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8.6: Saha's Equation
Consider the reversible reaction

where  is a neutral atom and  its first ion. Let , ,  be the numbers of neutral atoms, ions and electrons respectively,
held in a box of volume . Then

is the Saha function. It is a function of temperature and pressure, high temperature favouring ionization and high pressure favouring
recombination. (Students of chemistry will recognize this as an application of Le Chatelier's principle.) The equation tells us the
relative numbers of the three types of particle (i.e. the degree of ionization) in an equilibrium situation when the number of
ionizations per second is equal to the number of recombinations per second.

Now the number of particles in a given energy level is proportional to the Boltzmann factor for that level, and the total number of
particles is proportional to the sum of the Boltzmann factors for all the levels - i.e. to the partition function. Thus, using the symbol 

 to denote partition functions, we have, for Saha's equation:

The partition function is the sum of the Boltzmann factors over all the states, translational and internal (electronic). The total
energy of a particle is the sum of its translational and internal energies, so that total partition function is the product of its
translational and internal partition functions, for which we shall use the symbol . Therefore

Here , which is very little different from .

The internal partition function of the electron is merely its statistical weight . In calculating the internal partition
functions of the atom and ion, it is, of course, essential to measure all energies from the same level - the ground level of the neutral
atom, for example. You would not be so foolish, of course, as to calculate the partition function of the atom by using, in the
Boltzmann sum, the energies of each level above the ground level of the atom, and then calculate the partition function of the ion
by using the energies above some quite different level, such as the energy of the ground stage of the ion, would you? Most of us
probably would be so foolish; we should, of course, add  (the ionization energy) to each level of the ion. If we do calculate the
partition function of the ion using energies above the ground level of the ion, we must then multiply the result, , by .
Being even more careful, we should remember, from section 8.5, that the ionization energy is in practice lowered by a small
amount . Finally, let us now use the symbol  to denote number of particles per unit volume (so that , and on no
account to be confused with the quantum numbers  used in section 8.5) and we arrive at the usual form for Saha's equation:

It might be noted that  is a function of , which leads to a slight complication in the computation of Saha's equation, which
we shall encounter in one of the problems that follow.

It should be remarked that Saha's equation played an extremely important role in the understanding of the stellar spectral sequence.
As is well known, the sequence of spectral types OBAFG… is a result of the degree of ionization and excitation of the elements as
a function of temperature, and the difference in the degree of ionization between main sequence stars and giants of a given
temperature is the result of the higher degree of ionization in the relatively low pressure atmospheres of the giant stars. This could
not be understood at a quantitative level until the development of Saha's equation and its application to stellar atmospheres by Saha,
Fowler, Milne and Payne (later Payne-Gaposhkin) in the 1920s.

Problems.

Problem 1. Verify that equation  balances dimensionally.
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Problem 2. In the bad old days, we did calculations using logarithm tables! You probably will never have to do that, but this
exercise will nevertheless turn out to be useful. Show that Saha's equation can be written as

and determine the numerical value of the constants  and  if  is expressed in ,  is in ,  is the ionization potential in
volts, and logarithms are common logarithms (i.e. to the base 10). I make them  and . It is common also to
write equation  in the form

in which .

Problem 3. You are going to calculate the Saha function for hydrogen, and so you need the partition functions for the electron, the
neutral hydrogen atom and the hydrogen ion. The electron is easy. Its spin is , so its partition function is , as already discussed
and indeed already incorporated into Saha's equation. The partition function for neutral hydrogen can be taken to be the statistical
weight of its  shell, which is . Now what about the statistical weight of the hydrogen ion? The hydrogen ion is a
proton, which has spin . Therefore, as for the electron, should the partition function be ? The answer is no! When
calculating the Saha equation for hydrogen, you should take the partition function of the proton to be . This probably seems
entirely illogical and you are probably quite sure that I am wrong. But before coming to this conclusion, read again the last
paragraph of section 8.4 and the first paragraph of section 8.5i. You can include the effect of the proton spin provided that you take
it into account for both  and . If you insist that the statistical weight of the proton is , you must also insist that the statistical
weight of the  shell of  is . As with the Boltzmann equation, you usually need not be concerned with nuclear spin -
it cancels out in . There is nothing, however, to cancel out the factor  for the electron partition function.

Problem 4. A kilogram of water is contained is a box of volume one cubic metre. The box is made of material that won't melt or
vaporize. (!) Draw a graph showing, as a function of temperature, from  to , the logarithm of the numbers per
unit volume of each of the species , , , , . (Assume there are no higher ionization stages, and no molecules.)

This is going to be difficult, and will involve some computation. The first thing you are going to need to do is to calculate the Saha
functions of the species involved as a function of temperature., and for this, you will need the partition functions . For the electron,
the partition function is  and is already incorporated in the Saha equation. As discussed in Problem 3, the partition function of 
should be taken to be , and, as for the electron, it is mercifully independent of temperature. For neutral , the statistical weight of
the ground shell is , and, as you will already have discovered if you carried out the little calculation in section 8.5ii, you can
probably take this to be the partition function at all temperatures between  and . The ground term of neutral
oxygen is , and the first excited term is  at a term value of . Probably only the ground term contributes
appreciably to the partition function, but you might want to check that. The ground term of  is  and the first excited term is
a long way up. Thus, for all species, you can probably take the partition function to be the statistical weight of the ground term and
independent of temperature. You are very lucky that I did not throw a metal into the mix!

The ionization limits of  and  are at  and  respectively. We don't yet know by how much,  the
ionization energy is lowered, so we'll ignore  to begin with. You now have enough information to calculate the Saha functions
for hydrogen and for oxygen as a function of temperature.

We have been asked to calculate the numbers of five species and we are therefore going to need four equations. We started with one
kilogram of water. We know that  grams of water contain  molecules, where  is Avogadro's number. (You may want to look
up the exact molar mass of .) Thus, we started with  molecules. Let's call that number .

Now see if you agree with the following five equations.
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We do indeed have five equations in the five unknowns, and all other quantities in the equations are known. The first two express
the stoichiometry of the water molecule. The third expresses electrical neutrality. The last two are Saha's equations for hydrogen
and oxygen. They five equations are not very difficult equations, although the last two are nonlinear, which makes them slightly
awkward. We can make them a little easier. I am going to re-write them:

If we now, just for the moment, suppose that  is a quantity whose value is known. In that case, equations  to  would
comprise five linear equations in just four unknowns. The condition for these equations to be consistent is that the determinant of
the coefficients and the constant terms be zero:

If I have done my algebra right (you might like to check this), this is a cubic equation in :

You can now solve this for . Remember, however, that, in calculating the Saha functions, you ignored the lowering of the
ionization potential , so what you have found is but a first approximation for . This is a function of the electron density. One
rather old formula, due to Unsöld, is

where  is in volts and  is in m  (indicating that the lowering of the potential is proportional to the distance between
the charged particles.). If you can find a more recent and perhaps better formula, by all means use it. You can use your first
approximation for  to calculate the Saha functions, and then repeat the entire calculation and continue to iterate until you obtain
an acceptably small change in . It is probable that only one iteration will be necessary. Having found  (and ) it is then
straightforward to find the remaining unknowns from equation  to . Just make sure that you make use of all five
equations as a check for arithmetic mistakes.

Problem 5. A bottle of methyl cyanate  is held in a cylinder with a movable piston such that the pressure remains
constant at one pascal. Heat it up to some temperature at which you can assume that the only species present are electrons and the
neutral atoms and singly ionized stages of , ,  and  - i.e. no higher ionization stages and no molecules. The cylinder and
piston are not allowed to melt - they are required only to provide constant pressure conditions, in contrast to the previous problem
in which you had a constant volume. You have nine unknowns, and you will need nine equations. In this problem you are asked
merely to write down the nine required equations, not necessarily to solve them unless you particularly want to. There will be Saha
equations for each element, an equation expressing electrical neutrality, and four equations reflecting the stoichiometry. You may
assume the ideal gas equation .
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