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8.4: Boltzmann's Equation
If we have a large number of atoms in a hot, dense gas, the atoms will constantly be experiencing collisions with each other,
leading to excitation to the various possible energy levels. Collisional excitation will be followed, typically on timescales of the
order of nanoseconds, by radiative deexcitation. If the temperature and pressure remain constant, there will exist a sort of dynamic
equilibrium between collisional excitations and radiative de-excitations, leading to a certain distribution of the atoms among their
various energy levels. Most of the atoms will be in low-lying levels; the number of atoms in higher levels will decrease
exponentially with energy level. The lower the temperature, the faster will be the population drop at the higher levels. Only at very
high temperatures will high-lying energy levels be occupied by an appreciable number of atoms. Boltzmann's Equation shows just
what the distribution of the atoms will be among the various energy levels as a function of energy and temperature.

Let's imagine a box (constant volume) holding  atoms, each of which has  possible energy levels. Suppose that there are 
atoms in energy level . The total number  of atoms is given by

Here,  is a running integer going from  to , including  as one of them.

The total internal energy  of the system is

We now need to establish how many ways there are of arranging  atoms such that there are  in the first energy level,  in the
second, and so on. We shall denote this number by . To some, it will be intuitive that

That is,

I don't find it immediately obvious myself, and I am happier with at least a minimal proof. Thus, the number of ways in which 

atoms can be chosen from  to occupy the first level is , where the parentheses denote the usual binomial coefficient. For

each of these ways, we need to know the number of ways in which  atoms can be chosen from the remaining . This is,

of course, . Thus the number of ways of populating the first two levels is .

On continuing with this argument, we eventually arrive at

If the binomial coefficients are written out in full (do it - don't just take my word for it), there will be lots of cancellations and you
almost immediately arrive at Equation .

We now need to know the most probable partition - i.e. the most probable numbers , , etc. The most probable partition is the
one that maximizes  with respect to each of the  - subject to the constraints represented by Equations  and .

Mathematically it is easier to maximize , which amounts to the same thing. Taking the logarithm of Equation , we obtain

Apply Stirling's approximation to the factorials of all the variables. (You'll see in a moment that it won't matter whether or not you
also apply it to the constant term ) We obtain
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Let us now maximize  with respect to one of the variables, for example , in a manner that is consistent with the constraints
of Equations  and . Using the method of Lagrangian multipliers, we obtain, for the most probable occupation number of
the th level, the condition

Upon carrying out the differentiations, we obtain

That is to say:

What now remains is to identify the Lagrangian multipliers  (or ) and . Multiply both sides of Equation  by .
Recall that  is a running subscript going from  to , and that  is one particular value of . Therefore now change the subscript
from  to , and sum from  to , and Equation  now becomes

where we have made use of Equations  and . From Equation , we see that

so that

Now apply Equation 8.3.3, followed by Equation 8.3.2, and we immediately make the identification

Thus Equation  becomes

We still have to determine . If we change the subscript in Equation  from  to  and sum from  to , we immediately find
that

Thus

where I have omitted the summation limits (  and ) as understood..

However, there is one factor we have not yet considered. Most energy levels in an atom are degenerate; that is to say there are
several states with the same energy. Therefore, to find the population of a level, we have to add together the populations of the
constituent states. Thus each term in Equation  must be multiplied by the statistical weight  of the level. (This is
unfortunately often given the symbol . See section 7.14 for the distinction between ,  and . The symbol  is a form of the
Greek letter pi.) Thus we arrive at Boltzmann's Equation:

The denominator of the expression is called the partition function (die Zustandsumme). It is often given the symbol  or  or .

lnX Nj

8.4.1 8.4.2

j

+λ +μ = 0.
∂ lnX

∂Nj

∂N

∂Nj

∂U

∂Nj

(8.4.8)

−ln +λ+μ = 0.Nj Ej (8.4.9)

= = C .Nj eλ+μEj eμEj (8.4.10)

λ C = eλ μ 8.4.9 Nj

i 1 m j i

j i i = 1 m 8.4.9

− ln +λN +μU = 0,∑
i=1

m

Ni Ni (8.4.11)

8.4.1 8.4.2 8.4.7

− ln = lnX−lnN ! −N ,∑
i=1

m

Ni Ni (8.4.12)

lnX = lnN ! −(λ+1)N −μU. (8.4.13)

μ = − .
1

kT
(8.4.14)

8.4.10

= C .Nj e− /(kT )Ej (8.4.15)

C 8.4.15 j i 1 m

C = .
N

∑m
i=1 e

− /(kT )Ej

(8.4.16)

=
Nj

N

e− /(kT )Ej

∑ e− /(kT )Ej

(8.4.17)

1 m

8.4.17 ϖ

g d g ϖ ϖ

=
Nj

N

ϖje
− /(kT )Ej

∑ϖie− /(kT )Ei

(8.4.18)

u Q Z

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6695?pdf


8.4.3 https://phys.libretexts.org/@go/page/6695

The statistical weight of a level of an atom with zero nuclear spin is . If the nuclear spin is , the statistical weight of a level
is . However, the same factor  occurs in the numerator and in every term of the denominator of equation 

, and it therefore cancels out from top and bottom. Consequently, in working with Boltzmann's equation, under most
circumstances it is not necessary to be concerned about whether the atom has any nuclear spin, and the statistical weight of each
level in equation  can usually be safely taken to be .

In equation  we have compared the number of atoms in level  with the number of atoms in all level. We can also compare
the number of atoms in level  with the number in the ground level 0:

Or we could compare the number in level  to the number in level 1, where “2” represent any two level, 2 lying higher than 1:
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