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20.1: Motion on a Circle (Or Part of a Circle)

The last example of motion in two dimensions that I will consider in this chapter is motion on a circle. There are many examples of
circular (or near-circular) motion in nature, particularly in astronomy (as we shall see in a later chapter, the orbits of most planets
and many satellites are very nearly circular). There are also many devices that we use all the time that involve rotating or spinning
objects (wheels, gears, turntables, turbines...). All of these can be mathematically described as collections of particles moving in
circles.

In this section, I will first introduce the concept of centripetal force, which is the force needed to bend an object’s trajectory into a
circle (or an arc of a circle), and then I will also introduce a number of quantities that are useful for the description of circular
motion in general, such as angular velocity and angular acceleration. The dynamics of rotational motion (questions having to do
with rotational energy, and a new important quantity, angular momentum) will be the subject of Chapter 23.

Centripetal Acceleration and Centripetal Force

As you know by now, the law of inertia states that, in the absence of external forces, an object will move with constant speed on a
straight line. A circle is not a straight line, so an object will not naturally follow a circular path unless there is a force acting on it.

Another way to see this is to go back to the definition of acceleration. If an object has a velocity vector ¥(¢) at the time ¢, and a
different velocity vector t(¢ + At) at the later time ¢ + At, then its average acceleration over the time interval At is the quantity
Vaw = (U(t + At) —v(t))/At . This is nonzero even if the speed does not change (that is, even if the two velocity vectors have the
same magnitude), as long as they have different directions, as you can see from Figure 20.1.1below. Thus, motion on a circle (or
an arc of a circle), even at constant speed, is accelerated motion, and, by Newton’s second law, accelerated motion requires a force
to make it happen.

Figure 20.1.1: A particle moving along an arc of a circle of radius R. The positions and velocities at the times ¢ and ¢+ At are
shown. The diagram on the right shows the velocity difference, Av = v(t + At) — () .
We can find out how large this acceleration, and the associated force, have to be, by applying a little geometry and trigonometry to
the situation depicted in Figure 20.1.1 Here a particle is moving along an arc of a circle of radius R, so that at the time ¢ it is at
point P and at the later time ¢ 4+ At it is at point Q. The length of the arc between P and Q (the distance it has traveled) is s = R@,
where the angle 6 is understood to be in radians. I have assumed the speed to be constant, so the magnitude of the velocity vector,
v, is just equal to the ratio of the distance traveled (along the circle), to the time elapsed: v=s/A¢. Combining these two
expressions, we have a relationship for the angle in the figure:
g— S 2ot
R R
Now, consider the second picture in the figure above. It shows the change of the velocity vector from o(t) to v(t + At), and it
should be pretty easy to convince yourself that the angle 6 between these two vectors is the same as in the left figure. Now, unlike
the "definition of the angle” § = s/r relationship we used above, this is a real triangle (Av is a straight line), but we can say
approximately the same thing is true,

(20.1.1)

https://phys.libretexts.org/@go/page/63273



https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63273?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/20%3A_N7)_Circular_Motion/20.01%3A_Motion_on_a_Circle_(Or_Part_of_a_Circle)

LibreTextsw

A
h=—o. (20.1.2)
v(t)
Since these two are relationships for the angle (which should be the same), we can set them equal to each other:
At A A 2
e LN L (20.1.3)
R v(t) At R
In the last step we have solved for the change in velocity over the change in time, which is simply the acceleration,
2
v
ac = —. 20.1.4
= (20.1.4)

This acceleration is called the centripetal acceleration, which is why I have denoted it by the symbol a.. The reason for that name
is that it is always pointing towards the center of the circle. You can kind of see this from Figure 20.1.1: if you take the vector A%
shown there, and move it (without changing its direction, so it stays ‘parallel to itself”) to the midpoint of the arc, halfway between
points P and Q, you will see that it does point almost straight to the center of the circle. (A more mathematically rigorous proof of
this fact, using calculus, will be presented later in this section.)

The force F'. needed to provide this acceleration is called the centripetal force, and by Newton’s second law it has to satisfy
F. =md,. Thus, the centripetal force has magnitude

mv2

FC =ma, = T (2015)

and, like the acceleration d., is always directed towards the center of the circle.

Physically, the centripetal force F, as given by Equation (20.1.5), is what it takes to bend the trajectory so as to keep it precisely
on an arc of a circle of radius R and with constant speed v. Note that, since ﬁc is always perpendicular to the displacement (which,
over any short time interval, is essentially tangent to the circle), it does no work on the object, and therefore (by Equation (10.2.7))
its kinetic energy does not change, so v does indeed stay constant when the centripetal force equals the net force. Note also that
“centripetal” is just a job description: it is not a new type of force. In any given situation, the role of the centripetal force will be
played by one of the forces we are already familiar with, such as the tension on a rope (or an appropriate component thereof) when
you are swinging an object in a horizontal circle, or gravity in the case of the moon or any other satellite.

At this point, if you have never heard about the centripetal force before, you may be feeling a little confused, since you almost
certainly have heard, instead, about a so-called centrifugal force that tends to push spinning things away from the center of rotation.
In fact, however, this “centrifugal force” does not really exist: the “force” that you may feel pushing you towards the outside of a
curve when you ride in a vehicle that makes a sharp turn is really nothing but your own inertia—your body “wants” to keep moving
on a straight line, but the car, by bending its trajectory, is preventing it from doing so. The impression that you get that you would
fly radially out, as opposed to along a tangent, is also entirely due to the fact that the reference frame you are in (the car) is
continuously changing its direction of motion. Example 20.2.3 illustrates this in some detail.

On the other hand, getting a car to safely negotiate a turn is actually an important example of a situation that requires a definite
centripetal force. On a flat surface (see the next section for a treatment of a banked curve!), you rely entirely on the force of static
friction to keep you on the track, which can typically be modeled as an arc of a circle with some radius R. So, if you are traveling
at a speed v, you need F'* = mwv? / R. Recalling that the force of static friction cannot exceed p, F™, and that on a flat surface you
would just have F™* = F'9 = myg, you see you need to keep mv?> /R smaller than ,mg; or, canceling the mass,

V2

— < 159 20.1.6
7 < Hsd ( )

This is the condition that has to hold in order to be able to make the turn safely. The maximum speed is then vpax = +/psgR,
which, as you can see, will depend on the state of the road (for instance, if the road is wet the coefficient ps will be smaller). The
posted, recommended speed will typically take this into consideration and will be as low as it has to be to keep you safe. Notice
that the left-hand side of Equation (20.1.6) increases as the square of the speed, so doubling your speed makes that term four times
larger! Do not even think of taking a turn at 60 mph if the recommended speed is 30, and do not exceed the recommended speed at
all if the road is wet or your tires are worn.
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Kinematic Angular Variables

Consider a particle moving on a circle, as in Figure 20.1.2below. Of course, we can just use the regular, cartesian coordinates, x
and y, to describe its motion. But, in a way, this is carrying around more information than we typically need, and it is also not very
transparent: a value of  and y does not immediately tell us how far the object has traveled along the circle itself.

Instead, the most convenient way to describe the motion of the particle, if we know the radius of the circle, is to give the angle 6
that the position vector makes with some reference axis at any given time, as shown in Figure 20.1.2 If we choose the z axis as the
reference, then the conversion from a description based on the radius R and the angle € to a description in terms of  and y is
simply

z = Rcosf
y = Rsinf (20.1.7)

so knowing the function 6(t) we can immediately get x(¢) and y(t), if we need them. (Note: in this section we are using an
uppercase R for the magnitude of the position vector, to emphasize that it is a constant, equal to the radius of the circle.)

i
Y

Y

Figure 20.1.2 A particle moving on a circle. The position vector has length R, so the = and y coordinates are R cosf and Rsin#f,
respectively. The conventional positive direction of motion is indicated. The velocity vector is always, as usual, tangent to the
trajectory.

Although the angle @ itself is not a vector quantity, nor a component of a vector, it is convenient to allow for the possibility that it
might be negative. The standard convention is that 6 grows in the counterclockwise direction from the reference axis, and
decreases in the clockwise direction. Of course, you can always get to any angle by coming from either direction, so the angle by
itself does not tell you how the particle got there. Information on the direction of motion at any given time is best captured by the
concept of the angular velocity, which we represent by the symbol w and define in a manner analogous to the way we defined the
ordinary velocity: if A8 = 0(t + At) —6(t) is the angular displacement over a time At, then

. A6 do
w= lim =

Am === (20.1.8)

The standard convention is also to use radians as an angle measure in this context, so that the units of w will be radians per second,
or rad/s. Note that the radian is a dimensionless unit, so it “disappears” from a calculation when the final result does not call for it
(as in Equation (20.1.12) below).

For motion with constant angular velocity, we clearly will have
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where w is positive for counterclockwise motion, and negative for clockwise. (Recall that the direction of the vector w can be
specified with the right hand rule, from section 7.1)

0t)=0;+w(t—t) or AO=wAt (constantw) (20.1.9)

When w changes with time, we can introduce an angular acceleration o, defined, again, in the obvious way:

= lim — = —. 20.1.1
a=lm T @ (20.1.10)

Then for motion with constant angular acceleration we have the formulas

wit)=w;+a(t—t;) or Aw=aAt (constanta)

0(t) =0; +w; (t—t;)+ %a (t—t;)® or Af=w;At+ %a(At)2 (constant ). (20.1.11)
Equation (20.1.11) completely parallel the corresponding equations for motion in one dimension that we saw in Chapter 1. In fact,
of course, a circle is just a line that has been bent in a uniform way, so the distance traveled along the circle itself is simply

proportional to the angle swept by the position vector 7. As already pointed out in connection with Figure 20.1.1, if we expressed 6
in radians then the length of the arc corresponding to an angular displacement A would be

s = R| A0 (20.1.12)
so multiplying Egs. (20.1.9) or (20.1.11) by R directly gives the distance traveled along the circle in each case.

)
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Figure 20.1.3: A small angular displacement. The distance traveled along the circle, s = RA#, is almost identical to the straight-

line distance |A7| between the initial and final positions; the two quantities become the same in the limit At — 0.
Figure 20.1.3 shows that, for very small angular displacements, it does not matter whether the distance traveled is measured along
the circle itself or on a straight line; that is, s ~ | A7|. Dividing by At, using Equation (20.1.12) and taking the A¢ — 0 limit we
get the following useful relationship between the angular velocity and the instantaneous speed v (defined in the ordinary way as the
distance traveled per unit time, or the magnitude of the velocity vector):

4] = R|w|. (20.1.13)

As we shall see later, the product Re is also a useful quantity. It is not, however, equal to the magnitude of the acceleration vector,
but only one of its two components, the tangential acceleration:

a; = Ra. (20.1.14)

The sign convention here is that a positive a; represents a vector that is tangent to the circle and points in the direction of
increasing @ (that is, counterclockwise); the full acceleration vector is equal to the sum of this vector and the centripetal
acceleration vector, introduced in the previous subsection, which always points towards the center of the circle and has magnitude

’U2

=5 = Rw? (20.1.15)

(making use of Egs. (20.1.6) and (20.1.13). These results will be formally established Chapter 22, after we introduce the vector
product, although you could also verify them right now—if you are familiar enough with derivatives at this point—by using the
chain rule to take the derivatives with respect to time of the components of the position vector, as given in Equation (20.1.7) (with
0 =6(t) , an arbitrary function of time).
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The main thing to remember about the radial and tangential components of the acceleration is that the radial component (the
centripetal acceleration) is always there for circular motion, whether the angular velocity is constant or not, whereas the tangential
acceleration is only nonzero if the angular velocity is changing, that is to say, if the particle is slowing down or speeding up as it
turns.

This page titled 20.1: Motion on a Circle (Or Part of a Circle) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
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LibreTexts platform.
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