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13.1: Orbits

Types of Orbits Under an Inverse-Square Force

Consider a system formed by two particles (or two perfect, rigid spheres) interacting only with each other, through their
gravitational attraction. Conservation of the total momentum tells us that the center of mass of the system is either at rest or moving
with constant velocity. Let us assume that one of the objects has a much greater mass, , than the other, so that, for practical
purposes, its center coincides with the center of mass of the whole system. This is not a bad approximation if what we are
interested in is, for instance, the orbit of a planet around the sun. The most massive planet, Jupiter, has only about 0.001 times the
mass of the sun.

Accordingly, we will assume that the more massive object does not move at all (by working in its center of mass reference frame, if
necessary—note that, by our assumptions, this will be an inertial reference frame to a good approximation), and we will be
concerned only with the motion of the less massive object under the force , where  is the distance between the
centers of the two objects. Since this force is always pulling towards the center of the more massive object (it is what is often called
a central force), its torque around that point is zero, and therefore the angular momentum, , of the less massive body around the
center of mass of the system is constant. This is an interesting result: it tells us, for instance, that the motion is confined to a plane,
the same plane that the vectors  and  defined initially, since their cross-product cannot change.

In spite of this simplification, the calculation of the object’s trajectory, or orbit, requires some fairly advanced mathematical
techniques, except for the simplest case, which is that of a circular orbit of radius . Note that this case requires a very precise
relationship to hold between the object’s velocity and the orbit’s radius, which we can get by setting the force of gravity equal to
the centripetal force:

So, if we want to, say, put a satellite in a circular orbit around a central body of mass  and at a distance  from the center of that
body, we can do it, but only provided we give the satellite an initial velocity  in a direction perpendicular to the
radius. But what if we were to release the satellite at the same distance , but with a different velocity, either in magnitude or
direction? Too much speed would pull it away from the circle, so the distance to the center, , would temporarily increase; this
would increase the system’s potential energy and accordingly reduce the satellite’s velocity, so eventually it would get pulled back;
then it would speed up again, and so on.

You may experiment with this kind of thing yourself using the PhET demo at this link:

https://phet.colorado.edu/en/simulation/gravity-and-orbits

You will find that, as long as you do not give the satellite—or planet, in the simulation—too much speed (more on this later!) the
orbit you get is, in fact, a closed curve, the kind of curve we call an ellipse. I have drawn one such ellipse for you in Figure .

Figure : An elliptical orbit. The semimajor axis is , the semiminor axis is , and the eccentricity  = 0.745
in this case.. The “center of attraction” (the sun, for instance, in the case of a planet’s or comet’s orbit) is at the point O.
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As a geometrical curve, any ellipse can be characterized by a couple of numbers,  and , which are the lengths of the semimajor
and semiminor axes, respectively. These lengths are shown in the figure. Alternatively, one could specify  and a parameter known
as the eccentricity, denoted by  (do not mistake this “ ” for the coefficient of restitution of Chapter 4!), which is equal to 

. If  = , or  = 0, the ellipse becomes a circle.

The most striking feature of the elliptical orbits under the influence of the  gravitational force is that the “central object” (the
sun, for instance, if we are interested in the orbit of a planet, asteroid or comet) is not at the geometric center of the ellipse. Rather,
it is at a special point called the focus of the ellipse (labeled “O” in the figure, since that is the origin for the position vector of the
orbiting body). There are actually two foci, symmetrically placed on the horizontal (major) axis, and the distance of each focus to
the center of the ellipse is given by the product , that is, the product of the eccentricity and the semimajor axis. (This explains
why the “eccentricity” is called that: it is a measure of how “off-center” the focus is.)

For an object moving in an elliptical orbit around the sun, the distance to the sun is minimal at a point called the perihelion, and
maximal at a point called the aphelion. Those points are shown in the figure and labeled “P” and “A”, respectively. For an object in
orbit around the earth, the corresponding terms are perigee and apogee; for an orbit around some unspecified central body, the
terms periapsis and apoapsis are used. There is some confusion as to whether the distances are to be measured from the surface or
from the center of the central body; here I will assume they are all measured from the center, in which case the following
relationships follow directly from Figure :

The ellipse I have drawn in Figure  is actually way too eccentric to represent the orbit of any planet in the solar system
(although it could well be the orbit of a comet). The planet with the most eccentric orbit is Mercury, and that is only  = 0.21. This
means that  = 0.978 , an almost imperceptible deviation from a circle. I have drawn the orbit to scale in Figure , and as you
can see the only way you can tell it is an ellipse is, precisely, because the sun is not at the center.

Figure : Orbit of Mercury, with the sum approximately to scale

Since an ellipse has only two parameters, and we have two constants of the motion (the total energy, , and the angular
momentum, ), we should be able to determine what the orbit will look like based on just those two quantities. Under the
assumption we are making here, that the very massive object does not move at all, the total energy of the system is just

For a circular orbit, the radius  determines the speed (as per Equation ( )), and hence the total energy, which is easily seen to
be . It turns out that this formula holds also for elliptical orbits, if one substitutes the semimajor axis  for :
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Note that the total energy ( ) is negative. This means that we have a bound orbit, by which I mean, a situation where the
orbiting object does not have enough kinetic energy to fly arbitrarily far away from the center of attraction. Indeed, since 
as , you can see from Equation ( ) that if the two objects could be infinitely far apart, the total energy would
eventually have to be positive, for any nonzero speed of the lighter object. So, if , we have bound orbits, which are ellipses
(of which a circle is a special case), and conversely, if  we have “unbound” trajectories, which turn out to be hyperbolas .
These trajectories just pass near the center of attraction once, and never return.

The special borderline case when  = 0 corresponds to a parabolic trajectory. In this case, the particle also never comes back: it
has just enough kinetic energy to make it “to infinity,” slowing down all the while, so  as . The initial speed necessary
to accomplish this, starting from an initial distance , is usually called the “escape velocity” (although it really should be called the
escape speed), and it is found by simply setting Equation ( ) equal to zero, with , and solving for :

In general, you can calculate the escape speed from any initial distance  to the central object, but most often it is calculated from
its surface. Note that  does not depend on the mass of the lighter object (always assuming that the heavier object does not move
at all). The escape velocity from the surface of the earth is about 11 km/s, or 1.1×10  m/s; but this alone would not be enough to let
you leave the attraction of the sun behind. The escape speed from the sun starting from a point on the earth’s orbit is 42 km/s.

To summarize all of the above, suppose you are trying to put something in orbit around a much more massive body, and you start
out a distance  away from the center of that body. If you give the object a speed smaller than the escape speed at that point, the
result will be  < 0 and an elliptical orbit (of which a circle is a special case, if you give it the precise speed  in the
right direction). If you give it precisely the escape speed ( ), the total energy of the system will be zero and the trajectory of
the object will be a parabola; and if you give it more speed than , the total energy will be positive and the trajectory will be a
hyperbola. This is illustrated in Figure  below.

Figure : Possible trajectories for an object that is “released” with a sideways velocity at the lowest point in the figure, under
the gravitational attraction of a large mass represented by the black circle. Each trajectory corresponds to a different value of the
object’s initial kinetic energy: if  is the kinetic energy needed to have a circular orbit through the point of release, the figure

shows the cases  (small ellipse),  (circle),  (large ellipse),  (escape velocity,
parabola), and  (hyperbola).

Note that all the trajectories shown in Figure  have the same potential energy at the “point of release” (since the distance
from that point to the center of attraction is the same for all), so increasing the kinetic energy at that point also means increasing the
total energy ( ) (which is constant throughout). So the picture shows different orbits in order of increasing total energy.

For a given total energy, the total angular momentum does not change the fundamental nature of the orbit (bound or unbound), but
it can make a big difference on the orbit’s shape. Generally speaking, for a given energy the orbits with less angular momentum
will be “narrower,” or “more squished” than the ones with more angular momentum, since a smaller initial angular momentum at
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the point of insertion means a smaller sideways velocity component. In the extreme case of zero initial angular momentum (no
sideways velocity at all), the trajectory, regardless of the total energy, reduces to a straight line, either straight towards or straight
away from the center of attraction.

For elliptical orbits, one can prove the result

which shows how the eccentricity increases as  decreases, for a given value of  (which is to say, for a given total energy). I
should at least sketch how to obtain this result, since it is a variant of a procedure that you may have to use for some homework
problems this semester. You start by writing the angular momentum as  (or ), where  and  are the special
points shown in Figure , where  and  are perpendicular. Then, you note that  (or, alternatively, 

), so . Then substitute these expressions for  and  in Equation ( ), set the
result equal to the total energy ( ), and solve for .

Figure : Effect of the "angle of insertion" on the orbit.

Figure  illustrates the effect of varying the angular momentum, for a given energy. All the initial velocity vectors in the
figure have the same magnitude, and the release point (with position vector ) is the same for all the orbits, so they all have the
same energy; indeed, you can check that the semimajor axis of the two ellipses is the same as the radius of the circle, as required by
Equation ( ). The difference between the orbits is their total angular momentum. The green orbit has the maximum angular
momentum possible at the given energy, since the green velocity vector is perpendicular to . Note that this (maximizing  for a
given  < 0) always results in a circle, in agreement with Equation ( ): the eccentricity is zero when 

, which is the largest value of  allowed in Equation ( ).

For the other two orbits,  and  make angles of 45  and 135 , and so the angular momentum  has magnitude 

. The result are the red and blue ellipses, with eccentricities  = 0.707.

There is apparently a way to describe a hyperbola as an ellipse with eccentricity  > 1, but I’m definitely not going to go there.
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