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4.2: Planes and Straight Lines
The geometry of the plane and the straight line is, of course, rather simple, so that we can dispose of them in this brief introductory
section in a mere 57 Equations.

The Equation

represents a plane. If  ≠ 0 it is often convenient, and saves algebra and computation with no loss of information, to divide the
Equation through by  and re-write it in the form

The coefficients need not by any means all be positive. If , the plane passes through the origin of coordinates, and it may be
convenient to divide the Equation  by  and hence to rewrite it in the form

The plane represented by Equation  intersects the -, - and -planes in the straight lines

and it intersects the -, - and -axes at

The geometry can be seen in figure 

 

Another way of writing the Equation to the plane would be

In this form, ,  and  are the intercepts on the -, - and -axes.

Distance of a point from the plane

We now consider this problem. Let  be some point in space. What is the perpendicular distance from  to the plane
?

[The algebra in the following paragraphs may seem a little heavy. If all you are interested in is the distance of the plane from the
origin, simply substitute , and the algebra will be considerably eased.]

Ax +By +Cz +D = 0 (4.2.1)
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4.2.2 yz zx xy

by +cz = 1 (4.2.4)

cz +ax = 1 (4.2.5)
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z = = 1/cz0 (4.2.9)
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Let  be a point on the plane. The distance  between  and  is given by

But since  is on the plane, we can write  in terms of  and  alone, by substituting for  from Equation :

This distance (from  to ) is least for a point on the plane such that  and  are both zero. These two conditions result in

These, combined with Equation , result in

These are the coordinates of the point  in the plane that is nearest to . The perpendicular distance between  and  is

This is positive if  is on the same side of the plane as the origin, and negative if it is on the opposite side. If the perpendicular
distances of two points from the plane, as calculated from Equation 4.4.18, are of opposite signs, they are on opposite sides of the
plane. If , or indeed if the numerator of Equation 4.4.18 is zero, the point  is, of course, in the plane.

It is worthwhile to repeat these results for the case where the point  coincides with the origin . In that case we find that the
coordinates of the point  on the plane that is nearest to the origin are

and the perpendicular distance from the origin to the plane (i.e. from  to ) is

Further,  is normal to the plane, and the direction cosines (see Chapter 3, especially section 3.3) of , i.e. of the normal to the
plane, are

The coefficients , ,  are direction ratios of the normal to the plane; that is to say, they are numbers that are proportional to the
direction cosines.

Example: Consider the plane

The plane intersects the -, - and -axes at  and . The point on the plane that is closest to the origin is 
. The perpendicular distance of the origin from the plane is . The direction cosines of the normal to

the plane are .
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( + )y = b + −bc −abxb2 c2 c2y1 z1 (4.2.14)

4.2.2

x =
( + ) +a(1 −b −c )b2 c2 x1 y1 z1

+ +a2 b2 c2
(4.2.15)

y =
( + ) +b(1 −c −a )c2 a2 y1 z1 x1

+ +a2 b2 c2
(4.2.16)

z =
( + ) +c(1 −a −b )a2 b2 z1 x1 y1

+ +a2 b2 c2
(4.2.17)

P P1 P P1

p =
1 −a −b −cx1 y1 z1

+ +a2 b2 c2
− −−−−−−−−−

√
(4.2.18)

P1

p = 0 ( , , )P1 x1 y1 z1

P1 O
P

x = , y = , z = ,
a

+ +a2 b2 c2

b

+ +a2 b2 c2

c

+ +a2 b2 c2
(4.2.19a,b,c)

O P

p =
1

+ +a2 b2 c2
− −−−−−−−−−

√
(4.2.20)

OP OP

, ,
a

+ +a2 b2 c2
− −−−−−−−−−

√

b

+ +a2 b2 c2
− −−−−−−−−−

√

c

+ +a2 b2 c2
− −−−−−−−−−

√
(4.2.21)

a b c

0.5x +0.25y +0.20z = 1 (4.2.22)

x y z (2, 0, 0),  0, 4, 0) (0, 0, 5)
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An Equation for the plane containing three specified points can be found as follows. Let , ,  be the three
specified points, and let  be any point in the plane that contains these three points. Each of these points must satisfy an
Equation of the form 4.2.1. That is,

In these Equations, we are treating , , ,  as unknowns, and the , , , , ... as coefficients. We have four linear
Equations in four unknowns, and no constant term. From the theory of Equations, these are consistent only if each is a linear
combination of the other three. This is satisfied only if the determinant of the coefficients is zero:

and this is the Equation to the required plane containing the three points. The reader will notice the similarity of this Equation to
Equation 2.2.4 for a line passing between two points in two-dimensional geometry. The reader might like to repeat the argument,
but requiring instead the four points to satisfy an Equation of the form 4.2.2. There will then be four linear Equations in three
unknowns. Otherwise the argument is the same.

We now move on to the question of finding the area of a triangle whose vertices are given. It is straightforward to do this with a
numerical example, and the reader is now encouraged to write a computer program, in whatever language is most familiar, to carry
out the following tasks. Read as data the - -  coordinates of three points . Calculate the lengths of the sides , , , a
being opposite to , etc. Calculate the three angles at the vertices of the triangle, in degrees and minutes, and check for correctness
by verifying that their sum is . If an angle is obtuse, make sure that the computer displays its value as a positive angle between

 and . Finally, calculate the area of the triangle.

The data for several triangles could be written into a data file, which your program reads, and then writes the answers into an
output file. Alternatively, you can type the coordinates of the vertices of one triangle and ask the computer to read the data from the
monitor screen, and then to write the answers on the screen followed by a message such as "Do you want to try another triangle (1)
or quit (2)?". Your program should also be arranged so that it writes an appropriate message if the three points happen to be
collinear.

It should be easy to calculate the sides. The angles can then be calculated from Equation 3.2.2 and the area from each of the four
Equations 3.2.3 and 3.2.4. They should all yield the correct answer, of course, but the redundant calculations serve as an important
check on the correctness of your programming, as also does your check that the three angles add to . Where there are two of
more ways of performing a calculation, a careful calculator will do all of them as a check against mistakes, whether the calculation
is done by hand or by computer.

Example. If the coordinates of the vertices are

the sides are

and the angles are

which add up to . The area is .

Example. If the coordinates of the vertices are

( , )x1 y1 ( , )x2 y2 ( , )x3 y3

(x, y)

xA +yB +zC +D = 0 (4.2.24)

A + B + C +D = 0x1 y1 z1 (4.2.25)

A + B + C +D = 0x2 y2 z2 (4.2.26)

A + B + C +D = 0x3 y3 z3 (4.2.27)
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(4.2.28)

x y z A, B, C a b c

A
180∘

90∘ 180∘

180∘

A(7, 4, 3), B(11, 6, 2), C(9, 2, 4) (4.2.1)

a = 4.899, b = 3.000, c = 4.583, (4.2.2)

A = , B = , C = ,65∘55′ 36∘42′ 77∘23′ (4.2.3)

180∘ 6.708

A(6, 4, 9), B(2, 6, 17), C(8, 3, 5) (4.2.4)
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the area of the triangle is zero and the points are collinear.

The foregoing showed that it was not difficult to calculate numerically the area of the triangle from the coordinates of its vertices.
Is it easy to find a simple explicit algebraic formula for the area in terms of ,  and ? On referring
to figure , we can proceed as follows.

 

The vectors  and  can be written

where  are unit vectors parallel to the -, - and - axes.

The cross product of  and  gives the (vector) area of the parallelogram of which they form two sides. The area  of the
triangle is half of this, so that

 

 

 

The magnitude of this vector can be found in the usual way, to obtain

 

 

The reader can verify that, if , this reduces to Equation 2.2.12 for the area of a triangle the -plane. Equation 4.1.32
can also be written

( , , )x1 y1 z1 ( , , )x2 y2 z2 ( , , )x3 y3 z3

IV.2

FIGURE IV.2

r2 r3

= ( − )i +( − )j +( − )kr2 x2 x1 y2 y1 z2 z1 (4.2.29)

= ( − )i +( − )j +( − )kr3 x3 x1 y3 y1 z3 z1 (4.2.30)

i, j, k x y z

r2 r3 A

2A = ×r2 r3 (4.2.5)

= [( − )( − ) −( − )( − )]iy2 y1 z3 z1 y3 y1 z2 z1 (4.2.6)

+[( − )( − ) −( − )( − )]jz2 z1 x3 x1 z3 z1 x2 x1 (4.2.7)

+[( − )( − ) −( − )( − )]kx2 x1 y3 y1 x3 x1 y2 y1 (4.2.31)

4 = [( ( − ) + ( − ) + ( − )A2 y1 z2 z3 y2 z3 z1 y3 z1 z2 ]2 (4.2.8)

+[( ( − ) + ( − ) + ( − )z1 x2 x3 z2 x3 x1 z3 x1 x2 ]2 (4.2.9)

+[( ( − ) + ( − ) + ( − ) .x1 y2 y3 x2 y3 y1 x3 y1 y2 ]2 (4.2.32)
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This gives the area explicitly in terms of the coordinates of the vertices. If it is zero, the points are collinear.

The volume of a tetrahedron is . By combining Equation  for the area of a triangle with Equation 
for the perpendicular distance of a point from a plane, we can determine that the volume of the tetrahedron whose vertices are

is

If this determinant is zero, the four points are coplanar.

In three-dimensional coordinate geometry, a straight line is described by two Equations, being the intersection of two planes:

If ,the normals to the two planes have the same direction ratios, so the planes are parallel and do not
intersect. Otherwise the normals to the two planes have different direction ratios , and, since the line of
intersection of the planes is at right angles to both normals, the direction ratios of the line are found from the cross product of
vectors normal to the planes. The direction ratios of the line of intersection are therefore

The line crosses the -, - and - planes at

An example of computing a straight line from the intersection of two planes occurs in meteor astronomy. We can assume a flat
Earth, which is tantamount to supposing that the height of a meteor is negligible compared with the radius of Earth, and the height
of an observer above sea level is negligible compared with the height of the meteor. Since the heights of meteors are typically a few
tens of km, both of these approximations are reasonable, at least for noninstrumental eyewitness accounts.

We suppose that, relative to an arbitrary origin  on the surface of Earth, a witness  is  and  of the origin.
He sees a fireball start at an angle  from his zenith and at an azimuth  counterclockwise from his east, and it
finishes at , . (See figure .)

Show that the plane containing the witness and the meteor is

A second witness,  and  of , estimates the zenith distance and azimuth of two points on the meteor track
to be ,  and , 

Show that the plane containing this second witness and the meteor is

These two Equations describe the path of the fireball through the air. Show that, if the meteoroid carries on moving in a straight
line, it will strike the ground as a meteorite  and  of the origin .
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(4.2.34)

x + y + z = 1a1 b1 c1 (4.2.35)

x + y + z = 1a2 b2 c2 (4.2.36)

/ = / = /a1 a2 b1 b2 c1 c2

( , , ),  ( , , )a1 b1 c1 a2 b2 c2

( − ,   − ,   − )b1c2 b2c1 c1a2 c2a1 a1b2 a2b1 (4.2.37)
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−c2 c1

−b1c2 b2c1

−b1 b2

−b1c2 b2c1
(4.2.38)

z = x =
−a2 a1

−c1a2 c2a1

−c1 c2

−c1a2 c2a1
(4.2.39)

x = y =
−b2 b1

−a1b2 a2b1

−a1 a2

−a1b2 a2b1
(4.2.40)

O A 15 km east 5 km north
θ = .525∘ ϕ = .554∘

θ = .736∘ ϕ = .716∘ IV.3

0.0363x +0.0911y −0.0454z = 1 (4.2.41)

30 km east 15 km north O
θ = .629∘ ϕ = .9202∘ θ = .633∘ ϕ = .9242∘

0.0257x +0.0153y +0.0168z = 1 (4.2.42)

42.4 km east 6.0 km south O
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As we have just discussed, two nonparallel planes intersect in a straight line. Usually, three nonparallel planes intersect at a single
unique point; for, if  is a line formed from the intersection of planes  and ,  will usually intersect the plane  at a point.

Example: The planes

intersect at .

It will be recalled from the theory of linear Equations that three Equations

have a unique solution only if

and, in the geometrical interpretation, this is the condition that three planes meet in a single point. Consider, however, the three
planes

The direction ratios of the three lines found by combining the planes in pairs (see Equation ) are

It will be observed that each is a multiple of either of the others, and the direction cosines of each of the three lines are identical
apart from sign: .

The three lines are, in fact, parallel, and the three planes enclose a prism. A condition for this is that

But consider now the planes

Not only does , but also

FIGURE IV.3

L P1 P2 L P3

2x +3y +4z −9 = 0 (4.2.43)

x +y −8z +6 = 0 (4.2.44)

5x +6y −12z +1 = 0 (4.2.45)

(1, 1, 1)

x + y + z + = 0A1 B1 C1 D1 (4.2.46)

x + y + z + = 0A2 B2 C2 D2 (4.2.47)

x + y + z + = 0A3 B3 C3 D3 (4.2.48)
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∣ (4.2.49)

2x +3y +4z −9 = 0 (4.2.50)

x +y −8z +6 = 0 (4.2.51)

5x +6y −20z +12 = 0 (4.2.52)

4.2.37

(−28, 20, −1) (−84, 60, −3) (28, −20, 1) (4.2.11)

(∓0.813, ±0.581, ∓0.029)

Δ = 0. (4.2.53)

2x +3y +4z −9 = 0 (4.2.54)

x +y −8z +6 = 0 (4.2.55)

5x +6y −20z +9 = 0 (4.2.56)

Δ = 0
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The three lines obtained by combining Equations 4.2.54,55,56 in pairs are in fact identical, and the three planes meet in a single
line. Each of Equations 4.2.54,55,56 is a linear combination of the other two.

In summary, three nonparallel planes meet in a single line if . They meet in a single point if . They enclose a
prism if .

This page titled 4.2: Planes and Straight Lines is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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Δ ≠ 0 Δ = = 0Δ′

Δ = 0, ≠ 0Δ′
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