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13.12: Sector-Triangle Ratio

We recall that it is easy to determine the ratio of adjacent sectors swept out by the radius vector. By Kepler’s second law, it is just
the ratio of the two time intervals. What we really need, however, are the triangle ratios, which are related to the heliocentric
distance by Equation 13.2.1. Oh, wouldn’t it just be so nice if someone were to tell us the ratio of a sector area to the corresponding
triangle area! We shall try in this section to do just that.

Notation : Triangleratios: a3 =A;1/As, a3 =A3/A,. (13.12.1a,b)
Sectorratios: by =B;/B;, bs=DBs/Bs. (13.12.2a,b)
B B B
Sector-triangle ratios: R = A—i, R2A—z, R3 = A—z, (13.12.3a,b,c)
from which it follows that
R, R,
=—b = —bs. 13.12.4a,b
a R, 1, a3 Rs 3 ( a,b)

We also recall that subscript 1 for areas refers to observations 2 and 3; subscript 2 to observations 3 and 1; and subscript 3 to
observations 1 and 2. Let us see, then, whether we can determine R3 from the first and second observations.

Readers who wish to avoid the heavy algebra may proceed direct to Equations 13.12.25 and 13.12.26, which will enable the
calculation of the sector-triangle ratios.

Let (r1,v1) and (72, v2) be the polar coordinates (i.e. heliocentric distance and true anomaly) in the plane of the orbit of the planet
at the instant of the first two observations. In concert with our convention for subscripts involving two observations, let

2f3 =7V — V1. (13125)

We have R3 = B3/ Aj;. From Equation 13.4.1, which is Kepler’s second law, we have, in the units that we are using, in which
GM =1, B= %ﬁ and therefore Bs = %\/77'3. Also, from the z-component of Equation 13.8.15c, we have
As = %7‘17‘2 sin(vy —v1) .

Therefore

1 1
Rs = ,\/ s __ Vi (13.12.6a)
rirasin(vy —v;)  TiT2sin2f3

In a similar manner, we have

\/iTl \/iTl
= = 13.12.
R rorgsin(vg —vy)  Torzsin2fi (13.12.6b)
R, = viry __Vin (13.12.6¢)

ryrysin(vz —v;)  r3rysin2fy
I would like to eliminate [ from here.

I now want to recall some geometrical properties of an ellipse and a property of an elliptic orbit. By glancing at figure II.11, or by
multiplying Equations 2.3.15 and 2.3.16, we immediately see that rcosv=a(cosE —e) , and hence by making use of a
trigonometric identity we find

1 1
7 cos’ ride a(1 —e) cos? EE, (13.12.7)
and in a similar manner it is easy to show that
. o1 . o1
rsin Ev:a(l +e)sin §E (13.12.8)

Here FE is the eccentric anomaly.
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Also, the mean anomaly at time ¢ is defined as 2?”(15 —T) and is also equal (via Kepler’s Equation) to E —esin E . The period of

the orbit is related to the semi major axis of its orbit by Kepler’s third law: P? = é—’;a?’ . (This material is covered on Chapter 10.)
Hence we have (in the units that we are using, in which GM =1):
t—T
E—esinE=——, (13.12.9)
a3/?
where T is the instant of perihelion passage.
Now introduce
2f3 =v2 —, (13.12.10)
2F; =vy 4y, (13.12.11)
293 = By — By, (13.12.12)
2G3 =Es + Ej. (13.12.13)
From Equation 13.12.7 I can write
1 1 1 1
+/T1T3 COS 5U1C08 vy = a(l —e)cos §E1 cos EEQ (13.12.14)
and from Equation 13.12.8 T can write
11 1 1
+/T173 sin Suisin gy = a(l+e)sin EEl sin 5E2' (13.12.15)

I now make use of the sum of the sum-and-difference formulas from page 38 of chapter 3, namely
cos Acos B= %(cos S+ cosD) andsin Asin B = %(cosD —cos S), to obtain

\/T172(cos F3 +cos f3) = a(1 —e)(cos G3 +cos g3) (13.12.16)
and
\/T172(cos f3 —cos F3) = a(1 +e)(cos g3 — cos G3). (13.12.17)
On adding these, we obtain
\/T172 €0S f3 = a(cos g3 — ecos G3). (13.12.18)
I leave it to the reader to derive in a similar manner (also making use of the formula for the semi latus rectum = a(1 — €?))
J/riresinfy = /ay/Ising (13.12.19)
and
r1+72 =2a(1l —ecosgs cosG3). (13.12.20)

We can eliminate e cos G from Equations 13.12.18 and 13.12.20:
71 + 19 — 2. /F173 COS f3 cos g3 = 2asin® g3 (13.12.21)

Also, if we write Equation 13.12.9 for the first and second observations and take the difference, and then use the formula on page
35 of chapter 3 for the difference between two sines, we obtain

2(gs — esings cos Gg) =—>. (13.12.22)
a3/2
Eliminate e cos G3 from Equations 13.12.18 and 13.12.22:
2,/rir
293 —sin2gs + ! 2sing3 cos f3 - (13.12.23)

a3/?’

Also, eliminate [ from Equations 13.12.6 and 13.12.19:
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_ 73
B 2\/(1,_1 /T173 cos f3sin g3 ’

We have now eliminated F3, G3 and e, and we are left with Equations 13.12.21, 23 and 24, the first two of which I now repeat for
easy reference:

R;

(13.12.24)

71+ 719 —2,/T1T3 COS f3 COS g3 = 2a sin’ g3 (13.12.21)
2./rr
295 —sin2gs + —Y—2sin gs cos f3 :%. (13.12.23)
a a

In these Equations we already know an approximate value for f3 (we’ll see how when we resume our numerical example); the
unknowns in these Equations are R3, a and g3, and it is R3 that we are trying to find. Therefore we need to eliminate a and g3. We
can easily obtain a from Equation 13.12.24, and, on substitution in Equations 13.12.21 and 23 we obtain, after some algebra:

M2
RR=—3 (13.12.25)
N3 —cosgs
and
M3 (g3 —sings cos gs)
R{—R§ = ; ; (13.12.26)
sin” g3
where
M = LE 7 (13.12.27)
2(1 /7173 COS f3)
and
r1+ 72
Ny = —. 13.12.28
3 2\/’/"17“2 COSf3 ( )

Similar Equations for R; and Ry can be obtained by cyclic permutation of the subscripts. Equations 13.12.25 and 26 are two
simultaneous Equations in R3 and g3. Their solution is given as an example in section 1.9 of chapter 1, so we can now assume that
we can calculate the sector-triangle ratios.

We can then calculate better triangle ratios from Equations 13.12.4 and return to Equations 13.7.4, 5 and 6 to get better geocentric
distances. From Equations 13.7.8 and 9 calculate the heliocentric distances. Make the light-time corrections. (I am not doing this in
our numerical example because our original positions were not actual observations, but rather were ephemeris positions.) Then go
straight to this section (13.12) again, until you get to here again. Repeat until the geocentric distances do not change.

This page titled 13.12: Sector-Triangle Ratio is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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