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16.1: Introduction
We are going to consider the following problem. Two masses,  and  are revolving around their mutual centre of mass  in
circular orbits, at a constant distance  apart.

 

The orbital period is given by

and the angular orbital speed is given by

I establish the following notation.

Mass ratio:

Mass fraction:

They are related by

and

We note the following distances:

We ask ourselves the following question: Are there any points on the line passing through the two masses where a third body of
negligible mass could orbit around  with the same period as the other two masses; i.e. it would remain on the line joining the two
main masses?

In fact there are three such points, and they are known as the collinear lagrangian points. (The collinear points were discussed by
Euler before Lagrange, but Lagrange took the problem further and discovered an additional two points not collinear with the
masses, and the five points today are generally all known as the lagrangian points. We shall discuss the additional points in Section
16.2.) I have marked the three points in figure  with the letters ,  and .

There are evidently  ways in which I could choose the subscripts. Often today, the inner lagrangian point is labelled 
and the outer points are labelled  and . This seems to me to lack logic, and I choose to label the inner point , and the
outer points associated with  and  are then  and  respectively. Incidentally, I am not making any assumption about
which of the two main bodies is the more massive.
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Let us deal first with . Let us suppose that the distance from  to  is .

A particle of mass  at  is subject (in a co-rotating reference frame) to three forces, namely the gravitational attractions from the
two main bodies, and the centrifugal force acting away from . If this body is to be in equilibrium, we must have

On making use of Equations 16.1.2 and 16.1.4, we find that this Equation becomes

After manipulation, this becomes

where

and

Although Equation  is a quintic Equation, it has just one real root for positive .

The positions of  and  can be found by exactly similar arguments – you just have to take care with the directions and distances
of the two gravitational forces.

For , the coefficients are the same as for , except

and

For  the coefficients are

(Reminder: When computing any of these polynomials, write them in terms of nested parentheses. See Chapter 1, Section 1.5.)

It is also of interest to see the equivalent potential (gravitational plus centrifugal). The expression for gravitational potential energy
is, as usual, , where  is the distance from the mass . The expression for the centrifugal potential energy is 

, where  is the distance from the centre of mass. The negative of the derivative of this expression is  which is the
usual expression for the centrifugal force. When we apply these principles to the system of two masses under consideration, we
obtain the following expression for the equivalent potential (which, in this section, I’ll just call  rather than ).
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On making use of Equations  and , we find that this Equation becomes

where

Setting the derivatives of this expression to zero gives, of course, the positions of the lagrangian points, for these are equilibrium
points where the derivative of the potential is zero. Figure  shows the potential for a mass ratio . Note that, in the line
joining the two masses, the equivalent potential at the lagrangian points is a maximum, and therefore these points, while
equilibrium points, are unstable. We shall see in Section 16.6 that the points are actually saddle points. While several spacecraft are
in orbit or are planned to be in orbit around the collinear lagrangian points (e.g.  at the interior lagrangian point, and 
at ), continued small expenditure of fuel is presumably needed to keep them there.

It will be of interest to see how the positions of the lagrangian points vary with mass fraction. Indeed mass can be transferred from
one member of a binary star system to the other during the evolution of a binary star system. We shall discuss a little later how this
can happen. For the time being, without worrying about the exact mechanism, we’ll just vary the mass fraction and see how the
positions of the lagrangian points vary as we do so. However, if mass is transferred from one member of a binary star system to the
other,

 

and if there are no external torques on the system, the angular momentum  of the system will be conserved, and, to ensure this,
the separation  of the two stars changes with mass fraction.

Show that, for a given orbital angular momentum  of the system, the separation  of the components varies with mass
fraction according to

Solution
Here  is the total mass of the system. In figure  I have used this Equation, plus Equations  and 

, to compute the distances of , , and the three lagrangian points from  as a function of mass fraction. The unit of
distance in figure  is , which is the separation of the two masses when the two masses are equal. Each of
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these distances has a minimum value for a particular mass fraction. These minimum distances, and the mass fractions for
which they occur, are as follows:

 

How can mass transfer actually occur in a binary star system? Well, stars are not points – they are large spherical bodies. When
the hydrogen is exhausted in the core by thermonuclear reactions, a star expands hugely (“leaves the main sequence”) and
when it expands so much that the outer layers of its atmosphere reach the inner lagrangian point, matter from the large star
spills over into the other star. The more massive of the two stars in a binary system generally evolves faster; it is the first to
leave the main sequence and to expand so that its atmosphere reaches the inner lagrangian points. One can imagine the more
massive star gradually filling up its potential well of figure , until it overflows and drips over the potential hill of the
inner point, and then falls into the potential well of its companion.

One way of interpreting figure  is to imagine that  starts with a large mass fraction close to 1, and therefore near the
top of figure . Now imagine that this star loses mass to its companion, so that the mass fraction decreases. We start
moving down the  line of figure . We see the inner point  coming closer and closer. If the surface of the star meets 

 while  is still approaching (i.e. if the mass fraction is still greater than 0.446273), then further mass transfer will make 
approach ever faster, and mass transfer will therefore be rapid. When the mass fraction is less than 0.5, the star that was
originally the more massive star is by now less massive than its companion. When the mass fraction has been reduced below
0.446273, further mass transfer will push  away, and therefore further mass transfer will be slow.

In the calculations of Example , I assumed that the stars can be treated gravitationally as if they are point sources – and so
they can be, however large they are, as long as they are spherically symmetric. By the onset of mass transfer, the mass-losing star is
quite distorted and is far from spherical. However, this distortion affects mostly the outer atmosphere of the star, and, provided that
the greater bulk of the star is contained within a roughly spherically-symmetric volume, the point source approximation should
continue to be good. The other assumption I made was that orbital angular momentum is conserved. There are two reasons why this
might not be so – but for both of them there is likely to be very little loss of orbital angular momentum. One possibility is that mass
might be lost from the system – through one or other or both of the external collinear lagrangian points. However, figure 
shows that the potentials of these points are appreciably higher than the internal point; therefore mass transfer takes place well
before mass loss. Another reason why orbital angular momentum might be conserved is as follows. When matter from the mass-
losing star is transferred through the inner point to the mass-gaining star, or flows over the inner potential hill, it does not move in a
straight line directly towards the second star. This entire analysis has been referred to a corotating reference frame, and when matter
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moves from  towards , it is subject to a Coriolis force (see section 4.9 of Classical Mechanics), which sends it around  in
an accretion disc. During this process the total angular momentum of the system is conserved (provided no mass is lost from the
system) but this must now be shared between the orbital angular momentum of the two stars and the angular momentum of the
accretion disc. However, as long as the latter is a relatively small contribution to the total angular momentum, conservation of
orbital angular momentum remains a realistic approximation.
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