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10.4: Combination of Profiles
Several broadening factors may be simultaneously present in a line. Two mechanisms may have similar profiles (e.g. thermal
broadening and microturbulence) or they may have quite different profiles (e.g. thermal broadening and radiation damping). We
need to know the resulting profile when more than one broadening agent is present. Let us consider an emission line, and let 

. Let us suppose that the lines are broadened, for example, by thermal broadening, the thermal broadening function
being . Suppose, however, that, in addition, the lines are also broadened by radiation damping, the radiation damping profile
being . At a distance  from the line centre, the contribution to the line profile is the height of the function  weighted by
the function . That is to say the resulting profile  is given by

The reader should convince him- or herself that this is exactly the same as

This profile is called the convolution of the two constituent profiles, and is often written symbolically

Convolving Two Gaussian Functions
Let us consider, for example, the convolution of two Gaussian functions, for example the convolution of thermal and
microturbulent broadening.

Suppose one of the Gaussian functions is

Here . The area under the curve is unity, the HWHM is  and the peak is . (Verify these.) Suppose that the

second Gaussian function is

It can now be shown, using Equation  or , that the convolution of  is

where

We used this result already in Section 10.4 when, in adding microturbulent to thermal broadening, we substituted  for 
. In case you find the integration to be troublesome, I have done it in an Appendix to this Chapter.

Convolving Two Lorentzian Functions
Now let’s consider the combination of two lorentzian functions. Radiation damping gives rise to a lorentzian profile, and we shall
see later that pressure broadening can also give rise to a lorentzian profile. Let us suppose that the two lorentzian profiles are

and

x = λ−λ0

f(x)
g(x) ξ f(ξ)

g(x−ξ) h(x)

h(x) = f(ξ)g(x−ξ)dξ.∫
∞

−∞
(10.4.1)

h(x) = f(x−ξ)g(ξ)dξ.∫
∞

−∞
(10.4.2)

h = f ∗ g. (10.4.3)

(x) = ⋅ exp(− ) = exp(− ) .G1
1

g1

ln2

π

− −−−
√

ln2x2

g2
1

0.46972

g1

0.69315x2

g2
1

(10.4.4)

x = λ−λ0 g1
1
g1

ln 2
π

−−−
√

(x) = ⋅ exp(− ) .G2
1

g2

ln2

π

− −−−
√

ln2x2

g2
2

(10.4.5)

10.4.1 10.4.2  and G1 G2

G(x) = (x) ∗ (x) = ⋅ exp(− ) ,G1 G2
1

g

ln2

π

− −−−
√

ln2x2

g2
(10.4.6)

= + .g2 g2
1 g2

2 (10.4.7)

+V 2
m ξ2

m

− −−−−−−
√

Vm

(x) = ⋅L1
l1

π

1

+x2 l21
(10.4.8)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6710?pdf
https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Stellar_Atmospheres_(Tatum)/10%3A_Line_Profiles/10.04%3A_Combination_of_Profiles


10.4.2 https://phys.libretexts.org/@go/page/6710

Here . The area under the curve is unity, the HWHM is  and the peak is . (Verify these.) It can be shown that

where

Details of the integration are in the Appendix to this Chapter.

Convolving a Lorentzian Function with a Gaussian Function
Let us now look at the convolution of a Gaussian profile with a lorentzian profile; that is, the convolution of

with

We can find the convolution from either Equation  or from Equation , and we obtain either

or

The expression  or , which is a convolution of a Gaussian and a lorentzian profile, is called a Voigt profile. (A rough
attempt at pronunciation would be something like Focht.)

A useful parameter to describe the “gaussness” or “lorentzness” of a Voigt profile might be

which is 0 for a pure lorentz profile and 1 for a pure Gaussian profile. In figure X.4 I have drawn Voigt profiles for 
 (continuous, dashed and dotted, respectively). The profiles are normalized so that all have the same area.

A nice exercise for those who are more patient and competent with computers than I am would be to draw 1001 Voigt profiles, with
 going from 0 to 1 in steps of 0.001, perhaps normalized all to the same height rather than the same area, and make a movie of a

Gaussian profile gradually morphing to a lorentzian profile. Let me know if you succeed!

(x) = ⋅ .L2
l2

π

1

+x2 l22
(10.4.9)

x = λ−λ0 l1 1/(πl)

L(x) = L(x) ∗ (x) = ⋅ ,L2
1

π

1

+x2 l2
(10.4.10)

l = + .l1 l2 (10.4.11)

G(x) = ⋅ exp(− )
1

g

ln2

π

− −−−
√

ln2x2

g
(10.4.12)

L(x) = ⋅ .
1

π

1

+x2 l2
(10.4.13)

10.4.1 10.4.2

V (x) = dξ
1

g

ln2

π3

− −−−
√ ∫

∞

−∞

exp(−[(ξ−x ln2]/ ))2 g2

+ξ2 l2
(10.4.14)

V (x) = dξ.
1

g

ln2

π3

− −−−
√ ∫

∞

−∞

exp[−( ln2)/ ]ξ2 g2

(ξ−x +)2 l2
(10.4.15)

10.4.14 10.4.15

= ,kG
g

g+ l
(10.4.16)

= 0.25, 0.5 and 0.75kG

kG

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6710?pdf


10.4.3 https://phys.libretexts.org/@go/page/6710

 

As for the gauss-gauss and lorentz-lorentz profiles, I have appended some details of the integration of the gauss-lorentz profile in
the Appendix to this Chapter.

The FWHM or FWHm in wavelength units of a Gaussian profile (i.e. ) is

The FWHM or FWHm in frequency units of a lorentzian profile is

Here  is the sum of the radiation damping constant (see section 2) and the contribution from pressure broadening  (see section
6). For the FWHM or FWHm in wavelength units (i.e. ), we have to multiply by .

Integrating a Voigt Profile
The area under Voigt profile is , where  is given by Equation , which itself had to be evaluated with a
numerical integration. Since the profile is symmetric about , we can integrate from  and multiply by 2. Even so, the
double integral might seem like a formidable task. Particularly troublesome would be to integrate a nearly lorentzian profile with
extensive wings, because there would then be the problem of how far to go for an upper limit. However, it is not at all a formidable
task. The area under the curve given by Equation  is unity! This is easily seen from a physical example. The profile given
by Equation  is the convolution of the lorentzian profile of Equation  with the Gaussian profile of Equation ,
both of which were normalized to unit area. Let us imagine that an emission line is broadened by radiation damping, so that its
profile is lorentzian. Now suppose that it is further broadened by thermal broadening (Gaussian profile) to finish as a Voigt profile.
(Alternatively, suppose that the line is scanned by a spectrophotometer with a Gaussian sensitivity function.) Clearly, as long as the
line is always optically thin, the additional broadening does not affect the integrated intensity.

Now we mentioned in sections 2 and 3 of this chapter that the equivalent width of an absorption line can be calculated from 
 FWHm, and likewise the area of an emission line is  FWHM, where 

 for a Gaussian profile and  for a lorentzian profile. We know that the integral of  is
unity, and it is a fairly straightforward matter to calculate both the height and the FWHM of . From this, it becomes possible
to calculate the constant  as a function of the Gaussian fraction . The result of doing this is shown in figure X.4A.
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This curve can be fitted with the empirical Equation

where . The error incurred in using this formula nowhere exceeds
0.5%; the mean error is 0.25%.

The Voigt Profile in Terms of the Optical Thickness at the Line Center.
Another way to write the Voigt profile that might be useful is

Here  and  is a dummy variable, which disappears when the definite integral is performed. The Gaussian HWHM is 
, and the lorentzian HWHM is . The optical thickness at  is , and the optical

thickness at the line centre is .  is a dimensionless coefficient, whose value depends on the Gaussian fraction 
.  is clearly given by

If we now let  and , and also make use of the symmetry of the integrand about , this
becomes

On substitution of  (in order to make the limits finite), we obtain

which can readily be numerically integrated for a given value of . Recall that  and hence that 
. The results of the integration are as follows. The column  is explained following figure X.4B.

FIGURE X.4A
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The last entry, the value of  for , a pure Gaussian profile, is . These data are graphed in figure X.4B.

 

The empirical formula

where

fits the curve tolerably well within (but not outside) the range .

This page titled 10.4: Combination of Profiles is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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