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1.16: Gaussian Quadrature - Derivation
In order to understand why Gaussian quadrature works so well, we first need to understand some properties of polynomials in
general, and of Legendre polynomials in particular. We also need to remind ourselves of the use of Lagrange polynomials for
approximating an arbitrary function.

First, a statement concerning polynomials in general: Let  be a polynomial of degree , and let  be a polynomial of degree less
than . Then, if we divide  by , we obtain a quotient  and a remainder , each of which is a polynomial of degree less than 

.

That is to say:

What this means is best understood by looking at an example, with . For example,

let

and

If we carry out the division  by the ordinary process of long division, we obtain

For example, if , this becomes

The theorem given by Equation  is true for any polynomial  of degree . In particular, it is true if  is the Legendre
polynomial of degree .

__________________________________

Next an important property of the Legendre polynomials, namely, if  and  are Legendre polynomials of degree  and 
respectively, then

This property is called the orthogonal property of the Legendre polynomials.

I give here a proof. Although it is straightforward, it may look formidable at first, so, on first reading, you might want to skip the
proof and go on the next part (after the next short horizontal dividing line).

From the symmetry of the Legendre polynomials (see figure ), the following are obvious:

and

In fact we can go further, and, as we shall show,
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Thus  satisfies the differential Equation (see Equation 1.14.7)

which can also be written

Multiply by :

which can also be written

In a similar manner, we have

Subtract one from the other:

Integrate from  to :

The left hand side is zero because  is zero at both limits.

Therefore, unless ,

___________________________________

I now assert that, if  is the Legendre polynomial of degree , and if  is any polynomial of degree less than , then

I shall first prove this, and then give an example, to see what it means.

To start the proof, we recall the recursion relation (see Equation 1.14.4 – though here I am substituting  for ) for the Legendre
polynomials:

The proof will be by induction.

Let  be any polynomial of degree less than l. Multiply the above relation by  and integrate from  to :

If the right hand side is zero, then the left hand side is also zero.
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A correspondent has suggested to me a much simpler proof. He points out that you could in principle expand  in Equation 
 as a sum of Legendre polynomials for which the highest degree is . Then, by virtue of Equation , every term is

zero.

For example, let , so that

and

and let

It is then straightforward (and only slightly tedious) to show that

and that

But

and therefore

We have shown that

for , and therefore it is true for all positive integral .

You can use this property for a parlour trick. For example, you can say: “Think of any polynomial. Don’t tell me what it is – just
tell me its degree. Then multiply it by (here give a Legendre polynomial of degree more than this). Now integrate it from  to 

. The answer is zero, right?” (Applause.)

Thus: Think of any polynomial. . Now multiply it by . OK, that’s . Now
integrate it from  to . The answer is zero.

__________________________________________

Now, let  be any polynomial of degree less than . Let us divide it by the Legendre polynomial of degree , , to obtain the
quotient  and a remainder , both of degree less than . Then I assert that

This follows trivially from Equations  and . Thus
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Example: Let . The integral of this from  to  is . If we divide  by 
, we obtain a quotient of  and a remainder of . The integral of the latter

from  to  is also .

______________________________________

I have just described some properties of Legendre polynomials. Before getting on to the rationale behind Gaussian quadrature, let
us remind ourselves from Section 1.11 about Lagrange polynomials. We recall from that section that, if we have a set of n points,
the following function:

(in which the  functions , , are Lagrange polynomials of degree  is the polynomial of degree  that
passes exactly through the  points. Also, if we have some function  which we evaluate at  points, then the polynomial

is a jolly good approximation to  and indeed may be used to interpolate between nontabulated points, even if the function is
tabulated at irregular intervals. In particular, if  is a polynomial of degree , then the expression  is an exact
representation of .

________________________________

We are now ready to start talking about quadrature. We wish to approximate  by an -term finite series

where . To this end, we can approximate  by the right hand side of Equation , so that

Recall that the Lagrange polynomials in this expression are of degree .

The required coefficients for Equation  are therefore

Note that at this stage the values of the  have not yet been chosen; they are merely restricted to the interval [−1 , 1].

__________________________________

Now let’s consider , where  is a polynomial of degree less than , such as, for example, the polynomial of Equation 
. We can write

Here, as before,  is a polynomial of degree , and  and  are of degree less than .

If we now choose the  to be the roots of the Legendre polynomials, then

Note that the integrand on the right hand side of Equation  is an exact representation of . But we have already shown
(Equation ) that , and therefore
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It follows that the Gaussian quadrature method, if we choose the roots of the Legendre polynomials for the  abscissas, will yield
exact results for any polynomial of degree less than , and will yield a good approximation to the integral if  is a polynomial
representation of a general function  obtained by fitting a polynomial to several points on the function.

This page titled 1.16: Gaussian Quadrature - Derivation is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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