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19.1: Conditions for Static Equilibrium

4b Learning Objectives

o Identify the physical conditions of static equilibrium.
e Draw a free-body diagram for a rigid body acted on by forces.
o Explain how the conditions for equilibrium allow us to solve statics problems.

We say that a rigid body is in equilibrium when both its linear and angular acceleration are zero relative to an inertial frame of
reference. This means that a body in equilibrium can be moving, but if so, its linear and angular velocities must be constant. We say
that a rigid body is in static equilibrium when it is at rest in our selected frame of reference. Notice that the distinction between
the state of rest and a state of uniform motion is artificial—that is, an object may be at rest in our selected frame of reference, yet to
an observer moving at constant velocity relative to our frame, the same object appears to be in uniform motion with constant
velocity. Because the motion is relative, what is in static equilibrium to us is in dynamic equilibrium to the moving observer, and
vice versa. Since the laws of physics are identical for all inertial reference frames, in an inertial frame of reference, there is no
distinction between static equilibrium and equilibrium.

According to Newton’s second law of motion, the linear acceleration of a rigid body is caused by a net force acting on it, or
Y Fr=micu. (19.1.1)
k

Here, the sum is of all external forces acting on the body, where m is its mass and d¢yy is the linear acceleration of its center of
mass (a concept we discussed in Linear Momentum and Collisions on linear momentum and collisions). In equilibrium, the linear
acceleration is zero. If we set the acceleration to zero in Equation 19.1.1, we obtain the following equation:

# First Equilibrium Condition

The first equilibrium condition for the static equilibrium of a rigid body expresses translational equilibrium:

> Fp=0. (19.1.2)

k

The first equilibrium condition, Equation 19.1.2 is the equilibrium condition for forces, which we encountered when studying
applications of Newton’s laws.

This vector equation is equivalent to the following three scalar equations for the components of the net force:
D Fi=0,> Fy=0,% F.=0. (19.1.3)
k k k

Although we have not talked about this yet, there is an analogous formula to Equation 19.1.1 for rotational motion, which looks
like:

Y 7 =1Ia. (19.1.4)
k

That quantity & is the angular acceleration, so this equation says that the sum of all the torques on a body is equal to the moment of
inertia times the angular acceleration. We will pick up on that in the next chapter, right now we just need to know it's like the
acceleration, but for circular motion. In equilibrium, this rotational acceleration is zero. By setting to zero the right-hand side of
Equation 19.1.4, we obtain the second equilibrium condition:

# Second Equilibrium Condition

The second equilibrium condition for the static equilibrium of a rigid body expresses rotational equilibrium:

> =0. (19.1.5)
k

https://phys.libretexts.org/@go/page/63269



https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/63269?pdf
https://phys.libretexts.org/Courses/Merrimack_College/Conservation_Laws_Newton's_Laws_and_Kinematics_version_2.0/19%3A_N6)_Statics_and_Springs/19.01%3A_Conditions_for_Static_Equilibrium
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/09%3A_Linear_Momentum_and_Collisions

LibreTextsw

The second equilibrium condition, Equation 19.1.5 is the equilibrium condition for torques that we encountered when we studied
rotational dynamics. It is worth noting that this equation for equilibrium is generally valid for rotational equilibrium about any axis
of rotation (fixed or otherwise). Again, this vector equation is equivalent to three scalar equations for the vector components of the

net torque:
ZTkm =0, ZTky:07 ZTkzzo- (1916)
k k k

The second equilibrium condition means that in equilibrium, there is no net external torque to cause rotation about any axis. The
first and second equilibrium conditions are stated in a particular reference frame. The first condition involves only forces and is
therefore independent of the origin of the reference frame. However, the second condition involves torque, which is defined as a
cross product, T = 7p, X ﬁk , where the position vector 7 with respect to the axis of rotation of the point where the force is
applied enters the equation. Therefore, torque depends on the location of the axis in the reference frame. However, when rotational
and translational equilibrium conditions hold simultaneously in one frame of reference, then they also hold in any other inertial
frame of reference, so that the net torque about any axis of rotation is still zero. The explanation for this is fairly straightforward.

Suppose vector R is the position of the origin of a new inertial frame of reference S’ in the old inertial frame of reference S. From
our study of relative motion, we know that in the new frame of reference S’, the position vector 7 ’; of the point where the force F,
is applied is related to 7}, via the equation

7, =7 —R. (19.1.7)

Now, we can sum all torques 7_"2 = F;c X ﬁk of all external forces in a new reference frame, S":
?;:ZF; Xﬁk:Z(’?k—ﬁ)Xﬁk:Z?k Xﬁk—ZEXﬁk:ZFk—EXZﬁkZG. (1918)
k k k k k k

In the final step in this chain of reasoning, we used the fact that in equilibrium in the old frame of reference, S, the first term
vanishes because of Equation 19.1.5and the second term vanishes because of Equation 19.1.2. Hence, we see that the net torque in
any inertial frame of reference S' is zero, provided that both conditions for equilibrium hold in an inertial frame of reference S.

The practical implication of this is that when applying equilibrium conditions for a rigid body, we are free to choose any point as
the origin of the reference frame. Our choice of reference frame is dictated by the physical specifics of the problem we are solving.
In one frame of reference, the mathematical form of the equilibrium conditions may be quite complicated, whereas in another
frame, the same conditions may have a simpler mathematical form that is easy to solve. The origin of a selected frame of reference
is called the pivot point.

In the most general case, equilibrium conditions are expressed by the six scalar equations (Equations 19.1.3and 19.1.6). For planar
equilibrium problems with rotation about a fixed axis, which we consider in this chapter, we can reduce the number of equations to
three. The standard procedure is to adopt a frame of reference where the z-axis is the axis of rotation. With this choice of axis, the
net torque has only a z-component, all forces that have non-zero torques lie in the xy-plane, and therefore contributions to the net
torque come from only the x- and y-components of external forces. Thus, for planar problems with the axis of rotation
perpendicular to the xy-plane, we have the following three equilibrium conditions for forces and torques:

Fio+Fy+-+Fy, =0 (19.1.9)
Fiy+Fpy+--+Fy,=0 (19.1.10)
4T+t =0 (19.1.11)

where the summation is over all N external forces acting on the body and over their torques. In Equation 19.1.11, we simplified the
notation by dropping the subscript z, but we understand here that the summation is over all contributions along the z-axis, which is

the axis of rotation. In Equation 19.1.11, the z-component of torque 7 from the force fk is
Ty = T F sinf (19.1.12)

where 1y is the length of the lever arm of the force and Fy is the magnitude of the force (as you saw when we studied Angular
Momentum). The angle # is the angle between vectors 7; and ﬁk, measuring from vector 7 to vector ﬁ , in the
counterclockwise direction (Figure 19.1.1). When using Equation 19.1.12 we often compute the magnitude of torque and assign
its sense as either positive (+) or negative (—), depending on the direction of rotation caused by this torque alone. In Equation
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19.1.11, net torque is the sum of terms, with each term computed from Equation 19.1.12 and each term must have the correct
sense. Similarly, in Equation 19.1.9, we assign the + sign to force components in the + x-direction and the — sign to components in
the — x-direction. The same rule must be consistently followed in Equation 19.1.1(} when computing force components along the

y-axis.

Counterclockwise rotation
the sense of torque
+T

@

Clockwise rotation
the sense of torque:

(b)

Figure 19.1.1: Torque of a force: (a) When the torque of a force causes counterclockwise rotation about the axis of rotation, we say
that its sense is positive, which means the torque vector is parallel to the axis of rotation. (b) When torque of a force causes
clockwise rotation about the axis, we say that its sense is negative, which means the torque vector is antiparallel to the axis of

rotation.

View this demonstration to see two forces act on a rigid square in two dimensions. At all times, the static equilibrium
conditions given by Equation 19.1.9 through Equation 19.1.11are satisfied. You can vary magnitudes of the forces and their
lever arms and observe the effect these changes have on the square.

In many equilibrium situations, one of the forces acting on the body is its weight. In free-body diagrams, the weight vector is
attached to the center of gravity of the body. For all practical purposes, the center of gravity is identical to the Center of Mass.
Recall that the CM has a special physical meaning: When an external force is applied to a body at exactly its CM, the body as a
whole undergoes translational motion and such a force does not cause rotation.

When the CM is located off the axis of rotation, a net gravitational torque occurs on an object. Gravitational torque is the torque
caused by weight. This gravitational torque may rotate the object if there is no support present to balance it. The magnitude of the
gravitational torque depends on how far away from the pivot the CM is located. For example, in the case of a tipping truck (Figure
19.1.2), the pivot is located on the line where the tires make contact with the road’s surface. If the CM is located high above the
road’s surface, the gravitational torque may be large enough to turn the truck over. Passenger cars with a low-lying CM, close to the
pavement, are more resistant to tipping over than are trucks.
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Figure 19.1.2: The distribution of mass affects the position of the center of mass (CM), where the weight vector w is attached. If
the center of gravity is within the area of support, the truck returns to its initial position after tipping [see the left panel in (b)]. But
if the center of gravity lies outside the area of support, the truck turns over [see the right panel in (b)]. Both vehicles in (b) are out
of equilibrium. Notice that the car in (a) is in equilibrium: The low location of its center of gravity makes it hard to tip over.
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If you tilt a box so that one edge remains in contact with the table beneath it, then one edge of the base of support becomes a
pivot. As long as the center of gravity of the box remains over the base of support, gravitational torque rotates the box back
toward its original position of stable equilibrium. When the center of gravity moves outside of the base of support,
gravitational torque rotates the box in the opposite direction, and the box rolls over. View this demonstration to experiment
with stable and unstable positions of a box.

v Example 12.1: Center of Gravity of a Car

A passenger car with a 2.5-m wheelbase has 52% of its weight on the front wheels on level ground, as illustrated in Figure
12.4. Where is the CM of this car located with respect to the rear axle?

[ d=25m

Figure 19.1.3: The weight distribution between the axles of a car. Where is the center of gravity located?
Strategy

We do not know the weight w of the car. All we know is that when the car rests on a level surface, 0.52w pushes down on the
surface at contact points of the front wheels and 0.48w pushes down on the surface at contact points of the rear wheels. Also,
the contact points are separated from each other by the distance d = 2.5 m. At these contact points, the car experiences normal
reaction forces with magnitudes Fr = 0.52w and Fy = 0.48w on the front and rear axles, respectively. We also know that the car
is an example of a rigid body in equilibrium whose entire weight w acts at its CM. The CM is located somewhere between the
points where the normal reaction forces act, somewhere at a distance x from the point where Fy acts. Our task is to find x.
Thus, we identify three forces acting on the body (the car), and we can draw a free-body diagram for the extended rigid body,
as shown in Figure 19.1.4

Figure 19.1.4: The free-body diagram for the car clearly indicates force vectors acting on the car and distances to the center of

mass (CM). When CM is selected as the pivot point, these distances are lever arms of normal reaction forces. Notice that

vector magnitudes and lever arms do not need to be drawn to scale, but all quantities of relevance must be clearly labeled.
We are almost ready to write down equilibrium conditions Equation 19.1.9 through Equation 19.1.11for the car, but first we
must decide on the reference frame. Suppose we choose the x-axis along the length of the car, the yaxis vertical, and the z-axis
perpendicular to this xy-plane. With this choice we only need to write Equation 19.1.9and Equation 19.1.11because all the y-
components are identically zero. Now we need to decide on the location of the pivot point. We can choose any point as the
location of the axis of rotation (z-axis). Suppose we place the axis of rotation at CM, as indicated in the free-body diagram for
the car. At this point, we are ready to write the equilibrium conditions for the car.

Solution

Each equilibrium condition contains only three terms because there are N = 3 forces acting on the car. The first equilibrium
condition, Equation 19.1.9, reads

+Fp—w+Fp=0. (19.1.13)

This condition is trivially satisfied because when we substitute the data, Equation 19.1.13becomes +0.52w — w + 0.48w = 0.
The second equilibrium condition, Equation 19.1.11, reads
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where 7 is the torque of force Fg, 7,, is the gravitational torque of force w, and 7, is the torque of force Fr. When the pivot is
located at CM, the gravitational torque is identically zero because the lever arm of the weight with respect to an axis that
passes through CM is zero. The lines of action of both normal reaction forces are perpendicular to their lever arms, so in
Equation 19.1.12 we have |sin 8] = 1 for both forces. From the free-body diagram, we read that torque 7 causes clockwise
rotation about the pivot at CM, so its sense is negative; and torque 7g causes counterclockwise rotation about the pivot at CM,
so its sense is positive. With this information, we write the second equilibrium condition as

TF+Tw+7TR =0 (19.1.14)

—rpFr+rpFgr=0. (19.1.15)

With the help of the free-body diagram, we identify the force magnitudes Fr = 0.48w and Fg = 0.52w, and their corresponding
lever arms rg = x and rg = d — x. We can now write the second equilibrium condition, Equation 19.1.15 explicitly in terms of
the unknown distance x:

—0.52(d —z)w +0.48zw = 0. (19.1.16)

Here the weight w cancels and we can solve the equation for the unknown position x of the CM. The answer is x = 0.52d =
0.52(2.5 m) = 1.3 m. Solution Choosing the pivot at the position of the front axle does not change the result. The free-body
diagram for this pivot location is presented in Figure 12.6. For this choice of pivot point, the second equilibrium condition is

—TwW+TRFR:0- (191.17)
When we substitute the quantities indicated in the diagram, we obtain
—(d—z)w+0.48dw = 0. (19.1.18)
The answer obtained by solving Equation 19.1.15is, again, x = 0.52d = 1.3 m.
Fe = 0.52w Fp = 0.48w
CM
Pivot (4 .
| oy = E! — X J‘f |
? R =d w L
Y

Figure 19.1.5: The equivalent free-body diagram for the car; the pivot is clearly indicated.
Significance
This example shows that when solving static equilibrium problems, we are free to choose the pivot location. For different

choices of the pivot point we have different sets of equilibrium conditions to solve. However, all choices lead to the same
solution to the problem.

Solve Example 12.1 by choosing the pivot at the location of the rear axle.

Explain which one of the following situations satisfies both equilibrium conditions: (a) a tennis ball that does not spin as it
travels in the air; (b) a pelican that is gliding in the air at a constant velocity at one altitude; or (c) a crankshaft in the engine of
a parked car.

A special case of static equilibrium occurs when all external forces on an object act at or along the axis of rotation or when the
spatial extension of the object can be disregarded. In such a case, the object can be effectively treated like a point mass. In this
special case, we need not worry about the second equilibrium condition, Equation 19.1.11, because all torques are identically zero
and the first equilibrium condition (for forces) is the only condition to be satisfied. The free-body diagram and problem-solving
strategy for this special case were outlined in Newton’s Laws of Motion. You will see a typical equilibrium situation involving only
the first equilibrium condition in the next example.
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View this demonstration to see three weights that are connected by strings over pulleys and tied together in a knot. You can
experiment with the weights to see how they affect the equilibrium position of the knot and, at the same time, see the vector-
diagram representation of the first equilibrium condition at work.

v Example 12.2: A Breaking Tension

A small pan of mass 42.0 g is supported by two strings, as shown in Figure 12.7. The maximum tension that the string can
support is 2.80 N. Mass is added gradually to the pan until one of the strings snaps. Which string is it? How much mass must
be added for this to occur?

\ _~
5.0cm?, _~"10.0cm
-~
r’.]\\
/R

Figure 19.1.6: Mass is added gradually to the pan until one of the strings snaps.
Strategy

This mechanical system consisting of strings, masses, and the pan is in static equilibrium. Specifically, the knot that ties the
strings to the pan is in static equilibrium. The knot can be treated as a point; therefore, we need only the first equilibrium
condition. The three forces pulling at the knot are the tension fl in the 5.0-cm string, the tension fg in the 10.0-cm string, and
the weight w0 of the pan holding the masses. We adopt a rectangular coordinate system with the y-axis pointing opposite to the
direction of gravity and draw the free-body diagram for the knot (see Figure 12.8). To find the tension components, we must
identify the direction angles a; and a that the strings make with the horizontal direction that is the x-axis. As you can see in
Figure 12.7, the strings make two sides of a right triangle. We can use the Pythagorean theorem to solve this triangle, shown in
Figure 12.8, and find the sine and cosine of the angles a; and . Then we can resolve the tensions into their rectangular
components, substitute in the first condition for equilibrium (Equation 19.1.9and Equation 19.1.1(), and solve for the tensions
in the strings. The string with a greater tension will break first.

W= (M +mg

va? + 4a? = a5

COS ¢y = SIN iy

COS &y = S5IN &y

Figure 19.1.7: Free-body diagram for the knot in Example 12.2.

Solution
The weight w pulling on the knot is due to the mass M of the pan and mass m added to the pan, or w = (M + m)g. With the
help of the free-body diagram in Figure 12.8, we can set up the equilibrium conditions for the knot:

in the x-direction,

_le +T2z =0 (19119)
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n the y-direction,
+Ty +Toy —w =0. (19.1.20)

From the free-body diagram, the magnitudes of components in these equations are

Ty . 2T,

Ty =Ticosay =—=, Ty, =Tisina; =——7=

1z 1 1 /5 1y 1 1 /5
2T:

Ty, =Thcosan = 2 Ty =Ty sinap = -2,

V5’ V5
We substitute these components into the equilibrium conditions and simplify. We then obtain two equilibrium equations for the
tensions:
in x-direction,

Ty =21 (19.1.21)
in y-direction,

27 Ty

— +—==(M+m)g. 19.1.22

5+ g =(M+mg (19-1.22)
The equilibrium equation for the x-direction tells us that the tension T; in the 5.0-cm string is twice the tension T in the 10.0-
cm string. Therefore, the shorter string will snap. When we use the first equation to eliminate T; from the second equation, we
obtain the relation between the mass m on the pan and the tension T in the shorter string:

2.5T}
/5

The string breaks when the tension reaches the critical value of Ty = 2.80 N. The preceding equation can be solved for the
critical mass m that breaks the string:

25T 2.5 280 N
m=——-M=———-—
V5 g V5 9.8 m/s?

=(M+m)g. (19.1.23)

—0.042 kg =0.277 kg = 277.0 g. (19.1.24)

Significance

Suppose that the mechanical system considered in this example is attached to a ceiling inside an elevator going up. As long as
the elevator moves up at a constant speed, the result stays the same because the weight w does not change. If the elevator
moves up with acceleration, the critical mass is smaller because the weight of M + m becomes larger by an apparent weight
due to the acceleration of the elevator. Still, in all cases the shorter string breaks first.

This page titled 19.1: Conditions for Static Equilibrium is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

e 12.2: Conditions for Static Equilibrium by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
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