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5.5: Gauss's Theorem
Much of the above may have been good integration practice, but we shall now see that many of the results are
immediately obvious from Gauss’s Theorem – itself a trivially obvious law. (Or shall we say that, like many things, it is
trivially obvious in hindsight, though it needed Carl Friedrich Gauss to point it out!)

First let us define gravitational flux  as an extensive quantity, being the product of gravitational field and area:

 

If  and  are not parallel, the flux is a scalar quantity, being the scalar or dot product of  and :

 

If the gravitational field is threading through a large finite area, we have to calculate  for each element of area of the surface,
the magnitude and direction of  possibly varying from point to point over the surface, and then we have to integrate this all over
the surface. In other words, we have to calculate a surface integral. We’ll give some examples as we proceed, but first let’s move
toward Gauss’s theorem.

In figure , I have drawn a mass  and several of the gravitational field lines converging on it. I have also drawn a sphere of
radius  around the mass. At a distance  from the mass, the field is . The surface area of the sphere is . Therefore the
total inward flux, the product of these two terms, is , and is independent of the size of the sphere. (It is independent of the
size of the sphere because the field falls off inversely as the square of the distance. Thus Gauss’s theorem is a theorem that applies
to inverse square fields.) Nothing changes if the mass is not at the centre of the sphere. Nor does it change if (figure ) the
surface is not a sphere. If there were several masses inside the surface, each would contribute  times its mass to the total
normal inwards flux. Thus the total normal inward flux through any closed surface is equal to  times the total mass enclosed by
the surface. Or, expressed another way:

 

The total normal outward gravitational flux through a closed surface is equal to  times the total mass enclosed by the
surface.

This is Gauss’s theorem.
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Mathematically, the flux through the surface is expressed by the surface integral . If there is a continuous distribution of
matter inside the surface, of density  which varies from point to point and is a function of the coordinates, the total mass inside the
surface is expressed by . Thus Gauss’s theorem is expressed mathematically by

You should check the dimensions of this Equation.

 

In figure  I have drawn gaussian spherical surfaces of radius  outside and inside hollow and solid spheres. In  and , the
outward flux through the surface is just  times the enclosed mass ; the surface area of the gaussian surface is . This
the outward field at the gaussian surface (i.e. at a distance  from the centre of the sphere is . In , no mass is inside the
gaussian surface, and therefore the field is zero. In , the mass inside the gaussian surface is , and so the outward field is 

.

 

In figure  I draw (part of an) infinite rod of mass  per unit length, and a cylindircal gaussian surface of radius  and length 
around it.

∫ ∫ g ⋅ dA

ρ

∫ ∫ ∫ ρdV

∫ ∫ g ⋅ dA = −4πG∫ ∫ ∫ ρdV . (5.5.1)
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The surface area of the curved surface of the cylinder is , and the mass enclosed within it is . Thus the outward field at the
surface of the gaussian cylinder (i.e. at a distance  from the rod) is , in agreement with Equation
5.4.18.

In figure  I have drawn (part of) an infinite plane lamina of surface density , and a cylindrical gaussian surface or cross-
sectional area  and height .

 

The mass enclosed by the cylinder is  and the area of the two ends of the cylinder is . The outward field at the ends of the
cylinder (i.e. at a distance  from the plane lamina) is therefore , in agreement with Equation 5.4.13.
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