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3.5: Spherical Triangles

As with plane triangles, we denote the three angles by A, B, C and the sides opposite to them by a, b, c¢. We are fortunate in that
we have four formulas at our disposal for the solution of a spherical triangle, and, as with plane triangles, the art of solving a
spherical triangle entails understanding which formula is appropriate under given circumstances. Each formula contains four
elements (sides and angles), three of which, in a given problem, are assumed to be known, and the fourth is to be determined.

Three important points are to be noted before we write down the formulas.

1. The formulas are valid only for triangles in which the three sides are arcs of great circles. They will not do, for example, for a
triangle in which one side is a parallel of latitude.

2. The sides of a spherical triangle, as well as the angles, are all expressed in angular measure (degrees and minutes) and not in
linear measure (metres or kilometres). A side of 50° means that the side is an arc of a great circle subtending an angle of 50° at
the centre of the sphere.

3. The sum of the three angles of a spherical triangle add up to more than 180°.

In this section are now given the four formulas without proof, the derivations being given in a later section. The four formulas may
be referred to as the sine formula, the cosine formula, the polar cosine formula, and the cotangent formula. Beneath each formula is
shown a spherical triangle in which the four elements contained in the formula are highlighted.

The sine formula:

sinA sinB sinC

FIGUREIII.10

sina _ sinb (: sinc) (3.5.1)

The cosine formula:
cosa = cosbcosc+sinbsinccos A (3.5.2)

FIGUREIII.11

The polar cosine formula:

cos A= —cosBcosC +sinBsinC cosa (3.5.3)

https://phys.libretexts.org/@go/page/6802


https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6802?pdf
https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Celestial_Mechanics_(Tatum)/03%3A_Plane_and_Spherical_Trigonometry/3.05%3A_Spherical_Triangles

LibreTextsw

FIGUREIIIL.12

The cotangent formula:

cosbcos A =sinbcotc—sinAcotC (3.5.4)
FIGUREIII.13
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The cotangent formula is a particularly useful and frequently needed formula, and it is unfortunate that it is not only difficult to
commit to memory but, even with the formula written out in front of one, it is often difficult to decide which is b, which is A and
so on. However, it should be noted from the drawing that the four elements, side-angle-side-angle, lie adjacent to each other in the
triangle, and they may be referred to as outer side (OS), inner angle (IA), inner side (IS) and outer angle (OA) respectively. Many
people find that the formula is much easier to use when written in the form

cos(IS) cos(IA) = sin(IS) cot(OS) —sin(IA) cot(OA) (3.5.5)

The reader will shortly be offered a goodly number of examples in the use of these formulas. However, during the course of using
the formulas, it will be found that there is frequent need to solve deceptively simple trigonometric Equations of the type

4.737sin6+ 3.286 cos§ = 5.296 (3.5.6)

After perhaps a brief pause, one of several methods may present themselves to the reader - but not all methods are equally
satisfactory. I am going to suggest four possible ways of solving this Equation. The first method is one that may occur very quickly
to the reader as being perhaps rather obvious - but there is a cautionary tale attached to it. While the method may seem very
obvious, a difficulty does arise, and the reader would be advised to prefer one of the less obvious methods. There are, incidentally,
two solutions to the Equation between 0° and 360°. They are 31°58'.6 and 78°31'.5.

Method i

The obvious method is to isolate cos @ :

cosf =1.611 686 —1.441 570 siné. (3.5.1)

Although the constants in the problem were given to four significant figures, do not be tempted to round off intermediate
calculations to four. It is a common fault to round off intermediate calculations prematurely. The rounding-off can be done at the
end.

Square both sides, and write the left hand side, cos? 8, as 1 — sin? # . We now have a quadratic Equation in sin :

3.078 125 sin® 6 — 4.646 717 sinf+1.597 532 = 0. (3.5.2)
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The two solutions for sinf are 0.529 579 and 0.908 014 and the four values of # that satisfy these values of sinf are
31°58'.6, 148° 01'.4, 78° 31'.5 and 101°28'.5.

Only two of these angles are solutions of the original Equation. The fatal move was to square both sides of the original Equation, so
that we have found solutions not only to

cosf=1.611686 —1.441 570sinf (3.5.3)
but also to the different Equation
—cosf=1.611686 —1.441 570 siné. (3.5.4)

This generation of extra solutions always occurs whenever we square an Equation. For this reason, method (i), however tempting,
should be avoided, particularly when programming a computer to carry out a computation automatically and uncritically.

If in doubt whether you have obtained a correct solution, substitute your solution in the original Equation. You should always do
this with any Equation of any sort, anyway.

Method i
This method makes use of the identities
sinOZ%, costiJ_r—zz, (3.5.5)
where ¢ = tan %0.
When applied to the original Equation, this results in the quadratic Equation in ¢:
8.582t% —9.474t +2.010 =0 (3.5.6)
with solutions
t=0.286528 and t=0.817410 (3.5.7)
The only values of # between 0° and 360° that satisfy these are the two correct solutions 31° 58'.6 and 78° 31'.5.
It is left as an exercise to show, using this method algebraically, that the solutions to the Equation
asinf+bcosf=c (3.5.8)
are given by
tan%@z a:l:\/(f—:—cbz < (3.5.9)
This shows that there are no real solutions if a2 +b% < ¢?, one real solution if a2 +b% =¢?, and two real solutions if
a?4+b*>c2.
Method iii

We divide the original Equation

4.737sin0+ 3.286 cos§ = 5.296 (3.5.10)

by the "hypotenuse” of 4.737 and 3.286; that is, by \/(4.7372 +3.286*) =5.765151

Thus

0.821 661 sinf+0.569 976 cos§ =0.918 623 (3.5.11)
Now let 0.821 661 = cosa and 0.569976 = sina (which we can, since these numbers now satisfy sin? o cos? a = 1) so that
o =34°44'91.
We have

cosasinf+sina cos§ =0.918 623 (3.5.12)

https://phys.libretexts.org/@go/page/6802



https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6802?pdf

LibreTextsw

or
sin(f+a) =0.918623 (3.5.13)
from which
0+a =66°43.540r 113° 16'.46 (3.5.14)
Therefore
6 =31°58.6 or 78° 31'.5 (3.5.15)
Method iv

Methods ii and iii give explicit solutions, so there is perhaps no need to use numerical methods. Nevertheless, the reader might like
to solve, by Newton-Raphson iteration, the Equation

f(0)=asinf+bcosfd—c=0, (3.5.16)
for which
f'(6) =acosf—bsiné. (3.5.17)

Using the values of a, b and ¢ from the example above and using the Newton-Raphson algorithm, we find with a first guess of 45°
the following iterations, working in radians:

0.785 398
0.417 841
0.541 499
0.557 797
0.558 104
0.5658104 = 31°58.6

(3.5.18)

The reader should verify this calculation, and, using a different first guess, show that NewtonRaphson iteration quickly leads to
78° 31'.5.

Having now cleared that small hurdle, the reader is invited to solve the spherical triangle problems below. Although these twelve
problems look like pointless repetitive work, they are in fact all different. Some have two solutions between 0° and 360° ; others
have just one. After solving each problem, the reader should sketch each triangle - especially those that have two solutions - in
order to see how the two-fold ambiguities arise. The reader should also write a computer program that will solve all twelve types of
problem at the bidding of the user. Answers should be given in degrees, minutes and tenths of a minute, and should be correct to
that precision. For example, the answer to one of the problems is 47° 37".3. An answer of 47° 37.2 or 47° 37'.4 should be
regarded as wrong. In celestial mechanics, there is no place for answers that are "nearly right". An answer is either right or it is
wrong. (This does not mean, of course, that an angle can be measured with no error at all; but the answer to a calculation given to a
tenth of an arcminute should be correct to a tenth of an arcminute.)

All angles and sides in degrees
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10. a=64 b=33 =37
11. a=39 b=48 C=T74
12. a=16 b=37 (C=42
13. a=21 b=43 A=29
14. a=67 b=54 A=39
15. a=49 b=59 A=14
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: 3.5.19
16. A=24 B=72 c¢=19 = ( )
17. A=79 B=84 c=12 =
18. A=62 B=49 a=44 =i

I
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19. A=59 B=32 a=62
20. A=47 B=57 a=22
21. A=79 B=62 (C=48
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Solutions

10. 28°18'.2
11.49°32' .4
12.117°31'.0
13.30°46'.7 or 47°37.3
14.33°34'.8

15.3°18'.1 or 162°03'.9
16.7°38'.2

17.20°46'.6
18.36°25'.5
19.76°27.7

20. 80°55'.7 or 169°05'.2
21.28°54'.6

Derivation of the formulas

Before moving on to further problems and applications of the formulas, it is time to derive the four formulas which, until now, have
just been given without proof. We start with the cosine formula. There is no loss of generality in choosing rectangular axes such
that the point A of the spherical triangle ABC is on the z-axis and the point B and hence the side ¢ are in the zz-plane. The sphere
is assumed to be of unit radius.

FIGUREIII.14

If i, j and k are unit vectors directed along the x—, y— and z—axes respectively, inspection of the figure will show that the position
vectors of the points B and C with respect to the centre of the sphere are
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and

r; =isinc+kcosc (3.5.7)

ro =isinbcos A+ jsinbsin A +kcosb (3.5.8)
respectively.

The scalar product of these vectors (each of magnitude unity) is just the cosine of the angle between them, namely cosa, from
which we obtain immediately

cosa = cosbcosc+sinbsinccos A. (3.5.9)
To obtain the sine formula, we isolate cos A from this Equation, square both sides, and write 1 — sin? A for cos? A. Thus,
(sinbsinccos A)? = (cosa — cosbcosc)?, (3.5.10)
and when we have carried out these operations we obtain
2

sin bsin® ¢ — cos® a — cos® beos? ¢ + 2 cosa cosb cosc

. 9
sin“ A = 3.5.11
sin? bsin? ¢ ( )
In the numerator, write 1 —cos? b for sin? b and 1 — cos? ¢ for sin? ¢, and divide both sides by sin? a. This results in
. 9 2 2 2
sin® A 1 —cos”a—cos®b—cos“c+2cosacosbceosc
7= ; : (3.5.12)

sin® a sin? a sin® bsin® ¢

At this stage the reader may feel that we are becoming bogged down in heavier and heavier algebra and getting nowhere. But, after
a careful look at Equation 3.5.12 it may be noted with some delight that the next line is:

Therefore

sinA  sinB  sinC (3.5.13)

sina sinb sinc

The derivation of the polar cosine formula may also bring a small moment of delight. In figure III.15, A'B’C’ is a spherical
triangle. ABC is also a spherical triangle, called the polar triangle to A'B’C’. It is formed in the following way. The side BC is an
arc of a great circle 90° from A’; that is, BC is part of the equator of which A’ is pole. Likewise CA is 90° from B’ and AB is 90°
from C'. In the drawing, the side B'C’ of the small triangle has been extended to meet the sides AB and CA of the large triangle. It
will be evident from the drawing that the angle A of the large

FIGUREIIL. 15
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triangle is equal to = +a’ +y . Further, from the way in which the triangle ABC was formed, = +a’ and @’ +y are each equal to
90°. From these relations, we see that

A+A=[(z+a)+y]+[z+(a' +y) (3.5.20)
or
2A=180°+z+y=180°+A—ad’ (3.5.21)
Therefore
A=180°—d (3.5.22)
In a similar manner,
B=180°—b% andC =180° — ¢ (3.5.23)

Now, suppose f(A', B',C’,a’,¥’,c') =0 is any relation between the sides and angles of the triangle A'B’C’. We may replace a’
by 180° — A, b’ by 180° — B, and so on, and this will result in a relation between A, B, C, a, b and c ; that is, it will result in a
relation between the sides and angles of the triangle ABC.

For example, the Equation
cosa’ = cosb' cosc +sind’sinc cos A’ (3.5.14)
is valid for the triangle A'B’C’. By making these substitutions, we find the following formula valid for triangle ABC:
—cos A =cos BcosC —sinBsinC cosa, (3.5.15)

which is the polar cosine formula.

The reader will doubtless like to try starting from the sine and cotangent formulas for the triangle A'B’C’ and deduce
corresponding polar formulas for the triangle ABC, though this, unfortunately, may give rise to some anticlimactic disappointment.

I know of no particularly interesting derivation of the cotangent formula, and I leave it to the reader to work through the rather
pedestrian algebra. Start from

cosa = cosbcosc+sinbsinccos A (3.5.24)
and
cosc = cosacosb+sinasinbcosC. (3.5.25)

esin A )
SIMCSMA for sina, and,
sin C

Eliminate cos ¢ (but retain sinc) from these Equations, and write 1 — sinb for cos? b. Finally substitute
after some tidying up, the cotangent formula should result.

At this stage, we have had some practice in solving the four spherical triangle formulas, and we have derived them. In this section
we encounter examples in which the problem is not merely to solve a triangle, but to gain some experience in setting up a problem
and deciding which triangle has to be solved.

v/ Example 1

The coordinates of the Dominion Astrophysical Observatory, near Victoria, British Columbia, are
Latitude 48°31’.3N Longitude 123°25'.0W

and the coordinates of the David Dunlap Observatory, near Toronto, Ontario, are
Latitude 43°51’.8N Longitude 79°25'.3W

How far is Toronto from Victoria, and what is the azimuth of Toronto relative to Victoria?

The triangle to be drawn and solved is the triangle PV'T, where P is the Earth's north pole, V is Victoria, and T is Toronto. On
figure III.16 are marked the colatitudes of the two cities and the difference between their longitudes.

The great circle distance w between the two observatories is easily given by the cosine formula:

cosw = cos41°28'.7 cos46°08'.2 +sin41°28'.7 sin46°08'.2 cos 43°59'.7 (3.5.26)
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From this, we find w=30°22".7 or 0.53021 radians. The radius of the Earth is 6371 km, so the distance between the
observatories is 3378 km or 2099 miles.

FIGURE III.16

Now that we have found w, we can find the azimuth, which is the angle V, from the sine formula:

in46°08'.2 sin43°59'.7
sinV =~ = 50 —0.990 275 (3.5.27)
sin30°22'.7

and hence
V =82°00".3 (3.5.28)
But we should now remember that sin ! 0.990 275has two values between 0° and 180°, namely 82°00'.3 and 97°59'.7.

Usually it is obvious from inspection of a drawing which of the two values of sin~! is the required one. Unfortunately, in this
case, both values are close to 90°, and it may not be immediately obvious which of the two values we require. However, it will
be noticed that Toronto has a more southerly latitude than Victoria, and this should easily resolve the ambiguity.

We could, of course, have found the azimuth V' by using the cotangent formula, without having to calculate w first. Thus
c0s41°28'.7 cos43°59' .7 = sin41°28'.7 cot 46°08'.2 —sin43°59'.7 cot V (3.5.29)

There is only one solution for V' between 0° and 180°, and it is the correct one, namely 82°00'.3. A good drawing will show
the reader why the correct solution was the acute rather than the obtuse angle (in our drawing the angle was made to be close to
90° in order not to bias the reader one way or the other), but in any case all readers, especially those who were trapped into
choosing the obtuse angle, should take careful note of the difficulties that can be caused by the ambiguity of the function sin .
Indeed it is the strong advice of the author never to use the sine formula, in spite of the ease of memorizing it. The cotangent

formula is more difficult to commit to memory, but it is far more useful and not so prone to quadrant mistakes.

v/ Example 2

Consider two points, A and B, at latitude 20°N, longitude 25°E, and latitude 72°N, longitude 44°E. Where are the poles of
the great circle passing through these two points? We shall present two methods of doing the problem. First, by solving
spherical triangles. And second, kindly suggested to me by Achintya Pal, using the methods of algebraic coordinate geometry.

Let us call the colatitude and longitude of the first point (0, ¢;) and of the second point (62, #3) We shall consider the
question answered if we can find the coordinates (6, ¢) of the poles Q and Q' of the great circle passing through the two
points. In figure I11.17, P is the north pole of the Earth, A and B are the two points in question, and Q is one of the two poles
of the great circle joining A and B. The figure also shows the triangle PQA. We’ll suppose that the origin for longitudes
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(“Greenwich”) is behind the plane of the paper. The east longitudes of Q, A and B are, respectively, ¢g, @1, ¢o2; and their
colatitudes are 6, 6y, 6.

0 = cosfp cosb; +sinf sin by cos(d1 — o), (3.5.16)
from which

1
tan®; cos(¢1 —¢o)

tanfy = — (3.5.17)

0
Equator

FIGUREIIIL.17
Similarly from triangle PQB we would obtain
1

tanfy = — . 3.5.18
anvo tan By cos(¢s — dg) ( )

These are two Equations in 6y and ¢, so the problem is in principle solved. Equate the righthand sides of the two Equations,
expand the terms cos(¢1 — ¢g) and cos(da — ¢ ) , gather the terms in sin ¢y and cos ¢y, eventually to obtain

tan6; cos ¢; — tanbs cos ¢
tanf, singy —tanf; sing;

tangy = (3.5.19)

If we substitute the angles given in the original problem, we obtain

tan70° cos 25° —tan 18° cos 44°
t = =-2.4120910 3.5.30
an o tan 18° sin44° — tan 70° sin 25° ( )

from which
o =112°31".1 or 292°31'.1 (3.5.31)
Note that we get two values for ¢ differing by 180°, as expected.

We then use either of the Equations for tanf, to obtain 6y (It is good practice to use both of them as a check on the
arithmetic.) The north polar distance, or colatitude, must be between 0° and 180°, so there is no ambiguity of quadrant.

With ¢y = 112°31’.1, we obtain §y = 96°47’.1, i.e. latitude 6°47'.1 S.
and with ¢9 = 292°31'.1, we obtain 8y = 83°12'.9, i.e. latitude 6°47'.1 N.

and these are the coordinates of the two poles of the great circle passing through A and B. The reader is strongly urged
actually to carry out these computations numerically in order to be quite sure that the quadrants are correct and unambiguous.
Indeed, dealing with the quadrant problem may be regarded as the most important part of the exercise.
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We arrived at Equation 3.5.17and 3.5.18 by solving two spherical triangles by the methods of spherical trigonometry. The
second method, suggested, as mentioned above, by Achintya Pal, uses the methods of algebraic coordinate geometry in three
dimensions to arrive at the same Equations. We refer coordinates to axes Ozyz. O is the centre of the Earth, taken to be of unit
radius. OP is the z-axis. The Oz and Oy axes are not drawn in figure ITI.17, but the x-axis may be taken to be directed
somewhere to the rear of the drawing (away from the reader), and the y-axis somewhere in the front of the drawing, both
being, of course, in the plane of the equator.

Let us write the Equation to the plane containing A and B in the form
lz+my+nz=0 (3.5.20)
Here (I, m, n) are the direction cosines of the normal to the plane AB, and are given by
l=sinfycosdy m =sinfysingy n =cosby (3.5.21a,b,c)
The (z,y, ) coordinates of the point A are
x =sinficosd; y=sinbysing; z =cosb; (3.5.22a,b,c)
On substitution of Equations 3.5.21a,b,cand 3.5.22a,b,cinto Equation 3.5.20we obtain:
sinfy cos ¢ sin B cos ¢y + sin by sin ¢ sin 6, sin ¢; + cos by cosf; =0 (3.5.23)

After some very modest algebraic manipulation (e.g., start by dividing by sinf; cosfy) we very soon arrive again at Equation
3.5.17 and in a similar manner at Equation 3.5.18&

As a bonus we note that any point having spherical coordinates (6, ¢) lying on the great circle whole pole is at (6y, ¢g)
satisfies the Equation

cotd = —tanb cos(¢ — @) (3.5.24)

This Equation may be regarded as the (6, ¢) Equation to the great circle AB, and it answers the problem converse to the one
originally posed: What is the Equation to the great circle whose pole is at (6, ¢g) ?

v/ Example 3

Here is a challenging exercise and an important one in meteor astronomy. Two shower meteors are seen, diverging from a
common radiant. One starts at right ascension 6 hours, declination +65 degrees, and finishes at right ascension 1 hour,
declination +75 degrees. The second starts at right ascension 5 h, declination +35 degrees, and finishes at right ascension 3
hours, declination +15 degrees. Where is the radiant?

The assiduous student will make a good drawing of the celestial sphere, illustrating the situation as accurately as possible. The
calculation will require some imaginative manipulation of spherical triangles. After arriving at what you believe to be the
correct answer, look at your drawing to see whether it is reasonable. The next step might be to develop a general
trigonometrical expression for the answer in terms of the original data, or to program the calculation for a computer, so that it
is henceforth available for any similar calculation. Or one can go yet further, and write a computer program that will give a
least-squares solution for the radiant for many more than two meteors in the shower. I find for the answer to the above problem
that the radiant is at right ascension 7.26 hours and declination +43.8 degrees.

Uniqueness of Solutions

The reader who has by now worked through a variety of problems in the solution of a triangle will have noticed that, given three
elements of a triangle, sometimes there is a unique solution, whereas sometimes there are two possible triangles that satisfy the
original data. Yet again, it may sometimes be found that there is no possible solution, meaning that there is no possible triangle that
satisfies the given data, which must therefore be presumed incorrect. I am very much indebted to Alan Johnstone for lengthy
discussions on this problem, and indeed for pointing out that some of the “solutions” given in an earlier version of these notes were
in fact invalid (and have now been corrected). I believe the following criteria determine how many valid solutions there are for a
given triplet of data, for plane triangles and for spherical triangles.

We may be given three elements of a triangle,
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Thus

i. Three sides: a, b, c,

ii. Two sides and the included angle: b, c, A.
iii. Two sides and a nonincluded angle: a, b, A.
iv. Two angles and a common side: a, B, C.

v. Two angles and another side: A, B, a.
vi. Three angles: A, B, C.

Question:

Which of these give a unique solution, and which admit of two solutions? And which are impossible triangles? I believe the
answers are as follows:

Plane Triangles
iletd=a+b—c, e=b+c—a, f=c+a->b
For a valid triangle, d, e and f must all be positive. If so, there is a unique solution.
ii. There is a unique solution.
iii. If @ > b there is a unique solution.
If a = b, there is a unique solution if A < 90° . Otherwise there is no valid triangle.
If a < b there are zero, one or two solutions, according as to whether
sin A4 > %,sinA = % or sinA < % .
iv. There is a unique solution.
v. There is a unique solution.
vi. There is a unique solution except that only the relative lengths of the sides are determined.
Spherical Triangles
iLetd=a+b—c, e=b+c—a, f=c+a-—0>
For a valid triangle, d, e and f must all be positive. If so, there is a unique solution.)
ii. There is a unique solution.
jii. If sin A > % , there is no real solution.
If A=a=5b=90° , then B=90°, and ¢ and C are equal but indeterminate.
Otherwise:
If @ > b there is a unique solution.
If a = b, there is a unique solution if a < 90° . Otherwise there is no real solution.
If a < b there are one or two solutions, according as to whether

sina

— or sinA < (3.5.32)

sinAd = Sina —.
sin sinb
iv. There is a unique solution.
v.IfsinA = % , there is no real solution.
If A=B=a=90° ,then b=90°, and ¢ and C are equal but indeterminate.
Otherwise:
If A > B there is a unique solution.
If A= B, there is a unique solution if a < 90° . Otherwise there is no real solution.

If A < B there are one or two solutions, according as to whether
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sin A ina < sin A
- or sina - .
sin B sin B

(3.5.33)
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