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6.7: Bose-Einstein Statistics
Perhaps you thought the Fermi-Dirac results were strange: Non-interacting particles forming a collection as hard as steel. . . room
temperature being effectively zero. Wait until you see the Bose-Einstein results.

6.7.1 Theory
For independent bosons, whether free or subject to an external potential, the mean occupation number function is

To begin to understand this function, note that

Thus this function has the general character sketched below:

Although we have written  as a function of the continuous variable , we will in fact have occasion to evaluate it only at the
energy eigenvalues , eigenvalues which of course differ for different external potentials. It seems bizarre that
b(E) can be negative, and indeed this is only a mathematical artifact: Recall that in our derivation of the Bose function we needed
to assume that µ <  in order to insure convergence (see equation 6.35). Evaluating  at any eigenvalue r will always result in a
positive mean occupation number.

The character of the Bose function is dominated by the singularity at  = µ, so in trying to understand the function and its physical
implications one must first locate the chemical potential. This section will provide a tour of Bose-Einstein behavior with decreasing
temperature, throughout which the chemical potential shifts to the right. (When we investigated Fermi-Dirac behavior, we started at
T = 0 and toured with increasing temperature, so the chemical potential shifted left.) This rightward shift presents a potential
problem, because as the temperature decreases µ might shift right all the way to , and we know that µ < 1. We will just have to go
ahead and take the tour, being wary because we know that a µ = 1 road block might pop up right in front of us as we view the
countryside. With any luck µ will not yet have reached  when our tour halts at T = 0.

For the case of free and independent bosons (subject to periodic boundary conditions), the ground level energy is  = 0. The
natural first step is to find µ(T, V, N) by demanding that

Natural though this may be, caution is in order. Remember that the integral above is an approximation to the sum over discrete
energy levels

It is legitimate to replace the sum with the integral when the value of  changes little from one energy level to the next. We saw
in section 6.5 that in the thermodynamic limit, the free-particle level spacings approach zero, so for the most part this

b(E) = .
1

−1eβ(E−μ)
(6.7.1)

 when: 

E < μ

E = μ

E > μ

 we have: 

b(E) negative 

b(E) = ∞

b(E) positive 

(6.7.2)

b(E) E

, , , . . . , , . . .ϵ1 ϵ2 ϵ3 ϵr

ε1 b(E)

E

ϵ1

ϵ1

ϵ1

N = G(E)b(E)dE.∫
∞

0
(6.7.3)

N = b ( ) .∑
r

ϵr (6.7.4)

b(E)

https://libretexts.org/
https://phys.libretexts.org/@go/page/18918?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Statistical_Mechanics_(Styer)/06%3A_Quantal_Ideal_Gases/6.07%3A_Bose-Einstein_Statistics


6.7.2 https://phys.libretexts.org/@go/page/18918

approximation is excellent. . . even exact in the thermodynamic limit. But there is one exception: At  = µ, the Bose function 
is infinite, so b(µ) = ∞ is very different from b(µ + δ), no matter how small the positive number δ is. Usually we can ignore this
caution, because µ < 1 = 0. But if µ approaches 0 then we expect the approximation (6.71) to fail.

In summary, the integral (6.71) is a good approximation for the sum (6.72) as long as the integrand varies slowly. Now for any
value of  greater than µ, you can make b(  + δ) very close to b(E) simply by choosing δ > 0 small enough. This is what happens
in the thermodynamic limit. But for  = µ, there is always a large difference between  = ∞ and b(  + δ), which is finite. Thus
the integral approximation will be a good one as long as we avoid  = µ.

In situations where the sum can be legitimately replaced with the integral, we have

Use of the obvious substitution  gives

and remembering the definition (5.4) of thermal de Broglie wavelength results in a more convenient expression

Note that the definite integral above is not “just a number”. . . it is a function of the product βµ. There is no closed-form expression
for the integral, although it is readily evaluated numerically and can be found in tabulations of functions. However it is easy to find
an analytic upper bound: Because µ < 0, we have e  > 1 whence

The expression on the right is just a number, and a little bit of work (see problem 6.26) shows that it is the number

where the Riemann zeta function is defined by

So, how does this upper bound help us? It shows that

but what is the significance of this result? Remember that the upper bound is just the value of the function when µ = 0, which is
exactly where we expect a road block due to the breakdown of the integral approximation (6.71). Our hopes that we could avoid the
issue have been dashed. The breakdown occurs at the temperature T  that satisfies
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For temperatures above T , the chemical potential shifts right as the temperature falls, and the integral approximation (6.71) is
legitimate (indeed, exact in the thermodynamic limit). But as the temperature decreases below T , the chemical potential sticks at µ
= 0 and the integral approximation (6.71) must be modified.

What is the proper modification? The function  is slowly varying for all values of  except  = µ, so the integral
approximation is legitimate for all the energy levels except the ground level at 1 = 0 = µ. Only for the ground level is some other
result needed, so we just add in the ground level occupancy by hand:

Now, we have already seen that when µ = 0—the condition for validity of this equation—the integral can be evaluated exactly and
we have

Note that  here is not given by its traditional formula (6.45), because

Instead, equation (6.84) is the formula for  when T < T . The mean ground level occupancy  is an intensive quantity when
T > T  but an extensive quantity when T < T .

In summary, the correct normalization equation breaks into two parts, namely

We should expect that each part will behave quite differently, i.e. we expect a sudden change of behavior as the temperature drops
through T .

What does all this mean physically? A naive reading of equation (6.80) suggests an upper bound on the number of particles that can
be placed into the volume V. This would be sensible if the particles were marbles with hard-core repulsions. But these are non-
interacting particles! Surely we can add more particles just by throwing them into the container. Indeed we can do so, and the
associated excess mean occupation number is due to the level that particles like best at low temperatures, namely the ground level.
The ground level thus has a much higher mean occupancy than the first excited level, and this rapid variation of mean occupancy
with energy renders the approximation of sum by integral invalid. The inequality (6.80) does not limit the number of particles in
the system: instead it shows the domain within which it is legitimate to approximate the sum (6.72) by the integral (6.71).

The abrupt transition at T (ρ) is called Bose-Einstein condensation and the material at temperatures below T (ρ) is called the Bose
condensate. These terms are unfortunate: they conjure images of a gas condensing into a liquid, in which circumstance the atoms
separate into two different classes: those in the liquid and those remaining in the vapor. This suggests that in Bose-Einstein
condensation too there are two classes of particles: those in the ground level and those in the excited levels. This picture is totally
false. It is incorrect to say “one particle is in the ground level, another is in the fourth excited level”. In truth the individual particles
are not in individual levels at all: instead the whole system is in a state produced by multiplying together the individual level
wavefunctions (“building blocks”) and then symmetrizing them. The literature of Bose-Einstein statistics is full of statements like
“at temperatures below T , any particle added to the system goes into the ground level.” Such statements are wrong. They should
be replaced with statements like “at temperatures below T , any increase in particle number occurs through an increase in , the
mean occupancy of the ground level.” Or alternatively, “at temperatures below T , it is very likely that many of the building blocks
from which the system wavefunction is built are the ground level.” Or again, to be absolutely precise, “at temperatures below T , if
the energy is measured then it is very likely that many of the building blocks from which the resulting energy eigenfunction is built
are the ground level.” Read again the previous paragraph—the one that begins “What does all this mean physically?”. Notice that I
never need to say that a particle “is in” or “goes into” a given level.
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6.7.2 Experiment
References: M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, “Observation of Bose-Einstein
condensation in a dilute atomic vapor”, Science, 269 (14 July 1995) 198–201; Randall G. Hullet at Rice; Malcolm W. Browne,
“Two groups of physicists produce matter that Einstein postulated”, New York Times, 14 July 1995, page 1.

6.7.3 Problems

6.23 Character of the Bose function

What are the limits of the Bose function  (equation 6.70) as  → ±∞? Is the curvature of the function greater when the
temperature is high or when it is low?

6.24 Thermodynamics of the Bose condensate

For temperatures less than the Bose condensation temperature T , find the energy, heat capacity, and entropy of an ideal gas
of spin-zero bosons confined to a volume V. Write your answers in terms of the dimensionless integral

but don't bother to evaluate it. Show that

6.25 More thermodynamics of the Bose condensate

For the system of the previous problem, show that

From this show that at low temperatures, the pressure of a collection of free and independent bosons goes like p ∼ T . (This
is always less than the classical pressure p ∼ T.)

6.26 An integral important for Bose condensation

Show that

where

Clue:
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