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1.16: Gaussian Quadrature - Derivation

In order to understand why Gaussian quadrature works so well, we first need to understand some properties of polynomials in
general, and of Legendre polynomials in particular. We also need to remind ourselves of the use of Lagrange polynomials for
approximating an arbitrary function.

First, a statement concerning polynomials in general: Let P be a polynomial of degree n, and let .S be a polynomial of degree less
than 2n. Then, if we divide S by P, we obtain a quotient () and a remainder R, each of which is a polynomial of degree less than
n.

That is to say:

S R
?:Q—i-F. (1.16.1)
What this means is best understood by looking at an example, with n = 3. For example,
let
P=5z%—-222+3z+7 (1.16.2)
and
S =925 +4z* — 523 4+ 62? + 2z — 3. (1.16.3)

If we carry out the division S+ P by the ordinary process of long division, we obtain

925 +42* — 52% 4+ 622 + 2z — 3 14.1042% +4.224z — 7.304

=1.822 +1.522 —1.472 — 1.16.4
5¢3 — 222 4+3x+7 523 — 22243z +7 ( )
For example, if x = 3, this becomes

2433 132.304

— =19.288 — —. 1.16.1

133 9.288 133 (1.16.1)

The theorem given by Equation 1.16.1 is true for any polynomial P of degree l. In particular, it is true if P is the Legendre
polynomial of degree [.

Next an important property of the Legendre polynomials, namely, if P, and P,, are Legendre polynomials of degree n and m
respectively, then

1
/Pandmzo unless m = n. (1.16.5)
-1

This property is called the orthogonal property of the Legendre polynomials.

I give here a proof. Although it is straightforward, it may look formidable at first, so, on first reading, you might want to skip the
proof and go on the next part (after the next short horizontal dividing line).

From the symmetry of the Legendre polynomials (see figure 1.7), the following are obvious:

1
/ P,P,dx#0 ifm=n (1.16.2)
-1
and
1
/ P,P,, =0 ifone (but not both) of m or n is odd. (1.16.3)
-1
In fact we can go further, and, as we shall show,
1
/ P,P,dz =0 unlessm =n, whether m and n are even or odd. (1.16.4)
-1
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Thus P, satisfies the differential Equation (see Equation 1.14.7)

d’P,, dP,,
(1—2%) — — 22— +m(m+1)Pp =0, (1.16.6)
which can also be written
d [ 9\ APy |
— (11— —_— 1)P,, =0. 1.16.
T2 |0 | Fmim B =0 (1.16.7)
Multiply by P,:
d [ N _
PHE -(1—15 )W_ +m(m+1)PmPn —0, (1168)
which can also be written
d 2 dP,, 2 dP, dP,
—|(1-z)P,—— | —(1— —_—— 1)P,P, =0. 1.16.9
ds:{( m)nd:v} ( m)dz dw+m(m+)mn ( )

In a similar manner, we have

. = {n(n+1)P,P, =0. (1.16.10)

d .. dP, ,.dP, dP,
7 [(1 z°) P, ] (1 x)—dw .

Subtract one from the other:

d (. dP.  dP,
Lla- (P2 _p, 1)— 1)|P,,P, =0. 1.16.11
i |02 (P~ P g )| mlm 1) -+ 11 =0 (116.11)
Integrate from —1 to +1:
1 1
(1-z2) (p,3En _p 2B =[n(n—|—1)—m(m—|—1)]/ P, Pda. (1.16.12)
dx dz 1 -1

The left hand side is zero because 1 — 22 is zero at both limits.

Therefore, unless m = n,

1
/ P,P,dz=0. Q.E.D. (1.16.13)
-1

I now assert that, if P; is the Legendre polynomial of degree [, and if @ is any polynomial of degree less than [, then

1
/ PQdz =0. (1.16.14)
-1

I shall first prove this, and then give an example, to see what it means.

To start the proof, we recall the recursion relation (see Equation 1.14.4 — though here I am substituting [ — 1 for [) for the Legendre
polynomials:

IP=02-1)zP_1—(—-1)P_,. (1.16.15)
The proof will be by induction.
Let @ be any polynomial of degree less than 1. Multiply the above relation by )dx and integrate from —1 to +1:

1 1 1
l/4 Plem:(2l—1)/71 zP_1Qdz—(1-1) 11 P_,Qdz. (1.16.16)

If the right hand side is zero, then the left hand side is also zero.
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A correspondent has suggested to me a much simpler proof. He points out that you could in principle expand @ in Equation
1.16.14as a sum of Legendre polynomials for which the highest degree is I — 1. Then, by virtue of Equation 1.16.13 every term is
Zero.

For example, let I =4, so that

1
P ,=P= 5(31;2 1) (1.16.17)
and
1., 4 2
zP_; =2P;= 5(51' —3z7), (1.16.18)
and let
Q =2(asz® + ayz® + a1z +ap). (1.16.19)
It is then straightforward (and only slightly tedious) to show that
1
6 2
/ Pl_dea:: - — " | Q2 (11620)
1 5 3
and that
! 10 6
/ IH_lem = <— — —) as. (11621)
-1 7T 5
But
10 6 6 2
—_——= -3|l=-—-= = 1.16.22
7(7 5)(12 3(5 3)(12 0, ( 6 )
and therefore
1
PyQdxz =0. (1.16.23)
-1
We have shown that
1 1 1
l/ PQdx = (2l—1)/ mPl_leac—(l—l)/ P _2Qdx =0 (1.16.24)
-1 -1 -1

for I = 4, and therefore it is true for all positive integral I.

You can use this property for a parlour trick. For example, you can say: “Think of any polynomial. Don’t tell me what it is — just
tell me its degree. Then multiply it by (here give a Legendre polynomial of degree more than this). Now integrate it from —1 to
+1. The answer is zero, right?” (Applause.)

Thus: Think of any polynomial. 3z2 — 5z + 7 . Now multiply it by 523 — 3z. OK, that’s 15z° —25z* — 223 + 1522 — 21z . Now
integrate it from —1 to +1. The answer is zero.

Now, let S be any polynomial of degree less than 2I. Let us divide it by the Legendre polynomial of degree I, P}, to obtain the
quotient @) and a remainder R, both of degree less than [. Then I assert that

1 1
/ dez/ Rdz. (1.16.25)
-1 -1

This follows trivially from Equations 1.16.1and 1.16.14 Thus

1 1 1
/_1 Sd:c:/_ QP —i—R)d:c:/_l Rdz. (1.16.26)

1
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Example: Let S =62° —12z* + 423 + 72> —52+7 . The integral of this from —1 to +1 is 13.86. If we divide S by
%(5w3 —3z), we obtain a quotient of 2.42% —4.8x +3.04 and a remainder of —0.222 —0.44z + 7. The integral of the latter
from —1 to 41 is also 13.86.

I have just described some properties of Legendre polynomials. Before getting on to the rationale behind Gaussian quadrature, let
us remind ourselves from Section 1.11 about Lagrange polynomials. We recall from that section that, if we have a set of n points,
the following function:

y= iyiLi(m) (1.16.27)

(in which the n functions L;(z), ¢ =1, n, are Lagrange polynomials of degree n—1) is the polynomial of degree n—1 that
passes exactly through the n points. Also, if we have some function f(z) which we evaluate at n points, then the polynomial

y=if(x¢)Li(z) (1.16.28)

is a jolly good approximation to f(z) and indeed may be used to interpolate between nontabulated points, even if the function is
tabulated at irregular intervals. In particular, if f(z) is a polynomial of degree n—1, then the expression 1.16.28 is an exact
representation of f(z).

We are now ready to start talking about quadrature. We wish to approximate f _11 f(z)dz by an n-term finite series

1 n
/ fl)de =~ cif(x), (1.16.29)
-1 i=1
where —1 < x; < 1. To this end, we can approximate f(x) by the right hand side of Equation 1.16.28§ so that

L F(@)do ~ /1 an f(2:)Li(@)dz — an F(@) [1 Li(z)da. (1.16.30)

Recall that the Lagrange polynomials in this expression are of degree n — 1.

The required coefficients for Equation 1.16.29are therefore

i :/1Li(m)dac. (1.16.31)

Note that at this stage the values of the z; have not yet been chosen; they are merely restricted to the interval [-1, 1].

Now let’s consider f_ll S(x)dz, where S is a polynomial of degree less than 2n, such as, for example, the polynomial of Equation
1.16.3 We can write

1 i S(z)dz — / iiS(mi)Li(x)dx _ [ iZn:Li(w)[Q(w,-)P(wi)+R(mi)]dm. (1.16.32)

Here, as before, P is a polynomial of degree n, and  and R are of degree less than 7.

If we now choose the x; to be the roots of the Legendre polynomials, then

[ S(e)da = [ ) Lie)R(ai)ds. (1.16.33)

Note that the integrand on the right hand side of Equation 1.16.33is an exact representation of R(x). But we have already shown
(Equation 1.16.26) that f_ll S(z)dz = f_ll R(z)dz, and therefore
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1 1 n n
/ S(z)dz = / R(z)dz = Z ¢iR(z;) = Z ¢iS(z;). (1.16.34)
-1 -1 i—1 i—1

It follows that the Gaussian quadrature method, if we choose the roots of the Legendre polynomials for the n abscissas, will yield
exact results for any polynomial of degree less than 2n, and will yield a good approximation to the integral if S(z) is a polynomial
representation of a general function f(z) obtained by fitting a polynomial to several points on the function.

This page titled 1.16: Gaussian Quadrature - Derivation is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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