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10.7: Calculating the Position of a Comet or Asteroid

We suppose that we are given the orbital elements of an asteroid or comet. Our task is to be able to predict, from these, the right
ascension and declination of the object in the sky at some specified future (or past) date. If we can do it for one date, we can do it
for many dates - e.g. every day for a year if need be. In other words, we will have constructed an ephemeris. Nowadays, of course,
we can obtain ephemeris-generating programs and ephemerides with a few deft clicks on the Web, without knowing so much as the
difference between a sine and a cosine; but that way of doing it is not the purpose of this section.

For example, according to the Minor Planet Center, the osculating elements for the minor planet (1) Ceres for the epoch of
osculation ty = 2002 May 6.0 T'T are as follows:

a=2.7664122 AU Q =80°.486 32
e=0.0791158 w=173°.98440
1=10°.583 47 M, =189°.27500

1, £ and w are referred to the equinox and equator of J2000.0
Calculate the right ascension and declination (referred to J2000.0) at 2002 July 15.0 TT.

We have already learned how to achieve much of our aim from Chapter 9. Thus, from the elements a, e, w and T for an elliptic
orbit (or the corresponding elements for a parabolic or hyperbolic orbit) we can already compute the true anomaly v and the
heliocentric distance r as a function of time. These are the heliocentric polar coordinates of the body (henceforth “asteroid”). In
order to find the right ascension and declination (i.e. geocentric coordinates with the celestial equator as zy-plane) all we have to
do is to find the coordinates relative to the ecliptic, rotate the coordinate system from ecliptic to equatorial, and shift the origin of
coordinates from Sun to Earth,. We just have to do some straightforward geometry, and no further dynamics.

Let’s start by doing what we already know how to do from Chapter 9, namely, we’ll calculate the true anomaly and the heliocentric
distance.

e Mean anomaly at the epoch (tg = May 6.0) is My = 189°.275 00.
e Mean anomaly at time ¢ (= July 15. which is 70 days later) is given by

2
M- M, = %(t—to). (10.7.1)

The quantity 27/ Pis called the mean motion (actually the average orbital angular speed of the planet), usually given the symbol n.
We can calculate P in sidereal years from P2 =a?, and, given that a sidereal year is 365 .25636 and that 2 radians is 360
degrees, we can calculate the mean motion in its usual units of degrees per day. We find that n = 0.214 205 degrees per day. In
fact the Minor Planet Center, as well as giving the orbital elements, also lists, for our convenience, the mean motion, and they give
n =0.214 204 57 degrees per day. The small discrepancy between the n given by the Minor Planet Center and the value that we
have calculated from the published value of a presumably arises because the published values of the elements have been rounded
off for publication, and the Minor Planet Center presumably carries all digits in its calculations. I would recommend using the
value of n published by the Minor Planet Center, and I do so here. By July 15, then, Equation 10.7.1 tells us that the mean anomaly
is M =204°.269342. (’'m carrying six decimal places, even though M, is given only to five, just to be sure that I’m not
accumulating rounding-off errors in the intermediate calculations. I’ll round off properly when I reach the final result.)

We now have to find the eccentric anomaly from Kepler’s Equation M = E —esin E . Easy. (See chapter 9 if you’ve forgotten
how.) We find E = 202° .5322784 and, from Equations 2.3.16 and 17, we obtain the true anomaly v = 200° .8540289. The polar

2
laJ(riT:S)v. so we find that the heliocentric distance is » =2.968 5716 au (The Minor Planet Centre

gives r, to four significant figures, as 2.969 au) So much we could already do from Chapter 9. Note also that w+ v, known as the
argument of latitude and often given the symbol 0, is 274° .838 429.

Equation to an ellipse is , r =

We are going to have to make use of three heliocentric coordinate systems and one geocentric coordinate system.

1. Heliocentric plane-of-orbit. ®xyz with the ?x axis directed towards perihelion. The polar coordinates in the plane of the
orbit are the heliocentric distance r and the true anomaly v. The z-component of the asteroid is necessarily zero, and
r =rcosv and y =rsinv.

2. Heliocentric ecliptic. ®XY Z with the ®X axis directed towards the First Point of Aries, where Earth, as seen from the
Sun, will be situated on or near September 22. The spherical coordinates in this system are the heliocentric distance r, the
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ecliptic longitude A, and the ecliptic latitude 3, such that X =rcosScosA, Y =rcosfSsin\ and Z =rsinf3.

INSERT FIGURE HERE
FIGURE X.2

3. Heliocentric equatorial coordinates. ®¢n¢ with the @ axis directed towards the First Point of Aries and therefore
coincident with the X axis . The angle between the Z axis and the { axis is €, the obliquity of the ecliptic. This is also the
angle between the XY-plane (plane of the ecliptic, or of Earth’s orbit) and the &n-plane (plane of Earth’s equator). See figure
X.4.

4. Geocentric equatorial coordinates. @xyz with the @x axis directed towards the First Point of Aries. The spherical
coordinates in this system are the geocentric distance A, the right ascension « and the declination 4, such that
x=Acosdcosa, y=Acosdsina and z= Asind.

In figure X.2, the arc TN is the heliocentric ecliptic longitude A of the asteroid, and so NN is A —€. The arc NX is the
heliocentric ecliptic latitude 5. By two applications of Equation 3.5.5 we find

cos(A — Q) cost = sin(A — Q) cot(w+v) —sini cot 90° (10.7.2)
and
cos(A — ) cos90° = sin(A — Q) cot S —sin90° cot 3. (10.7.3)
These reduce to
tan(A — Q) = cosi tan(w+v) (10.7.4)
and
tan 8 = sin(A — Q) tans. (10.7.5)

In our particular example, we obtain (if we are careful to watch the quadrants),
A—Q=274°.921 7550, X =2355".4080750, [ =—-10°.5453234

Now, we’ll take the X-axis for the heliocentric ecliptic coordinates through Y and the Y-axis 90° east of this. Then, by the usual
formulas for converting between spherical and rectangular coordinates, that is, X =7cosf8cosA, Y =rcosfsinA and
Z =rsin 3, we obtain

X =+42.9090661, Y =-0.2336453, Z=-0.5432880 au.
(Check: X2+Y?2+2%2=72 )

? Exercise 10.7.1

Show, by elimination of A and 3, or otherwise, that:

X =r(cosQ cosf —sinQ sinfcosi) (10.7.6)
Y =r(sin cos0+ cos N sinfcosi) (10.7.8)
Z =rsinfsini. (10.7.9)

This will provide a more convenient way of calculating the coordinates. Verify that these give the same numerical result as
before. Here are some suggestions for doing it “otherwise”

Refer to Figure X.3, in which K is the pole of the ecliptic, and X is the asteroid. The radius of the celestial sphere can be taken as
equal to 7, the heliocentric distance of the asteroid. The rectangular heliocentric ecliptic coordinates are

X=rcosTOX Y =rcosROX Z=rcosK6oX
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