  and . The total momentum of the system is the
sum of these, as shown by the red vector labeled  on the left. After the collision, the two billiard balls travel with different
momenta  and . The total momentum, however, has not changed, as shown by the red vector arrow  on the right.

Generalizing this result to N objects, we obtain

Equation  is the definition of the total (or net) momentum of a system of N interacting objects, along with the statement that
the total momentum of a system of objects is constant in time—that is, momentum is conserved.

If the value of a physical quantity is constant in time, we say that the quantity is conserved.

Requirements for Momentum Conservation
There is a complication, however. A system must meet two requirements for its momentum to be conserved:

1. The mass of the system must remain constant during the interaction. As the objects interact (apply forces on each other),
they may transfer mass from one to another; but any mass one object gains is balanced by the loss of that mass from another.
The total mass of the system of objects, therefore, remains unchanged as time passes: 

2. The net external force on the system must be zero. As the objects collide, or explode, and move around, they exert forces on
each other. However, all of these forces are internal to the system, and thus each of these internal forces is balanced by another
internal force that is equal in magnitude and opposite in sign. As a result, the change in momentum caused by each internal
force is cancelled by another momentum change that is equal in magnitude and opposite in direction. Therefore, internal forces
cannot change the total momentum of a system because the changes sum to zero. However, if there is some external force that
acts on all of the objects (gravity, for example, or friction), then this force changes the momentum of the system as a whole; that
is to say, the momentum of the system is changed by the external force. Thus, for the momentum of the system to be conserved,
we must have 

A system of objects that meets these two requirements is said to be a closed system (also called an isolated system). Another way
to state equation  is

The total momentum of a closed system is conserved:

5.1.1 p ⃗ 1 p ⃗ 2
p ⃗ 
total

p ⃗ '1 p ⃗ '2 p ⃗ ′
total

+ + +⋯ +p ⃗ 1 p ⃗ 2 p ⃗ 3 p ⃗ N

∑
j=1

N

p ⃗ j

= constant

= constant.

(5.1.7)

(5.1.8)

5.1.8

 Conservation Laws

[ = 0.
dm

dt
]
system

(5.1.9)

= .F ⃗ 
ext 0⃗  (5.1.10)

5.1.6

 Law of Conservation of Momentum

= constant.∑
j=1

N

p ⃗ j (5.1.11)
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This statement is called the Law of Conservation of Momentum. Along with the conservation of energy, it is one of the
foundations upon which all of physics stands. All our experimental evidence supports this statement: from the motions of galactic
clusters to the quarks that make up the proton and the neutron, and at every scale in between. In a closed system, the total
momentum never changes.

Note that there absolutely can be external forces acting on the system; but for the system’s momentum to remain constant, these
external forces have to cancel, so that the net external force is zero. Billiard balls on a table all have a weight force acting on them,
but the weights are balanced (canceled) by the normal forces, so there is no net force.

The Meaning of ‘System’
A system (mechanical) is the collection of objects in whose motion (kinematics and dynamics) you are interested. If you are
analyzing the bounce of a ball on the ground, you are probably only interested in the motion of the ball, and not of Earth; thus, the
ball is your system. If you are analyzing a car crash, the two cars together compose your system (Figure ).

Figure : The two cars together form the system that is to be analyzed. It is important to remember that the contents (the mass)
of the system do not change before, during, or after the objects in the system interact.

This page titled 5.1: Conservation of Linear Momentum is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

9.5: Conservation of Linear Momentum (Part 1) by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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5.2: The Problem Solving Framework
Solving problems in physics can be daunting task. Some solutions appear to be insights from the great beyond, or algebraic tricks
that you'd never be able to reproduce on your own. Of course, the reason this appears to be the case is that the field of physics was
developed by a bunch of experts on the natural world, who spent their entire lives studying it. They developed both analytical
techniques and a general intuitive sense that can almost look like magic to mere mortals. However, the great thing about physics is
that it's no mystery where these skills actually came from - the only thing we have to work with are the basic laws of the universe,
and there are actually not many of those. For example, one could argue that in this textbook the only laws of the universe we are
actually dealing with are the following:

Conservation of Momentum
Conservation of Energy
Newton's three laws
Kinematic Motion

(In fact, the last example on that list is really just an application of calculus, and perhaps should not be included at all. However, it
will end up being a lot of what we do in the second half of this class, so we'll leave it there.)

Such a short list of things to learn! If all of mechanics is covered by that list, why does physics appear to be so hard? Well, that's
because we are often applying these laws in situations which are new to us - if they weren't new, we could simply look up the
answer, and that doesn't demonstrate any understanding of the physical world. To this end, we'd like to present the problem solving
framework, which can tackle difficult (and easy!) problems we come across when trying to apply the physical laws we listed
above.

The problem-solving framework is a 4-step process to get you from a problem statement to a solution, and is as follows :

1. Translate: You might think about this step as "list the knowns and unknows": Take the words on the page and translate them
into symbols, as appropriate. For example, "A train of mass 45 kg is traveling at a speed of 67 m/s", means that you can call the
variable  the mass,  the speed, and they have particular values as part of the given information. This translation is necessary
both because the language of physics is mathematical, and also it will help us organize our solution. This step also includes
drawing the situation presented in the problem, and is a critical step that is often skipped by students. A drawing will always
help your thinking - this is maybe even more true for a bad drawing, because it will be a sign that you do not yet understand the
set up of the problem! Walk by the office of any physicist in the world and you will see sketches on a blackboard of whatever
they were last working on.

2. Model: Decide what physical law you want to use to solve the problem. Sometimes, this is simply picking an equation to use
("this problem is asking us to find the center of mass, so I'm going to use the center of mass formula..."), but more often this
step means picking one of the physical laws from the list above to use to solve the problem.

3. Solve: Solve! Perform whatever mathematical manipulations needs to be done to find the quantity that you can use to answer
the question. Note that in many cases, this can be the longest and most difficult step, but it also contains no physics! The
physics is done already in step 2, now we are just using math.

4. Check: It's critical to check your answer - at least to make sure it could be physically reasonable. Sometimes this is just "I
found that this car is traveling at 800 mph, is that reasonable?" (no, you did something wrong!) A better way to do this step
would be to pick an alternative solution to verify you get the same answer. The classic way to do this is to use Newton's laws if
you solved it first with a conservation law, or vice versa. But since this is physics, we are always calculating something about
the real world, and we should always be able to see if our calculations roughly match our expectations.

This framework was inspired by Unit C of Thomas Moore's textbook series Six Idea That Shaped Physics.

5.2: The Problem Solving Framework is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College.
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5.3: Examples

For each of the following sets of objects, define two systems each; one that is isolated and one that is not.  

1. The Earth, Sun, and Moon.
2. A football flying through the air, during the time after it is thrown and before it is caught. (you may ignore air resistance

here)
3. Two colliding carts, ignoring friction and air resistance.
4. Two colliding carts, ignore air resistance but including the friction between the ground and the carts. 

A soccer player receives a pass in the air from a teammate and immediately fires the
ball along the ground into the goal. The initial speed of the soccer ball is 15.0 m/s at an
angle of 40.0  below the horizontal. The mass of the ball is 435 g.

 
  If this is David Beckham, he can get the shot moving with a speed of of 30.0 m/s,
moving straight along the ground. What impulse (magnitude and direction) did his foot
transfer to the soccer ball?

A baseball player is hitting a baseball as shown in the figure. The baseball has a mass of 145 g, and
is traveling at the batter at a speed of 35 m/s (that's an 80-mph fastball). The baseball player can
deliver an impulse of 5.5 kg m/s to the baseball when they hit it.

1. The baseball player hits the ball at an angle of 15 , as shown in the figure. How much impulse
does the baseball player give to the ball in the x- and y-directions?

2. What is the final speed of the ball?
3. How much impulse was transferred to the player (through the bat) when they hit the ball?

An 80-kg hockey player (call him player 1), moving at 3 m/s to the right, collides with a 90-kg player (player 2) who was
moving at 2 m/s to the left. For a brief moment, they are stuck sliding together as they grab at each other.

a. What is their joint velocity as they slide together?
b. What was the velocity of their center of mass before and after the collision?

Solution

(a) Call the initial velocities  and , the joint final velocity , and assume the two players are an isolated system for
practical purposes. Then conservation of momentum reads

Solving for the final velocity, we get

Substituting the values given, we get

 Whiteboard Problem : System Definitions5.3.1

 Whiteboard Problem : Impulsive Shooter5.3.2

∘

 Whiteboard Problem : Impulsive Batter5.3.3

∘

 Example : Collision, Center of Mass, and Recoil5.3.4 1

v1i v2i vf

+ = ( + ) .m1v1i m2v2i m1 m2 vf (5.3.1)

= .vf

+m1v1i m2v2i

+m1 m2
(5.3.2)

= = 0.353 .vf

80 ×3 −90 ×2

170

m

s
(5.3.3)
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(b) According to Equation (3.3.3), the velocity of the center of mass, , is just the same as what we just calculated (Equation 
) above). This makes sense: after the collision, if the players are moving together, their system’s center of mass has to be

moving with them. Also, if the system is isolated, the center of mass velocity should be the same before and after the collision.
So the answer is  =  = 0.353 m/s.

For a variation of this problem that studies the relative velocity of this system with respect to another frame, check out Example
3.5.2 in University Physics 1 - Classical Mechanics, by Gea-Banacloche.

This page titled 5.3: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

3.5: Examples by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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5.4: More Examples

Using conservation of momentum requires four basic steps. The first step is crucial:

1. Identify a closed system (total mass is constant, no net external force acts on the system).
2. Write down an expression representing the total momentum of the system before the “event” (explosion or collision).
3. Write down an expression representing the total momentum of the system after the “event.”
4. Set these two expressions equal to each other, and solve this equation for the desired quantity

Two carts in a physics lab roll on a level track, with negligible friction. These carts have small magnets at their ends, so that
when they collide, they stick together (Figure ). The first cart has a mass of 675 grams and is rolling at 0.75 m/s to the
right; the second has a mass of 500 grams and is rolling at 1.33 m/s, also to the right. After the collision, what is the velocity of
the two joined carts?

Figure : Two lab carts collide and stick together after the collision.

Strategy

We have a collision. We’re given masses and initial velocities; we’re asked for the final velocity. This all suggests using
conservation of momentum as a method of solution. However, we can only use it if we have a closed system. So we need to be
sure that the system we choose has no net external force on it, and that its mass is not changed by the collision.

Defining the system to be the two carts meets the requirements for a closed system: The combined mass of the two carts
certainly doesn’t change, and while the carts definitely exert forces on each other, those forces are internal to the system, so
they do not change the momentum of the system as a whole. In the vertical direction, the weights of the carts are canceled by
the normal forces on the carts from the track.

Solution

Conservation of momentum is

Define the direction of their initial velocity vectors to be the +x-direction. The initial momentum is then

The final momentum of the now-linked carts is

Equating:

Substituting the given numbers:

 Problem-Solving Strategy: Conservation of Momentum

 Example : Colliding Carts5.4.1

5.4.1

5.4.1

= .p ⃗ f p ⃗ i

= + .p ⃗ i m1v1 î m2v2 î

= ( + ) .p ⃗ f m1 m2 v ⃗ f

( + )m1 m2 v ⃗ f

v ⃗ f

= +m1v1 î m2v2 î

=( ) .
+m1v1 m2v2

+m1 m2
î

v ⃗ f = [ ]
(0.675 kg)(0.75 m/s) +(0.5 kg)(1.33 m/s)

1.175 kg
î

= (0.997 m/s) .î
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Significance

The principles that apply here to two laboratory carts apply identically to all objects of whatever type or size. Even for photons,
the concepts of momentum and conservation of momentum are still crucially important even at that scale. (Since they are
massless, the momentum of a photon is defined very differently from the momentum of ordinary objects. You will learn about
this when you study quantum physics.)

Suppose the second, smaller cart had been initially moving to the left. What would the sign of the final velocity have been in
this case?

 

Two hockey pucks of identical mass are on a flat, horizontal ice hockey rink. The red puck is motionless; the blue puck is
moving at 2.5 m/s to the left (Figure ). It collides with the motionless red puck. The pucks have a mass of 15 g. After the
collision, the red puck is moving at 2.5 m/s, to the left. What is the final velocity of the blue puck?

Figure : Two identical hockey pucks colliding. The top diagram shows the pucks the instant before the collision, and the
bottom diagram show the pucks the instant after the collision. The net external force is zero.

Strategy

We’re told that we have two colliding objects, we’re told the masses and initial velocities, and one final velocity; we’re asked
for both final velocities. Conservation of momentum seems like a good strategy. Define the system to be the two pucks; there’s
no friction, so we have a closed system.

Before you look at the solution, what do you think the answer will be?

The blue puck final velocity will be:

a. zero
b. 2.5 m/s to the left
c. 2.5 m/s to the right
d. 1.25 m/s to the left
e. 1.25 m/s to the right
f. something else

Solution

Define the +x-direction to point to the right. Conservation of momentum then reads

Before the collision, the momentum of the system is entirely and only in the blue puck. Thus,

(Remember that the masses of the pucks are equal.) Substituting numbers:

 Exercise5.4.2

 Example : Ice Hockey 15.4.3

5.4.3

5.4.3

pf
→

m +mvrf
î vbf

î

= pi
→

= m −m .vri
î vbi

î

m +m = −mvrf
î vbf

î vbi
î

+ = − .vrf
î vbf

î vbi
î
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Significance

Evidently, the two pucks simply exchanged momentum. The blue puck transferred all of its momentum to the red puck. In fact,
this is what happens in similar collision where m  = m .

Even if there were some friction on the ice, it is still possible to use conservation of momentum to solve this problem, but you
would need to impose an additional condition on the problem. What is that additional condition?

On November 12, 2014, the European Space Agency successfully landed a probe named Philae on Comet 67P/
Churyumov/Gerasimenko (Figure ). During the landing, however, the probe actually landed three times, because it
bounced twice. Let’s calculate how much the comet’s speed changed as a result of the first bounce.

Figure : An artist’s rendering of Philae landing on a comet. (credit: modification of work by “DLR German Aerospace
Center”/Flickr)

Let’s define upward to be the +y-direction, perpendicular to the surface of the comet, and y = 0 to be at the surface of the
comet. Here’s what we know:

The mass of Comet 67P: M  = 1.0 x 10  kg
The acceleration due to the comet’s gravity:  = −(5.0 x 10  m/s ) 
Philae’s mass: M  = 96 kg
Initial touchdown speed:  = −(1.0 m/s) 
Initial upward speed due to first bounce:  = (0.38 m/s) 
Landing impact time: t = 1.3 s

Strategy

We’re asked for how much the comet’s speed changed, but we don’t know much about the comet, beyond its mass and the
acceleration its gravity causes. However, we are told that the Philae lander collides with (lands on) the comet, and bounces off
of it. A collision suggests momentum as a strategy for solving this problem.

If we define a system that consists of both Philae and Comet 67/P, then there is no net external force on this system, and thus
the momentum of this system is conserved. (We’ll neglect the gravitational force of the sun.) Thus, if we calculate the change
of momentum of the lander, we automatically have the change of momentum of the comet. Also, the comet’s change of
velocity is directly related to its change of momentum as a result of the lander “colliding” with it.

Solution

Let  be Philae’s momentum at the moment just before touchdown, and  be its momentum just after the first bounce. Then
its momentum just before landing was

−(2.5 m/s) +î v ⃗ bf

v ⃗ bf

= −(2.5 m/s) î

= 0.

1 2

 Exercise 5.4.4

 Example : Philae5.4.5

5.4.4

5.4.4

c
13

a⃗  −3 2 ĵ

p

v ⃗ 1 ĵ

v ⃗ 2 ĵ

Δ

p ⃗ 1 p ⃗ 2

= = (96 kg)(−1.0 m/s ) = −(96 kg ⋅ m/s)p ⃗ 1 Mpv ⃗ 1 ĵ ĵ
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and just after was

Therefore, the lander’s change of momentum during the first bounce is

Notice how important it is to include the negative sign of the initial momentum.

Now for the comet. Since momentum of the system must be conserved, the comet’s momentum changed by exactly the
negative of this:

Therefore, its change of velocity is

Significance

This is a very small change in velocity, about a thousandth of a billionth of a meter per second. Crucially, however, it is not
zero.

The changes of momentum for Philae and for Comet 67/P were equal (in magnitude). Were the impulses experienced by
Philae and the comet equal? How about the forces? How about the changes of kinetic energies?

This page titled 5.4: More Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via source
content that was edited to the style and standards of the LibreTexts platform.

9.6: Conservation of Linear Momentum (Part 2) by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.

= = (96 kg)(+0.38 m/s ) = (36.5 kg ⋅ m/s) .p ⃗ 2 Mpv ⃗ 2 ĵ ĵ

Δp ⃗ = p ⃗ 2p ⃗ 1

= (36.5 kg ⋅ m/s) −(−96.0 kg ⋅ m/s )ĵ ĵ

= (133 kg ⋅ m/s)ĵ

Δ = −Δ = −(133 kg ⋅ m/s) .p ⃗ c p ⃗  ĵ

Δ = = = −(1.33 × m/s) .v ⃗ c
Δp ⃗ c
Mc

−(133 kg ⋅ m/s)ĵ

1.0 × kg1013
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CHAPTER OVERVIEW

6: C6) Conservation of Angular Momentum I
6.1: Angular Momentum
6.2: Angular Momentum and Torque
6.3: Examples

In this chapter we are going to move away from linear motion and start talking about angular motion. Fortunately, the physics here
is exactly the same - angular momentum is conserved in precisely the way that linear momentum is conserved. However, angular
momentum is often more confusing for students to deal with. This is actually very understandable, since it requires a few extra
notions, as well as being something that we don't experience quite as often in real life. So in this introduction we are going to focus
on some of the basic variables used to describe circular motion and momentum, and leave details about the conservation laws to
later in the chapter.

Just like we measured linear motion with a change in linear position , we'd like to describe rotational motion with a change in
angular position, . You should be familiar with how to measure an angle  (see the left picture below), but the units we use turn
out to be important. The physical (S.I.) unit that corresponds to an angle measure is the radian, and is defined (again, see the figure)
as

where  is the arclength and  is the radius of the circle in question. It's easy to see then how many radians are in an entire circle,
since that corresponds to an arclength of , so . Of course, there is no problem with saying "an object is
rotating at 3 revolutions per minute" - that's still a valid angular speed, it's just not in SI units. If we were going to calculate
something, we would want to convert that into radians per second; let's do that real quick as an example:

The conversion factors here are represented as factors that you multiply the initial value by - there are  radians in one revolution,
and 60 seconds in one minute.

So now that we know how to measure the angular position, how do we find the angular version of linear velocity, ?
That's simple, since we are now just measuring the displacements in angles, and we get angular velocity  . The
rotational speed  is defined the same way as the linear speed, as the magnitude of this vector quantity.

So that seems easy enough, but the challenge comes when we try to go back and forth between linear and rotational quantities.
Let's try to do this with the ferris wheel shown in the figure on the right. This is "The Great Ferris Wheel", built for the 1893
World's Fair, and is 140 feet (43 m) in radius. When we say "the wheel is moving at an angular speed of 1 rotation a minute", that
applies to the entire object - specifically, points A and B (which is halfway out to the edge) have the same angular speed (why?).
The same is not true of the linear speeds of different points on the wheel. For example, over one rotation, point A travels a distance 

, while point B travels . Therefore, the linear speed of A is greater then the linear speed
of B, because A is traveling a longer distance! We picked one rotation for convenience, but it would apply equally to any time
period you chose.

Δr ⃗ 

Δθ ⃗  θ

θ = ,
s

r
(6.1)

s r

s = 2πr θ = 2πr/r = 2π

( )( ) ≃ 0.314 rad/s.
3 rev

1 min

2π rad

1 rev

1 min

60 sec
(6.2)

2π

= Δ /Δtv ⃗  r ⃗ 
1 = Δ /Δtω⃗  θ ⃗ 

ω

2π(43 m) ∼ 270 m 2π(43/2 m) ∼ 135 m
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Notice that we haven't talked about how to assign a direction to this velocity - all velocities have directions! You do this with "the
right hand rule", which we will talk about later in this chapter.

6: C6) Conservation of Angular Momentum I is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher
Duston, Merrimack College.
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6.1: Angular Momentum
Back in Chapter 2 we introduced the momentum of an object moving in one dimension as , and found that it had the
interesting property of being conserved in collisions between objects that made up an isolated system. Critical to that discussion
was the idea that objects are represented by points, so they have well-defined positions. Of course, in real life, objects are not made
up a single points, but are extended. We now want to move the discussion into studying these extended objects, that have real size,
and understand how they transfer momentum differently than simple points. The biggest difference between points and extended
objects it that extended objects can rotate, as well as move through space.

We want to define a quantity that measures this rotation, in the same way linear momentum measured something about how
particles translated in space. This quantity is going to be angular momentum , which we define as

The variables here are the rotational analogues of the linear quantities;  is angular velocity (like linear velocity ), and  is called
the moment of inertia, and is analogous to the mass . In this section we will build up an understanding of each of these quantities,
and how they can be used to solve problems dealing with the rotation of extended objects.

The equation above is a vector, so we need to understand it's direction. It's tempting to say "the object rotates counterclockwise" or
the like, but is there a vector direction associated to "counterclockwise"? There is, but it's probably not what you're thinking! The
direction of counterclockwise (or clockwise) rotation comes from the right hand rule. The most basic version of the right hand
rule is shown in the figure below, and the way you use it is:

1. Take your right hand...
2. ...curl the fingers of your right hand in the direction of rotation...
3. ...your thumb points in the direction of .

 

                                                                                                   

Figure : From the Wikipedia page on this topic. In this case, the arrow along the hand shows the direction of , and we might
say "the angular velocity is directed up and to the right".

The angular velocity  is the exact analog to the linear velocity , although it deserves a little bit of attention. The unit for the
angular velocity is angular distance per unit time, and in SI units that's radians per second. What's interesting about this is that for a
single object, every point on the object will have the same angular velocity. It really has to be that way - if a hoop is spinning at two
revolutions per second, asking what angular speed the outside of the hoop is spinning at had better be the same as every other point.
Said another way, if any point on the object is spinning at a different rate (say, one revolution per second), that means the object is
tearing itself apart! Those kinds of objects are more complicated, so we will always assume our object are rigid, meaning the entire
object rotates at the same rate.

Now let's look at the newest aspect of this formula, the moment of inertia . Like the mass, this quantity encodes the inertia of an
object, but includes information about it's shape. Specifically, for an object made up of a bunch of masses  which are located at
distances  from an axis of rotation, the moment of inertia is

p = mv

L⃗ 

= IL⃗  ω⃗  (6.1.1)

ω⃗  v ⃗  I

m

ω⃗ 

6.1.1 ω⃗ 

ω⃗  v ⃗ 

I

mi

ri

I = .∑
i

mir
2
i (6.1.2)
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That looks like a simple formula, but if the shape is complicated, that sum might actually be very difficult or impossible to do .
Fortunately, there are simplier expressions for many of the shapes we often encounter in nature. Many of these shapes are shown in
the figure below, and many more can be found in Wikipedia.

                                                         

Table 

In nearly all of these examples (save those that have multiple different dimensions, like the annulus and the slab), the moment of
inertia can be written like

where  for a cylinder (or disk),  for a hoop, etc.

Just like with linear momentum, we have a conservation principle associated with angular momentum:

The total angular moment of a closed system is conserved:

In addition, we have all the conditions around using this law that we had for conservation of linear momentum; namely, that the
system must be isolated.

Adding Moments of Inertia

Just like the case of linear momentum, the total angular momentum of a system can be found by simply adding up the angular
momenta of the individual parts of a system. For example, if object 1 is a spinning hoop (of mass  and radius , spinning at ),

1

6.1.1

I = αM ,R2 (6.1.3)

α = 1/2 α = 1

 Law of Conservation of Angular Momentum

= constant. ↔ Δ = 0∑
j

L⃗ 
j L⃗  (6.1.4)

M R ω1
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and object 2 is a spinning cylinder (of mass  and radius , spinning at ), then looking at the figure above we can write the total
angular momentum of that system as

Here, we are assuming the two objects are not moving together at all. But, it often happens that we want to know the angular
momentum of a single object that is made up of shapes found in our figure. For example, see figure 6.3.3 in the examples section at
the end of this chapter, which is two disks rotating together. In that case the two disks have the same radius , but one has three
times the mass of the other (  and ). If those two disks are rotating at the same rate, their angular momentum would be

Notice this is the same result we would have gotten if we had simply added their moments of inertia together first:

The lesson here is when adding moments of inertia, do not add their masses or radii together alone - add their moments of inertia.

For another concrete example, consider finding the angular momentum of a rod with a mass on the edge (shown below).

                                                                                                   

The total moment of inertia of this object is tricky, because the objects are different shapes. The rod has a moment of inertia of 
, while the point mass  had . It's temping to just add the masses together, , but what fraction do you

use out front,  or ? The answer is that you must add the moments of inertia themselves:

Angular Speed vs Linear Speed

When objects rotate at a particular angular speed (in say, revolutions per second), the entire object moves at the same angular
speed. This is because these objects are assumed to be rigid, so when one point on the objects goes around once, so does every
other point. However, that doesn't mean that each of these points moves at the same linear speed (in say, meters per second). In
fact, each point on the object moves at a different linear speed, depending on how far away it is from the center of rotation.

It's relatively easy to determine how these two quantities are related to each other, and this will turn out to be a very important
formula. First, let's think about how fast a point a distance  from the center of an rotating object moves. If it takes a time period 
for the object to rotate, such a point moves with speed

Now, let's calculate the angular speed of this point (keeping in mind this is actually the angular speed of the entire object!). Over
one rotation, it's angular speed will be

m r ω2

= + = M + m .Ltot L1 L2 R
2
ω1

1

2
r

2
ω2 (6.1.5)

R

M 3M

= + = M ω + 3M ω = (M +3M) ω.Ltot L1 L2
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2
R2 1

2
R2 1
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v = = .
distance traveled
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2πr

T
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ω = = .
angular distance traveled

time interval

2π

T
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The  here is just the number of radians the point travels for each rotation. These two formula are valid, but not that interesting
because we don't know what the particular time period is here - so let's use the two of them to eliminate the time interval .
Solving the second gives , so let's plug that into the first:

This very simple formula will be very helpful later; for now, it can give us some insight into how these point move. For example, at
a particular angular speed , objects closer to the axis of rotation (smaller ) will move slower (have smaller ), while objects
farther from the axis of rotation (larger ) will move faster (have larger ). This seems counterintuitive, but can be understood by
seeing that objects far from the axis of rotation have further to travel then objects closer to the center, and have to do it over the
same period of time.

In your calculus class you will learn how to calculate this for a wide variety of shapes.

The moment of inertia of a point mass is not found in the table above, but it's easy to see the answer by looking at equation ;
with only one point in the sum it becomes . This can also be seen by thinking about what a point mass actually looks like when
it's rotating - a hoop, which is in the table above.

This page titled 6.1: Angular Momentum is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher
Duston, Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts
platform.

9.2: Angular Momentum by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.

2π

T

T = 2π/ω

v = = → v = rω.
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6.2: Angular Momentum and Torque
So far, we have seen that angular momentum is conserved in the same way that linear momentum is conserved. Specifically, in a
system which can be modeled as isolated, angular momentum is conserved,

in the same way that linear momentum was, . There is another similarity between these two cases - when the system was
not isolated, we could model the interactions between the system and the environment by a force  acting over a time period ,
so that

In other words, if the system is not isolated we can still work with , we just have to set it equal to the (net) force times the time
interval, rather than simply zero.

There is a similar expression for angular momentum - when a system experiences a change in angular momentum  over a time
period  due to an external interaction of some kind, we can model that interaction as delivering a torque  to the system, defined
as

From this equation, we can tell that the torque is in the same direction as the change in the angular momentum. In many cases, this
will simply be along the axis of rotation (see the example below). Later in this course, we will study the kinematics of both linear
and rotational motion to determine the time evolution of the position and velocity (both linear and angular) of objects that
experience either forces or torques - but for now, we can use these two expressions to determine the final velocities after specific
time periods.

As a very simple example, consider the bike wheel in the figure below, with a moment of inertia of 10 kg m  shown spinning
at a rate of 3 rev/s. It would appear this wheel is spinning freely, but of course we know that there is some kind of friction
between the axle and the wheel that is slowing it down. If we modeled this friction as torque, and said for example that the size
of this torque is 1.0 Nm, we could determine how long it would take for the wheel to stop using the equation above.

Solution
Following the problem solving framework from an earlier section of this textbook:

1. Translate: We will use the following variables: 

Δ = 0,L⃗  (6.2.1)

Δ = 0p ⃗ 

F ⃗  Δt

= → Δ = Δt.F ⃗  Δp ⃗ 

Δt
p ⃗  F ⃗  (6.2.2)

Δp ⃗ 

ΔL⃗ 

Δt τ ⃗ 

= .τ ⃗ 
ΔL⃗ 

Δt
(6.2.3)

 Example 6.2.1

2

= 3 rev/s  = 18.8 rad/s , = 0, Δt =?, I = 10 , τ = 1.0 Nm .ωi ωj  kg m2 (6.2.4)
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Notice a few things - first, we have converted the initial speed from revolutions per second to radians per second. Although
this is not always necessary, here it's important because the torque is in units of Newton-meters, which is SI. We've set the
final speed to be zero, specified our time as the unknown variable, and set our torque equal to the variable  (if you are
worried about the sign of that variable - good catch! We'll deal with that later...). Finally, we've indicated that the direction
of the torque is in the z-coordinate, and that it is negative. Choosing the z-coordinate along the axis of rotation is rather
arbitrary, but a common standard. We've included a negative sign to be clear we know it's slowing down relative to the
direction of the angular momentum, which is in the direction of  here, since .

2. Model: We are going to use conservation of angular momentum - specifically the equation from above, .
3. Solve: First, we specify the given equation into it's component form. Since the initial speed is just along the axis of rotation,

let's take that to be the z-direction and then we just need that component:: 

 
Now we plug in the variables above, and solve for the unknown: 

 
Notice in this step we have indicated that the torque (in the z-direction) should be negative - that's because we declared that
the angular velocity  was positive, so if the object is going to loose momentum, the torque has to be negative. That also
cancelled the negative sign on the other side of the equation.

4. Check: There is not a lot we can do to check this, but we can easily imagine a bike wheel spinning this fast might take ~3
minutes to slow down to a stop!

6.2: Angular Momentum and Torque is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College.

τ

ω⃗  = IL⃗  ω⃗ 

=τ ⃗  ΔL⃗ 

Δt

= → = .τ ⃗ 
ΔL⃗ 

Δt
τz

−Lzf Lzi

Δt
(6.2.5)

→ −τ = → Δt = ≃ 188 s.
0 −Iωi

Δt

Iωi

τ
(6.2.6)
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6.3: Examples

The angular momentum of a system of particles around a point in a fixed inertial reference frame is conserved if there is no net
external torque around that point:

or

The crew of a spaceship has come across an abandoned circular probe, and they want to grab onto it with their tractor beam.
The problem is that the crew doesn't know what will happen to them if they do this, because the probe is spinning, at a rate of
once every 2 seconds. In this problem, model the spacecraft as being a point of mass 10,000 kg, and the probe as a hollow
sphere radius 10 m and a similar mass of 10,000 kg.

1. Assume that turning on the tractor beam to grab the probe has the same effect as attaching the two ships with a massless
rigid rod. Describe what would happen to the ships when the tractor beam is turned on.

2. If they are separated by a distance of 100 m when they do this, calculate the final linear speed of the spaceship.

 

I am standing on a frictionless platform holding a spinning bicycle wheel. I'm holding the bicycle wheel so that the axis of
rotation is vertical. 

1. As I turn the axis of rotation of the bicycle wheel, I start to spin on the platform. Why?
2. What is the moment of inertia of the wheel, relative to the axis passing through it's center? It has a mass of 4.1 kg and

radius 32 cm.
3. Estimate the moment of inertia of my body as I spin on the platform, relative to the vertical axis passing through the center

of the platform.
4. Notice that the wheel can spin around it's own axis and around the axis going through the center of the platform. What is

the moment of inertia of the center of mass of the wheel as it spins around the axis of the platform? (You will have to
estimate how far away from the center I am holding it).

5. Initially, the wheel spins 3 times a second and I am at rest on the platform. Then, I turn the wheel completely around, so my
left hand is where my right hand used to be. How fast am I spinning on the platform?

 Law of Conservation of Angular Momentum

= 0
dL⃗ 

dt
(6.3.1)

= + +⋯ + = constant.L⃗  l ⃗ 
1 l ⃗ 

2 l ⃗ 
N (6.3.2)

 Whiteboard Problem : Space Rescue6.3.1

 Whiteboard Problem : Spinning Platform6.3.2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63322?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/06%3A_C6)_Conservation_of_Angular_Momentum_I/6.03%3A_Examples


6.3.2 https://phys.libretexts.org/@go/page/63322

A ``pulsar'' is a celestial object which ``blinks'' on and off very quickly (in radio wavelengths). I propose that such objects are
formed when rotating stars collapse without losing any mass, and since they conserve angular momentum, they are left
spinning very quickly. I propose that the blinking is caused by a single hot spot on their surface, so it appears to blink as the
pulsar spins. (General Hint: This problem is easier if you use scientific notation for the large numbers, and/or use symbols for
as much of it as you can!)

1. What would the radius of a pulsar be if it's a solid sphere, blinking once a second, and formed from the collaspe of the Sun?
The Sun rotates at about 15 /day, and has a radius of 696,000 km.

2. The fastest pulsar (PSR J1748-2442ad, discovered in 2005) spins at 716 times a second. What is the radius of this object, if
it formed from a star with the mass of the Sun by my collapse theory?

3. What is the density of this object? Does this density sound reasonable? (maybe Google the density of some objects you
know...) You will need the mass of the Sun for this part, 1.99  kg.

 

A particular centrifuge has an angular speed that depends on time like 

 
where  and  are parameters that can be set by the user, and the constant  rad/s. The radius of this centrifuge is 15.5
cm.

1. If we want our centrifuge to start at  when  and travel at a maximum angular speed of 105 rad/s as , what
do the constants  and  have to be?

2. Draw a sketch of the function .
3. What is the torque as a function of time, , that the motor must act on this centrifuge with? Treat the centrifuge as a solid

disk of mass 200 g.
4. Draw a sketch of the function .

                                                                 

The figure shows a record being dropped onto a turntable. The turntable is initially spinning freely at 0.5 rev/s, and can be
modeled as a disk with radius 20 cm, mass 0.50 kg, and moment of inertia .

1. What is the angular speed of the turntable and the record together, after the record is dropped with zero initial angular
speed? The record is also a disk, with a radius of 18 cm and mass of 100 g. Note: turntables generally have a motor to keep
them spinning at the same rate, but this one is spinning freely and does not!

2. The turntable and record can be stopped by applying a brake to the turntable. This brake applies a small torque of 0.03 Nm.
How long does it take this brake to slow the turntable to a stop?

 Whiteboard Problem : MY FAVORITE PROBLEM6.3.3

∘

×1030

 Whiteboard Problem : Calcy Centrifuge6.3.4

ω(t) = −C + ,exp−(t− )t0 ω0 (6.3.3)

t0 ω0 C = 1.0

ω = 0 t = 0 t → ∞

t0 ω0

ω(t)

τ(t)

τ(t)

 Whiteboard Problem : Angular DJ6.3.5

I = M1
2

R2
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A figure skater is spinning at 2 rev/s with their arms held out from their body. The mass of this figure skater is 65 kg, and you
can assume their body has a moment of inertia of , where  is the length of their arms. Quick reality check: most
of this figure skater's mass is near the center of the rotational axis, so that's why their moment of inertia is less than that of a
disk!

1. If their arms are extended to a radius of 50 cm while they are spinning, how big is their moment of inertia?
2. Now they pull their arms in to a distance of 30 cm. How fast are they rotating now, assuming there is no friction between

their skates and the ice?
3. Now repeat part (b), assuming friction is acting on their skates with a torque 10.0 Nm. If it takes 3 seconds for them to pull

their arms in, how fast will they be rotating after they do so?

A flywheel rotates without friction at an angular velocity  = 600 rev/min on a frictionless, vertical shaft of negligible
rotational inertia. A second flywheel, which is at rest and has a moment of inertia three times that of the rotating flywheel, is
dropped onto it (Figure ). Because friction exists between the surfaces, the flywheels very quickly reach the same
rotational velocity, after which they spin together.

a. Use the law of conservation of angular momentum to determine the angular velocity  of the combination.
b. What fraction of the initial kinetic energy is lost in the coupling of the flywheels?

Figure : Two flywheels are coupled and rotate together.

Strategy

Part (a) is straightforward to solve for the angular velocity of the coupled system. We use the result of (a) to compare the initial
and final kinetic energies of the system in part (b).

Solution

a. No external torques act on the system. The force due to friction produces an internal torque, which does not affect the
angular momentum of the system. Therefore conservation of angular momentum gives

b. Before contact, only one flywheel is rotating. The rotational kinetic energy of this flywheel is the initial rotational kinetic
energy of the system, . The final kinetic energy is

Therefore, the ratio of the final kinetic energy to the initial kinetic energy is

Thus, 3/4 of the initial kinetic energy is lost to the coupling of the two flywheels.

Significance

 Whiteboard Problems : A Real Life Skater6.3.6

I = M1
4

R2 R

 Example : Coupled Flywheels6.3.7
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Since the rotational inertia of the system increased, the angular velocity decreased, as expected from the law of conservation of
angular momentum. In this example, we see that the final kinetic energy of the system has decreased, as energy is lost to the
coupling of the flywheels. Compare this to the example of the skater in Figure  doing work to bring her arms inward and
adding rotational kinetic energy.

A merry-go-round at a playground is rotating at 4.0 rev/min. Three children jump on and increase the moment of inertia of the
merry-go-round/children rotating system by 25%. What is the new rotation rate?

An 80.0-kg gymnast dismounts from a high bar. He starts the dismount at full extension, then tucks to complete a number of
revolutions before landing. His moment of inertia when fully extended can be approximated as a rod of length 1.8 m and when
in the tuck a rod of half that length. If his rotation rate at full extension is 1.0 rev/s and he enters the tuck when his center of
mass is at 3.0 m height moving horizontally to the floor, how many revolutions can he execute if he comes out of the tuck at
1.8 m height? See Figure .

Figure : A gymnast dismounts from a high bar and executes a number of revolutions in the tucked position before landing
upright.

Strategy

Using conservation of angular momentum, we can find his rotation rate when in the tuck. Using the equations of kinematics,
we can find the time interval from a height of 3.0 m to 1.8 m. Since he is moving horizontally with respect to the ground, the
equations of free fall simplify. This will allow the number of revolutions that can be executed to be calculated. Since we are
using a ratio, we can keep the units as rev/s and don’t need to convert to radians/s.

Solution

The moment of inertia at full extension is

The moment of inertia in the tuck is

Conservation of angular momentum:

Time interval in the tuck:

6.3.1

 Exercise 6.3.8

 Example : Dismount from a High Bar6.3.9

6.3.4

6.3.4

= m = (80.0 kg)(1.8 m = 21.6 kg ⋅ .I0
1

12
L2 1

12
)2 m2

= m = (80.0 kg)(0.9 m = 5.4 kg ⋅ .If
1

12
L2
f

1

12
)2 m2

= ⇒ = = = 4.0 rev/s.Ifωf I0ω0 ωf

I0ω0

If

(21.6 kg ⋅ )(1.0 rev/s)m2

5.4 kg ⋅m2
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In 0.5 s, he will be able to execute two revolutions at 4.0 rev/s.

Significance

Note that the number of revolutions he can complete will depend on how long he is in the air. In the problem, he is exiting the
high bar horizontally to the ground. He could also exit at an angle with respect to the ground, giving him more or less time in
the air depending on the angle, positive or negative, with respect to the ground. Gymnasts must take this into account when
they are executing their dismounts.

A bullet of mass m = 2.0 g is moving horizontally with a speed of 500.0 m/s. The bullet strikes and becomes embedded in the
edge of a solid disk of mass M = 3.2 kg and radius R = 0.5 m. The cylinder is free to rotate around its axis and is initially at rest
(Figure ). What is the angular velocity of the disk immediately after the bullet is embedded?

Figure : A bullet is fired horizontally and becomes embedded in the edge of a disk that is free to rotate about its vertical
axis.

Strategy

For the system of the bullet and the cylinder, no external torque acts along the vertical axis through the center of the disk. Thus,
the angular momentum along this axis is conserved. The initial angular momentum of the bullet is mvR, which is taken about
the rotational axis of the disk the moment before the collision. The initial angular momentum of the cylinder is zero. Thus, the
net angular momentum of the system is mvR. Since angular momentum is conserved, the initial angular momentum of the
system is equal to the angular momentum of the bullet embedded in the disk immediately after impact.

Solution

The initial angular momentum of the system is

The moment of inertia of the system with the bullet embedded in the disk is

The final angular momentum of the system is

Thus, by conservation of angular momentum, L  = L  and

Solving for ,

t = = = 0.5 s.
2h

g

−−−

√
2(3.0 −1.8)m

9.8 m/s

− −−−−−−−−−−−

√

 Example : Conservation of Angular Momentum of a Collision6.3.10

6.3.5

6.3.5

= mvR.Li

I = m + M =(m+ ) .R2 1

2
R2 M

2
R2

= I .Lf ωf

i f

mvR =(m+ ) .
M

2
R2ωf

ωf

= = = 1.2 rad/s.ωf

mvR

(m+ )
M

2
R2

(2.0 × kg)(500.0 m/s)10−3
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Significance

The system is composed of both a point particle and a rigid body. Care must be taken when formulating the angular momentum
before and after the collision. Just before impact the angular momentum of the bullet is taken about the rotational axis of the
disk.

This page titled 6.3: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

11.4: Conservation of Angular Momentum by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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1

CHAPTER OVERVIEW

7: C7) Conservation of Angular Momentum II
7.1: The Angular Momentum of a Point and The Cross Product
7.2: Torque
7.3: Examples

In the previous chapter, we dealt with objects having real size for the first time, and we learned how to calculate the angular
momentum for extended objects as . In this chapter, we have to acknowledge that if extended objects can have angular
momenta, singular points can also (!), if we use a point other then their location as the reference.  This sounds very counter-
intutive, so let's first make sure we understand why that must be - essentially, objects are made up of points, and we believe angular
momentum should be additive (two objects with angular momentum  and  have total angular momentum ...sounds
like something we want, right?). If that's true, then when you think about an extended object as a collection of points, each of those
points should have individual angular momenta  so that we can add them all to get the total .

Of course, those individual points themselves are not spinning, they are moving around the axis of the object (see the leftmost
figure below). But how do we determine the angular momenta of these individual points? The answer is to use a cross-product:

In this formula, the  is the position of the point and  is the momentum. We will go into this equation in some detail in the rest of
the chapter, but the important thing to notice now is that it is a vector, so it has magnitude and direction. The magnitude can be
found with the formula

where  is the angle between  and . The direction of any cross product  can be found with the right hand rule. The right
hand rule (see second figure to the right) says:

1. Point (the fingers on your right hand!) in the direction of the first vector in .
2. Curl your fingers into the second vector in  (you may need to flip you hand around...)
3. Your thumb is now pointing in the direction of .

"This" right hand rule is actually related to the "first" right hand rule we learned in the last chapter for the direction of , but
the one presented here works for any cross product, whereas the other one is just for the angular momentum of an object. The
figure below (three images on the right) illustrates a few examples of these directions - check that you can get the right answers!

(images from Open Stax!)

7: C7) Conservation of Angular Momentum II is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher
Duston, Merrimack College.

= IL⃗  ω⃗ 

L1 L2 +L1 L2

Li L =∑i Li

= × .L⃗  r ⃗  p ⃗  (7.1)

r ⃗  p ⃗ 

|L| = |r||p| sinϕ, (7.2)

ϕ r ⃗  p ⃗  ×u⃗  v ⃗ 

×u⃗  v ⃗ 

×u⃗  v ⃗ 

×u⃗  v ⃗ 

= IL⃗  ω⃗ 
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7.1: The Angular Momentum of a Point and The Cross Product
In the previous section we studied the rotation of extended, rigid objects, arguing that such objects rotate by transfering angular
momentum, in a similar way that point-like objects transfer linear momentum. In this section, we start by acknowledging that it's
not only extended rigid objects that have angular momentum! Since such objects are made up of individual points, it must be that
we can assign angular momentum to the individual points of extended objects. Put another way, it must be possible to determine
the angular momentum of a point moving along any path, as shown in the following figure.

                                                                                              

So there must be some way to encode the angular momentum  of this particle as it moves - and in fact, however we define it, if
this system is isolated it also had better not change as it moves along this path! It turns out the correct way to do this the following:

In this expression  is the position of the point, and  is it's momentum. The product here is called the cross product, which we first
describe in pure mathematical terms before attempting to understand it physically.

The cross, or vector, product of two vectors  and  is denoted by . It is defined as a vector perpendicular to both  and 
(that is to say, to the plane that contains them both), with a magnitude given by

where  and  are the magnitudes of  and , respectively, and  is the angle between  and , when they are drawn either with
the same origin or tip-to-tail.

Since the result of  is a vector, we can also write this product in components. You might recognize this formula from your
calculus courses, where you can define it as a determinant (for more information on where this formula comes from, check out
Wikipedia). We will just copy the result down here:

Note that the magnitude of the formula we just wrote had better be equivalent to the version above, . It's not too hard
to show that, you just need to relate the components to the angle  by computing ( ) in a particular coordinate system.

The specific direction of  depends on the relative orientation of the two vectors. Basically, if  is counterclockwise from ,
when looking down on the plane in which they lie, assuming they are drawn with a common origin, then  points upwards
from that plane; otherwise, it points downward (into the plane). One can also use the so-called right-hand rule, illustrated in Figure 

 to figure out the direction of . Note that, by this definition, the direction of  is the opposite of the direction of 
 (as also illustrated in Figure ). Hence, the cross-product is non-commutative: the order of the factors makes a

difference.

L⃗ 

= × .L⃗  r ⃗  p ⃗  (7.1.1)

r ⃗  p ⃗ 

A ⃗  B⃗  ×A ⃗  B⃗  A ⃗  B⃗ 

| × | = AB sinθA ⃗  B⃗  (7.1.2)

A B A ⃗  B⃗  θ A ⃗  B⃗ 

×A ⃗  B⃗ 

× = ( − ) −( − ) +( − ) .A ⃗  B⃗  AyBz AzBy x̂ AxBz AzBy ŷ AxBy AyBx ẑ (7.1.3)

|A||B| sin(θ)

θ 7.1.3

×A ⃗  B⃗  B⃗  A ⃗ 

×A ⃗  B⃗ 

7.1.1 ×A ⃗  B⃗  ×A ⃗  B⃗ 

×B⃗  A ⃗  7.1.1

× = − ×A ⃗  B⃗  B⃗  A ⃗  (7.1.4)
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Figure : The “right-hand rule” to determine the direction of the cross product. Line up the first vector with the fingers, and the
second vector with the flat of the hand, and the thumb will point in the correct direction. In the first drawing, we are looking at the
plane formed by  and  from above; in the second drawing, we are looking at the plane from below, and calculating .

It follows from Equation ( ) that the cross-product of any vector with itself must be zero. In fact, according to Equation ( ),
the cross product of any two vectors that are parallel to each other is zero, since in that case  = 0, and  = 0.

Besides not being commutative, the cross product also does not have the associative property of ordinary multiplication: 
 is different from . You can see this easily from the fact that, if , the second expression will be

zero, but the first one generally will be nonzero (since  is not parallel, but rather perpendicular to ).

Of course, now that we have another definition of the angular momentum, we had better check that it matches the previous one, 
. Since that one only applies to rigid objects, let's calculate it for a single particle, and demonstrate that we get the same

answer using the equation presented at the beginning of this section, ( ). Consider a particle moving in the  plane, shown
in the figure below. Finding the angular momentum of this particle as a rigid object is easy,

(Recall that the moment of inertia of a single point is the same as for a hoop). Now, let's use our new formula. In the magnitude
form ( ), this is

Here the  comes from the fact that the vector  and the vector  are perpendicular to each other. To make these expressions
match, first notice that . Then, recall the formula  (Equation 6.1.11). If we put both of these into our last
expression we find:

exactly as we expected. For our purposes, this provides enough evidence that we can use ( ) as the correct expression for the
angular momentum of single particles.

 

7.1.1

A ⃗  B⃗  ×B⃗  A ⃗ 

7.1.4 7.1.2

θ sin0

×( × )A ⃗  B⃗  C ⃗  ( × ) ×A ⃗  B⃗  C ⃗  =A ⃗  B⃗ 

×A ⃗  C ⃗  A ⃗ 

= IL⃗  ω⃗ 

7.1.1 x−y

L = Iω = (m )ω.r2 (7.1.5)

7.1.2

L = |r||p|sinθ = r(mv)sin( ).90∘ (7.1.6)

90∘ r ⃗  p ⃗ 

sin( ) = 190∘ v= ωr

L = r(mv)sin( ) = rm(ωr) = m ω,90∘ r2 (7.1.7)
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Figure : A particle moving on a circle in the -  plane. For the direction of rotation shown, the vectors  and  lie
along the  axis, in the positive direction.

 

 

There are some other neat things we can do with  as defined above. Consider the cross product . Inspection of Figure 
and of Equation (8.4.12) shows that this is nothing other than the ordinary velocity vector, :

We can also take the derivative of  to obtain the angular acceleration vector :

Notice this "new" equation is just another example of the correspondence between angular and linear quantities - the angular
acceleration is the derivative of the angular position with respect to time. For the motion depicted in Figure , the vector  will
point along the positive  axis if the vector  is growing (which means the particle is speeding up), and along the negative  axis if 

 is decreasing.

One important property the cross product does have is the distributive property with respect to the sum:

This, it turns out, is all that’s necessary in order to be able to apply the product rule of differentiation to calculate the derivative of a
cross product; you just have to be careful not to change the order of the factors in doing so. We can then take the derivative of both
sides of Equation ( ) to get an expression for the acceleration vector:

The first term on the right-hand side, , lies in the -  plane, and is perpendicular to ; it is, therefore, tangential to the circle.
In fact, looking at its magnitude, it is clear that this is just the tangential acceleration vector.

As for the second term in ( ), , noting that  and  are always perpendicular, it is clear its magnitude is 
 (making use of Equation (6.1.11) again). This called the centripetal acceleration,  which we will explore

in more detail when we study rotational motion. Also, using the right-hand rule in Figure , you can see that  always
points inwards, towards the center of the circle; that is, along the direction of . Putting all of this together, we can write this
vector as just , and the whole acceleration vector as the sum of a tangential and a centripetal (radial) component, as follows:

7.1.2 x y = m ×L⃗  r ⃗  v ⃗  ω⃗ 
z

ω⃗  ×ω⃗  r ⃗  7.1.2

v ⃗ 

= × .v ⃗  ω⃗  r ⃗  (7.1.8)

ω⃗  α⃗ 

= = .α⃗  lim
Δt→0

(t+Δt) − (t)ω⃗  ω⃗ 

dt

dω⃗ 

dt
(7.1.9)

7.1.2 α⃗ 

z ω⃗  z

ω⃗ 

( + ) × = × + × .A ⃗  B⃗  C ⃗  A ⃗  C ⃗  B⃗  C ⃗  (7.1.10)

7.1.8

=a⃗ 
dv ⃗ 

dt
= × + ×

dω⃗ 

dt
r ⃗  ω⃗ 

dr ⃗ 

dt
= × + × .α⃗  r ⃗  ω⃗  v ⃗  (7.1.11)

×α⃗  r ⃗  x y r ⃗ 

7.1.11 ×ω⃗  v ⃗  ω⃗  v ⃗ 

|ω|| | = R = /Rv ⃗  ω2 v2

7.1.2 ×ω⃗  v ⃗ 

−r ⃗ 

−ω2r ⃗ 

a⃗ 

a⃗ t
a⃗ c

= +a⃗ t a⃗ c
= ×α⃗  r ⃗ 

= − .ω2r ⃗  (7.1.12)
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To conclude this section, let me return to the angular momentum vector, and ask the question of whether, in general, the angular
momentum of a rotating system, defined as the sum of the angular momentum over all the particles that make up the system, will or
not satisfy the vector equation . We have seen that this indeed works for a particle moving in a circle. It will, therefore, also
work for any object that is essentially flat, and rotating about an axis perpendicular to it, since in that case all its parts are just
moving in circles around a common center.

However, if the system is a three-dimensional object rotating about an arbitrary axis, the result  does not generally hold.
The reason is, mathematically, that the moment of inertia  is defined (Equation (6.1.2)) in terms of the distances of the particles to
an axis, whereas the angular momentum involves the particle’s distance to a point. For particles at different “heights” along the axis
of rotation, these quantities are different. It can be shown that, in the general case, all we can say is that , if we call  the
axis of rotation and calculate  relative to a point on that axis.

On the other hand, if the axis of rotation is an axis of symmetry of the object, then  has only a  component, and the result 
 holds as a vector equation. Most of the systems we will consider this semester will be covered under this clause, or under

the “essentially flat” clause mentioned above.

In what follows we will generally assume that  has only a  component, and we will drop the subscript  in the equation 
, so that  and  will not necessarily be the magnitudes of their respective vectors, but numbers that could be positive or

negative, depending on the direction of rotation (clockwise or counterclockwise). This is essentially the same convention we used
for vectors in one dimension, such as  or , in the early chapters; it is fine for all the cases in which the (direction of the) axis of
rotation does not change with time, which are the only situations we will consider this semester.

This page titled 7.1: The Angular Momentum of a Point and The Cross Product is shared under a CC BY-SA 4.0 license and was authored,
remixed, and/or curated by Christopher Duston, Merrimack College (University of Arkansas Libraries) via source content that was edited to the
style and standards of the LibreTexts platform.

9.3: The Cross Product and Rotational Quantities by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source:
https://scholarworks.uark.edu/oer/3.
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7.2: Torque
We are finally in a position to answer the question, when is angular momentum conserved? To do this, we will simply take the
derivative of  with respect to time, and use Newton’s laws to find out under what circumstances it is equal to zero.

Let us start with a particle and calculate

The first term on the right-hand side goes as , which is zero. The second term can be rewritten as . But, according to
Newton’s second law, . So, we conclude that

So the angular momentum, like the ordinary momentum, will be conserved if the net force on the particle is zero, but also, and this
is an important difference, when the net force is parallel (or antiparallel) to the position vector.

The quantity  is called the torque of a force around a point (the origin from which  is calculated, typically a pivot point or
center of rotation) - we've seen this quantity already in Section 6.2. It is denoted with the Greek letter , “tau”:

For an extended object or system, the rate of change of the angular momentum vector would be given by the sum of the torques of
all the forces acting on all the particles. For each torque one needs to use the position vector of the particle on which the force is
acting.

The torque of a force around a point is basically a measure of how effective the force would be at causing a rotation around that
point. Since , you can see that it depends on three things: the magnitude of the force, the distance from the
center of rotation to the point where the force is applied, and the angle at which the force is applied. All of this can be understood
pretty well from Figure  below, especially if you have ever had to use a wrench to tighten or loosen a bolt:

Figure : The torque around the point O of each of the forces shown is a measure of how effective it is at causing the rod to
turn around that point.

Clearly, the force  will not cause a rotation at all, and accordingly its torque is zero (since it is parallel to ). Of all the forces
shown, the most effective one is : it is applied the farthest away from O, for the greatest leverage (again, think of your
experiences with wrenches). It is also perpendicular to the rod, for maximum effect (  = 1). The force , by contrast, although
also applied at the point A is at a disadvantage because of the relatively small angle it makes with . If you imagine breaking it up
into components, parallel and perpendicular to the rod, only the perpendicular component (whose magnitude is ) would be
effective at causing a rotation; the other component, the one parallel to the rod, would be wasted, like .

In order to calculate torques, then, we basically need to find, for every force, the component that is perpendicular to the position
vector of its point of application. Clearly, for this purpose we can no longer represent an extended body as a mere dot, as we have
done previously. What we need is a more careful sketch of the object, just detailed enough that we can tell how far from the center
of rotation and at what angle each force is applied. That kind of diagram is called an extended free-body diagram.

Figure  could be an example of an extended free-body diagram, for an object being acted on by four forces. Typically, though,
instead of drawing the vectors  and  we would just indicate their lengths on the diagram (or maybe even leave them out

L⃗ 

= (m × ) = m × +m × .
dL⃗ 

dt

d

dt
r ⃗  v ⃗ 

dr ⃗ 

dt
v ⃗  r ⃗ 

dv ⃗ 

dt
(7.2.1)
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altogether, if we do not want to overload the diagram with detail). We will show a couple of examples of extended free-body
diagrams in the next section.

Coming back to Equation (7.2.2), the main message of this section (other, of course, than the definition of torque itself), is that the
rate of change of an object or system’s angular momentum is equal to the net torque due to the external forces. Two special results
follow from this one. First, if the net external torque is zero, angular momentum will be conserved. For example, consider the
collision of a particle and a rod pivoting around one end. The only external force is the force exerted on the rod, at the pivot point,
by the pivot itself, but the torque of that force around that point is obviously zero, since , so our assumption that the total
angular momentum around that point was conserved is legitimate.

Finally, note that situations where the moment of inertia of a system, , changes with time are relatively easy to arrange for any
deformable system. Especially interesting is the case when the external torque is zero, so  is constant, and a change in  therefore
brings about a change in : this is how, for instance, an ice-skater can make herself spin faster by bringing her arms closer
to the axis of rotation (reducing her ), and, conversely, slow down her spin by stretching out her arms. This can be done even in
the absence of a contact point with the ground: high-board divers, for instance, also spin up in this way when they curl their bodies
into a ball. Note that, throughout the dive, the diver’s angular momentum around its center of mass is constant, since the only force
acting on him (gravity, neglecting air resistance) has zero torque about that point.

Resources
Unfortunately, we will not really have enough time this semester to explore further the many interesting effects that follow from the
vector nature of Equation (7.2.3), but you are at least subconsciously familiar with some of them if you have ever learned to ride a
bicycle! A few interesting Internet references (some of which could perhaps inspire a good Honors project!) are the following:

Walter Lewin’s lecture on gyroscopic motion (and rolling motion): 
https://www.youtube.com/watch?v=N92FYHHT1qM
A “Veritasium” video on “antigravity”: 
https://www.youtube.com/watch?v=GeyDf4ooPdo 
https://www.youtube.com/watch?v=tLMpdBjA2SU
And the old trick of putting a gyroscope (flywheel) in a suitcase: 
https://www.youtube.com/watch?v=zdN6zhZSJKw
If any of the above links are dead, try googling them. (You may want to let me know, too!)

The additional assumption is that the force between any two particles lies along the line connecting the two particles (which means
it is parallel or antiparallel to the vector ). In that case, . Most forces in
nature satisfy this condition.

Actually, friction forces and normal forces may be “spread out” over a whole surface, but, if the object has enough symmetry, it is
usually OK to have them “act” at the midpoint of that surface. This can be proved along the lines of the derivation for gravity that
follows.

This page titled 7.2: Torque is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

9.4: Torque by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
9.6: Rolling Motion by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.

= 0r ⃗ 

I

L I

ω = L/I

I

3

−r ⃗ 1 r ⃗ 2 × + × = ( − ) × = 0r ⃗ 1 F ⃗ 
12 r ⃗ 2 F ⃗ 

21 r ⃗ 1 r ⃗ 2 F ⃗ 
12

4

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63164?pdf
https://www.youtube.com/watch?v=N92FYHHT1qM
https://www.youtube.com/watch?v=GeyDf4ooPdo
https://www.youtube.com/watch?v=tLMpdBjA2SU
https://www.youtube.com/watch?v=zdN6zhZSJKw
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/07%3A_C7)_Conservation_of_Angular_Momentum_II/7.02%3A_Torque
https://creativecommons.org/licenses/by-sa/4.0
https://fulbright.uark.edu/departments/physics/directory/index/uid/jgeabana/name/Julio-Gea-Banacloche/
https://libraries.uark.edu/
https://scholarworks.uark.edu/oer/3
https://phys.libretexts.org/@go/page/22256
https://fulbright.uark.edu/departments/physics/directory/index/uid/jgeabana/name/Julio-Gea-Banacloche/
https://creativecommons.org/licenses/by-sa/4.0/
https://scholarworks.uark.edu/oer/3
https://phys.libretexts.org/@go/page/22258
https://fulbright.uark.edu/departments/physics/directory/index/uid/jgeabana/name/Julio-Gea-Banacloche/
https://creativecommons.org/licenses/by-sa/4.0/
https://scholarworks.uark.edu/oer/3


7.3.1 https://phys.libretexts.org/@go/page/63165

7.3: Examples

 

In soccer, a ``nutmeg'' is when you kick the ball through the legs of an opponent,
thouroughly humiliating them. In the figure, Ronaldo nutmegs Puyol by kicking the ball
(with a mass of 435 g and radius of 11.5 cm) at a velocity of 1.75 m/s.

 

1. If the ball is rolling along the ground without slipping, what is the angular momentum of
the ball about its center of mass?

2. When the ball passes through Puyol's legs, what is the angular momentum of the center of mass of the ball relative to his
head? Puyol is 5'10'' (1.78 m) tall.

3. Puyol spins around after the nutmeg and sees the ball a distance 1.15 m along the ground behind him, still rolling with the
same velocity. What is the angular momentum of the center of mass of the ball now?

 

 

 

Four forces are shown in Figure  at particular locations and orientations with respect to a given xy-coordinate system.
Find the torque due to each force about the origin, then use your results to find the net torque about the origin.

Figure : Four forces producing torques.

Strategy

This problem requires calculating torque. All known quantities––forces with directions and lever arms––are given in the figure.
The goal is to find each individual torque and the net torque by summing the individual torques. Be careful to assign the
correct sign to each torque by using the cross product of  and the force vector .

Solution
Use | | = r F = rFsin  to find the magnitude and  to determine the sign of the torque.

The torque from force 40 N in the first quadrant is given by (4)(40)sin 90° = 160 N • m.

The cross product of  and  is out of the page, positive.

The torque from force 20 N in the third quadrant is given by −(3)(20)sin 90° = − 60 N • m.

The cross product of  and  is into the page, so it is negative.

The torque from force 30 N in the third quadrant is given by (5)(30)sin 53° = 120 N • m.

The cross product of  and  is out of the page, positive.

 Whiteboard Problem : Nutmeg7.3.1

 Example : Calculating Torque7.3.2
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The torque from force 20 N in the second quadrant is given by (1)(20)sin 30° = 10 N • m.

The cross product of  and  is out of the page.

The net torque is therefore  = 160 − 60 + 120 + 10 = 230 N • m.

Significance

Note that each force that acts in the counterclockwise direction has a positive torque, whereas each force that acts in the
clockwise direction has a negative torque. The torque is greater when the distance, force, or perpendicular components are
greater.

Figure  shows several forces acting at different locations and angles on a flywheel. We have  = 20 N,  = 30 N, 
 = 30 N, and r = 0.5 m. Find the net torque on the flywheel about an axis through the center.

Figure : Three forces acting on a flywheel.

Strategy

We calculate each torque individually, using the cross product, and determine the sign of the torque. Then we sum the torques
to find the net torque. Solution We start with . If we look at Figure , we see that  makes an angle of 90° + 60° with
the radius vector . Taking the cross product, we see that it is out of the page and so is positive. We also see this from
calculating its magnitude:

Next we look at . The angle between  and  is 90° and the cross product is into the page so the torque is negative. Its
value is

When we evaluate the torque due to , we see that the angle it makes with  is zero so  = 0. Therefore,  does not
produce any torque on the flywheel.

We evaluate the sum of the torques:

Significance

The axis of rotation is at the center of mass of the flywheel. Since the flywheel is on a fixed axis, it is not free to translate. If it
were on a frictionless surface and not fixed in place,  would cause the flywheel to translate, as well as . Its motion would
be a combination of translation and rotation.
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= | |τnet ∑
i

τi

 Example : Calculating Torque on a rigid body7.3.3
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A large ocean-going ship runs aground near the coastline, similar to the fate of the Costa Concordia, and lies at an angle as
shown below. Salvage crews must apply a torque to right the ship in order to float the vessel for transport. A force of 5.0 x 10
N acting at point A must be applied to right the ship. What is the torque about the point of contact of the ship with the ground
(Figure )?

Figure : A ship runs aground and tilts, requiring torque to be applied to return the vessel to an upright position.

This page titled 7.3: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

8: C8) Conservation of Energy- Kinetic and Gravitational
8.1: Kinetic Energy
8.2: Conservative Interactions
8.3: Universal Gravity
8.4: Other Forms of Energy
8.5: Relative Velocity and the Coefficient of Restitution
8.6: Examples

Starting in this chapter we are going to move away from our first basic principle of physics (conservation of momentum), and onto
conservation of energy. As another conservation law, the essentials are the same - there is a quantity in the system that is not
changing, and by keeping track of that quantity, we can learn things about unknown aspects of the system. The things we are
looking for will be similar (final speeds, for example), but since the quantity we are keeping track of is different (energy instead of
momentum), the details will be different.

One major difference is that unlike momentum, energy takes many different forms. Momentum was only ever mass times velocity;
even if you have a collection of points that could be more easily described by angular momentum, , that was just a
convenience of adding up all the individual point's . But energy can take several different forms, and most notably can be stored
without motion - something momentum cannot do . Here we will quickly outline two different forms that energy can take.

The first is kinetic energy, or energy of motion. This is the energy stored in a moving object, and all moving objects have it. The
nice thing about kinetic energy is that there is a simple formula to describe it (kind of like for momentum!):

Here  is the mass of the object, and  is the speed. Although this shares some of the same intuition as momentum ("more mass
and speed, more energy"), it's important to recognize one difference - unlike momentum, kinetic energy is a scalar and does not
have direction. So it doesn't matter what direction  is pointed in, what matters is the square of the magnitude, . Also similar to
momentum, there is a rotational version of this as well that we will use when we encounter extended objects.

The second form of energy we want to immediately introduce is potential energy, or energy of interaction. This new concept
describes how objects interact, and allows us to study interactions at a more fundamental level than momentum. Objects interact by
storing and moving energy around to different parts of the system. For example, when you stretch a spring, you are transferring
energy from your arms into the spring, which stays there until you let the spring return to it's original length. Every interaction has
a different way of storing energy, although sometimes we may not know how to easily describe it (friction is an example of this).

Our first example of potential energy will be gravitational potential energy near the surface of the Earth. You already know about
this - when you drop something it falls! The interaction of gravity allowed whoever lifted the object to store energy in the system,
and you can release it by dropping it. In this case, the energy turns into the kind we discussed before, kinetic energy. The formula
for gravitational potential energy near the Earth is

where  is the mass of the object,  is the acceleration due to gravity, and  is the height above the reference point
(often taken to be the ground).

We are going to spend a lot of time understanding these two kinds of energy, but let's start by considering the simple example of
dropping an object we just mentioned. Assuming the object is not moving before you drop it, the initial energy is completely made
up of . As the object falls, it converts the energy from  into , increasing the speed  while the height  decreases. That
allows us to construct the formula,
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which tells us the speed of the object when it falls from a height . That's already a new result for us, but we should also point out
that the only thing that changes how fast the object is moving is how high it's dropped from; the mass doesn't matter, and also we
have no knowledge of the direction of motion (ok, yes we know in this case it's "downwards", but generally energy cannot tell us
that!). This is typical for equations in energy problems - they are often pretty simple, but we have to be careful to know exactly
what they can and can't tell us.

 

We have to be a little careful here - momentum can be stored in certain fields, like the electromagnetic and gravitational fields.
However, understanding how that works takes a greater knowledge of the fundamental interactions then we can give here!

8: C8) Conservation of Energy- Kinetic and Gravitational is shared under a CC BY-SA license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College.
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8.1: Kinetic Energy
For a long time in the development of classical mechanics, physicists were aware of the existence of two different quantities that
one could define for an object of inertia  and velocity . One was the momentum, , and the other was something proportional
to . Despite their obvious similarities, these two quantities exhibited different properties and seemed to be capturing different
aspects of motion.

When things got finally sorted out, in the second half of the 19th century, the quantity  came to be recognized as a form of
energy—itself perhaps the most important concept in all of physics. Kinetic energy, as this quantity is called, may be the most
obvious and intuitively understandable kind of energy, and so it is a good place to start our study of the subject.

We will use the letter  to denote kinetic energy, and, since it is a form of energy, we will express it in the units especially named
for this purpose, which is to say joules (J). 1 joule is 1 kg·m /s . In the definition

the letter  is meant to represent the magnitude of the velocity vector, that is to say, the speed of the particle. Hence, unlike
momentum, kinetic energy is not a vector, but a scalar : there is no sense of direction associated with it. In three dimensions, one
could write

There is, therefore, some amount of kinetic energy associated with each component of the velocity vector, but in the end they are
all added together in a lump sum.

For a system of particles, we will treat kinetic energy as an additive quantity, just like we did for momentum, so the total kinetic
energy of a system will just be the sum of the kinetic energies of all the particles making up the system. Note that, unlike
momentum, this is a scalar (not a vector) sum, and most importantly, that kinetic energy is, by definition, always positive, so there
can be no question of a “cancellation” of one particle’s kinetic energy by another, again unlike what happened with momentum.
Two objects of equal mass moving with equal speeds in opposite directions have a total momentum of zero, but their total kinetic
energy is definitely nonzero. Basically, the kinetic energy of a system can never be zero as long as there is any kind of motion
going on in the system.

Kinetic Energy in Collisions
To gain some further insights into the concept of kinetic energy, and the ways in which it is different from momentum, it is useful
to look at it in the same setting in which we “discovered” momentum, namely, one-dimensional collisions in an isolated system. If
we look again at the collision represented in Figure 2.1.1 of Chapter 2, reproduced below,

Figure 8.1.1

we can use the definition ( ) to calculate the initial and final values of  for each object, and for the system as a whole.
Remember we found that, for this particular system, , so we can just set = 1 kg and  = 2 kg, for simplicity. The
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initial and final velocities are  = 1 m/s,  = 0,  = −1/3 m/s,  = 2/3 m/s, and so the kinetic energies are

Note that 1/18 + 4/9 = 9/18 = 1/2, and so

In words, we find that, in this collision, the final value of the total kinetic energy is the same as its initial value, and so it looks like
we have “discovered” another conserved quantity (besides momentum) for this system.

This belief may be reinforced if we look next at the collision depicted in Figure 2.1.2, again reproduced below. In this collision, the
second object is now moving towards the first, which is stationary.

Figure 8.1.2.

The corresponding kinetic energies are, accordingly,  = 0,  = 1 J,  =  J,  =  J. These are all different from the
values we had in the previous example, but note that once again the total kinetic energy after the collision equals the total kinetic
energy before—namely, 1 J in this case.

Things are, however, very different when we consider the third collision example shown in Chapter 2, namely, the one where the
two objects are stuck together after the collision.

Figure 8.1.3

Their joint final velocity, consistent with conservation of momentum, is  =  = 1/3 m/s. Since the system starts as in Figure 
, its kinetic energy is initially  J, but after the collision we have only
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What this shows, however, is that unlike the total momentum of a system, which is completely unaffected by internal interactions,
the total kinetic energy does depend on the details of the interaction, and thus conveys some information about its nature. We can
then refine our study of collisions to distinguish two kinds: the ones where the initial kinetic energy is recovered after the collision,
which we will call elastic, and the ones where it is not, which we call inelastic. A special case of inelastic collision is the one
called totally inelastic, where the two objects end up stuck together, as in Figure . As we shall see later, the kinetic energy
“deficit” is largest in that case.

Since whatever ultimately happens depends on the details and the nature of the interaction, we will be led to distinguish between
“conservative” interactions, where kinetic energy is reversibly stored as some other form of energy somewhere, and “dissipative”
interactions, where the energy conversion is, at least in part, irreversible. Clearly, elastic collisions are associated with conservative
interactions and inelastic collisions are associated with dissipative interactions. This preliminary classification of interactions will
have to be reviewed a little more carefully, however, in the next chapter.

This page titled 8.1: Kinetic Energy is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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8.2: Conservative Interactions
Let's summarize the physical concepts and principles we have encountered so far in our study of classical mechanics. We have
“discovered” one important quantity, the inertia or inertial mass of an object, and introduced two different quantities based on that
concept, the momentum  and the kinetic energy . We found that these quantities have different but equally intriguing
properties. The total momentum of a system is insensitive to the interactions between the parts that make up the system, and
therefore it stays constant in the absence of external influences (a more general statement of the law of inertia, the first important
principle we encountered). The total kinetic energy, on the other hand, changes while any sort of interaction is taking place, but in
some cases it may actually return to its original value afterwards. This chapter deals with interactions from an energy point of view,
whereas later chapters will deal with them from a force point of view.

In the previous chapter I suggested that what was going on in an elastic collision could be interpreted, or described (perhaps in a
figurative way) more or less as follows: as the objects come together, the total kinetic energy goes down, but it is as if it was being
temporarily stored away somewhere, and as the objects separate, that “stored energy” is fully recovered as kinetic energy. Whether
this does happen or not in any particular collision (that is, whether the collision is elastic or not) depends, as we have seen, on the
kind of interaction (“bouncy” or “sticky,” for instance) that takes place between the objects.

We are going to take the above description literally, and use the name conservative interaction for any interaction that can “store
and restore” kinetic energy in this way. The “stored energy” itself—which is not actually kinetic energy while it remains stored,
since it is not given by the value of  at that time—we are going to call potential energy. Thus, conservative interactions will
be those that have a “potential energy” associated with them, and vice-versa.

Potential Energy
Perhaps the simplest and clearest example of the storage and recovery of kinetic energy is what happens when you throw an object
straight upwards, as it rises and eventually falls back down. The object leaves your hand with some kinetic energy; as it rises it
slows down, so its kinetic energy goes down, down... all the way down to zero, eventually, as it momentarily stops at the top of its
rise. Then it comes down, and its kinetic energy starts to increase again, until eventually, as it comes back to your hand, it has very
nearly the same kinetic energy it started out with (exactly the same, actually, if you neglect air resistance).

The interaction responsible for this change in the object’s kinetic energy is, of course, the gravitational interaction between it and
the Earth, so we are going to say that the “missing” kinetic energy is temporarily stored as gravitational potential energy of the
system formed by the Earth and the object. This potential energy takes a simple mathematical form,

where  is the height of the object above the Earth. We have carefully called this height the coordinate  to emphasize that is can be
negative if  is negative. It turns out that with this definition of potential energy, the total energy in freefall is

This is a statement of conservation of energy under the gravitational interaction. For any interaction that has a potential energy
associated with it, the quantity  is called the (total) mechanical energy.

Figure  shows how the kinetic and potential energies of an object thrown straight up change with time (don't worry where this
plot comes from yet, you will learn about that when we study projectile motion in detail). I have arbitrarily assumed that the object
has a mass of 1 kg and an initial velocity of 2 m/s, and it is thrown from an initial height of 0.5 m above the ground. Note how the
change in potential energy exactly mirrors the change in kinetic energy (so , mathematically), and the total
mechanical energy remains equal to its initial value of 6.9 J throughout.
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Figure : Potential and kinetic energy as a function of time for a system consisting of the earth and a 1-kg object sent upwards
with  = 2 m/s from a height of 0.5 m.

There is something about potential energy that probably needs to be mentioned at this point. Because I have chosen to launch the
object from 0.5 m above the ground, and I have chosen to measure  from the ground, I started out with a potential energy of 
= 4.9 J. This makes sense, in a way: it tells you that if you simply dropped the object from this height, it would have picked up an
amount of kinetic energy equal to 4.9 J by the time it reached the ground. But, actually, where I choose the vertical origin of
coordinates is arbitrary. I could start measuring  from any height I wanted to—for instance, taking the initial height of my hand to
correspond to  = 0. This would shift the blue curve in Figure  down by 4.9 J, but it would not change any of the physics. The
only important thing I really want the potential energy for is to calculate the kinetic energy the object will lose or gain as it moves
from one height to another, and for that only changes in potential energy matter. I can always add or subtract any (constant) number
to or from , and it will still be true that .

Closed Systems
Today, physics is pretty much founded on the belief that the energy of a closed system (defined as one that does not exchange
energy with its surroundings—more on this in a minute) is always conserved: that is, internal processes and interactions will only
cause energy to be “converted” from one form into another, but the total, after all the forms of energy available to the system have
been carefully accounted for, will not change. This belief is based on countless experiments, on the one hand, and, on the other, on
the fact that all the fundamental interactions that we are aware of do conserve a system’s total energy.

Of course, recognizing whether a system is “closed” or not depends on having first a complete catalogue of all the ways in which
energy can be stored and exchanged—to make sure that there is, in fact, no exchange of energy going on with the surroundings.
Note, incidentally, that a “closed” system is not necessarily the same thing as an “isolated” system: the former relates to the total
energy, the latter to the total momentum. A parked car getting hotter in the sun is not a closed system (it is absorbing energy all the
time) but, as far as its total momentum is concerned, it is certainly fair to call it “isolated.” Hopefully all these concepts will be
further clarified when we introduce the additional auxiliary concepts of force, work, and heat.

For a closed system, we can state the principle of conservation of energy (somewhat symbolically) in the form

where  is the total, macroscopic, kinetic energy;  the sum of all the applicable potential energies associated with the system’s
internal interactions;  is any kind of internal energy (such as chemical energy) that is not described by a potential energy
function, but can increase the system’s mechanical energy; and  stands for the contents of the “dissipated energy reservoir”—
typically thermal energy. As with the potential energy , the absolute value of  and  does not (usually) really matter:
all we are interested in is how much they change in the course of the process under consideration.
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Figure : Energy bar diagrams for a system formed by the earth and a ball thrown downwards. (a) As the ball leaves the hand.
(b) Just before it hits the ground. (c) During the collision, at the time of maximum compression. (d) At the top of the first bounce.
The total number of energy “units” is the same in all the diagrams, as required by the principle of conservation of energy.

Figure  above is an example of this kind of “energy accounting” for a ball bouncing on the ground. If the ball is thrown down,
the system formed by the ball and the earth initially has both gravitational potential energy, and kinetic energy (diagram (a)). So all
the kinetic energy that we have is the kinetic energy of the ball. As the ball falls, gravitational potential energy is being converted
into kinetic energy, and the ball speeds up. As it is about to hit the ground (diagram (b)), the potential energy is zero and the kinetic
energy is maximum. During the collision with the ground, all the kinetic energy is temporarily converted into other forms of
energy, which are essentially elastic energy of deformation (like the energy in a spring) and some thermal energy (diagram (c)).
When it bounces back, its kinetic energy will only be a fraction  of what it had before the collision (where e is the coefficient of
restitution). This kinetic energy is all converted into gravitational potential energy as the ball reaches the top of its bounce (diagram
(d)). Note there is more dissipated energy in diagram (d) than in (c); this is because I have assumed that dissipation of energy takes
place both during the compression and the subsequent expansion of the ball.

Note that in this closed system, some energy was transferred to heat, but the total energy stayed the same, and was therefore
conserved. The real problem appears if you can't actually keep track of that energy that gets transferred to heat, then the system
would appear not to conserve energy. Mostly, we will assume no transfer to heat in our problems, but we should acknowledge this
is not a problem with physics, it is rather a problem with our ability to keep track of all the sources of energy in a system. As you
move through the field of physics, you will learn how we keep track of more of these sources of energy, and the problems you
solve will become better and better approximations to "the real world".

This page titled 8.2: Conservative Interactions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher
Duston, Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts
platform.
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8.3: Universal Gravity
Up to this point, all we have said about gravity is that, near the surface of the Earth, the gravitational force exerted by the Earth on
an object of mass  is , which corresponds to a potential energy of interaction . This is, indeed, a pretty good
approximation, but it does not really tell you anything about what the gravitational force is where other objects or distances are
involved.

The first comprehensive theory of gravity, formulated by Isaac Newton in the late 17th century, postulates that any two “particles”
with masses  and  will exert an attractive force (a “pull”) on each other, whose magnitude is proportional to the product of
the masses, and inversely proportional to the square of the distance between them. Mathematically, we write

Here,  is just the magnitude of the position vector of particle 2 relative to particle 1 (so  is, indeed, the distance between the
two particles), and  is a constant, known as “Newton’s constant” or the gravitational constant, which at the time of Newton still
had not been determined experimentally. You can see from Equation ( ) that  is simply the magnitude, in newtons, of the
attractive force between two 1-kg masses a distance of 1 m apart. This turns out to have the ridiculously small value  =
6.674×10  N m /kg  (or, as is more commonly written, m kg s ). It was first measured by Henry Cavendish in 1798, in what
was, without a doubt, an experimental tour de force for that time. As you can see, gravity as a force between any two ordinary
objects is absolutely insignificant, and it takes the mass of a planet to make it into something you can feel.

There is a potential energy corresponding to this force, a la :

The variables are the same as in the force equation (notice the negative derivative of the potential gives you the force - that's a
universal rule, which we will explore later). These two equations together constitute what is often called Universal Gravity, because
it's the law of gravity that applies to any two objects in the universe. This should be contrasted with the more familiar 
and , which only apply near the surface of the Earth.

Since  should apply everywhere, it should be true that we can derive  from , so let's show how that is done. The situation
we want to understand is the gravitational interaction near the Earth - in fact, very near the Earth, so that we can write the height of
the object from the surface  is much smaller than the radius of the Earth, . Setting the two masses in equation ( ) to
the Earth  and the mass of the object in question , we can write

Notice in going to either side of the equation sign, I have simply pulled out  from the expression in the denominator, those two
expressions are exactly equal. But now we have that quantity , and we've already said , which means  is a
very small value. Recall from your calculus class that for a small value , you can write

(This is called a Taylor Expansion, and you can check our work on Wolfram Alpha.) We have to be careful to write this expression
as an approximation now, since it's not exact, but it should be a good approximation for things that actually are close to the surface
of the Earth - perhaps as high as Everest, for example.

Anyway, let's truncate the series after two terms (keep more if you want it to be more exact!) and write

Notice in this last expression, the first term  is a particular constant which stays the same for a particular planet
(Earth) and object of mass  - let's call that . The second term is similar, but depends linearly on the height  above the surface
of the Earth. In fact, if we define a new constant , we can write that second term as , and we have found the
relationship between the two different kinds of gravitational potential energy:
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That's quite satisfying, but what is going on with the constant? To understand that, we can go back to something we discussed last
chapter - for closed systems that do not dissipate energy, we can write . Notice here that's it's just the change in
energy that matters, and not the total value. For example, if I wanted to find the change in Universal Gravitational energy I could
write

In other words, if we consider the change in energy, the constant doesn't matter - in fact, we usually just set this constant to be 0 in
all of our problems. The conceptual understanding of that is essentially that it does not matter where we set our  point to be -
if we drop an object 10 m, we have to get the same answer for the final speed if we consider the  point to be either at the
bottom of the motion or the top.

It's important to keep in mind this approximation technique - it's a very powerful tool that is used all over the place in the physics.
Sometimes it's to make our work easier, while having essentially no impact on the outcome of calculations, like in this case. In
other cases, the exact answer is so difficult to calculate that we are forced to make approximations to get an answer at all. One
example of this which is just beyond what we will study is air drag, another example which is far beyond what we will study is the
use of Feynman diagrams in quantum field theory.

This page titled 8.3: Universal Gravity is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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8.4: Other Forms of Energy

Thermal Energy
From all the foregoing, it is clear that when an interaction can be completely described by a potential energy function we can define
a quantity, which we have called the total mechanical energy of the system, , that is constant throughout the
interaction. However, we already know from our study of collisions that this is rarely the case. Essential to the concept of potential
energy is the idea of “storage and retrieval” of the kinetic energy of the system during the interaction process. When kinetic energy
simply disappears from the system and does not come back, a full description of the process in terms of a potential energy is not
possible.

Processes in which some amount of mechanical energy disappears (that is, it cannot be found anywhere anymore as either
macroscopic kinetic or potential energy) are called dissipative. Mysterious as they may appear at first sight, there is actually a
simple, intuitive explanation for them. All macroscopic systems consist of a great number of small parts that enjoy, at the
microscopic level, some degree of independence from each other and from the body to which they belong. Macroscopic motion of
an object requires all these parts to move together as a whole, at least on average; however, a collision with another object may
very well “rattle” all these parts and leave them in a more or less disorganized state. If the total energy is conserved, then after the
collision the object’s atoms or molecules may be, on average, vibrating faster or banging against each other more often than before,
but they will do so in random directions, so this increased “agitation” will not be perceived as macroscopic motion of the object as
a whole.

This kind of random agitation at the microscopic level that I have just introduced is what we know today as thermal energy, and it
is by far the most common “sink” or reservoir where macroscopic mechanical energy is “dissipated.” In our example of an inelastic
collision, the energy the objects had is not gone from the universe, in fact it is still right there inside the objects themselves; it is
just in a disorganized or incoherent state from which, as you can imagine, it would be pretty much impossible to retrieve it, since
we would have to somehow get all the randomly-moving parts to get back to moving in the same direction again.

We will have a lot more to say about thermal energy in a later chapter, but for the moment you may want to think of it as essentially
noise: it is what is left (the residual motional or configurational energy, at the microscopic level) after you remove the average,
macroscopically-observable kinetic or potential energy. So, for example, for a solid object moving with a velocity , the kinetic
part of its thermal energy would be the sum of the kinetic energies of all its microscopic parts, calculated in its center of mass (or
zero-momentum) reference frame; that way you remove from every molecule’s velocity the quantity , which they all must have
in common—on average (since the body as a whole is moving with that velocity).

In order to establish conservation of energy as a fact (which was one of the greatest scientific triumphs of the 19th century) it was
clearly necessary to show experimentally that a certain amount of mechanical energy lost always resulted in the same predictable
increase in the system’s thermal energy. Thermal energy is largely “invisible” at the macroscopic level, but we detect it indirectly
through an object’s temperature. The crucial experiments to establish what at the time was called the “mechanical equivalent of
heat” were carried out by James Prescott Joule in the 1850’s, and required exceedingly precise measurements of temperature (in
fact, getting the experiments done was only half the struggle; the other half was getting the scientific establishment to believe that
he could measure changes in temperature so accurately!)

Fundamental Interactions
At the most fundamental (microscopic) level, physicists today believe that there are only four (or three, depending on your
perspective) basic interactions: gravity, electromagnetism, the strong nuclear interaction (responsible for holding atomic nuclei
together), and the weak nuclear interaction (responsible for certain nuclear processes, such as the transmutation of a proton into a
neutron  and vice-versa). In a technical sense, at the quantum level, electromagnetism and the weak nuclear interactions can be
regarded as separate manifestations of a single, consistent quantum field theory, so they are sometimes referred to as “the
electroweak interaction.”

All of these interactions are conservative, in the sense that for all of them one can define the equivalent of a “potential energy
function” (generalized, as necessary, to conform to the requirements of quantum mechanics and relativity), so that for a system of
elementary particles interacting via any one of these interactions the total kinetic plus potential energy is a constant of the motion.
For gravity (which we do not really know how to “quantize” anyway!), this function immediately carries over to the macroscopic
domain without any changes, as we shall see in a later chapter, and the gravitational potential energy function I introduced earlier in
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this chapter is an approximation to it valid near the surface of the earth (gravity is such a weak force that the gravitational
interaction between any two earth-bound objects is virtually negligible, so we only have to worry about gravitational energy when
one of the objects involved is the earth itself).

As for the strong and weak nuclear interactions, they are only appreciable over the scale of an atomic nucleus, so there is no
question of them directly affecting any macroscopic mechanical processes. They are responsible, however, for various nuclear
reactions in the course of which nuclear energy is, most commonly, transformed into electromagnetic energy (X- or gamma rays)
and thermal energy.

All the other forms of energy one encounters at the microscopic, and even the macroscopic, level have their origin in
electromagnetism. Some of them, like the electrostatic energy in a capacitor or the magnetic interaction between two permanent
magnets, are straightforward enough scale-ups of their microscopic counterparts, and may allow for a potential energy description
at the macroscopic level (and you will learn more about them next semester!). Many others, however, are more subtle and involve
quantum mechanical effects (such as the exclusion principle) in a fundamental way.

Among the most important of these is chemical energy, which is an extremely important source of energy for all kinds of
macroscopic processes: combustion (and explosions!), the production of electrical energy in batteries, and all the biochemical
processes that power our own bodies. However, the conversion of chemical energy into macroscopic mechanical energy is almost
always a dissipative process (that is, one in which some of the initial chemical energy ends up irreversibly converted into thermal
energy), so it is generally impossible to describe them using a (macroscopic) potential energy function (except, possibly, for
electrochemical processes, with which we will not be concerned here).

For instance, consider a chemical reaction in which some amount of chemical energy is converted into kinetic energy of the
molecules forming the reaction products. Even when care is taken to “channel” the motion of the reaction products in a particular
direction (for example, to push a cylinder in a combustion engine), a lot of the individual molecules will end up flying in the
“wrong” direction, striking the sides of the container, etc. In other words, we end up with a lot of the chemical energy being
converted into disorganized microscopic agitation—which is to say, thermal energy.

Electrostatic and quantum effects are also responsible for the elastic properties of materials, which can sometimes be described by
macroscopic potential energy functions, at least to a first approximation. They are also responsible for the adhesive forces between
surfaces that play an important role in friction, and various other kinds of what might be called “structural energies,” most of which
play only a relatively small part in the energy balance where macroscopic objects are involved.

Plus a positron and a neutrino

This page titled 8.4: Other Forms of Energy is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher
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platform.
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8.5: Relative Velocity and the Coefficient of Restitution
An interesting property of elastic collisions can be disclosed from a careful study of figures  and . In both cases, as you
can see, the relative velocity of the two objects colliding has the same magnitude (but opposite sign) before and after the collision.
In other words: in an elastic collision, the objects end up moving apart at the same rate as they originally came together.

Recall that, in Chapter 4, we defined the velocity of object 2 relative to object 1 as the quantity

(compare Equation (4.3.8); and similarly the velocity of object 1 relative to object 2 is . With this definition you can
check that, indeed, the collisions shown in Figs. (8.1.1) and (8.1.2) satisfy the equality

(note that we could equally well have used  instead of ). For instance, in Figure (8.1.1),  = −1 m/s, whereas 
 = 2/3 − (−1/3) = 1 m/s. So the objects are initially moving towards each other at a rate of 1 m per second, and they end up

moving apart just as fast, at 1 m per second. Visually, you should notice that the distance between the red and blue curves is the
same before and after (but not during) the collision; the fact that they cross accounts for the difference in sign of the relative
velocity, which in turns means simply that before the collision they were coming together, and afterwards they are moving apart.

It takes only a little algebra to show that Equation ( ) follows from the joint conditions of conservation of momentum and
conservation of kinetic energy. The first one (  =  ) clearly has the form

whereas the second one (  =  ) can be written as

We can cancel out all the factors of 1/2 in Equation ( ) , then rearrange it so that quantities belonging to object 1 are on one
side, and quantities belonging to object 2 are on the other. We get

(using the fact that ). Note, however, that Equation ( ) can also be rewritten as

This immediately allows us to cancel out the corresponding factors in Eq ( ), so we are left with , which
can be rewritten as

and this is equivalent to ( )

So, in an elastic collision the speed at which the two objects move apart is the same as the speed at which they came together,
whereas, in what is clearly the opposite extreme, in a totally inelastic collision the final relative speed is zero—the objects do not
move apart at all after they collide. This suggests that we can quantify how inelastic a collision is by the ratio of the final to the
initial magnitude of the relative velocity. This ratio is denoted by  and is called the coefficient of restitution. Formally,

For an elastic collision,  = 1, as required by Equation ( ). For a totally inelastic collision, like the one depicted in Figure
(8.1.3),  = 0. For a collision that is inelastic, but not totally inelastic,  will have some value in between these two extremes. This
knowledge can be used to “design” inelastic collisions (for homework problems, for instance!): just pick a value for , between 0
and 1, in Equation ( ), and combine this equation with the conservation of momentum requirement ( ). The two equations
then allow you to calculate the final velocities for any values of , , and the initial velocities. Figure  below, for example,
shows what the collision in Figure  would have been like, if the coefficient of restitution had been 0.6 instead of 1. You can
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check, by solving ( ) and ( ) together, and using the initial velocities, that  = −1/15 m/s = −0.0667 m/s, and  = 8/15
m/s = 0.533 m/s.

Figure .

Although, as I just mentioned, for most “normal” collisions the coefficient of restitution will be a positive number between 1 and 0,
there can be exceptions to this. If one of the objects passes through the other (like a bullet through a target, for instance), the value
of  will be negative (although still between 0 and 1 in magnitude). And  can be greater than 1 for so-called “explosive
collisions,” where some amount of extra energy is released, and converted into kinetic energy, as the objects collide. (For instance,
two hockey players colliding on the rink and pushing each other away.) In this case, the objects may well fly apart faster than they
came together.

An extreme example of a situation with  > 0 is an explosive separation, which is when the two objects are initially moving
together and then fly apart. In that case, the denominator of Equation ( ) is zero, and so  is formally infinite. This suggests,
what is in fact the case, namely, that although explosive processes are certainly important, describing them through the coefficient
of restitution is rare, even when it would be formally possible. In practice, use of the coefficient of restitution is mostly limited to
the elastic-to-completely inelastic range, that is, 0 ≤  ≤ 1.

You may be wondering, just why do we define kinetic energy with a factor 1/2 in front, anyway? There is no good answer at this
point. Let’s just say it will make the definition of “potential energy” simpler later, particularly as regards its relationship to force.
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8.6: Examples

                                                                        

The figure shows a Half-Atwood machine, with a block of mass  = 6.0 kg sliding across a frictionless surface, attached to a
hanging mass  = 350 g by a string going over a pulley. 

1. What is the speed of the sliding block when the hanging mass falls 73 cm? Assume the system starts at rest.
2. Now assume that this system is not actually isolated, but is losing energy due to the contact interaction between the ramp

and the block. This energy loss depends on the mass of the block, the distance  that the block slides, and a proportionality
constant , like

If this constant is experimentally found to be  m/s , how fast is the block moving if it falls the same distance?

 

In 1994, comet Shoemaker-Levy struck the planet Jupiter, causing explosions that were seen from Earth (above image from
Wikipedia). The estimated speed of the comet before impact was 60 km/s, and based on the brightness of the explosion, it was
estimated that around  J of energy was released. Use this information to estimate the size of the comet. Unfortunately,
we don't know what the comet was made of, so do this calculation twice:

1. First assume the comet was made of rock, and had a density of .
2. Now repeat the calculation assuming the comet was made of ice, with a density of 

.                                                         

A mad scientist wants to destroy the Moon! He constructs a cannon that fires 1500 kg cannonballs, and needs to determine how
fast the cannon must be fired to hit the Moon.

1. For his first calculation, he uses the potential energy due to gravity as , and determines the minimum launch
speed of the cannonballs to reach the Moon, at a distance of  m. What speed does he calculate?

 Whiteboard Problem : Half-Atwood Machine8.6.1

m2

m1

d

γ

ΔE = −γmd ( )
where did

I get this?
(8.6.1)

γ = 0.35 2

 Whiteboard Problem : Jupiter Collision8.6.2

4 ×1022

3000 kg/m3

920kg/m3

 Whiteboard Problem : Destroy the Moon!8.6.3

= mghUg

= 3.84 ×dM 108
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2. What will the initial kinetic energy of the cannonball be?
3. His assistant realizes that since the cannonball is going to be traveling far from the Earth, they must use 

 
for the potential energy due to gravity. When the assistant redoes the calculation, what speed do they get?

4. What will the initial kinetic energy of the cannonball actually have to be?

 

Tarzan swings on a vine to rescue a helpless explorer (as usual) from some attacking animal or another. He begins his swing
from a branch a height of 15 m above the ground, grabs the explorer at the bottom of his swing, and continues the swing,
upwards this time, until they both land safely on another branch. Suppose that Tarzan weighs 90 kg and the explorer weighs 70,
and that Tarzan doesn’t just drop from the branch, but pushes himself off so that he starts the swing with a speed of 5 m/s. How
high a branch can he and the explorer reach?

Solution

Let us break this down into parts. The first part of the swing involves the conversion of some amount of initial gravitational
potential energy into kinetic energy. Then comes the collision with the explorer, which is completely inelastic and we can
analyze using conservation of momentum (assuming Tarzan and the explorer form an isolated system for the brief time the
collision lasts). After that, the second half of their swing involves the complete conversion of their kinetic energy into
gravitational potential energy.

Let  be Tarzan’s mass,  the explorer’s mass,  the initial height, and  the final height. We also have three velocities to
worry about (or, more properly in this case, speeds, since their direction is of no concern, as long as they all point the way they
are supposed to): Tarzan’s initial velocity at the beginning of the swing, which we may call ; his velocity at the bottom of
the swing, just before he grabs the explorer, which we may call , and his velocity just after he grabs the explorer, which we
may call . (If you find those subscripts confusing, I am sorry, they are the best I could do; please feel free to make up your
own.)

First part: the downswing. We apply conservation of energy, in the form Equation (8.2.2), to the first part of the swing. The
system we consider consists of Tarzan and the earth, and it has kinetic energy as well as gravitational potential energy. We
ignore the source energy and the dissipated energy terms, and consider the system closed despite the fact that Tarzan is
holding onto a vine (as we shall see in a couple of chapters, the vine does no “work” on Tarzan—meaning, it does not
change his energy, only his direction of motion—because the force it exerts on Tarzan is always perpendicular to his
displacement): 

 
In terms of the quantities I introduced above, this equation becomes: 

 
which can be solved to give 

 
Substituting, we get 

= −GUG

m1m2

r
(8.6.2)

 Example : Inelastic Collision in the middle of a swing8.6.4
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Second part: the completely inelastic collision. The explorer is initially at rest (we assume he has not seen the wild beast
ready to pounce yet, or he has seen it and he is paralyzed by fear!). After Tarzan grabs him they are moving together with a
speed . Conservation of momentum gives 

 
which we can solve to get 

Third part: the upswing. Here we use again conservation of energy in the form 

 
where the subscript f refers to the very end of the swing, when they both safely reach their new branch, and all their kinetic
energy has been converted to gravitational potential energy, so  = 0 (which means that is as high as they can go, unless
they start climbing the vine!). This equation can be rewritten as 

 
and solving for  we get 

A superball of mass 0.25 kg is dropped from rest from a height of h = 1.50 m above the floor. It bounces with no loss of energy
and returns to its initial height (Figure ).

a. What is the superball’s change of momentum during its bounce on the floor?
b. What was Earth’s change of momentum due to the ball colliding with the floor?
c. What was Earth’s change of velocity as a result of this collision?

(This example shows that you have to be careful about defining your system.)

Figure : A superball is dropped to the floor ( ), hits the floor ( ), bounces ( ), and returns to its initial height ( ).

Strategy

vbot2

= ( + )m1vbot1 m1 m2 vbot2 (8.6.5)

= = = 10vbot2
m1vbot1

+m1 m2

(90 kg) ×(17.9 m/s)

160 kg

m

s

+ = +Kbot2 UG
bot Kf UG

f (8.6.6)

Kf

( + ) +0 = 0 +( + )g
1

2
m1 m2 v2

bot2
m1 m2 hf

hf

= = = 5.15 mhf
v2
bot2

2g

(10 m/s)2

2 ×9.8 m/s2

 Example : Momentum and Energy Review: A Bouncing Superball8.6.5
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Since we are asked only about the ball’s change of momentum, we define our system to be the ball. But this is clearly not a
closed system; gravity applies a downward force on the ball while it is falling, and the normal force from the floor applies a
force during the bounce. Thus, we cannot use conservation of momentum as a strategy. Instead, we simply determine the ball’s
momentum just before it collides with the floor and just after, and calculate the difference. We have the ball’s mass, so we need
its velocities.

Solution

a. Since this is a one-dimensional problem, we use the scalar form of the equations. Let:
p  = the magnitude of the ball’s momentum at time t , the moment it was released; since it was dropped from rest, this is
zero.
p  = the magnitude of the ball’s momentum at time t , the instant just before it hits the floor.
p  = the magnitude of the ball’s momentum at time t , just after it loses contact with the floor after the bounce.

The ball’s change of momentum is

Its velocity just before it hits the floor can be determined from either conservation of energy or kinematics. We use kinematics
here; you should re-solve it using conservation of energy and confirm you get the same result.

We want the velocity just before it hits the ground (at time t ). We know its initial velocity v  = 0 (at time t ), the height it falls,
and its acceleration; we don’t know the fall time. We could calculate that, but instead we use

Thus the ball has a momentum of

We don’t have an easy way to calculate the momentum after the bounce. Instead, we reason from the symmetry of the
situation.

Before the bounce, the ball starts with zero velocity and falls 1.50 m under the influence of gravity, achieving some amount of
momentum just before it hits the ground. On the return trip (after the bounce), it starts with some amount of momentum, rises
the same 1.50 m it fell, and ends with zero velocity. Thus, the motion after the bounce was the mirror image of the motion
before the bounce. From this symmetry, it must be true that the ball’s momentum after the bounce must be equal and opposite
to its momentum before the bounce. (This is a subtle but crucial argument; make sure you understand it before you go on.)
Therefore,

Thus, the ball’s change of momentum during the bounce is

b. What was Earth’s change of momentum due to the ball colliding with the floor? Your instinctive response may well have
been either “zero; the Earth is just too massive for that tiny ball to have affected it” or possibly, “more than zero, but utterly
negligible.” But no—if we re-define our system to be the Superball + Earth, then this system is closed (neglecting the
gravitational pulls of the Sun, the Moon, and the other planets in the solar system), and therefore the total change of
momentum of this new system must be zero. Therefore, Earth’s change of momentum is exactly the same magnitude:
$\Delta \vec{p}_{Earth} = -2.8\; kg\; \cdotp m/s\; \hat{j} \ldotp$

c. What was Earth’s change of velocity as a result of this collision? This is where your instinctive feeling is probably correct:

0 0

1 1

2 2

Δp ⃗ = −p ⃗ 2 p ⃗ 1

= −(− )p2 ĵ p1 ĵ

= ( + ) .p2 p1 ĵ

1 0 0

= − = −5.4 m/s .v ⃗ 1 ĵ 2gy
−−−

√ ĵ

p ⃗ 1 = −(0.25 kg)(−5.4 m/s )ĵ

= −(1.4 kg ⋅m/s) .ĵ

= − = +(1.4 kg ⋅m/s) .p ⃗ 2 p ⃗ 1 ĵ

Δp ⃗ = −p ⃗ 2 p ⃗ 1

= (1.4 kg ⋅m/s) −(−1.4 kg ⋅m/s)ĵ ĵ

= +(2.8 kg ⋅m/s) .ĵ
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This change of Earth’s velocity is utterly negligible

Significance

It is important to realize that the answer to part (c) is not a velocity; it is a change of velocity, which is a very different thing.
Nevertheless, to give you a feel for just how small that change of velocity is, suppose you were moving with a velocity of 4.7 x
10  m/s. At this speed, it would take you about 7 million years to travel a distance equal to the diameter of a hydrogen atom.

Would the ball’s change of momentum have been larger, smaller, or the same, if it had collided with the floor and stopped
(without bouncing)? Would the ball’s change of momentum have been larger, smaller, or the same, if it had collided with the
floor and stopped (without bouncing)?

 

This page titled 8.6: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

5.6: Examples by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
9.6: Conservation of Linear Momentum (Part 2) by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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CHAPTER OVERVIEW

9: C9) Potential Energy- Graphs and Springs
9.1: Potential Energy of a System
9.2: Potential Energy Functions
9.3: Equilibrium and Turning Points
9.4: Advanced Application- Springs and Collisions
9.5: Examples

This chapter is a continuation of our study of energy. Here we want to introduce another important source of energy - the potential
energy of a spring. Although it's "just for springs", it turns out that many systems in the world can be modeled with springs
(molecules, for instance, and nearly anything that exhibits oscillatory behavior). In fact, it will be the last of the three kinds of
potential energy we are going to study in this book (the other two being due to the gravitational interaction,  and ). So to
round out this chapter, we are also going to introduce some graphs of more complicated potential energy functions, and how we can
extract information from them.

A spring is an example of something that interacts elastically, meaning that it stores energy if you either stretch it or compress it.
How much energy it stores depends on the spring, so each spring has "a spring constant" , that describes how much energy is
stored in it when you compress it a given distance. The actual formula is

where  is the amount the end of the spring is moved from it's equilibrium position - we will often write this as ,
where  is the equilibrium position of the spring. The fact that it is squared is what tells us that it doesn't matter what direction the
change in length is; both compressing and stretching store energy.

To start talking about graphs, let's start with graphs of the three interactions we have seen in this book so far (below). Now think
about how objects in each of these interactions behaves. For example, consider two asteroids separated by a distance , using the
potential energy for gravity (second graph). These two asteroids move towards each other right? What happens to the energy in the
graph as they do? You can see that the potential energy decreases when that happens. In fact, that's true for the other form of
gravitational potential as well. For the spring, something similar happens, but what direction the motion happens in depends on
where you start - if you start on the right side of the equilibrium, decreasing energy means moving to smaller positions (closer to
the equilibrium). If you're on the left side of the equilibrium, decreasing energy means increasing the x-coordinate (again, back to
equilibrium).

What does all that mean? Well, it turns that nature wants to decrease the potential energy in a system! Unless something is actively
preventing the motion, the potential will decrease. This means moving to the origin for the gravitational interaction, and towards
the equilibrium point for the spring. We actually have special names for interactions that pull things together (attractive) as
compared to push things apart (repulsive). So, just based on their plots, we can see that gravity is an attractive interaction. The
elastic interaction (springs) is either attractive or repulsive, depending on which side of the equilibrium you are on.

Let's consider just one more interaction, one that's more complicated (last figure on the right). Playing the same game (nature wants
to lower the energy!), we can see that if you start inside of the dip, you experience a spring-like interaction, either attractive or
repulsive depending on where you start. If you start outside of the dip, the lowest energy is at higher and higher x-coordinate, so
that interaction is repulsive out there. We can actually describe the qualitative motion of this system without ever looking at any
equations, just with these simple considerations of "energy flow". This is only the first half of the story about potential energy
graphs, which we will take up in more detail in the second half of this chapter.

Ug UG

k

= kΔ ,Us

1

2
x2 (9.1)
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9.1: Potential Energy of a System

Types of Potential Energy
For each type of interaction present in a system, you can label a corresponding type of potential energy. The total potential energy of the
system is the sum of the potential energies of all the types. Let's look at some particular examples of two important types of potential
energy.

Gravitational Potential Energy Near Earth's Surface

The system of interest consists of our planet, Earth, and one or more particles near its surface (or bodies small enough to be considered as
particles, compared to Earth). The gravitational force on each particle (or body) is just its weight mg near the surface of Earth, acting
vertically down. As the Earth pulls downward on the object, the object is also pulling upwards on the Earth (that's Newton's third law,
which we will cover in the second half of this text). However, this force of the object on the Earth is very small, so we will generally
ignore it. Therefore, we consider this system to be a group of single-particle systems, subject to the uniform gravitational force of Earth.

As we've seen in the previous chapter, the gravitational potential energy function, near Earth’s surface, is

A particularly important aspect of this formula is the choice of . This is a coordinate system choice, but it's more significant because
it means you can choose were the zero of gravitational potential energy is. We can see this is true by considering the following rewriting
of the conservation of energy formula:

That last expression tells us what we care about - the change of the kinetic energy only depends on the change in the potential, not the
absolute value. An object loosing 10 J of potential with always gain 10 J of kinetic, no matter if it started with 10 J and went to 0 J or
started with 1600 J and went to 1590 J. Since this is a choice you can make, usually it's possible to make an "easy" choice; this is often
when "the height of the object is zero", leading to the specific form of the expression .

The summit of Great Blue Hill in Milton, MA, is 147 m above its base and has an elevation above sea level of 195 m (Figure ).
(Its Native American name, Massachusett, was adopted by settlers for naming the Bay Colony and state near its location.) A 75-kg
hiker ascends from the base to the summit. What is the gravitational potential energy of the hiker-Earth system with respect to zero
gravitational potential energy at base height, when the hiker is (a) at the base of the hill, (b) at the summit, and (c) at sea level,
afterward?

Figure : Sketch of the profile of Great Blue Hill, Milton, MA. The altitudes of the three levels are indicated.

Strategy

First, we need to pick an origin for the y-axis and then determine the value of the constant that makes the potential energy zero at the
height of the base. Then, we can determine the potential energies from Equation , based on the relationship between the zero
potential energy height and the height at which the hiker is located.

Solution

a. Let’s choose the origin for the y-axis at base height, where we also want the zero of potential energy to be. This choice makes the
constant equal to zero and

b. At the summit, y = 147 m, so

c. At sea level, y = (147 - 195) m = -48 m, so

(y) = mgyUg (9.1.1)

y = 0

− = 0 → ( + ) −( + ) = 0 → ( − ) +( − ) = 0 → ΔK +ΔU = 0 → ΔK = −ΔU.Ef Ei Kf Uf Ki Ui Kf Ki Uf Ui (9.1.2)

9.1.1

 Example : Gravitational PotentIAL Energy of a hiker9.1.2

9.1.2

9.1.2

9.1.1

U( base ) = U(0) = 0

U( summit ) = U(147 m) = mgh = (75 ×9.8 N)(147 m) = 108 kJ.
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Significance

Besides illustrating the use of Equation , the values of gravitational potential energy we found are reasonable. The gravitational
potential energy is higher at the summit than at the base, and lower at sea level than at the base. The numerical values of the potential
energies depend on the choice of zero of potential energy, but the physically meaningful differences of potential energy do not.

What are the values of the gravitational potential energy of the hiker at the base, summit, and sea level, with respect to a sea-level zero
of potential energy?

Elastic Potential Energy

The next form of potential energy we are going to look at is the energy stored in a spring, or the elastic potential energy. A spring is an
object which be compressed a distance  (from equilibrium) or stretched a distance  (again, from equilibrium). In either case, the
potential energy stored in such an object is

If the spring force is the only force acting, it is simplest to take the zero of potential energy at x = 0, when the spring is at its unstretched
length - this has actually been done in the previous expression.

A system contains a perfectly elastic spring, with an unstretched length of 20 cm and a spring constant of 4 N/cm. (a) How much
elastic potential energy does the spring contribute when its length is 23 cm? (b) How much more potential energy does it contribute if
its length increases to 26 cm?

Strategy

When the spring is at its unstretched length, it contributes nothing to the potential energy of the system, so we can use Equation 
with the constant equal to zero. The value of x is the length minus the unstretched length. When the spring is expanded, the spring’s
displacement or difference between its relaxed length and stretched length should be used for the x-value in calculating the potential
energy of the spring.

Solution

a. The displacement of the spring is x = 23 cm − 20 cm = 3 cm, so the contributed potential energy is U = kx = (4 N/cm)(3 cm)
= 0.18 J.

b. When the spring’s displacement is x = 26 cm − 20 cm = 6 cm, the potential energy is U = kx = (4 N/cm)(6 cm) = 0.72 J,
which is a 0.54-J increase over the amount in part (a).

Significance

Calculating the elastic potential energy and potential energy differences from Equation  involves solving for the potential
energies based on the given lengths of the spring. Since U depends on x , the potential energy for a compression (negative x) is the
same as for an extension of equal magnitude.

When the length of the spring in Example 8.2.3 changes from an initial value of 22.0 cm to a final value, the elastic potential energy it
contributes changes by −0.0800J. Find the final length.

Gravitational and Elastic Potential Energy

A simple system embodying both gravitational and elastic types of potential energy is a one-dimensional, vertical mass-spring system.
This consists of a massive particle (or block), hung from one end of a perfectly elastic, massless spring, the other end of which is fixed, as
illustrated in Figure .

U  (sea-level)  = (75 ×9.8N)(−48m) = −35.3kJ.

9.1.1

 Exercise 9.1.2
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 Example : Spring Potential Energy9.1.3

9.1.3

1
2

2 1
2

2

1
2

2 1
2

2 

9.1.3
2

 Exercise 9.1.3

9.1.1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63319?pdf


9.1.3 https://phys.libretexts.org/@go/page/63319

Figure : A vertical mass-spring system, with the positive y-axis pointing upward. The mass is initially at an unstretched spring length,
point A. Then it is released, expanding past point B to point C, where it comes to a stop.

First, let's consider the potential energy of the system. We need to define the constant in the potential energy function of Equation .
Often, the ground is a suitable choice for when the gravitational potential energy is zero; however, in this case, the highest point or when y
= 0 is a convenient location for zero gravitational potential energy. Note that this choice is arbitrary, and the problem can be solved
correctly even if another choice is picked.

We must also define the elastic potential energy of the system and the corresponding constant, as detailed in Equation . This is where
the spring is unstretched, or at the y = 0 position.

If we consider that the total energy of the system is conserved, then the energy at point A equals point C. The block is placed just on the
spring so its initial kinetic energy is zero. By the setup of the problem discussed previously, both the gravitational potential energy and
elastic potential energy are equal to zero. Therefore, the initial energy of the system is zero. When the block arrives at point C, its kinetic
energy is zero. However, it now has both gravitational potential energy and elastic potential energy. Therefore, we can solve for the
distance y that the block travels before coming to a stop:

Figure : A bungee jumper transforms gravitational potential energy at the start of the jump into elastic potential energy at the bottom
of the jump.

A block weighing 1.2 N is hung from a spring with a spring constant of 6.0 N/m, as shown in Figure . (a) What is the maximum
expansion of the spring, as seen at point C? (b) What is the total potential energy at point B, halfway between A and C? (c) What is
the speed of the block at point B?
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Strategy

In part (a) we calculate the distance y  as discussed in the previous text. Then in part (b), we use half of the y value to calculate the
potential energy at point B using equations Equation  and Equation . This energy must be equal to the kinetic energy,
Equation 8.1.1, at point B since the initial energy of the system is zero. By calculating the kinetic energy at point B, we can now
calculate the speed of the block at point B.

Solution

a. Since the total energy of the system is zero at point A as discussed previously, the maximum expansion of the spring is calculated to
be:

b. The position of y  is half of the position at y  or -0.20 m. The total potential energy at point B would therefore be:

c. The mass of the block is the weight divided by gravity.

The kinetic energy at point B therefore is 0.12 J because the total energy is zero. Therefore, the speed of the block at point B is equal
to

Significance

Even though the potential energy due to gravity is relative to a chosen zero location, the solutions to this problem would be the same if
the zero energy points were chosen at different locations.

Suppose the mass in Equation  is doubled while keeping the all other conditions the same. Would the maximum expansion of the
spring increase, decrease, or remain the same? Would the speed at point B be larger, smaller, or the same compared to the original
mass?

View this simulation to learn about conservation of energy with a skater! Build tracks, ramps and jumps for the skater and view the
kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

A sample chart of a variety of energies is shown in Table  to give you an idea about typical energy values associated with certain
events. Some of these are calculated using kinetic energy, whereas others are calculated by using quantities found in a form of potential
energy that may not have been discussed at this point.

Table : Energy of Various Objects and Phenomena

Object/phenomenon Energy in joules

Big Bang 10

Annual world energy use 4.0 x 10

C
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Object/phenomenon Energy in joules

Large fusion bomb (9 megaton) 3.8 x 10

Hiroshima-size fission bomb (10 kiloton) 4.2 x 10

1 barrel crude oil 5.9 x 10

1 ton TNT 4.2 x 10

1 gallon of gasoline 1.2 x 10

Daily adult food intake (recommended) 1.2 x 10

1000-kg car at 90 km/h 3.1 x 10

Tennis ball at 100 km/h 22

Mosquito (10  g at 0.5 m/s) 1.3 x 10

Single electron in a TV tube beam 4.0 x 10

Energy to break one DNA strand 10

This page titled 9.1: Potential Energy of a System is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher
Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

8.2: Potential Energy of a System by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.
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9.2: Potential Energy Functions
It turns out that we can learn quite a lot about some pretty complicated interactions by looking at the functional form of their
potential energies. In this section we will look at this, staring with one of the potentials we introducted in the last section, the elastic
potential energy.

Imagine that we have two carts collide on an air track, and one of them, let us say cart 2, is fitted with a spring. As the carts come
together, they compress the spring, and some of their kinetic energy is “stored” in it as elastic potential energy. In physics, we use
the following expression for the potential energy stored in what we call an ideal spring :

where  is something called the spring constant;  is the “equilibrium length” of the spring (when it is neither compressed nor
stretched); and  its actual length, so  means the spring is stretched, and  means it is compressed. For the system of
the two carts colliding, we can take the potential energy to be given by Equation ( ) if the distance between the carts is less
than , and 0 (corresponding to a relaxed spring) otherwise. If we put cart 1 on the left and cart 2 on the right, then the distance
between them is , and so we can write, for the whole interaction

This is enough to solve for the motion of the two carts, given the initial conditions. To see how, look in the “Examples” section at
the end of this chapter. Here, I will just give you the result.

For the calculation, shown in Figure  below, I have chosen cart 1 to have a mass of 1 kg, an initial position (at  = 0) of  =
−5 cm and an initial velocity of 1 m/s, whereas cart 2 has a mass of 2 kg and starts at rest at  = 0. I have assumed the spring has
a length of  = 2 cm and a spring constant  = 1000 J/m  (which sounds like a lot but isn’t really). The collision begins at 

 = 0.03 s, which is the time it takes cart 1 to travel the 3 cm separating it from the end of the spring.
Prior to that point, the total kinetic energy  = 0.5 J, and the total potential energy  = 0.

As a result of the collision, the spring compresses and undergoes “half a cycle” of oscillation with an “angular frequency” 
 (where  is the “reduced mass” of the system, ). That is, the spring is compressed and then

pushes out until it gets back to its equilibrium length . This lasts from  until , during which time the potential
and kinetic energies of the system can be written as

(don’t worry, all this will make a lot more sense after we get to Chapter 11 on simple harmonic motion, I promise!). After 
, the interaction is over, and  and  go back to their initial values.
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Figure : Potential and kinetic energy as a function of time for a system of two carts colliding and compressing a spring in the
process.

If you compare Figure  with Figure 8.2.1 of Chapter 8, you’ll see some similarities. The total energy is always the same, but it
might be stored in different forms - motion, springs, or gravity.

An “ideal spring” is basically defined, mathematically, by this expression, or by the corresponding force equation (which goes by
the name of Hooke’s law); usually, we also require that the spring be “massless” (by which we mean that its mass should be
negligible compared to all the other masses involved in any given problem). Of course, for Equation ( ) to hold for , it
must be possible to compress the spring as well as stretch it, which is not always possible with some springs.

As noted earlier, we shall always assume our springs to be “massless,” that is, that their inertia is negligible. In turn, negligible
inertia means that the spring does not “keep going”: it stops stretching as soon as it is back to its original length.

Potential Energy Functions and "Energy Landscapes"
The potential energy function of a system, as illustrated in the above examples, serves to let us know how much energy can be
stored in, or extracted from, the system by changing its configuration, that is to say, the positions of its parts relative to each other.
We have seen this in the case of the gravitational force (the “configuration” in this case being the distance between the object and
the earth), and just now in the case of a spring (how stretched or compressed it is). In all these cases we should think of the
potential energy as being a property of the system as a whole, not any individual part; it is, very loosely speaking, something akin
to a “stress” in the system that can be turned into motion under the right conditions.

It is a consequence of the principle of conservation of momentum that, if the interaction between two particles can be described by
a potential energy function, this should be a function only of their relative position, that is, the quantity  (or ), and
not of the individual coordinates,  and , separately . The example of the spring in the previous section illustrates this, whereas
the gravitational potential energy example shows how this can be simplified in an important case: in Equation (9.1.1), the height 
of the object above the ground is really a measure of the distance between the object and the earth, something that we could write,
in full generality, as  (where  and  are the position vectors of the Earth and the object, respectively). However, since
we do not expect the Earth to move very much as a result of the interaction, we can take its position to be constant, and only
include the position of the object explicitly in our potential energy function, as we did above .

Generally speaking, then, we can identify a large class of problems where a “small” object or “particle” interacts with a much more
massive one, and it is a good approximation to write the potential energy of the whole system as a function of only the position of
the particle. In one dimension, then, we have a situation where, once the initial conditions (the particle’s initial position and
velocity) are known, the motion of the particle can be completely determined from the function , where  is the particle’s
position at any given time. This can be done using calculus (namely, let  and solve the resulting
differential equation); but it is also possible to get some pretty valuable insights into the particle’s motion without using any
calculus at all, through a mostly graphical approach that I would like to show you next.
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Figure : A hypothetical potential energy curve for a particle in one dimension. The horizontal red line shows the total
mechanical energy under the assumption that the particle starts out at  = −2 m with  = 8 J. The green line assumes the particle
starts instead from rest at  = 1 m.

In Figure  above I have assumed, as an example, that the potential energy of the system, as a function of the position of the
particle, is given by the function  (in joules, if  is given in meters). Consider then what
happens if the particle has a mass  = 4 kg and is found initially at  = −2 m, with a velocity  = 2 m/s. (This scenario goes with
the red lines in Figure , so please ignore the green lines for the time being.) Its kinetic energy will then be  = 8 J, whereas
the potential energy will be  = 11 J. The total mechanical energy is then  = 19 J, as indicated by the red horizontal line.

Now, as the particle moves, the total energy remains constant, so as it moves to the right, its potential energy goes down at first, and
consequently its kinetic energy goes up—that is, it accelerates. At some point, however (around  = −0.22 m) the potential energy
starts to go up, and so the particle starts to slow down, although it keeps going, because  is still nonzero. However,
when the particle eventually reaches the point  = 2 m, the potential energy  = 19 J, and the kinetic energy becomes zero.

At that point, the particle stops and turns around, just like an object thrown vertically upwards. As it moves “down the potential
energy hill,” it recovers the kinetic energy it used to have, so that when it again reaches the starting point  = −2 m, its speed is
again 2 m/s, but now it is moving in the opposite direction, so it just passes through and over the next “hill” (since it has enough
total energy to do so), and eventually moves outside the region shown in the figure.

As another example, consider what would have happened if the particle had been released at, say,  = 1 m, but with zero velocity.
(This is illustrated by the green lines in Figure .) Then the total energy would be just the potential energy  = 7.25 J. The
particle could not possibly move to the right, since that would require the total energy to go up. It can only move to the left, since in
that direction  decreases (initially, at first), and that means  can increase (recall  is always positive as long as the particle
is in motion). So the particle speeds up to the left until, past the point  = −0.22 m,  starts to increase again and  has to go
down. Eventually, as the figure shows, we reach a point (which we can calculate to be  = −1.548 m) where  is once again
equal to 7.25 J. This leaves no room for any kinetic energy, so the particle has to stop and turn back. The resulting motion consists
of the particle oscillating back and forth forever between  = −1.548 m and  = 1 m.

At this point, you may have noticed that the motion I have described as following from the  function in Figure 
resembles very much the motion of a car on a roller-coaster having the shape shown, or maybe a ball rolling up and down hills like
the ones shown in the picture. In fact, the correspondence can be made exact—if we substitute sliding for rolling, since rolling
motion has complications of its own. Given an arbitrary potential energy function  for a particle of mass , imagine that you
build a “landscape” of hills and valleys whose height  above the horizontal, for a given value of the horizontal coordinate , is
given by the function . (Note that  is just a constant scaling factor that does not change the shape of the
curve.) Then, for an object of mass  sliding without friction over that landscape, under the influence of gravity, the gravitational
potential energy at any point  would be , and therefore its speed at any point will be precisely the same as
that of the original particle, if it starts at the same point with the same velocity

This notion of an “energy landscape” can be extended to more than one dimension (although they are hard to visualize in three!), or
generalized to deal with configuration parameters other than a single particle’s position. It can be very useful in a number of
disciplines (not just physics), to predict the ways in which the configuration of a system may be likely to change.
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We will see why in the next chapter!

This will change in Chapter 13, when we get to study gravity over a planetary scale.

This page titled 9.2: Potential Energy Functions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the
LibreTexts platform.

5.1: Conservative Interactions by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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9.3: Equilibrium and Turning Points
Let's continue our discussion of potential energy graphs by introducing some new terms - turning points and equilibrium points. We
already saw turning points in the last section - these were the point in the motion at which the object stopped moving and turned
around to go the other direction. Equilibrium points are the points in the motion where the object could be at rest (note the object
does not have to actually be at rest at that point, but under some conditions could be).

To get a better understanding of these terms, we'll look at two specific examples. First, let’s look at an object, freely falling
vertically, near the surface of Earth, in the absence of air resistance. The mechanical energy of the object is conserved, E = K + U,
and the potential energy, with respect to zero at ground level, is U(y) = mgy, which is a straight line through the origin with slope
mg. In the graph shown in Figure , the x-axis is the height above the ground y and the y-axis is the object’s energy.

Figure : The potential energy graph for an object in vertical free fall, with various quantities indicated.

The line at energy E represents the constant mechanical energy of the object, whereas the kinetic and potential energies, K  and
U , are indicated at a particular height y . You can see how the total energy is divided between kinetic and potential energy as the
object’s height changes. First, let's note that the kinetic energy of an object can never be negative. This is true because there is
nothing negative in the formula ...nature says mass can never be negative, and mathematics says nothing squared can ever
be negative (no imaginary speeds allowed!).

Since kinetic energy can never be negative, there is a maximum potential energy and a maximum height, which an object with the
given total energy cannot exceed:

If we use the gravitational potential energy reference point of zero at y , we can rewrite the gravitational potential energy U as mgy.
Solving for y results in

We note in this expression that the quantity of the total energy divided by the weight (mg) is located at the maximum height of the
particle, or y . At the maximum height, the kinetic energy and the speed are zero, so if the object were initially traveling upward,
its velocity would go through zero there, and y  would be a turning point in the motion. At ground level, y  = 0, the potential
energy is zero, and the kinetic energy and the speed are maximum:

The maximum speed ±v  gives the initial velocity necessary to reach y , the maximum height, and −v  represents the final
velocity, after falling from y . You can read all this information, and more, from the potential energy diagram we have shown.
Notice that the turning point occured where the total energy and the potential energy intersected in the graph - that's the point with
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zero kinetic energy. This system does not have an equilibrium point, because there is nowhere the falling object could be at rest -
it's always going to be trying to move downwards under the gravitational interaction.

For a second examples, consider a mass-spring system on a frictionless, stationary, horizontal surface, so that gravity and the
normal contact force do no work and can be ignored (Figure ). This is like a one-dimensional system, whose mechanical
energy E is a constant and whose potential energy, with respect to zero energy at zero displacement from the spring’s unstretched
length, x = 0, is U(x) = kx .

Figure : (a) A glider between springs on an air track is an example of a horizontal mass-spring system. (b) The potential
energy diagram for this system, with various quantities indicated.

You can read off the same type of information from the potential energy diagram in this case, as in the case for the body in vertical
free fall, but since the spring potential energy describes a variable force, you can learn more from this graph. As for the object in
vertical free fall, you can deduce the physically allowable range of motion and the maximum values of distance and speed, from the
limits on the kinetic energy, 0 ≤ K ≤ E. Therefore, K = 0 and U = E at a turning point, of which there are two for the elastic spring
potential energy,

The glider’s motion is confined to the region between the turning points, −x  ≤ x ≤ x . This is true for any (positive) value of E
because the potential energy is unbounded with respect to x. For this reason, as well as the shape of the potential energy curve,
U(x) is called an infinite potential well. At the bottom of the potential well, x = 0, U = 0 and the kinetic energy is a maximum, K =

E, so v  = ± .

However, this potential has another special point, at . This is the equilibrium point, because if the object had zero kinetic
energy at that point, it would not move. Notice that an object bouncing back and forth between the two turning points doesn't stop
at this equilibrium, because it doesn't have  there. Note that on either side of the equilibrium point, the potential energy
increases - another way of defining the equilibrium point is "the point which is a (local) minimum of potential energy". No matter
where an object starts, it will be driven towards the equilibrium point.

Finally, we should add that the description we just gave ("local minimum of potential") is actually for a stable equilibrium point -
there are also unstable equilibrium points. For example, consider turning the spring potential upside-down (alternatively, look at the
"bumps" in Figure 9.2.3). We could then place an object with  right at that point, and it would technically not move since
there is no slope in the potential energy function. However, the moment we give it any kind of bump one way or the other, it will
immediately go in that direction. In other words, an unstable equilibrium is a local maximum of potential energy, where an object
placed there will move away from it if displaced.

This page titled 9.3: Equilibrium and Turning Points is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

8.5: Potential Energy Diagrams and Stability by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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9.4: Advanced Application- Springs and Collisions

Two Carts Colliding and Compressing a Spring
Unlike the discussion in the previous section, which considered a stationary spring and asked only questions about initial and final
states, this example is intended to show you how one can use “energy methods” to solve for the actual motion of a relatively
complicated system as a function of time. The system is the two carts colliding, one of them fitted with a spring, considered in
Section 9.3. Although all the physics involved is straightforward, the math is at a higher level than you will be using this semester,
so I’m presenting this here as a “curiosity” only.

First, recall the total kinetic energy for a collision problem can be written as , where (if the system is isolated) 
 remains constant throughout. Then, the total mechanical energy . This is also constant,

and before the interaction happens, when  = 0, we have , so setting these two things equal and canceling out 
 we get

where the potential energy function is given by Equation (9.2.2). Introducing the relative coordinate , and the
relative velocity , Equation ( ) becomes

an equation that must hold while the interaction is going on. We can solve this for , and then notice that both  and  are
functions of time, and the latter is the derivative with respect to time of the former, so

(The “ ” sign means that the quantity on the right-hand side has to be negative at first, when the carts are coming together, and
positive later, when they are coming apart. This is because I have assumed cart 1 starts to the left of cart 2, so going in cart 2, as
seen from cart 1, appears to be moving to the left.)

Equation ( ) is what is known, in calculus, as a differential equation. The problem is to find a function of , , such that
when you take its derivative you get the expression on the right-hand side. If you know how to calculate derivatives, you can check
that the solution is in fact

where the quantity , and the time  is the time cart 1 first makes contact with the spring: .
The solution ( ) is valid for as long as the spring is compressed, which is to say, for as long as , or 

, which translates to the condition on  shown above.

Having a solution for , we could now obtain explicit results for  and  separately, using the fact that 
, and  (compare Eqs. (4.2.1), in chapter 4), and finding the

position of the center of mass as a function of time is a trivial problem, since it just moves with constant velocity.

We do not, however, need to do any of this in order to generate the plots of the kinetic and potential energy shown in Figure 8.2.1:
the potential energy depends only on , which is given explicitly by Equation ( ), and the kinetic energy is equal to 

, where  is constant and  is given by Equation ( ), which can also be easily rewritten in terms of
Equation ( ). The results are Eqs. (9.2.3) in the text.

Getting the Potential Energy Function from Collision Data
Consider the collision illustrated in Figure 4.3.1. Can we tell what the potential energy function is for the interaction between the
two carts?

K = +Kcm Kconv

Kcm E = K+U = + +UKcm Kconv

U E = +Kcm Kconv,i
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= −UKconv Kconv,i (9.4.1)
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At first sight, it may seem that all the information necessary to “reconstruct” the function  is available already, at least
in graphical form: From Figure 4.3.1 you could get the value of  at any time ; then from Figure 8.5.1 you can get the value
of  (in the elastic-collision scenario) for the same value of ; and then you could plot  (where  is the total energy)
as a function of .

But there is a catch: Figure 4.3.1 shows that the colliding objects never get any closer than  ≃ 0.28 mm, so we have no
way to tell what  is for smaller values of . This is essentially the problem faced by particle physicists when
they use collisions (which they do regularly) to try to determine the precise nature of the interactions between the particles they
study!

You can check this for yourself. The functions I used for  and  in Figure 4.3.1 are

Here, “erf” is the so-called “error function,” which you can find in any decent library of mathematical functions. This looks
complicated, but it just gives you the shapes you want for the velocity curves. The derivative of the above is

and you may want to try plotting these for yourself; the result should be Figure 4.3.1.

Now, assume (as I did for Figure 8.5.1) that  = 1 kg, and  = 2 kg, and use these values and the results of Eq ( ) (assumed
to be in m/s) to calculate  as a function of . Then , with  = 1/2 J:

and now do a parametric plot of  versus , using  as a parameter. You will end up with a figure like the one below:

Figure . No information can be gathered from those figures (nor from the explicit expressions ( ) and ( ) above) on
the values of  for  < 0.28 mm, the distance of closest approach of the two carts.

This page titled 9.4: Advanced Application- Springs and Collisions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Christopher Duston, Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and
standards of the LibreTexts platform.
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9.5: Examples

I have a spring with a spring constant 1750 N/m and a mass 13.5 kg attached to the end. They are oriented horizontally so the
mass is sliding across a frictionless surface.

1. I pull the spring a distance 5.4 cm from equilibrium. How much energy did I add on the system?
2. I let the mass go; what velocity is it traveling with when it crosses the equilibrium point?
3. The mass travels through the equilibrium point and stops at the maximum compression point of the spring. How far is the

mass from the equilibrium point? 
4. How much energy did the mass transfer to the spring as it moved from equilibrium to the maximum compression point?

                                              

The figure above shows the gravitational potential energy interaction between two massive planets orbiting around each other.
At x = , this potential is zero.

1. Indicate the sign of the force associated to this potential for each of the three regions in the following table.

  Between 0 and A Between A and B Between B and 

F positive or Negative?      

 

2. If the two planets are initially separated by a large distance, but are moving towards each other with a kinetic energy
of 1.0 MJ, about how close will they get to each 
other?

 

You are designing a back-up safety system for an elevator, that will catch the elevator on a spring if the cable breaks. The mass
of the elevator is 750 kg, and the system needs to be able to stop an elevator that dropped a distance 10 m before hitting the
spring, but only compressing a distance 2 m.

 Whiteboard Problem : Trippy Springy9.5.1

 Whiteboard Problem : Planetary Energy Graph9.5.2

∞

∞

 Whiteboard Problem : Safety Elevator9.5.3
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  What does the spring constant have to be for this safety system to work as designed?

                       

A ballistic pendulum can be used to determine the muzzle speed of a gun. The bullet is fired into a hanging pendulum, and by
measuring how far into the air the pendulum swings you can figure out how fast the bullet was traveling.

1. First determine the mass of the pendulum: I fire a bullet of mass 70 g straight into the pendulum block (left figure), at a
speed of 500 m/s, and I measure that the block rises 62 cm into the air.

2. Now I take another gun which fires the same size bullet, and find the pendulum rises a height of 75 cm. How fast did the
second gun fire the bullet?

3. What if I wasn't very careful when I aimed the bullet? If I fired at a 7.5  angle with respect to the horizontal (right figure),
what was the true muzzle speed of the gun?

The potential energy for a particle undergoing one-dimensional motion along the x-axis is U(x) = 2(x  − x ), where U is in
joules and x is in meters. The particle is not subject to any non-conservative forces and its mechanical energy is constant at E =
−0.25 J. (a) Is the motion of the particle confined to any regions on the x-axis, and if so, what are they? (b) Are there any
equilibrium points, and if so, where are they and are they stable or unstable?

Strategy

First, we need to graph the potential energy as a function of x. The function is zero at the origin, becomes negative as x
increases in the positive or negative directions (x  is larger than x  for x < 1), and then becomes positive at sufficiently large
|x|. Your graph should look like a double potential well, with the zeros determined by solving the equation U(x) = 0, and the
extremes determined by examining the first and second derivatives of U(x), as shown in Figure .

Figure : The potential energy graph for a one-dimensional, quartic and quadratic potential energy, with various quantities
indicated.

You can find the values of (a) the allowed regions along the x-axis, for the given value of the mechanical energy, from the
condition that the kinetic energy can’t be negative, and (b) the equilibrium points and their stability from the properties of the

 Whiteboard Problem : Ballistic Pendulum9.5.4
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 Example : Quartic and Quadratic Potential Energy Diagram9.5.5
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force (stable for a relative minimum and unstable for a relative maximum of potential energy). You can just eyeball the graph
to reach qualitative answers to the questions in this example. That, after all, is the value of potential energy diagrams.

You can see that there are two allowed regions for the motion (E > U) and three equilibrium points (slope  = 0), of which

the central one is unstable , and the other two are stable .

Solution

a. To find the allowed regions for x, we use the condition . If we complete the square

in x 2 , this condition simplifies to , which we can solve to obtain .This

represents two allowed regions, x  ≤ x ≤ x  and −x  ≤ x ≤ − x , where x  = 0.38 and x  = 0.92 (in meters).
b. To find the equilibrium points, we solve the equation and find x = 0 and x = ±x , where x  =  =

0.707 (meters). The second derivative is negative at x = 0, so that position is a relative maximum and the
equilibrium there is unstable. The second derivative is positive at x = ±x , so these positions are relative minima and
represent stable equilibria.

Significance

The particle in this example can oscillate in the allowed region about either of the two stable equilibrium points we found, but
it does not have enough energy to escape from whichever potential well it happens to initially be in. The conservation of
mechanical energy and the relations between kinetic energy and speed, and potential energy and force, enable you to deduce
much information about the qualitative behavior of the motion of a particle, as well as some quantitative information, from a
graph of its potential energy.

Repeat Example 9.5.1 when the particle’s mechanical energy is +0.25 J.

 

A block of mass  is sliding on a frictionless, horizontal surface, with a velocity . It hits an ideal spring, of spring constant 
, which is attached to the wall. The spring compresses until the block momentarily stops, and then starts expanding again, so

the block ultimately bounces off.

a. In the absence of dissipation, what is the block’s final speed?
b. By how much is the spring compressed?

Solution

This is a simpler version of the problem considered in Section 5.1, and in the next example. The problem involves the
conversion of kinetic energy into elastic potential energy, and back. In the absence of dissipation, Equation (5.4.1), specialized
to this system (the spring and the block) reads:

For part (a), we consider the whole process where the spring starts relaxed and ends relaxed, so  = 0. Therefore,
we must also have , which means the block’s final speed is the same as its initial speed. As explained in the chapter,
this is characteristic of a conservative interaction.

For part (b), we take the final state to be the instant where the spring is maximally compressed and the block is momentarily at
rest, so all the energy in the system is spring (which is to say, elastic) potential energy. If the spring is compressed a distance 
(that is,  in Equation (5.1.5)), this potential energy is , so setting that equal to the system’s initial energy we
get:

dU
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or

which can be solved to get

 

 

This page titled 9.5: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.
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1

CHAPTER OVERVIEW

10: C10) Work
10.1: Introduction- Work and Impulse
10.2: Work on a Single Particle
10.3: The "Center of Mass Work"
10.4: Examples

In the previous chapters, we have been considering the phenomena of conservation of energy, which is the idea that the total energy
of a closed system does not change in time. We utilized this idea for solving problems by identifying all the interactions in the
system, associating them with sources of energy, and setting the initial energy equal to the final energy. This idea is very powerful,
but it certainly requires you to know how to associate a potential energy to a particular interaction. So far, we've only done this with
two interactions - the force of gravity (  or ) and springs ( ). So what happens when you
have an interaction whose potential you don't know - or even worse, that doesn't even exist? (That's called a nonconservative force,
we will cover those in Chapter N8).

We certainly know that forces can be used to store energy, since that's what both the gravitational force and the spring force do. But
what about some other force - say, a force pushing a box along the floor? Does this store energy? It's pretty easy to see that it does,
because that box might go from moving to not moving, demonstrating that it now has kinetic energy, which it clearly got from your
pushing. It turns out to be pretty easy to describe how much energy is transferred into the system from this force - that quantity is
called work.

For a constant force, the work is a simple formula,

where  is the force and  is the change in position of the center of mass of the object. But notice the mathematical operation
being performed here - it's a dot product between two vectors. For any two vectors  and , the dot
product can be written in two different ways:

We have to be very careful with that first formula - the angle  must be the angle
between the vectors  and  when they are arranged tail to tail (see the figure).
Generally, if we have a picture, this first formula is the one we want to use. However,
sometimes we might just have the components, and then it's much easier to use the
second formula. In either case, notice carefully that the result is a scalar - in fact, the
result is the projection of the second vector onto the first. We won't need that fact
much in this class, but it's true geometrically.

 

 

So let's consider a few simple examples, focusing on the first of the two formula above. Let's act on our block with a force of 10 N.

1. If we push the block horizontally, a distance 10 m, we get  (Notice the energy units!) The
angle was zero here because we are pushing in the same direction as the motion of the block.

2. Let's push against the motion of the block - so it's moving forwards 10 m, but we are pushing the other way. Then we get 
. Notice how the angle changed - the force vector  was  from the

displacement vector , and the work done was negative.
3. Finally, let's push straight downwards on the block as it moves the same 10 m. The work is now 

. The work done is zero here, because if you push straight downwards (and there is no
friction), you can't change the energy of the block!

= mghUg = −GmM/rUG = mΔUs
1
2

x2

W = ⋅ Δ ,F ⃗  r ⃗  (10.1)

F ⃗  Δr ⃗ 
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10.1: Introduction- Work and Impulse
In physics, “work” (or “doing work”) is what we call the process through which a force changes the energy of an object it acts on
(or the energy of a system to which the object belongs). It is, therefore, a very technical term with a very specific meaning that may
seem counterintuitive at times.

For instance, as it turns out, in order to change the energy of an object on which it acts, the force needs to be at least partly in line
with the displacement of the object during the time it is acting. A force that is perpendicular to the displacement does no work—it
does not change the object’s energy.

Imagine a satellite in a circular orbit around the earth. The earth is constantly pulling on it with a force (gravity) directed towards
the center of the orbit at any given time. This force is always perpendicular to the displacement, which is along the orbit, and so it
does no work: the satellite moves always at the same speed, so its kinetic energy does not change.

This can be contrasted with what is going on with forces and momentum - the gravitational force bends the satellite's trajectory,
changing the direction (although not the magnitude) of the momentum vector. Of course, it is obvious that a force must change an
object’s momentum, because that is pretty much how we defined force anyway. Recall Equation (2.3.1) for the average force on an
object: . We can rearrange this to read

For a constant force, the product of the force and the time over which it is acting is called the impulse, usually denoted as 

Clearly, the impulse given by a force to an object is equal to the change in the object’s momentum (by Equation ( )), as long
as it is the only force (or, alternatively, the net force) acting on it. If the force is not constant, we break up the time interval  into
smaller subintervals and add all the pieces. Formally this results in an integral:

Graphically, the  component of the impulse is equal to the area under the curve of  versus time, and similarly for the other
components. We will see this basic effect as we study work as well, although the complications associated with the direction of
force as compared to the direction of motion must be taken account of.

There is not a whole lot more to be said about impulse. The main lesson to be learned from Equation ( ) is that one can get a
desired change in momentum—bring an object to a stop, for instance—either by using a large force over a short time, or a smaller
force over a longer time. It is easy to see how different circumstances may call for different strategies: sometimes you may want to
make the force as small as possible, if the object on which you are acting is particularly fragile; other times you may just need to
make the time as short as possible instead.

Of course, to bring something to a stop you not only need to remove its momentum, but also its (kinetic) energy. If the former task
takes time, the latter, it turns out, takes distance. Work is a much richer subject than impulse, not only because, as indicated above,
the actual work done depends on the relative orientation of the force and displacement vectors, but also because there is only one
kind of momentum, but many different kinds of energy, and one of the things that typically happens when work is done is the
conversion of one type of energy into another.

So there is a lot of ground to cover, but we’ll start small, in the next section, with the simplest kind of system, and the simplest kind
of energy.

This page titled 10.1: Introduction- Work and Impulse is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio
Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

7.1: Introduction- Work and Impulse by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source:
https://scholarworks.uark.edu/oer/3.
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10.2: Work on a Single Particle
Consider a particle that undergoes a displacement  while a constant force  acts on it. In one dimension, the work done by the
force on the particle is defined by

and it is positive if the force and the displacement have the same sign (that is, if they point in the same direction), and negative
otherwise.

In three dimensions, the force will be a vector  with components ( ), and the displacement, likewise, will be a vector 
 with components ( ). The work will be defined then as

This expression is an instance of what is known as the dot product (or inner product, or scalar product) of two vectors. Given two
vectors  and , their dot product is defined, in terms of their components,

This can also be expressed in terms of the vectors’ magnitudes, | | and | |, and the angle they make, in the following form:

Figure : Illustrating the angle  to be used when calculating the dot product of two vectors by the formula ( ). One way
to think of this formula is that you take the projection of vector  onto vector  (indicated here by the blue lines), which is equal
to , then multiply that by the length of  (or vice-versa, of course).

Figure  shows what we mean by the angle  in this expression. The equality of the two definitions, Eqs. ( ) and (
), is pretty easy to see; consider a coordinate system in which the vector  is completely along the x-axis. Then our vectors

can be written

And now if we perform the dot product as shown in Equation ( ),

which is exactly what Equation ( ) says! As a sidenote, this is an important demonstration of a basic principle in the study of
physics - if you can prove something in one coordinate system, it must be true in all others. This is not just a calculational trick, but
a fundamental truth we would hope our theory can conform with - the coordinate system is a choice humans make to perform a
calculation, but can't have any real physics meaning. In fact, the advantage of Equation ( ) is that it is independent of the
choice of a system of coordinates.

Using the dot product notation, the work done by a constant force can be written as

Equation ( ) then shows that, as I mentioned in the introduction, when the force is perpendicular to the displacement (
) the work it does is zero. You can also see this directly from Equation ( ), by choosing the  axis to point in the

Δx F

W = FΔx (constant force) (10.2.1)

F ⃗  , ,Fx Fy Fz

Δr ⃗  Δx, Δy, Δz

W = Δx+ Δy+ Δz.Fx Fy Fz (10.2.2)
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direction of the force (so  =  = 0), and the displacement to point along any of the other two axes (so  = 0): the result is  =
0.

If the force is not constant, again we follow the standard procedure of breaking up the total displacement into pieces that are short
enough that the force may be taken to be constant over each of them, calculating all those (possibly very small) “pieces of work,”
and adding them all together. In one dimension, the final result can be expressed as the integral

So the work is given by the “area” under the -vs-  curve. In more dimensions, we have to write a kind of multivariable integral
known as a line integral. That is advanced calculus, so we will not go there this semester.

Work Done by the Net Force, and the Work-Energy Theorem

So much for the math and the definitions. Where does the energy come in? Let us suppose that  is either the only force or the net
force on the particle—the sum of all the forces acting on the particle. Again, for simplicity we will assume that it is constant (does
not change) while the particle undergoes the displacement . We started this chapter with the understanding that the work done
on the system changes the energy of the system (we will prove that mathematically in a later chapter). If we now consider a system
in which all of the interactions can be described by forces doing work, from the principle of conservation of energy we can write

In words, the work done by the net force acting on a particle as it moves equals the change in the particle’s kinetic energy in the
course of its displacement. This result is often referred to as the Work-Energy Theorem.

As you may have guessed from our calling it a “theorem,” the result ( ) is very general. It holds in three dimensions, and it
holds also when the force isn’t constant throughout the displacement— you just have to use the correct equation to calculate the
work in those cases. It would apply to the work done by the net force on an extended object, also, provided it is OK to treat the
extended object as a particle—so basically, a rigid object that is moving as a whole and not doing anything fancy such as spinning
while doing so.

Another possible direction in which to generalize ( ) might be as follows. By definition, a “particle” has no other kind of
energy, besides (translational) kinetic energy. Also, and for the same reason (namely, the absence of internal structure), it has no
“internal” forces—all the forces acting on it are external. So—for this very simple system—we could rephrase the result ( )
by saying that the work done by the net external force acting on the system (the particle in this case) is equal to the change in its
total energy. It is in fact in this form that we will ultimately generalize ( ) to deal with arbitrary systems.

Before we go there, however, I would like to take a little detour to explore another “reasonable” extension of the result ( ), as
well as its limitations.

This page titled 10.2: Work on a Single Particle is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the
LibreTexts platform.

7.2: Work on a Single Particle by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.

Fy Fz Δx W

W = F (x)dx ( variable force ).∫
xf

xi

(10.2.8)

F x

F

Δx

= ΔK.Wnet (10.2.9)

10.2.9

10.2.9

10.2.9

10.2.9

10.2.9

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63182?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/10%3A_C10)_Work/10.02%3A_Work_on_a_Single_Particle
https://creativecommons.org/licenses/by-sa/4.0
https://fulbright.uark.edu/departments/physics/directory/index/uid/jgeabana/name/Julio-Gea-Banacloche/
https://libraries.uark.edu/
https://scholarworks.uark.edu/oer/3
https://phys.libretexts.org/@go/page/22240
https://fulbright.uark.edu/departments/physics/directory/index/uid/jgeabana/name/Julio-Gea-Banacloche/
https://creativecommons.org/licenses/by-sa/4.0/
https://scholarworks.uark.edu/oer/3


10.3.1 https://phys.libretexts.org/@go/page/63183

10.3: The "Center of Mass Work"
We should be a little bit careful when using work in the form of Equation (10.2.1). It works perfectly fine if the particle is either
pointlike or rigid. In those two cases, following the principle of "the motion of the object is the same as the motion of the center of
mass" from Section 4.3, we can consider the entire formula to apply to the center of mass, like:

where , the translational kinetic energy, is, as usual, , and  is the displacement of the center of mass. We
are also assuming the force is constant in this case. The result ( ) holds for an arbitrary system, as long as  is constant,
and can be generalized by means of an integral (as in Equation (10.2.6)) when it is variable.

So it seems that we could define the left-hand side of Equation ( ) as “the work done on the center of mass,” and take that as
the natural generalization to a system of the result (10.2.8) for a particle. In fact, it's a bit more subtle than that, so we want to
discuss that subtly in this section.

First, it seems that it is essential to the notion of work that one should multiply the force by the displacement of the object on which
it is acting. More precisely, in the definition (10.2.1), we want the displacement of the point of application of the force . But there
are many examples of systems where there is nothing at the precise location of the center of mass, and certainly no force acting
precisely there.

This is not necessarily a problem in the case of a rigid object which is not doing anything funny, just moving as a whole so that
every part has the same displacement, because then the displacement of the center of mass would simply stand for the displacement
of any point at which an external force might actually be applied. But for many deformable systems, this would not be case. In fact,
for such systems one can usually show that  is actually not the work done on the system by the net external force. A
simple example of such a system is shown below, in Figure .

Figure : A system of two blocks connected by a spring. A constant external force, , is applied to the block on the right.
Initially the spring is relaxed, but as soon as block 2 starts to move it stretches, pulling back on block 2 and pulling forward on
block 1. Because of the stretching of the spring, the displacements ,  and  are all different, and the work done by the
external force, , is different from the “center of mass work” .

In this figure, the two blocks are connected by a spring, and the external force is applied to the block on the right (block 2). If the
blocks have the same mass, the center of mass of the system is a point exactly halfway between them. If the spring starts in its
relaxed state, it will stretch at first, so that the center of mass will lag behind block 2, and , which is the quantity that we
should properly call the “work done by the net external force” will not be equal to .

The best way to understand what's happening here is to think about all the sources of energy in the system - if you pull on that
block-spring system, you are certainly going to add energy to it, but think about what happens if you follow this picture for a while.
Eventually, you will have both blocks moving together, but the spring will be oscillating in some kind of consistent manner,
therefore storing energy in the form of . So while Equation ( ) might not be literally true, it's reasonable to think we
could write a variation of it that looks like

In fact, we will study conservation of energy in these cases in Chapter N8. For the moment, if we just assume our systems are rigid,
with no internal energy, we can freely use Equation ( ).

Δ = ΔFext,net xcm Kcm (10.3.1)
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As the name implies, this is the precise point at which the force is applied. For contact forces (other than friction; see later), this is
easily identified. For gravity, a sum over all the forces exerted on all the particles that make up the object may be shown to be
equivalent to a single resultant force acting at a point called the center of gravity, which, for our purposes (objects in uniform or
near-uniform gravitational fields) will be the same as the center of mass.

This page titled 10.3: The "Center of Mass Work" is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the
LibreTexts platform.
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10.4: Examples

                                                                  

I am dragging a box full of 9 Emperor penguins along the ground as shown in the figure. Each of the penguins has a mass of
33.0 kg, and you can assume the box has zero mass. The rope which I am pulling the box with is making an angle of  with
respect to the ground, and I pull the penguins a total distance of 15 m.

1. If the tension in the rope is 50 N, how much work did I do on the box during this process?
2. If the force due to friction between the box and ground is 25 N, how much work did friction do on the box during this

process?
3. How much work did gravity do on the penguins in the box during this process?
4. Assuming the box of penguins starts from rest, how fast is the box moving after I pull it 15 m?

 

Suppose you are riding your bicycle and hit the brakes to come to a stop. Assuming no slippage between the tire and the road:

a. Which force is responsible for removing your momentum? (By “you” I mean throughout “you and the bicycle.”)
b. Which force is responsible for removing your kinetic energy?

Solution

(a) According to what we saw in previous chapters, for example, Equation (2.3.1)

the total momentum of the system can only be changed by the action of an external force, and the only available external force
is the force of friction between the tire and the road. So it is this force that removes the forward momentum from the system.
The stopping distance, , and the force, can be related using Equation (10.3.1):

(b) Now, here is an interesting fact: the force of friction, although fully responsible for stopping your center of mass motion
does no work in this case. That is because the point where it is applied—the point of the tire that is momentarily in contact with
the road—is also momentarily at rest relative to the road: it is, precisely, not slipping (This in fact means the kind of friction
here is static friction), so  in the equation  is zero. By the time that bit of the tire has moved on, so you actually
have a nonzero , you no longer have an : the force of static friction is no longer acting on that bit of the tire, it is acting on
a different bit—on which it will, again, do no work, for the same reason.

So, as you bring your bicycle to a halt the work  = 0, and it follows that the total energy of your system is, in fact,
conserved: all your initial kinetic energy is converted to thermal energy by the brake pad rubbing on the wheel.

This page titled 10.4: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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1

CHAPTER OVERVIEW

11: C11) Rotational Energy
11.1: Rotational Kinetic Energy, and Moment of Inertia
11.2: Rolling Motion
11.3: Examples

In this chapter we are going to continue our study of conservation laws by moving into a new kind of energy conservation -
rotational energy. Just like we first studied conservation of linear momentum ( ) before moving onto rotational momentum (

), we are going to move from linear kinetic energy ( ) to learn how to include rotational energy into our energy
conservation law, . It turns out this is going to be easy, because rotational motion is just another kind of kinetic motion, so
rotational energy is just another kind of kinetic energy.

First we should quickly recall what we already know about rotational motion (Chapter 6 and Chapter 7). A rotating object has an
angular velocity , and the "rotational inertia" of the object is the moment of inertia, . Moments of inertia are different for each
object, but generally look like , where  is 1 for a point or a hollow cylinder, 1/2 for a disk, etc. We might not easily
remember this coefficient, but we can always get a sense of the moment of inertia by going back to the original definition of 

, which tells us that "the more masses  that are closer to the axis, the smaller the moment of inertia will be".

So how do we use this for rotational energy? Using the correspondance principle between linear and rotational quantities
(remember, that's how we got from  to ), we get from linear ("center-of-mass") kinetic energy  to
rotational kinetic energy,

Note that this equation satisfies a lot of the same conceptual framework that  does - the larger moment of inertia or angular
speed, the more rotational energy is being stored in the system. It's also worthwhile here to note what kinds of objects have large
and small moments of inertia - objects with lots of mass near the axis of rotation are easy to rotate, and therefore have small
moments of inertia, and objects with lots of mass far away from the axis of rotation are hard to rotate, and have large moments of
inertia. So while you could store the same amount of energy in two different objects, the object with the smaller  will be spinning
faster (have larger ), to keep  constant.

We are going to use this in the exact same way that we use other sources of energy - but unlike linear vs rotational momentum,
which are separately conserved, we only have one conservation of energy law. So, if our system has rotational energy, we are just
going to write:

(Naturally, we can have more than one source of potential energy  and  as well.)

11: C11) Rotational Energy is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston, Merrimack
College.
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11.1: Rotational Kinetic Energy, and Moment of Inertia
If a particle of mass  is moving on a circle of radius , with instantaneous speed , then its kinetic energy is

using , Equation (6.1.11). Note that, at this stage, there is no real reason for the subscript “rot”: equation ( ) is all
of the particle’s kinetic energy. The distinction will only become important later in the chapter, when we consider extended objects
whose motion is a combination of translation (of the center of mass) and rotation (around the center of mass).

Now, consider the kinetic energy of an extended object that is rotating around some axis. We may treat the object as being made up
of many “particles” (small parts) of masses , .... If the object is rigid, all the particles move together, in the sense that they all
rotate through the same angle in the same time, which means they all have the same angular velocity. However, the particles that
are farther away from the axis of rotation are actually moving faster—they have a larger , according to Equation (6.1.11). So the
expression for the total kinetic energy in terms of all the particles’ speeds is complicated, but in terms of the (common) angular
velocity is simple:

where , ,... represent the distance of the 1st, 2nd... particle to the axis of rotation, and on the last line I have introduced the
quantity

which is usually called the moment of inertia of the object about the axis considered (we have seen this quantity already in Chapter
C6.1). In general, the expression ( ) is evaluated as an integral, which can be written symbolically as ; the “mass
element”  can be expressed in terms of the local density as , where  is a volume element. The integral is a
multidimensional integral that may require somewhat sophisticated calculus skills, so we will not be calculating any of these this
semester; rather, we will rely on the tabulated values for  for objects of different, simple, shapes. For instance, for a homogeneous
cylinder of total mass  and radius , rotating around its central axis, ; for a hollow sphere rotating through an axis
through its center, , and so on (see Table 6.1.1 for a list of these moments of inertia).

As you can see, the expression ( ) for the kinetic energy of a rotating body, , parallels the expression  for a
moving particle, with the replacement of  by , and  by . This suggests that  is some sort of measure of a solid object’s
rotational inertia, by which we mean the resistance it offers to being set into rotation about the axis being considered. When we
study the rotational version of Newton's Second Law later (in Chapter N9), we will see clearly that this interpretation is correct.

It should be stressed that the moment of inertia depends, in general, not just on the shape and mass distribution of the object, but
also on the axis of rotation (again, see Table 6.1.1). In general, the formula ( ) shows that, the more mass you put farther away
from the axis of rotation, the larger  will be. Thus, for instance, a thin rod of length  has a moment of inertia  when
rotating around a perpendicular axis through its midpoint, whereas it has the larger  when rotating around a
perpendicular axis through one of its endpoints.

This page titled 11.1: Rotational Kinetic Energy, and Moment of Inertia is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Julio Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the
LibreTexts platform.
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11.2: Rolling Motion
When considering objects that can move both translationally (up, down, left, right, in, out!) and rotationally, we are immediately
confronted with a problem: these two motions can be either completely independent, completely related to each other, or something
even in-between. Take for example a baseball thrown by a pitcher. It follows a particular path from the mound to the plate (its
translational motion), but it might also have some spin (it's rotational motion). Those seem pretty independent, but in fact spinning
balls like that can swerve back in forth because of something called The Magnus Effect (check it out on Wikipedia). Of course,
that's why pitchers make the ball do that, is that motion makes it more complicated for the batter to hit the ball. The problem is that
coupling between the air and the ball is weak in some sense - most of the energy of the ball is used for it's forward motion, only a
small amount is used to make the ball move back and forth through the air.

Naturally, we would like to understand those kinds of interesting situations, but they end up being rather complicated. We would
like to start with something simpler - motion in which the translation and rotation are either completely independent, and can be
solved completely separately, or they are easily related to each other. If they are independent, you can solve them based on what
you know already! However, there is a case in which the motions are completely related to each other, and is very common, called
rolling without slipping. In this case, the translational motion and the rotational motion are coupled, and the relevant velocities are
related to each other:

Here  is the radius of the entire object. Notice how this expression relates to Equation (6.1.1) from a previous section - they look
very similar, but they are actually saying two somewhat different things. Equation (6.1.1) told us the relationship between the
angular and linear speed of a particular point on an object, while the expression above tells us how to related the angular and linear
speed of the entire object (remember that the center of mass is the location at which the object is, if the object was a single point).

The origin of the condition ( ) is fairly straightforward. You can imagine an object that is rolling without slipping as
“measuring the surface” as it rolls (or vice-versa, the surface measuring the circumference of the object as its different points are
pressed against it in succession). So, after it has completed exactly one revolution (  radians), it should have literally “covered” a
distance on the surface equal to , that is, advanced a distance . But the same has to be true, proportionately, for any
rotation angle  other that : since the length of the corresponding arc is , in a rotation over an angle  the center
of mass of the object must have advanced a distance . Dividing by  as  then yields Equation (

).

Figure : Left: illustrating the rolling without slipping condition. The cyan line on the surface has the same length as the cyan-
colored arc, and will be the distance traveled by the disk when it has turned through an angle . Right: velocities for four points on
the edge of the disk. The pink arrows are the velocities in the center of mass frame. In the Earth reference frame, the velocity of the
center of mass, , in green, has to be added to each of them. The resultant is shown in blue for two of them.

 
Considering a single rolling objects, the total kinetic energy can now be written as two terms,

combining this with the condition of rolling without slipping ( ), we see that the ratio of the translational to the rotational
kinetic energy is

| | = R|ω|.v ⃗ cm (11.2.1)
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The amount of energy available to interact with the object is whatever potential energy is running around the system, and that has
to be split between translational and rotational in the proportion ( ). An object with a proportionately larger  is one that, for a
given angular velocity, needs more rotational kinetic energy, because more of its mass is away from the rotation axis. This leaves
less energy available for its translational motion.

This page titled 11.2: Rolling Motion is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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11.3: Examples
As you work through these examples, make sure to refer to the list of moments of inertia for different shaped objects, Table 6.1.1.

                                                                                                    

I am dragging a box full of 9 Emperor penguins along the ground as shown in the figure. Each of the penguins has a mass of
33.0 kg, and you can assume the box has zero mass. The rope which I am pulling the box with is making an angle of  with
respect to the ground, and I pull the penguins a total distance of 15 m.

1. If the tension in the rope is 50 N, how much work did I do on the box during this process?
2. If the force due to friction between the box and ground is 25 N, how much work did friction do on the box during this

process?
3. How much work did gravity do on the penguins in the box during this process?
4. Assuming the box of penguins starts from rest, how fast is the box moving after I pull it 15 m?

Six small washers are spaced 10 cm apart on a rod of negligible mass and 0.5 m in length. The mass of each washer is 20 g.
The rod rotates about an axis located at 25 cm, as shown in Figure . (a) What is the moment of inertia of the system? (b)
If the two washers closest to the axis are removed, what is the moment of inertia of the remaining four washers? (c) If the
system with six washers rotates at 5 rev/s, what is its rotational kinetic energy?

Figure : Six washers are spaced 10 cm apart on a rod of negligible mass and rotating about a vertical axis.

Strategy

a. We use the definition for moment of inertia for a system of particles and perform the summation to evaluate this quantity.
The masses are all the same so we can pull that quantity in front of the summation symbol.

b. We do a similar calculation.
c. We insert the result from (a) into the expression for rotational kinetic energy.

Solution

a. 
b. 
c. 

Significance

We can see the individual contributions to the moment of inertia. The masses close to the axis of rotation have a very small
contribution. When we removed them, it had a very small effect on the moment of inertia.

 Whiteboard Problem : Box O' Penguins11.3.1

22∘

 Example : Moment of Inertia of a system of particles11.3.2

11.3.3

11.3.3

I =∑ = (0.02 kg)(2 ×(0.25 m +2 ×(0.15 m +2 ×(0.05 m ) = 0.0035 kg ⋅mjr2
j )2 )2 )2 m2

I = = (0.02 kg)(2 ×(0.25 m +2 ×(0.15 m ) = 0.0034 kg ⋅∑j mjr2
j )2 )2 m2

K = I = (0.0035 kg ⋅ ) (5.0 ×2π rad/s = 1.73 J1
2

ω2 1
2

m2 )2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63324?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/11%3A_C11)_Rotational_Energy/11.03%3A_Examples
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/06%3A_C6)_Conservation_of_Angular_Momentum_I/6.01%3A_Angular_Momentum#Tb:MomInert


11.3.2 https://phys.libretexts.org/@go/page/63324

 

Applying Rotational Kinetic Energy
Now let’s apply the ideas of rotational kinetic energy and the moment of inertia table to get a feeling for the energy associated with
a few rotating objects. The following examples will also help get you comfortable using these equations. First, let’s look at a
general problem-solving strategy for rotational energy.

1. Determine that energy or work is involved in the rotation.
2. Determine the system of interest. A sketch usually helps.
3. Analyze the situation to determine the types of work and energy involved.
4. If there are no losses of energy due to friction and other nonconservative forces, mechanical energy is conserved, that is, 

.
5. If nonconservative forces are present, mechanical energy is not conserved, and other forms of energy, such as heat and

light, may enter or leave the system. Determine what they are and calculate them as necessary.
6. Eliminate terms wherever possible to simplify the algebra.
7. Evaluate the numerical solution to see if it makes sense in the physical situation presented in the wording of the problem.

A typical small rescue helicopter has four blades: Each is 4.00 m long and has a mass of 50.0 kg (Figure ). The blades
can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total
loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the
translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades.

Figure : (a) Sketch of a four-blade helicopter. (b) A water rescue operation featuring a helicopter from the Auckland
Westpac Rescue Helicopter Service. (credit b: modification of work by “111 Emergency”/Flickr)

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The wording of the problem gives all the
necessary constants to evaluate the expressions for the rotational and translational kinetic energies.

Solution

a. The rotational kinetic energy is

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find . The
angular velocity  is

 PROBLEM-SOLVING STRATEGY: ROTATIONAL ENERGY
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The moment of inertia of one blade is that of a thin rod rotated about its end, listed in Figure . The total  is four times
this moment of inertia because there are four blades. Thus,

Entering  and  into the expression for rotational kinetic energy gives

b. Entering the given values into the equation for translational kinetic energy, we obtain

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

Significance

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of
the helicopter is in its spinning blades.

A person hurls a boomerang into the air with a velocity of 30.0 m/s at an angle of 40.0° with respect to the horizontal (Figure 
). It has a mass of 1.0 kg and is rotating at 10.0 rev/s. The moment of inertia of the boomerang is given as 

where  = 0.7 m. (a) What is the total energy of the boomerang when it leaves the hand? (b) How high does the boomerang go
from the elevation of the hand, neglecting air resistance?

Figure : A boomerang is hurled into the air at an initial angle of 40°.

Strategy

We use the definitions of rotational and linear kinetic energy to find the total energy of the system. The problem states to
neglect air resistance, so we don’t have to worry about energy loss. In part (b), we use conservation of mechanical energy to
find the maximum height of the boomerang.

Solution

a. Moment of inertia: 

Angular Velocity: 

The rotational kinetic energy is therefore

11.3.4 I
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The translational kinetic energy is

Thus, the total energy in the boomerang is

b. We use conservation of mechanical energy. Since the boomerang is launched at an angle, we need to write the total energies
of the system in terms of its linear kinetic energies using the velocity in the x- and y-directions. The total energy when the
boomerang leaves the hand is

The total energy at maximum height is

By conservation of mechanical energy,  so we have, after canceling like terms,

Since  = 30.0 m/s ( ) = 19.28 m/s, we find

Significance

In part (b), the solution demonstrates how energy conservation is an alternative method to solve a problem that normally would
be solved using kinematics. In the absence of air resistance, the rotational kinetic energy was not a factor in the solution for the
maximum height.

A nuclear submarine propeller has a moment of inertia of 800.0 kg • m . If the submerged propeller has a rotation rate of 4.0
rev/s when the engine is cut, what is the rotation rate of the propeller after 5.0 s when water resistance has taken 50,000 J out of
the system?

This page titled 11.3: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

10.5: Moment of Inertia and Rotational Kinetic Energy by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.

= (0.041 kg ⋅ ) (62.83 rad/s = 80.93 JKR

1

2
m2 )2

= m = (1.0 kg)(30.0 m/s = 450.0 JKT
1

2
v2 1

2
)2

= + = 80.93 +450.0 = 530.93 J.KTotal  KR KT

= m + m + IEBefore 
1

2
v2

x

1

2
v2

y

1

2
ω2

= m + I +mghEFinal 
1

2
v2

x

1

2
ω2

=EBefore EFinal

m = mgh.
1

2
v2

y

vy sin40∘

h = = 18.97 m
(19.28 m/s)2

2 (9.8 m/ )s2

 Exercise 11.3.5

2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63324?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/11%3A_C11)_Rotational_Energy/11.03%3A_Examples
https://creativecommons.org/licenses/by-sa/4.0
https://openstax.org/
https://openstax.org/
https://openstax.org/details/books/university-physics-volume-1
https://phys.libretexts.org/@go/page/4030
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-1


1

CHAPTER OVERVIEW

12: C12) Collisions
12.1: Types of Collisions
12.2: Examples

In this chapter we are going to drill down a bit more carefully on the topic of collisions. We've already studied collisions in some
detail when we first introduced momentum transfer (Chapter 2) as well as "full" conservation of momentum (Chapter 5), but now
we are going to make the process of collisions more realistic by looking at conditions under which both momentum and energy are
conserved.

The very first thing we want to do is to clarify what we mean when we say things like "energy is not being conserved in this
interaction". If we consider our entire Universe as the system, energy and momentum are both conserved in every single
interaction in that system. So when we state that a particular interaction is "not conserving energy", we are basically admitting
that we didn't pick the system "correctly". Sometimes we don't have the knowledge to do so, or sometimes it's actually simpler to
consider a system which transfers energy to the outside world, but we should be aware it's a problem with the choice of system, not
about the interaction or phenomena itself. An immediate example of this is friction - we often say "energy is not conserved in
systems that contain friction", but that's incorrect - the energy in friction is being converted from motion to heat, and we don't
always keep track of that because it's often too difficult, particularly when our focus is on mechanics.

With that clarification, we can start to classify collisions depending on if they conserve energy or momentum - one, both, or neither.
The first thing to say outright is that momentum is conserved in all the collisions we are going to consider. The reason is actually
pretty simple - we've only studied two possible sources of momentum, either motion ( ) or impulse ( ). We can
remove impulse by saying "we are only going to consider collisions in which there is no external forces acting on the system". So
since we've gotten rid of impulse, there can only be momentum in the form of motion - we can't "hide" momentum anywhere
except in all the s running around the system. Since momentum is only in the form of s, we can always track it, and thus
ensure that it is conserved.

The situation is different for energy (which is why we talked about it in the friction example). Energy comes in many different
forms - kinetic (linear and rotational), potential (gravity, springs, and a myriad of other interactions we haven't talked about), and
work ( ). If we are throwing out external forces (like we did above), we can throw out work, but energy can be stored
in many other places. Thermal (heat) energy is typically the best example of something we can't track in mechanics, but the world
of physics is full of other interactions that store energy without needing motion , and any of those interactions could be a source of
the missing energy.

It turns out that the situation in the preceding paragraph is the most common situation - it's typically hard / impossible to track all
the sources of energy in our systems, so all we have to go on is conservation of momentum; collisions involving those kinds of
systems are called inelastic. However, there are some very special kinds of collisions in which we actually can track all the energy
(in the form of motion, ), and so energy is also conserved, and these are called elastic collisions. Examples of elastic
collisions are bouncing superballs, collisions of billard balls, or collisions involving springs.

On one hand, you are going to have to memorize the names of these two collisions. On the other hand, we can get a good physical
picture for each of them - for example, a car crash is a good example of an inelastic collision. There's "no bouncing", and energy is
clearly being "lost" in the form of sound and mechanical deformation. On the other hand, if a cart runs into a spring and shoots
backwards, it's "very bouncy", and not at all clear where lost energy could be stored - the kinetic energy went into the spring, and
then back into the cart! So you need to keep these two kinds of collisions separate in your head, but it's also important to remember
that most collisions are inelastic, only very special collisions are elastic.

In physics 2, you will study electromagnetism, and learn about energy storage in electric and magnetic fields. That covers a lot of
interactions in the world, but there are still nuclear interactions (the strong and weak force) that can store energy and evade even
those considerations.

12: C12) Collisions is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston, Merrimack College.
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12.1: Types of Collisions
Although momentum is conserved in all interactions, not all interactions (collisions or explosions) are the same. The possibilities
include:

A single object can explode into multiple objects (explosions).
Multiple objects can collide and stick together, forming a single object (inelastic).
Multiple objects can collide and bounce off of each other, remaining as multiple objects (elastic). If they do bounce off each
other, then they may recoil at the same speeds with which they approached each other before the collision, or they may move
off more slowly.

It’s useful, therefore, to categorize different types of interactions, according to how the interacting objects move before and after
the interaction.

Explosions

The first possibility is that a single object may break apart into two or more pieces. An example of this is a firecracker, or a bow
and arrow, or a rocket rising through the air toward space. These can be difficult to analyze if the number of fragments after the
collision is more than about three or four; but nevertheless, the total momentum of the system before and after the explosion is
identical.

Note that if the object is initially motionless, then the system (which is just the object) has no momentum and no kinetic energy.
After the explosion, the net momentum of all the pieces of the object must sum to zero (since the momentum of this closed system
cannot change). However, the system will have a great deal of kinetic energy after the explosion, although it had none before. Thus,
we see that, although the momentum of the system is conserved in an explosion, the kinetic energy of the system most definitely is
not; it increases. This interaction—one object becoming many, with an increase of kinetic energy of the system—is called an
explosion.

Where does the energy come from? Does conservation of energy still hold? Yes; some form of potential energy is converted to
kinetic energy. In the case of gunpowder burning and pushing out a bullet, chemical potential energy is converted to kinetic energy
of the bullet, and of the recoiling gun. For a bow and arrow, it is elastic potential energy in the bowstring.

Inelastic
The second possibility is the reverse: that two or more objects collide with each other and stick together, thus (after the collision)
forming one single composite object. The total mass of this composite object is the sum of the masses of the original objects, and
the new single object moves with a velocity dictated by the conservation of momentum. However, it turns out again that, although
the total momentum of the system of objects remains constant, the kinetic energy doesn’t; but this time, the kinetic energy
decreases. This type of collision is called inelastic.

Any collision where the objects stick together will result in the maximum loss of kinetic energy (i.e., K  will be a minimum). Such
a collision is said to be perfectly inelastic. In the extreme case, multiple objects collide, stick together, and remain motionless after
the collision. Since the objects are all motionless after the collision, the final kinetic energy is also zero; therefore, the loss of
kinetic energy is a maximum.

If 0 < K  < K , the collision is inelastic.
If K  is the lowest energy, or the energy lost by both objects is the most, the collision is perfectly inelastic (objects stick
together).
If K  = K , the collision is elastic.

Elastic
The extreme case on the other end is if two or more objects approach each other, collide, and bounce off each other, moving away
from each other at the same relative speed at which they approached each other. In this case, the total kinetic energy of the system
is conserved. Such an interaction is called elastic.

In any interaction of a closed system of objects, the total momentum of the system is conserved (  = ) but the kinetic energy
may not be:

If 0 < K  < K , the collision is inelastic.
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If K  = 0 , the collision is perfectly inelastic.
If K  = K , the collision is elastic.
If K  > K , the interaction is an explosion.

The point of all this is that, in analyzing a collision or explosion, you can use both momentum and kinetic energy.

Dimensions and Equation Counting

It's worth pointing out how many equations and unknown variables we are dealing with when it comes to collision problems,
because it is quite predictable and can give us some insight into how hard a particular problem might be before we get started on it.
As discussed above, momentum is conserved in every collision, so

Since this is a vector equation, it actually contains a number of linear independent equations equal to the dimension of the problem
(typically 1 or 2 for us, but generally 3). Since these linear equations can only be solved if there are an equal number of unknown
variables and equations, we can only solve problems that have the same number of unknowns as dimensions (for example, a 1D
problem can only ask one question - "what is the final velocity?" or "what was the mass of the first object?" - never "what was the
final velocity AND the mass of the first object?"). This is the complete story for inelastic collisions - the number of unknowns has
to match the dimension.

For elastic collisions, we have one more relationship, conservation of energy:

This is a scalar equation, and represents one further constraint on our system. However, that extra relationship means we can leave
one further quantity unspecified - it is no longer free to be set, but must satisfy the extra equation from conservation of energy. This
makes elastic collisions generally more complicated than inelastic problems, because we have an extra equation and unknown to
deal with. To take the example from above, in 1D we have now two equations that govern our collision:

So we can have two unknowns - the question "what was the final velocity AND the mass of the first object?" actually is well-posed
and can be answered. We do this in the next example:

We want this example to be as simple as possible - a cart of mass  moving with an initial speed  towards a cart of mass 
, which is initially stationary. They collide, and we want to consider two possible situations:

1. If the collision was inelastic, what was the final speed of the first cart? Here, we will assume the second cart moves off with
a speed of .

2. If the collision was elastic, what was the final speeds of both carts?

Solution
1. In the inelastic case, just momentum is conserved, so we have a fairly simple conservation of momentum problem:

The first step to solving this is recognizing that there is an  in every term, so we can divide by that. Physically, that means the
mass does not contribute to the physics at all - the solution will be the same no matter what the mass is. Solving this for the
final velocity gets us

So, the first cart moves at one quarter the speed, no matter what it's initial mass is. (Note that although the mass does not
matter, the relative sizes of the masses do matter. If their ratio was anything besides , we would get a different
answer here. The same goes for the speeds - if we picked a final speed of something besides , we would get a different
final answer.)

f

f i

f i

Δ = − = 0.p ⃗  p ⃗ f p ⃗ i (12.1.1)

ΔE = − = 0.Ef Ei (12.1.2)
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 Example : Inelastic vs Elastic collision in 1D12.1.1
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2. For the elastic case, we have the exact same conservation of momentum equation (now with the speed of the second cart not
yet known!)

Further, we have the following conservation of energy equation,

These two expressions must be solving simultaneously, since we do not know what  is! The first step is to eliminate the 1/2
and the  from the conservation of energy equation, and the mass from the momentum equation:

We can proceed in several different ways - probably the easiest is to solve the momentum equation for the first speed:

and plug it into the energy equation:

Here we notice that we can divide by 6, as well as , and find . The final speed is different, but notice we have
less freedom to pick the initial conditions - we can't choose how fast the second cart moves after the collision, it's always .

We still need to solve for the first cart - we can do that by going back to the solution for it's speed and plugging in our solution
for the second:

So in this case, the first cart bounced backwards, and moved at half the original speed.

A proton (mass 1.67 x 10  kg) collides with a neutron (with essentially the same mass as the proton) to form a particle called
a deuteron. What is the velocity of the deuteron if it is formed from a proton moving with velocity 7.0 x 10  m/s to the left and
a neutron moving with velocity 4.0 x 10  m/s to the right?

Strategy

Define the system to be the two particles. This is a collision, so we should first identify what kind. Since we are told the two
particles form a single particle after the collision, this means that the collision is perfectly inelastic. Thus, kinetic energy is not
conserved, but momentum is. Thus, we use conservation of momentum to determine the final velocity of the system.

Solution
Treat the two particles as having identical masses M. Use the subscripts p, n, and d for proton, neutron, and deuteron,
respectively. This is a one-dimensional problem, so we have

The masses divide out:

Δ = − = 0 → (m +3m ) −(m ) = 0.px px,f px,i v1,f v2,f v0 (12.1.6)

ΔE = − = 0 →( m + (3m) )− m = 0.Ef Ei
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 Example : Formation of a deuteron12.1.2
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The velocity is thus .

Significance

This is essentially how particle colliders like the Large Hadron Collider work: They accelerate particles up to very high speeds
(large momenta), but in opposite directions. This maximizes the creation of so-called “daughter particles.”

(This is a variation of an earlier example.)

Two ice hockey pucks of different masses are on a flat, horizontal hockey rink. The red puck has a mass of 15 grams, and is
motionless; the blue puck has a mass of 12 grams, and is moving at 2.5 m/s to the left. It collides with the motionless red puck
(Figure ). If the collision is perfectly elastic, what are the final velocities of the two pucks?

Figure : Two different hockey pucks colliding. The top diagram shows the pucks the instant before the collision, and the
bottom diagram show the pucks the instant after the collision. The net external force is zero.

Strategy

We’re told that we have two colliding objects, and we’re told their masses and initial velocities, and one final velocity; we’re
asked for both final velocities. Conservation of momentum seems like a good strategy; define the system to be the two pucks.
There is no friction, so we have a closed system. We have two unknowns (the two final velocities), but only one equation. The
comment about the collision being perfectly elastic is the clue; it suggests that kinetic energy is also conserved in this collision.
That gives us our second equation.

The initial momentum and initial kinetic energy of the system resides entirely and only in the second puck (the blue one); the
collision transfers some of this momentum and energy to the first puck.

Solution
Conservation of momentum, in this case, reads

Conservation of kinetic energy reads

There are our two equations in two unknowns. The algebra is tedious but not terribly difficult; you definitely should work it
through. The solution is

Substituting the given numbers, we obtain

= (1.5 × m/s)v ⃗ d 106 î

 Example : Ice hockey 212.1.3
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Significance

Notice that after the collision, the blue puck is moving to the right; its direction of motion was reversed. The red puck is now
moving to the left.

There is a second solution to the system of equations solved in this example (because the energy equation is quadratic): v  =
−2.5 m/s, v = 0. This solution is unacceptable on physical grounds; what’s wrong with it?

The 2012 movie “The Avengers” has a scene where Iron Man and Thor fight. At the beginning of the fight, Thor throws his
hammer at Iron Man, hitting him and throwing him slightly up into the air and against a small tree, which breaks. From the
video, Iron Man is standing still when the hammer hits him. The distance between Thor and Iron Man is approximately 10 m,
and the hammer takes about 1 s to reach Iron Man after Thor releases it. The tree is about 2 m behind Iron Man, which he hits
in about 0.75 s. Also from the video, Iron Man’s trajectory to the tree is very close to horizontal. Assuming Iron Man’s total
mass is 200 kg:

a. Estimate the mass of Thor’s hammer
b. Estimate how much kinetic energy was lost in this collision

Strategy

After the collision, Thor’s hammer is in contact with Iron Man for the entire time, so this is a perfectly inelastic collision. Thus,
with the correct choice of a closed system, we expect momentum is conserved, but not kinetic energy. We use the given
numbers to estimate the initial momentum, the initial kinetic energy, and the final kinetic energy. Because this is a one-
dimensional problem, we can go directly to the scalar form of the equations.

Solution
a. First, we posit conservation of momentum. For that, we need a closed system. The choice here is the system (hammer +

Iron Man), from the time of collision to the moment just before Iron Man and the hammer hit the tree. Let:
M  = mass of the hammer
M  = mass of Iron Man
v  = velocity of the hammer before hitting Iron Man
v = combined velocity of Iron Man + hammer after the collision

Again, Iron Man’s initial velocity was zero. Conservation of momentum here reads:

We are asked to find the mass of the hammer, so we have

Considering the uncertainties in our estimates, this should be expressed with just one significant figure; thus, M  = 7 x 10  kg.

b. The initial kinetic energy of the system, like the initial momentum, is all in the hammer: $

 Exercise 12.1.4
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$After the collision, $

$Thus, there was a loss of 3500 J − 960 J = 2540 J.

Significance

From other scenes in the movie, Thor apparently can control the hammer’s velocity with his mind. It is possible, therefore, that
he mentally causes the hammer to maintain its initial velocity of 10 m/s while Iron Man is being driven backward toward the
tree. If so, this would represent an external force on our system, so it would not be closed. Thor’s mental control of his hammer
is beyond the scope of this book, however.

 

Suppose there had been no friction (the collision happened on ice); that would make  zero, and thus ,
which is obviously wrong. What is the mistake in this conclusion?

 

Subatomic Collisions and Momentum
Conservation of momentum is crucial to our understanding of atomic and subatomic particles because much of what we know
about these particles comes from collision experiments.

At the beginning of the twentieth century, there was considerable interest in, and debate about, the structure of the atom. It was
known that atoms contain two types of electrically charged particles: negatively charged electrons and positively charged protons.
(The existence of an electrically neutral particle was suspected, but would not be confirmed until 1932.) The question was, how
were these particles arranged in the atom? Were they distributed uniformly throughout the volume of the atom (as J.J. Thomson
proposed), or arranged at the corners of regular polygons (which was Gilbert Lewis’ model), or rings of negative charge that
surround the positively charged nucleus—rather like the planetary rings surrounding Saturn (as suggested by Hantaro Nagaoka), or
something else?

The New Zealand physicist Ernest Rutherford (along with the German physicist Hans Geiger and the British physicist Ernest
Marsden) performed the crucial experiment in 1909. They bombarded a thin sheet of gold foil with a beam of high energy (that is,
high-speed) alpha-particles (the nucleus of a helium atom). The alpha-particles collided with the gold atoms, and their subsequent
velocities were detected and analyzed, using conservation of momentum and conservation of energy.

If the charges of the gold atoms were distributed uniformly (per Thomson), then the alpha-particles should collide with them and
nearly all would be deflected through many angles, all small; the Nagaoka model would produce a similar result. If the atoms were
arranged as regular polygons (Lewis), the alpha-particles would deflect at a relatively small number of angles.

What actually happened is that nearly none of the alpha-particles were deflected. Those that were, were deflected at large angles,
some close to 180° —those alpha-particles reversed direction completely (Figure ). None of the existing atomic models
could explain this. Eventually, Rutherford developed a model of the atom that was much closer to what we now have—again, using
conservation of momentum and energy as his starting point.
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Figure : The Thomson and Rutherford models of the atom. The Thomson model predicted that nearly all of the incident
alpha-particles would be scattered and at small angles. Rutherford and Geiger found that nearly none of the alpha particles were
scattered, but those few that were deflected did so through very large angles. The results of Rutherford’s experiments were
inconsistent with the Thomson model. Rutherford used conservation of momentum and energy to develop a new, and better model
of the atom—the nuclear model.

This page titled 12.1: Types of Collisions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher
Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.
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12.2: Examples

                                  

A Croquet player hits a wooden croquet ball, of mass  kg,  at a speed of  m/s, which collides, off-center,
with a stationary ball of the same mass. After the collision, the first ball moves off with a speed of  m/s at an angle of 

 with respect to the x-axis, as shown in the figure. You may assume that this collision is inelastic.

1. At what angle, , relative to the x-axis does the second ball move away from the collision at?
2. What is the final speed of the second ball, ?
3. What was the change in energy of this collision? Can you explain your answer?

 

A billiard ball moving at 3.06 m/s strikes a second billiard ball, of the same mass (150 g) and initially at rest, in a perfectly
elastic collision. After the collision, the first ball moves away with a speed 2.65 m/s. 

1. What is the initial kinetic energy of the system?
2. What is the final speed of the second ball?
3. If the first ball leaves the collision at an angle of 30  with respect to the original direction of motion, what angle does the

second ball leave the collision at?

 

I am responsibly driving my 1360-kg Subaru Impreza through an intersection. I am traveling west, my light is green, so I
proceed through at 45 mph. An irresponsible driver in a brand new Audi R8 (of mass 1678 kg) with Florida plates blows
through the red light going north. He smashes into me, and our cars stick together after the collision, traveling at an angle of 65
 north of west. 

1. Determine both (which can be done in either order),

1. How fast was he traveling before he hit me?
2. How fast are the two cars moving together after the collision?

2. What fraction of the total energy of the system was lost during this collision?

 

You are flying through empty space in your rocket, at 2000 m/s, far away from any stars, planets, or other massive bodies.
However, you aren't paying very careful attention so you don't notice that there is a giant cube of ``Space-goo'' on a collision
course with you! It is moving at a speed of 500 m/s in a direction perpendicular to your own, and has a mass of 3000 kg.

 Whiteboard Problem : Croquet Collision12.2.1

m = 0.450 = 3.5v0

= 3.0v1

=θ1 10∘

θ2

v2

 Whiteboard Problem : Pool Shark12.2.2

∘

 Whiteboard Problem : Red Light!12.2.3

∘

 Whiteboard Problem : The Space Goo:12.2.4

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63192?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/12%3A_C12)_Collisions/12.02%3A_Examples


12.2.2 https://phys.libretexts.org/@go/page/63192

Assuming the total mass of you and your personal rocket is 1500 kg, and you get stuck in the space-goo when you collide,
what is the magnitude and direction of your final velocity after the collision?

Example : Collision Graph revisited
Look again at the collision graph from Example 2.4.1 from the point of view of the kinetic energy of the two carts.

a. What is the initial kinetic energy of the system?
b. How much of this is in the center of mass motion, and how much of is convertible?
c. Does the convertible kinetic energy go to zero at some point during the collision? If so, when? Is it fully recovered after the

collision is over?
d. What kind of collision is this? (Elastic, inelastic, etc.) What is the coefficient of restitution?

Solution

(a) From the solution to Example 3.5.1 we know that

and  = 1 kg and  = 2 kg. So the initial kinetic energy is

(b) To calculate , we need , which in this case is equal to

so  = 0, which means all the kinetic energy is convertible. We can also calculate that directly:

(c) If we look at figure 2.4.1, we can see that the carts do not pass through each other, so their relative velocity must be zero at
some point, and with that, the convertible energy. In fact, the figure makes it quite clear that both  and  are zero at  = 5 s,
so at that point also  = 0, and the convertible energy  = 0. (And so is the total  = 0 at that time, since  = 0
throughout.)

On the other hand, it is also clear that  is fully recovered after the collision is over, since the relative velocity just changes
sign:

Therefore

(d) Since the total kinetic energy (which in this case is only convertible energy) is fully recovered when the collision is over,
the collision is elastic. Using equation ( ), we can see that the coefficient of restitution is

as it should be.

This page titled 12.2: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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13.1: Orbits

Types of Orbits Under an Inverse-Square Force

Consider a system formed by two particles (or two perfect, rigid spheres) interacting only with each other, through their
gravitational attraction. Conservation of the total momentum tells us that the center of mass of the system is either at rest or moving
with constant velocity. Let us assume that one of the objects has a much greater mass, , than the other, so that, for practical
purposes, its center coincides with the center of mass of the whole system. This is not a bad approximation if what we are
interested in is, for instance, the orbit of a planet around the sun. The most massive planet, Jupiter, has only about 0.001 times the
mass of the sun.

Accordingly, we will assume that the more massive object does not move at all (by working in its center of mass reference frame, if
necessary—note that, by our assumptions, this will be an inertial reference frame to a good approximation), and we will be
concerned only with the motion of the less massive object under the force , where  is the distance between the
centers of the two objects. Since this force is always pulling towards the center of the more massive object (it is what is often called
a central force), its torque around that point is zero, and therefore the angular momentum, , of the less massive body around the
center of mass of the system is constant. This is an interesting result: it tells us, for instance, that the motion is confined to a plane,
the same plane that the vectors  and  defined initially, since their cross-product cannot change.

In spite of this simplification, the calculation of the object’s trajectory, or orbit, requires some fairly advanced mathematical
techniques, except for the simplest case, which is that of a circular orbit of radius . Note that this case requires a very precise
relationship to hold between the object’s velocity and the orbit’s radius, which we can get by setting the force of gravity equal to
the centripetal force:

So, if we want to, say, put a satellite in a circular orbit around a central body of mass  and at a distance  from the center of that
body, we can do it, but only provided we give the satellite an initial velocity  in a direction perpendicular to the
radius. But what if we were to release the satellite at the same distance , but with a different velocity, either in magnitude or
direction? Too much speed would pull it away from the circle, so the distance to the center, , would temporarily increase; this
would increase the system’s potential energy and accordingly reduce the satellite’s velocity, so eventually it would get pulled back;
then it would speed up again, and so on.

You may experiment with this kind of thing yourself using the PhET demo at this link:

https://phet.colorado.edu/en/simulation/gravity-and-orbits

You will find that, as long as you do not give the satellite—or planet, in the simulation—too much speed (more on this later!) the
orbit you get is, in fact, a closed curve, the kind of curve we call an ellipse. I have drawn one such ellipse for you in Figure .

Figure : An elliptical orbit. The semimajor axis is , the semiminor axis is , and the eccentricity  = 0.745
in this case.. The “center of attraction” (the sun, for instance, in the case of a planet’s or comet’s orbit) is at the point O.
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As a geometrical curve, any ellipse can be characterized by a couple of numbers,  and , which are the lengths of the semimajor
and semiminor axes, respectively. These lengths are shown in the figure. Alternatively, one could specify  and a parameter known
as the eccentricity, denoted by  (do not mistake this “ ” for the coefficient of restitution of Chapter 4!), which is equal to 

. If  = , or  = 0, the ellipse becomes a circle.

The most striking feature of the elliptical orbits under the influence of the  gravitational force is that the “central object” (the
sun, for instance, if we are interested in the orbit of a planet, asteroid or comet) is not at the geometric center of the ellipse. Rather,
it is at a special point called the focus of the ellipse (labeled “O” in the figure, since that is the origin for the position vector of the
orbiting body). There are actually two foci, symmetrically placed on the horizontal (major) axis, and the distance of each focus to
the center of the ellipse is given by the product , that is, the product of the eccentricity and the semimajor axis. (This explains
why the “eccentricity” is called that: it is a measure of how “off-center” the focus is.)

For an object moving in an elliptical orbit around the sun, the distance to the sun is minimal at a point called the perihelion, and
maximal at a point called the aphelion. Those points are shown in the figure and labeled “P” and “A”, respectively. For an object in
orbit around the earth, the corresponding terms are perigee and apogee; for an orbit around some unspecified central body, the
terms periapsis and apoapsis are used. There is some confusion as to whether the distances are to be measured from the surface or
from the center of the central body; here I will assume they are all measured from the center, in which case the following
relationships follow directly from Figure :

The ellipse I have drawn in Figure  is actually way too eccentric to represent the orbit of any planet in the solar system
(although it could well be the orbit of a comet). The planet with the most eccentric orbit is Mercury, and that is only  = 0.21. This
means that  = 0.978 , an almost imperceptible deviation from a circle. I have drawn the orbit to scale in Figure , and as you
can see the only way you can tell it is an ellipse is, precisely, because the sun is not at the center.

Figure : Orbit of Mercury, with the sum approximately to scale

Since an ellipse has only two parameters, and we have two constants of the motion (the total energy, , and the angular
momentum, ), we should be able to determine what the orbit will look like based on just those two quantities. Under the
assumption we are making here, that the very massive object does not move at all, the total energy of the system is just

For a circular orbit, the radius  determines the speed (as per Equation ( )), and hence the total energy, which is easily seen to
be . It turns out that this formula holds also for elliptical orbits, if one substitutes the semimajor axis  for :
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Note that the total energy ( ) is negative. This means that we have a bound orbit, by which I mean, a situation where the
orbiting object does not have enough kinetic energy to fly arbitrarily far away from the center of attraction. Indeed, since 
as , you can see from Equation ( ) that if the two objects could be infinitely far apart, the total energy would
eventually have to be positive, for any nonzero speed of the lighter object. So, if , we have bound orbits, which are ellipses
(of which a circle is a special case), and conversely, if  we have “unbound” trajectories, which turn out to be hyperbolas .
These trajectories just pass near the center of attraction once, and never return.

The special borderline case when  = 0 corresponds to a parabolic trajectory. In this case, the particle also never comes back: it
has just enough kinetic energy to make it “to infinity,” slowing down all the while, so  as . The initial speed necessary
to accomplish this, starting from an initial distance , is usually called the “escape velocity” (although it really should be called the
escape speed), and it is found by simply setting Equation ( ) equal to zero, with , and solving for :

In general, you can calculate the escape speed from any initial distance  to the central object, but most often it is calculated from
its surface. Note that  does not depend on the mass of the lighter object (always assuming that the heavier object does not move
at all). The escape velocity from the surface of the earth is about 11 km/s, or 1.1×10  m/s; but this alone would not be enough to let
you leave the attraction of the sun behind. The escape speed from the sun starting from a point on the earth’s orbit is 42 km/s.

To summarize all of the above, suppose you are trying to put something in orbit around a much more massive body, and you start
out a distance  away from the center of that body. If you give the object a speed smaller than the escape speed at that point, the
result will be  < 0 and an elliptical orbit (of which a circle is a special case, if you give it the precise speed  in the
right direction). If you give it precisely the escape speed ( ), the total energy of the system will be zero and the trajectory of
the object will be a parabola; and if you give it more speed than , the total energy will be positive and the trajectory will be a
hyperbola. This is illustrated in Figure  below.

Figure : Possible trajectories for an object that is “released” with a sideways velocity at the lowest point in the figure, under
the gravitational attraction of a large mass represented by the black circle. Each trajectory corresponds to a different value of the
object’s initial kinetic energy: if  is the kinetic energy needed to have a circular orbit through the point of release, the figure

shows the cases  (small ellipse),  (circle),  (large ellipse),  (escape velocity,
parabola), and  (hyperbola).

Note that all the trajectories shown in Figure  have the same potential energy at the “point of release” (since the distance
from that point to the center of attraction is the same for all), so increasing the kinetic energy at that point also means increasing the
total energy ( ) (which is constant throughout). So the picture shows different orbits in order of increasing total energy.

For a given total energy, the total angular momentum does not change the fundamental nature of the orbit (bound or unbound), but
it can make a big difference on the orbit’s shape. Generally speaking, for a given energy the orbits with less angular momentum
will be “narrower,” or “more squished” than the ones with more angular momentum, since a smaller initial angular momentum at
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the point of insertion means a smaller sideways velocity component. In the extreme case of zero initial angular momentum (no
sideways velocity at all), the trajectory, regardless of the total energy, reduces to a straight line, either straight towards or straight
away from the center of attraction.

For elliptical orbits, one can prove the result

which shows how the eccentricity increases as  decreases, for a given value of  (which is to say, for a given total energy). I
should at least sketch how to obtain this result, since it is a variant of a procedure that you may have to use for some homework
problems this semester. You start by writing the angular momentum as  (or ), where  and  are the special
points shown in Figure , where  and  are perpendicular. Then, you note that  (or, alternatively, 

), so . Then substitute these expressions for  and  in Equation ( ), set the
result equal to the total energy ( ), and solve for .

Figure : Effect of the "angle of insertion" on the orbit.

Figure  illustrates the effect of varying the angular momentum, for a given energy. All the initial velocity vectors in the
figure have the same magnitude, and the release point (with position vector ) is the same for all the orbits, so they all have the
same energy; indeed, you can check that the semimajor axis of the two ellipses is the same as the radius of the circle, as required by
Equation ( ). The difference between the orbits is their total angular momentum. The green orbit has the maximum angular
momentum possible at the given energy, since the green velocity vector is perpendicular to . Note that this (maximizing  for a
given  < 0) always results in a circle, in agreement with Equation ( ): the eccentricity is zero when 

, which is the largest value of  allowed in Equation ( ).

For the other two orbits,  and  make angles of 45  and 135 , and so the angular momentum  has magnitude 

. The result are the red and blue ellipses, with eccentricities  = 0.707.

There is apparently a way to describe a hyperbola as an ellipse with eccentricity  > 1, but I’m definitely not going to go there.

This page titled 13.1: Orbits is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-Banacloche
(University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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13.2: Kepler's Laws

Kepler's Laws

The first great success of Newton’s theory was to account for the results that Johannes Kepler had extracted from astronomical data
on the motion of the planets around the sun. Kepler had managed to find a number of regularities in a mountain of data (most of
which were observations by his mentor, the Danish astronomer Tycho Brahe), and expressed them in a succinct way in
mathematical form. These results have come to be known as Kepler’s laws, and they are as follows:

1. The planets move around the sun in elliptical orbits, with the sun at one focus of the ellipse
2. (Law of areas) A line that connects the planet to the sun (the planet’s position vector) sweeps equal areas in equal times.
3. The square of the orbital period of any planet is proportional to the cube of the semimajor axis of its orbit (the same

proportionality constant holds for all the planets).

I have discussed the first “law” at length in the previous section, and also pointed out that the math necessary to prove it is far from
trivial. The second law, on the other hand, while it sounds complicated, turns out to be a straightforward consequence of the
conservation of angular momentum. To see what it means, consider Figure .

Figure : Illustrating Kepler’s law of areas. The two gray “curved triangles” have the same area, so the particle must take the
same time to go from A to A  as it does to go from B to B .

Suppose that, at some time , the particle is at point A, and a time  later it has moved to A . The area “swept” by its position
vector is shown in grey in the figure, and Kepler’s second law states that it must be the same, for the same time interval, at any
point in the trajectory; so, for instance, if the particle starts out at B instead, then in the same time interval  it will move to a
point B  such that the area of the “curved triangle” OBB  equals the area of OAA .

Qualitatively, this means that the particle needs to move more slowly when it is farther from the center of attraction, and faster
when it is closer. Quantitatively, this actually just means that its angular momentum is constant! To see this, note that the straight
distance from A to A  is the displacement vector , which, for a sufficiently short interval , will be approximately equal to 

. Again, for small , the area of the curved triangle will be approximately the same as that of the straight triangle OAA . It
is a well-known result in trigonometry that the area of a triangle is equal to 1/2 the product of the lengths of any two of its sides
times the sine of the angle they make. So, if the two triangles in the figures have the same areas, we must have

and we recognize here the condition , which is to say, conservation of angular momentum. (Once the result is
established for infinitesimally small , we can establish it for finite-size areas by using integral calculus, which is to say, in
essence, by breaking up large triangles into sums of many small ones.)

As for Kepler’s third result, it is easy to establish for a circular orbit, and definitely not easy for an elliptical one. Let us call  the
orbital period, that is, the time it takes for the less massive object to go around the orbit once. For a circular orbit, the angular
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velocity  can be written in terms of  as , and hence the regular speed . Substituting this in
Equation ( ), we get , which can be simplified further to read

Again, this turns out to work for an elliptical orbit if we replace  by .

Note that the proportionality constant in Equation ( ) depends only on the mass of the central body. For the solar system, that
would be the sun, of course, and then the formula would apply to any planet, asteroid, or comet, with the same proportionality
constant. This gives you a quick way to calculate the orbital period of anything orbiting the sun, if you know its distance (or vice-
versa), based on the fact that you know what these quantities are for the Earth.

More generally, suppose you have two planets, 1 and 2, both orbiting the same star, at distances  and , respectively. Then
their orbital periods  and  must satisfy  and . Divide one equation by the other,
and the proportionality constant cancels, so you get

From this, some simple manipulation gives you

Note you can express  and  in any units you like, as long as you use the same units for both, and similarly  and . For
instance, if you use the Earth as your reference “planet 1,” then you know that  = 1 (in years), and  = 1, in AU (an AU, or
“astronomical unit,” is the distance from the Earth to the sun). A hypothetical planet at a distance of 4 AU from the sun should then
have an orbital period of 8 Earth-years, since .

A formula just like ( ), but with a different proportionality constant, would apply to the satellites of any given planet; for
instance, the myriad of artificial satellites that orbit the Earth. Again, you could introduce a “reference satellite” labeled 1, with
known period and distance to the Earth (the moon, for instance?), and derive again the result ( ), which would allow you to
get the period of any other satellite, if you knew how its distance to the earth compares to the moon’s (or, conversely, the distance
at which you would need to place it in order to get a desired orbital period).

For instance, suppose I want to place a satellite on a “geosynchronous” orbit, meaning that it takes 1 day for it to orbit the Earth. I
know the moon takes 29 days, so I can write Equation ( ) as , or, solving it, 

, meaning the satellite would have to be approximately 1/10 of the Earth-moon distance from (the
center of) the Earth.

In hindsight, it is somewhat remarkable that Kepler’s laws are as accurate, for the solar system, as they turned out to be, since they
can only be mathematically derived from Newton’s theory by making a number of simplifying approximations: that the sun does
not move, that the gravitational force of the other planets has no effect on each planet’s orbit, and that the planets (and the sun) are
perfect spheres, for instance. The first two of these approximations work as well as they do because the sun is so massive; the third
one works because the sizes of all the objects involved (including the sun) are much smaller than the corresponding orbits.
Nevertheless, Newton’s work made it clear that Kepler’s laws could only be approximately valid, and scientists soon set to work on
developing ways to calculate the corrections necessary to deal with, for instance, the trajectories of comets or the orbit of the moon.

Of the main approximations I have listed above, the easiest one to get rid of (mathematically) is the first one, namely, that the sun
does not move. Instead, what one finds is that, as long as the sun and the planet are still treated as an isolated system, they will both
revolve around the system’s center of mass. Of course, the sun’s motion (a slight “wobble”) is very small, but not completely
negligible. You can even see it in the simulation I mentioned earlier, at

phet.colorado.edu/en/simulation/gravity-and-orbits.

What is much harder to deal with, mathematically, is the fact that none of the planets in the solar system actually forms an isolated
system with the sun, since all the planets are really pulling gravitationally on each other all the time. Particularly, Jupiter and Saturn
have a non-negligible influence on each other’s orbits, and on the orbits of every other planet, which can only be perceived over
centuries. Basically, the orbits still look like ellipses to a very good degree, but the ellipses rotate very, very slowly (so they fail to
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exactly close in on themselves). This effect, known as orbital precession, is most dramatic for Mercury, where the ellipse’s axes
rotate by more than one degree per century.

Nevertheless, the Newtonian theory is so accurate, and the calculation techniques developed over the centuries so sophisticated,
that by the early 20th century the precession of the orbits of all planets except Mercury had been calculated to near exact agreement
with the best observational data. The unexplained discrepancy for Mercury amounted only to 43 seconds of arc per century, out of
5600 (an error of only 0.8%). It was eventually resolved by Einstein’s general theory of relativity.

This page titled 13.2: Kepler's Laws is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-Banacloche
(University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

10.1: The Inverse-Square Law by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63311?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/13%3A_Application_-_Orbits_and_Kepler's_Laws/13.02%3A_Kepler's_Laws
https://creativecommons.org/licenses/by-sa/4.0
https://fulbright.uark.edu/departments/physics/directory/index/uid/jgeabana/name/Julio-Gea-Banacloche/
https://libraries.uark.edu/
https://scholarworks.uark.edu/oer/3
https://phys.libretexts.org/@go/page/22260
https://fulbright.uark.edu/departments/physics/directory/index/uid/jgeabana/name/Julio-Gea-Banacloche/
https://creativecommons.org/licenses/by-sa/4.0/
https://scholarworks.uark.edu/oer/3


13.3.1 https://phys.libretexts.org/@go/page/63195

13.3: Weight, Acceleration, and the Equivalence Principle
Whether we write it as  or as , the force of gravity on an object of mass  has the remarkable property—not shared
by any other known force—of being proportional to the inertial mass of the object. This means that, if gravity is the only force
acting on a system made up of many particles, when you divide the force on each particle by the particle’s mass in order to find the
particle’s acceleration, you get the same value of  for every particle (at least, assuming that they are all at about the same distance
from the object exerting the force in the first place). Thus, all the parts making up the object will accelerate together, as a whole.

Suppose that you are holding an object, while in free fall (remember that “free fall” means that gravity is the only force acting on
you), and you let go of it, as in Figure  below. Since gravity will give you and the object the same acceleration, you’ll find
that it does not “fall” relative to you—that is, it will not fall any faster nor more slowly than yourself. From your own reference
frame, you will just see it hovering motionless in front of you, in the same position (relative to you) that it occupied before you let
go of it. This is exactly what you see in videos shot aboard the International Space Station. The result is an impression of
weightlessness, or “zero gravity”—even though gravity is very much nonzero; the space station, and everything inside it, is
constantly “falling” to the earth, it just does not hit it because it has some sideways velocity (or angular momentum) to begin with,
and the earth’s pull just bends its trajectory around enough to keep it moving in a circle. But gravity is the only force acting on it,
and on everything in it (at least until somebody pushes himself against a wall, or something like that).

So, the kind of acceleration you get from gravity is, paradoxically, such that, if you give in to it completely, you feel like there is no
gravity.

Figure : If you are holding something while in free fall (a) and let go, since you are all accelerating at the same rate, it stays
in the same position relative to you (b), so it appears to be weightless.

The familiar sensation of weight, on the other hand, comes precisely from not giving in, and rather, enlisting other forces to fight
against gravity. When you do this—when you simply stand on the surface of the earth, for instance—your feet are supported by the
ground below you, but every other part of your body is supported by some other part of your body, immediately above or below it,
that you can think of as a sort of spring that is either somewhat stretched or somewhat compressed. It is primarily your skeleton,
and mostly your spine, that bears most of the compressive load. (See Figure 10.9, next page.) The sensation of weight is your
response to this load. Interestingly, even though this constant squishing may actually result in your losing a little height in the
course of a day (which you recover at night, when you lie horizontally), it is not a bad thing, rather the contrary: your bones have
evolved so that they need this constant pressure to grow and replace the mass that they would otherwise lose in a “weightless”
environment.

On the other hand, as shown in Figure (c), the same compression (or extension—for instance, for the muscles in your arms,
as they hang by your side) would result from a situation in which you were, say, standing motionless inside a rocket that is
accelerating upwards with , but very far away from any gravity source. In Figure (b), the “spring” that represents your
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skeleton needs to be compressed so it can exert an upward force  to support the weight of your upper body (simplified
here as just a single mass ). In Figure (c), it needs to be compressed by the same amount, so it can exert the upward force 

 needed to give your upper body an acceleration . The equality of the two expressions is a direct consequence of
the fact that the force of gravity is proportional to an object’s inertial mass (since the second expression is just Newton's second
law).

Figure : (a) In free fall, your skeleton (represented here by a relaxed spring) does not need to support your upper body, so
there is no sensation of weight. When standing on the ground motionless under the influence of gravity, however (b), every part of
your body needs to compress a little in order to support the weight of the parts above it (as shown here by the compressed spring).
The same compression, and hence the same subjective sensation of weight, results if you are moving upwards with an acceleration 

, but in the absence of gravity (c). (The subscripts  and  on the forces stand for “upper” and “lower” body, respectively.)

In general, then, when your whole body is subjected to an upward acceleration , it feels like your weight is increased by an
amount . The same thing holds regardless of direction—a forward acceleration  on a jet pilot’s body feels like a “weight” 
pushing her against her seat. This is why these “effective forces” (or, more precisely, the accelerations that cause them) are
measured in ’s: a “force” of, say, , means that the pilot feels pushed against her seat with a “force” equal to 5 times her weight.
What’s really happening, of course, is the opposite—her seat is pushing her forward, but her internal organs are being compressed
(in order to provide that same forward acceleration) the way they would under a gravity force five times stronger than at the earth’s
surface.

The parallels between being in a constantly accelerating frame of reference and being at rest under the influence of a constant
gravity force go beyond the subjective sensation of weight. Figure  illustrates what happens when you drop something while
traveling in the upwardly accelerating rocket, in the absence of gravity. From an inertial observer’s point of view, the object you
drop merely keeps the upward velocity it had the moment it left your hand; but, since you are in contact with the rocket, your own
velocity is constantly increasing, and as a result of that you see the object fall—relative to you.
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Figure : "Dropping" an object inside a constantly accelerating rocket, away from any gravity.

From a practical point of view, this suggests a couple of ways to provide an “artificial gravity” for astronauts who might one day
have to spend a long time in space, either under extremely weak gravity (for instance, during a trip to Mars), or, what amounts to
essentially the same thing, in free fall (as in a space station orbiting a planet). The one most often seen in movies consists in having
the space station (or spaceship) constantly spin around an axis with some angular velocity . Then any object that is moving with
the station, a distance  away from the axis, will experience a centripetal acceleration of magnitude , which will feel like a
gravity force  directed in the opposite direction, that is to say, away from the center. People would then basically “walk on
the walls” (that is to say, sideways as seen from above, with their feet away from the rotation axis and their heads towards the
rotation axis). If somebody let go of something they were holding, the object would “fall towards the wall.” Unfortunately, while
the idea might work for a space station, it would probably be impractical for a spaceship, since one would need a fairly large 
and/or a fairly large rotation rate to get . (On the other hand, probably even something like  is better than nothing, so
who knows...)

On a fundamental level, the equivalence between a constantly accelerated reference frame, and an inertial frame with a uniform
gravitational field (such as, approximately, the surface of the earth), was elevated by Einstein to a basic principle of physics, which
became the foundation of his general theory of relativity. This equivalence principle asserts that it is absolutely impossible to
distinguish, by any kind of physics experiment, between the two situations just mentioned: a constantly accelerated reference frame
is postulated to be completely equivalent in every way to an inertial frame with a uniform gravitational field.

A remarkable consequence of the equivalence principle is that light, despite having technically “zero rest mass,” must bend its
trajectory under the influence of gravity. This can be seen as follows. Imagine shooting a projectile horizontally inside the rocket in
Figure . Although an inertial observer, looking from the outside, would see the projectile travel in a straight line, the observer
inside the rocket would see its path bend down, just as for the projectiles we studied back in Chapter 8. This is for the same reason
he would see the object fall, relative to him, in Figure : the projectile has a constant velocity, so it travels the same distance
in every equal time interval, but the rocket is accelerating, so the distance it travels in equal time intervals is constantly increasing.
In basically the same way, then, a beam of light sent horizontally inside the rocket, and traveling with constant velocity (and,
therefore, in a straight line) in an inertial frame, would be seen as bending down in the rocket’s reference frame.

However, if the equivalence principle is true, and physical phenomena look the same in a constantly accelerating frame as in an
inertial frame with a constant gravitational field, it follows that light must also bend its path in the latter system, in much the same
way as a projectile would. (I say “much the same way” because the effect is not just as simple as giving light an “effective mass”;
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there are other relativistic effects, such as space contraction and time dilation, that must also be reckoned with.) This gravitational
bending was one of the most important early predictions of Einstein’s General Relativity theory, and certainly the most spectacular.
Since one needs the light rays to pass vary close to a large mass to get an observable effect, the way the prediction was verified was
by looking at the apparent position of the stars that can be seen close to the edge of the sun’s disk during a solar eclipse. The slight
(apparent) shift in position predicted by Einstein was observed by Sir Arthur Eddington during the solar eclipse of 1919 (two
expeditions were sent to remote corners of the earth for this purpose), and it was primarily responsible for Einstein’s sudden fame
among the general public of his day.

Today, with modern telescopes, this so-called “gravitational lensing” effect has become an important tool in astronomy, allowing us
to interpret the pictures taken of distant galaxies, which are often shifted and/or distorted by the gravity of the galaxies that lie in
between them and us.

It has even become possible to imagine an object so dense that it would “capture” light, attracting it so strongly that it could not
leave the object’s neighborhood. Such an object has come to be called a black hole. If you set the escape velocity of Equation
(10.1.15) equal to the speed of light in vacuum, , and solve for , you obtain what is called the Schwarzschild radius, , for a
black hole of mass ; the idea being that, in order to be a black hole, the object has to be so dense that all its mass  is inside a
sphere of radius smaller than . Physicists today believe in the existence (and even what one might call the ubiquity) of black
holes, of which the Schwarzschild solution was only the first calculated example. Note that  does not define the actual, physical
surface of the object; it does, however, locate what is known as the black hole’s event horizon. Nothing can be known, through
observation, about anything that might happen closer to the black hole’s center than the distance , since no information can be
transmitted faster than light, and no light can escape from a distance  < .

This page titled 13.3: Weight, Acceleration, and the Equivalence Principle is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Julio Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the
LibreTexts platform.
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13.4: Examples

In the early days of space flight, astronauts sometimes mentioned the counterintuitive aspects of orbital flight. For example, if,
from a circular orbit around the Earth, they wanted to move to a lower orbit, the way to do it was to slow down their capsule
(by firing a thruster in the direction opposite their motion). This would take them to a lower orbit, but then the capsule would
start speeding up, on its own.

Use the concepts introduced in this chapter to explain what is going on in this scenario. Let  be the radius of the initial orbit.
For simplicity, assume the thruster is on only for a very short time, so you can neglect the motion of the capsule during this
time. In other words, treat it as an instantaneous reduction in velocity, and discuss:

a. What happens to the system’s potential and kinetic energy, and angular momentum?
b. Is the new orbit circular or elliptic? How do you know? What is the new orbit’s  (maximum distance to the center of

the Earth)?
c. Why does the capsule speed up in its new orbit?
d. If the new orbit is not circular, what would the astronauts need to do to make it so? (Without getting any closer to the Earth,

that is, keeping  the same.)

Make sure to draw a diagram of the situation. Make it as accurate as you can.

Solution

(a) Under the assumption that the capsule barely changes position during the thruster firing, the potential energy of the system,
which is equal to , will not change: .

The kinetic energy, on the other hand, will go down, since the capsule’s speed is reduced: . Hence, the total
mechanical energy of the system, , will decrease: .

The angular momentum will go down, since v goes down.

(b) The new orbit has to be elliptical, since to have a circular orbit at a distance  requires a precise velocity (given just below
Equation (10.1.11) by ), and now we have changed that.

However, since the orbit must still be a closed curve, it will contain the starting point, which is, by our assumption, a distance 
 away from the Earth. Also, if the direction of the velocity vector does not change as a result of the thruster firing (only the

magnitude of  is supposed to change), it follows that at this point the velocity and the position vectors are perpendicular. For a
circular orbit, this is the case everywhere. For an elliptical orbit, this is only true at the two extreme points labeled P and A in
Figure 10.1.3 (the perigee and apogee, respectively). So, the initial position of the capsule becomes either the perigee or the
apogee of the new orbit. Which is it?

To get the answer, recall that we found in (a) that the total mechanical energy  has gone down. But, since  is a negative
number, this means the magnitude of  has gone up. Then, in the formula (10.1.14),

the semimajor axis  must have gone down. For the original circular orbit, we had ; now, we must have . This
means that the starting point, a distance  away from the (center of the) Earth, cannot be the perigee (the point of closest
approach), since at that point , and  is always less than  (check again Figure 10.1.3, or Eqs. (10.1.12)). Instead,
the starting point has to be the apogee of the new orbit, and therefore the distance at that point is also the maximum distance: 

.

(c) The capsule speeds up in its new orbit because, as we just saw, it starts as far away from the Earth as it’s going to get;
therefore, as it moves it will start getting closer to the Earth, and we know from Kepler’s second law that as it gets closer it has
to speed up. (You can also say that, as it gets closer, the gravitational potential energy of the system will go down, and
therefore its kinetic energy must increase.)

(d) The easiest way to change the new orbit to a circular orbit with radius  would be to perform another speed-reduction
maneuver, but this time at perigee. At perigee, the distance to the Earth is already , which is what you want it to be, but the
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capsule is moving too fast to stay on a circular orbit (put differently, the gravitational force of the Earth at that point is too
weak to bend the orbit into a circle): that is why it eventually ends up “overshooting” the Earth on the other side. Reducing 
will further reduce  and, by the same argument as above, it will result in an orbit with a smaller , which is what you want
(since, at the moment, , and you want the new  to be equal to ).

The diagram of the situation is above (previous page). The long-dash circle is the original orbit; the solid line is the elliptical
orbit resulting from the speed reduction at point A; the short-dash circle is the circular orbit that would result from another
speed reduction at the point P. Note: the size of the orbits is greatly exaggerated compared to those in the early space flights,
which were much closer to the Earth!

The way to draw this kind of figure is to first draw an accurate ellipse, making sure you know where the focus is; then draw the
circles centered at the focus and touching the ellipse at the right points. An ellipse’s equation in polar form, with the origin at
one focus, is .

Example : orbital data from observations- halley's comet
Halley’s comet follows an elliptical orbit around the sun. At its closest approach, it is a distance of 0.59 AU from the sun (an
astronomical unit, AU, is defined as the average distance from the earth to the sun: 1 AU = 1.496 × 10  m), and it is moving at
5.4 × 10  m/s. We know its period is approximately 76 years. Ignoring the forces exerted on the comet by the other solar
system objects (a rather rough approximation):

a. Use the appropriate Kepler law to infer the value of a (the semimajor axis) for the comet’s orbit.
b. What is the eccentricity of the comet's orbit?
c. Using the result in (a) and conservation of angular momentum, find the speed of the comet at aphelion (the point in its orbit

when it is farthest away from the sun).

Solution

(a) The “appropriate Kepler law” here is the third one. For any two objects orbiting, for instance, the sun, the square of their
orbital periods is proportional to the cube of their orbits’ semimajor axes, with the same proportionality constant ( ;
see Equation (10.1.18)). We do not even need to calculate the proportionality constant; we can divide the equation for Halley’s
comet by the equation for the earth, and get

where  = 1 yr , and  = 1 AU , so we get immediately

(b) We can get this one from a look at Figure 10.1.3: the product , plus the minimum distance between the comet and the sun
(0.59 AU) is equal to . (This is just what the second of the equations (10.1.12) says as well.). So we have

v

E a

a > rmin a rmin

r = a +ae cos ϕ
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Note that we did not even have to convert AU to kilometers. In these types of problems, particularly, where you have to
manipulate very large numbers, it really pays off to do all the calculations symbolically and not substitute the numbers in until
the very end, to see if something cancels out, and to prevent mistakes when copying large numbers form one line to the next;
and sometimes, like here, you do not even have to convert to other units!

(c) At the point of closest approach (perihelion), the velocity and the position vector of the comet are perpendicular, and so the
magnitude of the comet’s angular momentum is just equal to . The same happens at the farthest point in the orbit
(aphelion), and since angular momentum is conserved for the Kepler problem, we can write

(the reason for this choice of subscripts is that we know that when  is maximum,  is minimum, and vice-versa). Solving for 
, the speed at aphelion, we get

Here again the equation I used to find  can be derived directly from Figure 10.1.3 (and it is also one of the equations
(10.1.12): ). Once again, I was able to use AU throughout, since the units of distance cancel out in the
fraction .

This page titled 13.4: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-Banacloche
(University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

10.4: Examples by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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Newton's Laws
Up to this point in the semester, we've been studying the interaction between objects by modeling the interactions with energy and
momentum. The transfer and conservation of these quantities allowed us to determine their motion. Now, we would like to describe
the interactions between objects using forces. In some ways, this description of the physical world is more intuitive; forces push
and pull on objects, much like how we interact with objects in our everyday lives. Of course, momentum and energy is still being
transferred around, but the force description gives us a different perspective, and intuition about the motion is often more direct. On
the other hand, since forces are vectors, it requires more mathematical sophistication and care then when dealing with energy.

Forces Are Vectors

When you push or pull on an object, it matters what direction you are pushing or pulling it. This is very natural; if you push in one
direction and your friend pushes just as hard in the opposite direction, the object will not move. But what happens if you push in
one direction and your friend pushes just as hard, but not quite in the opposite direction? The object might move in some other
direction, and that's what we want to know about. All these various direction-and-magnitude complexities can be easily dealt with
by modeling all forces as vectors. They must be written as  in the -coordinate system you specify in order
to get any answers right!

Newton's First Law

Newton's first law can be summarized as "an object in motion tends to stay in motion unless acted on by a net external force''. The
converse is also true; "an object at rest tends to stay at rest unless acted on by a net external force''. An important word here is net,
which means sum of all. A hockey puck sliding across the ice will continue to slide forever if there is no friction, but it does have
external forces acting on it (gravity and the normal force, in this case). But these forces balance out, so there is no net force on the
hockey puck. Newton's first law does not really help us solve problems, but rather it helps with our modeling process. It tells us
when we should expect objects to exhibit motion.

Newton's Second Law

Newton's second law is the primary tool we will use to determine the motion of an object given some forces acting on it. We
usually remember it as 

 
where the  symbol means "add up all the forces''. This is an important thing to remember - an object can have several forces
acting on it, but a single object only ever has one acceleration . A very common mistake is to think "each force makes an
acceleration , and I will add them all up to get the acceleration of the object'', but that is incorrect. A single object has only a
single path in space, and therefore only has a single acceleration.

We can actually derive Newton's second law from the definition of force and momentum we have already encountered, namely

= +F ⃗  Fxx̂ Fy ŷ (x, y)

∑ = m ,F ⃗  a⃗  (14.1)

∑

a⃗ 

F/m

= .F ⃗ 
net

dp ⃗ 

dt
(14.2)
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(Recall that "net" means "sum of all", which is mathematically the same thing as the symbol .) To do this, we just use the
definition of momentum, , and assume the mass is constant in time (as it often is). Then we get:

One can write Newton's second law in a slightly different way, 

 
which mathematically identical, but reads more like "the acceleration is the sum of the forces divided by the mass'', which is more
like how we use Newton's second law.

Finally, since this is a vector equation, it actually contains several independent equations inside it, one for each direction. For
instance, if you are doing a 2D Newton's second law problem, you will actually have components in each direction, 

 
and you will have to solve for these independently.

Newton's Third Law

Newton's third law is "for every action there is an equal and opposite reaction''. In this case, our "actions'' are forces. The typical
example of this is "I push on the wall with a force , so the wall pushes on me with a force ''. Mathematically, if we have a
force  acting from object A to object B, Newton's third law tells us that we know there must be a force  acting from
object B to object A. The magnitudes of these forces are equal, and their directions are opposite: 

Observe the way we've notated this - each force corresponds with a pair of objects, one that creates the force and one that
experiences it. All forces have both - you push on a wall (you and wall are the objects), the force of the floor pushing up on you,
etc. In the case of the forces above, we're writing  to mean "the force created by A, acting on B", or "the force from A to B".
The order of these subscripts is not always that important (since Newton's third law tells us that ), but we will try to
be careful when we are writing them.

14.1: Forces and Newton's Three Laws

14.2: Details on Newton's First Law
According to Newton’s first law (the law of inertia), there must be a cause for any change in velocity (a change in either
magnitude or direction) to occur. Inertia is related to an object’s mass. If an object’s velocity relative to a given frame is
constant, then the frame is inertial and Newton’s first law is valid. A net force of zero means that an object is either at rest
or moving with constant velocity; that is, it is not accelerating.

14.3: Details on Newton's Second Law
Newton’s second law of motion says that the net external force on an object with a certain mass is directly proportional to
and in the same direction as the acceleration of the object. Newton’s second law can also describe net force as the
instantaneous rate of change of momentum. Thus, a net external force causes nonzero acceleration.

Σ

= mp ⃗  v ⃗ 

= (m ) = m = m .F ⃗ 
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dt
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a⃗  (14.3)
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14.4: Details on Newton’s Third Law
Newton’s third law of motion represents a basic symmetry in nature, with an experienced force equal in magnitude and
opposite in direction to an exerted force. Action-reaction pairs include a swimmer pushing off a wall, helicopters creating
lift by pushing air down, and an octopus propelling itself forward by ejecting water from its body. Choosing a system is
an important analytical step in understanding the physics of a problem and solving it.

14.5: Free-Body Diagrams

14.6: Vector Calculus

14.7: Examples

14: N1) Newton's Laws is shared under a CC BY-SA license and was authored, remixed, and/or curated by LibreTexts.
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14.1: Forces and Newton's Three Laws

Newton's Laws

Up to this point in the semester, we've been studying the interaction between objects by modeling the interactions with energy and
momentum. The transfer and conservation of these quantities allowed us to determine their motion. Now, we would like to describe
the interactions between objects using forces. In some ways, this description of the physical world is more intuitive; forces push
and pull on objects, much like how we interaction with objects in our everyday lives. Of course, momentum and energy is still
being transferred around, but the force description gives us a different perspective, and intuition about the motion is often more
direct. On the other hand, since forces are vectors, it requires more mathematical sophistication and care then when dealing with
energy.

Forces Are Vectors

When you push or pull on an object, it matters what direction you are pushing or pulling it. This is very natural; if you push in one
direction and your friend pushes just as hard in the opposite direction, the object will not move. But what happens if you push in
one direction and your friend pushes just as hard, but not quite in the opposite direction? The object might move in some other
direction, and that's what we want to know about. All these various direction-and-magnitude complexities can be easily dealt with
by modeling all forces as vectors. They must be written as  in the -coordinate system you specify in order
to get any answers right!

Newton's First Law

Newton's first law can be summarized as ``an object in motion tends to stay in motion unless acted on by a net external force''. The
converse is also true; ``an object at rest tends to stay at rest unless acted on by a net external force''. An important word here is net,
which means sum of all. A hockey puck sliding across the ice will continue to slide forever if there is no friction, but it does have
external forces acting on it (gravity and the normal force, in this case). But these forces balance out, so there is no net force on the
hockey puck. Newton's first law does not really help us solve problems, but rather it helps with our modeling process. It tells us
when we should expect objects to exhibit motion.

Newton's Second Law

Newton's second law is the primary tool we will use to determine the motion of an object given some forces acting on it. We
usually remember it as 

 
where the  symbol means ``add up all the forces''. This is an important thing to remember - an object can have several forces
acting on it, but a single object only ever has one acceleration . A very common mistake is to think ``each force makes an
acceleration , and I will add them all up to get the acceleration of the object'', but that is incorrect. A single object has only a
single path in space, and therefore only has a single acceleration.

We can actually derive Newton's second law from the definition of force and momentum we have already encountered, namely

(Recall that "net" means "sum of all", which is mathematically the same thing as the symbol .)To do this, we just use the
definition of momentum, , and assume the mass is constant in time (as it often is). Then we get:

I typically write Newton's second law in a slightly different way, 

= +F ⃗  Fxx̂ Fy ŷ (x, y)

∑ = m ,F ⃗  a⃗  (14.1.1)

∑
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which mathematically identical, but reads more like ``the acceleration is the sum of the forces divided by the mass'', which is more
like how we use Newton's second law.

Finally, since this is a vector equation, it actually contains several independent equations inside it, one for each direction. For
instance, if you are doing a 2d Newton's second law problem, you will actually have components in each direction, 

 
and you will have to solve for these independently.

Newton's Third Law

Newton's third law is ``for every action there is an equal and opposite reaction''. In this case, our ``actions'' are forces. The typical
example of this is ``I push on the wall with a force , so the wall pushes on me with a force ''. Mathematically, if we have a
force  acting from object A to object B, Newton's third law tells us that we know there must be a force  acting from
object B to object A. The magnitudes of these forces are equal, and their directions are opposite: 

Notice the way we've notated this - each force corresponds with a pair of objects, one that creates the force and one that
experiences it. All forces have both - you push on a wall (you and wall are the objects), the force of the floor pushing up on you,
etc. In the case of the forces above, we're writing  to mean "the force created by A, acting on B", or "the force from A to B".
The order of these subscripts is not always that important (since Newton's third law tells us that ), but we will try to
be careful when we are writing them.

14.1: Forces and Newton's Three Laws is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College.
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14.2: Details on Newton's First Law
Experience suggests that an object at rest remains at rest if left alone and that an object in motion tends to slow down and stop
unless some effort is made to keep it moving. However, Newton’s first law gives a deeper explanation of this observation.

A body at rest remains at rest or, if in motion, remains in motion at constant velocity unless acted on by a net external force.

Note the repeated use of the verb “remains.” We can think of this law as preserving the status quo of motion. Also note the
expression “constant velocity;” this means that the object maintains a path along a straight line, since neither the magnitude nor the
direction of the velocity vector changes. We can use Figure  to consider the two parts of Newton’s first law.

Figure : (a) A hockey puck is shown at rest; it remains at rest until an outside force such as a hockey stick changes its state of
rest; (b) a hockey puck is shown in motion; it continues in motion in a straight line until an outside force causes it to change its
state of motion. Although it is slick, an ice surface provides some friction that slows the puck.

Rather than contradicting our experience, Newton’s first law says that there must be a cause for any change in velocity (a change in
either magnitude or direction) to occur. This cause is a net external force, which we discussed in the introduction to this chapter. An
object sliding across a table or floor slows down due to the net force of friction acting on the object. If friction disappears, will the
object still slow down?

The idea of cause and effect is crucial in accurately describing what happens in various situations. For example, consider what
happens to an object sliding along a rough horizontal surface. The object quickly grinds to a halt. If we spray the surface with
talcum powder to make the surface smoother, the object slides farther. If we make the surface even smoother by rubbing lubricating
oil on it, the object slides farther yet. Extrapolating to a frictionless surface and ignoring air resistance, we can imagine the object
sliding in a straight line indefinitely. Friction is thus the cause of slowing (consistent with Newton’s first law). The object would
not slow down if friction were eliminated.

 

Gravitation and Inertia
Regardless of the scale of an object, whether a molecule or a subatomic particle, two properties remain valid and thus of interest to
physics: gravitation and inertia. Both are connected to mass. Roughly speaking, mass is a measure of the amount of matter in
something. Gravitation is the attraction of one mass to another, such as the attraction between yourself and Earth that holds your
feet to the floor. The magnitude of this attraction is your weight, and it is a force.

Mass is also related to inertia, the ability of an object to resist changes in its motion—in other words, to resist acceleration.
Newton’s first law is often called the law of inertia. As we know from experience, some objects have more inertia than others. It is
more difficult to change the motion of a large boulder than that of a basketball, for example, because the boulder has more mass
than the basketball. In other words, the inertia of an object is measured by its mass. The relationship between mass and weight is
explored later in this chapter.

Inertial Reference Frames
Earlier, we stated Newton’s first law as “A body at rest remains at rest or, if in motion, remains in motion at constant velocity
unless acted on by a net external force.” It can also be stated as “Every body remains in its state of uniform motion in a straight line
unless it is compelled to change that state by forces acting on it.” To Newton, “uniform motion in a straight line” meant constant

 Newton’s First Law of Motion
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velocity, which includes the case of zero velocity, or rest. Therefore, the first law says that the velocity of an object remains
constant if the net force on it is zero.

Newton’s first law is usually considered to be a statement about reference frames. It provides a method for identifying a special
type of reference frame: the inertial reference frame. In principle, we can make the net force on a body zero. If its velocity
relative to a given frame is constant, then that frame is said to be inertial. So by definition, an inertial reference frame is a reference
frame in which Newton’s first law is valid. Newton’s first law applies to objects with constant velocity. From this fact, we can infer
the following statement.

A reference frame moving at constant velocity relative to an inertial frame is also inertial. A reference frame accelerating
relative to an inertial frame is not inertial.

Are inertial frames common in nature? It turns out that well within experimental error, a reference frame at rest relative to the most
distant, or “fixed,” stars is inertial. All frames moving uniformly with respect to this fixed-star frame are also inertial. For example,
a nonrotating reference frame attached to the Sun is, for all practical purposes, inertial, because its velocity relative to the fixed
stars does not vary by more than one part in 10 . Earth accelerates relative to the fixed stars because it rotates on its axis and
revolves around the Sun; hence, a reference frame attached to its surface is not inertial. For most problems, however, such a frame
serves as a sufficiently accurate approximation to an inertial frame, because the acceleration of a point on Earth’s surface relative to
the fixed stars is rather small (< 3.4 x 10 m/s ). Thus, unless indicated otherwise, we consider reference frames fixed on Earth to
be inertial.

Finally, no particular inertial frame is more special than any other. As far as the laws of nature are concerned, all inertial frames are
equivalent. In analyzing a problem, we choose one inertial frame over another simply on the basis of convenience.

Newton’s First Law and Equilibrium
Newton’s first law tells us about the equilibrium of a system, which is the state in which the forces on the system are balanced.
Consider an object with two forces acting on it,   and , which combine to form a resultant force, or the net external force: 
=  =  + . To create equilibrium, we require a balancing force that will produce a net force of zero. This force must be
equal in magnitude but opposite in direction to , which means the vector must be .

Newton’s first law is deceptively simple. If a car is at rest, the only forces acting on the car are weight and the contact force of the
pavement pushing up on the car (Figure ). It is easy to understand that a nonzero net force is required to change the state of
motion of the car. However, if the car is in motion with constant velocity, a common misconception is that the engine force
propelling the car forward is larger in magnitude than the friction force that opposes forward motion. In fact, the two forces have
identical magnitude.

Figure : A car is shown (a) parked and (b) moving at constant velocity. How do Newton’s laws apply to the parked car?
What does the knowledge that the car is moving at constant velocity tell us about the net horizontal force on the car?

Newton’s laws can be applied to all physical processes involving force and motion, including something as mundane as driving
a car.

a. Your car is parked outside your house. Does Newton’s first law apply in this situation? Why or why not?
b. Your car moves at constant velocity down the street. Does Newton’s first law apply in this situation? Why or why not?

Strategy

In (a), we are considering the first part of Newton’s first law, dealing with a body at rest; in (b), we look at the second part of
Newton’s first law for a body in motion.

 Inertial Reference Frame
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Solution
a. When your car is parked, all forces on the car must be balanced; the vector sum is 0 N. Thus, the net force is zero, and

Newton’s first law applies. The acceleration of the car is zero, and in this case, the velocity is also zero.
b. When your car is moving at constant velocity down the street, the net force must also be zero according to Newton’s first

law. The car’s engine produces a forward force; friction, a force between the road and the tires of the car that opposes
forward motion, has exactly the same magnitude as the engine force, producing the net force of zero. The body continues in
its state of constant velocity until the net force becomes nonzero. Realize that a net force of zero means that an object is
either at rest or moving with constant velocity, that is, it is not accelerating. What do you suppose happens when the
car accelerates? We explore this idea in the next section.

Significance

As this example shows, there are two kinds of equilibrium. In (a), the car is at rest; we say it is in static equilibrium. In (b),
the forces on the car are balanced, but the car is moving; we say that it is in dynamic equilibrium. Again, it is possible for two
(or more) forces to act on an object yet for the object to move. In addition, a net force of zero cannot produce acceleration.

A skydiver opens his parachute, and shortly thereafter, he is moving at constant velocity. (a) What forces are acting on him? (b)
Which force is bigger?

Engage in this simulation to predict, qualitatively, how an external force will affect the speed and direction of an object’s
motion. Explain the effects with the help of a free-body diagram. Use free-body diagrams to draw position, velocity,
acceleration, and force graphs, and vice versa. Explain how the graphs relate to one another. Given a scenario or a graph,
sketch all four graphs.

This page titled 14.2: Details on Newton's First Law is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.
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14.3: Details on Newton's Second Law
Newton’s second law is closely related to his first law. It mathematically gives the cause-and-effect relationship between force and
changes in motion. Newton’s second law is quantitative and is used extensively to calculate what happens in situations involving a force.
Before we can write down Newton’s second law as a simple equation that gives the exact relationship of force, mass, and acceleration, we
need to sharpen some ideas we mentioned earlier.

Force and Acceleration
First, what do we mean by a change in motion? The answer is that a change in motion is equivalent to a change in velocity. A change in
velocity means, by definition, that there is acceleration. Newton’s first law says that a net external force causes a change in motion; thus,
we see that a net external force causes nonzero acceleration.

We defined external force as force acting on an object or system that originates outside of the object or system. Let’s consider this concept
further. An intuitive notion of external is correct—it is outside the system of interest. For example, in Figure , the system of
interest is the car plus the person within it. The two forces exerted by the two students are external forces. In contrast, an internal force acts
between elements of the system. Thus, the force the person in the car exerts to hang on to the steering wheel is an internal force between
elements of the system of interest. Only external forces affect the motion of a system, according to Newton’s first law. (The internal forces
cancel each other out, as explained in the next section.) Therefore, we must define the boundaries of the system before we can determine
which forces are external. Sometimes, the system is obvious, whereas at other times, identifying the boundaries of a system is more subtle.
The concept of a system is fundamental to many areas of physics, as is the correct application of Newton’s laws. This concept is revisited
many times in the study of physics.

Figure : Different forces exerted on the same mass produce different accelerations. (a) Two students push a stalled car. All external
forces acting on the car are shown. (b) The forces acting on the car are transferred to a coordinate plane (free-body diagram) for simpler
analysis. (c) The tow truck can produce greater external force on the same mass, and thus greater acceleration.

From this example, you can see that different forces exerted on the same mass produce different accelerations. In Figure , the two
students push a car with a driver in it. Arrows representing all external forces are shown. The system of interest is the car and its driver.
The weight  of the system and the support of the ground  are also shown for completeness and are assumed to cancel (because there
was no vertical motion and no imbalance of forces in the vertical direction to create a change in motion). The vector  represents the
friction acting on the car, and it acts to the left, opposing the motion of the car. (We discuss friction in more detail in an upcoming chapter.)
In Figure , all external forces acting on the system add together to produce the net force . The free-body diagram shows all of
the forces acting on the system of interest. The dot represents the center of mass of the system. Each force vector extends from this dot.
Because there are two forces acting to the right, the vectors are shown collinearly. Finally, in Figure , a larger net external force
produces a larger acceleration ( ) when the tow truck pulls the car.

It seems reasonable that acceleration would be directly proportional to and in the same direction as the net external force acting on a
system. This assumption has been verified experimentally and is illustrated in Figure . To obtain an equation for Newton’s second
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law, we first write the relationship of acceleration  and net external force  as the proportionality

where the symbol  means “proportional to.” (Recall from the first section of this chapter that the net external force is the vector sum of
all external forces and is sometimes indicated as .) This proportionality shows what we have said in words—acceleration is directly
proportional to net external force. Once the system of interest is chosen, identify the external forces and ignore the internal ones. It is a
tremendous simplification to disregard the numerous internal forces acting between objects within the system, such as muscular forces
within the students’ bodies, let alone the myriad forces between the atoms in the objects. Still, this simplification helps us solve some
complex problems.

It also seems reasonable that acceleration should be inversely proportional to the mass of the system. In other words, the larger the mass
(the inertia), the smaller the acceleration produced by a given force. As illustrated in Figure , the same net external force applied to
a basketball produces a much smaller acceleration when it is applied to an SUV. The proportionality is written as

where m is the mass of the system and a is the magnitude of the acceleration. Experiments have shown that acceleration is exactly
inversely proportional to mass, just as it is directly proportional to net external force.

Figure : The same force exerted on systems of different masses produces different accelerations. (a) A basketball player pushes on a
basketball to make a pass. (Ignore the effect of gravity on the ball.) (b) The same player exerts an identical force on a stalled SUV and
produces far less acceleration. (c) The free-body diagrams are identical, permitting direct comparison of the two situations. A series of
patterns for free-body diagrams will emerge as you do more problems and learn how to draw them in Drawing Free-Body Diagrams.

It has been found that the acceleration of an object depends only on the net external force and the mass of the object. Combining the two
proportionalities just given yields Newton’s second law.

The acceleration of a system is directly proportional to and in the same direction as the net external force acting on the system and is
inversely proportion to its mass. In equation form, Newton’s second law is

where  is the acceleration,  is the net force, and m is the mass. This is often written in the more familiar form

but the first equation gives more insight into what Newton’s second law means.

The law is a cause-and-effect relationship among three quantities that is not simply based on their definitions. The validity of the second
law is based on experimental verification. The free-body diagram, which you will learn to draw in Drawing Free-Body Diagrams, is the
basis for writing Newton’s second law.

Suppose that the net external force (push minus friction) exerted on a lawn mower is 51 N (about 11 lb.) parallel to the ground (Figure
). The mass of the mower is 24 kg. What is its acceleration?

a⃗  F ⃗ 
net

∝a⃗  F ⃗ 
net (14.3.1)
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 Example 5.2: What Acceleration Can a Person Produce When Pushing a Lawn Mower?
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Figure : (a) The net force on a lawn mower is 51 N to the right. At what rate does the lawn mower accelerate to the right? (b)
The free-body diagram for this problem is shown.

Strategy

This problem involves only motion in the horizontal direction; we are also given the net force, indicated by the single vector, but we
can suppress the vector nature and concentrate on applying Newton’s second law. Since F  and m are given, the acceleration can be
calculated directly from Newton’s second law as F  = ma.

Solution
The magnitude of the acceleration a is a = . Entering known values gives

Substituting the unit of kilograms times meters per square second for newtons yields

Significance

The direction of the acceleration is the same direction as that of the net force, which is parallel to the ground. This is a result of the
vector relationship expressed in Newton’s second law, that is, the vector representing net force is the scalar multiple of the
acceleration vector. There is no information given in this example about the individual external forces acting on the system, but we
can say something about their relative magnitudes. For example, the force exerted by the person pushing the mower must be greater
than the friction opposing the motion (since we know the mower moved forward), and the vertical forces must cancel because no
acceleration occurs in the vertical direction (the mower is moving only horizontally). The acceleration found is small enough to be
reasonable for a person pushing a mower. Such an effort would not last too long, because the person’s top speed would soon be
reached.

At the time of its launch, the HMS Titanic was the most massive mobile object ever built, with a mass of 6.0 x 10  kg. If a force of 6
MN (6 x 10  N) was applied to the ship, what acceleration would it experience?

In the preceding example, we dealt with net force only for simplicity. However, several forces act on the lawn mower. The weight pulls
down on the mower, toward the center of Earth; this produces a contact force on the ground. The ground must exert an upward force on
the lawn mower, known as the normal force , which we define in Motion from Forces. These forces are balanced and therefore do not
produce vertical acceleration. In the next example, we show both of these forces. As you continue to solve problems using Newton’s
second law, be sure to show multiple forces.

a. The car shown in Figure  is moving at a constant speed. Which force is bigger,  or ? Explain.
b. The same car is now accelerating to the right. Which force is bigger,  or ? Explain.
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Figure : A car is shown (a) moving at constant speed and (b) accelerating. How do the forces acting on the car compare in each
case? (a) What does the knowledge that the car is moving at constant velocity tell us about the net horizontal force on the car
compared to the friction force? (b) What does the knowledge that the car is accelerating tell us about the horizontal force on the car
compared to the friction force?

Strategy

We must consider Newton’s first and second laws to analyze the situation. We need to decide which law applies; this, in turn, will tell
us about the relationship between the forces.

Solution
a. The forces are equal. According to Newton’s first law, if the net force is zero, the velocity is constant.
b. In this case,  must be larger than . According to Newton’s second law, a net force is required to cause acceleration.

Significance

These questions may seem trivial, but they are commonly answered incorrectly. For a car or any other object to move, it must be
accelerated from rest to the desired speed; this requires that the engine force be greater than the friction force. Once the car is moving
at constant velocity, the net force must be zero; otherwise, the car will accelerate (gain speed). To solve problems involving Newton’s
laws, we must understand whether to apply Newton’s first law (where  = ) or Newton’s second law (where  is not zero).
This will be apparent as you see more examples and attempt to solve problems on your own.

Before manned space flights, rocket sleds were used to test aircraft, missile equipment, and physiological effects on human subjects at
high speeds. They consisted of a platform that was mounted on one or two rails and propelled by several rockets.

Calculate the magnitude of force exerted by each rocket, called its thrust T, for the four-rocket propulsion system shown in Figure 
. The sled’s initial acceleration is 49 m/s , the mass of the system is 2100 kg, and the force of friction opposing the motion is

650 N.

Figure : A sled experiences a rocket thrust that accelerates it to the right. Each rocket creates an identical thrust T. The system
here is the sled, its rockets, and its rider, so none of the forces between these objects are considered. The arrow representing friction (

) is drawn larger than scale.

Strategy

Although forces are acting both vertically and horizontally, we assume the vertical forces cancel because there is no vertical
acceleration. This leaves us with only horizontal forces and a simpler one-dimensional problem. Directions are indicated with plus or
minus signs, with right taken as the positive direction. See the free-body diagram in Figure .
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Solution
Since acceleration, mass, and the force of friction are given, we start with Newton’s second law and look for ways to find the thrust of
the engines. We have defined the direction of the force and acceleration as acting “to the right,” so we need to consider only the
magnitudes of these quantities in the calculations. Hence we begin with

where F  is the net force along the horizontal direction. We can see from the figure that the engine thrusts add, whereas friction
opposes the thrust. In equation form, the net external force is

Substituting this into Newton’s second law gives us

Using a little algebra, we solve for the total thrust 4T:

Substituting known values yields

Therefore, the total thrust is

Significance

The numbers are quite large, so the result might surprise you. Experiments such as this were performed in the early 1960s to test the
limits of human endurance, and the setup was designed to protect human subjects in jet fighter emergency ejections. Speeds of 1000
km/h were obtained, with accelerations of 45 g’s. (Recall that g, acceleration due to gravity, is 9.80 m/s . When we say that
acceleration is 45 g’s, it is 45 x 9.8 m/s , which is approximately 440 m/s .) Although living subjects are not used anymore, land
speeds of 10,000 km/h have been obtained with a rocket sled.

In this example, as in the preceding one, the system of interest is obvious. We see in later examples that choosing the system of
interest is crucial—and the choice is not always obvious.

Newton’s second law is more than a definition; it is a relationship among acceleration, force, and mass. It can help us make
predictions. Each of those physical quantities can be defined independently, so the second law tells us something basic and universal
about nature.

A 550-kg sports car collides with a 2200-kg truck, and during the collision, the net force on each vehicle is the force exerted by the
other. If the magnitude of the truck’s acceleration is 10 m/s , what is the magnitude of the sports car’s acceleration?

Component Form of Newton’s Second Law
We have developed Newton’s second law and presented it as a vector equation in Equation . This vector equation can be written as
three component equations:

The second law is a description of how a body responds mechanically to its environment. The influence of the environment is the net force
, the body’s response is the acceleration , and the strength of the response is inversely proportional to the mass m. The larger the

mass of an object, the smaller its response (its acceleration) to the influence of the environment (a given net force). Therefore, a body’s
mass is a measure of its inertia, as we explained in Newton’s First Law.

A 0.400-kg soccer ball is kicked across the field by a player; it undergoes acceleration given by  = 3.00  + 7.00  m/s . Find (a) the
resultant force acting on the ball and (b) the magnitude and direction of the resultant force.

= maFnet (14.3.7)

net

= 4T −f .Fnet (14.3.8)

= ma = 4T −f .Fnet (14.3.9)

4T = ma+f . (14.3.10)

4T = ma+f = (2100 kg)(49 m/ ) +650 N .s2 (14.3.11)

4T = 1.0 × N .105 (14.3.12)
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Strategy

The vectors in  and  format, which indicate force direction along the x-axis and the y-axis, respectively, are involved, so we apply
Newton’s second law in vector form.

Solution
a. We apply Newton’s second law: 
b. . Magnitude and direction are found using the components of : 

Significance

We must remember that Newton’s second law is a vector equation. In (a), we are multiplying a vector by a scalar to determine the net
force in vector form. While the vector form gives a compact representation of the force vector, it does not tell us how “big” it is, or
where it goes, in intuitive terms. In (b), we are determining the actual size (magnitude) of this force and the direction in which it
travels.

Find the mass of a car if a net force of −600.0  N produces an acceleration of −0.2  m/s .

Strategy

Vector division is not defined, so  cannot be performed. However, mass m is a scalar, so we can use the scalar form of

Newton’s second law, .

Solution
We use m =  and substitute the magnitudes of the two vectors: F  = 600.0 N and a = 0.2 m/s . Therefore,

Significance

Force and acceleration were given in the  and  format, but the answer, mass m, is a scalar and thus is not given in  and  form.

Several Forces on a Particle A particle of mass m = 4.0 kg is acted upon by four forces of magnitudes. F  = 10.0 N, F  = 40.0 N, F  =
5.0 N, and F  = 2.0 N, with the directions as shown in the free-body diagram in Figure . What is the acceleration of the particle?

Figure : Four forces in the xy-plane are applied to a 4.0-kg particle.

Strategy

Because this is a two-dimensional problem, we must use a free-body diagram. First,  must be resolved into x- and y-components.
We can then apply the second law in each direction.

Solution

î ĵ

= m = (0.400 kg)(3.00 +7.00 m/ )= 1.20 +2.80 N .F ⃗ 
net a⃗  î ĵ s2 î ĵ

F ⃗ 
net

= = 3.05 N and θ = ( ) = .Fnet (1.20 N +(2.80 N)2 )2− −−−−−−−−−−−−−−−−
√ tan−1 2.80

1.20
66.8o

 Example 5.6: Mass of a Car
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î ĵ î ĵ
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We draw a free-body diagram as shown in Figure . Now we apply Newton’s second law. We consider all vectors resolved into
x- and y-components:

Thus, the net acceleration is

which is a vector of magnitude 8.4 m/s  directed at 276° to the positive x-axis.

Significance

Numerous examples in everyday life can be found that involve three or more forces acting on a single object, such as cables running
from the Golden Gate Bridge or a football player being tackled by three defenders. We can see that the solution of this example is just
an extension of what we have already done.

A car has forces acting on it, as shown below. The mass of the car is 1000.0 kg. The road is slick, so friction can be ignored. (a) What
is the net force on the car? (b) What is the acceleration of the car?

 

Explore the forces at work when pulling a cart or pushing a refrigerator, crate, or person. Create an applied force and see how it makes
objects move. Put an object on a ramp and see how it affects its motion.

 

This page titled 14.3: Details on Newton's Second Law is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher
Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

5.4: Newton's Second Law by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-1.

14.3.6

∑ = mFx ax (14.3.14)

− = mF1x F3x ax (14.3.15)

cos − = mF1 30o F3x ax (14.3.16)

(10.0 N)(cos ) − 5.0 N = (4.0 kg)30o
ax (14.3.17)

= 0.92 m/ .ax s2 (14.3.18)

∑ = mFy ay (14.3.19)

+ − = mF1y F4y F2y ay (14.3.20)

sin + − = mF1 30o F4y F2y ay (14.3.21)

(10.0 N)(sin ) + 2.0 N − 40.0 N = (4.0 kg)30o ay (14.3.

= −8.3 m/ .ay s2 (14.3.23)

= (0.92 −8.3 )m/ ,a⃗  î ĵ s2 (14.3.24)
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14.4: Details on Newton’s Third Law
We have thus far considered force as a push or a pull; however, if you think about it, you realize that no push or pull ever occurs by
itself. When you push on a wall, the wall pushes back on you. This brings us to Newton’s third law.

Whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and opposite
in direction to the force that it exerts. Mathematically, if a body A exerts a force  on body B, then B simultaneously exerts a
force  on A, or in vector equation form,

Newton’s third law represents a certain symmetry in nature: Forces always occur in pairs, and one body cannot exert a force on
another without experiencing a force itself. We sometimes refer to this law loosely as “action-reaction,” where the force exerted is
the action and the force experienced as a consequence is the reaction. Newton’s third law has practical uses in analyzing the origin
of forces and understanding which forces are external to a system.

We can readily see Newton’s third law at work by taking a look at how people move about. Consider a swimmer pushing off the
side of a pool (Figure ). She pushes against the wall of the pool with her feet and accelerates in the direction opposite that of
her push. The wall has exerted an equal and opposite force on the swimmer. You might think that two equal and opposite forces
would cancel, but they do not because they act on different systems. In this case, there are two systems that we could investigate:
the swimmer and the wall. If we select the swimmer to be the system of interest, as in the figure, then F  is an external
force on this system and affects its motion. The swimmer moves in the direction of this force. In contrast, the force F   acts
on the wall, not on our system of interest. Thus, F does not directly affect the motion of the system and does not cancel
F . The swimmer pushes in the direction opposite that in which she wishes to move. The reaction to her push is thus in the
desired direction. In a free-body diagram, such as the one shown in Figure , we never include both forces of an action-
reaction pair; in this case, we only use F , not F .

Figure : When the swimmer exerts a force on the wall, she accelerates in the opposite direction; in other words, the net
external force on her is in the direction opposite of F . This opposition occurs because, in accordance with Newton’s third
law, the wall exerts a force F  on the swimmer that is equal in magnitude but in the direction opposite to the one she exerts
on it. The line around the swimmer indicates the system of interest. Thus, the free-body diagram shows only F , w (the
gravitational force), and BF, which is the buoyant force of the water supporting the swimmer’s weight. The vertical forces w and
BF cancel because there is no vertical acceleration.

Other examples of Newton’s third law are easy to find:

As a professor paces in front of a whiteboard, he exerts a force backward on the floor. The floor exerts a reaction force forward
on the professor that causes him to accelerate forward.
A car accelerates forward because the ground pushes forward on the drive wheels, in reaction to the drive wheels pushing
backward on the ground. You can see evidence of the wheels pushing backward when tires spin on a gravel road and throw the
rocks backward.
Rockets move forward by expelling gas backward at high velocity. This means the rocket exerts a large backward force on the
gas in the rocket combustion chamber; therefore, the gas exerts a large reaction force forward on the rocket. This reaction force,
which pushes a body forward in response to a backward force, is called thrust. It is a common misconception that rockets
propel themselves by pushing on the ground or on the air behind them. They actually work better in a vacuum, where they can
more readily expel the exhaust gases.
Helicopters create lift by pushing air down, thereby experiencing an upward reaction force.

 Newton’s Third Law of Motion

F ⃗ 

−F ⃗ 

= − .F ⃗ 
AB F ⃗ 

BA (14.4.1)
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Birds and airplanes also fly by exerting force on the air in a direction opposite that of whatever force they need. For example,
the wings of a bird force air downward and backward to get lift and move forward.
An octopus propels itself in the water by ejecting water through a funnel from its body, similar to a jet ski.
When a person pulls down on a vertical rope, the rope pulls up on the person (Figure ).

Figure : When the mountain climber pulls down on the rope, the rope pulls up on the mountain climber.

There are two important features of Newton’s third law. First, the forces exerted (the action and reaction) are always equal in
magnitude but opposite in direction. Second, these forces are acting on different bodies or systems: A’s force acts on B and B’s
force acts on A. In other words, the two forces are distinct forces that do not act on the same body. Thus, they do not cancel each
other.

A person who is walking or running applies Newton’s third law instinctively. For example, the runner in Figure  pushes
backward on the ground so that it pushes him forward.

Figure : The runner experiences Newton’s third law. (a) A force is exerted by the runner on the ground. (b) The reaction
force of the ground on the runner pushes him forward.

The package in Figure  is sitting on a scale. The forces on the package are , which is due to the scale, and , which is
due to Earth’s gravitational field. The reaction forces that the package exerts are  on the scale and  on Earth. Because the
package is not accelerating, application of the second law yields

so

Thus, the scale reading gives the magnitude of the package’s weight. However, the scale does not measure the weight of the
package; it measures the force  on its surface. If the system is accelerating,  and  would not be equal, as explained in
Applications of Newton’s Laws.

14.4.2

14.4.2

14.4.3

14.4.3

 Example 5.9: Forces on a Stationary Object

14.4.4 S ⃗  −w⃗ 

−S ⃗  w⃗ 

− = m = ,S ⃗  w⃗  a⃗  0⃗  (14.4.2)

= .S ⃗  w⃗  (14.4.3)

−S ⃗  S ⃗  −w⃗ 
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Figure : (a) The forces on a package sitting on a scale, along with their reaction forces. The force  is the weight of the
package (the force due to Earth’s gravity) and  is the force of the scale on the package. (b) Isolation of the package-scale
system and the package-Earth system makes the action and reaction pairs clear.

A physics professor pushes a cart of demonstration equipment to a lecture hall (Figure ). Her mass is 65.0 kg, the cart’s
mass is 12.0 kg, and the equipment’s mass is 7.0 kg. Calculate the acceleration produced when the professor exerts a backward
force of 150 N on the floor. All forces opposing the motion, such as friction on the cart’s wheels and air resistance, total 24.0
N.

Figure : A professor pushes the cart with her demonstration equipment. The lengths of the arrows are proportional to the
magnitudes of the forces (except for , because it is too small to drawn to scale). System 1 is appropriate for this example,
because it asks for the acceleration of the entire group of objects. Only  and  are external forces acting on System 1
along the line of motion. All other forces either cancel or act on the outside world. System 2 is chosen for the next example so
that  is an external force and enters into Newton’s second law. The free-body diagrams, which serve as the basis for
Newton’s second law, vary with the system chosen.

Strategy

Since they accelerate as a unit, we define the system to be the professor, cart, and equipment. This is System 1 in Figure 
. The professor pushes backward with a force F of 150 N. According to Newton’s third law, the floor exerts a forward

reaction force F  of 150 N on System 1. Because all motion is horizontal, we can assume there is no net force in the vertical
direction. Therefore, the problem is one-dimensional along the horizontal direction. As noted, friction f opposes the motion and
is thus in the opposite direction of F . We do not include the forces F  or F  because these are internal forces, and we do
not include F  because it acts on the floor, not on the system. There are no other significant forces acting on System 1. If the
net external force can be found from all this information, we can use Newton’s second law to find the acceleration as
requested. See the free-body diagram in the figure.

Solution

14.4.4 w⃗ 

S ⃗ 

 Example 5.10: Getting Up to Speed: Choosing the Correct System

14.4.5
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F ⃗ 
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Newton’s second law is given by

The net external force on System 1 is deduced from Figure  and the preceding discussion to be

The mass of System 1 is

These values of F and m produce an acceleration of

Significance

None of the forces between components of System 1, such as between the professor’s hands and the cart, contribute to the net
external force because they are internal to System 1. Another way to look at this is that forces between components of a system
cancel because they are equal in magnitude and opposite in direction. For example, the force exerted by the professor on the
cart results in an equal and opposite force back on the professor. In this case, both forces act on the same system and therefore
cancel. Thus, internal forces (between components of a system) cancel. Choosing System 1 was crucial to solving this problem.

Calculate the force the professor exerts on the cart in Figure , using data from the previous example if needed.

Strategy

If we define the system of interest as the cart plus the equipment (System 2 in Figure ), then the net external force on
System 2 is the force the professor exerts on the cart minus friction. The force she exerts on the cart, F , is an external force
acting on System 2. F was internal to System 1, but it is external to System 2 and thus enters Newton’s second law for this
system.

Solution
Newton’s second law can be used to find F . We start with

The magnitude of the net external force on System 2 is

We solve for F , the desired quantity:

The value of f is given, so we must calculate net F . That can be done because both the acceleration and the mass of System 2
are known. Using Newton’s second law, we see that

where the mass of System 2 is 19.0 kg (m = 12.0 kg + 7.0 kg) and its acceleration was found to be a = 1.5 m/s  in the previous
example. Thus,

Now we can find the desired force:

a = .
Fnet

m
(14.4.4)

14.4.5

= −f = 150 N −24.0 N = 126 N .Fnet Ffloor (14.4.5)

m = (65.0 +12.0 +7.0) kg = 84 kg. (14.4.6)

net 

a = = = 1.5 m/ .
Fnet

m

126 N

84 kg
s2 (14.4.7)

 Example 5.11: Force on the Cart: Choosing a New System

14.4.5

14.4.5

prof

prof 

prof

a = .
Fnet

m
(14.4.8)

= −f .Fnet Fprof (14.4.9)

prof

= +f .Fprof Fnet (14.4.10)

net

= ma,Fnet (14.4.11)

2

= ma = (19.0 kg)(1.5 m/ ) = 29 N .Fnet s2 (14.4.12)

= +f = 29 N +24.0 N = 53 N .Fprof Fnet (14.4.13)
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Significance

This force is significantly less than the 150-N force the professor exerted backward on the floor. Not all of that 150-N force is
transmitted to the cart; some of it accelerates the professor. The choice of a system is an important analytical step both in
solving problems and in thoroughly understanding the physics of the situation (which are not necessarily the same things).

Two blocks are at rest and in contact on a frictionless surface as shown below, with m  = 2.0 kg, m  = 6.0 kg, and applied force
24 N. (a) Find the acceleration of the system of blocks. (b) Suppose that the blocks are later separated. What force will give the
second block, with the mass of 6.0 kg, the same acceleration as the system of blocks?

View this video to watch examples of action and reaction. View this video to watch examples of Newton’s laws and internal
and external forces.

This page titled 14.4: Details on Newton’s Third Law is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

5.6: Newton’s Third Law by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.
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14.5: Free-Body Diagrams
Trying to draw every single force acting on every single object can very quickly become pretty messy. And anyway, this is not
usually what we need: what we need is to separate cleanly all the forces acting on any given object, one object at a time, so we can
apply Newton’s second law, , to each object individually.

In order to accomplish this, we use what are known as free-body diagrams. In a free-body diagram, a potentially very complicated
object is replaced symbolically by a dot or a small circle, and all the forces acting on the object are drawn (approximately to scale
and properly labeled) as acting on the dot. Regardless of whether a force is a pulling or pushing force, the convention is to always
draw it as a vector that originates at the dot. If the system is accelerating, it is also a good idea to indicate the acceleration’s
direction also somewhere on the diagram.

The figure below shows, as an example, a free-body diagram for a block, in the presence of both a nonzero acceleration and a
friction force. The diagram includes all the forces, even gravity and the normal force.

Figure , with the friction force adjusted so as to be compatible with a nonzero acceleration to the right.

Note that I have drawn  and the force of gravity  as having the same magnitude, since there is no vertical acceleration for
that block. If I know the value of the friction force, I should also try to draw  approximately to scale with the other two forces.
Then, since I know that there is an acceleration to the right, I need to draw  greater than , since the net force on the block
must be to the right as well.

This page titled 14.5: Free-Body Diagrams is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-
Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

6.4: Free-Body Diagrams by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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14.6: Vector Calculus
As we have seen, the study of physics is all about creating a mathematical abstraction of the world, and what kinds of mathematics
are required depends on what we want to describe about the world. A basic feature of how the Universe works is "smoothly" -
objects move gradually from one point to the next, without stopping. (The alternative to this might be some kind of pixilated
version of the universe, in which objects can only exist on a grid, and they move by jumping from point to point. Like a video game
or something?) That means that the mathematics we use to describe the universe must similarly be "smooth" - and the mathematics
of gradual change mathematics is calculus. In addition to gradual change, we've also seen that some quantities in physics can be
vectors - that is, have both magnitudes and directions. So, clearly, we are going to have to combine these two ideas if we are going
to more fully understand how to describe the physical world, into a field of mathematics called vector calculus.

In truth, vector calculus can be enormously complicated (as well as enourmously rich and interesting!), but fortunately for
mechanics we only need to know the basics of how calculus and vectors interact with each other. We will simply need to know how
to take derivatives and integrals of vectors, e.g.

(The two specific examples here are the acceleration as a derivative of velocity, and the velocity as an integral of positive.) At first
glance, it might not be obvious how to proceed, but with a little reflection we can see the answer: rewrite the vectors using unit
vectors,

Now, if we just replace these two quantities in the expressions above, we can use the additive nature of integrals and derivatives to
rewrite them in expressions we understand from usual calculus:

Notice the important thing that happened - the unit vector is constant (in time, in this case). In more detail, the derivative could be
written as a chain rule,

but since  is constant this second term is just zero. So, the derivatives and integrals just pass right through the vector onto the
components individually, and we can do all our usual calculus operations on them without changing what anything means.

There is one slight complication that is probably worth mentioning - what happens to vector products, like dot products and cross
products? For example, the definition of work is

The basic trick to understanding this expression is the same - use unit vectors. In cartesian coordinates, the force will simply be

while the infinitesimal element will be

(this expression looks a little strange, but it's simply  in the x-direction and  in the y-direction). Now we can take the dot
product and follow the additive rules for integrals that we followed above:

(t) = (t), (t) = ∫ ( )d .a⃗ 
d

dt
v ⃗  v ⃗  r ⃗ t′

t
′ (14.6.1)

(t) = (t) + (t) , (t) = x(t) +y(t) .v ⃗  vx x̂ vy ŷ r ⃗  x̂ ŷ (14.6.2)

(t) = (t) = ( (t) + (t) ) = +a⃗ 
d

dt
v ⃗ 

d

dt
vx x̂ vy ŷ

d (t)vx

dt
x̂

d (t)vy

dt
ŷ (14.6.3)

(t) = ∫ ( )d = ∫ (x( ) +y( ) )d =(∫ x( )d ) +(∫ y( )d )v ⃗  r ⃗ t′
t

′
t

′
x̂ t

′
ŷ t

′
t

′
t

′
x̂ t

′
t

′
ŷ (14.6.4)

( (t) ) = + (t) ,
d

dt
vx x̂

d (t)vx

dt
x̂ vx

dx̂

dt
(14.6.5)

x̂

W = ∫ ( ) ⋅ d .F ⃗ r ⃗  r ⃗  (14.6.6)

= ( ) + ( ) ,F ⃗  Fx r ⃗  x̂ Fy r ⃗  ŷ (14.6.7)

d = dx +dyr ⃗  x̂ ŷ (14.6.8)

dx dy

∫ ( ) ⋅ d = ∫ ( ( )dx+ ( )dy) = ∫ ( )dx+∫ ( )dy.F ⃗ r ⃗  r ⃗  Fx r ⃗  Fy r ⃗  Fx r ⃗  Fy r ⃗  (14.6.9)
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Thus, the integrals break into an integral of  and an integral of , which you can perform as you normally would. Now we are
still not quite done - the force could be some complicated function of either the vector itself, like , or the coordinates
like . In this case we would have to have a relationship between x and y to perform the integrals (this is
generally called a line integral, and you can find more information about those at Wikipedia or Khan Academy). We will have to
treat these particular cases with a little bit of care!

14.6: Vector Calculus is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston, Merrimack College.
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14.7: Examples

Position to Velocity:

An object's position as a function of time is given by 
     

 
where , , and  are constants.

1. What are the SI units of , , and ?
2. Find an expression of the object's speed as a function of time.

Velocity to Acceleration:

An object's velocity as a function of time has components

 

 

 
where  m/s ,  m/s, and  m/s .

1. What is the magnitude of the object's acceleration at ?
2. What about at  s?

14.7: Examples is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston, Merrimack College.

 Whiteboard Problem : A Pair of Vector Problems14.7.1
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ẑ (14.7.1)

a b c

a b c

(t) = b +cvx t
2 (14.7.2)

(t) = qtvy (14.7.3)

(t) = 0,vz (14.7.4)
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CHAPTER OVERVIEW

15: N2) 1 Dimensional Kinematics
15.1: Position, Displacement, Velocity
15.2: Acceleration
15.3: Free Fall
15.4: The Connection Between Displacement, Velocity, and Acceleration
15.5: Examples

If the last chapter, on Newton's laws, can be considered the study of "why" objects move (because of the forces that act on them),
we can consider this chapter to focus on the question of "how" objects move. This is the study of kinematics. In particular, we are
going to focus on the motion of points (rather then extended objects), moving in 1 dimension, and moving under constant
acceleration. To start with let's recall the definitions of velocity and acceleration, both the average and instantaneous:

Now, under the condition of constant acceleration in 1 dimension, there are two independent equations of motion - one of which
describes the position as a function of time, and one of which describes the velocity as a function of time. We'll present them here,
and derive them in this chapter:

These are quite a jumble of symbols, so let's discuss them carefully. The left hand side of the first equation, , is the position as
a function of time along the -direction. That's relatively simple to understand, but keep in mind the functional notation here - for
each value of , we get a position  by evaluating the right hand side of this equation. On the right hand side, we have the
acceleration in the -direction , the initial velocity in the -direction , and the initial position in the -direction . Notice the
"physicist" convention of labeling these initial values with a zero,  - they are pronounced "-naught", like "x-naught". The last
variable on this side is the time .

The second equation is actually simplier after you know what's going on in the first. It's the velocity in the -direction (again in the
functional notation), with the acceleration, time and initial position on the right hand side. The first two things to notice about these
two equations:

* They share the exact same set of symbols, with on their the left hand side being unique to each. They are also tied together
through the time parameter .

* The second one is the derivative, with respect to time, of the first. This comes from the calculus behind how these equations
work, but we can check it pretty easily:

The first is just the definition of velocity, whereas the second is carrying out a few pretty easy differentiations.

Using these equations is pretty straightforward, and is usually just a matter of identifying the "knowns and unknowns" in your
problem. For example, let's do a runner, who starts at a position of 5 m (from some origin), and accelerates from rest at 2 m/s . We
can find the position and velocity of this runner at *any* point in the future, so let's say after 5 seconds. The first job is to identify
all the variables in the two equations above: =5 m, =2 m/s , and =0 (since we said "at rest"). Since we were asked for 

 seconds, we can just plug in our values to find our two unknowns:
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It's important to realize that we did not label these positions "initial" and "final" - there is a reason for that. When we studied the
conservation laws (momentum and energy), we were frequently concerned with very specific points - the final height of the ball,
after a collision, etc. In the kinematic equations, we can consider any value of time we like, not only initial and final but any time
in-between...not only 5 s, but also 5.1 s, and 4.9 s, or 4.99 s - you get the point. That is what is going on with the left side of these
equations:  is "the position at a time " - you have to know what time  you are specifically referring to in order to use these
equations. Another way to think about that is the variable  is something you plug into these expressions - an input that needs to be
specified to evaluate them. In this way, you might write these equations with that input more explicit:

Plug something into the boxes, and you are good to go!

15: N2) 1 Dimensional Kinematics is shared under a CC BY-SA license and was authored, remixed, and/or curated by LibreTexts.
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15.1: Position, Displacement, Velocity
Kinematics is the part of mechanics that deals with the mathematical description of motion, leaving aside the question of what
causes an object to move in a certain way. Kinematics, therefore, does not include such things as forces or energy, which fall
instead under the heading of dynamics. It may be said, then, that kinematics by itself is not true physics, but only applied
mathematics; yet it is still an essential part of classical mechanics, and its most natural starting point. This chapter (and parts of the
next one) will introduce the basic concepts and methods of kinematics in one dimension.

Position
As stated in the previous section, we are initially interested only in describing the motion of a “particle,” which can be thought of
as a mathematical point in space.   A point in three dimensions can be located by giving three numbers, known as its Cartesian
coordinates (or, more simply, its coordinates). In two dimensions, this works as shown in Figure  below. As you can see, the
coordinates of a point just tell us how to find it by first moving a certain distance , from a previously-agreed origin, along a
horizontal (or ) axis, and then a certain distance  along a vertical (or ) axis. (Or, of course, you could equally well first move
vertically and then horizontally.)

Figure : The position vector, , of a point, and its  and  components (the point's coordinates).

The quantities  and  are taken to be positive or negative depending on what side of the origin the point is on. Typically, we will
always start by choosing a positive direction for each axis, as the direction along which the algebraic value of the corresponding
coordinate increases. This is often chosen to be to the right for the horizontal axis, and upwards for the vertical axis, but there is
nothing that says we cannot choose a different convention if it turns out to be more convenient. In Figure , the arrows on the
axes denote the positive direction for each. Going by the grid, the coordinates of the point shown are  = 4 units,  = 3 units.

In two or three dimensions (and even, in a sense, in one dimension), the coordinates of a point can be interpreted as the components
of a vector that we call the point’s position vector, and denote by  (sometimes boldface letters are used for vectors, instead of an
arrow on top; in that case, the position vector would be denoted by r). A vector is a mathematical object, with specific geometric
and algebraic properties, that physicists use to represent a quantity that has both a magnitude and a direction. The magnitude of the
position vector in Figure  is just the length of the arrow, which is to say, 5 length units (by the Pythagorean theorem, the
length of , which we will often write using absolute value bars as , is equal to ); this is just the straight-line distance
of the point to the origin. The direction of , on the other hand, can be specified in a number of ways; a common convention is to
give the value of the angle that it makes with the positive  axis, which I have denoted in the figure as  (in this case, you can
verify that ). In three dimensions, two angles would be needed to completely specify the direction of .

As you can see, giving the magnitude and direction of  is a way to locate the point that is completely equivalent to giving its
coordinates  and . By the same token, the coordinates  and  are a way to specify the vector  that is completely equivalent to
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giving its magnitude and direction. As I stated above, we call x and y the components (or sometimes, to be more specific, the
Cartesian components) of the vector . All vectors can be described this way, so once you know how to deal with one vector, you
can deal with them all.

For the first few chapters in this topic, we are going to be primarily concerned with motion in one dimension (that is to say, along a
straight line, backwards or forwards), in which case all we need to locate a point is one number, its  (or , or ) coordinate; we do
not then need to worry particularly about vector algebra. Alternatively, we can simply say that a vector in one dimension is
essentially the same as its only component, which is just a positive or negative number (the magnitude of the number being the
magnitude of the vector, and its sign indicating its direction), and has the algebraic properties that follow naturally from that.

The description of the motion that we are aiming for is to find a function of time, which we denote by , that gives us the point’s
position (that is to say, the value of ) for any value of the time parameter, . (Look ahead to Equation ( ), for an example.)
Remember that  stands for a number that can be positive or negative (depending on the side of the origin the point is on), and has
dimensions of length, so when giving a numerical value for it you must always include the appropriate units (meters, centimeters,
miles...). Similarly,  stands for the time elapsed since some more or less arbitrary “origin of time,” or time zero. Normally  should
always be positive, but in special cases it may make sense to consider negative times ("10 min before " would be 
min!\). Anyway,  also is a number with dimensions, and must be reported with its appropriate units: seconds, minutes, hours, etc.

Figure : A possible position vs. time graph for an object moving in one dimension

We will be often interested in plotting the position of an object as a function of time—that is to say, the graph of the function .
This may, in principle, have any shape, as you can see in Figure  above. In the lab, you will have a chance to use a position
sensor that will automatically generate graphs like that for you on the computer, for any moving object that you aim the position
sensor at. It is, therefore, important that you learn how to “read” such graphs. For example, Figure  shows an object that
starts, at the time  = 0, a distance 0.2 m away and to the right of the origin (so  = 0.2 m), then moves in the negative direction
to  = −0.15 m, which it reaches at  = 0.5 s; then turns back and moves in the opposite direction until it reaches the point  = 0.1
m, turns again, and so on. Physically, this could be tracking the oscillations of a system such as an object attached to a spring and
sliding over a surface that exerts a friction force on it.

Displacement
In one dimension, the displacement of an object over a given time interval is a quantity that we denote as , and equals the
difference between the object’s initial and final positions (in one dimension, we will often call the “position coordinate” simply the
“position,” for short):

Here the subscript  denotes the object’s position at the beginning of the time interval considered, and the subscript  its position at
the end of the interval. As we have previously discussed, the symbol  will consistently be used throughout this book to denote a
change in the quantity following the symbol, meaning the difference between its initial value and its final value. The time interval
itself will be written as ∆t and can be expressed as
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where again  and  are the initial and final values of the time parameter (imagine, for instance, that you are reading time in
seconds on a digital clock, and you are interested in the change in the object’s position between second 130 and second 132: then 
= 130 s,  = 132 s, and  = 2 s).

You can practice reading off displacements from Figure . The displacement between  = 0.5 s and  = 1 s, for instance, is
0.25 m (  = −0.15 m,  = 0.1 m). On the other hand, between  = 1 s and  = 1.3 s, the displacement is  = 0 − 0.1 = −0.1 m

Notice two important things about the displacement. First, it can be positive or negative. Positive means the object moved, overall,
in the positive direction; negative means it moved, overall, in the negative direction. Second, even when it is positive, the
displacement does not always equal the distance traveled by the object (distance, of course, is always defined as a positive
quantity), because if the object “doubles back” on its tracks for some distance, that distance does not count towards the overall
displacement. For instance, looking again at Figure , in between the times  = 0.5 s and  = 1.5 s the object moved first
0.25 m in the positive direction, and then 0.15 m in the negative direction, for a total distance traveled of 0.4 m; however, the total
displacement was just 0.1 m.

In spite of these quirks, the total displacement is, mathematically, a useful quantity, because often we will have a way (that is to say,
an equation) to calculate  for a given interval, and then we can rewrite Equation ( ) so that it reads

That is to say, if we know where the object started, and we have a way to calculate , we can easily figure out where it ended up.
You will see examples of this sort of calculation in the examples later on.

Extension to Two Dimensions

In two dimensions, we write the displacement as the vector

The components of this vector are just the differences in the position coordinates of the two points involved; that is,  (a
subscript , , etc., is a standard way to represent the , . . . component of a vector) is equal to , and similarly 

.

Figure : The displacement vector for a particle that was initially at a point with position vector  and ended up at a point
with position vector  is the difference of the position vectors.

Figure  shows how this makes sense. The  component of  in the figure is  = 3 − 7 = −4 m; the  component is  =
8 − 4 = 4 m. This basically shows you how to subtract (and, by extension, add, since  ) vectors: you just subtract (or
add) the corresponding components. Note how, by the Pythagorean theorem, the length (or magnitude) of the displacement vector, 

, equals the straight-line distance between the initial point and the final point, just as in one
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dimension; of course, the particle could have actually followed a very different path from the initial to the final point, and therefore
traveled a different distance.

Velocity

Average Velocity

If you drive from Fayetteville to Fort Smith in 50 minutes, your average speed for the trip is calculated by dividing the distance of
59.2 mi by the time interval:

The way we define average velocity is similar to average speed, but with one important difference: we use the displacement,
instead of the distance. So, the average velocity  of an object, moving along a straight line, over a time interval  is

This definition has all the advantages and the quirks of the displacement itself. On the one hand, it automatically comes with a sign
(the same sign as the displacement, since  will always be positive), which tells us in what direction we have been traveling. On
the other hand, it may not be an accurate estimate of our average speed, if we doubled back at all. In the most extreme case, for a
roundtrip (leave Fayetteville and return to Fayetteville), the average velocity would be zero, since  and therefore  = 0.

It is clear that this concept is not going to be very useful in general, if the object we are tracking has a chance to double back in the
time interval . A way to prevent this from happening, and also getting a more meaningful estimate of the object’s speed at any
instant, is to make the time interval very small. This leads to a new concept, that of instantaneous velocity.

Instantaneous Velocity

We define the instantaneous velocity of an object (a “particle”), at the time , as the mathematical limit

The meaning of this is the following. Suppose we compute the ratio  over successively smaller time intervals  (all of
them starting at the same time ). For instance, we can start by making , then try , then 

, and so on. Naturally, as the time interval becomes smaller, the corresponding displacement will also become
smaller—the particle has less and less time to move away from its initial position, . The hope is that the successive ratios 
will converge to a definite value: that is to say, that at some point we will start getting very similar values, and that beyond a certain
point making  any smaller will not change any of the significant digits of the result that we care about. This limit value is the
instantaneous velocity of the object at the time .

When you think about it, there is something almost a bit self-contradictory about the concept of instantaneous velocity. You cannot
(in practice) determine the velocity of an object if all you are given is a literal instant. You cannot even tell if the object is moving,
if all you have is one instant! Motion requires more than one instant, the passage of time. In fact, all the “instantaneous” velocities
that we can measure, with any instrument, are always really average velocities, only the average is taken over very short time
intervals. Nevertheless, the fact is that for any reasonably well-behaved position function , the limit in Equation ( ) is
mathematically well-defined, and it equals what we call, in calculus, the derivative of the function :
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Figure : The slope of the green segment is the average velocity for the time interval  shown. As  becomes smaller, this
approaches the slope of the tangent at the point 

In fact, there is a nice geometric interpretation for this quantity: namely, it is the slope of a line tangent to the -vs-  curve at the
point , . As Figure  shows, the average velocity  is the slope (rise over run) of a line segment drawn from the
point  to the point  (the green line in the figure). As we make the time interval smaller, by bringing  closer to 
(and hence, also,  closer to ), the slope of this segment will approach the slope of the tangent line at  (the blue line), and
this will be, by the definition ( ), the instantaneous velocity at that point.

This geometric interpretation makes it easy to get a qualitative feeling, from the position-vs-time graph, for when the particle is
moving more or less fast. A large slope means a steep rise or fall, and that is when the velocity will be largest—in magnitude. A
steep rise means a large positive velocity, whereas a steep drop means a large negative velocity, by which I mean a velocity that is
given by a negative number which is large in absolute value. In the future, to simplify sentences like this one, I will just use the
word “speed” to refer to the magnitude (that is to say, the absolute value) of the instantaneous velocity. Thus, speed (like distance)
is always a positive number, by definition, whereas velocity can be positive or negative; and a steep slope (positive or negative)
means the speed is large there.

Conversely, looking at the sample -vs-  graphs in this chapter, you may notice that there are times when the tangent is horizontal,
meaning it has zero slope, and so the instantaneous velocity at those times is zero (for instance, at the time  = 1.0 s in Figure 

). This makes sense when you think of what the particle is actually doing at those special times: it is just changing direction,
so its velocity is going, for instance, from positive to negative. The way this happens is, it slows down, down... the velocity gets
smaller and smaller, and then, for just an instant (literally, a mathematical point in time), it becomes zero before, the next instant,
going negative.

We will be coming back to this “reading of graphs” in the lab and the homework, as well as in the next section, when we introduce
the concept of acceleration.

Motion With Constant Velocity

If the instantaneous velocity of an object never changes, it means that it is always moving in the same direction with the same
speed. In that case, the instantaneous velocity and the average velocity coincide, and that means we can write  (where
the size of the interval  could now be anything), and rewrite this equation in the form

which is the same as

Now suppose we keep  constant (that is, we fix the initial instant) but allow the time  to change, so we will just write  for an
arbitrary value of , and  for the corresponding value of . We end up with the equation
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which we can also write as

after some rearranging, and where the notation  has been introduced to emphasize that we want to think of  as a function of .
This is, not surprisingly, the equation of a straight line—a “curve” which is its own tangent and always has the same slope.

Please make sure that you are not confused by the notation in Equation ( ). The parentheses around the  on the left-
hand side mean that we are considering the position  as a function of . On the other hand, the parentheses around the
quantity  on the right-hand side mean that we are multiplying this quantity by , which is a constant here. This distinction
will be particularly important when we introduce the function  next.

Either one of equations ( ) or ( ) can be used to solve problems involving motion with constant velocity.

Motion With Changing Velocity

If the velocity changes with time, obtaining an expression for the position of the object as a function of time may be a nontrivial
task. In the next chapter we will study an important special case, namely, when the velocity changes at a constant rate (constant
acceleration).

For the most general case, a graphical method that is sometimes useful is the following. Suppose that we know the function ,
and we graph it, as in Figure  below. Then the area under the curve in between any two instants, say  and , is equal to the
total displacement of the object over that time interval.

Figure : How to get the displacement from the area under the -vs-  curve.

The idea involved is known in calculus as integration, and it goes as follows. Suppose that I break down the interval from  to 
into equally spaced subintervals, beginning at the time  (which I am, equivalently, going to call , that is, , so I have now 

, , ,...  ). Now suppose I treat the object’s motion over each subinterval as if it were motion with constant velocity, the
velocity being that at the beginning of the subinterval. This, of course, is only an approximation, since the velocity is constantly
changing; but, if you look at Figure , you can convince yourself that it will become a better and better approximation as I
increase the number of intermediate points and the rectangles shown in the figure become narrower and narrower. In this
approximation, the displacement during the first subinterval would be

where ; similarly, , and so on.
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However, Equation ( ) is just the area of the first rectangle shown under the curve in Figure  (the base of the rectangle
has “length” , and its height is ). Similarly for the second rectangle, and so on. So the sum  is both an
approximation to the area under the -vs-  curve, and an approximation to the total displacement . As the subdivision becomes
finer and finer, and the rectangles narrower and narrower (and more numerous), both approximations become more and more
accurate. In the limit of “infinitely many,” infinitely narrow rectangles, you get both the total displacement and the area under the
curve exactly, and they are both equal to each other. Mathematically, we would write

where the stylized “S” (for “sum”) on the right-hand side is the symbol of the operation known as integration in calculus. This is
essentially the inverse of the process know as differentiation, by which we got the velocity function from the position function,
back in Equation ( ).

This graphical method to obtain the displacement from the velocity function is sometimes useful, if you can estimate the area under
the -vs-  graph reliably. An important point to keep in mind is that rectangles under the horizontal axis (corresponding to negative
velocities) have to be added as having negative area (since the corresponding displacement is negative); see example 15.5.4 at the
end of this chapter.

Extension to Two Dimensions

In two (or more) dimensions, you define the average velocity vector as a vector  whose components are , 
, and so on (where , ,... are the corresponding components of the displacement vector ). This can be

written equivalently as the single vector equation

This tells you how to multiply (or divide) a vector by an ordinary number: you just multiply (or divide) each component by that
number. Note that, if the number in question is positive, this operation does not change the direction of the vector at all, it just
scales it up or down (which is why ordinary numbers, in this context, are called scalars). If the scalar is negative, the vector’s
direction is flipped as a result of the multiplication. Since  in the definition of velocity is always positive, it follows that the
average velocity vector always points in the same direction as the displacement, which makes sense.

To get the instantaneous velocity, you just take the limit of the expression ( ) as , for each component separately.
The resulting vector  has components , etc., which can also be written as , . . ..

All the results derived above hold for each spatial dimension and its corresponding velocity component. For instance, the graphical
method shown in Figure  can always be used to get  if the function  is known, or equivalently to get  if you know

, and so on.

Introducing the velocity vector at this point does cause a little bit of a notational difficulty. For quantities like  and , it is pretty
obvious that they are the  components of the vectors  and  respectively; however, the quantity that we have so far been calling
simply  should more properly be denoted as  (or  if the motion is along the  axis). In fact, there is a convention that if you
use the symbol for a vector without the arrow on top or any , , . . . subscripts, you must mean the magnitude of the vector. In this
book, however, I have decided not to follow that convention, at least not until we get to Chapter 8 (and even then I will use it only
for forces). This is because we will spend most of our time dealing with motion in only one dimension, and it makes the notation
unnecessarily cumbersome to keep having to write the  or  subscripts on every component of every vector, when you really only
have one dimension to worry about in the first place. So  will, throughout, refer to the relevant component of the velocity vector,
to be inferred from the context, until we get to Chapter 8 and actually need to deal with both a  and a  explicitly.

Finally, notice that the magnitude of the velocity vector, , is equal to the instantaneous speed, since, as 

, the magnitude of the displacement vector, , becomes the actual distance traveled by the object in the time interval
.

This page titled 15.1: Position, Displacement, Velocity is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the
LibreTexts platform.
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15.2: Acceleration

Average and Instantaneous Acceleration
Just as we defined average velocity in the previous chapter, using the concept of displacement (or change in position) over a time
interval , we define average acceleration over the time  using the change in velocity:

Here,  and  are the initial and final velocities, respectively, that is to say, the velocities at the beginning and the end of the time
interval . As was the case with the average velocity, though, the average acceleration is a concept of somewhat limited
usefulness, so we might as well proceed straight away to the definition of the instantaneous acceleration (or just “the” acceleration,
without modifiers), through the same sort of limiting process by which we defined the instantaneous velocity:

Everything that we said in the previous chapter about the relationship between velocity and position can now be said about the
relationship between acceleration and velocity. For instance (if you know calculus), the acceleration as a function of time is the
derivative of the velocity as a function of time, which makes it the second derivative of the position function:

Similarly, we can “read off” the instantaneous acceleration from a velocity versus time graph, by looking at the slope of the line
tangent to the curve at any point. However, if what we are given is a position versus time graph, the connection to the acceleration
is more indirect. Figure  provides you with such an example. See if you can guess at what points along this curve the
acceleration is positive, negative, or zero.

The way to do this “from scratch,” as it were, is to try to figure out what the velocity is doing, first, and infer the acceleration from
that. Here is how that would go:

Starting at  = 0, and keeping an eye on the slope of the -vs-  curve, we can see that the velocity starts at zero or near zero and
increases steadily for a while, until  is a little bit more than 2 s (let us say,  = 2.2 s for definiteness). That would correspond to a
period of positive acceleration, since  would be positive for every  in that range.

Figure : A possible position vs. time graph for an object whose acceleration changes with time.

Between  = 2.2 s and  = 2.5 s, as the object moves from  = 2 m to  = 4 m, the velocity does not appear to change very much,
and the acceleration would correspondingly be zero or near zero. Then, around  = 2.5 s, the velocity starts to decrease noticeably,
becoming (instantaneously) zero at  =3 s (  = 6 m). That would correspond to a negative acceleration. Note, however, that the
velocity afterwards continues to decrease, becoming more and more negative until around  = 4 s. This also corresponds to a
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negative acceleration: even though the object is speeding up, it is speeding up in the negative direction, so , and hence , is
negative for every time interval there. We conclude that  for all times between  = 2.5 s and  = 4 s.

Next, as we just look past  = 4 s, something else interesting happens: the object is still going in the negative direction (negative
velocity), but now it is slowing down. Mathematically, that corresponds to a positive acceleration, since the algebraic value of the
velocity is in fact increasing (a number like −3 is larger than a number like −5). Another way to think about it is that, if we have
less and less of a negative thing, our overall trend is positive. So the acceleration is positive all the way from  = 4 s through  = 5 s
(where the velocity is instantaneously zero as the object’s direction of motion reverses), and beyond, until about  = 6 s, since
between  = 5 s and  = 6 s the velocity is positive and growing.

You can probably figure out on your own now what happens after  = 6 s, reasoning as I did above, but you may also have noticed
a pattern that makes this kind of analysis a lot easier. The acceleration, being proportional to the second derivative of the function 

 with respect to , is directly related to the curvature of the -vs-  graph. As figure  below shows, if the graph is concave
(sometimes called “concave upwards”), the acceleration is positive, whereas it is negative whenever the graph is convex (or
“concave downwards”). It is (instantly) zero at those points where the curvature changes (which you may know as inflection
points), as well as over stretches of time when the -vs-  graph is a straight line (motion with constant velocity).

Figure : What the -vs-  curves look like for the different possible signs of the acceleration.

Figure  shows position, velocity, and acceleration versus time for a hypothetical motion case. Please study it carefully until
every feature of every graph makes sense, relative to the other two! You will see many other examples of this in the homework and
the lab.
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Figure : Sample position, velocity and acceleration vs. time graphs for motion with piecewise-constant acceleration.

Notice that, in all these figures, the sign of  or  at any given time has nothing to do with the sign of  at that same time. It is true
that, for instance, a negative , if sustained for a sufficiently long time, will eventually result in a negative  (as happens, for
instance, in Figure  over the interval from  = 1 to  = 4 s) but this may take a long time, depending on the size of  and the
initial value of . The graphical clues to follow, instead, are: the acceleration is given by the slope of the tangent to the -vs-
curve, or the curvature of the -vs-  curve, as explained in Figure ; and the velocity is given by the slope of the tangent to
the -vs-  curve.

(Note: To make the interpretation of Figure  simpler, I have chosen the acceleration to be “piecewise constant,” that is to say,
constant over extended time intervals and changing in value discontinuously from one interval to the next. This is physically
unrealistic: in any real-life situation, the acceleration would be expected to change more or less smoothly from instant to instant.
We will see examples of that later on, when we start looking at realistic models of collisions.)

Motion With Constant Acceleration
A particular kind of motion that is both relatively simple and very important in practice is motion with constant acceleration (see
Figure  again for examples). If  is constant, it means that the velocity changes with time at a constant rate, by a fixed
number of m/s each second. (These are, incidentally, the units of acceleration: meters per second per second, or m/s .) The change
in velocity over a time interval  is then given by

which can also be written

Equation ( ) is the form of the velocity function (  as a function of ) for motion with constant acceleration. This, in turn, has
to be the derivative with respect to time of the corresponding position function. If you know simple derivatives, then, you can
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verify that the appropriate form of the position function must be

or in terms of intervals,

Sometimes Equation ( ) is written with the implicit assumption that the initial value of t is zero:

This is simpler, but not as general as Equation ( ). Always make sure that you know what conditions apply for any equation
you decide to use!

As you can see from Equation ( ), for intervals during which the acceleration is constant, the velocity vs. time curve should
be a straight line. Figure  illustrates this. Equation ( ), on the other hand, shows that for those same intervals the
position vs. time curve should be a (portion of a) parabola, and again this can be seen in Figure  (sometimes, if the
acceleration is small, the curvature of the graph may be hard to see; this happens in Figure  for the interval between  = 4 s
and  = 5 s).

The observation that -vs-  is a straight line when the acceleration is constant provides us with a simple way to derive Equation (
), when combined with the result (from the end of the previous chapter) that the displacement over a time interval  equals

the area under the -vs-  curve for that time interval. Indeed, consider the situation shown in Figure . The total area under
the segment shown is equal to the area of a rectangle of base  and height , plus the area of a triangle of base  and height 

. Since , simple geometry immediately yields Equation ( ), or its equivalent ( ).

Figure : Graphical way to find the displacement for motion with constant acceleration.

Lastly, consider what happens if we solve Equation ( ) for  and substitute the result in ( ). We get

Letting , a little algebra yields

This is a handy little result that can also be seen to follow, more directly, from the work-energy theorems to be introduced in
Chapter 7 .

In fact, equation ( ) turns out to be so handy that you will probably find yourself using it over and over this semester, and
you may even be tempted to use it for problems involving motion in two dimensions. However, unless you really know what you
are doing, you should resist the temptation, since it is very easy to use Equation ( ) incorrectly when the acceleration and the
displacement do not lie along the same line. You should use the appropriate form of a work-energy theorem instead.
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Acceleration as a Vector
In two (or more) dimensions we introduce the average acceleration vector

whose components are , etc.. The instantaneous acceleration is then the vector given by the limit of Equation (
) as , and its components are, therefore, , . . .

Note that, since  and  in Equation ( ) are vectors, and have to be subtracted as such, the acceleration vector will be
nonzero whenever  and  are different, even if, for instance, their magnitudes (which are equal to the object’s speed) are the
same. In other words, you have accelerated motion whenever the direction of motion changes, even if the speed does not.

As long as we are working in one dimension, I will follow the same convention for the acceleration as the one I introduced for the
velocity in Chapter 1: namely, I will use the symbol , without a subscript, to refer to the relevant component of the acceleration (

), and not to the magnitude of the vector .

Acceleration in Different Reference Frames
In Chapter 1 you saw that the following relation holds between the velocities of a particle P measured in two different reference
frames, A and B:

What about the acceleration? An equation like ( ) will hold for the initial and final velocities, and subtracting them we will
get

Now suppose that reference frame B moves with constant velocity relative to frame A. In that case, , so  = 0,
and then, dividing Equation ( ) by , and taking the limit , we get

So, if two reference frames are moving at constant velocity relative to each other, observers in both frames measure the same
acceleration for any object they might both be tracking.

The result Equation ( ) means, in particular, that if we have an inertial frame then any frame moving at constant velocity
relative to it will be inertial too, since the respective observers’ measurements will agree that an object’s velocity does not change
(otherwise put, its acceleration is zero) when no forces act on it. Conversely, an accelerated frame will not be an inertial frame,
because Equation ( ) will not hold. This is consistent with the examples I mentioned in Section 2.1 (the bouncing plane, the
car coming to a stop). Another example of a non-inertial frame would be a car going around a curve, even if it is going at constant
speed, since, as I just pointed out above, this is also an accelerated system. This is confirmed by the fact that objects in such a car
tend to move—relative to the car—towards the outside of the curve, even though no actual force is acting on them.

This page titled 15.2: Acceleration is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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15.3: Free Fall
An important example of motion with (approximately) constant acceleration is provided by free fall near the surface of the Earth.
We say that an object is in “free fall” when the only force acting on it is the force of gravity (the word “fall” here may be a bit
misleading, since the object could actually be moving upwards some of the time, if it has been thrown straight up, for instance).
The space station is in free fall, but because it is nowhere near the surface of the earth its direction of motion (and hence its
acceleration, regarded as a two-dimensional vector) is constantly changing. Right next to the surface of the earth, on the other hand,
the planet’s curvature is pretty much negligible and gravity provides an approximately constant, vertical acceleration, which, in the
absence of other forces, turns out to be the same for every object, regardless of its size, shape, or weight.

The above result—that, in the absence of other forces, all objects should fall to the earth at the same rate, regardless of how big or
heavy they are—is so contrary to our common experience that it took many centuries to discover it. The key, of course, as with the
law of inertia, is to realize that, under normal circumstances, frictional forces are, in fact, acting all the time, so an object falling
through the atmosphere is never really in “free” fall: there is always, at a minimum, and in addition to the force of gravity, an air
drag force that opposes its motion. The magnitude of this force does depend on the object’s size and shape (basically, on how
“aerodynamic” the object is); and thus a golf ball, for instance, falls much faster than a flat sheet of paper. Yet, if you crumple up
the sheet of paper till it has the same size and shape as the golf ball, you can see for yourself that they do fall at approximately the
same rate! The equality can never be exact, however, unless you get rid completely of air drag, either by doing the experiment in an
evacuated tube, or (in a somewhat extreme way), by doing it on the surface of the moon, as the Apollo 15 astronauts did with a
hammer and a feather back in 1971 .

This still leaves us with something of a mystery, however: the force of gravity is the only force known to have the property that it
imparts all objects the same acceleration, regardless of their mass or constitution. A way to put this technically is that the force of
gravity on an object is proportional to that object’s inertial mass, a quantity that we will introduce properly in the next chapter. For
the time being, we will simply record here that this acceleration, near the surface of the earth, has a magnitude of approximately 9.8
m/s , a quantity that is denoted by the symbol . Thus, if we take the upwards direction as positive (as is usually done), we get for
the acceleration of an object in free fall , and the equations of motion become

where I have used  instead of  for the position coordinate, since that is a more common choice for a vertical axis. Note that we
could as well have chosen the downward direction as positive, and that may be a more natural choice in some problems.
Regardless, the quantity  is always defined to be positive:  = 9.8 m/s . The acceleration, then, is  or , depending on which
direction we take to be positive

In practice, the value of  changes a little from place to place around the earth, for various reasons (it is somewhat sensitive to the
density of the ground below you, and it decreases as you climb higher away from the center of the earth). In a later chapter we will
see how to calculate the value of  from the mass and radius of the earth, and also how to calculate the equivalent quantity for other
planets.

In the meantime, we can use equations like ( ) and ( ) to answer a number of interesting questions about objects thrown
or dropped straight up or down (always, of course, assuming that air drag is negligible). For instance, back at the beginning of this
chapter I mentioned that if I dropped an object it might take about half a second to hit the ground. If you use Equation ( ) with

 = 0 (since I am dropping the object, not throwing it down, its initial velocity is zero), and substitute  = 0.5 s, you get  =
1.23 m (about 4 feet). This is a reasonable height from which to drop something.

On the other hand, you may note that half a second is not a very long time in which to make accurate observations (especially if
you do not have modern electronic equipment), and as a result of that there was considerable confusion for many centuries as to the
precise way in which objects fell. Some people believed that the speed did increase in some way as the object fell, while others
appear to have believed that an object dropped would “instantaneously” (that is, at soon as it left your hand) acquire some speed
and keep that unchanged all the way down. In reality, in the presence of air drag, what happens is a combination of both: initially
the speed increases at an approximately constant rate (free, or nearly free fall), but the drag force increases with the speed as well,
until eventually it balances out the force of gravity, and from that point on the speed does not increase anymore: we say that the
object has reached “terminal velocity.” Some objects reach terminal velocity almost instantly, whereas others (the more
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“aerodynamic” ones) may take a long time to do so. This accounts for the confusion that prevailed before Galileo’s experiments in
the early 1600’s.

The video of this is available online: https://www.youtube.com/watch?v=oYEgdZ3iEKA. It is, however, pretty low resolution and
hard to see. A very impressive modern-day demonstration involving feathers and a bowling ball in a completely evacuated (airless)
room is available here: https://www.youtube.com/watch?v=E43-CfukEgs.

This page titled 15.3: Free Fall is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

2.3: Free Fall by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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15.4: The Connection Between Displacement, Velocity, and Acceleration

Derive the kinematic equations for constant acceleration using integral calculus.
Use the integral formulation of the kinematic equations in analyzing motion.
Find the functional form of velocity versus time given the acceleration function.
Find the functional form of position versus time given the velocity function.

This section assumes you have enough background in calculus to be familiar with integration. In Instantaneous Velocity and Speed
and Average and Instantaneous Acceleration we introduced the kinematic functions of velocity and acceleration using the
derivative. By taking the derivative of the position function we found the velocity function, and likewise by taking the derivative of
the velocity function we found the acceleration function. Using integral calculus, we can work backward and calculate the velocity
function from the acceleration function, and the position function from the velocity function.

Kinematic Equations from Integral Calculus
Let’s begin with a particle with an acceleration a(t) is a known function of time. Since the time derivative of the velocity function is
acceleration,

we can take the indefinite integral of both sides, finding

where C  is a constant of integration. Since , the velocity is given by

Similarly, the time derivative of the position function is the velocity function,

Thus, we can use the same mathematical manipulations we just used and find

where C  is a second constant of integration.

We can derive the kinematic equations for a constant acceleration using these integrals. With a(t) = a, a constant, and doing the
integration in Equation , we find

If the initial velocity is v(0) = v , then

Then, C  = v  and

which is Equation 3.5.12. Substituting this expression into Equation  gives

 Learning Objectives

v(t) = a(t),
d

dt
(15.4.1)

∫ v(t)dt = ∫ a(t)dt+ ,
d

dt
C1 (15.4.2)

1 ∫ v(t)dt = v(t)d

dt

v(t) = ∫ a(t)dt+ .C1 (15.4.3)

x(t) = v(t).
d

dt
(15.4.4)

x(t) = ∫ v(t)dt+ ,C2 (15.4.5)

2

15.4.3

v(t) = ∫ adt+ = at+ .C1 C1 (15.4.6)

0

= 0 + .v0 C1 (15.4.7)

1 0

v(t) = +at,v0 (15.4.8)

15.4.5
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https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63253?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/15%3A_N2)_1_Dimensional_Kinematics/15.04%3A_The_Connection_Between_Displacement_Velocity_and_Acceleration
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/03%3A_Motion_Along_a_Straight_Line/3.03%3A_Instantaneous_Velocity_and_Speed
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/03%3A_Motion_Along_a_Straight_Line/3.04%3A_Average_and_Instantaneous_Acceleration
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/03%3A_Motion_Along_a_Straight_Line/3.05%3A_Motion_with_Constant_Acceleration_(Part_1)#Eq.+3.12


15.4.2 https://phys.libretexts.org/@go/page/63253

Doing the integration, we find

If x(0) = x , we have

so, C  = x . Substituting back into the equation for x(t), we finally have

which is Equation 3.5.17.

A motorboat is traveling at a constant velocity of 5.0 m/s when it starts to decelerate to arrive at the dock. Its acceleration is
a(t) =  t m/s . (a) What is the velocity function of the motorboat? (b) At what time does the velocity reach zero? (c) What is
the position function of the motorboat? (d) What is the displacement of the motorboat from the time it begins to decelerate to
when the velocity is zero? (e) Graph the velocity and position functions.

Strategy

(a) To get the velocity function we must integrate and use initial conditions to find the constant of integration. (b) We set the
velocity function equal to zero and solve for t. (c) Similarly, we must integrate to find the position function and use initial
conditions to find the constant of integration. (d) Since the initial position is taken to be zero, we only have to evaluate the
position function at t = 0 .

Solution
We take t = 0 to be the time when the boat starts to decelerate.

a. From the functional form of the acceleration we can solve Equation  to get v(t):

At t = 0 we have v(0) = 5.0 m/s = 0 + C , so C  = 5.0 m/s or v(t) = 5.0 m/s −  t .
b. v(t) = 0 = 5.0 m/s −  t (\Rightarrow\) t = 6.3 s
c. Solve Equation :

At t = 0, we set x(0) = 0 = x , since we are only interested in the displacement from when the boat starts to decelerate. We
have

Therefore, the equation for the position is

d. Since the initial position is taken to be zero, we only have to evaluate x(t) when the velocity is zero. This occurs at t = 6.3 s.
Therefore, the displacement is

x(t) = t+ a + .v0
1

2
t

2
C2 (15.4.10)

0

= 0 +0 + .x0 C2 (15.4.11)

2 0

x(t) = + t+ a .x0 v0
1

2
t

2 (15.4.12)

 Example 3.17: Motion of a Motorboat
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1

24
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x(6.3) = 5.0(6.3) − (6.3 = 21.1 m.
1

24
)3 (15.4.17)
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Figure : (a) Velocity of the motorboat as a function of time. The motorboat decreases its velocity to zero in 6.3 s. At
times greater than this, velocity becomes negative—meaning, the boat is reversing direction. (b) Position of the motorboat as a
function of time. At t = 6.3 s, the velocity is zero and the boat has stopped. At times greater than this, the velocity becomes
negative—meaning, if the boat continues to move with the same acceleration, it reverses direction and heads back toward
where it originated.

Significance
The acceleration function is linear in time so the integration involves simple polynomials. In Figure , we see that if we
extend the solution beyond the point when the velocity is zero, the velocity becomes negative and the boat reverses direction.
This tells us that solutions can give us information outside our immediate interest and we should be careful when interpreting
them.

A particle starts from rest and has an acceleration function . (a) What is the velocity function? (b)
What is the position function? (c) When is the velocity zero?

This page titled 15.4: The Connection Between Displacement, Velocity, and Acceleration is shared under a CC BY-SA 4.0 license and was
authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

3.8: Finding Velocity and Displacement from Acceleration by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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15.5: Examples
 

Consider the ski jumper in the above figure. The mass of the skiier is 75 kg, and the slope down which he is traveling is 37
with respect to the horizontal (which is a typical ``in-run'' to an olympic ski jump).

1. What is the normal force on this skiier, while they are traveling down the slope as shown in the figure?
2. Assuming the snow is perfectly frictionless, what is the acceleration of the skier?
3. How long will it take the skiier to go from the top of the slope to the bottom, if the slope is 115 m long? You may assume

they started from rest.
4. How fast will the skiier be moving at the end of this slope?

Consider the graph of position vs time in the figure.

1. Find the average velocity during the time intervals 0 s to 2 s, 2 s to 5 s, and 5 s to 7 s.
2. Find the instantaneous velocity at 1 s, 4.5 s, and 7.5 s.

 

The tortoise demands a rematch! They decide on the same distance (  = 1.0 km), and the tortoise starts off at his same speed (
 = 0.20 m/s). This time, the hare is so convinced he will win that he waits at the start for the tortoise to get to  = 0.80 km

before he starts to run (hop?), starting from rest at a constant acceleration.

 Whiteboard Problem : Ski Jump!15.5.1

∘

 Whiteboard Problem : Average and Instantaneous Velocity15.5.2

 Whiteboard Problem : The Tortoise and the Hare, Redux!15.5.3
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1. What acceleration will the hare need to have to finish the race at the same time as the tortoise?
2. The tortoise expects this kind of grandstanding from the hare, so he begins to accelerate at 0.01 m/s  when he sees the hare

start the race. What acceleration must the hare have to still beat the tortoise?

Example : Motion with piecewise constant acceleration
Construct the position vs. time, velocity vs. time, and acceleration vs. time graphs for the motion described below. For each of
the intervals (a)–(d) you’ll need to figure out the position (height) and velocity of the rocket at the beginning and the end of the
interval, and the acceleration for the interval. In addition, for interval (b) you need to figure out the maximum height reached
by the rocket and the time at which it occurs. For interval (d) you need to figure out its duration, that is to say, the time at
which the rocket hits the ground.

a. A rocket is shot upwards, accelerating from rest to a final velocity of 20 m/s in 1 s as it burns its fuel. (Treat the
acceleration as constant during this interval.)

b. From  = 1 s to  = 4 s, with the fuel exhausted, the rocket flies under the influence of gravity alone. At some point during
this time interval (you need to figure out when!) it stops climbing and starts falling.

c. At  = 4 s a parachute opens, suddenly causing an upwards acceleration (again, treat it as constant) lasting 1 s; at the end of
this interval, the rocket’s velocity is 5 m/s downwards.

d. The last part of the motion, with the parachute deployed, is with constant velocity of 5 m/s downwards until the rocket hits
the ground.

Solution

(a) For this first interval (for which I will use a subscript “1” throughout) we have

using Equation (15.2.7) for motion with constant acceleration with zero initial velocity (I am using the variable , instead of ,
for the vertical coordinate; this is more or less customary, but, of course, I could have used  just as well).

Since the acceleration is constant, it is equal to its average value:

Substituting this into ( ) we get the height at  = 1 s is 10 m. The velocity at that time, of course, is  = 20 m/s, as we
were told in the statement of the problem.

(b) This part is free fall with initial velocity  = 20 m/s. To find how high the rocket climbs, use Equation (15.3.1) in the form
, with  (as the rocket climbs, its velocity decreases, and it stops climbing when its velocity

is zero). This gives us  = 3.04 s as the time at which the rocket reaches the top of its trajectory, and then starts coming
down. The corresponding displacement is, by Equation (15.3.2),

so the maximum height it reaches is 30.4 m.

At the end of the full 3-second interval, the rocket’s displacement is

(so its height is 25.9 m above the ground), and the final velocity is

(c) The acceleration for this part is  = (−5 + 9.43)/1=4.43 m/s . Note the positive sign. The displacement is

2
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so the final height is 25.9 − 7.21 = 18.7 m.

(d) This is just motion with constant speed to cover 18.7 m at 5 m/s. The time it takes is 3.74 s. The graphs for this motion are
shown earlier in the chapter, in Figure 15.2.3.

This page titled 15.5: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

16: N3) 2 Dimensional Kinematics and Projectile Motion
16.1: Dealing with Forces in Two Dimensions
16.2: Motion in Two Dimensions and Projectile Motion
16.3: Inclined Planes
16.4: Examples

In this chapter we are going to extend our work on kinematics in 1-dimension to include 2-dimensional motion. It turns out that the
short answer is "2D is just like two copies of 1D", and we don't need to work hard to see that. In this course, there is really only one
key example of 2D motion, and that is projectile motion.

Projectile motion is the motion of an object that is launched into the air and moves under the influence of gravity alone. During the
entire motion, the object is subject to a constant acceleration of 9.8l meters per second squared, directed downwards (which we
often take to be the negative direction). The path of the object is called a trajectory, and it can be predicted using a few basic
principles.

The horizontal and vertical motions of the object are independent of each other. This means that the object will continue moving
forward at a constant speed unless acted upon by external forces, while at the same time, it will be pulled downwards by gravity.
The initial velocity and launch angle of the object determine its trajectory. The initial velocity is the speed at which the object is
launched, while the launch angle is the angle at which it is launched relative to the horizontal. Together, these two factors determine
the initial velocity vector, which can be broken down into its horizontal and vertical components.

The motion of the object can be analyzed using basic kinematic equations that describe the motion of an object under constant
acceleration, which we presented in the last chapter. By using these equations, you can predict the maximum height reached by the
object, the time it takes to reach the maximum height, the total time of flight, the range of the object, and the final velocity of the
object when it hits the ground.

It is important to note that air resistance can affect the motion of a projectile, especially at high velocities or long distances.
However, in many cases, air resistance can be neglected, and the motion of the object can be described using the basic principles of
projectile motion. During our work in this course, we will nearly always be ignoring air resistance, which we will generally refer to
as freely falling motion.

Overall, understanding projectile motion is essential for a wide range of applications, from sports to engineering to astronomy. By
mastering the basic principles of projectile motion, you can make accurate predictions about the motion of objects in the real world
and develop more sophisticated models and simulations.

16: N3) 2 Dimensional Kinematics and Projectile Motion is shared under a CC BY-SA license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College & ChatGPT.
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16.1: Dealing with Forces in Two Dimensions
We have been able to get a lot of physics from our study of (mostly) one-dimensional motion only, but it goes without saying that
the real world is a lot richer than that, and there are a number of new and interesting phenomena that appear when one considers
motion in two or three dimensions. The purpose of this chapter is to introduce you to some of the simplest two-dimensional
situations of physical interest.

A common feature to all these problems is that the forces acting on the objects under consideration will typically not line up with
the displacements. This means, in practice, that we need to pay more attention to the vector nature of these quantities than we have
done so far. This section will present a brief reminder of some basic properties of vectors, and introduce a couple of simple
principles for the analysis of the systems that will follow.

To begin with, recall that a vector is a quantity that has both a magnitude and a direction. The magnitude of the vector just tells us
how big it is: the magnitude of the velocity vector, for instance, is the speed, that is, just how fast something is moving. When
working with vectors in one dimension, we have typically assumed that the entire vector (whether it was a velocity, an acceleration
or a force) lay along the line of motion of the system, and all we had to do to indicate the direction was to give the vector’s
magnitude an appropriate sign. For the problems that follow, however, it will become essential to break up the vectors into their
components along an appropriate set of axes. This involves very simple geometry, and follows the example of the position vector ,
whose components are just the Cartesian coordinates of the point it locates in space (as shown in Figure ). For a generic
vector, for instance, a force, like the one shown in Figure  below, the components  and  may be obtained from a right
triangle, as indicated there:

Figure : : The components of a vector that makes an angle  with the positive  axis. Two examples are shown, for 
(in which case > 0) and for  (in which case  < 0). In both cases,  > 0.

The triangle will always have the vector’s magnitude (  in this case) as the hypothenuse. The two other sides should be parallel
to the coordinate axes. Their lengths are the corresponding components, except for a sign that depends on the orientation of the
vector. If we happen to know the angle  that the vector makes with the positive  axis, the following relations will always hold:

Note, however, that in general this angle  may not be one of the interior angles of the triangle (as shown on the right diagram in
Figure ), and that in that case it may just be simpler to calculate the magnitude of the components using trigonometry and an
interior angle (such as 180  in the example), and give them the appropriate signs “by hand.” In the example on the right, the
length of the horizontal side of the triangle is equal to , which is a positive quantity; the correct value for ,
however, is the negative number .

In any case, it is important not to get fixated on the notion that “the  component will always be proportional to the cosine of .”
The symbol  is just a convenient one to use for a generic angle. There are four sections in this chapter, and in every one there is a 

 used with a different meaning. When in doubt, just draw the appropriate right triangle and remember from your trigonometry
classes which side goes with the sine, and which with the cosine (remember SOHCAHTOA!).
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For the problems that we are going to study in this chapter, the idea is to break up all the forces involved into components along
properly-chosen coordinate axes, then add all the components along any given direction, and apply  along that
direction: that is to say, we will write (and eventually solve) the equations

We can show that Eqs. ( ) must hold for any choice of orthogonal  and  axes, based on the fact that we know 
holds along one particular direction, namely, the direction common to  and , and the fact that we have defined the projection
procedure to be the same for any kind of vector. Figure  shows how this works. Along the dashed line you just have the
situation that is by now familiar to us from one-dimensional problems, where  lies along  (assumed here to be the net force), and

. However, in the figure I have chosen the axes to make an angle  with this direction. Then, if you look at the
projections of  and  along the  axis, you will find

and similarly, . In words, each component of the force vector is responsible for only the corresponding component of the
acceleration. A force in the  direction does not cause any acceleration in the  direction, and vice-versa.

Figure : If you take the familiar, one-dimensional (see the black dashed line) form of , and project it onto
orthogonal, rotated axes, you get the general two-dimensional case, showing that each orthogonal component of the acceleration is
proportional, via the mass , to only the corresponding component of the force (Eqs. ( )).

In the rest of the chapter we shall see how to use Eqs. ( ) in a number of examples. One thing I can anticipate is that, in
general, we will try to choose our axes (unlike in Figure  above) so that one of them does coincide with the direction of the
acceleration, so the motion along the other direction is either nonexistent (  = 0) or trivial (constant velocity).

This page titled 16.1: Dealing with Forces in Two Dimensions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Christopher Duston, Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the
LibreTexts platform.
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16.2: Motion in Two Dimensions and Projectile Motion

Motion in Two Dimensions and Projectile Motion
So far, we have studied motion under constant acceleration in one-dimension only. In this case, an object is restricted to move in a
line (i.e. only along the x or y-directions), and the kinematic equations describe how the object moves. In this section, we will start
looking at objects moving in two dimensions. A primary application of this topic is the study of objects moving in the gravitational
field, which is called projectile motion.

Motion in Two Dimensions

How do we know when an object is moving in one dimension or two dimensions? The first answer to this is that it might depend on
the coordinate system we choose. For instance, consider a car traveling at a constant speed in the north-west direction. In the
coordinate system with x along east and y along north, the car is moving in two dimensions. However, if we pick a coordinate
system which is tilted 45  with respect to the earth-north one, we can describe this car as only moving in one dimension.

However, we don't always have this choice. A better answer is to consider the vectors which describe the object's motion, , 
, and . If an object has either velocity or acceleration in more then one direction, then the object will move in more than

one direction. Notice we have to consider both velocity and acceleration. For example, if we have an object with initial velocity in
the x-direction, but acceleration in the y: 

 
then although the motion is initially just along the x-axis, the object will start to accelerate along the y-axis almost immediately. At
some point later, the velocity will be 

 
where  is the velocity after undergoing the acceleration  for some time interval.

Constant Acceleration in Two Directions

If you recall, in order to derive the kinematic equations in one-dimension, we started with the basic definition 

 
and integrated twice with respect to time (review those equations now if you don't remember them!). That required us to add in the
initial values  for the position and  for the velocity. We didn't include anything about the y-direction because we assumed the
acceleration in the y-direction was zero. But if that's not true, we would simply have 

 
and we could repeat the same analysis that we performed in the y-direction. In the end, we would end up with two copies of the
kinematic equations, one in the x-direction and one in the y-direction,

A key feature here is that the two directions are connected by the time and nothing else. Each direction has its own set of initial and
final position, velocity, and acceleration, but they are parametrized by time. This means that finding the time interval under
consideration is often the best way to solve any particular problem.

∘
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Projectile Motion

A particular case of two-dimensional motion under constant acceleration is projectile motion. In this case, we want to study the
motion of an object which has only a single force acting on it, that of gravity. Often, this is an object which we throw, or propel into
the air in some way. Since we usually don't know anything how how it is thrown (by hand? by canon? by gun?), we start our
analysis right after it is in motion, when only gravity is acting on it.

If gravity is the only force acting on the object, we can say right away what the magnitude of the acceleration is,  m/s
. It is also most convienient to set the coordinate system so that the y-direction is downwards, so that 

 
In other words, the acceleration in the x-direction is zero, . This will greatly simplify the kinematic equations, but we have
to be a little careful - just because there is no acceleration in the x-direction does not mean there is no motion in the x-direction. If
you throw an object into the air at an arbitrary angle, it will move in both the x- and y-directions, even though it will only
accelerate downwards.

1. Resolve the motion into horizontal and vertical components along the x- and y-axes. The magnitudes of the components of
displacement  along these axes are x and y. The magnitudes of the components of velocity  are v  = vcos  and v  = vsin

, where v is the magnitude of the velocity and  is its direction relative to the horizontal, as shown in Figure .
2. Treat the motion as two independent one-dimensional motions: one horizontal and the other vertical. Use the kinematic

equations for horizontal and vertical motion presented earlier.
3. Solve for the unknowns in the two separate motions: one horizontal and one vertical. Note that the only common variable

between the motions is time t. The problem-solving procedures here are the same as those for one-dimensional kinematics
and are illustrated in the following solved examples.

4. Recombine quantities in the horizontal and vertical directions to find the total displacement  and velocity . Solve for the
magnitude and direction of the displacement and velocity using 

where  is the direction of the displacement .

a = g = 9.81
2

= −g .a⃗  ŷ (16.2.6)

= 0ax

 Problem-Solving Strategy: Projectile Motion
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16.3: Inclined Planes
Another simple example of 2D motion is a block sliding down a plane. Now in this case, the block is not actually moving in 2D
motion, since it's just moving in a straight line down the plane, but the forces are acting in 2 dimensions, which is what we have to
understand to understand the motion. So here we will consider an inclined plane making an angle  with the horizontal was .
This problem is going to introduce two kinds of friction as well, kinetic friction , which you get when an object is in motion,
and static friction , which you get when an object is stuck in place. We will study friction more in Chapter 18 - for now just use
your intuition about friction "slowing objects down", and "preventing them from moving".

Figure : A block sliding down an inclined plane. The corresponding free-body diagram is shown on the right.

Figure  above shows, on the left, a block sliding down an inclined plane and all the forces acting on it. These are more

clearly seen on the free-body diagram on the right. I have labeled all the forces using the  convention introduced back in 14.1

(so, for instance,  is the force of kinetic friction exerted by the surface on the block); however, later on, for algebraic
manipulations, and especially where  and  components need to be taken, I will drop the “by, on” subscripts, and just let the
“type” superscript identify the force in question.

The diagrams also show the coordinate axes I have chosen: the  axis is along the plane, and the  is perpendicular to it. The
advantage of this choice is obvious: the motion is entirely along one of the axes, and two of the forces (the normal force and the
friction) already lie along the axes. The only force that does not is the block’s weight (that is, the force of gravity), so we need to
decompose it into its  and  components. For this, we can make use of the fact, which follows from basic geometry, that the angle
of the incline, , is also the angle between the vector  and the negative  axis. This means we have

Equations ( ) also show another convention I will adopt from now, namely, that whenever the symbol for a vector is shown
without an arrow on top or an  or  subscript, it will be understood to refer to the magnitude of the vector, which is always a
positive number by definition.

Newton’s second law, as given by equations (16.1.2) applied to this system, then reads:

for the motion along the plane, and

for the direction perpendicular to the plane. Of course, since there is no motion in this direction,  is zero. This gives us
immediately the value of the normal force:

since . Now including our force of kinetic friction , along with  in Equation ( ), we get

We can eliminate the mass to obtain finally
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which is the desired result. In the absence of friction (  = 0) this gives , a result you might have seen already.

Of course, we know from experience that what happens when  is very small is that the block does not slide: it is held in place by
the force of static friction. The diagram for such a situation looks the same as Figure , except that  = 0, the force of friction
is  instead of , and of course its magnitude must match that of the  component of gravity. Equation ( ) then becomes

It turns out that the force of static friction  does not have a fixed value - it just has a maximum value, over which the object starts
to move. In this case we can find this maximum value by looking at the previous equation; as long as the static friction obeys

the block will remain stationary. Again, we will look at this result more carefully in Chapter 18.

What if we send the block sliding up the plane instead? The acceleration would still be pointing down (since the object would be
slowing down all the while), but now the force of kinetic friction would point in the direction opposite that indicated in Figure 

, since it always must oppose the motion. If you go through the same analysis I carried out above, you will get that 
 in that case, since now friction and gravity are working together to slow the motion down.

This page titled 16.3: Inclined Planes is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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16.4: Examples

The range of a projectile which starts and ends at the same altitude can be found with 

 
where  is the initial speed and  is the launch angle.

1. Derive this formula from the kinematic equations for projectile motion.
2. Find the angle at which this range will be maximized. Hint: Use the trig identify

During a fireworks display, a shell is shot into the air with an initial speed of 70.0 m/s at an angle of 75.0° above the horizontal,
as illustrated in Figure . The fuse is timed to ignite the shell just as it reaches its highest point above the ground. (a)
Calculate the height at which the shell explodes. (b) How much time passes between the launch of the shell and the explosion?
(c) What is the horizontal displacement of the shell when it explodes? (d) What is the total displacement from the point of
launch to the highest point?

Figure : The trajectory of a fireworks shell. The fuse is set to explode the shell at the highest point in its trajectory, which
is found to be at a height of 233 m and 125 m away horizontally.

Strategy

The motion can be broken into horizontal and vertical motions in which a  = 0 and a  = −g. We can then define x  and y  to be
zero and solve for the desired quantities.

Solution

a. By “height” we mean the altitude or vertical position y above the starting point. The highest point in any trajectory, called
the apex, is reached when v  = 0. Since we know the initial and final velocities, as well as the initial position, we use the
following equation to find y: Because y  and v  are both zero, the equation simplifies to 

Solving for y gives Now we must find v , the component of the initial velocity in the y direction.
It is given by v  = v  sin , where v  is the initial velocity of 70.0 m/s and  = 75° is the initial angle. Thus 

and y is Thus, we have Note that because

up is positive, the initial vertical velocity is positive, as is the maximum height, but the acceleration resulting from gravity
is negative. Note also that the maximum height depends only on the vertical component of the initial velocity, so that any
projectile with a 67.6-m/s initial vertical component of velocity reaches a maximum height of 233 m (neglecting air
resistance). The numbers in this example are reasonable for large fireworks displays, the shells of which do reach such
heights before exploding. In practice, air resistance is not completely negligible, so the initial velocity would have to be
somewhat larger than that given to reach the same height.

 Whiteboard Problem : The Range Formula16.4.1
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b. As in many physics problems, there is more than one way to solve for the time the projectile reaches its highest point. In
this case, the easiest method is to use v  = v  − gt. Because v  = 0 at the apex, this equation reduces or 

This time is also reasonable for large fireworks. If you are able to see the launch of

fireworks, notice that several seconds pass before the shell explodes. Another way of finding the time is by using y = y  + 
(v  + v )t. This is left for you as an exercise to complete.

c. Because air resistance is negligible, a  = 0 and the horizontal velocity is constant, as discussed earlier. The horizontal
displacement is the horizontal velocity multiplied by time as given by x = x  + v t, where x  is equal to zero. Thus, 

where v  is the x-component of the velocity, which is given by 
Time t for both motions is the same, so x is 

Horizontal motion is a constant velocity in the absence of air resistance. The horizontal
displacement found here could be useful in keeping the fireworks fragments from falling on spectators. When the shell
explodes, air resistance has a major effect, and many fragments land directly below.

d. The horizontal and vertical components of the displacement were just calculated, so all that is needed here is to find the
magnitude and direction of the displacement at the highest point: 

Note that the angle for the displacement vector is less than the initial angle of launch. To see

why this is, review Figure , which shows the curvature of the trajectory toward the ground level. When solving
Example 4.7(a), the expression we found for y is valid for any projectile motion when air resistance is negligible. Call the

maximum height y = h. Then, This equation defines the maximum height of a projectile above its launch
position and it depends only on the vertical component of the initial velocity.

A rock is thrown horizontally off a cliff 100.0 m high with a velocity of 15.0 m/s. (a) Define the origin of the coordinate
system. (b) Which equation describes the horizontal motion? (c) Which equations describe the vertical motion? (d) What is the
rock’s velocity at the point of impact?

A tennis player wins a match at Arthur Ashe stadium and hits a ball into the stands at 30 m/s and at an angle 45° above the
horizontal (Figure ). On its way down, the ball is caught by a spectator 10 m above the point where the ball was hit. (a)
Calculate the time it takes the tennis ball to reach the spectator. (b) What are the magnitude and direction of the ball’s velocity
at impact?

Figure : The trajectory of a tennis ball hit into the stands.

Strategy

Again, resolving this two-dimensional motion into two independent one-dimensional motions allows us to solve for the desired
quantities. The time a projectile is in the air is governed by its vertical motion alone. Thus, we solve for t first. While the ball is
rising and falling vertically, the horizontal motion continues at a constant velocity. This example asks for the final velocity.
Thus, we recombine the vertical and horizontal results to obtain  at final time t, determined in the first part of the example.

Solution

y 0y y 0 = −gtv0y
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a. While the ball is in the air, it rises and then falls to a final position 10.0 m higher than its starting altitude. We can find the
time for this by using the third equation in 16.2.5: If we take the initial position y  to be zero, then
the final position is y = 10 m. The initial vertical velocity is the vertical component of the initial velocity: 

. Substituting into our kinematic equation for y gives us 
Rearranging terms gives a quadratic equation in t: 

Use of the quadratic formula yields t = 3.79 s and t = 0.54 s. Since the ball
is at a height of 10 m at two times during its trajectory—once on the way up and once on the way down—we take the
longer solution for the time it takes the ball to reach the spectator: The time for projectile motion is determined
completely by the vertical motion. Thus, any projectile that has an initial vertical velocity of 21.2 m/s and lands 10.0 m
above its starting altitude spends 3.79 s in the air.

b. We can find the final horizontal and vertical velocities v  and v  with the use of the result from (a). Then, we can combine
them to find the magnitude of the total velocity vector  and the angle  it makes with the horizontal. Since v  is constant,
we can solve for it at any horizontal location. We choose the starting point because we know both the initial velocity and
the initial angle. Therefore, . The final vertical velocity is given by the
last equation in 16.2.5: Since  was found in part (a) to be 21.2 m/s, we have 

The magnitude of the final velocity  is 

The direction  is found using the inverse tangent: 

Significance

a. As mentioned earlier, the time for projectile motion is determined completely by the vertical motion. Thus, any projectile
that has an initial vertical velocity of 21.2 m/s and lands 10.0 m above its starting altitude spends 3.79 s in the air.

b. The negative angle means the velocity is 53.1° below the horizontal at the point of impact. This result is consistent with the
fact that the ball is impacting at a point on the other side of the apex of the trajectory and therefore has a negative y
component of the velocity. The magnitude of the velocity is less than the magnitude of the initial velocity we expect since it
is impacting 10.0 m above the launch elevation.

A golfer finds himself in two different situations on different holes. On the second hole he is 120 m from the green and wants
to hit the ball 90 m and let it run onto the green. He angles the shot low to the ground at 30° to the horizontal to let the ball roll
after impact. On the fourth hole he is 90 m from the green and wants to let the ball drop with a minimum amount of rolling
after impact. Here, he angles the shot at 70° to the horizontal to minimize rolling after impact. Both shots are hit and impacted
on a level surface. (a) What is the initial speed of the ball at the second hole? (b) What is the initial speed of the ball at the
fourth hole? (c) Write the trajectory equation for both cases. (d) Graph the trajectories.

Strategy

We see that the range equation (see example problem ) has the initial speed and angle, so we can solve for the initial
speed for both (a) and (b). When we have the initial speed, we can use this value to write the trajectory equation.

Solution

a. 

b. 

c. Second hole: Fourth hole: 

d. Using a graphing utility, we can compare the two trajectories, which are shown in Figure .

y = + t − g .y0 v0y
1
2

t2
0

= sin = (30.0 m/s) sin = 21.2 m/s.v0y v0 θ0 45o

10.0 m = (21.2 m/s)t −(4.90 m/ ) .s2 t2

(4.90 m/ ) −(21.2 m/s)t +10.0 m = 0.s2 t2

t = 3.79 s.

x y
v ⃗  θ x

= cos = (30 m/s) cos = 21.2 m/s.vx v0 θ0 45o

= −gt.vy v0y v0y

= 21.2 m/s −(9.8 m/ )(3.79s) = −15.9 m/s.vy s2 v ⃗ 

v = = = 26.5 m/s.+v2
x v2

y

− −−−−−
√ (21.2 m/s +(−15.9 m/s)2 )2− −−−−−−−−−−−−−−−−−−−−−

√ θv

= ( ) = ( ) = − .θv tan−1
vy

vx

tan−1 21.2

−15.9
53.1o

 Example : Comparing golf shots16.4.5
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Figure : Two trajectories of a golf ball with a range of 90 m. The impact points of both are at the same level as the
launch point.

Significance

The initial speed for the shot at 70° is greater than the initial speed of the shot at 30°. Note from Figure  that two
projectiles launched at the same speed but at different angles have the same range if the launch angles add to 90°. The launch
angles in this example add to give a number greater than 90°. Thus, the shot at 70° has to have a greater launch speed to reach
90 m, otherwise it would land at a shorter distance.

If the two golf shots in Example 4.9 were launched at the same speed, which shot would have the greatest range?

At PhET Explorations: Projectile Motion, learn about projectile motion in terms of the launch angle and initial velocity.
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CHAPTER OVERVIEW

17: N4) Motion from Forces
17.1: Solving Problems with Newton's Laws (Part 1)
17.2: Solving Problems with Newton's Laws (Part 2)
17.3: Examples

In this chapter, we are going to talk about how to determine the motion of an object from the forces that act on that object. This is a
combination of dynamics (forces), and kinematics (acceleration, velocity, and position). This process is generally the primary thing
we are interested in as physicists - both why things move, and how they move.

The first, and most important thing, to understand is the two sides of Newton's second law, . The left hand side is the
addition of all the forces, and the right hand side is simply the mass times the acceleration. You need both sides in order to
determine the motion of the object - typically the best strategy for solving these problems is to carefully write down everything you
know about the forces (which forces, which directions), and everything you know about the accelerations (do you know anything?).
Then it is a matter of solving the set of equations in front of you, acknowledging that they generally will be a set - that is, multiple
equations and multiple unknowns.

There a few things to watch out for, and a few new ideas we will have to develop:

The Normal Force: This is a contact force between surfaces, like a block and the floor. The word normal here does not mean
"usual", but means normal in the mathematical sense - that is, perpendicular. It's the force that prevents blocks from going through
floors, or you hand from going through the wall when you push on it. This is not a fundamental force, like gravity or electric, but
just an effective force that actually arises from the electromagnetic interactions between the atoms in the solid.

Tension in Ropes: We will be dealing a lot with ropes in this part of the class. At a basic level, ropes are just a way to transmit
pulling forces (since you cannot push things with ropes!). The force that ropes transmit is called "tension", but even that is a more
general word that can refer to other kinds of forces as well. The key aspect of ropes in this class is that they will be ideal - massless
and inelastic. Among other things, this means that the tension the rope delivers is constant over it's length. So if a rope is apply a 50
N force to an object, that tension in that rope is 50 N.

Pulleys: Pulleys are nice objects to have when you have ropes around, because they allow you to change the direction of the forces
in the ropes. In this class, we were generally only deal with ideal pulleys - massless and frictionless. Specifically, what that means
is that pulleys can only change the direction of the tension in ropes, they cannot change the magnitude of the tension.

17: N4) Motion from Forces is shared under a CC BY-SA license and was authored, remixed, and/or curated by LibreTexts.
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17.1: Solving Problems with Newton's Laws (Part 1)
Success in problem solving is necessary to understand and apply physical principles. We developed a pattern of analyzing and
setting up the solutions to problems involving Newton’s laws in Newton’s Laws of Motion; in this chapter, we continue to discuss
these strategies and apply a step-by-step process.

Problem-Solving Strategies
We follow here the basics of problem solving presented earlier in this text, but we emphasize specific strategies that are useful in
applying Newton’s laws of motion. Once you identify the physical principles involved in the problem and determine that they
include Newton’s laws of motion, you can apply these steps to find a solution. These techniques also reinforce concepts that are
useful in many other areas of physics. Many problem-solving strategies are stated outright in the worked examples, so the
following techniques should reinforce skills you have already begun to develop.

1. Identify the physical principles involved by listing the givens and the quantities to be calculated.
2. Sketch the situation, using arrows to represent all forces.
3. Determine the system of interest, and draw a free body diagram.
4. Apply Newton’s second law to solve the problem. If necessary, apply appropriate kinematic equations from the chapter on

motion along a straight line.
5. Check the solution to see whether it is reasonable.

Let’s apply this problem-solving strategy to the challenge of lifting a grand piano into a second-story apartment. Once we have
determined that Newton’s laws of motion are involved (if the problem involves forces), it is particularly important to draw a careful
sketch of the situation. Such a sketch is shown in Figure . Then, as in Figure , we can represent all forces with
arrows. Whenever sufficient information exists, it is best to label these arrows carefully and make the length and direction of each
correspond to the represented force.

Figure : (a) A grand piano is being lifted to a second-story apartment. (b) Arrows are used to represent all forces: 
is the tension in the rope above the piano,  is the force that the piano exerts on the rope, and  is the weight of the piano.
All other forces, such as the nudge of a breeze, are assumed to be negligible. (c) Suppose we are given the piano’s mass and
asked to find the tension in the rope. We then define the system of interest as shown and draw a free-body diagram. Now 

 is no longer shown, because it is not a force acting on the system of interest; rather,  acts on the outside world. (d)
Showing only the arrows, the head-to-tail method of addition is used. It is apparent that if the piano is stationary,  = .

As with most problems, we next need to identify what needs to be determined and what is known or can be inferred from the
problem as stated, that is, make a list of knowns and unknowns. It is particularly crucial to identify the system of interest, since
Newton’s second law involves only external forces. We can then determine which forces are external and which are internal, a
necessary step to employ Newton’s second law. (See Figure .) Newton’s third law may be used to identify whether forces
are exerted between components of a system (internal) or between the system and something outside (external). As illustrated in
Newton’s Laws of Motion, the system of interest depends on the question we need to answer. Only forces are shown in free-body

 Problem-Solving Strategy: Applying Newton’s Laws of Motion
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diagrams, not acceleration or velocity. We have drawn several free-body diagrams in previous worked examples. Figure 
shows a free-body diagram for the system of interest. Note that no internal forces are shown in a free-body diagram.

Once a free-body diagram is drawn, we apply Newton’s second law. This is done in Figure  for a particular situation. In
general, once external forces are clearly identified in free-body diagrams, it should be a straightforward task to put them into
equation form and solve for the unknown, as done in all previous examples. If the problem is one-dimensional—that is, if all forces
are parallel—then the forces can be handled algebraically. If the problem is two-dimensional, then it must be broken down into a
pair of one-dimensional problems. We do this by projecting the force vectors onto a set of axes chosen for convenience. As seen in
previous examples, the choice of axes can simplify the problem. For example, when an incline is involved, a set of axes with one
axis parallel to the incline and one perpendicular to it is most convenient. It is almost always convenient to make one axis parallel
to the direction of motion, if this is known. Generally, just write Newton’s second law in components along the different directions.
Then, you have the following equations:

(If, for example, the system is accelerating horizontally, then you can then set ay = 0.) We need this information to determine
unknown forces acting on a system.

As always, we must check the solution. In some cases, it is easy to tell whether the solution is reasonable. For example, it is
reasonable to find that friction causes an object to slide down an incline more slowly than when no friction exists. In practice,
intuition develops gradually through problem solving; with experience, it becomes progressively easier to judge whether an answer
is reasonable. Another way to check a solution is to check the units. If we are solving for force and end up with units of millimeters
per second, then we have made a mistake.

There are many interesting applications of Newton’s laws of motion, a few more of which are presented in this section. These serve
also to illustrate some further subtleties of physics and to help build problem-solving skills. We look first at problems involving
particle equilibrium, which make use of Newton’s first law, and then consider particle acceleration, which involves Newton’s
second law.

Particle Equilibrium
Recall that a particle in equilibrium is one for which the external forces are balanced. Static equilibrium involves objects at rest,
and dynamic equilibrium involves objects in motion without acceleration, but it is important to remember that these conditions are
relative. For example, an object may be at rest when viewed from our frame of reference, but the same object would appear to be in
motion when viewed by someone moving at a constant velocity. We now make use of the knowledge attained in Newton’s Laws of
Motion, regarding the different types of forces and the use of free-body diagrams, to solve additional problems in particle
equilibrium.

Consider the traffic light (mass of 15.0 kg) suspended from two wires as shown in Figure . Find the tension in each wire,
neglecting the masses of the wires.

17.1.1c

17.1.1d

∑ = m , ∑ = m .Fx ax Fy ay (17.1.1)

 Example : Different Tensions at Different Angles17.1.1
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Figure : A traffic light is suspended from two wires. (b) Some of the forces involved. (c) Only forces acting on
the system are shown here. The free-body diagram for the traffic light is also shown. (d) The forces projected onto

vertical (y) and horizontal (x) axes. The horizontal components of the tensions must cancel, and the sum of the vertical
components of the tensions must equal the weight of the traffic light. (e) The free-body diagram shows the vertical and

horizontal forces acting on the traffic light.

Strategy

The system of interest is the traffic light, and its free-body diagram is shown in Figure . The three forces involved are
not parallel, and so they must be projected onto a coordinate system. The most convenient coordinate system has one axis
vertical and one horizontal, and the vector projections on it are shown in Figure . There are two unknowns in this
problem (T  and T ), so two equations are needed to find them. These two equations come from applying Newton’s second law
along the vertical and horizontal axes, noting that the net external force is zero along each axis because acceleration is zero.

Solution
First consider the horizontal or x-axis:

Thus, as you might expect,

This give us the following relationship:

Thus,

Note that T  and T  are not equal in this case because the angles on either side are not equal. It is reasonable that T  ends up
being greater than T  because it is exerted more vertically than T .

Now consider the force components along the vertical or y-axis:

This implies

Substituting the expressions for the vertical components gives

17.1.2

17.1.2c

17.1.2d

1 2

= − = 0.Fnetx T2x T1x (17.1.2)

= .T1x T2x (17.1.3)
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There are two unknowns in this equation, but substituting the expression for T  in terms of T  reduces this to one equation with
one unknown:

which yields

Solving this last equation gives the magnitude of T  to be

Finally, we find the magnitude of T  by using the relationship between them, T  = 1.225 T , found above. Thus we obtain

Significance

Both tensions would be larger if both wires were more horizontal, and they will be equal if and only if the angles on either side
are the same (as they were in the earlier example of a tightrope walker in Newton’s Laws of Motion.)

Two tugboats push on a barge at different angles (Figure ). The first tugboat exerts a force of 2.7 x 10 N in the x-
direction, and the second tugboat exerts a force of 3.6 x 10  N in the y-direction. The mass of the barge is 5.0 × 10  kg and its
acceleration is observed to be 7.5 x 10  m/s  in the direction shown. What is the drag force of the water on the barge resisting
the motion? (Note: Drag force is a frictional force exerted by fluids, such as air or water. The drag force opposes the motion of
the object. Since the barge is flat bottomed, we can assume that the drag force is in the direction opposite of motion of the
barge.)

Figure : (a) A view from above of two tugboats pushing on a barge. (b) The free-body diagram for the ship
contains only forces acting in the plane of the water. It omits the two vertical forces—the weight of the barge and the

buoyant force of the water supporting it cancel and are not shown. Note that  is the total applied force of the
tugboats.

Strategy

The directions and magnitudes of acceleration and the applied forces are given in Figure . We define the total force of
the tugboats on the barge as  so that

The drag of the water  is in the direction opposite to the direction of motion of the boat; this force thus works against ,
as shown in the free-body diagram in Figure . The system of interest here is the barge, since the forces on it are given as
well as its acceleration. Because the applied forces are perpendicular, the x- and y-axes are in the same direction as  and .
The problem quickly becomes a one-dimensional problem along the direction of , since friction is in the direction opposite
to . Our strategy is to find the magnitude and direction of the net applied force  and then apply Newton’s second law
to solve for the drag force .

2 1

(0.500) +(1.225 )(0.707) = w = mg,T1 T1 (17.1.9)

1.366 = (15.0 kg)(9.80 m/ ).T1 s2 (17.1.10)

1

= 108 N .T1 (17.1.11)

2 2 1

= 132 N .T2 (17.1.12)

 Example : Drag Force on a Barge17.1.2
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Solution
Since F  and F  are perpendicular, we can find the magnitude and direction of  directly. First, the resultant magnitude is
given by the Pythagorean theorem:

The angle is given by

From Newton’s first law, we know this is the same direction as the acceleration. We also know that  is in the opposite
direction of , since it acts to slow down the acceleration. Therefore, the net external force is in the same direction as ,
but its magnitude is slightly less than . The problem is now one-dimensional. From the free-body diagram, we can see that

However, Newton's second law states that

Thus,

This can be solved for the magnitude of the drag force of the water F  in terms of known quantities:

Substituting known values gives

The direction of  has already been determined to be in the direction opposite to , or at an angle of 53° south of west.

Significance

The numbers used in this example are reasonable for a moderately large barge. It is certainly difficult to obtain larger
accelerations with tugboats, and small speeds are desirable to avoid running the barge into the docks. Drag is relatively small
for a well-designed hull at low speeds, consistent with the answer to this example, where F  is less than 1/600th of the weight
of the ship.

In Newton’s Laws of Motion, we discussed the normal force, which is a contact force that acts normal to the surface so that an
object does not have an acceleration perpendicular to the surface. The bathroom scale is an excellent example of a normal force
acting on a body. It provides a quantitative reading of how much it must push upward to support the weight of an object. But can
you predict what you would see on the dial of a bathroom scale if you stood on it during an elevator ride?

Will you see a value greater than your weight when the elevator starts up? What about when the elevator moves upward at a
constant speed? Take a guess before reading the next example.

Figure  shows a 75.0-kg man (weight of about 165 lb.) standing on a bathroom scale in an elevator. Calculate the scale
reading: (a) if the elevator accelerates upward at a rate of 1.20 m/s , and (b) if the elevator moves upward at a constant speed of
1 m/s.

x y F ⃗ 
app

= = = 4.5 × N .F ⃗ 
app +F 2

1 F 2
2

− −−−−−−
√ (2.7 × N +(3.6 × N105 )2 105 )2

− −−−−−−−−−−−−−−−−−−−−−−−−
√ 105 (17.1.14)

θ = ( ) = ( ) = .tan−1 F2

F1
tan−1 3.6 × N105

2.7 × N105
53.1o (17.1.15)
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D
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Figure : (a) The various forces acting when a person stands on a bathroom scale in an elevator. The arrows are
approximately correct for when the elevator is accelerating upward—broken arrows represent forces too large to be

drawn to scale.  is the tension in the supporting cable,  is the weight of the person,  is the weight of the scale, 
is the weight of the elevator,  is the force of the scale on the person,  is the force of the person on the scale,  is
the force of the scale on the floor of the elevator, and  is the force of the floor upward on the scale. (b) The free-body
diagram shows only the external forces acting on the designated system of interest—the person—and is the diagram we

use for the solution of the problem.

Strategy

If the scale at rest is accurate, its reading equals , the magnitude of the force the person exerts downward on it. Figure 
 shows the numerous forces acting on the elevator, scale, and person. It makes this one-dimensional problem look

much more formidable than if the person is chosen to be the system of interest and a free-body diagram is drawn, as in Figure 
. Analysis of the free-body diagram using Newton’s laws can produce answers to both Figure  and (b) of this

example, as well as some other questions that might arise. The only forces acting on the person are his weight  and the
upward force of the scale . According to Newton’s third law,  and  are equal in magnitude and opposite in direction,
so that we need to find F  in order to find what the scale reads. We can do this, as usual, by applying Newton’s second law,

From the free-body diagram, we see that , so we have

Solving for F  gives us an equation with only one unknown:

or, because w = mg, simply

No assumptions were made about the acceleration, so this solution should be valid for a variety of accelerations in addition to
those in this situation. (Note: We are considering the case when the elevator is accelerating upward. If the elevator is
accelerating downward, Newton’s second law becomes F  − w = −ma.)

Solution
a. We have a = 1.20 m/s , so that $F_{s} = (75.0\; kg)(9.80\; m/s^{2}) + (75.0\; kg)(1.20\; m/s^{2})$yielding $F_{s} = 825\;

N \ldotp$

17.1.4

T ⃗  w⃗  w⃗ s w⃗ e

F ⃗ 
s F ⃗ 

p F ⃗ 
t

N ⃗ 

F ⃗ 
p

17.1.4a

17.1.4b 17.1.4a

w⃗ 

F ⃗ 
s F ⃗ 

p F ⃗ 
s

s

= m .F ⃗ 
net a⃗  (17.1.21)

= −F ⃗ 
net F ⃗ 

s w⃗ 

−w = ma.Fs (17.1.22)

s

= ma+w,Fs (17.1.23)

= ma+mg.Fs (17.1.24)

s
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b. Now, what happens when the elevator reaches a constant upward velocity? Will the scale still read more than his weight?
For any constant velocity—up, down, or stationary—acceleration is zero because  and . Thus, $F_{s} = ma
+ mg = 0 + mg$or $F_{s} = (75.0\; kg)(9.80\; m/s^{2}),$which gives $F_{s} = 735\; N \ldotp$

Significance

The scale reading in Figure  is about 185 lb. What would the scale have read if he were stationary? Since his
acceleration would be zero, the force of the scale would be equal to his weight:

Thus, the scale reading in the elevator is greater than his 735-N (165-lb.) weight. This means that the scale is pushing up on the
person with a force greater than his weight, as it must in order to accelerate him upward.

Clearly, the greater the acceleration of the elevator, the greater the scale reading, consistent with what you feel in rapidly
accelerating versus slowly accelerating elevators. In Figure , the scale reading is 735 N, which equals the person’s
weight. This is the case whenever the elevator has a constant velocity—moving up, moving down, or stationary.

Now calculate the scale reading when the elevator accelerates downward at a rate of 1.20 m/s .

The solution to the previous example also applies to an elevator accelerating downward, as mentioned. When an elevator
accelerates downward, a is negative, and the scale reading is less than the weight of the person. If a constant downward velocity is
reached, the scale reading again becomes equal to the person’s weight. If the elevator is in free fall and accelerating downward at g,
then the scale reading is zero and the person appears to be weightless.

Figure  shows a block of mass m  on a frictionless, horizontal surface. It is pulled by a light string that passes over a
frictionless and massless pulley. The other end of the string is connected to a block of mass m . Find the acceleration of the
blocks and the tension in the string in terms of m , m , and g.

Figure : (a) Block 1 is connected by a light string to block 2. (b) The free-body diagrams of the blocks.

Strategy

We draw a free-body diagram for each mass separately, as shown in Figure . Then we analyze each one to find the
required unknowns. The forces on block 1 are the gravitational force, the contact force of the surface, and the tension in the
string. Block 2 is subjected to the gravitational force and the string tension. Newton’s second law applies to each, so we write
two vector equations:

For block 1: 

a = Δv

Δt
Δv= 0

17.1.4a

= ma = 0 = −wFnet Fs (17.1.25)

= w = mgFs (17.1.26)

= (75.0 kg)(9.80 m/ ) = 735 N .Fs s2 (17.1.27)

17.1.4b

 Exercise 17.1.4
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For block 2: .

Notice that  is the same for both blocks. Since the string and the pulley have negligible mass, and since there is no friction in
the pulley, the tension is the same throughout the string. We can now write component equations for each block. All forces are
either horizontal or vertical, so we can use the same horizontal/vertical coordinate system for both objects.

Solution
The component equations follow from the vector equations above. We see that block 1 has the vertical forces balanced, so we
ignore them and write an equation relating the x-components. There are no horizontal forces on block 2, so only the y-equation
is written. We obtain these results:

Block 1 Block 2

When block 1 moves to the right, block 2 travels an equal distance downward; thus, a  = −a . Writing the common
acceleration of the blocks as a = a  = −a , we now have

and

From these two equations, we can express a and T in terms of the masses m  and m , and g:

and

Significance

Notice that the tension in the string is less than the weight of the block hanging from the end of it. A common error in problems
like this is to set T = m g. You can see from the free-body diagram of block 2 that cannot be correct if the block is accelerating.

Calculate the acceleration of the system, and the tension in the string, when the masses are m  = 5.00 kg and m  = 3.00 kg.

A classic problem in physics, similar to the one we just solved, is that of the Atwood machine, which consists of a rope running
over a pulley, with two objects of different mass attached. It is particularly useful in understanding the connection between
force and motion. In Figure , m  = 2.00 kg and m  = 4.00 kg. Consider the pulley to be frictionless. (a) If m  is released,
what will its acceleration be? (b) What is the tension in the string?

+ =T ⃗  w⃗ 2 m2a⃗ 2

T ⃗ 

∑ = mFx ax (17.1.28)

=Tx m1a1x (17.1.29)

∑ = mFy ay (17.1.30)

− g =Ty m2 m2a2y (17.1.31)

1x 2y

1x 2y

T = am1 (17.1.32)

T − g = − a.m2 m2 (17.1.33)

1 2

a = g
m2

+m1 m2
(17.1.34)

T = g.
m1m2

+m1 m2
(17.1.35)

2

 Check Your Understanding 17.1.6

1 2

 Example : Atwood Machine17.1.7

17.1.6 1 2 2
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Figure : An Atwood machine and free-body diagrams for each of the two blocks.

Strategy

We draw a free-body diagram for each mass separately, as shown in the figure. Then we analyze each diagram to find the
required unknowns. This may involve the solution of simultaneous equations. It is also important to note the similarity with the
previous example. As block 2 accelerates with acceleration a  in the downward direction, block 1 accelerates upward with
acceleration a . Thus, a = a  = −a .

Solution
a. We have $For\; m_{1}, \sum F_{y} = T − m_{1}g = m_{1}a \ldotp \quad For\; m_{2}, \sum F_{y} = T − m_{2}g =

−m_{2}a \ldotp$(The negative sign in front of m  a indicates that m  accelerates downward; both blocks accelerate at the
same rate, but in opposite directions.) Solve the two equations simultaneously (subtract them) and the result is $(m_{2} -
m_{1})g = (m_{1} + m_{2})a \ldotp$Solving for a: $a = \frac{m_{2} - m_{1}}{m_{1} + m_{2}}g = \frac{4\; kg - 2\; kg}
{4\; kg + 2\; kg} (9.8\; m/s^{2}) = 3.27\; m/s^{2} \ldotp$

b. Observing the first block, we see that $T − m_{1}g = m_{1}a$ $T = m_{1}(g + a) = (2\; kg)(9.8\; m/s^{2} + 3.27\;
m/s^{2}) = 26.1\; N \ldotp$

Significance

The result for the acceleration given in the solution can be interpreted as the ratio of the unbalanced force on the system, (m  −
m )g, to the total mass of the system, m  + m . We can also use the Atwood machine to measure local gravitational field
strength.

Determine a general formula in terms of m , m  and g for calculating the tension in the string for the Atwood machine shown
above.

This page titled 17.1: Solving Problems with Newton's Laws (Part 1) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Christopher Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts
platform.
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17.2: Solving Problems with Newton's Laws (Part 2)

Newton’s Laws of Motion and Kinematics
Physics is most interesting and most powerful when applied to general situations that involve more than a narrow set of physical
principles. Newton’s laws of motion can also be integrated with other concepts that have been discussed previously in this text to
solve problems of motion. For example, forces produce accelerations, a topic of kinematics, and hence the relevance of earlier
chapters.

When approaching problems that involve various types of forces, acceleration, velocity, and/or position, listing the givens and the
quantities to be calculated will allow you to identify the principles involved. Then, you can refer to the chapters that deal with a
particular topic and solve the problem using strategies outlined in the text. The following worked example illustrates how the
problem-solving strategy given earlier in this chapter, as well as strategies presented in other chapters, is applied to an integrated
concept problem.

A soccer player starts at rest and accelerates forward, reaching a velocity of 8.00 m/s in 2.50 s. (a) What is her average
acceleration? (b) What average force does the ground exert forward on the runner so that she achieves this acceleration? The
player’s mass is 70.0 kg, and air resistance is negligible.

Strategy

To find the answers to this problem, we use the problem-solving strategy given earlier in this chapter. The solutions to each
part of the example illustrate how to apply specific problem-solving steps. In this case, we do not need to use all of the steps.
We simply identify the physical principles, and thus the knowns and unknowns; apply Newton’s second law; and check to see
whether the answer is reasonable.

Solution
a. We are given the initial and final velocities (zero and 8.00 m/s forward); thus, the change in velocity is v = 8.00 m/s . We

are given the elapsed time, so t = 2.50 s. The unknown is acceleration, which can be found from its definition: $a =
\frac{\Delta v}{\Delta t} \ldotp$Substituting the known values yields $a = \frac{8.00\; m/s}{2.50\; s} = 3.20\; m/s^{2}
\ldotp$

b. Here we are asked to find the average force the ground exerts on the runner to produce this acceleration. (Remember that
we are dealing with the force or forces acting on the object of interest.) This is the reaction force to that exerted by the
player backward against the ground, by Newton’s third law. Neglecting air resistance, this would be equal in magnitude to
the net external force on the player, since this force causes her acceleration. Since we now know the player’s acceleration
and are given her mass, we can use Newton’s second law to find the force exerted. That is, $F_{net} = ma
\ldotp$Substituting the known values of m and a gives $F_{net} = (70.0\; kg)(3.20\; m/s^{2}) = 224\; N \ldotp$

This is a reasonable result: The acceleration is attainable for an athlete in good condition. The force is about 50 pounds, a
reasonable average force.

Significance

This example illustrates how to apply problem-solving strategies to situations that include topics from different chapters. The
first step is to identify the physical principles, the knowns, and the unknowns involved in the problem. The second step is to
solve for the unknown, in this case using Newton’s second law. Finally, we check our answer to ensure it is reasonable. These
techniques for integrated concept problems will be useful in applications of physics outside of a physics course, such as in your
profession, in other science disciplines, and in everyday life.

The soccer player stops after completing the play described above, but now notices that the ball is in position to be stolen. If
she now experiences a force of 126 N to attempt to steal the ball, which is 2.00 m away from her, how long will it take her to
get to the ball?

 Example : What Force Must a Soccer Player Exert to Reach Top Speed?17.2.1
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A 1.50-kg model helicopter has a velocity of 5.00  m/s at t = 0. It is accelerated at a constant rate for two seconds (2.00 s)
after which it has a velocity of (6.00  + 12.00 ) m/s. What is the magnitude of the resultant force acting on the helicopter
during this time interval?

Strategy

We can easily set up a coordinate system in which the x-axis (  direction) is horizontal, and the y-axis (  direction) is vertical.
We know that t = 2.00s and v = (6.00  + 12.00  m/s) − (5.00  m/s). From this, we can calculate the acceleration by the
definition; we can then apply Newton’s second law.

Solution
We have

The magnitude of the force is now easily found:

Significance

The original problem was stated in terms of  −  vector components, so we used vector methods. Compare this example with
the previous example.

Find the direction of the resultant for the 1.50-kg model helicopter.

Figure (a) shows a baggage tractor pulling luggage carts from an airplane. The tractor has mass 650.0 kg, while cart A
has mass 250.0 kg and cart B has mass 150.0 kg. The driving force acting for a brief period of time accelerates the system from
rest and acts for 3.00 s. (a) If this driving force is given by F = (820.0t) N, find the speed after 3.00 seconds. (b) What is the
horizontal force acting on the connecting cable between the tractor and cart A at this instant?

Figure : (a) A free-body diagram is shown, which indicates all the external forces on the system consisting of the tractor
and baggage carts for carrying airline luggage. (b) A free-body diagram of the tractor only is shown isolated in order to
calculate the tension in the cable to the carts.

Strategy

A free-body diagram shows the driving force of the tractor, which gives the system its acceleration. We only need to consider
motion in the horizontal direction. The vertical forces balance each other and it is not necessary to consider them. For part b,
we make use of a free-body diagram of the tractor alone to determine the force between it and cart A. This exposes the
coupling force , which is our objective.

Solution

 Example : What Force Acts on a Model Helicopter?17.2.3

ĵ

î ĵ

î ĵ

Δ Δ î ĵ ĵ

a = = = 3.00 +3.50 m/ $$∑ = m
Δv

Δt

(6.00 +12.00 m/s) −(5.00 m/s)î ĵ ĵ

2.00 s
î ĵ s2 F ⃗  a⃗ 

= (1.50 kg)(3.00 +3.50 m/ ) = 4.50 +5.25 N .î ĵ s2 î ĵ

(17.2.1)

F = = 6.91 N .(4.50 N +(5.25 N)2 )2
− −−−−−−−−−−−−−−−−

√ (17.2.2)

î ĵ
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a. $\sum F_{x} = m_{system} a_{x}\; and\; \sum F_{x} = 820.0t,$so $820.0t = (650.0 + 250.0 + 150.0)a$ $a = 0.7809t
\ldotp$Since acceleration is a function of time, we can determine the velocity of the tractor by using a =  with the initial
condition that v  = 0 at t = 0. We integrate from t = 0 to t = 3: $

$
b. Refer to the free-body diagram in Figure (b) $

$

Significance

Since the force varies with time, we must use calculus to solve this problem. Notice how the total mass of the system was
important in solving Figure (a), whereas only the mass of the truck (since it supplied the force) was of use in Figure 

(b).

Recall that v =  and a = . If acceleration is a function of time, we can use the calculus forms developed in 1 Dimension
Kinematics, as shown in this example. However, sometimes acceleration is a function of displacement. In this case, we can derive
an important result from these calculus relations. Solving for dt in each, we have dt =  and dt = . Now, equating these
expressions, we have  = . We can rearrange this to obtain a ds = v dv.

A 10.0-kg mortar shell is fired vertically upward from the ground, with an initial velocity of 50.0 m/s (see Figure ).
Determine the maximum height it will travel if atmospheric resistance is measured as F  = (0.0100 v ) N, where v is the speed
at any instant.

Figure : (a) The mortar fires a shell straight up; we consider the friction force provided by the air. (b) A free-body
diagram is shown which indicates all the forces on the mortar shell.

Strategy

The known force on the mortar shell can be related to its acceleration using the equations of motion. Kinematics can then be
used to relate the mortar shell’s acceleration to its position.

Solution

dv

dt

0

dv

dv∫
3

0

v

= adt

= adt = 0.7809tdt∫
3.00

0

∫
3.00

0

= 0.3905 = 3.51 m/s.t
2]

3.00

0

17.2.7

∑Fx

820.0t−T

(820.0)(3.00) −T

T

= mtractorax

= (0.7805)tmtractor

= (650.0)(0.7805)(3.00)

= 938 N .
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dv
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Initially, y  = 0 and v  = 50.0 m/s. At the maximum height y = h, v = 0. The free-body diagram shows F  to act downward,
because it slows the upward motion of the mortar shell. Thus, we can write

The acceleration depends on v and is therefore variable. Since a = f(v), we can relate a to v using the rearrangement described
above,

We replace ds with dy because we are dealing with the vertical direction,

We now separate the variables (v’s and dv’s on one side; dy on the other):

Thus, h = 114 m.

Significance

Notice the need to apply calculus since the force is not constant, which also means that acceleration is not constant. To make
matters worse, the force depends on v (not t), and so we must use the trick explained prior to the example. The answer for the
height indicates a lower elevation if there were air resistance.

If atmospheric resistance is neglected, find the maximum height for the mortar shell. Is calculus required for this solution?

Explore the forces at work in this simulation when you try to push a filing cabinet. Create an applied force and see the resulting
frictional force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View
a free-body diagram of all the forces (including gravitational and normal forces).

This page titled 17.2: Solving Problems with Newton's Laws (Part 2) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Christopher Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts
platform.
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17.3: Examples

A bartender slides a bottle down his bar to a customer. Unfortunately, he pushes it too hard and the bottle flies off the end of
the bar!  

1. The force of friction between the bar and the bottle is 0.150 N, and the bottle has a mass of 0.520 kg. What is the
acceleration of the bottle as it travels down the bar?

2. If it started with a speed of 2.97 m/s, what is the speed of the bottle as it leaves the bar, 2.80 m away from where the
bartender pushed it?

3. Black Hat from the webcomic XKCD is standing nearby, a distance 1.25 m from the end of the bar (which is 1.15 m tall).
Does the bottle hit him after it slides off the end of the bar?

Consider two blocks which are in contact with each other on a horizontal frictionless surface. The masses of the blocks are  5
kg and 10 kg. The 5 kg block is being pushed with an unknown force , which then pushes on the 10 kg block, making them
both accelerate to the right at 2.00 m/s .

1. How big is the force pushing on the 10 kg block from the 5 kg block?
2. What is the magnitude of the pushing force ?

Consider three blocks which are in contact with each other on a horizontal frictionless surface. From left to right, the masses of
the blocks are 5 kg, 10 kg, and 25 kg. The leftmost block is being pushed to the right with an unknown force , and the
blocks are accelerating to the right at 2.00 m/s .

1. What is the magnitude and direction of the forces the blocks are exerting on each other?
2. What is the magnitude of the pushing force ?

A 40.0 kg crate is sitting on top of a 60.0 kg crate on the floor of an elevator. The elevator floor is exerting an upwards force of
1050 N to the 60.0 kg crate.

1. Determine the magnitude and direction of the acceleration of the crates in the elevator.
2. Determine the magnitude and direction of the contact force that the 40.0 kg crate exerts on the 60.0 kg crate.
3. Determine the magnitude and direction of the contact force that the 60.0 kg crate exerts on the 40.0 kg crate.

This page titled 17.3: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) .
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18.1: Friction (Part 1)

Describe the general characteristics of friction
List the various types of friction
Calculate the magnitude of static and kinetic friction, and use these in problems involving Newton’s laws of motion

When a body is in motion, it has resistance because the body interacts with its surroundings. This resistance is a force of friction.
Friction opposes relative motion between systems in contact but also allows us to move, a concept that becomes obvious if you try
to walk on ice. Friction is a common yet complex force, and its behavior still not completely understood. Still, it is possible to
understand the circumstances in which it behaves.

Static and Kinetic Friction
The basic definition of friction is relatively simple to state.

Friction is a force that opposes relative motion between systems in contact.

There are several forms of friction. One of the simpler characteristics of sliding friction is that it is parallel to the contact surfaces
between systems and is always in a direction that opposes motion or attempted motion of the systems relative to each other. If two
systems are in contact and moving relative to one another, then the friction between them is called kinetic friction. For example,
friction slows a hockey puck sliding on ice. When objects are stationary, static friction can act between them; the static friction is
usually greater than the kinetic friction between two objects.

If two systems are in contact and stationary relative to one another, then the friction between them is called static friction. If
two systems are in contact and moving relative to one another, then the friction between them is called kinetic friction.

Imagine, for example, trying to slide a heavy crate across a concrete floor—you might push very hard on the crate and not move it
at all. This means that the static friction responds to what you do—it increases to be equal to and in the opposite direction of your
push. If you finally push hard enough, the crate seems to slip suddenly and starts to move. Now static friction gives way to kinetic
friction. Once in motion, it is easier to keep it in motion than it was to get it started, indicating that the kinetic frictional force is less
than the static frictional force. If you add mass to the crate, say by placing a box on top of it, you need to push even harder to get it
started and also to keep it moving. Furthermore, if you oiled the concrete you would find it easier to get the crate started and keep it
going (as you might expect).

Figure  is a crude pictorial representation of how friction occurs at the interface between two objects. Close-up inspection of
these surfaces shows them to be rough. Thus, when you push to get an object moving (in this case, a crate), you must raise the
object until it can skip along with just the tips of the surface hitting, breaking off the points, or both. A considerable force can be
resisted by friction with no apparent motion. The harder the surfaces are pushed together (such as if another box is placed on the
crate), the more force is needed to move them. Part of the friction is due to adhesive forces between the surface molecules of the
two objects, which explains the dependence of friction on the nature of the substances. For example, rubber-soled shoes slip less
than those with leather soles. Adhesion varies with substances in contact and is a complicated aspect of surface physics. Once an
object is moving, there are fewer points of contact (fewer molecules adhering), so less force is required to keep the object moving.
At small but nonzero speeds, friction is nearly independent of speed.
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 Static and Kinetic Friction

18.1.1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63265?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/18%3A_N5)_Friction/18.01%3A_Friction_(Part_1)


18.1.2 https://phys.libretexts.org/@go/page/63265

Figure : Frictional forces, such as , always oppose motion or attempted motion between objects in contact. Friction arises
in part because of the roughness of the surfaces in contact, as seen in the expanded view. For the object to move, it must rise to
where the peaks of the top surface can skip along the bottom surface. Thus, a force is required just to set the object in motion. Some
of the peaks will be broken off, also requiring a force to maintain motion. Much of the friction is actually due to attractive forces
between molecules making up the two objects, so that even perfectly smooth surfaces are not friction-free. (In fact, perfectly
smooth, clean surfaces of similar materials would adhere, forming a bond called a “cold weld.”)

The magnitude of the frictional force has two forms: one for static situations (static friction), the other for situations involving
motion (kinetic friction). What follows is an approximate empirical (experimentally determined) model only. These equations for
static and kinetic friction are not vector equations.

The magnitude of static friction f  is

where  is the coefficient of static friction and N is the magnitude of the normal force.

The symbol ≤ means less than or equal to, implying that static friction can have a maximum value of N. Static friction is a
responsive force that increases to be equal and opposite to whatever force is exerted, up to its maximum limit. Once the applied
force exceeds f  (max), the object moves. Thus,

The magnitude of kinetic friction f  is given by

where  is the coefficient of kinetic friction.

Unlike the static friction, kinetic friction only ever takes on a single value, the coefficient of kinetic friction times the normal force.
It is worth noting that since these laws are experimentally determined, they are only approximate instead of universally true laws of
the Universe (like Newton's laws or Universal Gravity). For more information on this, the Wikipedia article on friction gives some
good information.The transition from static friction to kinetic friction is illustrated in Figure 

Figure : (a) The force of friction  between the block and the rough surface opposes the direction of the applied force .
The magnitude of the static friction balances that of the applied force. This is shown in the left side of the graph in (c). (b) At some
point, the magnitude of the applied force is greater than the force of kinetic friction, and the block moves to the right. This is shown
in the right side of the graph. (c) The graph of the frictional force versus the applied force; note that fs (max) > f . This means that 

 > 
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As you can see in Table 6.1, the coefficients of kinetic friction are less than their static counterparts. The approximate values of 
are stated to only one or two digits to indicate the approximate description of friction given by the preceding two equations.

Table 6.1 - Approximate Coefficients of Static and Kinetic Friction

System Static Friction Kinetic Friction 

Rubber on dry concrete 1.0 0.7

Rubber on wet concrete 0.5-0.7 0.3-0.5

Wood on wood 0.5 0.3

Waxed wood on wet snow 0.14 0.1

Metal on wood 0.5 0.3

Steel on steel (dry) 0.6 0.3

Steel on steel (oiled) 0.05 0.03

Teflon on steel 0.04 0.04

Bone lubricated by synovial fluid 0.016 0.015

Shoes on wood 0.9 0.7

Shoes on ice 0.1 0.05

Ice on ice 0.1 0.03

Steel on ice 0.4 0.02

Equation  and Equation  include the dependence of friction on materials and the normal force. The direction of friction
is always opposite that of motion, parallel to the surface between objects, and perpendicular to the normal force. For example, if the
crate you try to push (with a force parallel to the floor) has a mass of 100 kg, then the normal force is equal to its weight,

perpendicular to the floor. If the coefficient of static friction is 0.45, you would have to exert a force parallel to the floor greater
than

to move the crate. Once there is motion, friction is less and the coefficient of kinetic friction might be 0.30, so that a force of only

keeps it moving at a constant speed. If the floor is lubricated, both coefficients are considerably less than they would be without
lubrication. Coefficient of friction is a unitless quantity with a magnitude usually between 0 and 1.0. The actual value depends on
the two surfaces that are in contact.

Many people have experienced the slipperiness of walking on ice. However, many parts of the body, especially the joints, have
much smaller coefficients of friction—often three or four times less than ice. A joint is formed by the ends of two bones, which are
connected by thick tissues. The knee joint is formed by the lower leg bone (the tibia) and the thighbone (the femur). The hip is a
ball (at the end of the femur) and socket (part of the pelvis) joint. The ends of the bones in the joint are covered by cartilage, which
provides a smooth, almost-glassy surface. The joints also produce a fluid (synovial fluid) that reduces friction and wear. A damaged
or arthritic joint can be replaced by an artificial joint (Figure ). These replacements can be made of metals (stainless steel or
titanium) or plastic (polyethylene), also with very small coefficients of friction.

μ

μs μk

18.1.1 18.1.3

w = = mg = (100 kg)(9.80 m/ ) = 980 N ,Fg s2 (18.1.4)

(max) = N = (0.45)(980 N) = 440 Nfs μs (18.1.5)

= N = (0.30)(980 N) = 290 Nfk μk (18.1.6)
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Figure : Artificial knee replacement is a procedure that has been performed for more than 20 years. These post-operative X-
rays show a right knee joint replacement. (credit: Mike Baird)

Natural lubricants include saliva produced in our mouths to aid in the swallowing process, and the slippery mucus found between
organs in the body, allowing them to move freely past each other during heartbeats, during breathing, and when a person moves.
Hospitals and doctor’s clinics commonly use artificial lubricants, such as gels, to reduce friction.

The equations given for static and kinetic friction are empirical laws that describe the behavior of the forces of friction. While these
formulas are very useful for practical purposes, they do not have the status of mathematical statements that represent general
principles (e.g., Newton’s second law). In fact, there are cases for which these equations are not even good approximations. For
instance, neither formula is accurate for lubricated surfaces or for two surfaces siding across each other at high speeds. Unless
specified, we will not be concerned with these exceptions.

A 20.0-kg crate is at rest on a floor as shown in Figure . The coefficient of static friction between the crate and floor is
0.700 and the coefficient of kinetic friction is 0.600. A horizontal force  is applied to the crate. Find the force of friction if (a)

 = 20.0 N, (b)  = 30.0 N, (c)  = 120.0 N, and (d)  = 180.0 N.

Figure : (a) A crate on a horizontal surface is pushed with a force . (b) The forces on the crate. Here,  may represent
either the static or the kinetic frictional force.

Strategy

The free-body diagram of the crate is shown in Figure . We apply Newton’s second law in the horizontal and vertical
directions, including the friction force in opposition to the direction of motion of the box.

Solution
Newton’s second law gives

Here we are using the symbol f to represent the frictional force since we have not yet determined whether the crate is subject to
station friction or kinetic friction. We do this whenever we are unsure what type of friction is acting. Now the weight of the
crate is

18.1.3

 Example 6.10: Static and Kinetic Friction
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which is also equal to N. The maximum force of static friction is therefore (0.700)(196 N) = 137 N. As long as  is less than
137 N, the force of static friction keeps the crate stationary and f  = . Thus, (a) f  = 20.0 N, (b) f  = 30.0 N, and (c) f  = 120.0
N. (d) If  = 180.0 N, the applied force is greater than the maximum force of static friction (137 N), so the crate can no longer
remain at rest. Once the crate is in motion, kinetic friction acts. Then

and the acceleration is

Significance

This example illustrates how we consider friction in a dynamics problem. Notice that static friction has a value that matches
the applied force, until we reach the maximum value of static friction. Also, no motion can occur until the applied force equals
the force of static friction, but the force of kinetic friction will then become smaller.

A block of mass 1.0 kg rests on a horizontal surface. The frictional coefficients for the block and surface are  = 0.50 and 
= 0.40. (a) What is the minimum horizontal force required to move the block? (b) What is the block’s acceleration when this
force is applied?

This page titled 18.1: Friction (Part 1) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

6.4: Friction (Part 1) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-1.
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18.2: Friction (Part 2)

Friction and the Inclined Plane
One situation where friction plays an obvious role is that of an object on a slope. It might be a crate being pushed up a ramp to a
loading dock or a skateboarder coasting down a mountain, but the basic physics is the same. We usually generalize the sloping
surface and call it an inclined plane but then pretend that the surface is flat. Let’s look at an example of analyzing motion on an
inclined plane with friction.

A skier with a mass of 62 kg is sliding down a snowy slope at a constant velocity. Find the coefficient of kinetic friction for the
skier if friction is known to be 45.0 N.

Strategy

The magnitude of kinetic friction is given as 45.0 N. Kinetic friction is related to the normal force N by f  = N; thus, we can
find the coefficient of kinetic friction if we can find the normal force on the skier. The normal force is always perpendicular to
the surface, and since there is no motion perpendicular to the surface, the normal force should equal the component of the
skier’s weight perpendicular to the slope. (See Figure , which repeats a figure from the chapter on Newton’s laws of
motion.)

Figure : The motion of the skier and friction are parallel to the slope, so it is most convenient to project all forces onto a
coordinate system where one axis is parallel to the slope and the other is perpendicular (axes shown to left of skier). The
normal force  is perpendicular to the slope, and friction  is parallel to the slope, but the skier’s weight  has components
along both axes, namely  and . The normal force  is equal in magnitude to , so there is no motion perpendicular to
the slope. However,  is less than  in magnitude, so there is acceleration down the slope (along the x-axis).

We have

Substituting this into our expression for kinetic friction, we obtain

which can now be solved for the coefficient of kinetic friction .

Solution
Solving for  gives

Substituting known values on the right-hand side of the equation,

Significance

 Example : Downhill Skier18.2.1
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This result is a little smaller than the coefficient listed in Table 6.1 for waxed wood on snow, but it is still reasonable since
values of the coefficients of friction can vary greatly. In situations like this, where an object of mass m slides down a slope that
makes an angle  with the horizontal, friction is given by f  =  mg cos . All objects slide down a slope with constant
acceleration under these circumstances.

We have discussed that when an object rests on a horizontal surface, the normal force supporting it is equal in magnitude to its
weight. Furthermore, simple friction is always proportional to the normal force. When an object is not on a horizontal surface, as
with the inclined plane, we must find the force acting on the object that is directed perpendicular to the surface; it is a component of
the weight.

We now derive a useful relationship for calculating coefficient of friction on an inclined plane. Notice that the result applies only
for situations in which the object slides at constant speed down the ramp.

An object slides down an inclined plane at a constant velocity if the net force on the object is zero. We can use this fact to measure
the coefficient of kinetic friction between two objects. As shown in Example , the kinetic friction on a slope is f  =  mg
cos . The component of the weight down the slope is equal to mg sin  (see the free-body diagram in Figure ). These forces
act in opposite directions, so when they have equal magnitude, the acceleration is zero. Writing these out,

Solving for , we find that

Put a coin on a book and tilt it until the coin slides at a constant velocity down the book. You might need to tap the book lightly to
get the coin to move. Measure the angle of tilt relative to the horizontal and find . Note that the coin does not start to slide at all
until an angle greater than  is attained, since the coefficient of static friction is larger than the coefficient of kinetic friction. Think
about how this may affect the value for  and its uncertainty.

Atomic-Scale Explanations of Friction
The simpler aspects of friction dealt with so far are its macroscopic (large-scale) characteristics. Great strides have been made in
the atomic-scale explanation of friction during the past several decades. Researchers are finding that the atomic nature of friction
seems to have several fundamental characteristics. These characteristics not only explain some of the simpler aspects of friction—
they also hold the potential for the development of nearly friction-free environments that could save hundreds of billions of dollars
in energy which is currently being converted (unnecessarily) into heat.

Figure  illustrates one macroscopic characteristic of friction that is explained by microscopic (small-scale) research. We have
noted that friction is proportional to the normal force, but not to the amount of area in contact, a somewhat counterintuitive notion.
When two rough surfaces are in contact, the actual contact area is a tiny fraction of the total area because only high spots touch.
When a greater normal force is exerted, the actual contact area increases, and we find that the friction is proportional to this area.

Figure : Two rough surfaces in contact have a much smaller area of actual contact than their total area. When the normal
force is larger as a result of a larger applied force, the area of actual contact increases, as does friction.

However, the atomic-scale view promises to explain far more than the simpler features of friction. The mechanism for how heat is
generated is now being determined. In other words, why do surfaces get warmer when rubbed? Essentially, atoms are linked with
one another to form lattices. When surfaces rub, the surface atoms adhere and cause atomic lattices to vibrate—essentially creating
sound waves that penetrate the material. The sound waves diminish with distance, and their energy is converted into heat. Chemical
reactions that are related to frictional wear can also occur between atoms and molecules on the surfaces. Figure  shows how
the tip of a probe drawn across another material is deformed by atomic-scale friction. The force needed to drag the tip can be
measured and is found to be related to shear stress, which is nicely described in a Wikipedia article about that.

θ k μk θ
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θ θ 18.2.1
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Figure : The tip of a probe is deformed sideways by frictional force as the probe is dragged across a surface. Measurements
of how the force varies for different materials are yielding fundamental insights into the atomic nature of friction.

Describe a model for friction on a molecular level. Describe matter in terms of molecular motion. The description should
include diagrams to support the description; how the temperature affects the image; what are the differences and similarities
between solid, liquid, and gas particle motion; and how the size and speed of gas molecules relate to everyday objects.

The two blocks of Figure  are attached to each other by a massless string that is wrapped around a frictionless pulley.
When the bottom 4.00-kg block is pulled to the left by the constant force , the top 2.00-kg block slides across it to the right.
Find the magnitude of the force necessary to move the blocks at constant speed. Assume that the coefficient of kinetic friction
between all surfaces is 0.400.

Figure : (a) Each block moves at constant velocity. (b) Free-body diagrams for the blocks.

Strategy

We analyze the motions of the two blocks separately. The top block is subjected to a contact force exerted by the bottom block.
The components of this force are the normal force N  and the frictional force −0.400 N . Other forces on the top block are the
tension T in the string and the weight of the top block itself, 19.6 N. The bottom block is subjected to contact forces due to the
top block and due to the floor. The first contact force has components −N  and 0.400 N , which are simply reaction forces to
the contact forces that the bottom block exerts on the top block. The components of the contact force of the floor are N  and
0.400 N . Other forces on this block are −P, the tension T, and the weight –39.2 N. Solution Since the top block is moving

18.2.3
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horizontally to the right at constant velocity, its acceleration is zero in both the horizontal and the vertical directions. From
Newton’s second law,

Solving for the two unknowns, we obtain N  = 19.6 N and T = 0.40 N  = 7.84 N. The bottom block is also not accelerating, so
the application of Newton’s second law to this block gives

The values of N  and T were found with the first set of equations. When these values are substituted into the second set of
equations, we can determine N  and P. They are

Significance

Understanding what direction in which to draw the friction force is often troublesome. Notice that each friction force labeled in
Figure  acts in the direction opposite the motion of its corresponding block.

A 50.0-kg crate rests on the bed of a truck as shown in Figure . The coefficients of friction between the surfaces are  =
0.300 and  = 0.400. Find the frictional force on the crate when the truck is accelerating forward relative to the ground at (a)
2.00 m/s , and (b) 5.00 m/s .

Figure : (a) A crate rests on the bed of the truck that is accelerating forward. (b) The free-body diagram of the crate.

Strategy

The forces on the crate are its weight and the normal and frictional forces due to contact with the truck bed. We start by
assuming that the crate is not slipping. In this case, the static frictional force fs acts on the crate. Furthermore, the accelerations
of the crate and the truck are equal.

Solution
a. Application of Newton’s second law to the crate, using the reference frame attached to the ground, yields

We can now check the validity of our no-slip assumption. The maximum value of the force of static friction is $\mu_{s} N
= (0.400)(4.90 \times 10^{2}\; N) = 196\; N,$whereas the actual force of static friction that acts when the truck accelerates
forward at 2.00 m/s  is only 1.00 x 10  N. Thus, the assumption of no slipping is valid.

∑ =Fx m2ax (18.2.7)

T − 0.400 = 0N1 (18.2.8)

∑ =Fy m1ay (18.2.9)

− 19.6 N = 0.N1 (18.2.10)

1 1

∑ =Fx m2ax (18.2.11)

T −P + 0.400 + 0.400 = 0N1 N2 (18.2.12)

∑ =Fy m1ay (18.2.13)

− 39.2 N − = 0.N2 N1 (18.2.14)

1

2

= 58.8 N and P = 39.2 N .N2 (18.2.15)
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b. If the crate is to move with the truck when it accelerates at 5.0 m/s , the force of static friction must be $f_{s} = ma_{x} =
(50.0\; kg)(5.00\; m/s^{2}) = 250\; N \ldotp$Since this exceeds the maximum of 196 N, the crate must slip. The frictional
force is therefore kinetic and is $f_{k} = \mu_{k} N = (0.300)(4.90 \times 10^{2}\; N) = 147\; N \ldotp$The horizontal
acceleration of the crate relative to the ground is now found from 

Significance

Relative to the ground, the truck is accelerating forward at 5.0 m/s  and the crate is accelerating forward at 2.94 m/s . Hence
the crate is sliding backward relative to the bed of the truck with an acceleration 2.94 m/s  − 5.00 m/s = −2.06 m/s .

Earlier, we analyzed the situation of a downhill skier moving at constant velocity to determine the coefficient of kinetic
friction. Now let’s do a similar analysis to determine acceleration. The snowboarder of Figure  glides down a slope that
is inclined at  = 13° to the horizontal. The coefficient of kinetic friction between the board and the snow is  = 0.20. What is
the acceleration of the snowboarder?

Figure : (a) A snowboarder glides down a slope inclined at 13° to the horizontal. (b) The free-body diagram of the
snowboarder.

Strategy

The forces acting on the snowboarder are her weight and the contact force of the slope, which has a component normal to the
incline and a component along the incline (force of kinetic friction). Because she moves along the slope, the most convenient
reference frame for analyzing her motion is one with the x-axis along and the y-axis perpendicular to the incline. In this frame,
both the normal and the frictional forces lie along coordinate axes, the components of the weight are mg sin θ along the slope
and mg cos  at right angles into the slope , and the only acceleration is along the x-axis (a = 0).

Solution
We can now apply Newton’s second law to the snowboarder:

From the second equation, N = mg cos . Upon substituting this into the first equation, we find

Significance

Notice from this equation that if  is small enough or  is large enough, a  is negative, that is, the snowboarder slows down.

2

∑Fx

147 N

so ax

= max

= (50.0 kg) ,ax

= 2.94 m/ .s2

2 2

2 2 2
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The snowboarder is now moving down a hill with incline 10.0°. What is the skier’s acceleration?

This page titled 18.2: Friction (Part 2) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

6.5: Friction (Part 2) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-1.
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18.3: More Examples
 

Consider a penguin sitting on a ramp, as shown in the figure on the left. The ramp makes an angle of 15  with respect to the
floor, the mass of the penguin is 45 kg, and the coefficient of static friction between the penguin and the ramp is 0.20.

1. In the figure on the left, will the penguin slide down the ramp or not?
2. Now I tie a rope to the penguin, as shown in the figure on the right. This rope goes over a frictionless, massless pulley. How

hard must I pull on the rope before the penguin just starts to move?

 

Two children are going to race their sleds across a frozen pond. They run towards the pond and jump onto the sleds, and race
for a point 10 m away from their starting point. The first child has a mass of 40 kg, and his sled has a coefficient of friction of
0.023. The second child is less massive (35 kg), but her sled has a larger coefficient of friction, 0.035.

1. Which child will win the race, assuming the only forces acting on them are gravity and the contact force between the ice
and sleds?

2. When whoever wins reaches the finish line, how far behind them is the other?
3. What is each of their speeds at the end of the race?

a. A 1400-kg car, starting from rest, accelerates to a speed of 30 mph in 10 s. What is the force on the car (assumed constant)
over this period of time?

b. Where does this force comes from? That is, what is the (external) object that exerts this force on the car, and what is the
nature of this force?

c. Draw a free-body diagram for the car. Indicate the direction of motion, and the direction of the acceleration.
d. Now assume that the driver, traveling at 30 mph, sees a red light ahead and pushes on the brake pedal. Assume that the

coefficient of static friction between the tires and the road is  = 0.7, and that the wheels don’t “lock”: that is to say, they
continue rolling without slipping on the road as they slow down. What is the car’s minimum stopping distance?

e. Draw a free-body diagram of the car for the situation in (d). Again indicate the direction of motion, and the direction of the
acceleration.

f. Now assume that the driver again wants to stop as in part (c), but he presses on the brakes too hard, so the wheels lock, and,
moreover, the road is wet, and the coefficient of kinetic friction is only  = 0.2. What is the distance the car travels now
before coming to a stop?

Solution

(a) First, let us convert 30 mph to meters per second. There are 1, 609 meters to a mile, and 3, 600 seconds to an hour, so 30
mph = 10 × 1609/3600 m/s = 13.4 m/s.

Next, for constant acceleration, we can use Equation (2.2.4): . Solving for ,

 Whiteboard Problem : Sliding Penguin18.3.1
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Finally, since , we have

(b) The force must be provided by the road, which is the only thing external to the car that is in contact with it. The force is, in
fact, the force of static friction between the car and the tires. As explained in the chapter, this is a reaction force (the tires push
on the road, and the road pushes back). It is static friction because the tires are not slipping relative to the road. In fact, we will
see in Chapter 9 that the point of the tire in contact with the road has an instantaneous velocity of zero (see Figure 9.6.1).

(c) This is the free-body diagram. Note the force of static friction pointing forward, in the direction of the acceleration. The
forces have been drawn to scale.

(d) This is the opposite of part (a): the driver now relies on the force of static friction to slow down the car. The shortest
stopping distance will correspond to the largest (in magnitude) acceleration, as per our old friend, Equation (2.2.10):

In turn, the largest acceleration will correspond to the largest force. As explained in the chapter, the static friction force cannot
exceed  (Equation (6.3.8)). So, we have

since, in this case, we expect the normal force to be equal to the force of gravity. Then

We can substitute this into Equation ( ) with a negative sign, since the acceleration acts in the opposite direction to the
motion (and we are implicitly taking the direction of motion to be positive). Also note that the final velocity we want is zero, 

 = 0. We get

From here, we can solve for :

(e) Here is the free-body diagram. The interesting feature is that the force of static friction has reversed direction relative to
parts (a)–(c). It is also much larger than before. (The forces are again to scale.)

a = = = 1.34 .
Δv

Δt

13.4 m/s

10 s

m

s2

F = ma

F = ma = 1400 kg ×1.34 = 1880 N.
m

s2

− = 2aΔx.v2
f v2

i (18.3.1)
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(f) The math for this part is basically identical to that in part (d). The difference, physically, is that now you are dealing with
the force of kinetic (or “sliding”) friction, and that is always given by  (this is not an upper limit, it’s just what 
is). So we have , and, just as before (but with  replacing ),

This is a huge distance, close to half a football field! If these numbers are accurate, you can see that locking your brakes in the
rain can have some pretty bad consequences.

18.3: More Examples is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston, Merrimack College.

6.6: Examples by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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19.1: Conditions for Static Equilibrium

Identify the physical conditions of static equilibrium.
Draw a free-body diagram for a rigid body acted on by forces.
Explain how the conditions for equilibrium allow us to solve statics problems.

We say that a rigid body is in equilibrium when both its linear and angular acceleration are zero relative to an inertial frame of
reference. This means that a body in equilibrium can be moving, but if so, its linear and angular velocities must be constant. We say
that a rigid body is in static equilibrium when it is at rest in our selected frame of reference. Notice that the distinction between
the state of rest and a state of uniform motion is artificial—that is, an object may be at rest in our selected frame of reference, yet to
an observer moving at constant velocity relative to our frame, the same object appears to be in uniform motion with constant
velocity. Because the motion is relative, what is in static equilibrium to us is in dynamic equilibrium to the moving observer, and
vice versa. Since the laws of physics are identical for all inertial reference frames, in an inertial frame of reference, there is no
distinction between static equilibrium and equilibrium.

According to Newton’s second law of motion, the linear acceleration of a rigid body is caused by a net force acting on it, or

Here, the sum is of all external forces acting on the body, where m is its mass and  is the linear acceleration of its center of
mass (a concept we discussed in Linear Momentum and Collisions on linear momentum and collisions). In equilibrium, the linear
acceleration is zero. If we set the acceleration to zero in Equation , we obtain the following equation:

The first equilibrium condition for the static equilibrium of a rigid body expresses translational equilibrium:

The first equilibrium condition, Equation , is the equilibrium condition for forces, which we encountered when studying
applications of Newton’s laws.

This vector equation is equivalent to the following three scalar equations for the components of the net force:

Although we have not talked about this yet, there is an analogous formula to Equation  for rotational motion, which looks
like:

That quantity  is the angular acceleration, so this equation says that the sum of all the torques on a body is equal to the moment of
inertia times the angular acceleration. We will pick up on that in the next chapter, right now we just need to know it's like the
acceleration, but for circular motion. In equilibrium, this rotational acceleration is zero. By setting to zero the right-hand side of
Equation , we obtain the second equilibrium condition:

The second equilibrium condition for the static equilibrium of a rigid body expresses rotational equilibrium:
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The second equilibrium condition, Equation , is the equilibrium condition for torques that we encountered when we studied
rotational dynamics. It is worth noting that this equation for equilibrium is generally valid for rotational equilibrium about any axis
of rotation (fixed or otherwise). Again, this vector equation is equivalent to three scalar equations for the vector components of the
net torque:

The second equilibrium condition means that in equilibrium, there is no net external torque to cause rotation about any axis. The
first and second equilibrium conditions are stated in a particular reference frame. The first condition involves only forces and is
therefore independent of the origin of the reference frame. However, the second condition involves torque, which is defined as a
cross product, , where the position vector  with respect to the axis of rotation of the point where the force is
applied enters the equation. Therefore, torque depends on the location of the axis in the reference frame. However, when rotational
and translational equilibrium conditions hold simultaneously in one frame of reference, then they also hold in any other inertial
frame of reference, so that the net torque about any axis of rotation is still zero. The explanation for this is fairly straightforward.

Suppose vector  is the position of the origin of a new inertial frame of reference S′ in the old inertial frame of reference S. From
our study of relative motion, we know that in the new frame of reference S′, the position vector  of the point where the force 
is applied is related to  via the equation

Now, we can sum all torques  of all external forces in a new reference frame, S':

In the final step in this chain of reasoning, we used the fact that in equilibrium in the old frame of reference, S, the first term
vanishes because of Equation  and the second term vanishes because of Equation . Hence, we see that the net torque in
any inertial frame of reference S′ is zero, provided that both conditions for equilibrium hold in an inertial frame of reference S.

The practical implication of this is that when applying equilibrium conditions for a rigid body, we are free to choose any point as
the origin of the reference frame. Our choice of reference frame is dictated by the physical specifics of the problem we are solving.
In one frame of reference, the mathematical form of the equilibrium conditions may be quite complicated, whereas in another
frame, the same conditions may have a simpler mathematical form that is easy to solve. The origin of a selected frame of reference
is called the pivot point.

In the most general case, equilibrium conditions are expressed by the six scalar equations (Equations  and ). For planar
equilibrium problems with rotation about a fixed axis, which we consider in this chapter, we can reduce the number of equations to
three. The standard procedure is to adopt a frame of reference where the z-axis is the axis of rotation. With this choice of axis, the
net torque has only a z-component, all forces that have non-zero torques lie in the xy-plane, and therefore contributions to the net
torque come from only the x- and y-components of external forces. Thus, for planar problems with the axis of rotation
perpendicular to the xy-plane, we have the following three equilibrium conditions for forces and torques:

where the summation is over all N external forces acting on the body and over their torques. In Equation , we simplified the
notation by dropping the subscript z, but we understand here that the summation is over all contributions along the z-axis, which is
the axis of rotation. In Equation , the z-component of torque  from the force  is

where r  is the length of the lever arm of the force and F  is the magnitude of the force (as you saw when we studied Angular
Momentum). The angle  is the angle between vectors  and , measuring from vector  to vector  in the
counterclockwise direction (Figure ). When using Equation , we often compute the magnitude of torque and assign
its sense as either positive (+) or negative (−), depending on the direction of rotation caused by this torque alone. In Equation 
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, net torque is the sum of terms, with each term computed from Equation , and each term must have the correct
sense. Similarly, in Equation , we assign the + sign to force components in the + x-direction and the − sign to components in
the − x-direction. The same rule must be consistently followed in Equation , when computing force components along the
y-axis.

Figure : Torque of a force: (a) When the torque of a force causes counterclockwise rotation about the axis of rotation, we say
that its sense is positive, which means the torque vector is parallel to the axis of rotation. (b) When torque of a force causes
clockwise rotation about the axis, we say that its sense is negative, which means the torque vector is antiparallel to the axis of
rotation.

View this demonstration to see two forces act on a rigid square in two dimensions. At all times, the static equilibrium
conditions given by Equation  through Equation  are satisfied. You can vary magnitudes of the forces and their
lever arms and observe the effect these changes have on the square.

In many equilibrium situations, one of the forces acting on the body is its weight. In free-body diagrams, the weight vector is
attached to the center of gravity of the body. For all practical purposes, the center of gravity is identical to the Center of Mass.
Recall that the CM has a special physical meaning: When an external force is applied to a body at exactly its CM, the body as a
whole undergoes translational motion and such a force does not cause rotation.

When the CM is located off the axis of rotation, a net gravitational torque occurs on an object. Gravitational torque is the torque
caused by weight. This gravitational torque may rotate the object if there is no support present to balance it. The magnitude of the
gravitational torque depends on how far away from the pivot the CM is located. For example, in the case of a tipping truck (Figure 

), the pivot is located on the line where the tires make contact with the road’s surface. If the CM is located high above the
road’s surface, the gravitational torque may be large enough to turn the truck over. Passenger cars with a low-lying CM, close to the
pavement, are more resistant to tipping over than are trucks.

Figure : The distribution of mass affects the position of the center of mass (CM), where the weight vector  is attached. If
the center of gravity is within the area of support, the truck returns to its initial position after tipping [see the left panel in (b)]. But
if the center of gravity lies outside the area of support, the truck turns over [see the right panel in (b)]. Both vehicles in (b) are out
of equilibrium. Notice that the car in (a) is in equilibrium: The low location of its center of gravity makes it hard to tip over.
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If you tilt a box so that one edge remains in contact with the table beneath it, then one edge of the base of support becomes a
pivot. As long as the center of gravity of the box remains over the base of support, gravitational torque rotates the box back
toward its original position of stable equilibrium. When the center of gravity moves outside of the base of support,
gravitational torque rotates the box in the opposite direction, and the box rolls over. View this demonstration to experiment
with stable and unstable positions of a box.

A passenger car with a 2.5-m wheelbase has 52% of its weight on the front wheels on level ground, as illustrated in Figure
12.4. Where is the CM of this car located with respect to the rear axle?

Figure : The weight distribution between the axles of a car. Where is the center of gravity located?

Strategy

We do not know the weight w of the car. All we know is that when the car rests on a level surface, 0.52w pushes down on the
surface at contact points of the front wheels and 0.48w pushes down on the surface at contact points of the rear wheels. Also,
the contact points are separated from each other by the distance d = 2.5 m. At these contact points, the car experiences normal
reaction forces with magnitudes F  = 0.52w and F  = 0.48w on the front and rear axles, respectively. We also know that the car
is an example of a rigid body in equilibrium whose entire weight w acts at its CM. The CM is located somewhere between the
points where the normal reaction forces act, somewhere at a distance x from the point where F  acts. Our task is to find x.
Thus, we identify three forces acting on the body (the car), and we can draw a free-body diagram for the extended rigid body,
as shown in Figure .

Figure : The free-body diagram for the car clearly indicates force vectors acting on the car and distances to the center of
mass (CM). When CM is selected as the pivot point, these distances are lever arms of normal reaction forces. Notice that
vector magnitudes and lever arms do not need to be drawn to scale, but all quantities of relevance must be clearly labeled.

We are almost ready to write down equilibrium conditions Equation  through Equation  for the car, but first we
must decide on the reference frame. Suppose we choose the x-axis along the length of the car, the yaxis vertical, and the z-axis
perpendicular to this xy-plane. With this choice we only need to write Equation  and Equation  because all the y-
components are identically zero. Now we need to decide on the location of the pivot point. We can choose any point as the
location of the axis of rotation (z-axis). Suppose we place the axis of rotation at CM, as indicated in the free-body diagram for
the car. At this point, we are ready to write the equilibrium conditions for the car.

Solution
Each equilibrium condition contains only three terms because there are N = 3 forces acting on the car. The first equilibrium
condition, Equation , reads

This condition is trivially satisfied because when we substitute the data, Equation  becomes +0.52w − w + 0.48w = 0.
The second equilibrium condition, Equation , reads

 Note

 Example 12.1: Center of Gravity of a Car

19.1.3

F R

R
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19.1.4

19.1.9 19.1.11

19.1.9 19.1.11
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where  is the torque of force F ,  is the gravitational torque of force w, and  is the torque of force F . When the pivot is
located at CM, the gravitational torque is identically zero because the lever arm of the weight with respect to an axis that
passes through CM is zero. The lines of action of both normal reaction forces are perpendicular to their lever arms, so in
Equation , we have |sin | = 1 for both forces. From the free-body diagram, we read that torque  causes clockwise
rotation about the pivot at CM, so its sense is negative; and torque  causes counterclockwise rotation about the pivot at CM,
so its sense is positive. With this information, we write the second equilibrium condition as

With the help of the free-body diagram, we identify the force magnitudes F  = 0.48w and F  = 0.52w, and their corresponding
lever arms r  = x and r  = d − x. We can now write the second equilibrium condition, Equation , explicitly in terms of
the unknown distance x:

Here the weight w cancels and we can solve the equation for the unknown position x of the CM. The answer is x = 0.52d =
0.52(2.5 m) = 1.3 m. Solution Choosing the pivot at the position of the front axle does not change the result. The free-body
diagram for this pivot location is presented in Figure 12.6. For this choice of pivot point, the second equilibrium condition is

When we substitute the quantities indicated in the diagram, we obtain

The answer obtained by solving Equation  is, again, x = 0.52d = 1.3 m.

Figure : The equivalent free-body diagram for the car; the pivot is clearly indicated.

Significance

This example shows that when solving static equilibrium problems, we are free to choose the pivot location. For different
choices of the pivot point we have different sets of equilibrium conditions to solve. However, all choices lead to the same
solution to the problem.

Solve Example 12.1 by choosing the pivot at the location of the rear axle.

Explain which one of the following situations satisfies both equilibrium conditions: (a) a tennis ball that does not spin as it
travels in the air; (b) a pelican that is gliding in the air at a constant velocity at one altitude; or (c) a crankshaft in the engine of
a parked car.

A special case of static equilibrium occurs when all external forces on an object act at or along the axis of rotation or when the
spatial extension of the object can be disregarded. In such a case, the object can be effectively treated like a point mass. In this
special case, we need not worry about the second equilibrium condition, Equation , because all torques are identically zero
and the first equilibrium condition (for forces) is the only condition to be satisfied. The free-body diagram and problem-solving
strategy for this special case were outlined in Newton’s Laws of Motion. You will see a typical equilibrium situation involving only
the first equilibrium condition in the next example.

+ + = 0τF τw τR (19.1.14)

τF F τw τR R

19.1.12 θ τF
τR

− + = 0.rFFF rRFR (19.1.15)
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−0.52(d−x)w+0.48xw = 0. (19.1.16)

− w+ = 0.rw rRFR (19.1.17)

−(d−x)w+0.48dw = 0. (19.1.18)
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View this demonstration to see three weights that are connected by strings over pulleys and tied together in a knot. You can
experiment with the weights to see how they affect the equilibrium position of the knot and, at the same time, see the vector-
diagram representation of the first equilibrium condition at work.

A small pan of mass 42.0 g is supported by two strings, as shown in Figure 12.7. The maximum tension that the string can
support is 2.80 N. Mass is added gradually to the pan until one of the strings snaps. Which string is it? How much mass must
be added for this to occur?

Figure : Mass is added gradually to the pan until one of the strings snaps.

Strategy

This mechanical system consisting of strings, masses, and the pan is in static equilibrium. Specifically, the knot that ties the
strings to the pan is in static equilibrium. The knot can be treated as a point; therefore, we need only the first equilibrium
condition. The three forces pulling at the knot are the tension  in the 5.0-cm string, the tension  in the 10.0-cm string, and
the weight  of the pan holding the masses. We adopt a rectangular coordinate system with the y-axis pointing opposite to the
direction of gravity and draw the free-body diagram for the knot (see Figure 12.8). To find the tension components, we must
identify the direction angles  and  that the strings make with the horizontal direction that is the x-axis. As you can see in
Figure 12.7, the strings make two sides of a right triangle. We can use the Pythagorean theorem to solve this triangle, shown in
Figure 12.8, and find the sine and cosine of the angles  and . Then we can resolve the tensions into their rectangular
components, substitute in the first condition for equilibrium (Equation  and Equation ), and solve for the tensions
in the strings. The string with a greater tension will break first.

Figure : Free-body diagram for the knot in Example 12.2.

Solution
The weight w pulling on the knot is due to the mass M of the pan and mass m added to the pan, or w = (M + m)g. With the
help of the free-body diagram in Figure 12.8, we can set up the equilibrium conditions for the knot:

in the x-direction,

 Example 12.2: A Breaking Tension

19.1.6

T ⃗ 
1 T ⃗ 

2

w⃗ 

α1 α2

α1 α2

19.1.9 19.1.10

19.1.7

− + = 0T1x T2x (19.1.19)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63269?pdf


19.1.7 https://phys.libretexts.org/@go/page/63269

n the y-direction,

From the free-body diagram, the magnitudes of components in these equations are

We substitute these components into the equilibrium conditions and simplify. We then obtain two equilibrium equations for the
tensions:

in x-direction,

in y-direction, 

The equilibrium equation for the x-direction tells us that the tension T  in the 5.0-cm string is twice the tension T  in the 10.0-
cm string. Therefore, the shorter string will snap. When we use the first equation to eliminate T  from the second equation, we
obtain the relation between the mass m on the pan and the tension T  in the shorter string:

The string breaks when the tension reaches the critical value of T  = 2.80 N. The preceding equation can be solved for the
critical mass m that breaks the string:

Significance

Suppose that the mechanical system considered in this example is attached to a ceiling inside an elevator going up. As long as
the elevator moves up at a constant speed, the result stays the same because the weight w does not change. If the elevator
moves up with acceleration, the critical mass is smaller because the weight of M + m becomes larger by an apparent weight
due to the acceleration of the elevator. Still, in all cases the shorter string breaks first.

This page titled 19.1: Conditions for Static Equilibrium is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

12.2: Conditions for Static Equilibrium by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.

+ + −w = 0.T1y T2y (19.1.20)
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19.2: Springs
From Wikipedia: A spring is an elastic object that stores mechanical energy. Although real springs can be rather complicated, in
physics we normally deal with idealized springs, which can be modeled relatively easily. In addition, this model is widely
applicable for many other physical interactions, like between molecules or other fundamental particles. In fact, nearly every
interaction in the universe looks like a spring if you consider just small displacements from equilibrium positions. In this section
we will carefully outline how to model the interaction of a spring using forces - the chapter on potential energy has already
discussed modeling the spring as an energy storage device.

A spring has an equilibrium position (see the figure above), at which it will stay until forces are applied to it. If we use a coordinate
system with the origin at the fixed end of the spring, we will call this equilbrium position . When the end of the spring is moved
to a different location , the response force from the spring is linear in the displacement , with a constant of proportionality 

 (the spring constant). This constant of proportionality is different for every spring, but remains constant during all interactions.
The basic observation of linear proportionality is the content of Hooke's Law.

There are several equivalent ways of representing the force mathematically. Using the quantities defined above, we can write the
magnitude as simply

Of course, this doesn't take into account the direction of the force, only the size. Since the direction of the force is opposite of the
displacement (compressed springs push against the compression, whereas stretched springs pull back - this is why the spring force
is often called a restoring force), we need to be a little careful to get that right. One way to do this is to write the component of the
force along the displacement as

Notice the signs of the various quantities (the overall negative sign in particular) in comparison to the figure above. When the
spring is stretched, we have  so  is positive, and the overall force is in the negative-x direction, as expected. When
the spring is compressed,  so  is negative, but the overall negative sign ensures the force is now in the positive
direction, as expected.

Generally, this is the most useful way to write the spring force. However, it is sometimes advantageous to set the equilibrium
position of the spring as the origin of the coordinate system, . In this case, the spring force is simply

You can check yourself that the signs work out the same way as they did in the other expression.

x0

x x − |x0

k

| | = k|x − |.Fsp x0 (19.2.1)

= −k(x − ).Fsp,x x0 (19.2.2)

x > x0 x −x0

x < x0 x −x0

= 0x0

= −kx.Fsp,x (19.2.3)
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It's also possible to write this force as a vector, but we have to be a bit more careful. In cases where the idealized spring model is
expected to be valid, one can write

where  is the equilibrium position of the end of the spring, and  is the current position. However, this might start falling apart
when considering various aspects of "real" springs. For example, if the end of the spring is allowed to rotate, the spring could find
other equilbrium positions at distances  from the origin, but at a different location than the original position. These can all be
dealt with, so long as we understand how to apply the basic model of Hooke's law.

19.2: Springs is shared under a CC BY-SA license and was authored, remixed, and/or curated by Christopher Duston, Merrimack College.

= −k( − ),F ⃗ 
sp r ⃗  r ⃗ 0 (19.2.4)
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19.3: Examples

1. Identify the object to be analyzed. For some systems in equilibrium, it may be necessary to consider more than one object.
Identify all forces acting on the object. Identify the questions you need to answer. Identify the information given in the problem.
In realistic problems, some key information may be implicit in the situation rather than provided explicitly.

2. Set up a free-body diagram for the object. (a) Choose the xy-reference frame for the problem. Draw a free-body diagram for the
object, including only the forces that act on it. When suitable, represent the forces in terms of their components in the chosen
reference frame. As you do this for each force, cross out the original force so that you do not erroneously include the same force
twice in equations. Label all forces—you will need this for correct computations of net forces in the x- and y-directions. For an
unknown force, the direction must be assigned arbitrarily; think of it as a ‘working direction’ or ‘suspected direction.’ The correct
direction is determined by the sign that you obtain in the final solution. A plus sign (+) means that the working direction is the
actual direction. A minus sign (−) means that the actual direction is opposite to the assumed working direction. (b) Choose the
location of the rotation axis; in other words, choose the pivot point with respect to which you will compute torques of acting
forces. On the free-body diagram, indicate the location of the pivot and the lever arms of acting forces—you will need this for
correct computations of torques. In the selection of the pivot, keep in mind that the pivot can be placed anywhere you wish, but
the guiding principle is that the best choice will simplify as much as possible the calculation of the net torque along the rotation
axis.

3. Set up the equations of equilibrium for the object. (a) Use the free-body diagram to write a correct equilibrium condition
Equation 12.2.9 for force components in the x-direction. (b) Use the free-body diagram to write a correct equilibrium condition
Equation 12.2.13 for force components in the y-direction. (c) Use the free-body diagram to write a correct equilibrium condition
Equation 12.2.11 for torques along the axis of rotation. Use Equation 12.2.12 to evaluate torque magnitudes and senses.

4. Simplify and solve the system of equations for equilibrium to obtain unknown quantities. At this point, your work involves
algebra only. Keep in mind that the number of equations must be the same as the number of unknowns. If the number of
unknowns is larger than the number of equations, the problem cannot be solved.

5. Evaluate the expressions for the unknown quantities that you obtained in your solution. Your final answers should have correct
numerical values and correct physical units. If they do not, then use the previous steps to track back a mistake to its origin and
correct it. Also, you may independently check for your numerical answers by shifting the pivot to a different location and solving
the problem again, which is what we did in Example 12.1.

 

Consider the see-saw in the above figure - two masses attached to a massless board, balanced on a point between them.

1. If  = 37.5 cm,  = 113 cm, and  = 15 kg,  what should  be so that this board is balanced?
2. How much force is the balance point acting on the board with?

 

 

 Problem-Solving Strategy: Static Equilibrium

 Whiteboard Problem : Seesaw19.3.1

d1 d2 m1 m2

 Whiteboard Problem : Steel Beam19.3.2
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Consider the steel beam shown in the figure, with a mass of 2450 kg, being held in place by a crane. The angle between the
horizontal and the beam is 15 , and the angle between the axis of the beam and the cable is 63 .

1. What is the tension in the cable, if the length of the beam is 6.5 m?
2. How much force, and in which direction, is the ground acting on the beam with?

Consider a penguin sitting on a ramp, as shown in the figure on the left. The ramp makes an angle of 15  with respect to the floor,
the mass of the penguin is 45 kg, and the coefficient of static friction between the penguin and the ramp is 0.30.

1. If the penguin is not moving, how large is the frictional force acting on it?
2. Now I tie a rope to the penguin, as shown in the figure on the right. This rope goes over a frictionless, massless pulley. How hard

must I pull on the rope before the penguin just starts to move?

 

Consider a penguin sitting on a ramp as shown in the lefthand figure for Whiteboard Problem  (without the rope). This is an
Emperor Penguin, so naturally it has a mass of 45 kg.

1. If the coefficient of static friction between the ramp and the penguin is 0.40, what is the maximum angle the ramp can have if the
penguin is going to remain stationary?

2. If I increase the angle a little bit from part (a) then penguin will start to slide. Say I increase this angle by 10\%, and the
coefficient of kinetic friction between the penguin and the ramp is 0.30, what will the acceleration of the penguin be?

 

∘ ∘

 Whiteboard Problem : Sliding Penguin19.3.3

∘

 Whiteboard Problem : Sliding Penguin Reduex19.3.4

19.3.3

 Whiteboard Problem : Curling for Torque!19.3.5
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A weightlifter is holding a 50.0-lb weight (equivalent to 222.4 N) with his forearm, as shown in the Figure. His forearm is positioned
at  with respect to his upper arm, and supported by the biceps muscle, which causes a torque around the elbow (labeled
``E''). You can assume the tension $T$ on the bicep muscle is directed straight up, opposite the direction of gravity, and you can
ignore the weight of the arm.

1. What tension force is in the bicep muscle? (That is, ``find ''!)
2. What is the magnitude of the force at the elbow joint?
3. In what direction (describe or find an angle!) is the force at the elbow joint acting?

Note: this problem came from the Open Stax textbook University Physics Volume 1, and they solve it there using the
following free body diagram. You are welcome to  do that as well - but do you think that coordinate system is the best choice?

Three masses are attached to a uniform meter stick, as shown in Figure . The mass of the meter stick is 150.0 g and the masses
to the left of the fulcrum are m  = 50.0 g and m  = 75.0 g. Find the mass m3 that balances the system when it is attached at the right
end of the stick, and the normal reaction force at the fulcrum when the system is balanced.

Figure : In a torque balance, a horizontal beam is supported at a fulcrum (indicated by S) and masses are attached to both sides
of the fulcrum. The system is in static equilibrium when the beam does not rotate. It is balanced when the beam remains level.

Strategy

For the arrangement shown in the figure, we identify the following five forces acting on the meter stick:

1. w  = m g is the weight of mass m ;
2. w  = m g is the weight of mass m ;
3. w = mg is the weight of the entire meter stick;
4. w  = m g is the weight of unknown mass m ;
5. F  is the normal reaction force at the support point S.

We choose a frame of reference where the direction of the y-axis is the direction of gravity, the direction of the xaxis is along the
meter stick, and the axis of rotation (the z-axis) is perpendicular to the x-axis and passes through the support point S. In other words,
we choose the pivot at the point where the meter stick touches the support. This is a natural choice for the pivot because this point
does not move as the stick rotates. Now we are ready to set up the free-body diagram for the meter stick. We indicate the pivot and
attach five vectors representing the five forces along the line representing the meter stick, locating the forces with respect to the pivot

θ= 60∘

T

 Example : The Torque Balance19.3.6
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Figure . At this stage, we can identify the lever arms of the five forces given the information provided in the problem. For the
three hanging masses, the problem is explicit about their locations along the stick, but the information about the location of the
weight w is given implicitly. The key word here is “uniform.” We know from our previous studies that the CM of a uniform stick is
located at its midpoint, so this is where we attach the weight w, at the 50-cm mark.

Figure : Free-body diagram for the meter stick. The pivot is chosen at the support point S.

Solution

With Figure  and Figure  for reference, we begin by finding the lever arms of the five forces acting on the stick:

Now we can find the five torques with respect to the chosen pivot:

The second equilibrium condition (equation for the torques) for the meter stick is

When substituting torque values into this equation, we can omit the torques giving zero contributions. In this way the second
equilibrium condition is

Selecting the +y-direction to be parallel to , the first equilibrium condition for the stick is

Substituting the forces, the first equilibrium condition becomes

We solve these equations simultaneously for the unknown values m  and F . In Equation , we cancel the g factor and
rearrange the terms to obtain

To obtain m  we divide both sides by r , so we have

To find the normal reaction force, we rearrange the terms in Equation , converting grams to kilograms:

19.3.2

19.3.2

19.3.1 19.3.2

r1
r2

r

rS

r3

= 30.0 cm+40.0 cm = 70.0 cm

= 40.0 cm

= 50.0 cm−30.0 cm = 20.0 cm

= 0.0 cm (because is attached at the pivot)FS

= 30.0 cm.

τ1

τ2

τ

τS

τ3

=+ sin =+ g (counterclockwise rotation, positive sense)r1w1 90o r1m1

=+ sin =+ g (counterclockwise rotation, positive sense)r2w2 90o r2m2

=+rw sin =+rmg (gravitational torque)90o

= sin = 0 (because = 0 cm)rSFS θS rS

=− sin =− g (counterclockwise rotation, negative sense)r3w3 90o r3m3

+ +τ + + = 0.τ1 τ2 τS τ3 (19.3.1)

+ g+ g+rmg− g= 0.r1m1 r2m2 r3m3 (19.3.2)
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− − −w+ − = 0.w1 w2 FS w3 (19.3.3)

− g− g−mg+ − g= 0.m1 m2 FS m3 (19.3.4)

3 S 19.3.2

= + +rm.r3m3 r1m1 r2m2 (19.3.5)

3 3

m3 = + + m
r1

r3
m1

r2

r3
m2

r

r3

= (50.0 g)+ (75.0 g)+ (150.0 g) = 315.0( ) g≃ 317 g.
70

30

40

30

20

30

2

3

19.3.4

FS = ( + +m+ )gm1 m2 m3

= (50.0+75.0+150.0+316.7)×( kg)×(9.8 m/ ) = 5.8 N .10−3 s2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63354?pdf


19.3.5 https://phys.libretexts.org/@go/page/63354

Significance

Notice that Equation  is independent of the value of g. The torque balance may therefore be used to measure mass, since
variations in g-values on Earth’s surface do not affect these measurements. This is not the case for a spring balance because it
measures the force.

Repeat Example 12.3 using the left end of the meter stick to calculate the torques; that is, by placing the pivot at the left end of the
meter stick.

In the next example, we show how to use the first equilibrium condition (equation for forces) in the vector form given by Equation 12.2.9
and Equation 12.2.10. We present this solution to illustrate the importance of a suitable choice of reference frame. Although all inertial
reference frames are equivalent and numerical solutions obtained in one frame are the same as in any other, an unsuitable choice of
reference frame can make the solution quite lengthy and convoluted, whereas a wise choice of reference frame makes the solution
straightforward. We show this in the equivalent solution to the same problem. This particular example illustrates an application of static
equilibrium to biomechanics.

Repeat Example 12.4 assuming that the forearm is an object of uniform density that weighs 8.896 N.

A uniform ladder is L = 5.0 m long and weighs 400.0 N. The ladder rests against a slippery vertical wall, as shown in Figure .
The inclination angle between the ladder and the rough floor is  = 53°. Find the reaction forces from the floor and from the wall on
the ladder and the coefficient of static friction  at the interface of the ladder with the floor that prevents the ladder from slipping.

Figure  A 5.0-m-long ladder rests against a frictionless wall.

Strategy

We can identify four forces acting on the ladder. The first force is the normal reaction force N from the floor in the upward vertical
direction. The second force is the static friction force f = N directed horizontally along the floor toward the wall—this force
prevents the ladder from slipping. These two forces act on the ladder at its contact point with the floor. The third force is the weight
w of the ladder, attached at its CM located midway between its ends. The fourth force is the normal reaction force F from the wall in
the horizontal direction away from the wall, attached at the contact point with the wall. There are no other forces because the wall is
slippery, which means there is no friction between the wall and the ladder. Based on this analysis, we adopt the frame of reference
with the y-axis in the vertical direction (parallel to the wall) and the x-axis in the horizontal direction (parallel to the floor). In this
frame, each force has either a horizontal component or a vertical component but not both, which simplifies the solution. We select
the pivot at the contact point with the floor. In the free-body diagram for the ladder, we indicate the pivot, all four forces and their
lever arms, and the angles between lever arms and the forces, as shown in Figure . With our choice of the pivot location, there
is no torque either from the normal reaction force N or from the static friction f because they both act at the pivot.

19.3.2

 Exercise 19.3.7

 Exercise 19.3.8

 Example : A Ladder Resting Against a Wall19.3.9
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Figure : Free-body diagram for a ladder resting against a frictionless wall.

Solution

From the free-body diagram, the net force in the x-direction is

the net force in the y-direction is

and the net torque along the rotation axis at the pivot point is

where  is the torque of the weight w and  is the torque of the reaction F. From the free-body diagram, we identify that the lever
arm of the reaction at the wall is r  = L = 5.0 m and the lever arm of the weight is r  =  = 2.5 m. With the help of the free-body
diagram, we identify the angles to be used in Equation 12.2.12 for torques:  = 180° −  for the torque from the reaction force with
the wall, and  = 180° + (90° − ) for the torque due to the weight. Now we are ready to use Equation 12.2.12 to compute torques:

We substitute the torques into Equation  and solve for F :

We obtain the normal reaction force with the floor by solving Equation : N = w = 400.0 N. The magnitude of friction is
obtained by solving Equation : f = F = 150.7 N. The coefficient of static friction is  =  =  = 0.377.

The net force on the ladder at the contact point with the floor is the vector sum of the normal reaction from the floor and the static
friction forces:

Its magnitude is

and its direction is

We should emphasize here two general observations of practical use. First, notice that when we choose a pivot point, there is no
expectation that the system will actually pivot around the chosen point. The ladder in this example is not rotating at all but firmly
stands on the floor; nonetheless, its contact point with the floor is a good choice for the pivot. Second, notice when we use Equation

19.3.7

+f −F = 0 (19.3.6)

+N −w = 0 (19.3.7)

+ = 0.τw τF (19.3.8)

τw τF

F w
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= w sin = w sin( + −β) =− w sin( −β) =− w cosβτw rw θw rw 180o 90o
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2
90o

L

2
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= F sin = F sin( −β) =LF sinβ.τF rF θF rF 180o (19.3.10)

19.3.8

− w cosβ+LF sinβ = 0
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2
(19.3.11)
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2
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12.2.12 for the computation of individual torques, we do not need to resolve the forces into their normal and parallel components
with respect to the direction of the lever arm, and we do not need to consider a sense of the torque. As long as the angle in Equation
12.2.12 is correctly identified—with the help of a free-body diagram—as the angle measured counterclockwise from the direction of
the lever arm to the direction of the force vector, Equation 12.2.12 gives both the magnitude and the sense of the torque. This is
because torque is the vector product of the lever-arm vector crossed with the force vector, and Equation 12.2.12 expresses the
rectangular component of this vector product along the axis of rotation.

Significance

This result is independent of the length of the ladder because L is canceled in the second equilibrium condition, Equation .
No matter how long or short the ladder is, as long as its weight is 400 N and the angle with the floor is 53°, our results hold. But the
ladder will slip if the net torque becomes negative in Equation . This happens for some angles when the coefficient of static
friction is not great enough to prevent the ladder from slipping.

For the situation described in Example 12.5, determine the values of the coefficient  of static friction for which the ladder starts
slipping, given that β is the angle that the ladder makes with the floor.

A swinging door that weighs w = 400.0 N is supported by hinges A and B so that the door can swing about a vertical axis passing
through the hinges Figure . The door has a width of b = 1.00 m, and the door slab has a uniform mass density. The hinges are
placed symmetrically at the door’s edge in such a way that the door’s weight is evenly distributed between them. The hinges are
separated by distance a = 2.00 m. Find the forces on the hinges when the door rests half-open.

Figure : A 400-N swinging vertical door is supported by two hinges attached at points A and B.

Strategy

The forces that the door exerts on its hinges can be found by simply reversing the directions of the forces that the hinges exert on the
door. Hence, our task is to find the forces from the hinges on the door. Three forces act on the door slab: an unknown force  from
hinge A, an unknown force  from hinge B, and the known weight  attached at the center of mass of the door slab. The CM is
located at the geometrical center of the door because the slab has a uniform mass density. We adopt a rectangular frame of reference
with the y-axis along the direction of gravity and the x-axis in the plane of the slab, as shown in panel (a) of Figure , and
resolve all forces into their rectangular components. In this way, we have four unknown component forces: two components of force 

 (A  and A ), and two components of force  (B  and B ). In the free-body diagram, we represent the two forces at the hinges by
their vector components, whose assumed orientations are arbitrary. Because there are four unknowns (A , B , A , and B ), we must
set up four independent equations. One equation is the equilibrium condition for forces in the x-direction. The second equation is the
equilibrium condition for forces in the y-direction. The third equation is the equilibrium condition for torques in rotation about a
hinge. Because the weight is evenly distributed between the hinges, we have the fourth equation, A  = B . To set up the equilibrium
conditions, we draw a free-body diagram and choose the pivot point at the upper hinge, as shown in panel (b) of Figure .
Finally, we solve the equations for the unknown force components and find the forces.

19.3.11

19.3.11

 Exercise 19.3.10
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 Example : Forces on Door Hinges19.3.11
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Figure : (a) Geometry and (b) free-body diagram for the door.

Solution

From the free-body diagram for the door we have the first equilibrium condition for forces:

in the x-direction,  in y-direction, 

We select the pivot at point P (upper hinge, per the free-body diagram) and write the second equilibrium condition for torques in
rotation about point P:

pivot at P:

We use the free-body diagram to find all the terms in this equation:

In evaluating sin , we use the geometry of the triangle shown in part (a) of the figure. Now we substitute these torques into
Equation  and compute B :

pivot at P: 

Therefore the magnitudes of the horizontal component forces are A  = B  = 100.0 N. The forces on the door are

at the upper hinge: at the lower hinge: 

The forces on the hinges are found from Newton’s third law as

on the upper hinge: on the lower hinge: 

Significance

Note that if the problem were formulated without the assumption of the weight being equally distributed between the two hinges, we
wouldn’t be able to solve it because the number of the unknowns would be greater than the number of equations expressing
equilibrium conditions.

Solve the problem in Example 12.6 by taking the pivot position at the center of mass.

A 50-kg person stands 1.5 m away from one end of a uniform 6.0-m-long scaffold of mass 70.0 kg. Find the tensions in the two
vertical ropes supporting the scaffold.

19.3.9
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A 400.0-N sign hangs from the end of a uniform strut. The strut is 4.0 m long and weighs 600.0 N. The strut is supported by a hinge
at the wall and by a cable whose other end is tied to the wall at a point 3.0 m above the left end of the strut. Find the tension in the
supporting cable and the force of the hinge on the strut.

Consider a spring of unknown spring constant. You first want to find out what the spring constant actually is, and then use the spring
to determine the mass of an unknown object. To do this, first you measure the equilibrium length of the spring to be 10 cm. Then,
you put a mass of 5 kg on the end, hang it vertically, and observe that the spring stretches to a total length of 12 cm. What is the
spring constant?

Now that you know the spring constant, you put the unknown mass on the spring and notice that it stretches to a length of 17 cm.
What is the mass of this object?

Solution
1. Translate: We will use the following variables: 

 
Notice that we are not specifying the coordinate system quite yet - since the spring is hanging vertically, the y-coordinate might
end up being negative. These are just the lengths of the various quantities we measured.

2. Model: Since the only thing we know about this system are lengths and masses, we are clearly going to have to use Hooke's law, 
 (in the y-direction). Since this spring is hanging vertically, it makes sense to use Newton's 2nd law to model

the equilbrium situation.
3. Solve: First, we write the condition for equilbrium when the known mass is hung on the spring. Here, we are going to take the

vertical direction to be the y-coordinate, with positive upwards. 

 
Notice carefully what we did with the coordinates - we made all of them negative, with the top of the spring being the origin.
Also take care that you do the conversions from centimeters to meters in the final calculation! 
Now that we have the spring constant, we can do the same thing for the unknown mass. This equation is going to look very
similar, but switching around our known and unknown variables: 

 Exercise 19.3.13

 Example : A Simple Spring Problem19.3.14

= 10 cm, = 12 cm, = 17 cm, = 5 kg, =?.y0 y1 y2 m1 m2 (19.3.17)
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Again, take careful note of what happens algebraically with the signs.

4. Check: This is consistent with our intuition - the spring stretched more for a heavier mass. Since the amount of stretching was 5
cm as compared to 2 cm, we would expect that the mass is also more then twice as big, which it is!

Notice that although the stretching length was exactly 3.5 times bigger (7 cm / 2 cm = 3.5), the unknown mass was not 3.5 times
bigger: 3.5*5 kg = 17.5 kg. We can see why this happens by using the last formula we wrote down, but plugging in the equation for
the spring constant we found in the first part:

So, the ratio between  and  is not simply the ratio of the displacements , but is also scaled by the ratio of
the stretch, .

 

(Short version) Suppose you drop a 5-kg object on a spring scale from a height of 1 m. If the spring constant is  = 20, 000 N/m,
what will the scale read?

(Long version) OK, let’s break that up into parts. Suppose that a spring scale is just a platform (of negligible mass) sitting on top of a
spring. If you put an object of mass  on top of it, the spring compresses so that (in equilibrium) it exerts an upwards force that
matches that of gravity.

a. If the spring constant is  and the object’s mass is  and the whole system is at rest, what distance is the spring compressed?
b. If you drop the object from a height , what is the (instantaneous) maximum compression of the spring as the object is brought to

a momentary rest? (This part is an energy problem! Assume that  is much greater than the actual compression of the spring, so
you can neglect that when calculating the change in gravitational potential energy.)

c. What mass would give you that same compression, if you were to place it gently on the scale, and wait until all the oscillations
died down?

d. OK, now answer the question at the top!

Solution

(a) The forces acting on the object sitting at rest on the platform are the force of gravity, , and the normal force due to
the platform, . This last force is equal, in magnitude, to the force exerted on the platform by the spring (it has to be, because the
platform itself is being pushed down by a force , and this has to be balanced by the spring force). This means we can,
for practical purposes, pretend the platform is not there and just set the upwards force on the object equal to the spring force, 

. So, Newton’s second law gives

For a compressed spring,  is negative, and we can just let  be the distance the spring is compressed. Then
Equation ( ) gives

so

when you just set an object on the scale and let it come to rest.

(b) This part, as the problem says, is a conservation of energy situation. The system formed by the spring, the object and the earth
starts out with some gravitational potential energy, and ends up, with the object momentarily at rest, with only spring potential
energy:

Σ = 0 → + = 0 →−k((− )−(− ))+ g(− ) = 0 → = ≃ 12.4kg.Fy Fsp,y Fg,y y2 y0 m2 y2 m2
k( − )y2 y0

gy2
(19.3.19)
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where I have used the subscript “max” on the compression distance to distinguish it from what I calculated in part (a) (this kind of
makes sense also because the scale is going to swing up and down, and we want only the maximum compression, which will give us
the largest reading). The problem said to ignore the compression when calculating the change in , meaning that, if we measure
height from the top of the scale,  and . Then, solving Equation ( ) for , we get

(c) For this part, let us rewrite Equation ( ) as , where  is the “equivalent” mass that you would have to
place on the scale (gently) to get the same reading as in part (b). Using then Equation ( ),

(d) Now we can substitute the values given:  = 5 kg,  = 1 m,  = 20, 000 N/m. The result is  = 143 kg.

(Note: if you found the purely algebraic treatment above confusing, try substituting numerical values in Eqs. ( ) and (
). The first equation tells you that if you just place the 5-kg mass on the scale it will compress a distance  = 2.45 mm. The

second tells you that if you drop it it will compress the spring a distance  = 70 mm, about 28.6 times more, which corresponds
to an “equivalent mass” 28.6 times greater than 5 kg, which is to say, 143 kg. Note also that 143 kg is an equivalent weight of 309
pounds, so if you want to try this on a bathroom scale I’d advise you to use smaller weights and drop them from a much smaller
height!)

This page titled 19.3: Examples is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston, Merrimack
College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

12.3: Examples of Static Equilibrium by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.
6.6: Examples by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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20.1: Motion on a Circle (Or Part of a Circle)
The last example of motion in two dimensions that I will consider in this chapter is motion on a circle. There are many examples of
circular (or near-circular) motion in nature, particularly in astronomy (as we shall see in a later chapter, the orbits of most planets
and many satellites are very nearly circular). There are also many devices that we use all the time that involve rotating or spinning
objects (wheels, gears, turntables, turbines...). All of these can be mathematically described as collections of particles moving in
circles.

In this section, I will first introduce the concept of centripetal force, which is the force needed to bend an object’s trajectory into a
circle (or an arc of a circle), and then I will also introduce a number of quantities that are useful for the description of circular
motion in general, such as angular velocity and angular acceleration. The dynamics of rotational motion (questions having to do
with rotational energy, and a new important quantity, angular momentum) will be the subject of Chapter 23.

Centripetal Acceleration and Centripetal Force
As you know by now, the law of inertia states that, in the absence of external forces, an object will move with constant speed on a
straight line. A circle is not a straight line, so an object will not naturally follow a circular path unless there is a force acting on it.

Another way to see this is to go back to the definition of acceleration. If an object has a velocity vector  at the time , and a
different velocity vector  at the later time , then its average acceleration over the time interval  is the quantity 

. This is nonzero even if the speed does not change (that is, even if the two velocity vectors have the
same magnitude), as long as they have different directions, as you can see from Figure  below. Thus, motion on a circle (or
an arc of a circle), even at constant speed, is accelerated motion, and, by Newton’s second law, accelerated motion requires a force
to make it happen.

Figure : A particle moving along an arc of a circle of radius . The positions and velocities at the times  and  are
shown. The diagram on the right shows the velocity difference, .

We can find out how large this acceleration, and the associated force, have to be, by applying a little geometry and trigonometry to
the situation depicted in Figure . Here a particle is moving along an arc of a circle of radius , so that at the time  it is at
point P and at the later time  it is at point Q. The length of the arc between P and Q (the distance it has traveled) is ,
where the angle  is understood to be in radians. I have assumed the speed to be constant, so the magnitude of the velocity vector, 

, is just equal to the ratio of the distance traveled (along the circle), to the time elapsed: . Combining these two
expressions, we have a relationship for the angle in the figure:

Now, consider the second picture in the figure above. It shows the change of the velocity vector from  to , and it
should be pretty easy to convince yourself that the angle  between these two vectors is the same as in the left figure. Now, unlike
the "definition of the angle"  relationship we used above, this is a real triangle (  is a straight line), but we can say
approximately the same thing is true,
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Since these two are relationships for the angle (which should be the same), we can set them equal to each other:

In the last step we have solved for the change in velocity over the change in time, which is simply the acceleration,

This acceleration is called the centripetal acceleration, which is why I have denoted it by the symbol . The reason for that name
is that it is always pointing towards the center of the circle. You can kind of see this from Figure : if you take the vector 
shown there, and move it (without changing its direction, so it stays ‘parallel to itself”) to the midpoint of the arc, halfway between
points P and Q, you will see that it does point almost straight to the center of the circle. (A more mathematically rigorous proof of
this fact, using calculus, will be presented later in this section.)

The force  needed to provide this acceleration is called the centripetal force, and by Newton’s second law it has to satisfy 
. Thus, the centripetal force has magnitude

and, like the acceleration , is always directed towards the center of the circle.

Physically, the centripetal force , as given by Equation ( ), is what it takes to bend the trajectory so as to keep it precisely
on an arc of a circle of radius  and with constant speed . Note that, since  is always perpendicular to the displacement (which,
over any short time interval, is essentially tangent to the circle), it does no work on the object, and therefore (by Equation (10.2.7))
its kinetic energy does not change, so  does indeed stay constant when the centripetal force equals the net force. Note also that
“centripetal” is just a job description: it is not a new type of force. In any given situation, the role of the centripetal force will be
played by one of the forces we are already familiar with, such as the tension on a rope (or an appropriate component thereof) when
you are swinging an object in a horizontal circle, or gravity in the case of the moon or any other satellite.

At this point, if you have never heard about the centripetal force before, you may be feeling a little confused, since you almost
certainly have heard, instead, about a so-called centrifugal force that tends to push spinning things away from the center of rotation.
In fact, however, this “centrifugal force” does not really exist: the “force” that you may feel pushing you towards the outside of a
curve when you ride in a vehicle that makes a sharp turn is really nothing but your own inertia—your body “wants” to keep moving
on a straight line, but the car, by bending its trajectory, is preventing it from doing so. The impression that you get that you would
fly radially out, as opposed to along a tangent, is also entirely due to the fact that the reference frame you are in (the car) is
continuously changing its direction of motion. Example 20.2.3 illustrates this in some detail.

On the other hand, getting a car to safely negotiate a turn is actually an important example of a situation that requires a definite
centripetal force. On a flat surface (see the next section for a treatment of a banked curve!), you rely entirely on the force of static
friction to keep you on the track, which can typically be modeled as an arc of a circle with some radius . So, if you are traveling
at a speed , you need . Recalling that the force of static friction cannot exceed , and that on a flat surface you
would just have , you see you need to keep  smaller than ; or, canceling the mass,

This is the condition that has to hold in order to be able to make the turn safely. The maximum speed is then ,
which, as you can see, will depend on the state of the road (for instance, if the road is wet the coefficient  will be smaller). The
posted, recommended speed will typically take this into consideration and will be as low as it has to be to keep you safe. Notice
that the left-hand side of Equation ( ) increases as the square of the speed, so doubling your speed makes that term four times
larger! Do not even think of taking a turn at 60 mph if the recommended speed is 30, and do not exceed the recommended speed at
all if the road is wet or your tires are worn.

θ = .
Δv

v(t)
(20.1.2)

= → = .
vΔt

R

Δv

v(t)

Δv

Δt

v2

R
(20.1.3)

= .ac
v2

R
(20.1.4)

ac
20.1.1 Δv ⃗ 

F ⃗ 
c

= mF ⃗ 
c a⃗ c

= m =Fc ac
mv2

R
(20.1.5)

a⃗ c

Fc 20.1.5

R v F ⃗ 
c

v

R

v = m /RF s v2 μsF
n

= = mgF n F g m /Rv2 mgμs

< g.
v2

R
μs (20.1.6)

=vmax gRμs
− −−−

√
μs

20.1.6

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63273?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/10%3A_C10)_Work/10.02%3A_Work_on_a_Single_Particle#Equation+7.2.6


20.1.3 https://phys.libretexts.org/@go/page/63273

Kinematic Angular Variables
Consider a particle moving on a circle, as in Figure  below. Of course, we can just use the regular, cartesian coordinates, 
and , to describe its motion. But, in a way, this is carrying around more information than we typically need, and it is also not very
transparent: a value of  and  does not immediately tell us how far the object has traveled along the circle itself.

Instead, the most convenient way to describe the motion of the particle, if we know the radius of the circle, is to give the angle 
that the position vector makes with some reference axis at any given time, as shown in Figure . If we choose the  axis as the
reference, then the conversion from a description based on the radius  and the angle  to a description in terms of  and  is
simply

so knowing the function  we can immediately get  and , if we need them. (Note: in this section we are using an
uppercase  for the magnitude of the position vector, to emphasize that it is a constant, equal to the radius of the circle.)

Figure : A particle moving on a circle. The position vector has length , so the  and  coordinates are  and ,
respectively. The conventional positive direction of motion is indicated. The velocity vector is always, as usual, tangent to the

trajectory.

Although the angle  itself is not a vector quantity, nor a component of a vector, it is convenient to allow for the possibility that it
might be negative. The standard convention is that  grows in the counterclockwise direction from the reference axis, and
decreases in the clockwise direction. Of course, you can always get to any angle by coming from either direction, so the angle by
itself does not tell you how the particle got there. Information on the direction of motion at any given time is best captured by the
concept of the angular velocity, which we represent by the symbol  and define in a manner analogous to the way we defined the
ordinary velocity: if  is the angular displacement over a time , then

The standard convention is also to use radians as an angle measure in this context, so that the units of  will be radians per second,
or rad/s. Note that the radian is a dimensionless unit, so it “disappears” from a calculation when the final result does not call for it
(as in Equation ( ) below).

For motion with constant angular velocity, we clearly will have
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where  is positive for counterclockwise motion, and negative for clockwise. (Recall that the direction of the vector  can be
specified with the right hand rule, from section 7.1)

When  changes with time, we can introduce an angular acceleration , defined, again, in the obvious way:

Then for motion with constant angular acceleration we have the formulas

Equation ( ) completely parallel the corresponding equations for motion in one dimension that we saw in Chapter 1. In fact,
of course, a circle is just a line that has been bent in a uniform way, so the distance traveled along the circle itself is simply
proportional to the angle swept by the position vector . As already pointed out in connection with Figure , if we expressed 
in radians then the length of the arc corresponding to an angular displacement  would be

so multiplying Eqs. ( ) or ( ) by  directly gives the distance traveled along the circle in each case.

Figure : A small angular displacement. The distance traveled along the circle, , is almost identical to the straight-
line distance  between the initial and final positions; the two quantities become the same in the limit .

Figure  shows that, for very small angular displacements, it does not matter whether the distance traveled is measured along
the circle itself or on a straight line; that is, . Dividing by , using Equation ( ) and taking the  limit we
get the following useful relationship between the angular velocity and the instantaneous speed  (defined in the ordinary way as the
distance traveled per unit time, or the magnitude of the velocity vector):

As we shall see later, the product  is also a useful quantity. It is not, however, equal to the magnitude of the acceleration vector,
but only one of its two components, the tangential acceleration:

The sign convention here is that a positive  represents a vector that is tangent to the circle and points in the direction of
increasing  (that is, counterclockwise); the full acceleration vector is equal to the sum of this vector and the centripetal
acceleration vector, introduced in the previous subsection, which always points towards the center of the circle and has magnitude

(making use of Eqs. ( ) and ( )). These results will be formally established Chapter 22, after we introduce the vector
product, although you could also verify them right now—if you are familiar enough with derivatives at this point—by using the
chain rule to take the derivatives with respect to time of the components of the position vector, as given in Equation ( ) (with 

, an arbitrary function of time).
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The main thing to remember about the radial and tangential components of the acceleration is that the radial component (the
centripetal acceleration) is always there for circular motion, whether the angular velocity is constant or not, whereas the tangential
acceleration is only nonzero if the angular velocity is changing, that is to say, if the particle is slowing down or speeding up as it
turns.

This page titled 20.1: Motion on a Circle (Or Part of a Circle) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Christopher Duston, Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the
LibreTexts platform.

8.4: Motion on a Circle (Or Part of a Circle) by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source:
https://scholarworks.uark.edu/oer/3.
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20.2: Banking

Roadway engineers often bank a curve, especially if it is a very tight turn, so the cars will not have to rely on friction alone to
provide the required centripetal force. The picture shows a car going around such a curve, which we can model as an arc of a
circle of radius . In terms of , the bank angle , and the coefficient of static friction, find the maximum safe speed around the
curve.

Figure : A car going around a banked curve (sketch and free-body diagram). The center of the circle is towards the right.

The figure shows the appropriate choice of axes for this problem. The criterion is, again, to choose the axes so that one of them
will coincide with the direction of the acceleration. In this case, the acceleration is all centripetal, that is to say, pointing,
horizontally, towards the center of the circle on which the car is traveling.

It may seem strange to see the force of static friction pointing down the slope, but recall that for a car turning on a flat surface it
would have been pointing inwards (towards the center of the circle), so this is the natural extension of that. In general, you
should always try to imagine which way the object would slide if friction disappeared altogether:  must point in the
direction opposite that. Thus, for a car traveling at a reasonable speed, the direction in which it would skid is up the slope, and
that means  must point down the slope. But, for a car just sitting still on the tilted road,  must point upwards, and we shall
see in a moment that in general there is a minimum velocity required for the force of static friction to point in the direction we
have chosen.

Apart from this, the main difference with the flat surface case is that now the normal force has a component along the direction
of the acceleration, so it helps to keep the car moving in a circle. On the other hand, note that we now lose (for centripetal
purposes) a little bit of the friction force, since it is pointing slightly downwards. This, however, is more than compensated for
by the fact that the normal force is greater now than it would be for a flat surface, since the car is now, so to speak, “driving
into” the road somewhat.

The dashed blue lines in the free-body diagram are meant to indicate that the angle  of the bank is also the angle between the
normal force and the positive  axis, as well as the angle that  makes below the positive  axis. It follows that the
components of these two forces along the axes shown are:

and

The vertical force equation is then:

This shows that  is indeed greater than just  for this problem, and must increase as the angle 
 increases (since  decreases with increasing ). The horizontal equation is:
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where I have already substituted the value of the centripetal acceleration for . Equations ( ) and ( ) form a system
that needs to be solved for the two unknowns  and . The result is:

Note that the second equation would have  becoming negative if . This means that below that speed, the force
of static friction must actually point up the slope, as discussed above. We can call this particular speed, for which  becomes
zero, :

What this means is that it is possible to arrange the banking angle so that a car going at a specific speed would not have to rely
on friction at all in order to make the curve: the normal force would be just right to provide the required centripetal
acceleration. A car going at that speed would not feel either pulled down or pushed up the slope. However, a car going faster
than that would tend to “fly off”, and the static friction force would be required to pull it in and keep it on the curve, whereas a
car moving more slowly would tend to slide down and would have to be pushed up by the friction force. Friction, therefore,
provides a range of safe speeds to drive in this case, just as it did in the flat surface case.

We can calculate the maximum safe speed as we did before, recalling that we must always have . Substituting Eqs.
( ) in this expression, and solving for , we get the condition

This reproduces our result (8.4.5) for  = 0 (a flat road), as it should.

To put some numbers into this, suppose the curve has a radius of 20 m, and the coefficient of static friction between the tires
and the road is  = 0.7. Then, for a flat surface, we get  = 11.7 m/s, or about 26 mph, whereas for a bank angle of  = 10
 (the angle chosen for the figure above) we get  = 14 m/s, or about 31 mph.

Equation ( ) actually indicates that the maximum velocity would “become infinite” for a finite bank angle, namely, if 
, or  (if  = 0.7, this corresponds to  = 55 ). This is mathematically correct, but of course we

cannot take it literally: it assumes that there is no limit to how large a normal force the roadway may exert without sustaining
damage, and also that  can become arbitrarily large as long as it stays below the bound . Neither of these
assumptions would hold in real life for very large speeds. Also, the angle  is much too steep: recall that,
according to Equation (8.3.11), the force of friction will only be able to keep an object (initially at rest) from sliding down the
slope if , which for  = 0.7 means . So, with a bank angle of 55  you might drive on the curve, provided
you were going fast enough, but you could not park on it—the car would slide down! Bottom line, use Equation ( ) only
for moderate values of ... and do not exceed  if you want a car to be able to drive around the curve slowly
without sliding down into the ditch.

(This example studies a situation that you could easily setup experimentally at home (you can use a whole sphere instead of a
half-sphere!), although to get the numbers to work out you really need to make sure that the friction between the surface and
the object you choose is truly negligible. Essentially the same mathematical approach could be used to study the problem of a
skier going over a mogul, or a car losing contact with the road if it is going too fast over a hill.)

A small object is placed at the top of a smooth (frictionless) dome shaped like a half-sphere of radius , and given a small
push so it starts sliding down the dome, initially moving very slowly , but picking up speed as it goes, until at some
point it flies off the surface.
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a. At that point, when the object loses contact with the surface, what is the angle that its position vector (with origin at the
center of the sphere) makes with the vertical?

b. How far away from the sphere does the object land?

Figure : An object (small block) sliding on a hemispherical dome. The drawing (a) shows the angle  at which the
object flies off (red dashed line), and a smaller, generic angle . The drawing (b) shows the free-body diagram corresponding
to the angle .

Solution

(a) As we saw in Section 8.4, in order to get an object to move along an arc of a circle, a centripetal force of magnitude 
is required. As long as our object is in contact with the surface, the forces acting on it are the normal force (which points along
the radial direction, so it makes a negative contribution to the centrifugal force) and gravity, which has a component 
along the radius, towards the center of the circle (see Figure (b), the dashed light blue line). So, the centripetal force
equation reads

The next thing we need to do is find the value of the speed v for a given angle . If we treat the object as a particle, its only
energy is kinetic energy, and  (Equation (7.2.8)), where  is the work done on the particle by the net force
acting on it. The normal force is always perpendicular to the displacement, so it does no work, whereas gravity is always
vertical and does work  (taking upwards as positive, so  is negative). In fact, from Figure (a)
(follow the dashed blue line) you can see that for a given angle , the height of the object above the ground is , so the
vertical displacement from its initial position is

Hence we have, for the change in kinetic energy,

Assuming, as we are told in the text of the problem, that , we get , and using this in Equation (
)

or . This shows that  starts out (when  = 0) having its usual value of , and then it becomes
progressively smaller as the object slides down. The point where the object loses contact with the surface is when  = 0, and
that happens for

or .

Recalling that , we see that when  = 2/3, the object has fallen a distance /3; put otherwise, its
height above the ground at the time it flies off is 2 /3, or 2/3 of the initial height.

(b) This is just a projectile problem now. We just have to find the values of the initial conditions ( , ,  and ) and
substitute in the equations (16.2.5). By inspecting the figure, you can see that, at the time the object flies off,
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Also, we found above that , and when  this gives , or . The
projection angle in this case is ; that is, the initial velocity of the projectile (dashed red arrow in Figure (a)) is at
an angle 48.2  below the positive  axis, so we have:

Now we just use these results in Eqs. (16.2.5). Specifically, we want to know how long it takes for the object to reach the
ground, so we use the last equation (16.2.5) with  = 0 and solve for :

The result is . (You do not need to carry the “ ” throughout; it would be OK to substitute 9.8 m/s  for it. I
have just kept it in symbolic form so far to make it clear that the quantities we derive will have the right units.) Substituting
this in the equation for , we get

(Note how the  cancels, so we would get the same result on any planet!) Since the sphere has a radius , the object falls a
distance  away from the sphere.

This page titled 20.2: Banking is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher Duston,
Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

8.7: Advanced Topics by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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20.3: Examples

Consider a rollarcoaster with a loop, shown in the figure above. The car starts at rest a height of  m above the loop, flies
down the track and around the loop, which has a radius of  m. The car has a mass of 550 kg.

1. (energy review!) What speed is the car traveling at the top of the loop, if the track is completely frictionless?
2. What is the acceleration of the car at the top of the loop?
3. What is the normal force on the car at the top of the loop?

 

Consider the rollarcoaster loop in the figure, which has a teardrop shape. The cars ride on the inside of the loop and travel fast
enough to ensure that the car stays on the track. The largest of these loops is 40 m high (*but not a circle!*) and the cars travel
at a speed of 13 m/s at the top of the loop. At the top, the riders experience a centripetal acceleration of 2 .

1. What is the radius of the arc of the track at the top?
2. If the mass of the car plus the riders is 1150 kg, what force does the track exert on the car at the top of the track?
3. If the designers had made this a circular loop of radius 20 m (so the same total height as the teardrop), what would the

centripetal acceleration of the riders at the top be, assuming the car had the same speed as in the teardrop shape?
4. Which is more fun, a teardrop or a loop?

 

 

 Whiteboard Problem : Loop the Loop!20.3.1

h = 35
R = 7

 Whiteboard Problem : This is better than a class trip, part 120.3.2

g
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Example : The penny on the turntable
Suppose that you have a penny sitting on a turntable, a distance  = 10 cm from the axis of rotation. Assume the turntable
starts moving, steadily spinning up from rest, in such a way that after 1.3 seconds it has reached its final rotation rate of 33.3
rpm (revolutions per minute). Answer the following questions:

a. What was the turntable’s angular acceleration over the time interval from  = 0 to  = 1.3 s?
b. How many turns (complete and fractional) did the turntable make before reaching its final velocity?
c. Assuming the penny has not slipped, what is its centripetal acceleration once the turntable reaches its final velocity?
d. How large does the static friction coefficient between the penny and the turntable have to be for the penny not to slip

throughout this process?

Solution

(a) We are told that the turntable spins up “steadily” from  = 0 to  = 1.3 s. The word “steadily” here is a keyword that means
the (angular) acceleration is constant (that is, the angular velocity increases at a constant rate).

What is this rate? For constant , we have, from Equation (20.1.10), . Here, the time interval  = 1.3 , so we
just need to find . By definition, , and since we start from rest,  = 0. So we just need . We are told that
“the final rotation rate” is 33.3 rpm (revolutions per minute). What does this tell us about the angular velocity?

The angular velocity is the number of radians an object moving in a circle (such as the penny in this example) travels per
second. A complete turn around the circle, or revolution, corresponds to 180 , or equivalently 2  radians. So, 33.3 revolutions,
or turns, per minute means  radians per 60 s, that is,

The angular acceleration, therefore, is

(b) The way to answer this question is to find out the total angular displacement, , of the penny over the time interval
considered (from  = 0 to  = 1.3 s), and then convert this to a number of turns, using the relationship 2  rad = 1 turn. To get 

, we should use the equation (20.1.11) for motion with constant angular acceleration:

We start from rest, so  = 0, We know  = 1.3 s, and we just calculated  = 2.68 rad/s , so we have

This is less than 2  radians, so it takes the turntable less than one complete revolution to reach its final angular velocity. To be
precise, since 2  radians is one turn, 2.26 rad will be 2.26/(2 ) turns, which is to say, 0.36 turns—a little more than 1/3 of a
turn.

(c) For the questions above, the penny just served as a marker to keep track of the revolutions of the turntable. Now, we turn to
the dynamics of the motion of the penny itself. First, to get its angular acceleration, we can just use Equation (20.1.15), in the
form

noticing that , the radius of the circle on which the penny moves, is just the distance  to the axis of rotation that we were
given at the beginning of the problem, and , its angular velocity, is just the final angular velocity of the turntable (assuming,
as we are told, that the penny has not slipped relative to the turntable).

(d) Finally, how about the force needed to keep the penny from slipping—that is to say, to keep it moving with the turntable?
This is just the centripetal force needed “bend” the trajectory of the penny into a circle of radius , so , where  is
the mass of the penny and  is the centripetal acceleration we just calculated. Physically, we know that this force has to be

20.3.3
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provided by the static (as long as the penny does not slip!) friction force between the penny and the turntable. We know that 
, and we have for the normal force, in this simple situation, just . Therefore, setting  we

have:

This is equivalent to the single inequality , where we can cancel out the mass of the penny to conclude that we
must have , and therefore

Imagine you are inside a rotating cylindrical room of radius . There is a metal puck on the floor, a distance  from the axis of
rotation, held in place with an electromagnet. At some time you switch off the electromagnet and the puck is free to slide
without friction. Find where the puck strikes the wall, and show that, if it was not too far away from the wall to begin with, it
appears as if it had moved straight for the wall as soon as it was released.

Solution

The picture looks as shown below, to an observer in an inertial frame, looking down. The puck starts at point A, with
instantaneous velocity  pointing straight to the left at the moment it is released, so it just moves straight (in the inertial
frame) until it hits the wall at point B. From the cyan-colored triangle shown, we can see that it travels a distance ,
which takes a time

In this time, the room rotates counterclockwise through an angle :

Figure : The motion of the puck (cyan) and the wall (magenta) as seen by an inertial observer.

This is the angle shown in magenta in the figure. As a result of this rotation, the point A  that was initially on the wall straight
across from the puck has moved (following the magenta dashed line) to the position B , so to an observer in the rotating room,
looking at things from the point O, the puck appears to head for the wall and drift a little to the right while doing so.

The cyan angle in the picture, which we could call , has tangent equal to , so we have

This tells us the two angles are going to be pretty close if they are small enough, which is what happens if the puck starts close
enough to the wall in the first place. The picture shows, for clarity, the case when , which gives  = 1.02 rad,
and  = 0.8 rad. For , on the other hand, one finds  = 0.48 rad, and 

(0.48) = 0.45 rad.

≤F s μsF
n = mgF n = mF s ac

m = ≤ = mg.ac F s μsF
n μs (20.3.6)

m ≤ mgac μs

≤ gac μs
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Example : Rotating frames of reference- centrifugal force and coriolis force20.3.4
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In terms of pseudoforces (forces that do not, physically, exist, but may be introduced to describe mathematically the motion of
objects in non-inertial frames of reference), the non-inertial observer would say that the puck heads towards the wall because
of a centrifugal force (that is, a force pointing away from the center of rotation), and while doing so it drifts to the right
because of the so-called Coriolis force.
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21.1: Forces and Potential Energy
Consider the special case of two interacting objects, in which a lighter object is interacting with a much more massive one, so that
the massive one essentially does not move at all as a result of the interaction. Note that this does not contradict Newton’s 3rd law,
Equation (6.1.5): the forces the two objects exert on each other are the same in magnitude, but the acceleration of each object is
inversely proportional to its mass, so  implies

and so if, for instance, , we get . In words, the more massive object is less responsive than
the less massive one to a force of the same magnitude. This is just how we came up with the concept of inertial mass in the first
place!

Anyway, in this situation we could just write the potential energy function of the whole system as a function of only the lighter
object’s coordinate, . Let's use this simplified setup to demonstrate a very interesting relationship between potential energies
and forces. Suppose this is a closed system in which no dissipation of energy is taking place. Then the total mechanical energy is a
constant:

(Here,  is the mass of the lighter object, and  its velocity; the more massive object does not contribute to the total kinetic energy,
since it does not move!)

As the lighter object moves, both  and  in Equation ( ) change with time. So I can take the derivative of Equation ( )
with respect to time, using the chain rule, and noting that, since the whole thing is a constant, the total value of the derivative must
be zero:

But note that  is just the same as . So I can cancel that on both terms, and then I am left with

But  is just the acceleration , and . So this tells me that

and this is how you can always get the force from a potential energy function.

Let us check it right away for the force of gravity: we know that , so

Is this right? It seems to be! Recall all objects fall with the same acceleration, −  (assuming the upwards direction to be positive),
so if , we must have . So the gravitational force exerted by the earth on any object (which I would denote in
full by ) is proportional to the inertial mass of the object—in fact, it is what we call the object’s weight—but since to get the
acceleration you have to divide the force by the inertial mass, that cancels out, and  ends up being the same for all objects,
regardless of how heavy they are.

Now that we have this result under our belt, we can move on to the slightly more challenging case of two objects of comparable
masses interacting through a potential energy function that must be, a function of just the relative coordinate .

I claim that in that case you can again get the force on object 1, , by taking the derivative of  with respect to 
(leaving  alone), and reciprocally, you get  by taking the derivative of  with respect to . Here is how it works,
again using the chain rule:

= −F12 F21

= −m2a2 m1a1 (21.1.1)

≫m2 m1 | | = | | / ≪ | |a2 a1 m1 m2 a1
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and you can see that this automatically ensures that . In fact, it was in order to ensure this that I required that  should
depend only on the difference of  and , rather than on each one separately. Since we got the condition  originally
from conservation of momentum, you can see now how the two things are related .

The only example we have seen so far of this kind of potential energy function was in Chapter 9, for two carts interacting through
an “ideal” spring. I told you there that the potential energy of the system could be written as , where  was the
“spring constant” and  the relaxed length of the spring. If you apply Eqs. ( ) to this function, you will find that the force
exerted (through the spring) by cart 2 on cart 1 is

Note that this force will be negative under the assumptions we made last chapter, namely, that cart 2 is on the right, cart 1 on the
left, and the spring is compressed, so that . Similarly,

and this one, as it should, is positive.

The results ( ) and ( ) basically tell you what we mean by an “ideal spring” in physics: it is a spring that pulls (if
stretched) or pushes (if compressed) with a force that is proportional to the change from its equilibrium length. Thus, if you fasten
one end of the spring at  = 0, and stretch it or compress it so that the other end is at , the spring will respond by exerting a force

As you can see, this is negative if  (spring stretched, pulling force) and positive if  (spring compressed, pushing
force). In fact, the spring exerts an equal (in magnitude) and opposite (in direction) force at the other end (the one attached to the
wall), so Equation ( ) only gives the correct sign of the force at the end that is denoted by the coordinate value . Equations (

) and ( ) are a bit clearer in this respect: Equation ( ) gives the correct sign of the force at point , and Equation (
) the correct sign at point .

Figure  shows, in black, all the forces exerted by a spring with one fixed end, according as to whether it is relaxed,
compressed, or stretched. I have assumed that it is pushed or pulled by a hand (not shown) at the “free” end, hence the subscript “

”, whereas the subscript “ ” stands for “wall.” Note that the wall and the hand, in turn, exert equal and opposite forces on the
spring, shown in red in the figure.

Figure : Forces (in black) exerted by a spring with one end attached to a wall and the other pushed or pulled by a hand (not
shown). In every case the force is proportional to the change in the length of the spring from its equilibrium, or relaxed, value,
shown here as . For this figure I have set the proportionality constant  = 1. The forces exerted on the spring, by the wall and by
the hand, are shown in red.

Equation ( ) is generally referred to as Hooke’s law, after the British scientist Robert Hooke (a contemporary of Newton). Of
course, it is not a “law” at all, merely a useful approximation to the way most springs behave as long as you do not stretch them or
compress them too much .
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A note on the way the forces have been labeled in Figure . I have used the generic symbol “ ”, which stands for “contact,” to
indicate the type of force exerted by the wall and the hand on the spring. In fact, since each pair of forces (by the hand on the spring
and by the spring on the hand, for instance), at the point of contact, arises from one and the same interaction, I should have used the
same “type” notation for both, but it is widespread practice to use a superscript like “spr” to denote a force whose origin is,
ultimately, a spring’s elasticity. This does not change the fact that the spring force, at the point where it is applied, is indeed a
contact force.

So, next, a word on “contact” forces. Basically, what we mean by that is forces that arise where objects “touch,” and we mean this
by opposition to what are called instead “field” forces (such as gravity, or magnetic or electrostatic forces) which “act at a
distance.” The distinction is actually only meaningful at the macroscopic level, since at the microscopic level objects never really
touch, and all forces are field forces, it is just that some are “long range” and some are “short range.” For our purposes, really, the
word “contact” will just be a convenient, catch-all sort of moniker that we will use to label the force vectors when nothing more
specific will do.

The result ( ) generalizes to more dimensions, but to do it properly you need vectors and partial derivative notation, and I’m
already bending the notational rules a little bit here..

Assuming that you can compress them! Some springs, such as slinkies, actually cannot be compressed because their coils are
already in contact when they are relaxed. Nevertheless, Equation ( ) will still apply approximately to such a spring when it is
stretched, that is, when .

This page titled 21.1: Forces and Potential Energy is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio
Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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21.2: Work Done on a System By All the External Forces
Consider the most general possible system, one that might contain any number of particles, with possibly many forces, both
internal and external, acting on each of them. We will again, for simplicity, start by considering what happens over a time interval
so short that all the forces are approximately constant (the final result will hold for arbitrarily long time intervals, just by adding, or
integrating, over many such short intervals). We will also work explicitly only the one-dimensional case, although again that turns
out to not be a real restriction.

Let then  be the work done on particle 1 by all the forces acting on it,  the work done on particle 2, and so on. The total
work is the sum . However, by the results of Chapter 10, we have  (the change in
kinetic energy of particle 1), , and so on, so adding all these up we get

where  is the change in kinetic energy of the whole system.

So far, of course, this is nothing new. To learn something else we need to look next at the work done by the internal forces. It is
helpful here to start by considering the “no-dissipation case” in which all the internal forces can be derived from a potential
energy . We will consider the case where dissipative processes happen inside the system after we have gained a full understanding
of the result we will obtain for this simpler case.

Or else they do no work at all: the magnetic force between moving charges is an example of the latter.

The No-Dissipation Case
The internal forces are, by definition, forces that arise from the interactions between pairs of particles that are both inside the
system. Because of Newton’s 3rd law, the force  (we will omit the “type” superscript for now) exerted by particle 1 on particle 2
must be the negative of , the force exerted by particle 2 on particle 1. Hence, the work associated with this interaction for this
pair of particles can be written

Notice that  can be rewritten as , where  is the
relative position coordinate of the two particles. Therefore,

Now, if the interaction in question is associated with a potential energy, as I showed in section 21.1, . Assume
the displacement  is so small that we can replace the derivative by just the ratio  (which is consistent with our
assumption that the force is approximately constant over the time interval considered); the result will then be

Adding up very many such “infinitesimal” displacements will lead to the same final result, where  will be the change in the
potential energy over the whole process. This can also be proved using calculus, without any approximations:

We can apply this to every pair of particles and every internal interaction, and then add up all the results. On one side, we will get
the total work done on the system by all the internal forces; on the other side, we will get the negative of the change in the system’s
total internal energy:

In words, the work done by all the (conservative) internal forces is equal to the change in the system’s potential energy.

Let us now put Eqs. ( ) and ( ) together: the difference between the work done by all the forces and the work done by
the internal forces is, of course, the work done by the external forces, but according to Eqs. ( ) and ( ), this is equal to

Wall,1 Wall,2

= + +⋯Wall,sys Wall,1 Wall,2 = ΔWall,1 K1

= ΔWall,2 K2

= ΔWall,sys Ksys (21.2.1)

ΔKsys

2

2

F12

F21

W (1, 2) = Δ + Δ = (Δ −Δ ) .F12 x2 F21 x1 F12 x2 x1 (21.2.2)

Δ −Δx2 x1 − − + = − = Δx2,f x2,i x1,f x1,i x12,f x12,i x12 = −x12 x2 x1

W (1, 2) = Δ .F12 x12 (21.2.3)

= −dU/dF12 x12

Δx12 ΔU/Δx12

W (1, 2) = Δ ≃ − Δ = −ΔU.F12 x12
ΔU

Δx12
x12 (21.2.4)

ΔU

W (1, 2) = d = − d = −ΔU.∫
x12,f

x12,i

F12 x12 ∫
x12,f

x12,i

dU

dx12
x12 (21.2.5)

= −Δ .Wint,sys Usys (21.2.6)

21.2.1 21.2.6
21.2.1 21.2.6

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63184?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/21%3A_N8)_Forces_Energy_and_Work/21.02%3A_Work_Done_on_a_System_By_All_the_External_Forces
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/10%3A_C10)_Work
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/21%3A_N8)_Forces_Energy_and_Work/21.01%3A_Forces_and_Potential_Energy


21.2.2 https://phys.libretexts.org/@go/page/63184

which is the change in the total mechanical (kinetic plus potential) energy of the system. If we further assume that the system, in
the absence of the external forces, is closed, then there are no other processes (such as the absorption of heat) by which the total
energy of the system might change, and we get the simple result that the work done by the external forces equals the change in the
system’s total energy:

 

As a first application of the result ( ), Imagine you throw a ball of mass  upwards (see Figure ), and it reaches a
maximum height  above the point where your hand started to move. Let us define the system to be the ball and the earth, so the
force exerted by your hand is an external force. Then you do work on the system during the throw, which in the figure is the
interval, from A to B, during which your hand is on contact with the ball. The bar diagram on the side shows that some of this work
goes into increasing the system’s (gravitational) potential energy (because the ball goes up a little while in contact with your hand),
and the rest, which is typically most of it, goes into increasing the system’s kinetic energy (in this case, just the ball’s; the earth’s
kinetic energy does not change in any measurable way!).

Figure : Tossing a ball into the air. We consider the system formed by the ball and the earth. The force exerted by the hand
(which is in contact with the ball from point A to point B) is therefore an external force. The diagrams show the system’s energy
balance over three different intervals.

So how much work did you actually do? If we knew the distance from A to B, and the magnitude of the force you exerted, and if
we could assume that your force was constant throughout, we could calculate  from the definition (10.2.5). But in this case, and

= − = Δ +ΔWext,sys Wall,sys Wint,sys Ksys Usys (21.2.7)

 Theorem : Generalized Work-Energy Theorem21.2.1
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many others like it, it is actually easier to find out how much total energy the system gained and just use Equation ( ). To find 
 in practice, all we have to do is see how high the ball rises. At the ball’s maximum height (point C), as the second diagram

shows, all the energy in the system is gravitational potential energy, and (as long as the system stays closed), all that energy is still
equal to the work you did initially, so if the distance from A to C is  you must have done an amount of work

The third diagram in Figure  shows the work-energy balance for another time interval, during which the ball falls from C to
B. Over this time, no external forces act on the ball (recall we have taken the system to be the ball and the earth, so gravity is an
internal force). Then, the work done by the external forces is zero, and the change in the total energy of the system is also zero. The
diagram just shows an increase in kinetic energy at the expense of an equal decrease in potential energy.

What about the work done by the internal forces? Equation ( ) tells us that this work is equal to the negative of the change in
potential energy. In this case, the internal force is gravity, and the corresponding energy is gravitational potential energy. This
change in potential energy is clearly visible in all the diagrams; however, when you add to it the change in kinetic energy, the result
is always equal to the work done by the external force only. Put otherwise, the internal forces do not change the system’s total
energy, they just “redistribute” it among different kinds—as in, for instance, the last diagram in Figure , where you can
clearly see that gravity is causing the kinetic energy of the system to increase at the expense of the potential energy.

We will use diagrams like the ones in Figure  to look at the work-energy balance for different systems. The idea is that the
sum of all the columns on the left (the change in the system’s total energy) has to equal the result on the far-right column (the work
done by the net external force): that is the content of the theorem ( ). Note that, unlike the energy diagrams we used in
Chapter 5, these columns represent changes in the energy, so they could be positive or negative.

Just as for the earlier energy diagrams, the picture we get will be different, even for the same physical situation, depending on the
choice of system. This is illustrated in Figure  below, where I have taken the same throw shown in Figure , but now
the system I’m looking at is the ball only. This means gravity is now an external force, as is the force of the hand, and the ball only
has kinetic energy. Normally one would show the sum of the work done by the two external forces on a single column, but here I
have chosen to break it up into two columns for clarity.

As you can see, during the throw the hand does positive work, whereas gravity does a comparatively small amount of negative
work, and the change in kinetic energy is the sum of the two. For the longer interval from A to C (second diagram), gravity
continues to do negative work until all the kinetic energy of the ball is gone. For the interval from C to B, the only external force is
gravity, which now does positive work, equal to the increase in the ball’s kinetic energy.

Figure : Work-energy balance diagrams for the same toss illustrated in Figure , but now the system is taken to be the
ball only.

Of course, the numerical value of the actual work done by any particular force does not depend on our choice of system: in each
case, gravity does the same amount of work in the processes illustrated in Figure  as in those illustrated in Figure . The
difference, however, is that for the system in Figure , gravity is an external force, and now the work it does actually changes
the system’s total energy, because the gravitational potential energy is now not included in that total.

Formally, it works like this: in the case shown in Figure , where the system is the ball and the earth, we have 
. By the result ( ), however, we have , and so this equation can be rearranged to read 
, which is just the result ( ) when the system is the ball alone.
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Ultimately, the reason we emphasize the importance of the choice of system is to prevent double counting: if you want to count the
work done by gravity as contributing to the change in the system’s total energy, it means that you are, implicitly, treating gravity as
an external force, and therefore your system must be something that does not have, by itself, gravitational potential energy (the case
of the ball in Figure ); conversely, if you insist on counting gravitational potential energy as contributing to the system’s total
energy, then you must treat gravity as an internal force, and leave it out of the calculation of the work done on the system by the
external forces, which are the only ones that can change the system’s total energy.

The General Case- Systems With Dissipation
We are now ready to consider what happens when some of the internal interactions in a system are not conservative. There are two
key observations to keep in mind: first, of course, that energy will always be conserved in a closed system, regardless of whether
the internal forces are “conservative” or not: if they are not, it merely means that they will convert some of the “organized,”
mechanical energy, into disorganized (primarily thermal) energy.

The second observation is that the work done by an external force on a system does not depend on where the force comes from—
that is to say, what physical arrangement we use to produce the force. Only the value of the force at each step and the displacement
of the point of application are involved in the definition (10.2.5). This means, in particular, that we can use a conservative
interaction to do the work for us. It turns out, then, that the generalization of the result ( ) to apply to all sorts of interactions
becomes straightforward.

To see the idea, consider, for example, the situation in Figure  below. Here I have broken it up into two systems. System A,
outlined in blue, consists of block 1 and the surface on which it slides, and includes a dissipative interaction—namely, kinetic

friction—between the block and the surface. The force doing work on this system is the tension force from the rope, .

Figure : Block sliding on a surface, with friction, being pulled by a rope attached to a block falling under the action of
gravity. The motion of this system was solved for in Section 6.3.

Because the rope is assumed to have negligible mass, this force is the same in magnitude as the force  that is doing negative
work on system B. System B, outlined in magenta, consists of block 2 and the earth and thus it includes only one internal
interaction, namely gravity, which is conservative. This means that we can immediately apply the theorem ( ) to it, and

conclude that the work done on B by  is equal to the change in system B’s total energy:
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However, since the rope is inextensible, the two blocks move the same distance in the same time, and the force exerted on each by
the rope is the same in magnitude, so the work done by the rope on system A is equal in magnitude but opposite in sign to the work
it does on system B:

Now consider the total system formed by A+B. Assuming it is a closed system, its total energy must be constant, and so any
change in the total energy of B must be equal and opposite the corresponding change in the total energy of A: .
Therefore,

So we conclude that the work done by the external force on system A must be equal to the total change in system A’s energy. In
other words, Equation ( ) applies to system A as well, as it does to system B, even though the interaction between the parts
that make up system A is dissipative.

Although I have shown this to be true just for one specific example, the argument is quite general: if I use a conservative system B
to do some work on another system A, two things happen: first, by virtue of ( ), the work done by B comes at the expense of
its total energy, so . Second, if A and B together form a closed system, the change in A’s energy must be equal
and opposite the change in B’s energy, so . So the result ( ) holds for A, regardless of whether its
internal interactions are conservative or not.

What is essential in the above reasoning is that A and B together should form a closed system, that is, one that does not exchange
energy with its environment. It is very important, therefore, if we want to apply the theorem ( ) to a general system—that is,
one that includes dissipative interactions—that we draw the boundary of the system in such a way as to ensure that no dissipation is
happening at the boundary. For example, in the situation illustrated in Figure , if we want the result ( ) to apply we
must take system A to include both block 1 and the surface on which it slides. The reason for this is that the energy “dissipated” by
kinetic friction when two objects rub together goes into both objects. So, as the block slides, kinetic friction is converting some of
its kinetic energy into thermal energy, but not all this thermal energy stays inside block 1. Put otherwise, in the presence of friction,
block 1 by itself is not a closed system: it is “leaking” energy to the surface. On the other hand, when you include (enough of) the
surface in the system, you can be sure to have “caught” all the dissipated energy, and the result ( ) applies.

Energy Dissipated by Kinetic Friction
In the situation illustrated in Figure , we might calculate the energy dissipated by kinetic friction by indirect means. For
instance, we can use the fact that the energy of system A is of two kinds, kinetic and “dissipated,” and therefore, by theorem (

), we have

Back in section 6.3, we used Newton’s laws to solve for the acceleration of this system and the tension in the rope; using those
results, we can calculate the displacement  over any time interval, and the corresponding change in , and then we can solve
Equation ( ) for .

If we do this, we will find out that, in fact, the following result holds,

where  is the force of kinetic friction exerted by the surface on block 1, and must be understood to be negative in this equation
(so that  will come out positive, as it must be).

It is tempting to think of the product  as the work done by the force of kinetic friction on the block, and most of the time
there is nothing wrong with that, but it is important to realize that the “point of application” of the friction force is not a single
point: rather, the force is “distributed,” that is to say, spread over the whole contact area between the block and the surface. As a
consequence of this, a more general expression for the energy dissipated by kinetic friction between an object  and a surface 
should be

= − = −Δ .Wr,A Wr,B EB (21.2.11)
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where we are using the subscript notation  to refer to “the position of B in the frame of A” (or “relative to A”); in other words, 
 is the change in the position of the object relative to the surface or, more simply, the distance that the object and the surface

slip past each other (while rubbing against each other, and hence dissipating energy). If the surfaces is at rest (relative to the Earth),
 reduces to , the displacement of the object in the Earth reference frame, and we can remove the subscript , as we

typically do, for simplicity; however, in the rare cases when both the surface and the objet are moving what matters is how far they
move relative to each other. In that case we have  (with both  and  measured in the Earth
reference frame).

This page titled 21.2: Work Done on a System By All the External Forces is shared under a CC BY-SA 4.0 license and was authored, remixed,
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21.3: Forces Not Derived From a Potential Energy
As we have seen in the previous section, for interactions that are associated with a potential energy, we are always able to
determine the forces from the potential energy by simple differentiation. This means that we do not have to rely exclusively on an
equation of the type , to infer the value of a force from the observed acceleration; rather, we can work in reverse, and
predict the value of the acceleration (and from it all the subsequent motion) from our knowledge of the force.

I have said before that, on a microscopic level, all the interactions can be derived from potential energies, yet at the macroscopic
level this is not generally true: we have many kinds of interactions for which the associated “stored” or converted energy cannot, in
general, be written as a function of the macroscopic position variables for the objects making up the system (by which I mean,
typically, the positions of their centers of mass). So what do we do in those cases?

The forces of this type with which we shall deal this semester actually fall into two different categories: the ones that do not
dissipate energy, and that we could, in fact, associate with a potential energy if we wanted to , and the ones that definitely dissipate
energy and need special handling. The former category includes the normal force, tension, and the static friction force; the second
category includes the force of kinetic (or sliding) friction, and air resistance. A brief description of all these forces, and the methods
to deal with them, follows.

If we wanted to complicate our life, that is...

Tensions
Tension is the force exerted by a stretched spring, and, similarly, by objects such as cables, ropes, and strings in response to a
stretching force (or load) applied to them. It is ultimately an elastic force, so, as I said above, we could in principle describe it by a
potential energy, but in practice cables, strings and the like are so stiff that it is often all right to neglect their change in length
altogether and assume that no potential energy is, in fact, stored in them. The price we pay for this simplification (and it is a
simplification) is that we are left without an independent way to determine the value of the tension in any specific case; we just
have to infer it from the acceleration of the object on which it acts (since it is a reaction force, it can assume any value as required
to adjust to any circumstance—up to the point where the rope snaps, anyway).

Thus, for instance, in the picture below, which shows two blocks connected by a rope over a pulley, the tension force exerted by the
rope on block 1 must equal , where  is the acceleration of that block, provided there are no other horizontal forces (such as
friction) acting on it. For the hanging block, on the other hand, the net force is the sum of the tension on the other end of the rope
(pulling up) and gravity, pulling down. If we choose the upward direction as positive, we can write Newton’s second law for the
second block as

Two things need to be realized now. First, if the rope is inextensible, both blocks travel the same distance in the same time, so their
speeds are always the same, and hence the magnitude of their accelerations will always be the same as well; only the sign may be
different depending on which direction we choose as positive. If we take to the right to be positive for the horizontal motion, we
will have . I’m just going to call , so then .

F = ma

3

3
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Figure : Two blocks joined by a massless, inextensible strength threaded over a massless pulley. An optional friction force
(in red, where  could be either  or ) is shown for use later, in the discussion below in subsection "Static and Kinetic Friction
Forces." In this subsection, however, it is assumed to be zero.

The second thing to note is that, if the rope’s mass is negligible, it will, like an ideal spring, pull with a force with the same
magnitude on both ends. With our specific choices (up and to the right is positive), we then have , and I’m just going to
call this quantity  . All this yields, then, the following two equations:

The system ( ) can be easily solved to get

Normal Forces
Normal force is the reaction force with which a surface pushes back when it is being pushed on. Again, this works very much like
an extremely stiff spring, this time under compression instead of tension. And, again, we will eschew the potential energy treatment
by assuming that the surface’s actual displacement is entirely negligible, and we will just calculate the value of  as whatever is
needed in order to make Newton’s second law work. Note that this force will always be perpendicular to the surface, by definition
(the word “normal” means “perpendicular” here); the task of dealing with a sideways push on the surface will be delegated to the
static friction force, to be covered next.

If I am just standing on the floor and not falling through it, the net vertical force acting on me must be zero. The force of gravity on
me is  downwards, and so the upwards normal force must match this value, so for this situation . But don’t get too
attached to the notion that the normal force must always be equal to , since this will often not be the case. Imagine, for instance,
a person standing inside an elevator at the time it is accelerating upwards. With the upwards direction as positive, Newton’s second
law for the person reads

and therefore for this situation

If you were weighing yourself on a bathroom scale in the elevator, this is the upwards force that the bathroom scale would have to
exert on you, and it would do that by compressing a spring inside, and it would record the “extra” compression (beyond that
required by your actual weight, ) as extra weight. Conversely, if the elevator were accelerating downward, the scale would
record you as being lighter. In the extreme case in which the cable of the elevator broke and you, the elevator and the scale ended
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up (briefly, before the emergency brake caught on) in free fall, you would all be falling with the same acceleration, you would not
be pushing down on the scale at all, and its normal force as well as your recorded weight would be zero. This is ultimately the
reason for the apparent weightlessness experienced by the astronauts in the space station, where the force of gravity is, in fact, not
very much smaller than on the surface of the earth. (We will return to this effect after we have a good grip on two-dimensional, and
in particular circular, motion.)

Static and Kinetic Friction Forces
The static friction force is a force that prevents two surfaces in contact from slipping relative to each other. It is an extremely useful
force, since we would not be able to drive a car, or ride a bicycle, or even walk, without it—as we know from experience, if we
have ever tried to do any of those things on a low-friction surface (such as a sheet of ice).

The science behind friction (known technically as tribology) is actually not very simple at all, and it is of great current interest for
many reasons—whether the ultimate goal is to develop ways to reduce friction or to increase it. On an elementary level, we are all
aware of the fact that even a surface that looks smooth on a macroscopic scale will actually exhibit irregularities, such as ridges and
valleys, under a microscope. It makes sense, then, that when two such surfaces are pressed together, the bumps on one of them will
hit, and be held in place by, the bumps on the other one, and that will prevent sliding until and unless a sufficient force is applied to
temporarily “flatten” the bumps enough to allow the thing to move .

As long as this does not happen, that is, as long as the surfaces do not slide relative to each other, we say we are dealing with the
static friction force, which is, at least approximately, an elastic force that does not dissipate energy: the small distortion of the
“bumps” on the surfaces that takes place when you push on them typically happens slowly enough, and is small enough, to be
reversible, so that when you stop pushing the two surfaces just go back to their initial state. This is no longer the case once the
surfaces start sliding relative to each other. At that point the character of the friction force changes, and we have to deal with the
sliding, or kinetic friction force, as I will explain below.

The static friction force is also, like tension and the normal force, a reaction force that will adjust itself, within limits, to take any
value required to prevent slippage in a given circumstance. Hence, its actual value in a particular situation cannot really be
ascertained until the other relevant forces— the other forces pushing or pulling on the object—are known.

For instance, for the system in Figure , imagine there is a force of static friction between block 1 and the surface on which it
rests, sufficiently large to keep it from sliding altogether. How large does this have to be? If there is no acceleration (a = 0), the
equivalent of system ( ) will be

where  is the force of static friction exerted by the surface on block 1, and we are going to let the math tell us what sign it is
supposed to have. Solving the system ( ) we just get the condition

so this is how large  has to be in order to keep the whole system from moving in this case.

There is an empirical formula that tells us approximately how large the force of static friction can get in a given situation. The idea
behind it is that, microscopically, the surfaces are in contact only near the top of their respective ridges. If you press them together
harder, some of the ridges get flattened and the effective contact area increases; this in turn makes the surfaces more resistant to
slippage. A direct measure of how strongly the two surfaces press against each other is, actually, just the normal force they exert on
each other. So, in general, we expect the maximum force that static friction will be able to exert to be proportional to the normal
force between the surfaces:

where  and  just mean “surface 1” and “surface 2,” respectively, and the number  is known as the coefficient of static
friction: it is a tabulated quantity that is determined experimentally, by testing the slippage of different surfaces against each other
under different loads.

In our example, the normal force exerted by the surface on block 1 has to be equal to , since there is no vertical acceleration
for that block, and so the maximum value that  may have in this case is , whatever  might happen to be. In fact, this
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setup would give us a way to determine  for these two surfaces: start with a small value of , and gradually increase it until the
system starts moving. At that point we will know that  has just exceeded the maximum possible value of , namely, 

, and so , where  is the largest mass we can hang before the system starts moving.

By contrast with all of the above, the kinetic friction force, which always acts so as to oppose the relative motion of the two
surfaces when they are actually slipping, is not elastic, it is definitely dissipative, and, most interestingly, it is also not much of a
reactive force, meaning that its value can be approximately predicted for any given circumstance, and does not depend much on
things such as how fast the surfaces are actually moving relative to each other. It does depend on how hard the surfaces are pressing
against each other, as quantified by the normal force, and on another tabulated quantity known as the coefficient of kinetic friction:

Note that, unlike for static friction, this is not the maximum possible value of | |, but its actual value; so if we know  (and )
we know  without having to solve any other equations (its sign does depend on the direction of motion, of course). The
coefficient  is typically a little smaller than , reflecting the fact that once you get something you have been pushing on to
move, keeping it in motion with constant velocity usually does not require the same amount of force.

To finish off with our example in Figure , suppose the system is moving, and there is a kinetic friction force  between
block 1 and the surface. The equations ( ) then have to be changed to

and the solution now is

You may ask, why does kinetic friction dissipate energy? A qualitative answer is that, as the surfaces slide past each other, their
small (sometimes microscopic) ridges are constantly “bumping” into each other; so you have lots of microscopic collisions
happening all the time, and they cannot all be perfectly elastic. So mechanical energy is being “lost.” In fact, it is primarily being
converted to thermal energy, as you can verify experimentally: this is why you rub your hands together to get warm, for instance.
More dramatically, this is how some people (those who really know what they are doing!) can actually start a fire by rubbing sticks
together.

This picture based, essentially, on classical physics, leaves out an atomic-scale effect that may be important in some cases, which
is the formation of weak bonds between the atoms of both surfaces, resulting in an actual “adhesive” force. This is, for instance,
how geckos can run up vertical walls. For our purposes, however, the classical picture (of small ridges and valleys bumping into
each other) will suffice to qualitatively understand all the examples we will cover this semester.

Air Resistance
Air resistance is an instance of fluid resistance or drag, a force that opposes the motion of an object through a fluid.
Microscopically, you can think of it as being due to the constant collisions of the object with the air molecules, as it cleaves its way
through the air. As a result of these collisions, some of its momentum is transferred to the air, as well as some of its kinetic energy,
which ends up as thermal energy (as in the case of kinetic friction discussed above). The very high temperatures that air resistance
can generate can be seen, in a particularly dramatic way, on the re-entry of spacecraft into the atmosphere.

Unlike kinetic friction between solid surfaces, the fluid drag force does depend on the velocity of the object (relative to the fluid),
as well as on a number of other factors having to do with the object’s shape and the fluid’s density and viscosity. Very roughly
speaking, for low velocities the drag force is proportional to the object’s speed, whereas for high velocities it is proportional to the
square of the speed.

In principle, one can use the appropriate drag formula together with Newton’s second law to calculate the effect of air resistance on
a simple object thrown or dropped; in practice, this requires a somewhat more advanced math than we will be using this course, and
the formulas themselves are complicated, so I will not introduce them here.
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One aspect of air resistance that deserves to be mentioned is what is known as “terminal velocity”. Since air resistance increases
with speed, if you drop an object from a sufficiently great height, the upwards drag force on it will increase as it accelerates, until at
some point it will become as large as the downward force of gravity. At that point, the net force on the object is zero, so it stops
accelerating, and from that point on it continues to fall with constant velocity. When the Greek philosopher Aristotle was trying to
figure out the motion of falling bodies, he reasoned that, since air was just another fluid, he could slow down the fall (in order to
study it better) without changing the physics by dropping objects in liquids instead of air. The problem with this approach, though,
is that terminal velocity is reached much faster in a liquid than in air, so Aristotle missed entirely the early stage of approximately
constant acceleration, and concluded (wrongly) that the natural way all objects fell was with constant velocity. It took almost two
thousand years until Galileo disproved that notion by coming up with a better method to slow down the falling motion—namely, by
using inclined planes.

This page titled 21.3: Forces Not Derived From a Potential Energy is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Christopher Duston, Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and
standards of the LibreTexts platform.

6.3: Forces Not Derived From a Potential Energy by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source:
https://scholarworks.uark.edu/oer/3.
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21.4: Examples

1. Draw a free-body diagram for each force on the object.
2. Determine whether or not each force does work over the displacement in the diagram. Be sure to keep any positive or

negative signs in the work done.
3. Add up the total amount of work done by each force.
4. Set this total work equal to the change in kinetic energy and solve for any unknown parameter.
5. Check your answers. If the object is traveling at a constant speed or zero acceleration, the total work done should be zero

and match the change in kinetic energy. If the total work is positive, the object must have sped up or increased kinetic
energy. If the total work is negative, the object must have slowed down or decreased kinetic energy

 

Consider moving an object, of mass  = 8.75 kg, from the origin to point  m, along three different paths
as shown in the figure.

1. First assume the only force acting on the object is gravity, which is directed downwards (so ). Find the work done
by the gravitational force on the object for each of the three paths in the figure on the left. 

2. Now consider dragging this object around the surface of a table, as shown in the figure on the right. If the coefficient of
friction between the table and the particle is 0.15, find the work done by friction for each path.

 

 Problem-Solving Strategy: Work-Energy Theorem

 Whiteboard Problem : Conservative vs Nonconservative21.4.1

m ( , ) = (7.2, 3.5)x0 y0

= −gg ⃗  ŷ

 Whiteboard Problem : Terror on an Elevator21.4.2
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You have been tasked with designing a ``worst-case scenario'' safety system for an elevator. If this 2000-kg elevator's cables
break at the top of it's tower, it will be moving with a speed of 25 m/s when it reaches the bottom. Your job is to determine the
parameters required if this elevator will be stopped by brakes or a safety spring, over a distance of 3.00 m.

1. Using brakes that apply a constant force, how much force would the brakes have to apply to stop the elevator?
2. Using a spring, what would the spring constant need to be to stop this elevator?
3. What if you used both? If the brakes apply a force of 17 kN, what would the spring constant need to be? 

 

The frictionless track for a toy car includes a loop-the-loop of radius . How high, measured from the bottom of the loop, must
the car be placed to start from rest on the approaching section of track and go all the way around the loop?

Figure : A frictionless track for a toy car has a loop-the-loop in it. How high must the car start so that it can go around
the loop without falling off?

Strategy

The free-body diagram at the final position of the object is drawn in Figure . The gravitational work is the only work
done over the displacement that is not zero. Since the weight points in the same direction as the net vertical displacement, the
total work done by the gravitational force is positive. From the work-energy theorem, the starting height determines the speed
of the car at the top of the loop,

where the notation is shown in the accompanying figure. At the top of the loop, the normal force and gravity are both down
and the acceleration is centripetal, so

 Example : Loop-the-Loop21.4.3
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The condition for maintaining contact with the track is that there must be some normal force, however slight; that is, .
Substituting for  and , we can find the condition for .

Solution

Implement the steps in the strategy to arrive at the desired result:

Significance

On the surface of the loop, the normal component of gravity and the normal contact force must provide the centripetal
acceleration of the car going around the loop. The tangential component of gravity slows down or speeds up the car. A child
would find out how high to start the car by trial and error, but now that you know the work-energy theorem, you can predict the
minimum height (as well as other more useful results) from physical principles. By using the work-energy theorem, you did
not have to solve a differential equation to determine the height.

Suppose the radius of the loop-the-loop in Example  is 15 cm and the toy car starts from rest at a height of 45 cm above
the bottom. What is its speed at the top of the loop?

In situations where the motion of an object is known, but the values of one or more of the forces acting on it are not known, you
may be able to use the work-energy theorem to get some information about the forces. Work depends on the force and the distance
over which it acts, so the information is provided via their product.

A bullet has a mass of 40 grains (2.60 g) and a muzzle velocity of 1100 ft./s (335 m/s). It can penetrate eight 1-inch pine
boards, each with thickness 0.75 inches. What is the average stopping force exerted by the wood, as shown in Figure ?

Figure : The boards exert a force to stop the bullet. As a result, the boards do work and the bullet loses kinetic energy

Strategy

We can assume that under the general conditions stated, the bullet loses all its kinetic energy penetrating the boards, so the
work-energy theorem says its initial kinetic energy is equal to the average stopping force times the distance penetrated. The
change in the bullet’s kinetic energy and the net work done stopping it are both negative, so when you write out the work-
energy theorem, with the net work equal to the average force times the stopping distance, that’s what you get. The total
thickness of eight 1-inch pine boards that the bullet penetrates is 8 x  in. = 6 in. = 15.2 cm.

Solution

Applying the work-energy theorem, we get

so

Significance
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We could have used Newton’s second law and kinematics in this example, but the work-energy theorem also supplies an
answer to less simple situations. The penetration of a bullet, fired vertically upward into a block of wood, is discussed in one
section of Asif Shakur’s recent article [“Bullet-Block Science Video Puzzle.” The Physics Teacher (January 2015) 53(1): 15-
16]. If the bullet is fired dead center into the block, it loses all its kinetic energy and penetrates slightly farther than if fired off-
center. The reason is that if the bullet hits off-center, it has a little kinetic energy after it stops penetrating, because the block
rotates. The work-energy theorem implies that a smaller change in kinetic energy results in a smaller penetration.

Learn more about work and energy in this PhET simulation (https://phet.colorado.edu/en/simulation/the-ramp) called “the
ramp.” Try changing the force pushing the box and the frictional force along the incline. The work and energy plots can be
examined to note the total work done and change in kinetic energy of the box.

Example : Work, energy and the choice of system- dissipative case

Consider again the situation shown in Figure 21.3.1. Let  = 1 kg,  = 2 kg, and  = 0.3. Use the solutions provided in
section 21.3 to calculate the work done by all the forces, and the changes in all energies, when the system undergoes a
displacement of 0.5 m, and represent the changes graphically using bar diagrams like the ones in Figure 21.2.2 (for system A
and B separately)

Solution

From Equation (21.3.11), we have

We can use the acceleration to calculate the change in kinetic energy, since we have Equation (15.2.10) for motion with
constant acceleration:

so the change in kinetic energy of the two blocks is

We can also use the tension to calculate the work done by the external force on each system:

Lastly, we need the change in the gravitational potential energy of system B:

and the increase in dissipated energy in system A, which we can get from Equation (21.2.16):

We can now put all this together to show that Equation (21.2.8) indeed holds:

To plot all this as energy bars, if you do not have access to a very precise drawing program, you typically have to make some
approximations. In this case, we see that  (exactly), whereas , so we can use one box to
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represent , two boxes for , three for , four for , and so on. The result is shown in green in the picture
below; the blue bars have been drawn more exactly to scale, and are shown for your information only.

Example : Work, energy and the choice of system- non-dissipative case
Suppose you hang a spring from the ceiling, then attach a block to the end of the spring and let go. The block starts swinging
up and down on the spring. Consider the initial time just before you let go, and the final time when the block momentarily
stops at the bottom of the swing. For each of the choices of a system listed below, find the net energy change of the system in
this process, and relate it explicitly to the work done on the system by an external force (or forces)

a. System is the block and the spring.
b. System is the block alone.
c. System is the block and the earth.

Solution

(a) The block alone has kinetic energy, and the spring alone has (elastic) potential energy, so the total energy of this system is
the sum of these two. For the interval considered, the change in kinetic energy is zero, because the block starts and ends
(momentarily) at rest, so only the spring energy changes. This has to be equal to the work done by gravity, which is the only
external force.

So, if the spring stretches a distance d, its potential energy goes from zero to , and the block falls the same distance, so
gravity does an amount of work equal to , and we have

(b) If the system is the block alone, the only energy it has is kinetic energy, which, as stated above, does not see a net change in
this process. This means the net work done on the block by the external forces must be zero. The external forces in this case are
the spring force and gravity, so we have

We have calculated  above, so from this we get that the work done by the spring on the block, as it stretches, is ,
or (by Equation ( )) . Note that the force exerted by the spring is not constant as it stretches (or compresses) so we
cannot just use Equation (9.2.1) to calculate it; rather, we need to calculate it as an integral, as in Equation (21.2.5), or derive it
in some indirect way as we have just done here.

(c) If the system is the block and the earth, it has kinetic energy and gravitational potential energy. The force exerted by the
spring is an external force now, so we have:

so we end up again with the result that . Note that both the work done by the spring and the work
done by gravity are equal to the negative of the changes in their respective potential energies, as they should be.
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For a standing jump, you start standing straight (A) so your body’s center of mass is at a height  above the ground. You then
bend your knees so your center of mass is now at a (lower) height  (B). Finally, you straighten your legs, pushing hard on the
ground, and take off, so your center of mass ends up achieving a maximum height, , above the ground (C). Answer the
following questions in as much detail as you can.

a. Consider the system to be your body only. In going from (A) to (B), which external forces are acting on it? How do their
magnitudes compare, as a function of time?

b. In going from (A) to (B), does any of the forces you identified in part (a) do work on your body? If so, which one, and by
how much? Does your body’s energy increase or decrease as a result of this? Into what kind of energy do you think this
work is primarily converted?

c. In going from (B) to (C), which external forces are acting on you? (Not all of them need to be acting all the time.) How do
their magnitudes compare, as a function of time?

d. In going from (B) to (C), does any of the forces you identified do work on your body? If so, which one, and by how much?
Does your body’s kinetic energy see a net change from (B) to (C)? What other energy change needs to take place in order
for Equation (21.2.8) (always with your body as the system) to be valid for this process?

Solution

(a) The external forces on your body are gravity, pointing down, and the normal force from the floor, pointing up. Initially, as
you start lowering your center of mass, the normal force has to be slightly smaller than gravity, since your center of mass
acquires a small downward acceleration. However, eventually  would have to exceed  in order to stop the downward
motion.

(b) The normal force does no work, because its point of application (the soles of your feet) does not move, so  in the
expression  (Equation (9.2.1)) is zero.

Gravity, on the other hand, does positive work, since you may always treat the center of mass as the point of application of
gravity. We have , and , so

Since this is the net work done by all the external forces on my body, and it is positive, the total energy in my body must have
increased (by the theorem ((21.2.8)): ). In this case, it is clear that the main change has to be an increase in
my body’s elastic potential energy, as my muscles tense for the jump. (An increase in thermal energy is always possible too.)

(c) During the jump, the external forces acting on me are again gravity and the normal force, which together determine the
acceleration of my center of mass. At the beginning of the jump, the normal force has to be much stronger than gravity, to give
me a large upwards acceleration. Since the normal force is a reaction force, I accomplish this by pushing very hard with my
feet on the ground, as I extend my leg’s muscles: by Newton’s third law, the ground responds with an equal and opposite force
upwards.

As my legs continue to stretch, and move upwards, the force they exert on the ground decreases, and so does , which
eventually becomes less than . At that point (probably even before my feet leave the ground) the acceleration of my center
of mass becomes negative (that is, pointing down). This ultimately causes my upwards motion to stop, and my body to come
down.

(d) The only force that does work on my body during the process described in (c) is gravity, since, again, the point of
application of  is the point of contact between my feet and the ground, and that point does not move up or down—it is
always level with the ground. So , which in this case is actually negative: .

In going from (B) to (C), there is no change in your kinetic energy, since you start at rest and end (momentarily) with zero
velocity at the top of the jump. So the fact that there is a net negative work done on you means that the energy inside your body
must have gone down. Clearly, some of this is just a decrease in elastic potential energy. However, since  (the final height of
your center of mass) is greater than  (its initial height at (A), before crouching), there is a net loss of energy in your body as
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a result of the whole process. The most obvious place to look for this loss is in chemical energy: you “burned” some calories in
the process, primarily when pushing hard against the ground.

At a stoplight, a large truck (3000 kg) collides with a motionless small car (1200 kg). The truck comes to an instantaneous
stop; the car slides straight ahead, coming to a stop after sliding 10 meters. The measured coefficient of friction between the
car’s tires and the road was 0.62. How fast was the truck moving at the moment of impact?

Strategy

At first it may seem we don’t have enough information to solve this problem. Although we know the initial speed of the car,
we don’t know the speed of the truck (indeed, that’s what we’re asked to find), so we don’t know the initial momentum of the
system. Similarly, we know the final speed of the truck, but not the speed of the car immediately after impact. The fact that the
car eventually slid to a speed of zero doesn’t help with the final momentum, since an external friction force caused that. Nor
can we calculate an impulse, since we don’t know the collision time, or the amount of time the car slid before stopping. A
useful strategy is to impose a restriction on the analysis.

Suppose we define a system consisting of just the truck and the car. The momentum of this system isn’t conserved, because of
the friction between the car and the road. But if we could find the speed of the car the instant after impact—before friction had
any measurable effect on the car—then we could consider the momentum of the system to be conserved, with that restriction.

Can we find the final speed of the car? Yes; we invoke the work-kinetic energy theorem.

Solution
First, define some variables. Let:

M  and M  be the masses of the car and truck, respectively
v  and v  be the velocities of the truck before and after the collision, respectively
v  and v  be the velocities of the car before and after the collision, respectively
K  and K  be the kinetic energies of the car immediately after the collision, and after the car has stopped sliding (so K  = 0).
d be the distance the car slides after the collision before eventually coming to a stop.

Since we actually want the initial speed of the truck, and since the truck is not part of the work-energy calculation, let’s start
with conservation of momentum. For the car + truck system, conservation of momentum reads

Since the car’s initial velocity was zero, as was the truck’s final velocity, this simplifies to

So now we need the car’s speed immediately after impact. Recall that

where

Also,

The work is done over the distance the car slides, which we’ve called d. Equating:
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Friction is the force on the car that does the work to stop the sliding. With a level road, the friction force is

Since the angle between the directions of the friction force vector and the displacement d is 180°, and cos(180°) = –1, we have

(Notice that the car’s mass divides out; evidently the mass of the car doesn’t matter.)

Solving for the car’s speed immediately after the collision gives

Substituting the given numbers:

Now we can calculate the initial speed of the truck:

Significance

This is an example of the type of analysis done by investigators of major car accidents. A great deal of legal and financial
consequences depend on an accurate analysis and calculation of momentum and energy.
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22.1: Rotational Variables
We  have already talked about angular velocity in Chapter 6, so here we will review it, provide a few more details that we will
need, and then move on to the discuss the notion of angular acceleration.

Angular Velocity
Uniform circular motion (discussed previously in Circular Motion) is motion in a circle at constant speed. Although this is the
simplest case of rotational motion, it is very useful for many situations, and we use it here to introduce rotational variables.

In Figure , we show a particle moving in a circle. The coordinate system is fixed and serves as a frame of reference to define
the particle’s position. Its position vector from the origin of the circle to the particle sweeps out the angle , which increases in the
counterclockwise direction as the particle moves along its circular path. The angle  is called the angular position of the particle.
As the particle moves in its circular path, it also traces an arc length s.

Figure : A particle follows a circular path. As it moves counterclockwise, it sweeps out a positive angle  with respect to the
x-axis and traces out an arc length s.

The angle is related to the radius of the circle and the arc length by

We can assign vectors to the quantities in Equation . The angle  is a vector out of the page in Figure . The angular
position vector  and the arc length  both lie in the plane of the page. These three vectors are related to each other by

That is, the arc length is the cross product of the angle vector and the position vector, as shown in Figure .

Figure : The angle vector points along the z-axis and the position vector and arc length vector both lie in the xy-plane. We
see that . All three vectors are perpendicular to each other.

The magnitude of the angular velocity, denoted by , is the time rate of change of the angle  as the particle moves in its circular
path. The instantaneous angular velocity is defined as the limit in which t → 0 in the average angular velocity :

where  is the angle of rotation (Figure ).

We can see how angular velocity is related to the tangential speed of the particle by differentiating Equation  with respect to
time. We rewrite Equation  as
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Taking the derivative with respect to time and noting that the radius r is a constant, we have

where  = 0. Here,  is just the tangential speed v  of the particle in Figure . Thus, by using Equation , we arrive at
an expression we first encounted in Section 6.1:

That is, the tangential speed of the particle is its angular velocity times the radius of the circle. From Equation , we see that
the tangential speed of the particle increases with its distance from the axis of rotation for a constant angular velocity. This effect is
shown in Figure . Two particles are placed at different radii on a rotating disk with a constant angular velocity. As the disk
rotates, the tangential speed increases linearly with the radius from the axis of rotation. In Figure , we see that v  = r  and

v  = r . But the disk has a constant angular velocity, so . This means  or v  = v . Thus, since r  > r , v  >

v .

Figure : Two particles on a rotating disk have different tangential speeds, depending on their distance to the axis of rotation.

Up until now, we have discussed the magnitude of the angular velocity , which is a scalar quantity—the change in angular
position with respect to time. The vector  is the vector associated with the angular velocity and points along the axis of rotation.
This is useful because when a rigid body is rotating, we want to know both the axis of rotation and the direction that the body is
rotating about the axis, clockwise or counterclockwise. The angular velocity  gives us this information. The angular velocity 
has a direction determined by what is called the right-hand rule. The right-hand rule is such that if the fingers of your right hand
wrap counterclockwise from the x-axis (the direction in which  increases) toward the y-axis, your thumb points in the direction of
the positive z-axis (Figure ). An angular velocity  that points along the positive z-axis therefore corresponds to a
counterclockwise rotation, whereas an angular velocity  that points along the negative z-axis corresponds to a clockwise rotation.

Figure : For counterclockwise rotation in the coordinate system shown, the angular velocity points in the positive z-direction
by the right-hand-rule.

We can verify the right-hand-rule using the vector expression for the arc length , Equation . If we differentiate this
equation with respect to time, we find
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Since  is constant, the term  = 0. Since  is the tangential velocity and  is the angular velocity, we have

That is, the tangential velocity is the cross product of the angular velocity and the position vector, as shown in Figure . From
part (a) of this figure, we see that with the angular velocity in the positive z-direction, the rotation in the xy-plane is
counterclockwise. In part (b), the angular velocity is in the negative z-direction, giving a clockwise rotation in the xy-plane.

Figure : The vectors shown are the angular velocity, position, and tangential velocity. (a) The angular velocity points in the
positive z-direction, giving a counterclockwise rotation in the xy-plane. (b) The angular velocity points in the negative z-direction,
giving a clockwise rotation.

A flywheel rotates such that it sweeps out an angle at the rate of  = t = (45.0 rad/s)t radians. The wheel rotates
counterclockwise when viewed in the plane of the page. (a) What is the angular velocity of the flywheel? (b) What direction is
the angular velocity? (c) How many radians does the flywheel rotate through in 30 s? (d) What is the tangential speed of a
point on the flywheel 10 cm from the axis of rotation?

Strategy

The functional form of the angular position of the flywheel is given in the problem as (t) = t, so by taking the derivative
with respect to time, we can find the angular velocity. We use the right-hand rule to find the angular velocity. To find the
angular displacement of the flywheel during 30 s, we seek the angular displacement , where the change in angular position
is between 0 and 30 s. To find the tangential speed of a point at a distance from the axis of rotation, we multiply its distance
times the angular velocity of the flywheel.

Solution
a.  =  = 45 rad/s. We see that the angular velocity is a constant.
b. By the right-hand rule, we curl the fingers in the direction of rotation, which is counterclockwise in the plane of the page,

and the thumb points in the direction of the angular velocity, which is out of the page.
c.  = (30 s) − (0 s) = 45.0(30.0 s) − 45.0(0 s) = 1350.0 rad.
d. v  = r  = (0.1 m)(45.0 rad/s) = 4.5 m/s.

Significance

In 30 s, the flywheel has rotated through quite a number of revolutions, about 215 if we divide the angular displacement by 2 .
A massive flywheel can be used to store energy in this way, if the losses due to friction are minimal. Recent research has
considered superconducting bearings on which the flywheel rests, with zero energy loss due to friction.

Angular Acceleration
We have just discussed angular velocity for uniform circular motion, but not all motion is uniform. Envision an ice skater spinning
with his arms outstretched—when he pulls his arms inward, his angular velocity increases. Or think about a computer’s hard disk
slowing to a halt as the angular velocity decreases. We will explore these situations later, but we can already see a need to define an
angular acceleration for describing situations where  changes. The faster the change in , the greater the angular acceleration.
We define the instantaneous angular acceleration  as the derivative of angular velocity with respect to time:

= ( × ) =( × )+( × ) = × .
ds ⃗ 

dt

d

dt
θ ⃗  r ⃗ 

dθ

dt
r ⃗  θ ⃗  dr ⃗ 

dt

dθ

dt
r ⃗  (22.1.7)

r ⃗  ×θ ⃗  dr ⃗ 

dt
=v ⃗  ds ⃗ 

dt
ω = dθ ⃗ 
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= × .v ⃗  ω⃗  r ⃗  (22.1.8)
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where we have taken the limit of the average angular acceleration,  as . The units of angular acceleration are
(rad/s)/s, or rad/s .

In the same way as we defined the vector associated with angular velocity , we can define , the vector associated with angular
acceleration (Figure ). If the angular velocity is along the positive z-axis, as in Figure , and  is positive, then the
angular acceleration  is positive and points along the +z- axis. Similarly, if the angular velocity  is along the positive z-axis and 

 is negative, then the angular acceleration is negative and points along the +z-axis.

Figure : The rotation is counterclockwise in both (a) and (b) with the angular velocity in the same direction. (a) The angular
acceleration is in the same direction as the angular velocity, which increases the rotation rate. (b) The angular acceleration is in the
opposite direction to the angular velocity, which decreases the rotation rate.

We can express the tangential acceleration vector as a cross product of the angular acceleration and the position vector. This
expression can be found by taking the time derivative of ; the result is:

The vector relationships for the angular acceleration and tangential acceleration are shown in Figure .

Figure : (a) The angular acceleration is the positive z-direction and produces a tangential acceleration in a counterclockwise
sense. (b) The angular acceleration is in the negative z-direction and produces a tangential acceleration in the clockwise sense.

We can relate the tangential acceleration of a point on a rotating body at a distance from the axis of rotation in the same way that
we related the tangential speed to the angular velocity. If we differentiate Equation  with respect to time, noting that the
radius r is constant, we obtain

Thus, the tangential acceleration a is the radius times the angular acceleration. Equations  and  are important for the
discussion of rolling motion.

Let’s apply these ideas to the analysis of a few simple fixed-axis rotation scenarios. Before doing so, we present a problem-solving
strategy that can be applied to rotational kinematics: the description of rotational motion.

1. Examine the situation to determine that rotational kinematics (rotational motion) is involved.
2. Identify exactly what needs to be determined in the problem (identify the unknowns). A sketch of the situation is useful.
3. Make a complete list of what is given or can be inferred from the problem as stated (identify the knowns).
4. Solve the appropriate equation or equations for the quantity to be determined (the unknown). It can be useful to think in

terms of a translational analog, because by now you are familiar with the equations of translational motion.

α = = = ,lim
Δt→0

Δω

Δt

dω

dt

θd2

dt2
(22.1.9)
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5. Substitute the known values along with their units into the appropriate equation and obtain numerical solutions complete
with units. Be sure to use units of radians for angles.

6. Check your answer to see if it is reasonable: Does your answer make sense?

Now let’s apply this problem-solving strategy to a few specific examples.

A bicycle mechanic mounts a bicycle on the repair stand and starts the rear wheel spinning from rest to a final angular velocity
of 250 rpm in 5.00 s. (a) Calculate the average angular acceleration in rad/s . (b) If she now hits the brakes, causing an angular
acceleration of −87.3 rad/s , how long does it take the wheel to stop?

Strategy

The average angular acceleration can be found directly from its definition  because the final angular velocity and time
are given. We see that  =  −  = 250 rev/min and t is 5.00 s. For part (b), we know the angular acceleration
and the initial angular velocity. We can find the stopping time by using the definition of average angular acceleration and
solving for t, yielding

Solution
a. Entering known information into the definition of angular acceleration, we get $\bar{\alpha} = \frac{\Delta \omega}{\Delta

t} = \frac{250\; rpm}{5.00\; s} \ldotp$Because  is in revolutions per minute (rpm) and we want the standard units of
rad/s  for angular acceleration, we need to convert from rpm to rad/s: $\Delta \omega = 250 \frac{rev}{min}\; \cdotp
\frac{2 \pi\; rad}{rev}\; \cdotp \frac{1\; min}{60\; s} = 26.2\; rad/s \ldotp$Entering this quantity into the expression for ,
we get $bar{\alpha} = \frac{\Delta \omega}{\Delta t} = \frac{26.2\; rpm}{5.00\; s} = 5.24\; rad/s^{2} \ldotp$

b. Here the angular velocity decreases from 26.2 rad/s (250 rpm) to zero, so that  is −26.2 rad/s, and  is given to be –87.3
rad/s . Thus $\Delta t = \frac{-26.2\; rad/s}{-87.3\; rad/s^{2}} = 0.300\; s \ldotp$

Significance

Note that the angular acceleration as the mechanic spins the wheel is small and positive; it takes 5 s to produce an appreciable
angular velocity. When she hits the brake, the angular acceleration is large and negative. The angular velocity quickly goes to
zero.

The fan blades on a turbofan jet engine (shown below) accelerate from rest up to a rotation rate of 40.0 rev/s in 20 s. The
increase in angular velocity of the fan is constant in time. (The GE90-110B1 turbofan engine mounted on a Boeing 777, as
shown, is currently the largest turbofan engine in the world, capable of thrusts of 330–510 kN.) (a) What is the average angular
acceleration? (b) What is the instantaneous angular acceleration at any time during the first 20 s?

 Example : A Spinning Bicycle Wheel22.1.2
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A wind turbine (Figure ) in a wind farm is being shut down for maintenance. It takes 30 s for the turbine to go from its

operating angular velocity to a complete stop in which the angular velocity function is (t) = rad/s. If the turbine

is rotating counterclockwise looking into the page, (a) what are the directions of the angular velocity and acceleration vectors?
(b) What is the average angular acceleration? (c) What is the instantaneous angular acceleration at t = 0.0, 15.0, 30.0 s?

Figure : A wind turbine that is rotating counterclockwise, as seen head on.

Strategy

a. We are given the rotational sense of the turbine, which is counterclockwise in the plane of the page. Using the right hand
rule (Figure 10.5), we can establish the directions of the angular velocity and acceleration vectors.

b. We calculate the initial and final angular velocities to get the average angular acceleration. We establish the sign of the
angular acceleration from the results in (a).

c. We are given the functional form of the angular velocity, so we can find the functional form of the angular acceleration
function by taking its derivative with respect to time.

Solution
a. Since the turbine is rotating counterclockwise, angular velocity  points out of the page. But since the angular velocity is

decreasing, the angular acceleration  points into the page, in the opposite sense to the angular velocity.
b. The initial angular velocity of the turbine, setting t = 0, is  = 9.0 rad/s. The final angular velocity is zero, so the average

angular acceleration is $\bar{\alpha} \frac{\Delta \omega}{\Delta t} = \frac{\omega - \omega_{0}}{t - t_{0}} = \frac{0 -
9.0\; rad/s}{30.0 - 0\; s} = -0.3\; rad/s^{2} \ldotp$

c. Taking the derivative of the angular velocity with respect to time gives  rad/s $\alpha (0.0; s) = -0.6\;
rad/s^{2}, \alpha (15.0\; s) = -0.3\; rad/s^{2}, and\; \alpha (30.0\; s) = 0\; rad/s \ldotp$

Significance

We found from the calculations in (a) and (b) that the angular acceleration α and the average angular acceleration  are
negative. The turbine has an angular acceleration in the opposite sense to its angular velocity.

We now have a basic vocabulary for discussing fixed-axis rotational kinematics and relationships between rotational variables. We
discuss more definitions and connections in the next section.

This page titled 22.1: Rotational Variables is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Christopher
Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

10.2: Rotational Variables by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.
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22.2: Rotation with Constant Angular Acceleration

Derive the kinematic equations for rotational motion with constant angular acceleration
Select from the kinematic equations for rotational motion with constant angular acceleration the appropriate equations to
solve for unknowns in the analysis of systems undergoing fixed-axis rotation
Use solutions found with the kinematic equations to verify the graphical analysis of fixed-axis rotation with constant
angular acceleration

In the preceding section, we defined the rotational variables of angular displacement, angular velocity, and angular acceleration. In
this section, we work with these definitions to derive relationships among these variables and use these relationships to analyze
rotational motion for a rigid body about a fixed axis under a constant angular acceleration. This analysis forms the basis for
rotational kinematics. If the angular acceleration is constant, the equations of rotational kinematics simplify, similar to the
equations of linear kinematics discussed in Motion along a Straight Line and Motion in Two and Three Dimensions. We can then
use this simplified set of equations to describe many applications in physics and engineering where the angular acceleration of the
system is constant. Rotational kinematics is also a prerequisite to the discussion of rotational dynamics later in this chapter.

Kinematics of Rotational Motion
Using our intuition, we can begin to see how the rotational quantities , , , and t are related to one another. For example, we saw
in the preceding section that if a flywheel has an angular acceleration in the same direction as its angular velocity vector, its angular
velocity increases with time and its angular displacement also increases. On the contrary, if the angular acceleration is opposite to
the angular velocity vector, its angular velocity decreases with time. We can describe these physical situations and many others
with a consistent set of rotational kinematic equations under a constant angular acceleration. The method to investigate rotational
motion in this way is called kinematics of rotational motion.

To begin, we note that if the system is rotating under a constant acceleration, then the average angular velocity follows a simple
relation because the angular velocity is increasing linearly with time. The average angular velocity is just half the sum of the initial
and final values:

From the definition of the average angular velocity, we can find an equation that relates the angular position, average angular
velocity, and time:

Solving for , we have

where we have set t  = 0. This equation can be very useful if we know the average angular velocity of the system. Then we could
find the angular displacement over a given time period. Next, we find an equation relating , , and t. To determine this equation,
we start with the definition of angular acceleration:

We rearrange this to get dt = d  and then we integrate both sides of this equation from initial values to final values, that is, from
t  to t and  to . In uniform rotational motion, the angular acceleration is constant so it can be pulled out of the integral,
yielding two definite integrals:

Setting t  = 0, we have

 Learning Objectives

θ ω α

= .ω̄
+ω0 ωf

2
(22.2.1)

= .ω̄
Δθ

Δt
(22.2.2)

θ

= + t,θf θ0 ω̄ (22.2.3)

0
ω α

α = .
dω

dt
(22.2.4)

α ω

0 ω0 ωf

α d = dω.∫
t

t0

t′ ∫
ωf

ω0

(22.2.5)

0

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63282?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/22%3A_N9)_Rotational_Motion/22.02%3A_Rotation_with_Constant_Angular_Acceleration
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/15%3A_N2)_1_Dimensional_Kinematics
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/16%3A_N3)_2_Dimensional_Kinematics_and_Projectile_Motion


22.2.2 https://phys.libretexts.org/@go/page/63282

We rearrange this to obtain

where  is the initial angular velocity. Equation  is the rotational counterpart to the linear kinematics equation v  = v  + at.
With Equation , we can find the angular velocity of an object at any specified time t given the initial angular velocity and the
angular acceleration.

Let’s now do a similar treatment starting with the equation . We rearrange it to obtain dt = d  and integrate both sides
from initial to final values again, noting that the angular acceleration is constant and does not have a time dependence. However,
this time, the angular velocity is not constant (in general), so we substitute in what we derived above:

where we have set t  = 0. Now we rearrange to obtain

Equation  is the rotational counterpart to the linear kinematics equation found in Motion Along a Straight Line for position
as a function of time. This equation gives us the angular position of a rotating rigid body at any time t given the initial conditions
(initial angular position and initial angular velocity) and the angular acceleration.

We can find an equation that is independent of time by solving for t in Equation  and substituting into Equation .
Equation  becomes

or

Equation  through Equation  describe fixed-axis rotation for constant acceleration and are summarized in Table 10.1.

Table 10.1 - Kinematic Equations
Angular displacement from average angular velocity

Angular velocity from angular acceleration

Angular displacement from angular velocity and angular
acceleration
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Angular velocity from angular displacement and angular
acceleration

Applying the Equations for Rotational Motion
Now we can apply the key kinematic relations for rotational motion to some simple examples to get a feel for how the equations
can be applied to everyday situations.

A deep-sea fisherman hooks a big fish that swims away from the boat, pulling the fishing line from his fishing reel. The whole
system is initially at rest, and the fishing line unwinds from the reel at a radius of 4.50 cm from its axis of rotation. The reel is
given an angular acceleration of 110 rad/s  for 2.00 s (Figure ).

a. What is the final angular velocity of the reel after 2 s?
b. How many revolutions does the reel make?

Figure : Fishing line coming off a rotating reel moves linearly

Strategy

Identify the knowns and compare with the kinematic equations for constant acceleration. Look for the appropriate equation that
can be solved for the unknown, using the knowns given in the problem description.

Solution
a. We are given  and t and want to determine . The most straightforward equation to use is , since all terms

are known besides the unknown variable we are looking for. We are given that  = 0 (it starts from rest), so $\omega_{f}
= 0 + (110\; rad/s^{2})(2.00\; s) = 220\; rad/s \ldotp$

b. We are asked to find the number of revolutions. Because 1 rev = 2  rad, we can find the number of revolutions by finding θ
in radians. We are given  and t, and we know  is zero, so we can obtain  by using $

$Converting radians to revolutions gives $Number\; of\; rev = (220\; rad) \left(\dfrac{1\; rev}{2 \pi\; rad}\right) = 35.0\; rev
\ldotp$

Significance

This example illustrates that relationships among rotational quantities are highly analogous to those among linear quantities.
The answers to the questions are realistic. After unwinding for two seconds, the reel is found to spin at 220 rad/s, which is
2100 rpm. (No wonder reels sometimes make high-pitched sounds.)

In the preceding example, we considered a fishing reel with a positive angular acceleration. Now let us consider what happens with
a negative angular acceleration.

= + 2α(Δθ)ω2
f ω2

0

 Example 10.4: Calculating the Acceleration of a Fishing Reel
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Now the fisherman applies a brake to the spinning reel, achieving an angular acceleration of −300 rad/s . How long does it take
the reel to come to a stop?

Strategy

We are asked to find the time t for the reel to come to a stop. The initial and final conditions are different from those in the
previous problem, which involved the same fishing reel. Now we see that the initial angular velocity is  = 220 rad/s and the
final angular velocity  is zero. The angular acceleration is given as  = −300 rad/s . Examining the available equations, we
see all quantities but t are known in , making it easiest to use this equation.

Solution
The equation states

We solve the equation algebraically for t and then substitute the known values as usual, yielding

Significance

Note that care must be taken with the signs that indicate the directions of various quantities. Also, note that the time to stop the
reel is fairly small because the acceleration is rather large. Fishing lines sometimes snap because of the accelerations involved,
and fishermen often let the fish swim for a while before applying brakes on the reel. A tired fish is slower, requiring a smaller
acceleration.

A centrifuge used in DNA extraction spins at a maximum rate of 7000 rpm, producing a “g-force” on the sample that is 6000
times the force of gravity. If the centrifuge takes 10 seconds to come to rest from the maximum spin rate: (a) What is the
angular acceleration of the centrifuge? (b) What is the angular displacement of the centrifuge during this time?

Figure  shows a graph of the angular velocity of a propeller on an aircraft as a function of time. Its angular velocity starts
at 30 rad/s and drops linearly to 0 rad/s over the course of 5 seconds. (a) Find the angular acceleration of the object and verify
the result using the kinematic equations. (b) Find the angle through which the propeller rotates during these 5 seconds and
verify your result using the kinematic equations.

Figure : A graph of the angular velocity of a propeller versus time.

Strategy

a. Since the angular velocity varies linearly with time, we know that the angular acceleration is constant and does not depend
on the time variable. The angular acceleration is the slope of the angular velocity vs. time graph, . To calculate the
slope, we read directly from Figure , and see that  = 30 rad/s at t = 0 s and  = 0 rad/s at t = 5 s. Then, we can

 Example 10.5: Calculating the Duration When the Fishing Reel Slows Down and Stops
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verify the result using .
b. We use the equation ; since the time derivative of the angle is the angular velocity, we can find the angular

displacement by integrating the angular velocity, which from the figure means taking the area under the angular velocity
graph. In other words:  Then we use the kinematic equations for constant acceleration to
verify the result.

Solution
a. Calculating the slope, we get  We see that this is exactly Equation  with

a little rearranging of terms.
b. We can find the area under the curve by calculating the area of the right triangle, as shown in Figure .

Figure : The area under the curve is the area of the right triangle.

We verify the solution using Equation :

Setting  = 0, we have

This verifies the solution found from finding the area under the curve.

Significance

We see from part (b) that there are alternative approaches to analyzing fixed-axis rotation with constant acceleration. We
started with a graphical approach and verified the solution using the rotational kinematic equations. Since , we could
do the same graphical analysis on an angular acceleration-vs.-time curve. The area under an -vs.-t curve gives us the change
in angular velocity. Since the angular acceleration is constant in this section, this is a straightforward exercise.

This page titled 22.2: Rotation with Constant Angular Acceleration is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Christopher Duston, Merrimack College (OpenStax) via source content that was edited to the style and standards of the LibreTexts
platform.

10.3: Rotation with Constant Angular Acceleration by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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22.3: Relating Angular and Translational Quantities
In this section, we relate each of the rotational variables to the translational variables defined in 1 Dimensional Kinematics and 2
Dimensional Kinematics. This will complete our ability to describe rigid-body rotations.

Angular vs. Linear Variables
In Rotational Variables, we introduced angular variables. If we compare the rotational definitions with the definitions of linear
kinematic variables, we find that there is a mapping of the linear variables to the rotational ones. Linear position, velocity, and
acceleration have their rotational counterparts, as we can see when we write them side by side:

  Linear Rotational

Position

Velocity

Acceleration

Mass

Let’s compare the linear and rotational variables individually. The linear variable of position has physical units of meters, whereas
the angular position variable has dimensionless units of radians, as can be seen from the definition of , which is the ratio of
two lengths. The linear velocity has units of m/s, and its counterpart, the angular velocity, has units of rad/s. In Rotational
Variables, we saw in the case of circular motion that the linear tangential speed of a particle at a radius r from the axis of rotation is
related to the angular velocity by the relation v  = r . This could also apply to points on a rigid body rotating about a fixed axis.
Here, we consider only circular motion. In circular motion, both uniform and nonuniform, there exists a centripetal acceleration
(Motion in Two and Three Dimensions). The centripetal acceleration vector points inward from the particle executing circular
motion toward the axis of rotation. The derivation of the magnitude of the centripetal acceleration is given in Motion in Two and
Three Dimensions. From that derivation, the magnitude of the centripetal acceleration was found to be

where r is the radius of the circle.

Thus, in uniform circular motion when the angular velocity is constant and the angular acceleration is zero, we have a linear
acceleration—that is, centripetal acceleration—since the tangential speed in Equation  is a constant. If nonuniform circular
motion is present, the rotating system has an angular acceleration, and we have both a linear centripetal acceleration that is
changing (because v  is changing) as well as a linear tangential acceleration. These relationships are shown in Figure , where
we show the centripetal and tangential accelerations for uniform and nonuniform circular motion.

Figure : (a) Uniform circular motion: The centripetal acceleration a  has its vector inward toward the axis of rotation. There
is no tangential acceleration. (b) Nonuniform circular motion: An angular acceleration produces an inward centripetal acceleration
that is changing in magnitude, plus a tangential acceleration a .
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dt
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The centripetal acceleration is due to the change in the direction of tangential velocity, whereas the tangential acceleration is due to
any change in the magnitude of the tangential velocity. The tangential and centripetal acceleration vectors  and  are always
perpendicular to each other, as seen in Figure . To complete this description, we can assign a total linear acceleration vector
to a point on a rotating rigid body or a particle executing circular motion at a radius r from a fixed axis. The total linear acceleration
vector  is the vector sum of the centripetal and tangential accelerations,

The total linear acceleration vector in the case of nonuniform circular motion points at an angle between the centripetal and
tangential acceleration vectors, as shown in Figure . Since , the magnitude of the total linear acceleration is

Note that if the angular acceleration is zero, the total linear acceleration is equal to the centripetal acceleration.

Figure : A particle is executing circular motion and has an angular acceleration. The total linear acceleration of the particle is
the vector sum of the centripetal acceleration and tangential acceleration vectors. The total linear acceleration vector is at an angle
in between the centripetal and tangential accelerations.

Relationships between Rotational and Translational Motion
We can look at two relationships between rotational and translational motion.

1. Generally speaking, the linear kinematic equations have their rotational counterparts. Table 10.2 lists the four linear kinematic
equations and the corresponding rotational counterpart. The two sets of equations look similar to each other, but describe two
different physical situations, that is, rotation and translation.

Table 10.2 - Rotational and Translational Kinematic Equations
Rotational Translational

2. The second correspondence has to do with relating linear and rotational variables in the special case of circular motion. This is
shown in Table 10.3, where in the third column, we have listed the connecting equation that relates the linear variable to the
rotational variable. The rotational variables of angular velocity and acceleration have subscripts that indicate their definition in
circular motion.

Table 10.3 - Rotational and Translational Quantities: Circular Motion
Rotational Translational Relationship ( r = radius

a⃗ t a⃗ c
22.3.1
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Rotational Translational Relationship ( r = radius

 

A centrifuge has a radius of 20 cm and accelerates from a maximum rotation rate of 10,000 rpm to rest in 30 seconds under a
constant angular acceleration. It is rotating counterclockwise. What is the magnitude of the total acceleration of a point at the
tip of the centrifuge at t = 29.0s? What is the direction of the total acceleration vector?

Strategy

With the information given, we can calculate the angular acceleration, which then will allow us to find the tangential
acceleration. We can find the centripetal acceleration at t = 0 by calculating the tangential speed at this time. With the
magnitudes of the accelerations, we can calculate the total linear acceleration. From the description of the rotation in the
problem, we can sketch the direction of the total acceleration vector.

Solution
The angular acceleration is

Therefore, the tangential acceleration is

The angular velocity at t = 29.0 s is

Thus, the tangential speed at t = 29.0 s is

We can now calculate the centripetal acceleration at t = 29.0 s:

Since the two acceleration vectors are perpendicular to each other, the magnitude of the total linear acceleration is

Since the centrifuge has a negative angular acceleration, it is slowing down. The total acceleration vector is as shown in Figure 
. The angle with respect to the centripetal acceleration vector is

The negative sign means that the total acceleration vector is angled toward the clockwise direction.

ac =ac
v2
t

r

 Example 10.7: Linear Acceleration of a Centrifuge

α = = = −34.9 rad/ .
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t
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ω = +αt = (1.0 × )( )+(−39.49 rad/ )(29.0 s)ω0 104 2π rad
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= rω = (0.2 m)(35.1 rad/s) = 7.0 m/s.vt (22.3.6)
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Figure : The centripetal, tangential, and total acceleration vectors. The centrifuge is slowing down, so the tangential
acceleration is clockwise, opposite the direction of rotation (counterclockwise).

Significance

From Figure , we see that the tangential acceleration vector is opposite the direction of rotation. The magnitude of the
tangential acceleration is much smaller than the centripetal acceleration, so the total linear acceleration vector will make a very
small angle with respect to the centripetal acceleration vector.

A boy jumps on a merry-go-round with a radius of 5 m that is at rest. It starts accelerating at a constant rate up to an angular
velocity of 5 rad/s in 20 seconds. What is the distance travelled by the boy?

Check out this PhET simulation to change the parameters of a rotating disk (the initial angle, angular velocity, and angular
acceleration), and place bugs at different radial distances from the axis. The simulation then lets you explore how circular
motion relates to the bugs’ xy-position, velocity, and acceleration using vectors or graphs.

 

It is a little bit strange to put mass in this table of quantities that are purely related to the motion of the object; however, it is worth
pointing out that the moment of inertia ( ) is very much the rotational equivalent of mass ( )

This page titled 22.3: Relating Angular and Translational Quantities is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

10.4: Relating Angular and Translational Quantities by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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22.4: Newton’s Second Law for Rotation
In this subsection, we put together all the pieces learned so far in this chapter to analyze the dynamics of rotating rigid bodies. We
have analyzed motion with kinematics and rotational kinetic energy but have not yet connected these ideas with force and/or
torque. In this subsection, we introduce the rotational equivalent to Newton’s second law of motion and apply it to rigid bodies with
fixed-axis rotation.

Newton’s Second Law for Rotation
We have thus far found many counterparts to the translational terms used throughout this text, most recently, torque, the rotational
analog to force. This raises the question: Is there an analogous equation to Newton’s second law,  = m , which involves
torque and rotational motion? To investigate this, we start with Newton’s second law for a single particle rotating around an axis
and executing circular motion. Let’s exert a force  on a point mass m that is at a distance r from a pivot point (Figure ). The
particle is constrained to move in a circular path with fixed radius and the force is tangent to the circle. We apply Newton’s second
law to determine the magnitude of the acceleration a =  in the direction of . Recall that the magnitude of the tangential
acceleration is proportional to the magnitude of the angular acceleration by a = r . Substituting this expression into Newton’s
second law, we obtain

Figure : An object is supported by a horizontal frictionless table and is attached to a pivot point by a cord that supplies
centripetal force. A force  is applied to the object perpendicular to the radius r, causing it to accelerate about the pivot point. The
force is perpendicular to r.

Multiply both sides of this equation by r,

Note that the left side of this equation is the torque about the axis of rotation, where r is the lever arm and F is the force,
perpendicular to r. Recall that the moment of inertia for a point particle is I = mr . The torque applied perpendicularly to the point
mass in Figure  is therefore

The torque on the particle is equal to the moment of inertia about the rotation axis times the angular acceleration. We can
generalize this equation to a rigid body rotating about a fixed axis.

If more than one torque acts on a rigid body about a fixed axis, then the sum of the torques equals the moment of inertia times
the angular acceleration:

The term I  is a scalar quantity and can be positive or negative (counterclockwise or clockwise) depending upon the sign of the net
torque. Remember the convention that counterclockwise angular acceleration is positive. Thus, if a rigid body is rotating clockwise
and experiences a positive torque (counterclockwise), the angular acceleration is positive.

Equation  is Newton’s second law for rotation and tells us how to relate torque, moment of inertia, and rotational
kinematics. This is called the equation for rotational dynamics. With this equation, we can solve a whole class of problems

∑F ⃗  a⃗ 

F ⃗  22.4.1

F
m F ⃗ 

α

F = mrα. (22.4.1)

22.4.1

F ⃗ 

rF = m α.r2 (22.4.2)
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involving force and rotation. It makes sense that the relationship for how much force it takes to rotate a body would include the
moment of inertia, since that is the quantity that tells us how easy or hard it is to change the rotational motion of an object.

Deriving Newton’s Second Law for Rotation in Vector Form

As before, when we found the angular acceleration, we may also find the torque vector. The second law  = m  tells us the
relationship between net force and how to change the translational motion of an object. We have a vector rotational equivalent of
this equation, which can be found by using Equation 10.2.10 and Figure 10.2.7. Equation 10.2.10 relates the angular acceleration to
the position and tangential acceleration vectors:

We form the cross product of this equation with  and use a cross product identity (note that  = 0):

We now form the cross product of Newton’s second law with the position vector ,

Identifying the first term on the left as the sum of the torques, and mr  as the moment of inertia, we arrive at Newton’s second law
of rotation in vector form:

This equation is exactly Equation  but with the torque and angular acceleration as vectors. An important point is that the
torque vector is in the same direction as the angular acceleration.

Applying the Rotational Dynamics Equation

Before we apply the rotational dynamics equation to some everyday situations, let’s review a general problem-solving strategy for
use with this category of problems.

1. Examine the situation to determine that torque and mass are involved in the rotation. Draw a careful sketch of the situation.
2. Determine the system of interest.
3. Draw a free-body diagram. That is, draw and label all external forces acting on the system of interest.
4. Identify the pivot point. If the object is in equilibrium, it must be in equilibrium for all possible pivot points––chose the one

that simplifies your work the most.
5. Apply , the rotational equivalent of Newton’s second law, to solve the problem. Care must be taken to use the

correct moment of inertia and to consider the torque about the point of rotation.
6. As always, check the solution to see if it is reasonable.

Consider the father pushing a playground merry-go-round in Figure . He exerts a force of 250 N at the edge of the
200.0-kg merry-go-round, which has a 1.50-m radius. Calculate the angular acceleration produced (a) when no one is on the
merry-go-round and (b) when an 18.0-kg child sits 1.25 m away from the center. Consider the merry-go-round itself to be a
uniform disk with negligible friction.

∑F ⃗  a⃗ 

= × .a⃗  α⃗  r ⃗  (22.4.5)

r ⃗  ⋅r ⃗  α⃗ 

× = ×( × ) = ( ⋅ ) − ( ⋅ ) = ( ⋅ ) = .r ⃗  a⃗  r ⃗  α⃗  r ⃗  α⃗  r ⃗  r ⃗  r ⃗ r ⃗  α⃗  α⃗  r ⃗  r ⃗  α⃗ r2 (22.4.6)

r ⃗ 
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Figure : A father pushes a playground merry-go-round at its edge and perpendicular to its radius to achieve maximum
torque.

Strategy

The net torque is given directly by the expression , To solve for , we must first calculate the net torque  (which
is the same in both cases) and moment of inertia I (which is greater in the second case).

Solution
a. The moment of inertia of a solid disk about this axis is given in Figure 10.5.4 to be . We have M = 50.0 kg and R =

1.50 m, so 

 
To find the net torque, we note that the applied force is perpendicular to the radius and friction is negligible, so that 

 
Now, after we substitute the known values, we find the angular acceleration to be 
\[\alpha = \frac{\tau}{I} = \frac{375.0\; N\; \cdotp m}{56.25\; kg\; \cdotp m^{2}} = 6.67\; rad/s^{2} \ldotp

b. We expect the angular acceleration for the system to be less in this part because the moment of inertia is greater when the
child is on the merry-go-round. To find the total moment of inertia I, we first find the child’s moment of inertia I by
approximating the child as a point mass at a distance of 1.25 m from the axis. Then 

 
The total moment of inertia is the sum of the moments of inertia of the merry-go-round and the child (about the same axis): 

 
Substituting known values into the equation for  gives 

Significance

The angular acceleration is less when the child is on the merry-go-round than when the merry-go-round is empty, as expected.
The angular accelerations found are quite large, partly due to the fact that friction was considered to be negligible. If, for
example, the father kept pushing perpendicularly for 2.00 s, he would give the merry-goround an angular velocity of 13.3 rad/s
when it is empty but only 8.89 rad/s when the child is on it. In terms of revolutions per second, these angular velocities are 2.12
rev/s and 1.41 rev/s, respectively. The father would end up running at about 50 km/h in the first case.

22.4.2

= Iα∑i τi α τ

M .1
2

R2

I = (0.500)(50.0 kg)(1.50 m = 56.25 kg ⋅ .)2 m2 (22.4.9)
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The fan blades on a jet engine have a moment of inertia 30.0 kg • m . In 10 s, they rotate counterclockwise from rest up to a
rotation rate of 20 rev/s. (a) What torque must be applied to the blades to achieve this angular acceleration? (b) What is the
torque required to bring the fan blades rotating at 20 rev/s to a rest in 20 s?

 

We do not actually need the force of static friction to keep an object rolling on a flat surface (as I mentioned above, the motion
could in principle go on “unforced” forever), but things are different on an inclined plane. Figure  shows an object rolling
down an inclined plane, and the corresponding extended free-body diagram.

Figure : An object rolling down an inclined plane, and the extended free-body diagram. Note that neither gravity (applied at
the CM) nor the normal force (whose line of action passes through the CM) exert a torque around the center of mass; only the force
of static friction, , does.

The basic equations we use to solve for the object’s motion are the sum of forces equation:

the net torque equation, with torques taken around the center of mass

and the extension of the condition of rolling without slipping, (11.2.1), to the accelerations:

For the situation shown in Figure , if we take down the plane as the positive direction for linear motion, and clockwise
torques as negative, we have to write . In the direction perpendicular to the plane, we conclude from ( ) that 

, an equation we will not actually need; in the direction along the plane, we have

and the torque equation just gives , which with  becomes

We can eliminate  in between these two equations and solve for :

Now you can see why, earlier in the semester, we were always careful to assume that all the objects we sent down inclined planes
were sliding, not rolling! The acceleration for a rolling object is never equal to simply . Most remarkably, the correction
factor depends only on the shape of the rolling object, and not on its mass or size, since the ratio of  to  is independent of 
and  for any given geometry. Thus, for instance, for a disk, , so , whereas for a hoop, , so 
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. So any disk or solid cylinder will always roll down the incline faster than any hoop or hollow cylinder, regardless
of mass or size.

This rather surprising result may be better understood in terms of energy. First, let's show (a result that is somewhat overdue) that
for a rigid object that is rotating around an axis passing through its center of mass with angular velocity  we can write the total
kinetic energy as

This is because for every particle the velocity can be written as , where  is the velocity relative to the center of mass
(that is, in the CM frame). Since in this frame the motion is a simple rotation, we have , where  is the particle’s distance
to the axis. Therefore, the kinetic energy of that particle will be

(Note how I have made use of the dot product to calculate the magnitude squared of a vector.) On the last line, the quantity  is the
momentum of that particle in the CM frame. Adding those momenta for all the particles should give zero, since, as we saw in an
earlier chapter, the center of mass frame is the zero momentum frame. Then, adding the contributions of all particles to the first and
second terms in  gives Equation ( ).

This page titled 22.4: Newton’s Second Law for Rotation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

10.8: Newton’s Second Law for Rotation by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
9.6: Rolling Motion by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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22.5: Examples
After a couple of whiteboard problems, we will present a few additional examples in this section show you have to set up and solve
the equations of motion for somewhat more complicated systems, and you should study them carefully.

Consider the drawbridge in the figure above, which is in static equilibrium. Determine the magnitude and direction of all the
forces on the bridge - tension, gravity, and the hinge.

Consider a very light ladder, of length 5.0 m, placed against a wall as shown at an angle of 60 . The wall is smooth (no
friction), but the floor is rough and the coefficient of static friction between the ladder and the floor is 0.5. A painter of mass 65
kg is standing on the ladder at a distance  from the bottom. (Hint:   Draw a free body diagram, and make sure the object
appears to be in rotational equilibrium before deciding you've identified all the forces!)

1. What is the normal force exerted by the floor on the ladder? 
2. How far up the ladder  can the painter go before the ladder starts to slide? 

 Whiteboard Problem 22.5.1

 Whiteboard Problem 22.5.2

∘

d

d

 Whiteboard Problem 22.5.3
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A specific centrifuge can spin at a rate of 1000 rpm.

1. What is the angular speed of this centrifuge, in radians per second?
2. The centrifuge is slowed down by applying a clamp at a distance 15 cm from the center of rotation. This clamp applies a

force of 32 N to the centrifuge. What is the largest amount of torque this clamp could be exerting?
3. If the clamp exerts the largest amount of torque (which you just found), what will the angular acceleration of the centrifuge

be? Take the centrifuge to be a uniform disk with radius 27 cm and total mass 4.5 kg.
4. How long will it take for this centrifuge to come to a stop?

Consider an accelerating bicycle. The rider exerts a torque on the pedals, which is transmitted to the rear wheel by the chain
(possibly amplified by the gears, etc). How does this “drive” torque on the rear wheel (call it ) relate to the final acceleration
of the center of mass of the bicycle?

Solution

We need first to figure out how many external forces, at a minimum, we have to deal with. As the bicycle accelerates, two
things happen: the wheels (both wheels) turn faster, so there must be a net torque (clockwise in the picture, if the bicycle is
accelerating to the right) on each wheel; and the center of mass of the system accelerates, so there must be a net external force
on the whole system. The system is only in contact with the road, and so, as long as no slippage happens, the only external
source of torques or forces on the wheels has to be the force of static friction between the tires and the road.

For the front wheel, this is in fact the only external force, and the only force of any sort that exerts a torque on that wheel (there
are forces acting at the axle, but they exert no torque around the axle). Since the torque has to be clockwise, then, the force of

Example : Torques and forces on the wheels of an accelerating bicycle22.5.4
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static friction on the front wheel, applied as it is at the point of contact with the road, must point backwards, that is, opposite
the direction of motion. We get then one equation of motion (of the type (22.4.13)) for that wheel:

where the subscript “ft” stands for “front tire”, and the wheel is supposed to have a radius  and moment of inertia .

For the rear wheel, we have the “drive torque” , exerted by the chain, and another torque exerted by the force of static
friction, , between that tire and the road. However, now the force  needs to point forward. This is because the net

external force on the whole bicycle-rider system is , and that has to point forward, or the center of mass could
never accelerate in that direction. Since we have established that  has to point backwards, it follows that  needs to be
larger, and in the forward direction. This means we get, for the center of mass acceleration, the equation ( )

and for the rear wheel, the torque equation

I am following the convention that clockwise torques are negative, and also that a force symbol without an arrow on top
represents the magnitude of the force. If a clockwise angular acceleration is likewise negative, the condition of rolling without
slipping [Equation (22.4.11)] needs to be written as

These are all the equations we need to relate the acceleration to . We can start by solving ( ) for  and substituting
in ( ), then likewise solving ( ) for  and substituting in ( ). The result is

then use Eq ( ) to write , and solve for :

Consider again the setup illustrated in the figure below, but now assume that the pulley has a mass  and radius . For
simplicity, leave the friction force out. What is now the acceleration of the system?

Solution

The figure below shows the setup, plus free-body diagrams for the two blocks (the vertical forces on block 1 have been left out
to avoid cluttering the figure, since they are not relevant here), and an extended free-body diagram for the pulley. (You can see
from the pulley diagram that there has to be another force acting on it, to balance the two forces shown. This would be a
contact force at the axle, directed upwards and to the left. If this was a statics problem, I would have to include it, but since it
does not exert a torque around the axis of rotation, it does not contribute to the dynamics of the system, so I have left it out as
well.)
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Example : Blocks connected by rope over a pulley with non-zero mass22.5.5
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Figure \(\PageIndex{1}\)

The key new feature of this problem is that the tension on the string has to have different values on either side of the pulley,
because there has to be a net torque on the pulley. Hence, the leftward force on the pulley ( ) has to be smaller than the
downward force ( ).

On the other hand, as long as the mass of the rope is negligible, it will still be the case that the horizontal part of the rope will
pull with equal strength on block 1 and on the pulley, and similarly the vertical part of the rope will pull with equal strength on
the pulley and on block 2. (To make this point clearer, I have “color-coded” these matching forces in the figure.) This means
that we can write  and , and write the torque equation (22.4.10) for the pulley as

We also have  for each block:

where I have taken  to be . The condition of rolling without slipping, Equation (22.4.11), applied to the
pulley, gives then

since, in the situation shown,  will be negative, and  has been defined as positive. Substituting Eqs. ( ), ( ), and (
) into ( ), we get

which is easily solved for :

If you look at the structure of this equation, it all makes sense. The numerator is the force of gravity on block 2, which is,
ultimately, the force responsible for setting the whole thing in motion. The denominator is, essentially, the inertia of the
system: ordinary inertia for the blocks, and rotational inertia for the pulley. Note further that, if we treat the pulley as a flat,
homogeneous disk of mass , then , and the denominator of ( ) becomes just .
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23.1: Introduction- The Physics of Oscillations
It is probably not an exaggeration to suggest that we are all introduced to oscillatory motion from our first moments of life. Babies,
it seems, are constantly rocked to sleep, in many cases using devices, such as cradles and rocking chairs, that exemplify the kind of
mechanical oscillator with which this chapter is concerned. And then, of course, there are swings, which function essentially like
the pendulum depicted below.

Figure : A simple pendulum. In (a), the equilibrium position, the tension and gravity forces balance out. In (b), they combine
to produce a restoring force (in blue) pointing back towards equilibrium. In (c), the bob is passing through equilibrium and the net
force on it at that instant is again zero, but its momentum keeps it going. At (d) we have the mirror image of (b).

In fact, oscillatory motion is extremely common, both in natural systems and in human-made structures. It essentially requires only
two things: a stable equilibrium configuration, where the stability is ensured by what we call a restoring force; and inertia, which,
of course, every physical system has.

The pendulum in Figure  illustrates how these things combine to produce an oscillation. As the pendulum bob is displaced
from its equilibrium position, a net force on it appears (a combination of gravity and the tension in the string), pointing back
towards the vertical. When the bob is released, it accelerates under the influence of this force, with the result that when it reaches
back the equilibrium position, its inertia (or, if you prefer, its momentum) causes it to overshoot it. Once this happens, the restoring
force changes direction, always trying to bring the mass back to equilibrium; as a result, the bob slows down, and eventually
reverses course, accelerates again towards the vertical, overshoots it again... the process will repeat itself, until all the energy we
initially put in the system (gravitational potential energy, in this case) is dissipated away (or damped), mostly through friction at the
pivot point, though air resistance plays a small part as well.

That the motion, in the absence of dissipation, must be symmetric around the equilibrium position follows from conservation of
energy: the speed of the bob at any given height must be the same on either side, in order for the sum of its potential and kinetic
energies to be the same. In particular, if released from rest from some height, it will stop when it reaches the same height on the
other side. In the presence of dissipation, the motion is neither exactly symmetric, nor exactly periodic (that is to say, it does not
repeat itself exactly—the maximum height gets lower every time, the speed as it passes through the equilibrium position gets also
smaller and smaller), but when the dissipation is not very large one can always define an approximate period (which we will denote
with the letter ) as the time it takes to complete one full swing.

The inverse of the period is the frequency, , which tells us how many full swings the pendulum completes per second. These two
quantities,  and , can be defined for any type of periodic (or approximately periodic) motion, and will always satisfy the
relationship

The units of frequency are, of course, inverse seconds (s ). In this context, however, this unit is called a ”hertz,” and abbreviated
Hz.

This page titled 23.1: Introduction- The Physics of Oscillations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Julio Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts
platform.
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23.2: Simple Harmonic Motion
A particularly important kind of oscillatory motion is called simple harmonic motion. This is what happens when the restoring
force is linear in the displacement from the equilibrium position: that is to say, in one dimension, if  is the equilibrium position,
the restoring force has the form

We are familiar with this from Hooke’s “law” for an ideal spring (see Chapter 19). So, an object attached to an ideal, massless
spring, as in the figure below, should perform simple harmonic motion. This kind of oscillation is distinguished by the following
characteristics:

The position as a function of time, , is a sinusoidal function.
The period of the oscillations does not depend on their amplitude (by “amplitude” we mean the maximum displacement from
the equilibrium position).

What this second property means is that, for instance, with reference to Figure , you can displace the mass a distance , or 
, or , or whatever you choose, and the period (and frequency) of the resulting oscillations will be the same regardless.

(This means, actually, that if you displace it farther it has to end up moving faster, to cover the larger distance in the same time.)

Figure  (a) shows the spring in its relaxed state (the “equilibrium” position for the mass, at coordinate ). If displaced from
equilibrium a distance  and released (b), the mass will perform simple harmonic oscillations with amplitude .

Since we know that “Hooke’s law” is actually just an approximation, valid only provided that the spring is not compressed or
stretched too much, we expect that in real life the “ideal” simple harmonic motion properties I have listed above will only hold
approximately, as well; so, in fact, if you stretch a spring too much you will get a different period, eventually, than if you stay in the
“linear,” Hooke’s law regime. This is a general characteristic of most physical systems: simple harmonic motion only happens for
relatively small oscillations, but “relatively small” can still be fairly large sometimes, and even as an approximation it is often an
extremely valuable one.

The other distinctive characteristic of simple harmonic motion is that the position function is sinusoidal, by which I mean a sine or
a cosine. Thus, for example, if the mass in Figure  is released from rest at  = 0, and the position  is measured from the
equilibrium position  (that is, the point  is taken as the origin of coordinates), the function  will be

where the quantity , known as the oscillator’s angular frequency, is given by

Here,  is the spring constant, and  the mass of the object (remember the spring is assumed to be massless). I will prove that
Equation ( ), together with ( ), satisfy Newton’s second law of motion for this system in a moment; first, however, I
need to say a couple of things about . You’ll recall that we have used this symbol before, in Chapter 6, to represent the angular
velocity of a particle moving in a circle (or, more generally, of any rotating object). Why bring it up again now for an apparently
completely different purpose?
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Figure : A particle moving on a circle with constant angular velocity . Assuming  = 0 at  = 0, we have , and
therefore the particle’s  coordinate is given by the function . This means the corresponding point on the  axis
(the red dot) performs simple harmonic motion with angular frequency  as the particle rotates.

The answer is that there is a very close relationship between simple harmonic motion and circular motion with constant speed, as
Figure  illustrates: as the point P rotates with constant angular velocity , its projection onto the  axis (the red dot in the
figure) performs simple harmonic motion with angular frequency  (and amplitude ). (Of course, there is nothing special about
the  axis; the projection on any other axis will also perform simple harmonic motion with the same angular frequency; for
example, the blue dot on the figure.)

If the angular velocity of the particle in Figure  is constant, then its “orbital period” (the time needed to complete one
revolution) will be , and this will also be the period of the associated harmonic motion (the time it takes for the motion to
repeat itself). You can see this directly from Equation ( ): if you increase the time  by , you get the same value of :

Since the frequency  of an oscillator is equal to 1/ , this gives us the following relationship between  and :

One way to tell whether one is talking about an oscillator’s frequency ( ) or its angular frequency ( )—apart from the different
symbols, of course—is to pay attention to the units. The frequency  is usually given in hertz, whereas the angular frequency  is
always given in radians per second. Apart from the factor of , they are, of course, completely equivalent; sometimes one is just
more convenient than the other. On the other hand, the only way to tell whether  is a harmonic oscillator’s angular frequency or
the angular velocity of something moving in a circle is from the context. (In this chapter, of course, it will always be the former).

Let us go back now to Equation  for our block-on-a-spring system. The derivative with respect to time will give us the
block’s velocity. This is a simple application of the chain rule of calculus:

Another derivative will then give us the acceleration:

Note that the acceleration is always proportional to the position, only with the opposite sign. The proportionality constant is .
Since the force exerted by the spring on the block is  (because we are measuring the position from the equilibrium
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position ), Newton’s second law, , gives us

and you can check for yourself that this will be satisfied if  is given by Equation ( ),  is given by Equation ( ), and 
is given by Equation ( ).

The expression ( ) for  is typical of what we find for many different kinds of oscillators: the restoring force (here
represented by the spring constant ) and the object’s inertia ( ) together determine the frequency of the motion, acting in
opposite directions: a larger restoring force means a higher frequency (faster oscillations) whereas a larger inertia means a lower
frequency (slower oscillations—a more “sluggish” response).

The position, velocity and acceleration graphs for the motion ( ) are shown in Figure  below. You may want to pay
attention to some of their main features. For instance, the position and the velocity are what we call “90  out of phase”: one is
maximum (or minimum) when the other one is zero. The acceleration, on the other hand, is “180  out of phase” (that is to say, in
complete opposition) with the position. As a result of that, all combinations of signs for  and  are possible: the object may be
moving to the right with positive or negative acceleration (depending on which side of the origin it’s on), and likewise when it is
moving to the left.

Figure : Position, velocity and acceleration as a function of time for an object performing simple harmonic motion according
to Equation ( ).

Since the time we choose as  = 0 is arbitrary, the function in Equation ( ) (which assumes that  = 0 is when the object’s
displacement is maximum and positive) is clearly not the most general formula for simple harmonic motion. Another way to see
this is to realize that we could have started the motion differently. For instance, we could have hit the block with a sharp,
“impulsive” force, lasting only a very short time, so it would have acquired a substantial velocity before it could have moved very
far from its initial (equilibrium) position. In such a case, the motion would be better described by a sine function, such as 

, which is zero at  = 0 but whose derivative (the object’s velocity) is maximum at that time.

If we stick to using cosines, for definiteness, then the most general equation for the position of a simple harmonic oscillator is as
follows:

where  is what we call a “phase angle,” that allows us to match the function to the initial conditions—by which I mean, the
object’s initial position and velocity. Specifically, you can see, by setting  = 0 in Equation ( ) and its derivative, that the
initial position and velocity of the motion described by Equation ( ) are

Conversely, if you are given  and , you can use Eqs. ( ) to determine  and , which is what you need to know in order
to use Equation ( ) (note that the angular frequency, , does not depend on the initial conditions—it is always the same
regardless of how you choose to start the motion). Specifically, you can verify that Eqs. ( ) imply the following:

x0 F = ma

ma = −kx (23.2.8)
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and then, once you know , you can get  from either  or  (in fact, since the inverse sine and inverse
cosine are both multivalued functions, you should use both equations, to make sure you get the correct sign for ).

Energy in Simple Harmonic Motion
Equation ( ) above actually follows from the conservation of energy principle for a harmonic oscillator. Consider again the
mass on the spring in Figure . Its kinetic energy is clearly , whereas the potential energy in the spring is .
Using Equation ( ) and its derivative, we have

Recalling Equation ( ), note that , so if you substitute this in the second equation above, you can see that the
amplitude of both the potential and the kinetic energy is the same, namely, . Since, for any angle , it is always true that 

, we find

so the total energy of the system is constant (independent of time), at it should be, in the absence of dissipation. Figure 
shows how the potential and kinetic energies oscillate in opposition, so one is maximum whenever the other is minimum. It also
shows that they oscillate twice as fast as the oscillator itself: for example, the potential energy is maximum both when the
displacement is maximum (spring maximally stretched) and when it is minimum (spring maximally compressed). Similarly, the
kinetic energy is maximum when the oscillator passes through the equilibrium position, regardless of whether it is moving to the
left or to the right.

Figure : Kinetic (red), potential (blue) and total (black) energy for the oscillator shown in Figure .

Harmonic Oscillator Subject to an External, Constant Force
Consider a mass hanging from an ideal spring suspended from the ceiling, as in Figure  below (next page). Supposed the
relaxed length of the spring is , such that, in the absence of gravity, the object’s equilibrium position would be at the height 
shown in figure (a). In the presence of gravity, of course, the spring needs to stretch, to balance the object’s weight, and so
the actual equilibrium position for the system will be , as shown in figure (b). The upwards force from the spring at that
point will be , and to balance gravity we must have

= +A2 x2
i

v2
i

ω2
(23.2.11)
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Suppose that we now stretch the spring beyond this new equilibrium position, so the mass is now at a height  (figure (c)).
What happens then? The net upwards force will be , but using Equation ( ) this can be rewritten as

This is a remarkable result, because the force of gravity has disappeared completely from the final expression. Basically, the system
behaves as if it consisted of just a spring of constant  with equilibrium length , and no gravity. In other words, the
only thing gravity does is to change the equilibrium position, so that if you now displace the mass, it will oscillate around 
instead of around . The oscillation’s period and frequency are the same as if the spring was horizontal.

Figure : (a) An ideal (massless) spring hanging from the ceiling, in its relaxed position. (b) With a mass  hanging from its
end, the spring stretches to a new length  , so that . (c) If the mass is now displaced from this equilibrium position
(labeled  in the figure) it will perform harmonic oscillations symmetrically around the point , with the same frequency as if the
spring was horizontal.

Although I have established this here for the specific case where the oscillator involves a spring, and the external force is gravity,
this is a completely general result, valid for any simple harmonic oscillator, since for such a system the restoring force will always
be a linear function of the displacement (which is all that is required for the math to work). As long as the external force is
constant, the frequency of the oscillations will not be affected, and only the equilibrium position will change. In an example at the
end of the chapter (under “Advanced Topics”) I will show you how you can make use of this to calculate the effect of friction on
the horizontal mass-spring combination in Figure .

One thing you need to keep in mind, however, is that when the oscillator is subjected to an external force, as was the case here, its
energy will not, in general, remain constant (unlike what we saw in the previous subsection "Energy in Simple Harmonic Motion"),
since the external force will be doing work on the system as it oscillates. If the external force is constant, and does not change
direction, this work will be positive half the time, and negative half the time. If it is kinetic friction, then of course it will change
direction every half cycle, and the work will be negative all the time.

In the case shown in Figure , the external force is gravity, which we know to be a conservative force, so the energy that will
be conserved will be the total energy of the system that includes the oscillation and the Earth, and hence also the gravitational
potential energy (for which we can use here the familiar form ):

The reason it is no longer possible to combine the terms  into the constant , as in Equation ( ), is that now
we have

y 23.2.5
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so the oscillations are centered around the new equilibrium position , but the spring energy is not zero at that point: it is zero at 
 instead. You can check for yourself, however, that if you substitute Eqs. ( ) into Equation ( ), and make use of

the fact that  (Equation ( )), you do indeed get a constant, as you should.

This page titled 23.2: Simple Harmonic Motion is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Christopher Duston, Merrimack College (University of Arkansas Libraries) via source content that was edited to the style and standards of the
LibreTexts platform.

11.2: Simple Harmonic Motion by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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23.3: Pendulums

The Simple Pendulum
Besides masses on springs, pendulums are another example of a system that will exhibit simple harmonic motion, at least
approximately, as long as the amplitude of the oscillations is small. The simple pendulum is just a mass (or “bob”), approximated
here as a point particle, suspended from a massless, inextensible string, as in Figure .

We could analyze the motion of the bob by using the general methods introduced in Chapter 8 to deal with motion in two
dimensions—breaking down all the forces into components and applying  along two orthogonal directions—but this
turns out to be complicated by the fact that both the direction of motion and the direction of the acceleration are constantly
changing. Although, under the assumption of small oscillations, it turns out that simply using the vertical and horizontal directions
is good enough, this is not immediately obvious, and arguably it is not the most pedagogical way to proceed.

Figure : A simple pendulum. The mass of the bob is , the length of the string is , and torques are calculated around the
point of suspension O. The counterclockwise direction is taken as positive.

Instead, I will take advantage of the obvious fact that the bob moves on an arc of a circle, and that we have developed already in
Chapter 22 a whole set of tools to deal with that kind of motion. Let us, therefore, describe the position of the pendulum by the
angle it makes with the vertical, , and let  be the angular acceleration; we can then write the equation of motion in
the form , with the torques taken around the center of rotation—which is to say, the point from which the pendulum is
suspended. Then the torque due to the tension in the string is zero (since its line of action goes through the center of rotation), and 

 is just the torque due to gravity, which can be written

The minus sign is there to enforce a consistent sign convention for  and : if, for instance, I choose counterclockwise as positive
for both, then I note that when  is positive (pendulum to the right of the vertical),  is clockwise, and hence negative, and vice-
versa. This is characteristic of a restoring torque, that is to say, one that will always try to push the system back to its equilibrium
position (the vertical in this case).

As for the moment of inertia of the bob, it is just  (if we treat it as just a point particle), so the equation  takes
the form

The mass and one factor of  cancel, and we get
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Equation ( ) is an example of what is known as a differential equation. The problem is to find a function of time, , that
satisfies this equation; that is to say, when you take its second derivative the result is equal to . Such functions exist
and are called elliptic functions; they are included in many modern mathematical packages, but they are still not easy to use. More
importantly, the oscillations they describe, in general, are not of the simple harmonic type.

On the other hand, if the amplitude of the oscillations is small, so that the angle , expressed in radians, is a small number, we can
make an approximation that greatly simplifies the problem, namely,

This is known as the small angle approximation, and requires  to be in radians. As an example, if  = 0.2 rad (which corresponds
to about 11.5 ), we find  = 0.199, to three-figure accuracy.

With this approximation, the equation to solve become much simpler:

We have, in fact, already solved an equation completely equivalent to this one in the previous section: that was equation (23.2.8)
for the mass-on-a-spring system, which can be rewritten as

since . Just like the solutions to ( ) could be written in the form , with , the
solutions to ( ) can be written as

This tells us that if a pendulum is not pulled too far away from the vertical (say, about 10  or less) it will perform approximate
simple harmonic oscillations, with a period of

This depends only on the length of the pendulum, and remains constant even as the oscillations wind down, which is why it became
the basis for time-keeping devices, beginning with the invention of the pendulum clock by Christiaan Huygens in 1656. In
particular, a pendulum of length  = 1 m will have a period of almost exactly 2 s, which is what gives you the familiar “tick-tock”
rhythm of a “grandfather’s clock,” once per second (that is to say, once every half period).

The "Physical Pendulum"
By a “physical pendulum” one means typically any pendulum-like device for which the moment of inertia is not given by the
simple expression . This means that the mass is not concentrated into a single point-like particle a distance  away from the
point of suspension; rather, for example, the bob could have a size that is not negligible compared to  (as in Figure 23.3.2a), or the
“string” could have a substantial mass of its own—it could, for instance, be a chain, like in a playground swing, or a metal rod, as
in most pendulum clocks.
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Figure  (b) shows the special case of a thin rod of length  pivoted at one end (the distance  in this case). In both
cases, there is an additional force (not shown) acting at the pivot point, to balance gravity.

Regardless of the reason, having to deal with a distributed mass means also that one needs to use the center of mass of the system
as the point of application of the force of gravity. When this is done, the motion of the pendulum can again be described by the
angle between the vertical and a line connecting the point of suspension and the center of mass. If the distance between these two
points is , then the torque due to gravity is , and the only other force on the system, the force at the pivot point, exerts
no torque around that point, so we can write the equation of motion in the form

Under the small-angle approximation, this will again lead to simple harmonic motion, only now with an angular frequency given
by

As an example, consider the oscillations of a uniform, thin rod of length  and mass  pivoted at one end. We then have 
, and , so Equation ( ) gives

This is about 22% larger than the result ( ) for a simple pendulum of the same length, implying a correspondingly shorter
period.

This page titled 23.3: Pendulums is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-Banacloche
(University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

11.3: Pendulums by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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23.4: Advanced Topics

Mass on a Spring Damped By Friction with a Surface
Consider the system depicted in Figure 23.2.1 in the presence of friction between the block and the surface. Let the coefficient of
kinetic friction be  and the coefficient of static friction be . As usual, we will assume that .

As the mass oscillates, it will experience a kinetic friction force of magnitude , in the direction opposite the direction
of motion; that is to say, a force that changes direction every half period. As shown in section 23.2, this force does not change the
frequency of the motion, but it displaces the equilibrium position in the direction of the force. Let's study this process in more
detail.

First, think about that spring moving to the right - as the friction force acts on it, it shifts the position of the equilibrium, like in
equation (23.2.14). We can determine the new equilibrium position using Newton's second law; we get

(Notice we have to be careful with the signs here - when moving to the right, the friction acts the other way!) Since the equilibrium
moves to the right, the actual amplitude of this motion is (see the figure)  Now when the block turns
around, at the other maximum, during the leftward moving period the equilbrium changes again. We can find this again:

and the new amplitude is

In other words, the amplitude after  "half swings" is . The amplitude gets smaller and smaller each time, and in
fact it vanishes for some number of these half-swings.

The figure below shows an example of how this would go, for the following choice of parameters: period  = 1 s,  = 0.1, and 
= 0.18 m. Note that, since  depends only on the ratio , there is no need to specify  and  separately. We can
determine the number of half-swings by just asking when the amplitude vanishes,

So that means the motion goes for 4 half-swings before stopping.
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Figure : Damped oscillations.

 

Just for the record, this is not the way dissipation in simple harmonic motion is usually handled. The conventional thing is to
assume a damping force that is proportional to the oscillator’s velocity. You will almost certainly see this more standard approach
(which leads to a relatively simple differential equation) in some later course.

We can study this same example in a little more detail using energy. Consider the total mechanical energy of the system, 
. This energy does not include the friction, so we don't anticipate ; but we can still take a time

derivative of this formula to see what happens:

The first equality is taking the derivative, being careful to use the chain run on the velocity and position. The second equality is just
recognizing that the derivative of velocity and position is the accleration and velocity, respectively. The resulting expression looks a
bit strange, but notice that the velocity is a common term, so we can write

The expression inside the parenthesis looks interesting, because it looks something like Newton's second law for this situation -
being sure of the signs (assuming the block is moving in the positive direction) we have

Plugging this in above we finally find

So the rate of energy loss is negative - exactly what we would have expected. Using a little calculus we can take this analysis
further - recall that , so we can intergrate

Of course, this is the work-energy theorem! (What else could we possibly have gotten by calculating ??) If we pick that
half-swing from above,  and we can determine that our system looses  each half cycle - although notice
that the amplitude  is actually getting smaller during this process, so we can't easily compare our two approaches.

The Cavendish Experiment- How to Measure  with a Torsion Balance
Suppose that you want to try and duplicate Cavendish’s experiment to measure directly the gravitational force between two masses
(and hence, indirectly, the value of ). You take two relatively small, identical objects, each of mass , and attach them to the ends
of a rod of length  (let us say the mass of the rod is negligible, for simplicity), making a sort of dumbbell; then you suspend this
from the ceiling, by the midpoint, using a nylon line.

23.4.1
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= −v mg.
dE

dt
μk (23.4.8)

v= dx/dt

dE = − mg vdt = −m mg dx → ΔE = −μmgΔx.∫
Ef

Ei

μk ∫
vf

vi

uk ∫
xf

xi

(23.4.9)

−Ef Ei

Δx = 2A
~

ΔE = −2μmgA
~

A
~

G

G m

l

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63292?pdf


23.4.3 https://phys.libretexts.org/@go/page/63292

Figure : : (a) Torsion balance. The extremes of the oscillation are drawn in black and gray, respectively. (b) The view from
the top. The dashed line indicates the equilibrium position. (c) In the presence of two nearby large masses, the equilibrium position
is tilted very slightly; the light blue lines in the background show the oscillation in the absence of the masses, for reference.

You have now made a torsion balance similar to the one Cavendish used. You will probably find out that it it is very hard to keep it
motionless: the slightest displacement causes it to oscillate around an equilibrium position. The way it works is that an angular
displacement  from equilibrium puts a small twist on the line, which results in a restoring torque , where  is the torsion
constant for your setup. If your dumbbell has moment of inertia , then the equation of motion  gives you

If you compare this to Equation (23.3.3), and follow the derivation there, you can see that the period of oscillation is

so if you measure  you can get , since  for the dumbbell.

Now suppose you bring two large masses, a distance  each from each end of the dumbbell, perpendicular to the dumbbell axis,
and one on either side, as in the figure. The gravitational force  between the large and small mass results in a net
“external” torque of magnitude

This torque will cause a very small displacement, so small that the change in  will be practically negligible, so you can treat ,
and hence , as a constant. Then the situation is analogous to that of an oscillator subjected to a constant external force (section
23.2): the frequency of the oscillations will not change, but the equilibrium position will. In Equation (23.2.14) we found that 

 for a spring of spring constant , where  was the old and  the new equilibrium position (the force was equal
to ; the displacement of the equilibrium position will be in the direction of the force). For the torsion balance, the equivalent
result is

So, if you measure the angular displacement of the equilibrium position, you can get . This displacement is going to be very
small, but you can try to monitor the position of the dumbbell by, for instance, reflecting a laser from it (or, one or both of your
small masses could be a small laser). Tracking the oscillations of the point of laser light on the wall, you might be able to detect the
very small shift predicted by Equation ( ).

Historically, this experimental set up was used in the first precision calculation of the gravitational constant G, from the force .
This experiment was carried out in the late 1790s by Henry Cavendish, but several others were involved in the several decades
beforehand (you can check the story out on Wikipedia).

23.4.2
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23.5: Examples

Consider a block-spring system inside a box, as shown in the figure. The block is attached to the spring, which is attached to
the inside wall of the box. The mass of the block is 0.2 kg. For parts (a) through (f), assume that the box does not move.

Suppose you pull the block 10 cm to the right and release it. The angular frequency of the oscillations is 30 rad/s. Neglect
friction between the block and the bottom of the box.

a. What is the spring constant?
b. What will be the amplitude of the oscillations?
c. Taking to the right to be positive, at what point in the oscillation is the velocity minimum and what is its minimum value?
d. At what point in the oscillation is the acceleration minimum, and what is its minimum value?
e. What is the total energy of the spring-block system?
f. If you take  = 0 to be the instant when you release the block, write an equation of motion for the oscillation,  = ?,

identifying the values of all constants that you use.
g. Imagine now that the box, with the spring and block in it, starts moving to the left with an acceleration  = −4 m/s . By

how much does the equilibrium position of the block shift (relative to the box), and in what direction?

Solution

Most of this is really pretty straightforward, since it is just a matter of using the equations introduced in this chapter properly:

(a) Since we know that for this kind of situation, the angular frequency, the mass and the spring constant are related by

we con solve this for :

(b) The amplitude will be 10 cm, since it is released at that point with no kinetic energy.

(c) The velocity is minimum (largest in magnitude, but with a negative sign) as the object passes through the equilibrium
position moving to the left.

(d) The acceleration is minimum (again, largest in magnitude, but with a negative sign) when the spring is maximally stretched
(block is farthest to the right), since this gives you the maximal force in the negative direction:

(e) The total energy is given by the formula (either one is acceptable)

Example : Oscillator in a box (a basic accelerometer!)23.5.1
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(You could also use .)

(f) The result is

with  = 0.1 m and  = 30 rad/s. You could also just write the numbers directly in the formula, but in that case you need to
include the units implicitly or explicitly. What I mean by “implicitly” is to say something like: “ , with  in
meters and  in seconds.”

(g) The equilibrium position is where the block could sit at rest relative to the box. In that case, relative to the ground outside
the box, it would be moving with an acceleration  = −4 m/s , and the spring force (which is the only actual force acting on the
block) would have to provide this acceleration:

so

or 4.44 mm. This is positive, so the spring stretches—the equilibrium position for the block is shifted to the right, relative to
the box’s walls.

Another way to see this is the following. As we saw in example 20.3.4, an accelerated reference system, with acceleration a,
appears “from the inside” as an inertial reference system subject to a gravitational interaction that pulls any object with mass 
with a force equal to  in the direction opposite the acceleration. Therefore, inside the box, which is accelerating towards the
left, the block behaves as if there was a force of gravity of magnitude , pulling it to the right. In other words, we have a
situation like the one illustrated in Figure 11.2.5, only sideways. As in that case, we find the equilibrium position is shifted just
enough for the force of the stretched spring to match the “force of gravity,” and in this way we get again the equation 

.

To get an accelerometer, we provide the box with some readout mechanism that can tell us the change in the oscillator’s
equilibrium position. This basic principle is one of the ways accelerometers— and so-called “inertial navigation systems”—
work.

While working on the lab on torques, you notice that a meter stick suspended from the middle behaves a little like a pendulum,
in that it performs very slow oscillations when you tilt it slightly. Intrigued, you notice that it is suspended by a simple loop of
string tied in a knot at the top (see figure). You measure the period of the oscillations to be about 5 s, and the width of the stick
to be about 2.5 cm.

a. What does this tell you about the quantity , where  is the mass of the stick, and  its moment of inertia around a
certain point?

b. What is the “certain point” mentioned in (a)?

Solution

As the picture below shows, the stick will behave like a physical pendulum, oscillating around the point of suspension O,
which in this case is just next to the stick, where the knot is. As seen in the blown-up detail, if the width of the stick is w, the
center of mass of the stick is located a distance  away from the point of suspension:

E = m1
2

v2
max

x(t) = A cos(ωt) = A sin(ωt+ )
π

2

A ω

x(t) = 0.1 cos(30t) x

t
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Example : Meter stick as a physical pendulum23.5.2
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As shown in Section 23.3, we have then

Squaring this, and solving for ,

The moment of inertia is to be calculated around the point O, that is to say, the point of suspension (where the knot is in the
figure). For reference, the moment of inertia of a thin rod of length  around its midpoint is . The length of
the meter stick is, of course, 1 m, so the result  ∼ 0.08 m  obtained above seems reasonable.

A block of mass  is sliding on a frictionless, horizontal surface, with a velocity . It hits an ideal spring, of spring constant 
, which is attached to the wall. The spring compresses until the block momentarily stops, and then starts expanding again, so

the block ultimately bounces off.

a. Write down an equation of motion (a function ) for the block, which is valid for as long as it is in contact with the
spring. For simplicity, assume the block is initially moving to the right, take the time when it first makes contact with the
spring to be  = 0, and let the position of the block at that time to be  = 0. Make sure that you express any constants in
your equation (such as  or ) in terms of the given data, namely, , , and .

b. Sketch the function  for the relevant time interval.

For this problem, imagine that you are on a ship that is oscillating up and down on a rough sea. Assume for simplicity that this
is simple harmonic motion (in the vertical direction) with amplitude 5 cm and frequency 2 Hz. There is a box on the floor with
mass  = 1 kg.

a. Assuming the box remains in contact with the floor throughout, find the maximum and minimum values of the normal
force exerted on it by the floor over an oscillation cycle.

b. How large would the amplitude of the oscillations have to become for the box to lose contact with the floor, assuming the
frequency remains constant? (Hint: what is the value of the normal force at the moment the box loses contact with the
floor?)

Imagine a simple pendulum swinging in an elevator. If the cable holding the elevator up was to snap, allowing the elevator to
go into free fall, what would happen to the frequency of oscillation of the pendulum? Justify your answer.

Consider a block of mass  attached to two springs, one on the left with spring constant  and one on the right with spring
constant . Each spring is attached on the other side to a wall, and the block slides without friction on a horizontal surface.
When the block is sitting at  = 0, both springs are relaxed.

Write Newton’s second law, , as a differential equation for an arbitrary position  of the block. What is the period of
oscillation of this system?

ω = .
Mgw

2I

− −−−−
√ (23.5.1)
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Consider the block hanging from a spring shown in Figure 23.2.5. Suppose the mass of the block is 1.5 kg and the system is at
rest when the spring has been stretched 2 cm from its original length (that is, with reference to the figure,  = 0.02 m).

a. What is the value of the spring constant ?
b. If you stretch the spring by an additional 2 cm downward from this equilibrium position, and release it, what will be the

frequency of the oscillations?
c. Now consider the system formed by the spring, the block, and the earth. Take the “zero” of gravitational potential energy to

be at the height  (the equilibrium point; you may also use this as the origin for the vertical coordinate!), and calculate all
the energies in the system (kinetic, spring/elastic, and gravitational) at the highest point in the oscillation, the equilibrium
point, and the lowest point. Verify that the sum is indeed constant.
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24.1: Traveling Waves
In our study of mechanics we have so far dealt with particle-like objects (objects that have only translational energy), and extended,
rigid objects, which may also have rotational energy. We have, however, implicitly assumed that all the objects we studied had
some internal structure, or were to some extent deformable, whenever we allowed for the possibility of their storing other forms of
energy, such as chemical or thermal.

This chapter deals with a very common type of organized (as opposed to incoherent) motion exhibited by extended elastic objects,
namely, wave motion. (Often, the “object” in which the wave motion takes place is called a “medium.”) Waves can be “traveling”
or “standing,” and we will start with the traveling kind, since they are the ones that most clearly exhibit the characteristics typically
associated with wave motion.

A traveling wave in a medium is a disturbance of the medium that propagates through it, in a definite direction and with a definite
velocity. By a “disturbance” we typically mean a displacement of the parts that make up the medium, away from their rest or
equilibrium position. The idea here is to regard each part of an elastic medium as, potentially, an oscillator, which couples to the
neighboring parts by pushing or pulling on them (for an example of how to model this mathematically, see Advanced Topic 12.6 at
the end of this chapter). When the traveling wave reaches a particular location in the medium, it sets that part of the medium in
motion, by giving it some energy and momentum, which it then passes on to a neighboring part, and so on down the line.

You can see an example of how this works in a slinky. Start by stretching the slinky somewhat, then grab a few coils, bunch them
up at one end, and release them. You should see a “compression pulse” traveling down the slinky, with very little distortion; you
may even be able to see it being reflected at the other end, and coming back, before all its energy is dissipated away.

Figure : A longitudinal (compression) wave pulse traveling down a slinky.

The compression pulse in the slinky in Figure  is an example of what is called a longitudinal wave, because the displacement
of the parts that make up the medium (the rings, in this case) takes place along the same spatial dimension along which the wave
travels (the horizontal direction, in the figure). The most important examples of longitudinal waves are sound waves, which work a
bit like the longitudinal waves on the slinky: a region of air (or some other medium) is compressed, and as it expands it pushes on a
neighboring region, causing it to compress, and passing the disturbance along. In the process, regions of rarefaction (where the
density drops below its average value) are typically produced, alongside the regions of compression (increased density).

The opposite of a longitudinal wave is a transverse wave, in which the displacement of the medium’s parts takes place in a
direction perpendicular to the wave’s direction of travel. It is actually also relatively easy to produce a transverse wave on a slinky:
again, just stretch it somewhat and give one end a vigorous shake up and down. It is, however, a little hard to draw the resulting
pulse on a long spring with all the coils, so in Figure  below I have instead drawn a transverse wave pulse on a string, which
you can produce in the same way. (Strings have other advantages: they are also easier to describe mathematically, and they are very
relevant, particularly to the production of musical sounds.)

Figure : A transverse wave pulse traveling down a string. This pulse can be generated by giving an end of the string a strong
shake, while holding the string taut. (You can do this on a slinky, too.)
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Perhaps the most important (and remarkable) property of wave motion is that it can carry energy and momentum over relatively
long distances without an equivalent transport of matter. Again, think of the slinky: the “pulse” can travel through the slinky’s
entire length, carrying momentum and energy with it, but each individual ring does not move very far away from its equilibrium
position. Ideally, after the pulse has passed through a particular location in the medium, the corresponding part of the medium
returns to its equilibrium position and does not move any more: all the energy and momentum it momentarily acquired is passed
forward. The same is (ideally) true for the transverse wave on the string in Figure .

Since this is meant to be a very elementary introduction to waves, I will consider only this case of “ideal” (technically known as
“linear and dispersion-free”) wave propagation, in which the speed of the wave does not depend on the shape or size of the
disturbance. In that case, the disturbance retains its “shape” as it travels, as I have tried to illustrate in figures  and .

The "Wave Shape" Function- Displacement and Velocity of the Medium
In a slinky, what I have been calling the “parts” of the medium are very clearly seen (they are, naturally, the individual rings); in a
“homogeneous” medium (one with no visible parts), the way to describe the wave is to break up the medium, in your mind, into
infinitely many small parts or “particles” (as we have been doing for extended systems all semester), and write down equations that
tell us how each part moves. Physically, you should think of each of these “particles” as being large enough to contain many
molecules, but small enough that its position in the medium may be represented by a mathematical point.

The standard way to label each “particle” of the medium is by the position vector of its equilibrium position (the place where the
particle sits at rest in the absence of a wave). In the presence of the wave, the particle that was initially at rest at the point  will
undergo a displacement that I am going to represent by the vector  (where  is the Greek letter “xi”). This displacement will in
general be a function of time, and it may also be different for different particles, so it will also be a function of , the equilibrium
position of the particle we are considering. The particle’s position under the influence of the wave becomes then

This is very general, and it can be given a simpler form for simple cases. For instance, for a transverse wave on a string, we can
label each part of the string at rest by its  coordinate, and then take the displacement to lie along the  axis; the position vector,
then, could be written in component form as . Similarly, we can consider a “plane” sound wave as a longitudinal wave
traveling in the  direction, where the density of the medium is independent of  and  (that is, it is constant on planes
perpendicular to the direction of propagation). In that case, the equilibrium coordinate  can be used to refer to a whole “slice” of
the medium, and the position of that slice, along the  axis, at the time  will be given by . In both of these cases, the
displacement vector  reduces to a single nonzero component (along the  or  axis, respectively), which can, of course, be
positive or negative. I will restrict myself implicitly to these simple cases and treat  as a scalar from this point on.

Under these conditions, the function  (which is often called the wave function) gives us the shape of the “displacement
wave,” that is to say, the displacement of every part of the medium, labeled by its equilibrium -coordinate, at any instant in time.
Accordingly, taking the derivative of  gives us the velocity of the corresponding part of the medium:

This is also, in general, a vector (along the direction of motion of the wave, if the wave is longitudinal, or perpendicular to it if the
wave is transverse). It is also a function of time, and in general will be different from the speed of the wave itself, which we have
taken to be constant, and which I will denote by  instead.

Harmonic Waves
An important class of waves are those for which the wave function is sinusoidal. This means that the different parts of the medium
execute simple harmonic motion, all with the same frequency, but each (in general) with a different phase. Specifically, for a
sinusoidal wave we have

In Equation ( ),  stands for the frequency, and plays the same role it did in the previous chapter: it tells us how often (that is,
how many times per second) the corresponding part of the medium oscillates around its equilibrium position. The constant  is
just the amplitude of the oscillation (what we used to call  in the previous chapter). The constant , on the other hand, is
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sometimes known as the “spatial period,” or, most often, the wavelength of the wave: it tells you how far you have to travel along
the  axis, from a given point , to find another one that is performing the same oscillation with the same amplitude and phase.

A couple of snapshots of a harmonic wave are shown in Figure . The figure shows the displacement , at two different times,
and as a function of the coordinate  used to label the parts into which we have broken up the medium (as explained in the previous
subsection). As such, the wave it represents could equally well be longitudinal or transverse. If it is transverse, like a wave on a
string, then you can think of  as being essentially just , and then the displacement curve (the blue line) just gives you the shape of
the string. If the wave is longitudinal, however, then it is a bit harder to visualize what is going on just from the plot of . This
is what I have tried to do with the density plots at the bottom of the figure.

Figure : Top: two snapshots of a traveling harmonic wave at  = 0 (solid) and at  (dashed). The quantity  is the
displacement of a typical particle of the medium at each point  (the wave is traveling in the positive  direction). Units for both 
and  are arbitrary. Bottom: The corresponding densities, for the case of a longitudinal wave.

Imagine the wave is longitudinal, and consider the  point on the  = 0 curve (the first zero, not counting the origin). A particle
of the medium immediately to the left of that point has a positive displacement, that is, it is pushed towards , whereas a slice
on the right has a negative displacement—which means it is also pushed towards . We therefore expect the density of the
medium to be highest around that point, whereas around  the opposite occurs: particles to the left are pushed to the left and
those to the right are pushed to the right, resulting in a low-density region. The density plot labeled  = 0 attempts to show this
using a grayscale where darker and lighter correspond to regions of higher and smaller density, respectively. At the later time 

 the high and low density regions have moved a distance  to the right, as shown in the second density plot.

Regardless of whether the wave is longitudinal or transverse, if it is harmonic, the spatial pattern will repeat itself every
wavelength; you can think of the wavelength  as the distance between two consecutive crests (or two consecutive troughs) of the
displacement function, as shown in the figure. If the wave is traveling with a speed , an observer sitting at a fixed point  would
see the disturbance pass through that point, the particles move up and down (or back and forth), and the motion repeat itself after
the wave has traveled a distance , that is, after a time . This means the period of the oscillation at every point is , and
the corresponding frequency :

This is the most basic equation for harmonic waves. Making use of it, Equation ( ) can be rewritten as

This suggests that if we want to have a wave moving to the left instead, all we have to do is change the sign of the term
proportional to , which is indeed the case.

In contrast to the wave speed, which is a constant, the speed of any part of the medium, with equilibrium position , at the time ,
can be calculated from Eqs. ( ) and ( ) to be
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(where I have introduced the angular frequency ). Again, this is a familiar result from the theory of simple harmonic
motion: the velocity is “90 degrees out of phase” with the displacement, so it is maximum or minimum where the displacement is
zero (that is, when the particle is passing through its equilibrium position in one direction or the other).

Note that the result ( ) implies that, for a longitudinal wave, the “velocity wave” is in phase with the “density wave”: that is,
the medium velocity is large and positive where the density is largest, and large and negative where the density is smallest
(compare the density plots in Figure ). If we think of the momentum of a volume element in the medium as being
proportional to the product of the instantaneous density and velocity, we see that for this wave, which is traveling in the positive 
direction, there is more “positive momentum” than “negative momentum” in the medium at any given time (of course, if the wave
had been traveling in the opposite direction, the sign of  in Equation ( ) would have been negative, and we would have
found the opposite result). This confirms our expectation that the wave carries a net amount of momentum in the direction of
propagation. A detailed calculation (which is beyond the scope of this book) shows that the time-average of the “momentum
density” (momentum per unit volume) can be written as

where  is the medium’s average mass density (mass per unit volume). Interestingly, this result applies also to a transverse wave!

As mentioned in the introduction, the wave also carries energy. Equation ( ) could be used to calculate the kinetic energy of a
small region of the medium (with volume  and density , and therefore ), and its time average. This turns out to be
equal to the time average of the elastic potential energy of the same part of the medium (recall that we had the same result for
harmonic oscillators in the previous chapter). In the end, the total time-averaged energy density (energy per unit volume) in the
region of the medium occupied by the wave is given by

Comparing ( ) and ( ), you can see that

This relationship between the energy and momentum densities (one is just  times the other) is an extremely general result that
applies to all sorts of waves, including electromagnetic waves!

The Wave Velocity
You may ask, what determines the speed of a wave in a material medium? The answer, qualitatively speaking, is that  always ends
up being something of the form

where “stiffness” is some measure of how rigid the material is (how hard it is to compress it or, in the case of a transverse wave,
shear it), whereas “inertia” means some sort of mass density.

For a transverse wave on a string, for instance, we find

where  is the tension in the string and  is not the “reduced mass” of anything (sorry about the confusion!), but a common way
to write the “mass per unit length” of the string. We could also just write , where  is the total mass of the string and 
its length. Note that the tension is a measure of the stiffness of the string, so this is, indeed, of the general form ( ). For two
strings under the same tension, but with different densities, the wave will travel more slowly on the denser one.

For a sound wave in a fluid (liquid or gas), the speed of sound is usually written
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where  is the regular density (mass per unit volume), and  is the so-called bulk modulus, which gives the fluid’s resistance to a
change in volume when a pressure  is applied to it: . So, once again, we get something of the form ( ). In
this case, however, we find that for many fluids the density and the stiffness are linked, so they increase together, which means we
cannot simply assume that the speed of sound will be automatically smaller in a denser medium. For gases, this does work well: the
speed of sound in a lighter gas, like helium, is greater than in air, whereas in a denser gas like sulfur hexafluoride the speed of
sound is less than in air . However, if you compare the speed of sound in water to the speed of sound in air, you find it is much
greater in water, since water is much harder to compress than air: in this case, the increase in stiffness more than makes up for the
increase in density.

The same thing happens if you go from a liquid like water to a solid, where the speed of sound is given by

where  is, again, a measure of the stiffness of the material, called the Young modulus. Since a solid is typically even harder to
compress than a liquid, the speed of sound in solids such as metals is much greater than in water, despite their being also denser.
For reference, the speed of sound in steel would be about  = 5,000 m/s; in water, about 1,500 m/s; and in air, “only” about 340
m/s.

This effect can be used to produce “funny voices,” because of the relationship  (Equation ( )), which will be
discussed in greater detail in the section on standing waves.

Reflection and Transmission of Waves at a Medium Boundary
Suppose that you have two different elastic media, joined in some way at a common boundary, and you have a wave in the first
medium traveling towards the boundary. Examples of media connected this way could be two different strings tied together, or two
springs with different spring constants joined at the ends; or, for sound waves, it could just be something like water with air above
it: a compression wave in air traveling towards the water surface will push on the surface and set up a sound wave there, and vice-
versa.

The first thing to notice is that, if the incident wave has a frequency , it will cause the medium boundary, when it arrives there, to
oscillate at that frequency. As a result of that, the wave that is set up in the second medium—which we call the transmitted wave—
will also have the same frequency . Again, think of the two strings tied together, so the first string “drives” the second one at the
frequency ; or the sound at the air-water boundary, driving (pushing) the water surface at the frequency .

So, the incident and transmitted waves will have the same frequency, but it is clear that, if the wave speeds in the two media are
different, they cannot have the same wavelength: since the relation ( ) has to hold, we will have , and .
Thus, if a periodic wave goes from a slower to a faster medium, its wavelength will increase, and if it goes from a faster to a slower
one, the wavelength will decrease.

It is easy to see physically why this happens, and how it has to be the case even for non-periodic waves, that is, wave pulses: a
pulse going into a faster medium will widen in length (stretch), whereas a pulse going into a slower medium will become narrower
(squeezed). Imagine, for example, several people walking in line, separated by the same distance , all at the same pace, until they
reach a line beyond which they are supposed to start running. When the first person reaches the line, he starts running, but the
second one is still walking, so by the time the second one reaches the line the first one has increased his distance from the second.
The same thing will happen between the second and the third, and so on: the original “bunch” will become spread out. (If you
watch car races, chances are you have seen this kind of thing happen already!)

Besides setting up a transmitted wave, with the properties I have just discussed, the incident wave will almost always cause a
reflected wave to start traveling in the first medium, moving backwards from the boundary. The reflected wave also has the same
frequency as the incident one, and since it is traveling in the same medium, it will also have the same wavelength. A non-periodic
pulse, when reflected, will therefore not be stretched or squeezed, but it will be “turned around” back-to-front, since the first part to
reach the boundary also has to be the first to leave. See Figure  (the top part) for an example.
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Figure : Reflection and transmission of a pulse at the boundary where two strings of different densities are joined. (“Before”
and “after” situations are shown for each case.) Top figure: the string on the right is less dense, so the pulse travels faster (the
tension on both strings is supposed to be the same). The reflected pulse is upright but reversed left-to-right. Bottom figure: the
string on the right is more dense, so the transmitted pulse travels more slowly. The reflected pulse is reversed left-to-right and
flipped upside down.

What is the physical reason for the reflected wave? Ultimately, it has to do with the energy carried by the incident wave, and
whether it is possible for the transmitted wave alone to handle the incoming energy flux or not. As we saw earlier (Equation (

)), the energy per unit volume in a harmonic wave of angular frequency  and amplitude  is . If the wave
is traveling at a speed , then the energy flux (energy transported per unit time per unit area) is equal to , which is to say

This is often called the intensity of the wave. It can be written as , where I have defined the medium’s mechanical
impedance (or simply the impedance) as

(for a string, the mass per unit length  instead of the mass per unit volume  should be used). You can see that if the two media
have the same impedance, then the energy flux in medium 2 will exactly match that in medium 1, provided the incident and
transmitted waves have the same amplitudes. In that case, there will be no reflected wave: even if the two media have different
densities and wave velocities, as long as they have the same impedance, the wave will be completely transmitted.

On the other hand, if the media have different impedances, then it will in general be impossible to match the energy flux with only
a transmitted wave, and reflection will occur. This is not immediately obvious, since it looks like all you have to do, to compensate
for the different impedances in Equation ( ), is to give the transmitted wave an amplitude that is different from that of the
incident wave. But the point is precisely that, mathematically, you cannot do that without introducing a reflected wave. This is
because the actual amplitude of the oscillation at the boundary has to be the same on both sides, since the two media are connected
there, and oscillating together; so, if  is going to be different from , you need to have another wave in medium 1, the
reflected wave, to insure that .

Another way to see this is to dig in a little deeper into the physical meaning of the impedance. This is a worthwhile detour, because
impedance in various forms recurs in a number of physics and engineering problems. For a sound wave in a solid, for instance, we
can see from Eqs. ( ) and ( ) that ; so a medium can have a large impedance either by being very
stiff (large ) or very dense (large ) or both; either way, one would have to work harder to set up a wave in such a medium than
in one with a smaller impedance. On the other hand, once the wave is set up, all that work gets stored as energy of the wave, so a
wave in a medium with larger  will also carry a larger amount of energy (as is also clear from Equation ( ))  for a given
displacement .
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So, when a wave is trying to go from a low impedance to a large impedance medium, it will find it hard to set up a transmitted
wave: the transmitted wave amplitude will be small (compared to that of the incident wave), and the only way to satisfy the
condition  will be to set up a reflected wave with a negative amplitude —in effect, to flip the reflected
wave upside down, in addition to left-to-right. This is the case illustrated in the bottom drawing in Figure .

Conversely, you might think that a wave trying to go from a high impedance to a low impedance medium would have no trouble
setting up a transmitted wave there, and that is true—but because of its low impedance, the transmitted wave will still not be able to
carry all the energy flux by itself. In this case,  will be greater than , and this will also call for a reflected wave in the
first medium, only now it will be “upright,” that is, .

To finish up the subject of impedance, note that the observation we just made, that impedance will typically go as the square root of
the product of the medium’s “stiffness” times its density, is quite general. Hence, a medium’s density will typically be a good proxy
for its impedance, at least as long as the “stiffness” factor is independent of the density (as for strings, where it is just equal to the
tension) or, even better, increases with it (as is typically the case for sound waves in most materials). Thus, you will often hear that
a reflected wave is inverted (flipped upside down) when it is reflected from a denser medium, without any reference to the
impedance—it is just understood that “denser” also means “larger impedance” in this case. Also note, along these lines, that a
“fixed end,” such as the end of a string that is tied down (or, for sound waves, the closed end of an organ pipe), is essentially
equivalent to a medium with “infinite” impedance, in which case there is no transmitted wave at that end, and all the energy is
reflected.

Finally, the expression  that I wrote earlier, for the amplitude of the wave in the first medium, implicitly assumes a
very important property of waves, which is the phenomenon known as interference, or equivalently, the “linear superposition
principle.” According to this principle, when two waves overlap in the same region of space, the total displacement is just equal to
the algebraic sum of the displacements produced by each wave separately. Since the displacements are added with their signs, one
may get destructive interference if the signs are different, or constructive interference if the signs are the same. This will play an
important role in a moment, when we start the study of standing waves.

In this respect, it may help you to think of the impedance of an extended medium as being somewhat analog to the inertia (mass)
of a single particle. The larger the mass, the harder it is to accelerate a particle, but once you have given it a speed v, the larger mass
also carries more energy.

A better way to put this would be to say that the amplitude is positive as always, but the reflected wave is 180  out of phase with
the incident wave, so the amplitude of the total wave on the medium 1 side of the boundary is .

This page titled 24.1: Traveling Waves is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-
Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

12.1: Traveling Waves by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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24.2: Standing Waves and Resonance
Imagine you have a sinusoidal traveling wave of the form (12.1.5), only traveling to the left, incident from the right on a “fixed
end” at  = 0. The incident wave will go as ; the reflected wave should be flipped left to right and upside
down, so change  to  and put an overall minus sign on the displacement, to get . The sum of the two
waves in the region  is then

using a trigonometrical identity for , and .

The result on the right-hand side of Equation ( ) is called a standing wave. It does not travel anywhere, it just oscillates “in
place”: every point x behaves like a separate oscillator with an amplitude . This amplitude is zero at special points,
where  is equal to an integer. These points are called nodes.

We could think of “confining” a wave of this sort to a string fixed at both ends, if we make the string have an end at  = 0 and the
other one at one of these points where the amplitude is zero; this means we want the length  of the string to satisfy

where  = 1, 2,.... Alternatively, we can think of  as being fixed and Equation ( ) as giving us the possible values of  that
will give us standing waves: . Since , we see that all these possible standing waves, for fixed  and , have
different frequencies that we can write as

Note that these are all multiples of the frequency . We call this the fundamental frequency of oscillation of a string fixed
at both ends. The period corresponding to this fundamental frequency is the roundtrip time of a wave pulse around the string, .

The first three standing waves are plotted in Figure . Their wave functions are given by the right-hand side of Equation (
), for 0 ≤  ≤ , with  (  = 1, 2, 3), and . The amplitude is arbitrary; in the figure I have set it

equal to 1 for convenience. Calling the corresponding function  is more or less common practice in other contexts:

These functions are called the normal modes of vibration of the string. In Figure  I have shown, for each of them, the
displacement at the initial time,  = 0, as a solid line, and then half a period later as a dashed line. In addition to this, notice that the
wave function vanishes identically (the string is flat) at the quarter-period intervals,  and . At those times, the
wave has no elastic potential energy (since the string is unstretched): as with a simple oscillator passing through the equilibrium
position, all its energy is kinetic. For , there are also nodes (places where the oscillation amplitude is always zero) at points
other than the ends. Including the endpoints, the -th normal mode has  nodes. The places where the oscillation amplitude is
largest are called antinodes.
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Figure : The three lowest-frequency normal modes of vibration of a string held down at both ends, corresponding to, from
top to bottom,  = 1, 2, 3

Animations of these standing waves can be found in many places; one I particularly like is here:
http://newt.phys.unsw.edu.au/jw/strings.html#standing. It also shows graphically how the standing wave can be considered as a
superposition of two oppositely-directed traveling waves, as in Equation ( ).

If we initially bent the string into one of the shapes shown in Figure , and then released it, it would oscillate at the
corresponding frequency , keeping the same shape, only scaling it up and down by a factor  as time elapsed. So,
another way to think of standing waves is as the natural modes of vibration of an extended system—the string, in this case,
although standing waves can be produced in any medium that can carry a traveling wave.

What I mean by a “natural mode of vibration” is the following: a single oscillator, say, a pendulum, has a single “natural”
frequency; if you displace it or hit it, it just oscillates at that frequency with a constant amplitude. An extended system, like the
string, can be viewed as a collection of coupled oscillators, which may in general oscillate in many different and complicated ways;
yet, there is a specific set of frequencies—for the string with two ends fixed, the sequence  of Equation ( )—and associated
shapes that will result in all the parts of the string performing simple harmonic motion, in synchrony, all at the same frequency.

Of course, to produce just one of these specific modes of oscillation requires some care (“driving” the string at the right frequency
is probably the easiest way; see next paragraph); however, if you simply hit or pluck the string in any random way, a remarkable
thing happens: the resulting motion will be, mathematically, described as a sum of sinusoidal standing waves, each with one of the
frequencies , and each with a different amplitude . In a musical instrument, this will eventually generate a superposition of
sound waves with frequencies , ,  ... (called, in this context, the fundamental, , and its overtones, 

). Each one of these frequencies corresponds to a different pitch, or musical note, and the result will sound a little like a
chord, although not nearly as pronounced—we will mostly hear only the fundamental, which corresponds to the root note of the
chord, but all the notes in a major triad are in fact present in the vibration of a single guitar or piano string .

But wait, there’s more! Suppose that you try to get the string to oscillate by “driving” it: that is to say, grabbing a hold of one end
and shaking it at some frequency, only with a very small amplitude, so the displacement at that end remains always close to zero. In
that case, you will typically get only very small amplitude oscillations, until the driving frequency hits one of the special
frequencies , at which point you will get a large oscillation with the shape of the corresponding standing wave. This is a
phenomenon known as resonance, and the  are the resonant frequencies of this system.

Note that the effect I just described is essentially the same as you experience when you are “pumping,” or simply pushing, a swing.
Unless you do it at the right frequency, you do not get very far; but if you do it at the right frequency (which is the swing’s natural
frequency, the one at which it will swing on its own), you can get huge amplitude oscillations. So, the frequencies ( ) may be
said to be the string’s natural oscillation frequencies in the same two ways: they are the ones at which it will oscillate if you just
pluck it, and they are the ones at which you have to drive it if you want to get large oscillations.

Pretty much everything I have just shown you above for standing waves on a string applies to sound waves inside a tube or pipe
open at both ends. In that case, however, it is not the displacement, but the pressure (or density) wave that must have zeros at the
ends (since the ends are open, the pressure there must be just the average atmospheric pressure; note that the pressure or density
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waves in a sound wave do not give the absolute pressure or density, but the deviation, positive or negative, from the average). The
math, however, is identical, and one finds the same set of normal modes and resonance frequencies as above. These are then the
frequencies that would be produced when blowing in a flute or an organ pipe open at both ends. So, both from pipes and strings we
get the same “harmonic series” of frequencies ( ) that has been the foundation of Western music since at least the time of
Pythagoras.

It works like this: say  corresponds to a C, then  is the C above that,  the G above that,  the C above that, and  the E
above that.

This page titled 24.2: Standing Waves and Resonance is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio
Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.
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24.3: Conclusion, and Further Resources
This chapter on one-dimensional waves has barely scratched the surface of the extremely rich world of wave phenomena. I have
only given you a passing glance at interference, and I have not said anything at all about diffraction, the Doppler effect,
polarization, refraction.... Many of these things you will learn about in later courses, most likely when you encounter
electromagnetic waves (which are non-mechanical, but described by the same mathematical equation).

Waves are such an intrinsically kinetic phenomenon that they are best appreciated by watching them in action, or, as a second-best
alternative, through animations. A wonderful repository of such movies and animations is PHYSCLIPS at the University of New
South Wales:

http://www.animations.physics.unsw.edu.au/waves-sound/oscillations/index.html

They also have a set of pages on the “physics of music” that I have already mentioned a couple of times. If you are interested in
this topic, you should go spend some time there!

http://newt.phys.unsw.edu.au/music

Finally, closer to home, the fellows at PhET (University of Colorado), have this great interactive app to explore waves on a string:

https://phet.colorado.edu/en/simulation/wave-on-a-string

This page titled 24.3: Conclusion, and Further Resources is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
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24.4: In Summary
1. A traveling wave in an elastic medium is a collective disturbance of the particles in the medium (a displacement, or change in

pressure or density) that carries energy and momentum from one point of the medium to another, over a distance that is
typically much larger than the displacement of the individual particles making up the wave.

2. In a longitudinal wave, the displacement of the particles is along the line of motion of the wave; in a transverse wave, it is
perpendicular to the wave’s motion.

3. An important kind of waves are periodic waves, in which the disturbance repeats itself at each point in the medium with a
period . Sinusoidal, periodic waves are called harmonic waves. Their spatial period is called the wavelength . If the speed of
the wave is , one has , where  is the wave frequency.

4. The time-averaged energy density in a harmonic wave (sum of kinetic and elastic potential energy per unit volume) is 
, where  is the medium’s density, and  the amplitude of the displacement oscillations. The time average

momentum density is . The intensity of the wave (energy carried per unit time per unit area) is .
5. Sound is a longitudinal compression-and-rarefaction wave in an elastic medium. It can be described in terms of displacement,

pressure or density. The pressure or density disturbance is maximal where the displacement is zero, and vice-versa.
6. The speed of sound in a solid with Young modulus  is ; in a fluid with bulk modulus , it is . In an

ideal gas, this depends only on the ratio of specific heats, the molar mass, and the temperature.
7. Transverse waves on a string with mass per unit length  and under a tension  travel with a speed .
8. When a wave reaches the boundary between two media, it is typically partly reflected and partly transmitted. The incident,

reflected and transmitted waves all have the same frequency. The transmitted wave has a wavelength , where  is the
wave speed in the second medium.

9. The quantity that determines how much of the energy is reflected or transmitted is the mechanical impedance, defined for each
medium as . If  there is no reflected wave. If , the reflected wave is inverted (flipped upside-down)
relative to the incident wave. If , it is upright.

10. Standing waves arise in a medium that is confined to a region of space, and are the normal (or “natural”) modes of vibration of
the system. In a standing wave, each particle of the medium oscillates with an amplitude that is a fixed function of the particle’s
position (a sinusoidal function in one dimension). This amplitude is zero at points called nodes.

11. In one dimension, all the standing wave frequencies are multiples of a fundamental frequency , where  is the length
of the medium (as long as the boundary conditions at both ends of the medium are identical). These are the resonant frequencies
of the system: if disturbed, it will naturally oscillate in a superposition of these frequencies, and if driven at one of these
frequencies, one will obtain a large response.
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24.5: Examples

Example : Displacement and Density/pressure in a longitudinal wave
The picture below shows the displacement of a medium (let’s say air) as a sound pulse travels through it. (Don’t worry about
the units on the axes right now! We are only interested in qualitative results here.)

a. Sketch the corresponding pressure (or density) pulse. Note: pressure and density are in phase, so one is large where the
other is large. In either case what is always plotted is the difference between the actual pressure or density and the average
pressure (for air, atmospheric pressure) or density of the medium.

b. If this sound pulse is incident on water, sketch the reflected pulse, both in a displacement and in a pressure/density plot.

Solution

(a) The purpose of this example is to help refine the intuition you may have gotten from Figure 12.1.3 regarding the
relationship between the displacement and the pressure/density in a longitudinal wave. When discussing Figure 12.1.3, I
argued that the density should be high at a point like  in that figure, because the particles to the left of that point were
being pushed to the right, and those to the right were being pushed to the left. However, a similar argument can be made to
show that the density should be higher than its equilibrium value whenever the displacement curve has a negative slope, in
general.

For instance, consider point  = 1 in the figure above. Particles both to the left and the right of that point are being pushed to
the right (positive displacement), but the displacement is larger for the ones on the left, which will result in a bunching at  =
1.

Conversely, if you look at a point with positive slope, such as  = 0, you see that the particles on the right are pushed farther to
the right than the particles on the left, which means the density around  = 0 will drop.

From this you may conclude that the density versus position graph will look somewhat like the negative of the derivative of the
-vs.-  graph: positive when  falls, negative when it rises, and zero at the “turning points” (maxima or minima of ). This

is, in fact, mathematically true, and is illustrated in the figure below.
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Figure : Illustrating the relationship between displacement (blue curve) and pressure/density (red) in a longitudinal wave.
The dashed lines separate the regions where the pressure (or density) is positive (higher than in the absence of the wave) from

those where it is negative.

(b) If this sound wave is incident from air into water, it means it is going from a low impedance to a high impedance medium
(both the density and the speed of sound are much greater in water than in air, giving a much larger ; see Equation
(12.1.15) for the definition of impedance). This means the reflected displacement pulse will be flipped upside down, as well as
left to right (see the figure on the next page). This is just (except for the scale, which here is arbitrary) like the bottom part of
Figure 12.1.4.

However, if you now try to figure out the shape of the density/pressure wave based on the displacement wave, as we did in part
(a), you’ll see that it is only reversed left to right, but not flipped upside down! This is a general property of longitudinal
waves: the reflected pressure/density wave behaves in exactly the opposite way as the displacement wave, as far as the upside-
down “flip” is concerned: it gets flipped when going from high impedance to low impedance, and not when going from low to
high.
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Figure : What the wave pulse in the previous figure would look like if reflected from a high-impedance medium. The
displacement wave is reversed left to right and flipped upside down. The pressure/density wave is only reversed left to right.

If you are curious to see how this happens mathematically, the idea is that the density wave is proportional to , and the
reflected displacement wave goes like , where the first minus sign gives the vertical flip and the second the
horizontal one. Taking the derivative of this last expression with respect to  then removes the minus sign in front.

The “sounding length” of a violin string, from the bridge to the nut at the upper end of the fingerboard, is about 32 cm.

a. If the string is tuned so that its fundamental frequency corresponds to a concert A (440 Hz), what is the speed of a wave on
that string?

b. If the string’s density is 0.66 g/m (note: the “g” stands for “grams”!), what is the tension on the string?
c. When the string is played, its vibration is transmitted through the bridge to the violin plates. At what frequency will the

plates vibrate?
d. The vibration of the plates then sets up a sound wave in air. What is the wavelength of this wave?

Solution

(a) In Section 12.2 we saw that the fundamental frequency of a string fixed at both ends is  (corresponding to
Equation (12.2.3) with  = 1). Setting this equal to 440 Hz, and solving for ,

(b) From Section 12.1, we have that the speed of a wave on a string is , where  is the tension and  the mass
per unit length (Equation (12.1.11). Solving for ,

(c) The plates will vibrate at the same frequency as the string, 440 Hz, since they are driven by the motion of the string.

(d) The basic relationship to use here is Equation (12.1.4), , which we can solve for  if we know , the speed of
sound in air. In Section 12.1 it was stated that the speed of sound in air is about 340 m/s, so we have
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24.6: Advanced Topics

Chain of Masses Coupled with Spring- Dispersion, and Long-Wavelength Limit
Consider a model of an extended elastic medium in which, for simplicity, we separate the two main medium properties, inertia and
elasticity, by describing it as a chain of point-like masses (particles) connected by massless springs, as in Figure  below. I
will show you here how one can get “ideal” wave behavior in this system, provided we work in the “long-wavelength” limit, that is
to say, we consider only waves whose wavelength is much greater than the average distance between neighboring masses.

Figure : A chain of masses connected by massless springs. The top picture shows the equilibrium positions with the springs
relaxed, the bottom one the situation where each mass has undergone a displacement .

In the figure above I have explicitly shown the -th mass and the two springs that push and/or pull on it, both in equilibrium (top
drawing) and when the chain is in motion (bottom). In the latter case, the length of the springs depends on the relative
displacements of all three masses shown. Specifically, the length of the spring on the left is , where  is the distance
between the masses in equilibrium, and the length of the spring on the right is . If the left spring is stretched (length
greater than ) it will pull to the left on the -th mass, and, conversely, if the right spring is stretched (length greater than ) it will
pull to the right on the -th mass. So, if all the springs have the same constant , the force equation  for mass  is

which we can rewrite as

Now let us try to see if we can get a sinusoidal solution to this system of differential equations. By analogy with Equation (12.1.3)
let

where  is the equilibrium position of the -th mass. Then for each of the three masses considered, we have

We want to substitute all this in Equation ( ). We can use the trigonometric identity 
to simplify :

then use  to yield

It is clear now that Equation ( ) will be satisfied provided the following condition holds:

24.6.1

24.6.1
ξ

n

d+ −ξn ξn−1 d

d+ −ξn+1 ξn
d n d

n k F = ma n

m = −k ( − ) +k ( − )an ξn ξn−1 ξn+1 ξn (24.6.1)

m = k −2k +k .
d2ξn

dt2
ξn−1 ξn ξn+1 (24.6.2)

(t) = A sin[2π ( −ft)]ξn
xn

λ

= ndxn n

(t)ξn−1

(t)ξn

(t)ξn+1

= A sin[2π((n−1)d/λ−ft)] = A sin[2π(nd/λ−ft) −2πd/λ]

= A sin[2π(nd/λ−ft)]

= A sin[2π((n+1)d/λ−ft)] = A sin[2π(nd/λ−ft) +2πd/λ] (24.6.3)

24.6.2 sin(a−b) +sin(a+b) = 2 sina cos b

+ξn−1 ξn+1

+ = 2A sin[2π( −ft)] cos( )ξn−1 ξn+1
nd

λ

2πd

λ
(24.6.4)

1 −cosx = 2 (x/2)sin2

k −2k +k = −4kA ( ) sin[2π( −ft)] = −4k ( )ξn−1 ξn ξn+1 sin2 πd

λ

nd

λ
sin2 πd

λ
ξn (24.6.5)

24.6.2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63300?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/24%3A_Waves_in_One_Dimension/24.06%3A_Advanced_Topics
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_I_-_Classical_Mechanics_(Gea-Banacloche)/12%3A_Waves_in_One_Dimension/12.01%3A_Traveling_Waves#Equation+12.1.3


24.6.2 https://phys.libretexts.org/@go/page/63300

Or, taking the square root and simplifying,

This is clearly a more complicated relation between  and  than just Equation (12.1.4). However, since we can argue that
Equation (12.1.4) must always hold for a sinusoidal wave, what we have actually found is that the chain of masses and springs in
Figure  will support a sinusoidal wave provided the wave velocity depends on the wavelength as required by Eqs. (12.1.4)
and ( ):

This is an instance of the phenomenon called dispersion: sinusoidal waves of different frequencies (or wavelengths) have different
velocities. One thing that happens in the presence of dispersion is that, although a single (infinite), sinusoidal wave can travel
without changing its shape (provided  and  satisfy Equation ( )), a general pulse will be distorted as it propagates through
the medium, often severely so.

In the long wavelength limit, however, the dispersion in this model disappears. We can see this as follows. In that limit,  (the
wavelength is much greater than the distance between the masses), and therefore ; we can then make the small-angle
approximation in Equation ( ), , and end up with

This is of the general form  (as per Equation (12.1.10)). Basically, in the long-wavelength limit, the medium
appears homogeneous to the wave—it cannot “tell” that it is a chain of discrete particles. When you consider that everything that
looks homogeneous on a macroscopic scale is actually made of discrete atoms or molecules at the microscopic level, you can see
that this model is perhaps not as artificial as it might seem, and that in general you should, in fact, expect some kind of dispersion
to occur in any medium, at sufficiently small wavelengths.
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24.7: Exercises

When plucked, the D string on a guitar vibrates with a frequency of 147 Hz.

a. What would happen to this frequency if you were to increase the tension in the string?
b. The vibration of the string eventually produces a sound wave of the same frequency, traveling through the air. If the speed

of sound in air is 340 m/s, what is the wavelength of this wave?

Think of a flute as basically a cylindrical tube of length 0.6 m, open to the atmosphere at both ends. If the speed of sound in air
is 340 m/s

a. What is the fundamental (lowest) frequency of a sound wave in a flute?
b. Is this a transverse or a longitudinal wave?
c. The speed of sound in helium is about 3 times that in air. How would the flute’s resonance frequencies change if you filled

it with helium instead of air?

Justify each of your answers briefly.

The top picture shows a wave pulse on a string (string 1) traveling to the right, where the string is attached to another one
(string 2, not shown). The bottom picture shows the reflected wave some time later.

If the tension on both strings is the same,

a. Is string 2 more or less dense than string 1?
b. In which string will the wave travel faster?
c. Sketch what the reflected wave would look like if the strings’ densities were the opposite of what you answered in part (a).

Explain each of your answers briefly.
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25.1: Introduction
The last two lectures this semester are about thermodynamics, an extremely important branch of physics that developed throughout
the 19th century, motivated in part by the development of the steam engines that brought about the Industrial Revolution. Physics
majors will study thermodynamics at much greater length in University Physics III and subsequent courses, whereas Engineering
and Chemistry majors will encounter it also in specialized courses in their own disciplines.

There is really no escaping thermodynamics, but you may wonder why bring it up here (in this course, at this time) at all? The
answer is twofold:

From the point of view of the study of energy and its transformations, which has been one of the major themes of this course,
thermodynamics provides us with the last missing pieces: it is here that we find out what thermal energy really is, and how it is
different from other forms of energy (so much so, that we say that energy has been “dissipated” or “lost” when it becomes
thermal energy). It is also here that we deal with the other way that energy can be transferred from a system to another (other,
that is, than by doing work): this is the “direct transfer of thermal energy,” or what is normally called an exchange of heat.
From the point of view of the study of motion, which has been also another running theme, thermodynamics also represents the
next logical step beyond what we have learned so far. Recall that we started looking at the motion of extended objects as if they
were simple point particles, moving as a whole along with their center of mass, and slowly introduced tools to deal with more
complex kinds of motion: first rigid body rotations, then elastic deformations (waves) in which the constituent parts of an object
move relative to each other in a way that looks “organized,” or synchronized, from a macroscopic perspective. What is needed
next is to account for the random motion, on a microscopic scale, of the smallest parts (atoms or molecules) that make up an
extended object. This motion is constantly happening, and it is a key ingredient of the concepts of thermal energy and
temperature.

Conceptually, thermodynamics involves the introduction of two new physical quantities, temperature and entropy. Temperature
will be introduced in this lecture, and entropy in the next one. It is interesting to note from the start, however, that these are very
different from all the quantities we have introduced so far this semester, in a fundamental way. In classical physics, at least, there is
no difficulty in extending all those other quantities to the study of the smallest parts making up an object: we can perfectly well talk
about the position, velocity or energy of a molecule. But temperature and entropy are statistical quantities, which are only properly
defined, from a fundamental point of view, for a large collection of (small) subsystems: it makes no sense to speak about the
temperature or the entropy of a single molecule. This shows that there was really a profound change in perspective and
methodology in classical physics when statistical mechanics (the part of physics that provides a microscopic foundation for
thermodynamics) was developed.
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25.2: Introducing Temperature

Temperature and Heat Capacity
The change in perspective that I just mentioned also means that it is not easy to even define temperature, beyond our natural
intuition of “hot” and “cold,” or the somewhat circular notion that temperature is simply “what thermometers measure.” Roughly
speaking, though, temperature is a measure of the amount (or, to be somewhat more precise, the concentration) of thermal energy
in an object. When we directly put an amount of thermal energy,  (what we will be calling heat in a moment), in an object, we
typically observe its temperature to increase in a way that is approximately proportional to , at least as long as  is not
too large:

The proportionality constant  is called the heat capacity of the object: according to Equation ( ), a system with a large heat
capacity could absorb (or give off—the equation is supposed to apply in either case) a large amount of thermal energy without
experiencing a large change in temperature. If the system does not do any work in the process (recall Equation (7.4.8)!), then its
internal energy will increase (or decrease) by exactly the same amount of thermal energy it has taken in (or given off) , and we can
use the heat capacity  to, ultimately, relate the system’s temperature to its energy content in a one-to-one-way.

What is found experimentally is that the heat capacity of a homogeneous object (that is, one made of just one substance) is, in
general, proportional to its mass. This is why, instead of tables of heat capacities, what we compile are tables of specific heats,
which are heat capacities per kilogram (or sometimes per mole, or per cubic centimeter... but all these things are ultimately
proportional to the object’s mass). In terms of a specific heat , and again assuming no work done or by the system, we
can rewrite Equation ( ) to read

or, again,

which shows what I said above, that temperature really measures, not the total energy content of an object, but its concentration—
the thermal energy “per unit mass,” or, if you prefer (and somewhat more fundamentally) “per molecule.” An object can have a
great deal of thermal energy just by virtue of being huge, and yet still be pretty cold (water in the ocean is a good example).

In fact, we can also rewrite Eqs. ( – ) in the (somewhat contrived-looking) form

which tells you that an object can have a large heat capacity in two ways: one is simply to have a lot of mass, and the other is to
have a large specific heat. The first of these ways is kind of boring (but potentially useful, as I will discuss below); the second is
interesting, because it means that a relatively large change in the internal energy per molecule (roughly speaking, the numerator of (

)) will only show as a relatively small change in temperature (the denominator of ( ); a large numerator and a small
denominator make for a large fraction!).

Put differently, and somewhat fancifully, substances with a large specific heat are very good at hiding their thermal energy from
thermometers (see Figure  for an example). This, as I said, is an interesting observation, but it also means that measuring
heat capacities—or, for that matter, measuring temperature itself—may not be an easy matter. How do we get at the object’s
internal energy if not through its temperature? Where does one start?
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Figure : In this simple model of a gas of diatomic molecules, each molecule can store “vibrational” potential energy (both
potential and kinetic, through the oscillations of the “spring” that models the interaction between the atoms), plus as at least two
kinds of rotational kinetic energy (corresponding to rotations around the axes shown), in addition to just the translational kinetic
energy of its center of mass. The latter is the only one directly measured by a gas thermometer, so a diatomic gas has many more
ways of “hiding” its thermal energy (and hence, a larger specific heat) than a monoatomic gas.

If the system does do some work (or has work done on it), then Equation (13.3.1) applies.

Which, it must be noted, may also be a function of the system’s temperature—another complication we will cheerfully ignore
here.

The Gas Thermometer
A good start, at least conceptually, is provided by looking at a system that has no place to hide its thermal energy—it has to show it
all, have it, as it were, in full view all the time. Such a system is what has come to be known as an ideal gas—which we model,
microscopically, as a collection of molecules (or, more properly, atoms) with no dimension and no structure: just pointlike things
whizzing about and continually banging into each other and against the walls of their container. For such a system the only possible
kind of internal energy is the sum of the molecules’ translational kinetic energy. We may expect this to be easily detected by a
thermometer (or any other energy-sensitive probe), because as the gas molecules bang against the thermometer, they will indirectly
reveal the energy they carry, both by how often and how hard they collide.

As it turns out, we can be a lot more precise than that. We can analyze the theoretical model of an ideal gas that we have just
described fairly easily, using nothing but the concepts we have introduced earlier in the semester (plus a few simple statistical
ideas) and obtain the following result for the gas’ pressure and volume:

where  is the total number of molecules, and  is the average translational kinetic energy per molecule. Now, you are very
likely to have seen, in high-school chemistry, the experimentally derived “ideal gas law,”

where  is the number of moles, and  the “ideal gas constant.” Comparing Equation ( ) (a theoretical prediction for a
mathematical model) and Equation ( ) (an empirical result approximately valid for many real-world gases under a wide range
of pressure and temperature, where “temperature” literally means simply “what any good thermometer would measure”)
immediately tells us what temperature is, at least for this extremely simple system: it is just a measure of the average (translational)
kinetic energy per molecule.

It would be tempting to leave it at that, and immediately generalize the result to all kinds of other systems. After all, presumably, a
thermometer inserted in a liquid is fundamentally responding to the same thing as a thermometer inserted in an ideal gas: namely,
to how often, and how hard, the liquid’s molecules bang against the thermometer’s wall. So we can assume that, in fact, it must be
measuring the same thing in both cases—and that would be the average translational kinetic energy per molecule. Indeed, there is a
result in classical statistical mechanics that states that for any system (liquid, solid, or gas) in “thermal equilibrium” (a state that I
will define more precisely later), the average translational kinetic energy per molecule must be
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where  is a constant called Boltzmann’s constant (  = 1.38×10  J/K), and , as in Equation ( ) is measured in degrees
Kelvin.

There is nothing wrong with this way to think about temperature, except that it is too selflimiting. To simply identify temperature
with the translational kinetic energy per molecule leaves out a lot of other possible kinds of energy that a complex system might
have (a sufficiently complex molecule may also rotate and vibrate, for instance, as shown in Figure ; these are some of the
ways the molecule can “hide” its energy from the thermometer, as I suggested above). Typically, all those other forms of internal
energy also go up as the temperature increases, so it would be at least a bit misleading to think of the temperature as having to do
with only , Equation ( ) notwithstanding. Ultimately, in fact, it is the total internal energy of the system that we want to
relate to the temperature, which means having to deal with those pesky specific heats I introduced in the previous section. (As an
aside, the calculation of specific heats was one of the great challenges to the theoretical physicists of the late 19th and early 20th
century, and eventually led to the introduction of quantum mechanics—but that is another story!)

In any case, the ideal gas not only provides us with an insight into the microscopic picture behind the concept of temperature, it
may also serve as a thermometer itself. Equation ( ) shows that the volume of an ideal gas held at constant pressure will
increase in a way that’s directly proportional to the temperature. This is just how a conventional, old-fashioned mercury
thermometer worked—as the temperature rose, the volume of the liquid in the tube went up. The ideal gas thermometer is a bit
more cumbersome (a relatively small temperature change may cause a pretty large change in volume), but, as I stated earlier,
typically works well over a very large temperature range.

By using an ideal (or nearly ideal) gas as a thermometer, based on Equation ( ), we are, in fact, implicitly defining a specific
temperature scale, the Kelvin scale (indeed, you may recall that for Equation ( ) to work, the temperature must be measured
in degrees Kelvin). The zero point of that scale (what we call absolute zero) is the theoretical point at which an ideal gas would
shrink to precisely zero volume. Of course, no gas stays ideal (or even gaseous!) at such low temperatures, but the point can easily
be found by extrapolation: for instance, imagine plotting experimental values of  vs , at constant pressure, for a nearly ideal gas,
using any kind of thermometer scale to measure , over a wide range of temperatures. Then, connect the points by a straight line,
and extend the line to where it crosses the  axis (so  = 0); that point gives you the value of absolute zero in the scale you were
using, such as −273.15 Celsius, for instance, or −459.67 Fahrenheit.

Figure : Illustrating how a gas thermometer can be used to define the Kelvin, or absolute, temperature scale.

The connection between Kelvin (or absolute) temperature and microscopic motion expressed by equations like ( ) through (
) immediately tells us that as you lower the temperature the atoms in your system will move more and more slowly, until,

when you reach absolute zero, all microscopic motion would cease. This does not quite happen, because of quantum mechanics,
and we also believe that it is impossible to really reach absolute zero for other reasons, but it is true to a very good approximation,
and experimentalists have recently become very good at cooling small ensembles of atoms to temperatures extremely close to
absolute zero, where the atoms move, literally, slower than snails (instead of whizzing by at close to the speed of sound, as the air
molecules do at room temperature).

The Zero-th Law
Historically, thermometers became useful because they gave us a way to quantify our natural perception of cold and hot, but the
quantity they measure, temperature, would have been pretty useless if it had not exhibited an important property, which we
naturally take for granted, but which is, in fact, surprisingly not trivial. This property, which often goes by the name of the zero-th
law of thermodynamics, can be stated as follows:

Suppose you place two systems  and  in contact, so they can directly exchange thermal energy (more about this in the next
section), while isolating them from the rest of the world (so their joint thermal energy has no other place to go). Then, eventually,
they will reach a state, called thermal equilibrium, in which they will both have the same temperature.
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This is important for many reasons, not the least of which being that that is what allows us to measure temperature with a
thermometer in the first place: the thermometer tells us the temperature of the object with which we place it in contact, by first
adopting itself that temperature! Of course, a good thermometer has to be designed so that it will do that while changing the
temperature of the system being measured as little as possible; that is to say, the thermometer has to have a much smaller heat
capacity than the system it is measuring, so that it only needs to give or take a very small amount of thermal energy in order to
match its temperature. But the main point here is that the match actually happens, and when it does, the temperature measured by
the thermometer will be the same for any other systems that are, in turn, in thermal equilibrium with—that is, at the same
temperature as—the first one.

The zero-th law only assures us that thermal equilibrium will eventually happen, that is, the two systems will eventually reach one
and the same temperature; it does not tell us how long this may take, nor even, by itself, what that final temperature will be. The
latter point, however, can be easily determined if you make use of conservation of energy (the first law, coming up!) and the
concept of heat capacity introduced above (think about it for a minute).

Still, as I said above, this result is far from trivial. Just imagine, for instance, two different ideal gases, whose molecules have
different masses, that you bring to a state of joint thermal equilibrium. Equations ( ) through ( ) tell us that in this final
state the average translational kinetic energy of the “ ” molecules and the “ ” molecules will be the same. This means, in
particular, that the more massive molecules will end up moving more slowly, on average, so . But why is that?
Why should it be the kinetic energies that end up matching, on average, and not, say, the momenta, or the molecular speeds
themselves? The result, though undoubtedly true, defied a rigorous mathematical proof for decades, if not centuries; I am not sure
that a rigorous proof exists, even now.

This page titled 25.2: Introducing Temperature is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-
Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

13.2: Introducing Temperature by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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25.3: Heat and the First Law

"Direct Exchange of Thermal Energy" and Early Theories of Heat
In the previous section I have considered the possibility of “direct exchange of thermal energy” between two objects. This is a
phenomenon with which we are all familiar: when a colder object is placed in contact with a warmer one, the warmer one cools off
and the colder one warms up. This “warmth” that seems to flow out of one object and into the other is conventionally called “heat.”

Naturally, this observation was made long before the concept of “energy” was even developed, and so heat was thought of, for a
time, as an “invisible fluid” (called, at one point, “caloric fluid”), a sort of indestructible “substance” that literally passed from one
body to another. By “indestructible” I mean that they had a notion of this caloric fluid being conserved: it was not created or
destroyed, only exchanged from one body to another. This makes sense, in a way: if it was really something material, how could it
be created or destroyed? Conservation of matter was pretty much accepted scientific “dogma” already by the end of the 18th
century.

This idea of conservation of the caloric fluid led to the whole field of “calorimetry,” as essentially a way to try to quantify (that is,
measure) the amount of “caloric” that materials would take in or give off. The connection with temperature led directly to the
definition of heat capacities and specific heats, just as I have introduced them above (in section 2.1); only instead of “change in
energy” you would use “change in caloric content.” This would be measured in units, called calories, defined by the amount of
caloric that led to a given temperature change in a reference substance, such as water.

To be precise, let 1 calorie be the amount of “caloric” needed to raise the temperature of one gram of water by one degree Celsius
at a pressure of one atmosphere. This makes the specific heat of water, by definition, 1 calorie/ C·gram. Now imagine you place a
hot object in a container of water, insulated from the rest of the world, and wait until thermal equilibrium is reached. Then you can
calculate the “amount of caloric that flowed into the water,” from the change in its temperature, and if you assume that all this came
from the hot object then you can calculate its heat capacity (in calories/ C) from the change in its temperature. By proceeding in
this fashion, scientists developed tables of specific heats that do not need any change today—only the recognition that “caloric” is
not really a fluid at all, but a form of energy, and can, therefore, be measured in energy units.

Clearly, conservation of caloric was a very good idea in its own way, since much of what was established back then still works if
you simply replace the word “caloric” or “heat” by “thermal energy.” It was, however, ultimately unsatisfactory precisely because
it restricted itself to what we would today recognize as just one kind of energy, and so it failed to recognize thermal energy as
something that could be converted into, or from, other kinds of energy

In hindsight, it is a bit surprising that the belief in the conservation of caloric could have held for so long. What today appear to us
like obvious instances of the transformation of (macroscopic) mechanical energy into thermal energy, such as the warmth generated
when you rub two objects together, were explained away as instances of mechanically “squeezing” caloric fluid out of the objects.
Around the turn of the 19th century, an American expatriate, Count Rumford, observed one of the most egregious instances of this
in the enormous amount of “heat” that was generated in the boring of cannons (which involved, basically, a huge metal tool drilling
a hole in a large metal cylinder). He noticed that the total mass of the metal, including all the shavings, did not appear to change in
the process, and concluded that caloric had to be virtually massless, since enormous quantities of it could be “squeezed” out
without an appreciable mass loss. He speculated that caloric was not a fluid at all, but rather “a form of motion,” since only
something like that could be made to increase without any apparent limit.

Rumford’s theory was not generally accepted at the time, but later in the 19th century the direct conversion of mechanical energy
into thermal energy was established beyond a doubt by James Prescott Joule in a series of painstaking experiments in which he
used a system of weights to turn some vanes, or paddles, that stirred water in a container and eventually caused its temperature to
rise. By measuring the mechanical energy deficit (gravitational plus kinetic) of his system of weights and paddles, he could tell
how much energy the water must have gained, and by measuring the water’s change in temperature he could then establish the
equivalent “amount of caloric” that had gone into it. He thus established what was called “the mechanical equivalent of heat,”
which we would express today by saying that a calorie does not measure the amount of some (nonexistent) caloric fluid, but simply
an amount of energy equal to 4.18 joules (and yes, the Joule is named after him!).

The First Law of Thermodynamics
The upshot of all this experimentation was the full development of the concept of energy as a conserved quantity that manifested
itself in different ways and could be “converted” among different kinds. To the observation, already familiar from macroscopic
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mechanics, that the energy of a system could be changed by doing work on it (or letting it do work on its environment) was added
the observation, coming from thermal physics, that thermal energy could also be directly exchanged between two objects merely by
placing them in contact, without any macroscopic work being involved. The two things taken together led to the principle of
conservation of energy in its most general (pre-relativistic) form:

which says simply that a change in the total energy of a system may result from work ( ) or from “heat exchange” ( ). “Heat,” in
physics usage today, is simply what we call the thermal energy that is directly transferred from one object to another, typically by
contact; the convention used for this term is the same as for the work term, that is,  is positive if thermal energy flows into the
system and negative if thermal energy leaves the system.

Equation ( ) is the first law of thermodynamics. Note that, in terms of , the precise definition of a system’s heat capacity is 
, and so this will only be equal to  when the system does no work, which is why I was careful to include that

condition in the derivation of Equation (13.2.2).

This page titled 25.3: Heat and the First Law is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio Gea-
Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

13.3: Heat and the First Law by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source: https://scholarworks.uark.edu/oer/3.
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25.4: The Second Law and Entropy
The second law of thermodynamics is really little more than a formal statement of the observation that heat always flows
spontaneously from a warmer to a colder object, and never in reverse.

More precisely, consider two systems, at different temperatures, that can exchange heat with each other but are otherwise isolated
from the rest of the world. The second law states that under those conditions the heat will only flow from the warmer to the colder
one.

The closure of the system—its isolation from any sources of energy—is important in the above statement. It is certainly possible to
build devices that will remove heat from a relatively cold place (like the inside of your house on a hot summer day) and exhaust it
to a warmer environment. These devices are called refrigerators or heat pumps, and the main thing about them is that they need to
be plugged in to operate: that is, they require an external energy source.

If you have an energy source, then, you can move heat from a colder to a warmer object. To avoid unnecessary complications and
loopholes (what if the energy source is a battery that is physically inside your “closed” system?) an alternative formulation of the
basic principle, due to Clausius, goes as follows:

No process is possible whose sole result is the transfer of heat from a cooler to a hotter body.

The words “sole result” are meant to imply that in order to accomplish this “unnatural” transfer of heat you must draw energy from
some source, and so you must be, in some way, depleting that source (the battery, for instance). On the other hand, for the reverse,
“spontaneous” process—the flow from hotter to cooler—no such energy source is necessary.

A mathematical way to formulate the second law would be as follows. Consider two systems, in thermal equilibrium at
temperatures  and , that you place in contact so they can exchange heat. For simplicity, assume that exchange of heat is all that
happens; no work is done either by the systems or on them, and no heat is transferred to or from the outside world either. Then, if 

 and  are the amounts of heat gained by each system, we must have, by the conservation of energy, , so one of
these is positive and the other one is negative, and, by the second law, the system with the positive  (the one that gains thermal
energy) must be the colder one. This is ensured by the following inequality:

So, if ,  must be positive, and if ,  must be negative. (The equal sign is there to allow for the case in which 
, in which case the two systems are initially in thermal equilibrium already, and no heat transfer takes place.)

Equation ( ) is valid regardless of the temperature scale. If we use the Kelvin scale, in which all the temperatures are
positive , we can rewrite it by dividing both sides by the product , and using , as

This more symmetric statement of the second law is a good starting point from which to introduce the concept of entropy, which I
will proceed to do next.

For a while in the 1970’s some people were very excited by the concept of negative absolute temperatures, but that is mostly an
artificial contrivance used to describe systems that are not really in thermal equilibrium anyway.

Entropy
In Equations ( ) and ( ), we have taken  and  to be the initial temperatures of the two systems, but in general, of
course, these temperatures will change during the heat transfer process. It is useful to consider an “infinitesimal” heat transfer, ,
so small that it leads to a negligible temperature change, and then define the change in the system’s entropy by

Here,  denotes a new system variable, the entropy, which is implicitly defined by Equation ( ). That is to say, suppose you
take a system from one initial state to another by adding or removing a series of infinitesimal amounts of heat. We take the change
in entropy over the whole process to be
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Starting from an arbitrary state, we could use this to find the entropy for any other state, at least up to a (probably) unimportant
constant (a little like what happens with the energy: the absolute value of the energy does not typically matter, it is only the energy
differences that are meaningful). This may be easier said than done, though; there is no a priori guarantee that any two arbitrary
states of a system could be connected by a process for which ( ) could be calculated, and conversely, it might also happen that
two states could be connected by several possible processes, and the integral in ( ) would have different values for all those.
In other words, there is no guarantee that the entropy thus defined will be a true state function—something that is uniquely
determined by the other variables that characterize a system’s state in thermal equilibrium.

Nevertheless, it turns out that it is possible to show that the integral ( ) is indeed independent of the “path” connecting the
initial and final states, at least as long as the physical processes considered are “reversible” (a constraint that basically amounts to
the requirement that heat be exchanged, and work done, only in small increments at a time, so that the system never departs too far
from a state of thermal equilibrium). I will not attempt the proof here, but merely note that this provides the following, alternative
formulation of the second law of thermodynamics:

For every system in thermal equilibrium, there is a state function, the entropy, with the property that it can never decrease for a
closed system.

You can see how this covers the case considered in the previous section, of two objects, 1 and 2, in thermal contact with each other
but isolated from the rest of the world. If object 1 absorbs some heat  while at temperature  its change in entropy will be 

, and similarly for object 2. The total change in the entropy of the closed system formed by the two objects will
then be

and the requirement that this cannot be negative (that is,  must not decrease) is just the same as Equation ( ), in
differential form.

Once again, this simply means that the hotter object gives off the heat and the colder one absorbs it, but when you look at it in
terms of entropy it is a bit more interesting than that. You can see that the entropy of the hotter object decreases (negative ), and
that of the colder one increases (positive ), but by a different amount: in fact, it increases so much that it makes the total change
in entropy for the system positive. This shows that entropy is rather different from energy (which is simply conserved in the
process). You can always make it increase just by letting a process “take its normal course”—in this case, just letting the heat flow
from the warmer to the colder object until they reach thermal equilibrium with each other (at which point, of course, the entropy
will stop increasing, since it is a function of the state and the state will no longer change).

Although not immediately obvious from the above, the absolute (or Kelvin) temperature scale plays an essential role in the
definition of the entropy, in the sense that only in such a scale (or another scale linearly proportional to it) is the entropy, as defined
by Equation ( ), a state variable; that is, only when using such a temperature scale is the integral ( ) path-independent.
The proof of this (which is much too complicated to even sketch here) relies essentially on the Carnot principle, to be discussed
next.

The Efficiency of Heat Engines
By the beginning of the 19th century, an industrial revolution was underway in England, due primarily to the improvements in the
efficiency of steam engines that had taken place a few decades earlier. It was natural to ask how much this efficiency could
ultimately be increased, and in 1824, a French engineer, Nicolas Sadi Carnot, wrote a monograph that provided an answer to this
question.

Carnot modeled a “heat engine” as an abstract machine that worked in a cycle. In the course of each cycle, the engine would take in
an amount of heat  from a “hot reservoir,” give off (or “exhaust”) an amount of heat | | to a “cold reservoir,” and produce an
amount of work | |. (I am using absolute value bars here because, from the point of view of the engine,  and  must be
negative quantities.) At the end of the cycle, the engine should be back to its initial state, so . The hot and cold
reservoirs were supposed to be systems with very large heat capacities, so that the change in their temperatures as they took in or
gave off the heat from or to the engine would be negligible.
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If , we must have

that is, the work produced by the engine must be

The energy input to the engine is , so it is natural to define the efficiency as ; that is to say, the Joules of work done
per Joule of heat taken in. A value of  would mean an efficiency of 100%, that is, the complete conversion of thermal energy
into macroscopic work. By Equation ( ), we have

which shows that  will always be less than 1 as long as the heat exhausted to the cold reservoir, , is nonzero. This is always
necessarily the case for steam engines: the steam needs to be cooled off at the end of the cycle, so a new cycle can start again.

Carnot considered a hypothetical “reversible” engine (sometimes called a Carnot machine), which could be run backwards, while
interacting with the same two reservoirs. In backwards mode, the machine would work as a refrigerator or heat pump. It would take
in an amount of work  per cycle (from some external source) and use that to absorb the amount of heat | | from the cold
reservoir and dump the amount  to the hot reservoir. Carnot argued that no heat engine could have a greater efficiency than a
reversible one working between the same heat reservoirs, and, consequently, that all reversible engines, regardless of their
composition, would have the same efficiency when working in between the same temperatures. His argument was based on the
observation that a hypothetical engine with a greater efficiency than the reversible one could be used to drive a reversible one in
refrigerator mode, to produce as the sole result the transfer of some net amount of heat from the cold to the hot reservoir ,
something that we argued in Section 1 should be impossible.

What makes this result more than a theoretical curiosity is the fact that an ideal gas would, in fact, provide a suitable working
substance for a Carnot machine, if put through the following cycle (the so-called “Carnot cycle”): an isothermal expansion,
followed by an adiabatic expansion, then an isothermal compression, and finally an adiabatic compression. What makes this ideally
reversible is the fact that the heat is exchanged with each reservoir only when the gas is at (nearly) the same temperature as the
reservoir itself, so by just “nudging” the temperature up or down a little bit you can get the exchange to go either way. When the
ideal gas laws are used to calculate the efficiency of such a machine, the result (the Carnot efficiency) is

where the temperatures must be measured in degrees Kelvin, the natural temperature scale for an ideal gas.

It is actually easy to see the connection between this result and the entropic formulation of the second law presented above.
Suppose for a moment that Carnot’s principle does not hold, that is to say, that we can build an engine with .
Since ( ) must hold in any case (because of conservation of energy), we find that this would imply

and then some very simple algebra shows that

But now consider the total entropy of the system formed by the engine and the two reservoirs. The engine’s entropy does not
change (because it works in a cycle); the entropy of the hot reservoir goes down by an amount ; and the entropy of the
cold reservoir goes up by an amount . So the left-hand side of Equation ( ) actually equals the total change in
entropy, and Equation ( ) is telling us that this change is negative (the total entropy goes down) during the operation of this
hypothetical heat engine whose efficiency is greater than the Carnot limit ( ). Since this is impossible (the total entropy of a
closed system can never decrease), we conclude that the Carnot limit must always hold.

As you can see, the seemingly trivial observation with which I started this section (namely, that heat always flows spontaneously
from a hotter object to a colder object, and never in reverse) turns out to have profound consequences. In particular, it means that
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the complete conversion of thermal energy into macroscopic work is essentially impossible , which is why we treat mechanical
energy as “lost” once it is converted to thermal energy. By Carnot’s theorem, to convert some of that thermal energy back to work
we would need to introduce a colder reservoir (and take advantage, so to speak, of the natural flow of heat from hotter to colder),
and then we would only get a relatively small conversion efficiency, unless the cold reservoir is really at a very low Kelvin
temperature (and to create such a cold reservoir would typically require refrigeration, which again consumes energy). It is easy to
see that Carnot efficiencies for reservoirs close to room temperature are rather pitiful. For instance, if  = 300 K and  = 273 K,
the best conversion efficiency you could get would be 0.09, or 9%.

The greater efficiency engine could produce the same amount of work as the reversible one while absorbing less heat from the hot
reservoir and dumping less heat to the cold one. If all the work output of this engine were used to drive the reversible one in
refrigerator mode, the result would be, therefore, a net flow of heat out of the cold one and a net flow of heat into the hot one.

At least it is impossible to do using a device that runs in a cycle. For a one-use-only, you might do something like pump heat into a
gas and allow it to expand, doing work as it does so, but eventually you will run out of room to do your expanding into...

But What IS Entropy, Anyway?
The existence of this quantity, the entropy, which can be measured or computed (up to an arbitrary reference constant) for any
system in thermal equilibrium, is one of the great discoveries of 19th century physics. There are tables of entropies that can be put
to many uses (for instance, in chemistry, to figure out which reactions will happen spontaneously and which ones will not), and one
could certainly take the point of view that those tables, plus the basic insight that the total entropy can never decrease for a closed
system, are all one needs to know about it. From this perspective, entropy is just a convenient number that we can assign to any
equilibrium state of any system, which gives us some idea of which way it is likely to go if the equilibrium is perturbed.

Nonetheless, it is natural for a physicist to ask to what, exactly, does this number correspond? What property of the equilibrium
state is actually captured by this quantity? Especially, in the context of a microscopic description, since that is, by and large, how
physicists have always been trying to explain things, by breaking them up into little pieces, and figuring out what the pieces were
doing. What are the molecules or atoms of a system doing in a state of high entropy that is different from a state of low entropy?

The answer to this question is provided by the branch of physics known as Statistical Mechanics, which today is mostly quantum-
based (since you need quantum mechanics to describe most of what atoms or molecules do, anyway), but which started in the
context of pure classical mechanics in the mid-to-late 1800’s and, despite this handicap, was actually able to make surprising
headway for a while.

From this microscopic, but still classical, perspective (which applies, for instance, moderately well to an ideal gas), the entropy can
be seen as a measure of the spread in the velocities and positions of the molecules that make up the system. If you think of a
probability distribution, it has a mean value and a standard deviation. In statistical mechanics, the molecules making up the system
are described statistically, by giving the probability that they might have a certain velocity or be at some point or another. These
probability distributions may be very narrow (small standard deviation), if you are pretty certain of the positions or the velocities,
or very broad, if you are not very certain at all, or rather expect the actual velocities and positions to be spread over a considerable
range of values. A state of large entropy corresponds to a broad distribution, and a state of small entropy to a narrow one.

For an ideal gas, the temperature determines both the average molecular speed and the spread of the velocity distribution. This is
because the average velocity is zero (since it is just as likely to be positive or negative), so the only way to make the average speed
(or root-mean-square speed) large is to have a broad velocity distribution, which makes large speeds comparatively more likely.
Then, as the temperature increases, so does the range of velocities available to the molecules, and correspondingly the entropy.
Similarly (but more simply), for a given temperature, a gas that occupies a smaller volume will have a smaller entropy, since the
range of positions available to the molecules will be smaller.

These considerations may help us understand an important property of entropy, which is that it increases in all irreversible
processes. To begin with, note that this makes sense, since, by definition, these are processes that do not “reverse” spontaneously. If
a process involves an increase in the total entropy of a closed system, then the reverse process will not happen, because it would
require a spontaneous decrease in entropy, which the second law forbids. But, moreover, we can see the increase in entropy directly
in many of the irreversible processes we have considered this semester, such as the ones involving friction. As I just pointed out
above, in general, we may expect that increasing the temperature of an object will increase its entropy (other things being equal),
regardless of how the increase in temperature comes about. Now, when mechanical energy is lost due to friction, the temperature of
both of the objects (surfaces) involved increases, so the total entropy will increase as well. That marks the process as irreversible.
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Another example of an irreversible process might be the mixing of two gases (or of two liquids, like cream and coffee). Start with
all the “brown” molecules to the left of a partition, and all the “white” molecules to the right. After you remove the partition, the
system will reach an equilibrium state in which the range of positions available to both the brown and white molecules has
increased substantially—and this is, according to our microscopic picture, a state of higher entropy (other things, such as the
average molecular speeds, being equal ).

For quantum mechanical systems, where the position and velocity are not simultaneously well defined variables, one uses the more
abstract concept of “state” to describe what each molecule is doing. The entropy of a system in thermal equilibrium is then defined
as a measure of the total number of states available to its microscopic components, compatible with the constraints that determine
the macroscopic state (such as, again, total energy, number of particles, and volume).

In the case of cream and coffee, the average molecular speeds will not be equal—the cream will be cold and the coffee hot—but
the resulting exchange of heat is just the kind of process I described at the beginning of the chapter, and we have seen that it, too,
results in an increase in the total entropy.

This page titled 25.4: The Second Law and Entropy is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Julio
Gea-Banacloche (University of Arkansas Libraries) via source content that was edited to the style and standards of the LibreTexts platform.

13.4: The Second Law and Entropy by Julio Gea-Banacloche is licensed CC BY-SA 4.0. Original source:
https://scholarworks.uark.edu/oer/3.
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25.5: In Summary
1. Temperature is a statistical quantity that provides a (typically indirect) measure of the concentration of thermal energy in a

system. For a system that is (approximately) well described by classical mechanics, the temperature, as measured by a
conventional thermometer, is directly proportional to the average translational kinetic energy per molecule.

2. In a process in which a system does no work, a change in the system’s temperature is related to a change in its total internal
energy (which typically includes more than just translational kinetic energy contributions) by , where  is the
system’s heat capacity for the process.

3. The transfer of thermal energy between two systems without either one doing macroscopic work on each other is generally
possible. Thermal energy transferred in this way is called heat, and denoted by the symbol .

4. The actual definition of a system’s heat capacity is . For a homogeneous system (made of just one substance), 
, where  is the system’s mass and  the substance’s specific heat. Specific heats typically depend on temperature in

nontrivial ways.
5. Two systems isolated from the rest of the world but allowed to exchange thermal energy with each other will eventually reach a

state of thermal equilibrium in which their temperatures will be the same (zero-th law of thermodynamics).
6. The work done on (or by) a system by (or on) its environment, plus the heat given to (or taken from) the system by its

environment, always equals the net change in the system’s total energy (conservation of energy, or first law of thermodynamics;
Equation (13.3.1)).

7. For any system in thermal equilibrium, there exists a state variable, called entropy, with the property that it can never decrease
for a closed system. When a system at temperature  takes in a small amount of heat , its change in entropy is given by 

.
8. This principle of never-decreasing entropy is equivalent to the statement that “No process is possible whose sole result is the

transfer of heat from a cooler to a hotter body.”
9. The principle 7. is also equivalent to Carnot’s theorem, which states that “it is impossible for an engine that operates in a cycle,

taking in heat from a hot reservoir at temperature  and exhausting heat to a cold reservoir at temperature , to do work with
an efficiency greater than .”

10. Either one of 7., 8., or 9., above, may be regarded as an equivalent statement of the second law of thermodynamics.
11. Carnot’s theorem shows the limitations inherent in the conversion of thermal energy into macroscopic work, which is the reason

why one usually regards mechanical energy that is converted into thermal energy as “lost.”
12. Microscopically, the entropy of a system is a measure of the range of distinct states available to its microscopic components

(atoms or molecules) that are compatible with the set of macroscopic constraints that determine its thermal equilibrium state.
More entropy means a greater range of possible “microstates.”

13. Entropy always increases in irreversible processes.
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25.6: Examples

The specific heat of aluminum is 900 J/kg·K, and that of water is 4186 J·K. Suppose you drop a block of aluminum of mass 1
kg at a temperature of 80 C in a liter of water (which also has a mass of 1 kg) at a temperature of 20 C. What is the final
temperature of the system, assuming no exchange of heat with the environment takes place? How much energy does the
aluminum lose/the water gain?

Solution

Let us call  the initial temperature of the aluminum,  the initial temperature of the water, and  their final common
temperature. The thermal energy given off by the aluminum equals  (this follows from the definition
(13.2.1) of heat capacity; we could equally well call this quantity “the heat given off by the aluminum”). In the same way, the
thermal energy change of the water (heat absorbed by the water) equals . If the total system is
closed, the sum of these two quantities, each with its appropriate sign, must be zero:

This equation for  has the solution

As you can see, the result is a weighted average of the two starting temperatures, with the corresponding heat capacities as the
weighting factors.

The heat capacities  are equal to the given specific heats multiplied by the respective masses. In this case, the mass of
aluminum and the mass of the water are the same, so they will cancel in the final result. Also, we can use the temperatures in
degrees Celsius, instead of Kelvin. This is not immediately obvious from the final expression ( ), but if you look at (

) you’ll see it involves only temperature differences, and those have the same value in the Kelvin and Celsius scales.

Substituting the given values in ( ), then, we get

This is much closer to the initial temperature of the water, as expected, since it has the greater heat capacity. The amount of
heat exchanged is

So, 1 kg of aluminum gives off 44.4 kJ of thermal energy and its temperature drops almost 50 C, from 80 C to 30.6 C,
whereas 1 kg of water takes in the same amount of thermal energy and its temperature only rises about 10.6 C.

Estimate the speed of an oxygen molecule in air at room temperature (about 300 K).

Solution

Recall that in Section 13.2 I mentioned that the average translational kinetic energy of a molecule in a system at a temperature 
 is  (Equation (13.2.7), where , Boltzmann’s constant, is equal to 1.38 × 10  J/K. So, at  = 300 K, a molecule of

oxygen (or of anything else, for that matter) should have, on average, a kinetic energy of

Since , we can figure out the average value of  if we know the mass of an oxygen molecule. This is something
you can look up, or derive like this: One mole of oxygen atoms has a mass of 16 grams (16 is the atomic mass number of
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oxygen) and contains Avogadro’s number of atoms, 6.02 × 10 . So a single atom has a mass of 0.016 kg/6.02 × 10  = 2.66 ×
10  kg. A molecule of oxygen contains two atoms, so it has twice the mass,  = 5.32 × 10  kg. Then,

The square root of this will give us what is called the “root mean square” velocity, or :

This is of the same order of magnitude as (but larger than) the speed of sound in air at room temperature (about 340 m/s, as you
may recall from Chapter 12).
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25.7: Exercises

Consider a system of two objects in contact, one initially hotter than the other, so they may directly exchange thermal energy,
in isolation from the rest of the world. According to the laws of thermodynamics, what must happen to the system’s total
energy and entropy? (Do they change, increase, decrease, stay constant...?)

Consider the same two objects in Problem 1 and suppose the heat capacity of the colder object is much greater than the heat
capacity of the hotter one. When the system reaches thermal equilibrium, will its final temperature will be closer to the initial
temperature of the hot object, the colder object, or exactly halfway between the two initial temperatures? Why?

Which of the following is not a valid formulation of the second law of thermodynamics?

a. For any system in thermal equilibrium, there exists a state variable, called entropy, with the property that it can never
decrease for a closed system.

b. No process is possible whose sole result is the transfer of heat from a cooler to a hotter body.
c. It is impossible for an engine that operates in a cycle, taking in heat from a hot reservoir at temperature  and exhausting

heat to a cold reservoir at temperature , to do work with an efficiency greater than .
d. The entropy of any system goes to zero as  (the absolute, or Kelvin) temperature goes to zero.

Which of the following statements is true?

a. Once the entropy of a system increases, it is impossible to bring it back down.
b. Once some amount of mechanical energy is converted to thermal energy, it is impossible to turn any of it back into

mechanical energy.
c. It is always possible to reduce the entropy of a system, for instance, by cooling it.
d. All of the above statements are true.
e. None of the above statements are true.

Other Questions

Can you tell the temperature of a gas by measuring the translational kinetic energy of a single molecule?
Does a shuffled deck of cards have more or less entropy (in the thermodynamic sense) than an identical, ordered set of cards?
Assume they are at the same temperature.
A diatomic gas molecule, such as , can store kinetic energy in the form of vibrations and rotations, in addition to just
translation of the center of mass. By contrast, a monoatomic gas molecule such as  has virtually no kinetic energy (at normal
temperatures) other than translational kinetic energy. Which kind of gas do you expect to have a larger molar heat capacity (heat
capacity per molecule)?
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