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5.7: A Series of Problems
I am now going to embark upon a series of problems that at first sight may appear to be not very relevant to stellar atmospheres, but
the reader is urged to be patient and look at them, partly because they make use of many of the ideas encountered up to this point,
and also because they culminate in determining how the flux and the mean specific intensity in an atmosphere increase with optical
depth in terms of the source function.

Problem 1

An infinite plane radiating surface has a uniform specific intensity (radiance) . What is the flux (irradiance) at a point , situated
at a height  above the surface?

We have already answered that question in equation 1.15.3, and the answer, which, unsurprisingly since the plane is infinite in
extent, is independent of , is , so let's get on with

Problem 2

Same as Problem 1, except that this time the space between the radiating plane and the point  is filled with a uniform gas of
absorption coefficient . The specific intensity (radiance) of the surface, we are told, is, following astrophysical custom, .
Unfortunately I shall also be compelled to make use of "intensity" in the "standard" sense of Chapter 1, and for that I shall use the
symbol .

The elemental area is , or, since , it is . The intensity of the elemental area towards  is the
specific intensity (radiance) times the projected area:

If there were no absorption, the irradiance of  by the elemental area would be

which becomes

But it is reduced by absorption by a factor , where . Therefore the irradiance of  by the elemental area is

For the irradiance at  (or "flux" in the astrophysics sense) by the entire infinite plane we integrate from  to  and  to 
, to obtain

If we now write , this becomes
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and we hope that the reader has not forgotten the meaning of  - if you have, as the game of snakes and ladders would say, Go
back to Chapter 3. Note that, at , this becomes , as expected.

 

A point  is situated at a height  above an infinite plane slice of gas of optical thickness  and source function . There is
nothing between  and the slice of gas. What is the flux (irradiance) at ?

At first glance this appears to be identical to Problem 1, except that the specific intensity of the slice is . However, a more
careful look at the diagram will reveal that the specific intensity of the slice is by no means uniform. It is darkest directly below ,
and, when  looks farther from his nadir, the slice gets brighter and brighter, being  at an angle . The upwards flux
("irradiance") at  is therefore

Same as Problem 3, except that this time we'll place an absorbing gas of optical thickness  between  and the slice .

 

In that case the flux (irradiance) at  from an element at an angle  is reduced by  and consequently the flux at  from the
entire slice is

If we write , we very soon see that this is

Problem 5 (an important result in atmosphere theory)

Now consider a point  at an optical depth  in a stellar atmosphere. (The use of the word "depth" will imply that  is measured
downwards from the surface towards the centre of the star.) We shall assume a plane parallel atmosphere i.e. a shallow atmosphere,
or one than is shallow compared with the radius of the star, or we are not going to go very deep into the atmosphere. The point  is
embedded in an absorbing, scattering, emitting gas. The flux coming up from below is equal to contributions from all the slices
beneath , from  to :

The flux pouring down from above is the contribution from all the slices above, from  to  :
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The net upward flux at a point  at an optical depth  in an absorbing, scattering, emitting atmosphere is

The integral  is just  times this.

The reader is now asked to find the integrals  and . These should be given in the form of integrals that include a source
function  and an exponential integral function  or . It is important to get the argument the right way round.
One way is right; the other is wrong.

Problem 6

This is an easier problem, though the result is nevertheless important.

 

Figure V.5 shows a slab of gas of optical thickness . The observer is supposed to be to the right of the slab, and optical depth is
measured from the right hand face of the slab towards the left. At an optical depth  within the slab is a slice of optical thickness 

. The slab is supposed to have a uniform source function  throughout. Source function is specific intensity per unit optical
thickness, so the specific intensity of the slice is . The emergent intensity from this slice, by the time that it reaches the right
hand surface of the slab, is . The emergent specific intensity of the entire slab is the sum of the contributions of all such
slices throughout the slab; that is . If the source function is uniform throughout the slab, so that  is not a function of ,
we find that the emergent specific intensity of the slab is

Problem. A quantity of hot gas is held in a box 50 cm long. The emission coefficient of the gas is  and the
extinction coefficient is . What is the emergent specific intensity (radiance)? (I make it .)

This page titled 5.7: A Series of Problems is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum
via source content that was edited to the style and standards of the LibreTexts platform.

P τ

F (τ) = 2π [ S(t) (t−τ)dt− S(t) (τ − t)dt]∫
∞

τ

E2 ∫
τ

0

E2 (5.7.1)

H 1/(4π)

J(τ) Kτ)

S(t) E(t−τ) E(τ − t)

FIGURE V.5

τ

t

dt S

Sdt

S dte−t

S dt∫ τ

0
e−t S t

I = S (1 − )e−t (5.7.2)

0.06 W sr−1m−3

0.025 cm−1 1.71 ×10−2W m−2sr−1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/8694?pdf
https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Stellar_Atmospheres_(Tatum)/05%3A_Absorption_Scattering_Extinction_and_the_Equation_of_Transfer/5.07%3A_A_Series_of_Problems
https://creativecommons.org/licenses/by-nc/4.0
https://www.astro.uvic.ca/~tatum/celmechs.html
http://orca.phys.uvic.ca/~tatum/stellatm.html

