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7.5: Low-temperature Heat Capacity
If

then

and so forth.

Density of modes:

This formula holds for any isotropic dispersion relation k (ω). For small values of ω the dispersion relation for each branch is
linear (with sound speed c ) so

whence

If we define the “average sound speed” c  through the so-called “harmonic cubed average”,

then we have the small-ω density of modes

At any temperature,

Recall from equation (5.78) that

and using the small-ω result (7.11), we have the low-temperature result

For our first step, avoid despair — instead convert to the dimensionless variable

G(ω)dω =  number of normal modes with frequencies from ω to ω+dω (7.5.1)
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and find

The integral is rather hard to do, but we don’t need to do it — the integral is just a number. We have achieved our aim, namely to
show that at low temperatures, C  ∼ T .

However, if you want to chase down the right numbers, after some fiddling you’ll find that

Thus, the low-temperature specific-heat of a solid due to a lattice vibration is

7.3 How far do the atoms vibrate?

Consider a simplified classical Einstein model in which N atoms, each of mass m, move classically on a simple cubic lattice
with nearest neighbor separation of a. Each atom is bound to its lattice site by a spring of spring constant K, and all the
values of K are the same. At temperature T, what is the root mean square average distance of each atom from its equilibrium
site? (Note: I am asking for an ensemble average, not a time average.)

This page titled 7.5: Low-temperature Heat Capacity is shared under a CC BY-SA license and was authored, remixed, and/or curated by Daniel F.
Styer.
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