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2.10: Derivation of Wien's and Stefan's Laws
Wien's and Stefan's Laws are found, respectively, by differentiation and integration of Planck's equation. Neither of these is
particularly easy, and they are not found in every textbook. Therefore, I derive them here.

Wien's Law
Planck's equation for the exitance per unit wavelength interval (equation 2.6.1) is

in which I have omitted some subscripts. Differentiation gives

 is greatest when this is zero; that is, when

where

Hence, with equation 2.6.9, the wavelength at which M is a maximum, is given by

The maximum value of  is found be substituting this vale of  back into Planck's equation, to arrive at equation 2.7.16. The
corresponding versions of Wien's Law appropriate to the other version's of Planck's equation are found similarly.

Stefan's Law
Integration of Planck's equation to arrive at Stefan's law is a bit more tricky.

It should be clear that , and therefore I choose to integrate the easier of the functions, namely . To
integrate , the first thing we would do anyway would be to make the substitution .

Planck's equation for the blackbody exitance per unit frequency interval is

Let ; then

And, except for the numerical value of the integral, we already have Stefan's law. The integral can be evaluated numerically, but
not without difficulty, and there is an analytical solution for it.

Consider the indefinite integral and integrate it by parts:

Now put the limits in:

= ,
M

C

1

( −1)λ5 eK/λT
(2.11.1)

= − ⋅ [5 ⋅( −1)+ ⋅(− ) ] .
1

C

dM

dλ

1

( −1)eK/λT 2
λ4 eK/λT λ5 K

Tλ2
eK/λT (2.11.2)

M

x = 5 (1 − ) ,e−x (2.11.3)

x = .
K

λT
(2.11.4)

λ = .
hc

kxT
(2.11.5)

M λ

dλ = dν∫ ∞

0
Mλ ∫ ∞

0
Mν Mν

Mλ ν = c/λ

= .Mν C3 ∫
∞

0

dνν3

−1e ν/TK2
(2.11.6)

x = ν/TK2

= ,Mν

2πk4T 4

c2h3
∫

∞

0

dxx3

−1ex
(2.11.7)

∫ = ln(1 − )−3 ∫ ln(1 − )dx+const.
dxx3

−1ex
x3 e−x x2 e−x (2.10.1)

= −3 ln(1 − )dx.∫
∞

0

dxx3

−1ex
∫

∞

0

x2 e−x (2.10.2)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/8021?pdf
https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Stellar_Atmospheres_(Tatum)/02%3A_Blackbody_Radiation/2.10%3A_Derivation_of_Wien's_and_Stefan's_Laws


2.10.2 https://phys.libretexts.org/@go/page/8021

Write down the Maclaurin expansion of the integrand:

and integrate term by term to obtain

We must now evaluate 

The series  is the Riemann -function. For , it diverges. For  etc., it has to be evaluated numerically. For 

 etc., the sums can be written explicitly in terms of . For example:

One of the stages necessary in evaluating the -function is to derive the infinite product

If we can do that, we are more than halfway there.

Let's start by considering the Fourier expansion of :

In Equation   is an integer,  not necessarily so; we shall suppose that  is some number between 0 and 1. There is no
need to consider any sine terms, because  is an even function of . We work out what the Fourier coefficients are in the usual
way, to get

As usual, and for the usual reason,  is an exception:

We have therefore arrived at the Fourier expansion of :

Put  and rearrange slightly:

Since we are assuming that  is some number between 0 and 1, we shall re-write this so that the denominators are all positive:
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Now multiply both sides by  and integrate from  to . The integration must be done with care. The indefinite integral

of the left hand side is , i.e. . The definite integral between  and  is 

.

The limit of the second term is , so the definite integral is . Integrating the right hand side is a bit easier, so we

arrive at

On taking the antilogarithm, we arrive at the required infinite product:

Now expand this as a power series in :

The first one is easy, but subsequent ones rapidly get more difficult, but you do have to get at least as far as .

Now compare this expansion with the ordinary Maclaurin expansion:

and we arrive at the correct expressions for the Riemann -functions. We then get for Stefan's law:

where 

Questions
Finally, now that you have struggled through Riemann’s zeta-function, let’s just make sure that you have understood the really
simple stuff, so here are a couple of easy questions – and you won’t have to bother with zeta-functions.

1. By what factor should the temperature of a black body be increased so that

a) The integrated radiance (over all frequencies) is doubled?

b) The frequency at which its radiance is greatest is doubled?

c) The spectral radiance per unit wavelength interval at its wavelength of maximum spectral radiance is doubled?

2. A block of shiny silver (absorptance = 0.23) has a bubble inside it of radius , and it is held at a temperature of .

A block of dull black carbon (absorptance = 0.86) has a bubble inside it of radius , and it is held at a temperature of ,

Calculate the ratio

Answers. 1. a) 1.189 b) 2.000 c) 1.149

2. 13.5

This page titled 2.10: Derivation of Wien's and Stefan's Laws is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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σ = 5.6705 ×   .10−8 W m−2K−4

2.2cm 1200K

4.3cm 2300K

.
Integrated radiation energy density inside the carbon bubble

Integrated radiation energy density insdie the silver bubble
(2.10.7)
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