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2.4: The Hyperbola
A hyperbola is the locus of a point that moves such that the difference between its distances from two fixed points called the foci is
constant. We shall call the difference between these two distances  and the distance between the foci , where  is the
eccentricity of the hyperbola, and is a number greater than 1. See figure .

 

For example, in a Young's double-slit interference experiment, the th bright fringe is located at a point on the screen such that the
path difference for the rays from the two slits is  wavelengths. As the screen is moved forward or backwards, this relation
continues to hold for the th bright fringe, whose locus between the slits and the screen is therefore a hyperbola. The "Decca"
system of radar navigation, first used at the D-Day landings in the Second World War and decommissioned only as late as 2000 on
account of being rendered obsolete by the "GPS" (Global Positioning Satellite) system, depended on this property of the hyperbola.
(Since writing this, part of the Decca system has been re-commissioned as a back-up in case of problems with GPS.) Two radar
transmitters some distance apart would simultaneously transmit radar pulses. A ship would receive the two signals separated by a
short time interval, depending on the difference between the distances from the ship to the two transmitters. This placed the ship on
a particular hyperbola. The ship would also listen in to another pair of transmitters, and this would place the ship on a second
hyperbola. This then placed the ship at one of the four points where the two hyperbolas intersected. It would usually be obvious
which of the four points was the correct one, but any ambiguity could be resolved by the signals from a third pair of transmitters.

In figure , the coordinates of  and  are, respectively,  and .

The condition  requires that

and this is the Equation to the hyperbola. After some arrangement, this can be written

which is a more familiar form for the Equation to the hyperbola. Let us define a length  by

The Equation then becomes

which is the most familiar form for the Equation to a hyperbola.

When a meteor streaks across the sky, it can be tracked by radar. The radar instrumentation can determine the range (distance)
of the meteoroid as a function of time. Show that, if the meteoroid is moving at constant speed (a questionable assumption,
because it must be decelerating, but perhaps we can assume the decrease in speed is negligible during the course of the
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observation), and if the range  is plotted against the time, the graph will be a hyperbola. Show also that, if  is plotted against
, the graph will be a parabola of the form

where .

Radar observation of a meteor yields the following range-time data:

Assume that the velocity of the meteor is constant.

Determine i. The time of closest approach (to 0.01 ) 
ii. The distance of closest approach (to 0.1 ) 
iii. The speed (to 1.0 )

If you wish, just use the three asterisked data to determine ,  and . If you are more energetic, use all the data, and determine 
,  and  by least squares, and the probable errors of ,  and .

The distance between the two vertices of the hyperbola is its transverse axis, and the length of the semi transverse axis is  − but
what is the geometric meaning of the length ? This is discussed below in the next subsection (on the conjugate hyperbola) and
again in a later section on the impact parameter.

The lines perpendicular to the -axis and passing through the foci are the two latera recta. Since the foci are at , the
points where the latera recta intersect the hyperbola can be found by putting  into the Equation to the hyperbola, and it is
then found that the length  of a semi latus rectum is

The Equation

is the Equation to the conjugate hyperbola.

The conjugate hyperbola is drawn dashed in figure , and it is seen that the geometric meaning of  is that it is the length of the
semi transverse axis of the conjugate hyperbola. It is a simple matter to show that the eccentricity of the conjugate hyperbola is 

r r2

t

= a +bt +c,r2 t2 (2.4.1)

a = ,  b = −2 ,  c = + ,  V = speed of the meteoroid,   = time of closest approach,  V 2 V 2t0 V 2t2
0 r2

0 t0 r0

= distance of closest approach

t(s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

r(km)

101.4 ∗

103.0

105.8

107.8

111.1

112.6

116.7

119.3

123.8 ∗

126.4

130.6

133.3

138.1

141.3 ∗

(2.4.2)

s
km

km s−1

a b c

a b c V t0 r0

a

b

x (±ae,  0)
x = ae

l

l = a( −1).e2 (2.5.5)

 Definition: The Conjugate Hyperbola

− = −1
x2

a2

y2

b2
(2.5.6)

II.28 b

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6795?pdf


2.4.3 https://phys.libretexts.org/@go/page/6795

.

The lines

are the asymptotes of the hyperbola.

Equation  can also be written

Thus

is the hyperbola, the asymptotes, or the conjugate hyperbola, if ,  or  respectively. The asymptotes are drawn as dotted
lines in figure .

The semi angle ψ between the asymptotes is given by

If the eccentricity of a hyperbola is , show that the eccentricity of its conjugate is .

No one will be surprised to note that this implies that, if the eccentricities of a hyperbola and its conjugate are equal, then each
is equal to .

The Directrices
The lines  are the directrices, and, as with the ellipse (and with a similar proof), the hyperbola has the property that the
ratio of the distance  to a focus to the distance  to the directrix is constant and is equal to the eccentricity of the hyperbola.
This ratio (i.e. the eccentricity) is less than one for the ellipse, equal to one for the parabola, and greater than one for the hyperbola.
It is not a property that will be of great importance for our purposes, but is worth mentioning because it is a property that is
sometimes used to define a hyperbola. I leave it to the reader to draw the directrices in their correct positions in figure .

Parametric Equations to the Hyperbola.
The reader will recall that the point  is on the ellipse  and that this is evident because this
Equation is the -eliminant of  and . The angle  has a geometric interpretation as the eccentric anomaly.
Likewise, recalling the relation , it will be evident that  can also be obtained as the 

−eliminant of the Equations

These two Equations are therefore the parametric Equations to the hyperbola, and any point satisfying these two Equations lies on
the hyperbola. The variable  is not an angle, and has no geometric interpretation analogous to the eccentric anomaly of an ellipse.
The Equations
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can also be used as parametric Equations to the hyperbola, on account of the trigonometric identity . In that
case, the angle  does have a geometric interpretation (albeit not a particularly interesting one) in relation to the auxiliary circle,
which is the circle of radius a centred at the origin. The meaning of the angle should be evident from figure , in which  is the
eccentric angle corresponding to the point .

 

Impact Parameter
A particle travelling very fast under the action of an inverse square attractive force (such as an interstellar meteoroid or comet - if
there are such things - passing by the Sun, or an electron in the vicinity of a positively charged atomic nucleus) will move in a
hyperbolic path. We prove this in a later chapter, as well as discussing the necessary speed. We may imagine the particle initially
approaching from a great distance along the asymptote at the bottom right hand corner of figure . As it approaches the focus,
it no longer moves along the asymptote but along an arm of the hyperbola.

 

The distance , which is the distance by which the particle would have missed  in the absence of an attractive force, is
commonly called the impact parameter. Likewise, if the force had been a repulsive force (for example, suppose the moving particle
were a positively charged particle and there were a centre of repulsion at ,  would be the impact parameter. Clearly, 
and  are equal in length. The symbol that is often used in scattering theory, whether in celestial mechanics or in particle
physics, is  - but is this  the same  that goes into the Equation to the hyperbola and which is equal to the semi major axis of the
conjugate hyperbola?

, and therefore . This, in conjunction with  and , will soon show that the
impact parameter is indeed the same  that we are familiar with, and that  is therefore a very suitable symbol to use for impact
parameter.

Tangents to the Hyperbola
Using the same arguments as for the ellipse, the reader should easily find that lines of the form

1 + E = Etan2 sec2
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are tangent to the hyperbola. This is illustrated in figure  for a hyperbola with , with tangents drawn with slopes 
to  in steps of . (The asymptotes have .) (Sorry, but there are no figures  or  - computer problems!)

 

Likewise, from similar arguments used for the ellipse, the tangent to the hyperbola at the point  is found to be

Director Circle

As for the ellipse, and with a similar derivation, the locus of the points of intersection of perpendicular tangents is a circle, called
the director circle, which is of radius . This is not of particular importance for our purposes, but the reader who is
interested might like to prove this by the same method as was done for the director circle of the ellipse, and might like to try
drawing the circle and some tangents. If , that is to say if  and the angle between the asymptotes is greater than ,
the director circle is not real and it is of course not possible to draw perpendicular tangents.

Rectangular Hyperbola
If the angle between the asymptotes is , the hyperbola is called a rectangular hyperbola. For such a hyperbola, , the
eccentricity is , the director circle is a point, namely the origin, and perpendicular tangents can be drawn only from the
asymptotes.

The Equation to a rectangular hyperbola is

and the asymptotes are at  to the  axis.

Let  be a set of axes at  to the  axis. (That is to say, they are the asymptotes of the rectangular hyperbola.) Then the
Equation to the rectangular hyperbola referred to its asymptotes as coordinate axes is found by the substitutions

into . This results in the Equation

for the Equation to the rectangular hyperbola referred to its asymptotes as coordinate axes. The geometric interpretation of  is
shown in figure , which is drawn for , and we have called the coordinate axes  and . The length of the semi transverse
axis is .
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The simple Equation  is a rectangular hyperbola and indeed it is this Equation that is shown in figure .

It is left to the reader to show that the parametric Equations to the rectangular hyperbola  (we have dropped the primes) are
, that lines of the form  are tangent to  (figure II.35, drawn with slopes from  to 

 in steps of  ), and that the tangent at  is .

 

Equation of a Hyperbola Referred to its Asymptotes as Axes of Coordinates

We have shown that the Equation to a rectangular hyperbola referred to its asymptotes as axes of coordinates is .
In fact the Equation  is the Equation to any hyperbola (centred at ), not necessarily rectangular, when referred to its
asymptotes as axes of coordinates, where  In the figure below I have drawn a hyperbola and a point on the
hyperbola whose coordinates with respect to the horizontal and vertical axes are , and whose coordinates with respect to the
asymptotes are . I have shown the distances  and  with blue dashed lines, and the distances  and  with red dashed
lines. The semiangle between the asymptotes is .

The Equation to the hyperbola referred to the horizontal and vertical axes is

From the drawing, we see that

If we substitute these into Equation , and also make use of the relation  (Equation ), we arrive at the
Equation to the hyperbola referred to the asymptotes as axes of coordinates:
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Polar Equation to the Hyperbola
We found the polar Equations to the ellipse and the parabola in different ways. Now go back and look at both methods and use
either (or both) to show that the polar Equation to the hyperbola (focus as pole) is

This is the polar Equation to any conic section - which one being determined solely by the value of . You should also ask yourself
what is represented by the Equation

Try sketching it for different values of .

This page titled 2.4: The Hyperbola is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.
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