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13.12: Sector-Triangle Ratio
We recall that it is easy to determine the ratio of adjacent sectors swept out by the radius vector. By Kepler’s second law, it is just
the ratio of the two time intervals. What we really need, however, are the triangle ratios, which are related to the heliocentric
distance by Equation 13.2.1. Oh, wouldn’t it just be so nice if someone were to tell us the ratio of a sector area to the corresponding
triangle area! We shall try in this section to do just that.

from which it follows that

We also recall that subscript 1 for areas refers to observations 2 and 3; subscript 2 to observations 3 and 1; and subscript 3 to
observations 1 and 2. Let us see, then, whether we can determine  from the first and second observations.

Readers who wish to avoid the heavy algebra may proceed direct to Equations 13.12.25 and 13.12.26, which will enable the
calculation of the sector-triangle ratios.

Let  and  be the polar coordinates (i.e. heliocentric distance and true anomaly) in the plane of the orbit of the planet
at the instant of the first two observations. In concert with our convention for subscripts involving two observations, let

We have . From Equation 13.4.1, which is Kepler’s second law, we have, in the units that we are using, in which 
 and therefore . Also, from the -component of Equation 13.8.15c, we have 

.

Therefore

In a similar manner, we have

I would like to eliminate  from here.

I now want to recall some geometrical properties of an ellipse and a property of an elliptic orbit. By glancing at figure , or by
multiplying Equations 2.3.15 and 2.3.16, we immediately see that , and hence by making use of a
trigonometric identity we find

and in a similar manner it is easy to show that

Here  is the eccentric anomaly.
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Also, the mean anomaly at time  is defined as  and is also equal (via Kepler’s Equation) to . The period of
the orbit is related to the semi major axis of its orbit by Kepler’s third law: . (This material is covered on Chapter 10.)
Hence we have (in the units that we are using, in which ):

where  is the instant of perihelion passage.

Now introduce

From Equation 13.12.7 I can write

and from Equation 13.12.8 I can write

I now make use of the sum of the sum-and-difference formulas from page 38 of chapter 3, namely 
 and  to obtain

and

On adding these, we obtain

I leave it to the reader to derive in a similar manner (also making use of the formula for the semi latus rectum 

and

We can eliminate  from Equations 13.12.18 and 13.12.20:

Also, if we write Equation 13.12.9 for the first and second observations and take the difference, and then use the formula on page
35 of chapter 3 for the difference between two sines, we obtain

Eliminate  from Equations 13.12.18 and 13.12.22:

Also, eliminate  from Equations 13.12.6 and 13.12.19:
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We have now eliminated  and , and we are left with Equations 13.12.21, 23 and 24, the first two of which I now repeat for
easy reference:

In these Equations we already know an approximate value for  (we’ll see how when we resume our numerical example); the
unknowns in these Equations are ,  and , and it is  that we are trying to find. Therefore we need to eliminate  and . We
can easily obtain  from Equation 13.12.24, and, on substitution in Equations 13.12.21 and 23 we obtain, after some algebra:

and

where

and

Similar Equations for  and  can be obtained by cyclic permutation of the subscripts. Equations 13.12.25 and 26 are two
simultaneous Equations in  and . Their solution is given as an example in section 1.9 of chapter 1, so we can now assume that
we can calculate the sector-triangle ratios.

We can then calculate better triangle ratios from Equations 13.12.4 and return to Equations 13.7.4, 5 and 6 to get better geocentric
distances. From Equations 13.7.8 and 9 calculate the heliocentric distances. Make the light-time corrections. (I am not doing this in
our numerical example because our original positions were not actual observations, but rather were ephemeris positions.) Then go
straight to this section (13.12) again, until you get to here again. Repeat until the geocentric distances do not change.

This page titled 13.12: Sector-Triangle Ratio is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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