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9.4: Kepler's First and Third Laws from Newton's Law of Gravitation
In figure  I illustrate two masses (they needn’t be point masses – as long as they are spherically symmetric, they act
gravitationally as if they were point masses) revolving about their common centre of mass .

 

At some time they are a distance  apart, where

The Equations of motion of  in polar coordinates (with  as pole) are

Radial:

Transverse:

Elimination of  between these Equations will in principle give us the Equation, in polar coordinates, of the path.

A slightly easier approach is to write down expressions for the angular momentum and the energy. The angular momentum per unit
mass of  with respect to  is

The speed of  is  and the speed of  is  times this. Some effort will be required of the reader to determine
that the total energy  of the system is

[It is possible that you may have found this line quite difficult. The reason for the difficulty is that we are not making the
approximation of a planet of negligible mass moving around a stationary Sun, but we are allowing both bodies to have comparable
masses and the move around their common centre of mass. You might first like to try the simpler problem of a planet of negligible
mass moving around a stationary Sun. In that case  and  and ,  and .]

It is easy to eliminate the time between Equations  and . Thus you can write

and then use Equation  to eliminate . You should eventually obtain

This is the differential Equation, in polar coordinates, for the path of . All that is now required is to integrate it to obtain  as a
function of .

At first, integration looks hopelessly difficult, but it proceeds by making one tentative substitution after another to see if we can’t
make it look a little easier. For example, we have (if we multiply out the square bracket)  in the denominator three times in the
Equation. Let’s at least try the substitution . That will surely make it look a little easier. You will have to use
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and after a little algebra you should obtain

This may at first sight not look like much of an improvement, but the right hand side is just a lot of constants, and, since it is
positive, let’s call the right hand side . (In case you doubt that the right hand side is positive, the left hand side certainly is!)
Also, make the obvious substitution

and the Equation becomes almost trivial:

from which we proceed to

At this stage you can choose either the  or the  and you can choose to make the next substitution  or ;
you'll get the same result in the end. I'll choose the plus sign and I’ll let , and I get  and hence

where  is the arbitrary constant of integration. Now you have to go back and remember what  was, what  was and what  was
and what  was. Thus  and so on. Your aim is to get it in the form 

 function of θ, and, if you persist, you should eventually get

You’ll immediately recognize this from Equation 2.3.37 or 2.4.16 or 2.5.18:

as being the polar Equation to a conic section (ellipse, parabola or hyperbola). Equation  is the Equation of the path of the
mass  about the centre of mass of the two bodies. The eccentricity is

or, if you now recall what are meant by  and ,

(Check the dimensions of this!)

The eccentricity is less than 1, equal to 1, or greater than 1 (i.e. the path is an ellipse, a parabola or a hyperbola) according to
whether the total energy E is negative, zero or positive.

The semi latus rectum of the path of  relative to the centre of mass is of length
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or

(Check the dimensions of this!)

We can also write Equations  or  as

At this point it is useful to recall what we mean by  and by .  is the mass function, given by Equation 9.4.3:

Let us suppose that the total energy is negative, so that the orbits are elliptical. The two masses are revolving in similar elliptic
orbits around the centre of masses; the semi latus rectum of the orbit of  is , and the semi latus rectum of the orbit of  is ,
where

Relative to  the mass  is revolving in a larger but still similar ellipse with semi latus rectum  given by

I am now going to define  as the angular momentum per unit mass of  relative to . In other words, we are working in a frame
in which  is stationary and  is moving around  in an elliptic orbit of semi latus rectum . Now angular momentum per unit
mass is proportional to the areal speed, and therefore it is proportional to the square of the semi latus rectum. Thus we have

Combining Equations , , ,  and 9.4.1 we obtain

where  is the total mass of the system.

Once again:

The angular momentum per unit mass of  relative to the centre of mass is ,  where  is the semi latus rectum of the orbit
of  relative to the centre of mass, and it is  relative to , where  is the semi latus rectum of the orbit of  relative to .

If you were to start this analysis with the assumption that , and that  remains stationary, and that the centre of mass
coincides with , you would find that either Equation  or  reduces to

The period of the elliptic orbit is area  areal speed. The area of an ellipse is , and the areal speed is half the
angular momentum per unit mass (see section 9.3) . Therefore the period is 

 or

which is Kepler’s third law.

We might also, while we are at it, express the eccentricity (Equation) in terms of  rather than , using Equation . We
obtain:
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If we now substitute for  from Equation , and invert Equation , we obtain, for the energy of the system

or for the energy or the system per unit mass of :

Here  is the mass of the system – i.e. .  in Equation  is the total energy of the system, which includes the kinetic
energy of both masses as well as the mutual potential energy of the two, while  in Equation  is merely . That is, it is,
as stated, the energy of the system per unit mass of .

Equations  and  apply to any conic section. For the different types of conic section they can be written:

For an ellipse:

For a parabola:

For a hyperbola:

We see that the energy of an elliptic orbit is determined by the semi major axis, whereas the angular momentum is determined by
the semi major axis and by the eccentricity. For a given semi major axis, the angular momentum is greatest when the orbit is
circular.

Still referring the orbit of  with respect to , we can find the speed  of  by noting that

and, by making use of the b-parts of Equations 9.5.27-29, we find the following relations between speed of  in an orbit versus
distance from :

Ellipse:
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Hyperbola:

Circle:
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Exercise: Show that in an elliptic orbit, the speeds at perihelion and aphelion are, respectively,  and 

and that the ratio of perihelion to aphelion speed is, therefore, .

It might be noted at this point, from the definition of the astronomical unit (Chapter 8, section 8.1), that if distances are expressed
in astronomical units, periods and time intervals in sidereal years,  (where  is the mass of the Sun) has the value . The
mass of a comet or asteroid is much smaller than the mass of the Sun, so that . Thus, using these units, and to
this approximation, Equation  becomes merely .

I am much indebted to Dr Bob Rimmer, for the following delightful construction. Dr Rimmer found it in the recent book
Feynman’s Lost Lecture, The Motion of the Planets Around the Sun, by D.L. and J.R. Goodstein, and Feynman in his turn
ascribed it to a passage (Section IV, Lemma XV) in the Principia of Sir Isaac Newton. It has no doubt changed slightly with
each telling, and I present it here as follows.

 is a circle of radius  (Figure ).  is the centre of the circle, and  is a point inside the circle such that the distance 
, where . Join  and  to a point  on the circle.  is the perpendicular bisector of , meeting  at 

.

The reader is invited to show that, as the point  moves round the circle, the point  describes an ellipse of eccentricity , with
 and  as foci, and that  is tangent to the ellipse.

Hint: It is very easy – no math required! Draw the line , and let the lengths of  and  be  and  respectively. It will
then become very obvious that  is always equal to , and hence  describes an ellipse. By looking at an isosceles
triangle, it will also be clear that the angles  and  are equal, thus satisfying the focus-to-focus reflection property of
an ellipse, so that  is tangent to the ellipse.

But there is better to come. You are asked to find the length  in terms of ,  and , or ,  and .

An easy way to do it is as follows. Let , so that . From the right-angled triangle  we see that 
. Apply the cosine rule to triangle  to find another expression for , and eliminate  from your two

Equations. You should quickly arrive at

And, since , this becomes

Now the speed at a point  on an elliptic orbit, in which a planet of negligible mass is in orbit around a star of mass  is given
by
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Thus we arrive at the result that the length of  (or of ) is proportional to the speed of a planet  moving around the
Sun  in an elliptic orbit, and of course the direction , being tangent to the ellipse, is the direction of motion of the planet.
Figure  shows the ellipse.

It is left to the reader to investigate what happens it  is outside, or on, the circle

This page titled 9.4: Kepler's First and Third Laws from Newton's Law of Gravitation is shared under a CC BY-NC 4.0 license and was authored,
remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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