LibreTextsw

2.2: The Ellipse

An ellipse is a figure that can be drawn by sticking two pins in a sheet of paper, tying a length of string to the pins, stretching the
string taut with a pencil, and drawing the figure that results. During this process, the sum of the two distances from pencil to one
pin and from pencil to the other pin remains constant and equal to the length of the string. This method of drawing an ellipse
provides us with a formal definition, which we shall adopt in this chapter, of an ellipse, namely:

An ellipse is the locus of a point that moves such that the sum of its distances from two fixed points called the foci is constant (see
figure 11.6).

FIGUREIL6

We shall call the sum of these two distances (i.e the length of the string) 2a. The ratio of the distance between the foci to length of
the string is called the eccentricity e of the ellipse, so that the distance between the foci is 2ae, and e is a number between 0 and 1.

The longest axis of the ellipse is its major axis, and a little bit of thought will show that its length is equal to the length of the string;
that is, 2a. The shortest axis is the minor axis, and its length is usually denoted by 2b. The eccentricity is related to the ratio b/a in
a manner that we shall shortly discuss.

The ratio
n=(a—0b)/a (2.2.1)

is called the ellipticity if the ellipse. It is merely an alternative measure of the noncircularity. It is related to the eccentricity, and we
shall obtain that relation shortly, too. Until then, Figure II.7 shows pictorially the relation between the two.
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We shall use our definition of an ellipse to obtain its Equation in rectangular coordinates. We shall place the two foci on the z-axis
at coordinates (—ae, 0) and (ae, 0) (see figure IL.8).
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The definition requires that PF; +PF, = 2a . That is:
1 1
[(z +ae)2—|—y2] 24 [(:c—ae)2+y2] 2 =2a, (2.3.1)

and this is the Equation to the ellipse. The reader should be able, after a little bit of slightly awkward algebra, to show that this can
be written more conveniently as

22 y?
—+—==1 2.3.2
a?>  a’(1-é?) ( )

By putting z = 0, it is seen that the ellipse intersects the y-axis at aV'1 —e? and therefore that av'1 —e? is equal to the semi
minor axis b. Thus we have the familiar Equation to the ellipse

2 2
T y:
a—2 + b_2 =1 (2.3.3)
as well as the important relation between a, b and e:
b’ =a?(1—e?) (2.3.4)

The reader can also now derive the relation between ellipticity 1 and eccentricity e:
n=1—,/(1-¢€?). (2.3.5)

This can also be written

e’ =,/n(2-n) (2.3.6)

e +(m—-172=1. (2.3.7)

or

This shows, incidentally, that the graph of 1 versus e, which we have drawn in figure IL.7, is part of a circle of radius 1 centred at
e=0,n=1.

In figures I1.9 I have drawn ellipses of eccentricities 0.1 to 0.9 in steps of 0.1, and in figure II.10 I have drawn ellipses of
ellipticities 0.1 to 0.9 in steps of 0.1. You may find that ellipticity gives you a better idea than eccentricity of the noncircularity of
an ellipse. For an exercise, you should draw in the positions of the foci of each of these ellipses, and decide whether eccentricity or
ellipticity gives you a better idea of the "ex-centricity" of the foci. Note that the eccentricities of the orbits of Mars and Mercury
are, respectively, about 0.1 and 0.2 (these are the most eccentric of the planetary orbits except for comet-like Pluto), and it is
difficult for the eye to see that they depart at all from circles - although, when the foci are drawn, it is obvious that the foci are "ex-
centric".
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FIGURE II.9: The number inside each ellipse is its eccentricity.
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FIGUREII.10: The figure inside or below each ellipse is its ellipticity.

In the theory of planetary orbits, the Sun will be at one focus. Let us suppose it to be at Fy (see figure II.8). In that case the
distance Fy B is the perihelion distance g, and is equal to

g=a(l—e). (2.3.8)

The distance F5 A is the aphelion distance Q (pronounced ap-helion by some and affelion by others — and both have defensible
positions), and it is equal to

Q =a(l+e). (2.3.9)

A line parallel to the minor axis and passing through a focus is called a latus rectum (plural: latera recta). The length of a semi
latus rectum is commonly denoted by /(sometimes by p). Its length is obtained by putting = ae in the Equation to the ellipse, and
it will be readily found that

l=a(l—¢é%). (2.3.10)
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The length of the semi latus rectum is an important quantity in orbit theory. It will be found, for example, that the energy of a planet
is closely related to the semi major axis a of its orbit, while its angular momentum is closely related to the semi latus rectum.

The circle whose diameter is the major axis of the ellipse is called the eccentric circle or, preferably, the auxiliary circle (figure
I1.11). Its Equation is

® +y? =d’. (2.3.11)

FIGUREII.11

In orbit theory the angle v (denoted by f by some authors) is called the true anomaly of a planet in its orbit. The angle E is called
the eccentric anomaly, and it is important to find a relation between them.

We first note that, if the eccentric anomaly is E, the abscissas of P’ and of P are each a cos E. The ordinate of P’ is asin E. By
putting = a cos E in the Equation to the ellipse, we immediately find that the ordinate of P is bsin F. Several deductions follow.
One is that any point whose abscissa and ordinate are of the form

z=acosE, y=bsinE (2.3.12)

is on an ellipse of semi major axis a and semi minor axis b. These two Equations can be regarded as parametric Equations to the
ellipse. They can be used to describe an ellipse just as readily as

2 2
Z_2+Z_2:1 (2.3.13)

and indeed this Equation is the E-eliminant of the parametric Equations.

The ratio PM/P'M for any line perpendicular to the major axis is b/a. Consequently the area of the ellipse is b/a times the area of
the auxiliary circle; and since the area of the auxiliary circle is a?, it follows that the area of the ellipse is 7ab.

In figure II.11, the distance r is called the radius vector (plural radii vectores), and from the theorem of Pythagoras its length is
given by

r* =b”sin? E+a®(cos E —e)®. (2.3.14)

On substituting 1 — cos? E for sin? E and a® (1 —€?) for b2, we soon find that

r=a(l —ecosE) (2.3.15)
It then follows immediately that the desired relation between v and E is
cosE —e
= —_— 2.3.16
O T T ecosE ( )

From trigonometric identities, this can also be written
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V1—e?sinE
ingy= —————— 2.3.1
sinv Yy (2.3.17a)
or
vV1—e?sinE
tany = Y- S0 (2.3.17b)
cosE—e
or
1 1 1
tanEv:,ll—tZtan EE (2.3.17¢)
The inverse formulas may also be useful:
cos B = =05V (2.3.17d)
1+ecosv
inovI—e2
sinB= V- (2.3.17e)
1+e cosv
oV —eZ
tan B = oV - ¢ (2.3.17)
e+ cosv
1 1—e 1
tan—FE = tan —v. 2.3.17
an T, tangY ( g)

There are a number of miscellaneous geometric properties of an ellipse, some, but not necessarily all, of which may prove to be of
use in orbital calculations. We describe some of them in what follows.

Tangents to an Ellipse
Find where the straight line y = ma + ¢ intersects the ellipse

2 2
%+Z—2 ~1. (2.3.18)

The answer to this question is to be found by substituting ma + ¢ for y in the Equation to the ellipse. After some rearrangement, a
quadratic Equation in z results:

(a2m2+b2) z® +2d*cmz +d® (02 —b2) =0. (2.3.19)

If this Equation has two real roots, the roots are the x-coordinates of the two points where the line intersects the ellipse. If it has no
real roots, the line misses the ellipse. If it has two coincident real roots, the line is tangent to the ellipse. The condition for this is
found by setting the discriminant of the quadratic Equation to zero, from which it is found that

& =a*m® +b%. (2.3.20)

Thus a straight line of the form

y=mz ++/a’m’ + b’ (2.3.21)

is tangent to the ellipse.

Figure I1.12 shows several such lines, for a = 2b and slopes (tan~! m) of 0° to 180° in steps of 10°
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FIGUREII.12
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The Equation we have just derived for a tangent to the ellipse can be rearranged to read

Director Circle

m? (a® —z*) +2mz +b* —y* =0. (2.3.22)

Now the product of the slopes of two lines that are at right angles to each other is —1 (Equation 2.2.17). Therefore, if we replace m
in the above Equation by —1/m we shall obtain another tangent to the ellipse, at right angles to the first one. The Equation to this
second tangent becomes (after multiplication throughout by m )

m? (b2 —yz) —2mz +a* —z* =0. (2.3.23)

If we eliminate m from these two Equations, we shall obtain an Equation in & and y that describes the point where the two
perpendicular tangents meet; that is, the Equation that will describe a curve that is the locus of the point of intersection of two
perpendicular tangents. It turns out that this curve is a circle of radius v/a? + b2, and it is called the director circle.

It is easier than it might first appear to eliminate m from the Equations. We merely have to add the Equations 2.3.22and 2.3.23

m? (a2+b2—x2—y2)+a2—|—b2—a:2—y2 =0. (2.3.24)
For real m, this can only be if

22 +y? =a® +1?, (2.3.25)

which is the required locus of the director circle of radius Va? +b% . Ttis illustrated in figure II.13.
We shall now derive an Equation to the line that is tangent to the ellipse at the point (z1, y).
Let (21, y1) = (acos Eq,bsin Ey) and (z9, y2) = (acos E9, bsin Ey) be two points on the ellipse.
The line joining these two points is

z—acosE;  a(cosEr—cosE1)  —2asinl(B; +E)sinl(E; — E) asin

y —bsin E; b(sin E5 —sin E1) 2bcos 5 (Ey + Ey ) sin 3 (B, — Ey) beos 3 (Ey + E)
. (2.3.26)
2
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FIGUREIIL.13
Now let E; approach E1, eventually coinciding with it. The resulting Equation

y—bsinE __bcosE
z—acosE  asinE’

(2.3.27)

in which we no longer distinguish between E; and E,, is the Equation of the straight line that is tangent to the ellipse at
(acosE ,bsin E). This can be written

zcosE ysinE
=+ =

1 (2.3.28)
a b
or, in terms of (z1, v1),
rir Yy
nE LYy (2.3.29)

which is the tangent to the ellipse at (z1, y1).

An interesting property of a tangent to an ellipse, the proof of which I leave to the reader, is that F1 P and F»P make equal angles
with the tangent at P. If the inside of the ellipse were a reflecting mirror and a point source of light were to be placed at F, it
would be imaged at F5. (Have a look at figure II.6 or II.8.) This has had an interesting medical application. A patient has a kidney
stone. The patient is asked to lie in an elliptical bath, with the kidney stone at F5. A small explosion is detonated at F;; the
explosive sound wave emanating from F; is focused as an implosion at F'y and the kidney stone at F'5 is shattered. Don't try this at
home.

Directrices

The two lines z = +a/e are called the directrices (singular directrix) of the ellipse (figure I1.14).

FIGUREIIL.14
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The ellipse has the property that, for any point P on the ellipse, the ratio of the distance PF5 to a focus to the distance PN to a
directrix is constant and is equal to the eccentricity of the ellipse. Indeed, this property is sometimes used as the definition of an
ellipse, and all the Equations and properties that we have so far derived can be deduced from such a definition. We, however,
adopted a different definition, and the focus-directrix property must be derived. This is straightforward, for, (recalling that the
abcissa of F is ae) we see from figure II.14 that the square of the desired ratio is

(z —ae)® +y°
e (2.3.30)

On substitution of
b (1 = (%)2) —a’ (1-¢%) (1 = (%)2) — (1—¢) (a® —2?) (2.3.31)

for 42, the above expression is seen to reduce to €.

Another interesting property of the focus and directrix, although a property probably with not much application to orbit theory, is
that if the tangent to an ellipse at a point P intersects the directrix at Q, then P and Q subtend a right angle at the focus. (See figure

I1.15).
P
Q
FIGUREIIL.15
Thus the tangent at P = (z1, y1) is
rnr Yy
a—2+b—2 =1 (2.3.32)

and it is straightforward to show that it intersects the directrix = a/e at the point

b2
(5,—(1—ﬂ)). (2.2.2)
e’y ae
The coordinates of the focus Fy are (ae, 0). The slope of the line PF5 is (21 —ae)/y; and the slope of the line QF, is
b’ z
=(1-2)

L2 _ae
e

(2.2.3)

It is easy to show that the product of these two slopes is —1, and hence that PF3 and QF, are at right angles.

Conjugate Diameters

The left hand of figure II1.16 shows a circle and two perpendicular diameters. The right hand figure shows what the circle would
look like when viewed at some oblique angle. The circle has become an ellipse, and the diameters are no longer perpendicular. The
diameters are called conjugate diameters of the ellipse. One is conjugate to the other, and the other is conjugate to the one. They
have the property - or the definition - that each bisects all chords parallel to the other, because this property of bisection, which is
obviously held by the perpendicular diameters of the circle, is unaltered in projection.
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FIGUREII.16

It is easy to draw two conjugate diameters of an ellipse of eccentricity e either by making use of this last-mentioned property or by
noting that that the product of the slopes of two conjugate diameters is e2 — 1. The proof of this is left for the enjoyment of the
reader.

A Ladder Problem.

No book on elementary applied mathematics is complete without a ladder problem. A ladder of length @ +b leans against a smooth
vertical wall and a smooth horizontal floor. A particular rung is at a distance a from the top of the ladder and b from the bottom of
the ladder. Show that, when the ladder slips, the rung describes an ellipse. (This result will suggest another way of drawing an
ellipse.) See figure I1.17.

FIGUREII.17
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If you have not done this problem after one minute, here is a hint. Let the angle that the ladder makes with the floor at any time be
E. That is the end of the hint.

The reader may be aware that some of the geometrical properties that we have discussed in the last few paragraphs are more of
recreational interest and may not have much direct application in the theory of orbits. In the next subsection we return to properties
and Equations that are very relevant to orbital theory - perhaps the most important of all for the orbit computer to understand.

Polar Equation to the Ellipse

We shall obtain the Equation in polar coordinates to an ellipse whose focus is the pole of the polar coordinates and whose major
axis is the initial line (6 = 0°) of the polar coordinates. In figure II.18 we have indicated the angle 6 of polar coordinates, and it
may occur to the reader that we have previously used the symbol v for this angle and called it the true anomaly. Indeed at present, v
and 6 are identical, but a little later we shall distinguish between them.
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From our definition of the ellipse, s = 2a —r , and so
s* = 4a® —dar +1°. (2.3.33)

From the cosine formula for a plane triangle,

s*> =4a’e® +r* +4aer cosd. (2.3.34)
On equating these expressions we soon obtain

a(l1—€")=r(l+ecosf). (2.3.35)

The left hand side is equal to the semi latus rectum /, and so we arrive at the polar Equation to the ellipse, focus as pole, major axis
as initial line:

1
=— 2.3.
T +ecosf (2.3.36)
If the major axis is inclined at an angle w to the initial line (figure II.19 ), the Equation becomes
l l
r— (2.3.37)

~ 1+ecos(d—w) " Ttecosv’

0=v+0

FIGUREII.19

The distinction between 8 and v is now evident. 6 is the angle of polar coordinates, w is the angle between the major axis and the
initial line (w will be referred to in orbital theory as the "argument of perihelion"), and v, the true anomaly, is the angle between the
radius vector and the initial line.

This page titled 2.2: The Ellipse is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source
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