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8.4: Other Forms of Energy

Thermal Energy

From all the foregoing, it is clear that when an interaction can be completely described by a potential energy function we can define
a quantity, which we have called the total mechanical energy of the system, E,,.., = K+ U , that is constant throughout the
interaction. However, we already know from our study of collisions that this is rarely the case. Essential to the concept of potential
energy is the idea of “storage and retrieval” of the kinetic energy of the system during the interaction process. When kinetic energy
simply disappears from the system and does not come back, a full description of the process in terms of a potential energy is not
possible.

Processes in which some amount of mechanical energy disappears (that is, it cannot be found anywhere anymore as either
macroscopic Kinetic or potential energy) are called dissipative. Mysterious as they may appear at first sight, there is actually a
simple, intuitive explanation for them. All macroscopic systems consist of a great number of small parts that enjoy, at the
microscopic level, some degree of independence from each other and from the body to which they belong. Macroscopic motion of
an object requires all these parts to move together as a whole, at least on average; however, a collision with another object may
very well “rattle” all these parts and leave them in a more or less disorganized state. If the total energy is conserved, then after the
collision the object’s atoms or molecules may be, on average, vibrating faster or banging against each other more often than before,
but they will do so in random directions, so this increased “agitation” will not be perceived as macroscopic motion of the object as
a whole.

This kind of random agitation at the microscopic level that I have just introduced is what we know today as thermal energy, and it
is by far the most common “sink” or reservoir where macroscopic mechanical energy is “dissipated.” In our example of an inelastic
collision, the energy the objects had is not gone from the universe, in fact it is still right there inside the objects themselves; it is
just in a disorganized or incoherent state from which, as you can imagine, it would be pretty much impossible to retrieve it, since
we would have to somehow get all the randomly-moving parts to get back to moving in the same direction again.

We will have a lot more to say about thermal energy in a later chapter, but for the moment you may want to think of it as essentially
noise: it is what is left (the residual motional or configurational energy, at the microscopic level) after you remove the average,
macroscopically-observable kinetic or potential energy. So, for example, for a solid object moving with a velocity v.,,, the kinetic
part of its thermal energy would be the sum of the kinetic energies of all its microscopic parts, calculated in its center of mass (or
zero-momentum) reference frame; that way you remove from every molecule’s velocity the quantity v.,,, which they all must have
in common—on average (since the body as a whole is moving with that velocity).

In order to establish conservation of energy as a fact (which was one of the greatest scientific triumphs of the 19th century) it was
clearly necessary to show experimentally that a certain amount of mechanical energy lost always resulted in the same predictable
increase in the system’s thermal energy. Thermal energy is largely “invisible” at the macroscopic level, but we detect it indirectly
through an object’s temperature. The crucial experiments to establish what at the time was called the “mechanical equivalent of
heat” were carried out by James Prescott Joule in the 1850’s, and required exceedingly precise measurements of temperature (in
fact, getting the experiments done was only half the struggle; the other half was getting the scientific establishment to believe that
he could measure changes in temperature so accurately!)

Fundamental Interactions

At the most fundamental (microscopic) level, physicists today believe that there are only four (or three, depending on your
perspective) basic interactions: gravity, electromagnetism, the strong nuclear interaction (responsible for holding atomic nuclei
together), and the weak nuclear interaction (responsible for certain nuclear processes, such as the transmutation of a proton into a
neutron' and vice-versa). In a technical sense, at the quantum level, electromagnetism and the weak nuclear interactions can be
regarded as separate manifestations of a single, consistent quantum field theory, so they are sometimes referred to as “the
electroweak interaction.”

All of these interactions are conservative, in the sense that for all of them one can define the equivalent of a “potential energy
function” (generalized, as necessary, to conform to the requirements of quantum mechanics and relativity), so that for a system of
elementary particles interacting via any one of these interactions the total kinetic plus potential energy is a constant of the motion.
For gravity (which we do not really know how to “quantize” anyway!), this function immediately carries over to the macroscopic
domain without any changes, as we shall see in a later chapter, and the gravitational potential energy function I introduced earlier in

@ 0 @ 8.4.1 https:/phys.libretexts.org/@go/page/63170


https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63170?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/08%3A_C8)_Conservation_of_Energy-_Kinetic_and_Gravitational/8.04%3A_Other_Forms_of_Energy

LibreTextsw

this chapter is an approximation to it valid near the surface of the earth (gravity is such a weak force that the gravitational
interaction between any two earth-bound objects is virtually negligible, so we only have to worry about gravitational energy when
one of the objects involved is the earth itself).

As for the strong and weak nuclear interactions, they are only appreciable over the scale of an atomic nucleus, so there is no
question of them directly affecting any macroscopic mechanical processes. They are responsible, however, for various nuclear
reactions in the course of which nuclear energy is, most commonly, transformed into electromagnetic energy (X- or gamma rays)
and thermal energy.

All the other forms of energy one encounters at the microscopic, and even the macroscopic, level have their origin in
electromagnetism. Some of them, like the electrostatic energy in a capacitor or the magnetic interaction between two permanent
magnets, are straightforward enough scale-ups of their microscopic counterparts, and may allow for a potential energy description
at the macroscopic level (and you will learn more about them next semester!). Many others, however, are more subtle and involve
quantum mechanical effects (such as the exclusion principle) in a fundamental way.

Among the most important of these is chemical energy, which is an extremely important source of energy for all kinds of
macroscopic processes: combustion (and explosions!), the production of electrical energy in batteries, and all the biochemical
processes that power our own bodies. However, the conversion of chemical energy into macroscopic mechanical energy is almost
always a dissipative process (that is, one in which some of the initial chemical energy ends up irreversibly converted into thermal
energy), so it is generally impossible to describe them using a (macroscopic) potential energy function (except, possibly, for
electrochemical processes, with which we will not be concerned here).

For instance, consider a chemical reaction in which some amount of chemical energy is converted into kinetic energy of the
molecules forming the reaction products. Even when care is taken to “channel” the motion of the reaction products in a particular
direction (for example, to push a cylinder in a combustion engine), a lot of the individual molecules will end up flying in the
“wrong” direction, striking the sides of the container, etc. In other words, we end up with a lot of the chemical energy being
converted into disorganized microscopic agitation—which is to say, thermal energy.

Electrostatic and quantum effects are also responsible for the elastic properties of materials, which can sometimes be described by
macroscopic potential energy functions, at least to a first approximation. They are also responsible for the adhesive forces between
surfaces that play an important role in friction, and various other kinds of what might be called “structural energies,” most of which
play only a relatively small part in the energy balance where macroscopic objects are involved.

!Plus a positron and a neutrino
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