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17.1: Solving Problems with Newton's Laws (Part 1)
Success in problem solving is necessary to understand and apply physical principles. We developed a pattern of analyzing and
setting up the solutions to problems involving Newton’s laws in Newton’s Laws of Motion; in this chapter, we continue to discuss
these strategies and apply a step-by-step process.

Problem-Solving Strategies
We follow here the basics of problem solving presented earlier in this text, but we emphasize specific strategies that are useful in
applying Newton’s laws of motion. Once you identify the physical principles involved in the problem and determine that they
include Newton’s laws of motion, you can apply these steps to find a solution. These techniques also reinforce concepts that are
useful in many other areas of physics. Many problem-solving strategies are stated outright in the worked examples, so the
following techniques should reinforce skills you have already begun to develop.

1. Identify the physical principles involved by listing the givens and the quantities to be calculated.
2. Sketch the situation, using arrows to represent all forces.
3. Determine the system of interest, and draw a free body diagram.
4. Apply Newton’s second law to solve the problem. If necessary, apply appropriate kinematic equations from the chapter on

motion along a straight line.
5. Check the solution to see whether it is reasonable.

Let’s apply this problem-solving strategy to the challenge of lifting a grand piano into a second-story apartment. Once we have
determined that Newton’s laws of motion are involved (if the problem involves forces), it is particularly important to draw a careful
sketch of the situation. Such a sketch is shown in Figure . Then, as in Figure , we can represent all forces with
arrows. Whenever sufficient information exists, it is best to label these arrows carefully and make the length and direction of each
correspond to the represented force.

Figure : (a) A grand piano is being lifted to a second-story apartment. (b) Arrows are used to represent all forces: 
is the tension in the rope above the piano,  is the force that the piano exerts on the rope, and  is the weight of the piano.
All other forces, such as the nudge of a breeze, are assumed to be negligible. (c) Suppose we are given the piano’s mass and
asked to find the tension in the rope. We then define the system of interest as shown and draw a free-body diagram. Now 

 is no longer shown, because it is not a force acting on the system of interest; rather,  acts on the outside world. (d)
Showing only the arrows, the head-to-tail method of addition is used. It is apparent that if the piano is stationary,  = .

As with most problems, we next need to identify what needs to be determined and what is known or can be inferred from the
problem as stated, that is, make a list of knowns and unknowns. It is particularly crucial to identify the system of interest, since
Newton’s second law involves only external forces. We can then determine which forces are external and which are internal, a
necessary step to employ Newton’s second law. (See Figure .) Newton’s third law may be used to identify whether forces
are exerted between components of a system (internal) or between the system and something outside (external). As illustrated in
Newton’s Laws of Motion, the system of interest depends on the question we need to answer. Only forces are shown in free-body
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diagrams, not acceleration or velocity. We have drawn several free-body diagrams in previous worked examples. Figure 
shows a free-body diagram for the system of interest. Note that no internal forces are shown in a free-body diagram.

Once a free-body diagram is drawn, we apply Newton’s second law. This is done in Figure  for a particular situation. In
general, once external forces are clearly identified in free-body diagrams, it should be a straightforward task to put them into
equation form and solve for the unknown, as done in all previous examples. If the problem is one-dimensional—that is, if all forces
are parallel—then the forces can be handled algebraically. If the problem is two-dimensional, then it must be broken down into a
pair of one-dimensional problems. We do this by projecting the force vectors onto a set of axes chosen for convenience. As seen in
previous examples, the choice of axes can simplify the problem. For example, when an incline is involved, a set of axes with one
axis parallel to the incline and one perpendicular to it is most convenient. It is almost always convenient to make one axis parallel
to the direction of motion, if this is known. Generally, just write Newton’s second law in components along the different directions.
Then, you have the following equations:

(If, for example, the system is accelerating horizontally, then you can then set ay = 0.) We need this information to determine
unknown forces acting on a system.

As always, we must check the solution. In some cases, it is easy to tell whether the solution is reasonable. For example, it is
reasonable to find that friction causes an object to slide down an incline more slowly than when no friction exists. In practice,
intuition develops gradually through problem solving; with experience, it becomes progressively easier to judge whether an answer
is reasonable. Another way to check a solution is to check the units. If we are solving for force and end up with units of millimeters
per second, then we have made a mistake.

There are many interesting applications of Newton’s laws of motion, a few more of which are presented in this section. These serve
also to illustrate some further subtleties of physics and to help build problem-solving skills. We look first at problems involving
particle equilibrium, which make use of Newton’s first law, and then consider particle acceleration, which involves Newton’s
second law.

Particle Equilibrium
Recall that a particle in equilibrium is one for which the external forces are balanced. Static equilibrium involves objects at rest,
and dynamic equilibrium involves objects in motion without acceleration, but it is important to remember that these conditions are
relative. For example, an object may be at rest when viewed from our frame of reference, but the same object would appear to be in
motion when viewed by someone moving at a constant velocity. We now make use of the knowledge attained in Newton’s Laws of
Motion, regarding the different types of forces and the use of free-body diagrams, to solve additional problems in particle
equilibrium.

Consider the traffic light (mass of 15.0 kg) suspended from two wires as shown in Figure . Find the tension in each wire,
neglecting the masses of the wires.

17.1.1c
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 Example : Different Tensions at Different Angles17.1.1
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Figure : A traffic light is suspended from two wires. (b) Some of the forces involved. (c) Only forces acting on
the system are shown here. The free-body diagram for the traffic light is also shown. (d) The forces projected onto

vertical (y) and horizontal (x) axes. The horizontal components of the tensions must cancel, and the sum of the vertical
components of the tensions must equal the weight of the traffic light. (e) The free-body diagram shows the vertical and

horizontal forces acting on the traffic light.

Strategy

The system of interest is the traffic light, and its free-body diagram is shown in Figure . The three forces involved are
not parallel, and so they must be projected onto a coordinate system. The most convenient coordinate system has one axis
vertical and one horizontal, and the vector projections on it are shown in Figure . There are two unknowns in this
problem (T  and T ), so two equations are needed to find them. These two equations come from applying Newton’s second law
along the vertical and horizontal axes, noting that the net external force is zero along each axis because acceleration is zero.

Solution
First consider the horizontal or x-axis:

Thus, as you might expect,

This give us the following relationship:

Thus,

Note that T  and T  are not equal in this case because the angles on either side are not equal. It is reasonable that T  ends up
being greater than T  because it is exerted more vertically than T .

Now consider the force components along the vertical or y-axis:

This implies

Substituting the expressions for the vertical components gives
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There are two unknowns in this equation, but substituting the expression for T  in terms of T  reduces this to one equation with
one unknown:

which yields

Solving this last equation gives the magnitude of T  to be

Finally, we find the magnitude of T  by using the relationship between them, T  = 1.225 T , found above. Thus we obtain

Significance

Both tensions would be larger if both wires were more horizontal, and they will be equal if and only if the angles on either side
are the same (as they were in the earlier example of a tightrope walker in Newton’s Laws of Motion.)

Two tugboats push on a barge at different angles (Figure ). The first tugboat exerts a force of 2.7 x 10 N in the x-
direction, and the second tugboat exerts a force of 3.6 x 10  N in the y-direction. The mass of the barge is 5.0 × 10  kg and its
acceleration is observed to be 7.5 x 10  m/s  in the direction shown. What is the drag force of the water on the barge resisting
the motion? (Note: Drag force is a frictional force exerted by fluids, such as air or water. The drag force opposes the motion of
the object. Since the barge is flat bottomed, we can assume that the drag force is in the direction opposite of motion of the
barge.)

Figure : (a) A view from above of two tugboats pushing on a barge. (b) The free-body diagram for the ship
contains only forces acting in the plane of the water. It omits the two vertical forces—the weight of the barge and the

buoyant force of the water supporting it cancel and are not shown. Note that  is the total applied force of the
tugboats.

Strategy

The directions and magnitudes of acceleration and the applied forces are given in Figure . We define the total force of
the tugboats on the barge as  so that

The drag of the water  is in the direction opposite to the direction of motion of the boat; this force thus works against ,
as shown in the free-body diagram in Figure . The system of interest here is the barge, since the forces on it are given as
well as its acceleration. Because the applied forces are perpendicular, the x- and y-axes are in the same direction as  and .
The problem quickly becomes a one-dimensional problem along the direction of , since friction is in the direction opposite
to . Our strategy is to find the magnitude and direction of the net applied force  and then apply Newton’s second law
to solve for the drag force .

2 1

(0.500) +(1.225 )(0.707) = w = mg,T1 T1 (17.1.9)

1.366 = (15.0 kg)(9.80 m/ ).T1 s2 (17.1.10)

1

= 108 N .T1 (17.1.11)

2 2 1

= 132 N .T2 (17.1.12)
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Solution
Since F  and F  are perpendicular, we can find the magnitude and direction of  directly. First, the resultant magnitude is
given by the Pythagorean theorem:

The angle is given by

From Newton’s first law, we know this is the same direction as the acceleration. We also know that  is in the opposite
direction of , since it acts to slow down the acceleration. Therefore, the net external force is in the same direction as ,
but its magnitude is slightly less than . The problem is now one-dimensional. From the free-body diagram, we can see that

However, Newton's second law states that

Thus,

This can be solved for the magnitude of the drag force of the water F  in terms of known quantities:

Substituting known values gives

The direction of  has already been determined to be in the direction opposite to , or at an angle of 53° south of west.

Significance

The numbers used in this example are reasonable for a moderately large barge. It is certainly difficult to obtain larger
accelerations with tugboats, and small speeds are desirable to avoid running the barge into the docks. Drag is relatively small
for a well-designed hull at low speeds, consistent with the answer to this example, where F  is less than 1/600th of the weight
of the ship.

In Newton’s Laws of Motion, we discussed the normal force, which is a contact force that acts normal to the surface so that an
object does not have an acceleration perpendicular to the surface. The bathroom scale is an excellent example of a normal force
acting on a body. It provides a quantitative reading of how much it must push upward to support the weight of an object. But can
you predict what you would see on the dial of a bathroom scale if you stood on it during an elevator ride?

Will you see a value greater than your weight when the elevator starts up? What about when the elevator moves upward at a
constant speed? Take a guess before reading the next example.

Figure  shows a 75.0-kg man (weight of about 165 lb.) standing on a bathroom scale in an elevator. Calculate the scale
reading: (a) if the elevator accelerates upward at a rate of 1.20 m/s , and (b) if the elevator moves upward at a constant speed of
1 m/s.
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Figure : (a) The various forces acting when a person stands on a bathroom scale in an elevator. The arrows are
approximately correct for when the elevator is accelerating upward—broken arrows represent forces too large to be

drawn to scale.  is the tension in the supporting cable,  is the weight of the person,  is the weight of the scale, 
is the weight of the elevator,  is the force of the scale on the person,  is the force of the person on the scale,  is
the force of the scale on the floor of the elevator, and  is the force of the floor upward on the scale. (b) The free-body
diagram shows only the external forces acting on the designated system of interest—the person—and is the diagram we

use for the solution of the problem.

Strategy

If the scale at rest is accurate, its reading equals , the magnitude of the force the person exerts downward on it. Figure 
 shows the numerous forces acting on the elevator, scale, and person. It makes this one-dimensional problem look

much more formidable than if the person is chosen to be the system of interest and a free-body diagram is drawn, as in Figure 
. Analysis of the free-body diagram using Newton’s laws can produce answers to both Figure  and (b) of this

example, as well as some other questions that might arise. The only forces acting on the person are his weight  and the
upward force of the scale . According to Newton’s third law,  and  are equal in magnitude and opposite in direction,
so that we need to find F  in order to find what the scale reads. We can do this, as usual, by applying Newton’s second law,

From the free-body diagram, we see that , so we have

Solving for F  gives us an equation with only one unknown:

or, because w = mg, simply

No assumptions were made about the acceleration, so this solution should be valid for a variety of accelerations in addition to
those in this situation. (Note: We are considering the case when the elevator is accelerating upward. If the elevator is
accelerating downward, Newton’s second law becomes F  − w = −ma.)

Solution
a. We have a = 1.20 m/s , so that $F_{s} = (75.0\; kg)(9.80\; m/s^{2}) + (75.0\; kg)(1.20\; m/s^{2})$yielding $F_{s} = 825\;

N \ldotp$
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b. Now, what happens when the elevator reaches a constant upward velocity? Will the scale still read more than his weight?
For any constant velocity—up, down, or stationary—acceleration is zero because  and . Thus, $F_{s} = ma
+ mg = 0 + mg$or $F_{s} = (75.0\; kg)(9.80\; m/s^{2}),$which gives $F_{s} = 735\; N \ldotp$

Significance

The scale reading in Figure  is about 185 lb. What would the scale have read if he were stationary? Since his
acceleration would be zero, the force of the scale would be equal to his weight:

Thus, the scale reading in the elevator is greater than his 735-N (165-lb.) weight. This means that the scale is pushing up on the
person with a force greater than his weight, as it must in order to accelerate him upward.

Clearly, the greater the acceleration of the elevator, the greater the scale reading, consistent with what you feel in rapidly
accelerating versus slowly accelerating elevators. In Figure , the scale reading is 735 N, which equals the person’s
weight. This is the case whenever the elevator has a constant velocity—moving up, moving down, or stationary.

Now calculate the scale reading when the elevator accelerates downward at a rate of 1.20 m/s .

The solution to the previous example also applies to an elevator accelerating downward, as mentioned. When an elevator
accelerates downward, a is negative, and the scale reading is less than the weight of the person. If a constant downward velocity is
reached, the scale reading again becomes equal to the person’s weight. If the elevator is in free fall and accelerating downward at g,
then the scale reading is zero and the person appears to be weightless.

Figure  shows a block of mass m  on a frictionless, horizontal surface. It is pulled by a light string that passes over a
frictionless and massless pulley. The other end of the string is connected to a block of mass m . Find the acceleration of the
blocks and the tension in the string in terms of m , m , and g.

Figure : (a) Block 1 is connected by a light string to block 2. (b) The free-body diagrams of the blocks.

Strategy

We draw a free-body diagram for each mass separately, as shown in Figure . Then we analyze each one to find the
required unknowns. The forces on block 1 are the gravitational force, the contact force of the surface, and the tension in the
string. Block 2 is subjected to the gravitational force and the string tension. Newton’s second law applies to each, so we write
two vector equations:

For block 1: 

a = Δv

Δt
Δv= 0

17.1.4a

= ma = 0 = −wFnet Fs (17.1.25)

= w = mgFs (17.1.26)

= (75.0 kg)(9.80 m/ ) = 735 N .Fs s2 (17.1.27)
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For block 2: .

Notice that  is the same for both blocks. Since the string and the pulley have negligible mass, and since there is no friction in
the pulley, the tension is the same throughout the string. We can now write component equations for each block. All forces are
either horizontal or vertical, so we can use the same horizontal/vertical coordinate system for both objects.

Solution
The component equations follow from the vector equations above. We see that block 1 has the vertical forces balanced, so we
ignore them and write an equation relating the x-components. There are no horizontal forces on block 2, so only the y-equation
is written. We obtain these results:

Block 1 Block 2

When block 1 moves to the right, block 2 travels an equal distance downward; thus, a  = −a . Writing the common
acceleration of the blocks as a = a  = −a , we now have

and

From these two equations, we can express a and T in terms of the masses m  and m , and g:

and

Significance

Notice that the tension in the string is less than the weight of the block hanging from the end of it. A common error in problems
like this is to set T = m g. You can see from the free-body diagram of block 2 that cannot be correct if the block is accelerating.

Calculate the acceleration of the system, and the tension in the string, when the masses are m  = 5.00 kg and m  = 3.00 kg.

A classic problem in physics, similar to the one we just solved, is that of the Atwood machine, which consists of a rope running
over a pulley, with two objects of different mass attached. It is particularly useful in understanding the connection between
force and motion. In Figure , m  = 2.00 kg and m  = 4.00 kg. Consider the pulley to be frictionless. (a) If m  is released,
what will its acceleration be? (b) What is the tension in the string?

+ =T ⃗  w⃗ 2 m2a⃗ 2

T ⃗ 

∑ = mFx ax (17.1.28)

=Tx m1a1x (17.1.29)

∑ = mFy ay (17.1.30)

− g =Ty m2 m2a2y (17.1.31)

1x 2y

1x 2y
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T − g = − a.m2 m2 (17.1.33)
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Figure : An Atwood machine and free-body diagrams for each of the two blocks.

Strategy

We draw a free-body diagram for each mass separately, as shown in the figure. Then we analyze each diagram to find the
required unknowns. This may involve the solution of simultaneous equations. It is also important to note the similarity with the
previous example. As block 2 accelerates with acceleration a  in the downward direction, block 1 accelerates upward with
acceleration a . Thus, a = a  = −a .

Solution
a. We have $For\; m_{1}, \sum F_{y} = T − m_{1}g = m_{1}a \ldotp \quad For\; m_{2}, \sum F_{y} = T − m_{2}g =

−m_{2}a \ldotp$(The negative sign in front of m  a indicates that m  accelerates downward; both blocks accelerate at the
same rate, but in opposite directions.) Solve the two equations simultaneously (subtract them) and the result is $(m_{2} -
m_{1})g = (m_{1} + m_{2})a \ldotp$Solving for a: $a = \frac{m_{2} - m_{1}}{m_{1} + m_{2}}g = \frac{4\; kg - 2\; kg}
{4\; kg + 2\; kg} (9.8\; m/s^{2}) = 3.27\; m/s^{2} \ldotp$

b. Observing the first block, we see that $T − m_{1}g = m_{1}a$ $T = m_{1}(g + a) = (2\; kg)(9.8\; m/s^{2} + 3.27\;
m/s^{2}) = 26.1\; N \ldotp$

Significance

The result for the acceleration given in the solution can be interpreted as the ratio of the unbalanced force on the system, (m  −
m )g, to the total mass of the system, m  + m . We can also use the Atwood machine to measure local gravitational field
strength.

Determine a general formula in terms of m , m  and g for calculating the tension in the string for the Atwood machine shown
above.
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