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3.5: Spherical Triangles
As with plane triangles, we denote the three angles by  and the sides opposite to them by . We are fortunate in that
we have four formulas at our disposal for the solution of a spherical triangle, and, as with plane triangles, the art of solving a
spherical triangle entails understanding which formula is appropriate under given circumstances. Each formula contains four
elements (sides and angles), three of which, in a given problem, are assumed to be known, and the fourth is to be determined.

Three important points are to be noted before we write down the formulas.

1. The formulas are valid only for triangles in which the three sides are arcs of great circles. They will not do, for example, for a
triangle in which one side is a parallel of latitude.

2. The sides of a spherical triangle, as well as the angles, are all expressed in angular measure (degrees and minutes) and not in
linear measure (metres or kilometres). A side of  means that the side is an arc of a great circle subtending an angle of  at
the centre of the sphere.

3. The sum of the three angles of a spherical triangle add up to more than .

In this section are now given the four formulas without proof, the derivations being given in a later section. The four formulas may
be referred to as the sine formula, the cosine formula, the polar cosine formula, and the cotangent formula. Beneath each formula is
shown a spherical triangle in which the four elements contained in the formula are highlighted.

The sine formula:

 

The cosine formula:

 

The polar cosine formula:

A,  B,  C a,  b,  c
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(3.5.1)

FIGURE III.10

cosa = cos b cos c+sinb sinc cosA (3.5.2)

FIGURE III.11

cosA = −cosB cosC +sinB sinC cosa (3.5.3)
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The cotangent formula:

 

The cotangent formula is a particularly useful and frequently needed formula, and it is unfortunate that it is not only difficult to
commit to memory but, even with the formula written out in front of one, it is often difficult to decide which is , which is  and
so on. However, it should be noted from the drawing that the four elements, side-angle-side-angle, lie adjacent to each other in the
triangle, and they may be referred to as outer side ( ), inner angle ( ), inner side ( ) and outer angle ( ) respectively. Many
people find that the formula is much easier to use when written in the form

The reader will shortly be offered a goodly number of examples in the use of these formulas. However, during the course of using
the formulas, it will be found that there is frequent need to solve deceptively simple trigonometric Equations of the type

After perhaps a brief pause, one of several methods may present themselves to the reader - but not all methods are equally
satisfactory. I am going to suggest four possible ways of solving this Equation. The first method is one that may occur very quickly
to the reader as being perhaps rather obvious - but there is a cautionary tale attached to it. While the method may seem very
obvious, a difficulty does arise, and the reader would be advised to prefer one of the less obvious methods. There are, incidentally,
two solutions to the Equation between  and . They are  and .

Method i

The obvious method is to isolate  :

Although the constants in the problem were given to four significant figures, do not be tempted to round off intermediate
calculations to four. It is a common fault to round off intermediate calculations prematurely. The rounding-off can be done at the
end.

Square both sides, and write the left hand side, , as . We now have a quadratic Equation in  :

FIGURE III.12

cos b cosA = sinb cot c−sinA cotC (3.5.4)

FIGURE III.13

b A

OS IA IS OA

cos(IS) cos(IA) = sin(IS) cot(OS) −sin(IA) cot(OA) (3.5.5)

4.737 sinθ+3.286 cosθ = 5.296 (3.5.6)

0∘ 360∘ .631∘58′ .578∘31′

cosθ

cosθ = 1.611 686 −1.441 570  sinθ. (3.5.1)

θcos2 1 − θsin2 sinθ

3.078 125 θ−4.646 717 sinθ+1.597 532 = 0.sin2 (3.5.2)
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The two solutions for  are  and  and the four values of  that satisfy these values of  are 
 and .

Only two of these angles are solutions of the original Equation. The fatal move was to square both sides of the original Equation, so
that we have found solutions not only to

but also to the different Equation

This generation of extra solutions always occurs whenever we square an Equation. For this reason, method (i), however tempting,
should be avoided, particularly when programming a computer to carry out a computation automatically and uncritically.

If in doubt whether you have obtained a correct solution, substitute your solution in the original Equation. You should always do
this with any Equation of any sort, anyway.

Method ii

This method makes use of the identities

where .

When applied to the original Equation, this results in the quadratic Equation in :

with solutions

The only values of  between  and  that satisfy these are the two correct solutions  and .

It is left as an exercise to show, using this method algebraically, that the solutions to the Equation

are given by

This shows that there are no real solutions if , one real solution if , and two real solutions if 
.

Method iii

We divide the original Equation

by the "hypotenuse" of  and ; that is, by .

Thus

Now let  and  (which we can, since these numbers now satisfy ) so that 
.

We have

sinθ 0.529 579 0.908 014 θ sinθ
.6,     .4,     .531∘58′ 148∘ 01′ 78∘ 31′ .5101∘28′

cosθ = 1.611 686 −1.441 570 sinθ (3.5.3)

−cosθ = 1.611 686 −1.441 570  sinθ. (3.5.4)

sinθ = , cosθ = ,
2t

1 + t2

1 − t2

1 + t2
(3.5.5)

t = tan θ1
2

t

8.582 −9.474t+2.010 = 0t2 (3.5.6)

t = 0.286528 and t = 0.817410 (3.5.7)

θ 0∘ 360∘   .631∘ 58′   .578∘ 31′

a sinθ+b cosθ = c (3.5.8)

tan θ = .
1

2

a± + −a2 b2 c2
− −−−−−−−−−

√

b+c
(3.5.9)

+ <a2 b2 c2 + =a2 b2 c2

+ >a2 b2 c2

4.737 sinθ+3.286 cosθ = 5.296 (3.5.10)

4.737 3.286 = 5.765151( + )4.7372 3.2862
− −−−−−−−−−−−−−

√

0.821 661  sinθ+0.569 976 cosθ = 0.918 623 (3.5.11)

0.821 661 = cosα 0.569976 = sinα α α = 1sin2 cos2

α =   .9134∘ 44′

cosα sinθ+sinα cosθ = 0.918 623 (3.5.12)
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or

from which

Therefore

Method iv

Methods ii and iii give explicit solutions, so there is perhaps no need to use numerical methods. Nevertheless, the reader might like
to solve, by Newton-Raphson iteration, the Equation

for which

Using the values of  and  from the example above and using the Newton-Raphson algorithm, we find with a first guess of 
the following iterations, working in radians:

The reader should verify this calculation, and, using a different first guess, show that NewtonRaphson iteration quickly leads to 
.

Having now cleared that small hurdle, the reader is invited to solve the spherical triangle problems below. Although these twelve
problems look like pointless repetitive work, they are in fact all different. Some have two solutions between  and  ; others
have just one. After solving each problem, the reader should sketch each triangle - especially those that have two solutions - in
order to see how the two-fold ambiguities arise. The reader should also write a computer program that will solve all twelve types of
problem at the bidding of the user. Answers should be given in degrees, minutes and tenths of a minute, and should be correct to
that precision. For example, the answer to one of the problems is . An answer of  or  should be
regarded as wrong. In celestial mechanics, there is no place for answers that are "nearly right". An answer is either right or it is
wrong. (This does not mean, of course, that an angle can be measured with no error at all; but the answer to a calculation given to a
tenth of an arcminute should be correct to a tenth of an arcminute.)

All angles and sides in degrees

sin(θ+α) = 0.918623 (3.5.13)

θ+α =   .54 or    .4666∘ 43′ 113∘ 16′ (3.5.14)

θ =   .6 or    .531∘ 58′ 78∘ 31′ (3.5.15)

f(θ) = a sinθ+b cosθ−c = 0, (3.5.16)

(θ) = a cosθ−b sinθ.f ′ (3.5.17)

a,  b c 45∘

0.785 398

0.417 841

0.541 499

0.557 797

0.558 104

0.558 104 = .631∘58′

(3.5.18)

  .578∘ 31′

0∘ 360∘

  .347∘ 37′   .247∘ 37′   .447∘ 37′

 Exercise 1
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Solutions

10.  
11.  
12.  
13.  
14.  
15.  
16.  
17.  
18.  
19.  
20.  
21. 

Derivation of the formulas

Before moving on to further problems and applications of the formulas, it is time to derive the four formulas which, until now, have
just been given without proof. We start with the cosine formula. There is no loss of generality in choosing rectangular axes such
that the point  of the spherical triangle  is on the -axis and the point  and hence the side  are in the -plane. The sphere
is assumed to be of unit radius.

 

If  and  are unit vectors directed along the −, − and −axes respectively, inspection of the figure will show that the position
vectors of the points  and  with respect to the centre of the sphere are

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

a = 64

a = 39

a = 16

a = 21

a = 67

a = 49

A = 24

A = 79

A = 62

A = 59

A = 47

A = 79

b = 33

b = 48

b = 37

b = 43

b = 54

b = 59

B = 72

B = 84

B = 49

B = 32

B = 57

B = 62

c = 37

C = 74

C = 42

A = 29

A = 39

A = 14

c = 19

c = 12

a = 44

a = 62

a = 22

C = 48

C =?

c =?

B =?

c =?

B =?

C =?

a =?

C =?

b =?

c =?

C =?

c =?

(3.5.19)

.228∘18′

.449∘32′

.0117∘31′

.7 or  .330∘46′ 47∘37′

.833∘34′

.1 or  .93∘18′ 162∘03′

.27∘38′

.620∘46′

.536∘25′

.776∘27′

.7 or  .280∘55′ 169∘05′

.628∘54′

A ABC z B c zx

FIGURE III.14
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and

respectively.

The scalar product of these vectors (each of magnitude unity) is just the cosine of the angle between them, namely , from
which we obtain immediately

To obtain the sine formula, we isolate  from this Equation, square both sides, and write  for . Thus,

and when we have carried out these operations we obtain

In the numerator, write  for  and  for , and divide both sides by . This results in

At this stage the reader may feel that we are becoming bogged down in heavier and heavier algebra and getting nowhere. But, after
a careful look at Equation , it may be noted with some delight that the next line is:

Therefore

The derivation of the polar cosine formula may also bring a small moment of delight. In figure ,  is a spherical
triangle.  is also a spherical triangle, called the polar triangle to . It is formed in the following way. The side  is an
arc of a great circle  from ; that is,  is part of the equator of which  is pole. Likewise  is  from  and  is 
from . In the drawing, the side  of the small triangle has been extended to meet the sides  and  of the large triangle. It
will be evident from the drawing that the angle  of the large

 

= i sinc+k cos cr1 (3.5.7)

= i sinb cosA+ j sinb sinA+k cos br2 (3.5.8)

cosa

cosa = cos b cos c+sinb sinc cosA. (3.5.9)

cosA 1 − Asin2 Acos2

(sinb sinc cosA = (cosa−cos b cos c ,)2 )2 (3.5.10)

A = .sin2 b c− a− b c+2 cosa cos b cos csin2 sin2 cos2 cos2 cos2

b csin2 sin2
(3.5.11)

1 − bcos2 bsin2 1 − ccos2 csin2 asin2

= .
Asin2

asin2

1 − a− b− c+2 cosa cos b cos ccos2 cos2 cos2

a b csin2 sin2 sin2
(3.5.12)

3.5.12

= = .
sinA

sina

sinB

sinb

sinC

sinc
(3.5.13)

III.15 A′B′C′

ABC A′B′C′ BC
90∘ A′ BC A′ CA 90∘ B′ AB 90∘

C′ B′C′ AB CA
A

FIGURE III.15
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triangle is equal to . Further, from the way in which the triangle  was formed,  and  are each equal to 
. From these relations, we see that

or

Therefore

In a similar manner,

Now, suppose  is any relation between the sides and angles of the triangle . We may replace 
by  by , and so on, and this will result in a relation between  and  ; that is, it will result in a
relation between the sides and angles of the triangle .

For example, the Equation

is valid for the triangle . By making these substitutions, we find the following formula valid for triangle :

which is the polar cosine formula.

The reader will doubtless like to try starting from the sine and cotangent formulas for the triangle  and deduce
corresponding polar formulas for the triangle , though this, unfortunately, may give rise to some anticlimactic disappointment.

I know of no particularly interesting derivation of the cotangent formula, and I leave it to the reader to work through the rather
pedestrian algebra. Start from

and

Eliminate  (but retain ) from these Equations, and write  for . Finally substitute  for , and,
after some tidying up, the cotangent formula should result.

At this stage, we have had some practice in solving the four spherical triangle formulas, and we have derived them. In this section
we encounter examples in which the problem is not merely to solve a triangle, but to gain some experience in setting up a problem
and deciding which triangle has to be solved.

The coordinates of the Dominion Astrophysical Observatory, near Victoria, British Columbia, are

Latitude  Longitude 

and the coordinates of the David Dunlap Observatory, near Toronto, Ontario, are

Latitude  Longitude 

How far is Toronto from Victoria, and what is the azimuth of Toronto relative to Victoria?

The triangle to be drawn and solved is the triangle , where  is the Earth's north pole,  is Victoria, and  is Toronto. On
figure  are marked the colatitudes of the two cities and the difference between their longitudes.

The great circle distance  between the two observatories is easily given by the cosine formula:

x+ +ya′ ABC x+a′ +ya′

90∘

A+A = [(x+ ) +y] + [x+( +y)]a′ a′ (3.5.20)

2A = +x+y = +A−180∘ 180∘ a′ (3.5.21)

A = −180∘ a′ (3.5.22)

B = −  and C = −180∘ b′ 180∘ c′ (3.5.23)

f( , , , , , ) = 0A′ B′ C ′ a′ b′ c′ A′B′C′ a′

−A,  180∘ b′ −B180∘ A,  B,  C,  a,  b c

ABC

cos = cos cos +sin sin cosa′ b′ c′ b′ c′ A′ (3.5.14)

A′B′C′ ABC

−cosA = cosB cosC −sinB sinC cosa, (3.5.15)

A′B′C′

ABC

cosa = cos b cos c+sinb sinc cosA (3.5.24)

cos c = cosa cos b+sina sinb cosC. (3.5.25)

cos c sinc 1 − bsin2 bcos2 sin c sinA

sinC
sina

 Example 1

.3N48∘31′ .0W123∘25′

.8N43∘51′ .3W79∘25′

PVT P V T
III.16

ω

cosω = cos .7 cos .2 +sin .7 sin .2 cos .741∘28′ 46∘08′ 41∘28′ 46∘08′ 43∘59′ (3.5.26)
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From this, we find  or  radians. The radius of the Earth is , so the distance between the
observatories is  or  miles.

Now that we have found , we can find the azimuth, which is the angle , from the sine formula:

and hence

But we should now remember that  has two values between  and , namely  and .

Usually it is obvious from inspection of a drawing which of the two values of  is the required one. Unfortunately, in this
case, both values are close to , and it may not be immediately obvious which of the two values we require. However, it will
be noticed that Toronto has a more southerly latitude than Victoria, and this should easily resolve the ambiguity.

We could, of course, have found the azimuth  by using the cotangent formula, without having to calculate  first. Thus

There is only one solution for  between  and , and it is the correct one, namely . A good drawing will show
the reader why the correct solution was the acute rather than the obtuse angle (in our drawing the angle was made to be close to

 in order not to bias the reader one way or the other), but in any case all readers, especially those who were trapped into
choosing the obtuse angle, should take careful note of the difficulties that can be caused by the ambiguity of the function .
Indeed it is the strong advice of the author never to use the sine formula, in spite of the ease of memorizing it. The cotangent
formula is more difficult to commit to memory, but it is far more useful and not so prone to quadrant mistakes.

Consider two points,  and , at latitude , longitude , and latitude , longitude . Where are the poles of
the great circle passing through these two points? We shall present two methods of doing the problem. First, by solving
spherical triangles. And second, kindly suggested to me by Achintya Pal, using the methods of algebraic coordinate geometry.

Let us call the colatitude and longitude of the first point  and of the second point  We shall consider the
question answered if we can find the coordinates  of the poles  and  of the great circle passing through the two
points. In figure ,  is the north pole of the Earth,  and  are the two points in question, and  is one of the two poles
of the great circle joining  and . The figure also shows the triangle . We’ll suppose that the origin for longitudes

ω = .730∘22′ 0.53021 6371 km
3378 km 2099

ω V

sinV = = 0.990 275
sin .2  sin .746∘08′ 43∘59′

sin .730∘22′
(3.5.27)

V = .382∘00′ (3.5.28)

0.990 275sin−1 0∘ 180∘ .382∘00′ .797∘59′

sin−1

90∘

V ω

cos .7 cos .7 = sin .7 cot .2 −sin .7 cotV41∘28′ 43∘59′ 41∘28′ 46∘08′ 43∘59′ (3.5.29)

V 0∘ 180∘ .382∘00′

90∘

sin−1

 Example 2

A B N20∘ E25∘ N72∘ E44∘

( , )θ1 ϕ1 ( , )θ2 ϕ2

( , )θ0 ϕ0 Q Q′

III.17 P A B Q
A B PQA
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(“Greenwich”) is behind the plane of the paper. The east longitudes of ,  and  are, respectively, ; and their
colatitudes are .

from which

 

Similarly from triangle  we would obtain

These are two Equations in  and , so the problem is in principle solved. Equate the righthand sides of the two Equations,
expand the terms  and , gather the terms in  and , eventually to obtain

If we substitute the angles given in the original problem, we obtain

from which

Note that we get two values for  differing by , as expected.

We then use either of the Equations for  to obtain  (It is good practice to use both of them as a check on the
arithmetic.) The north polar distance, or colatitude, must be between  and , so there is no ambiguity of quadrant.

With , we obtain , i.e. latitude . 
and with , we obtain , i.e. latitude .

and these are the coordinates of the two poles of the great circle passing through  and . The reader is strongly urged
actually to carry out these computations numerically in order to be quite sure that the quadrants are correct and unambiguous.
Indeed, dealing with the quadrant problem may be regarded as the most important part of the exercise.

Q A B , ,ϕ0 ϕ1 ϕ2

, ,θ0 θ1 θ2

0 = cos cos +sin sin cos( − ),θ0 θ1 θ0 θ1 ϕ1 ϕ0 (3.5.16)

tan = − .θ0
1

tan cos( − )θ1 ϕ1 ϕ0
(3.5.17)

FIGURE III.17

PQB

tan = − .θ0
1

tan cos( − )θ2 ϕ2 ϕ0
(3.5.18)

θ0 ϕ0

cos( − )ϕ1 ϕ0 cos( − )ϕ2 ϕ0 sinϕ0 cosϕ0

tan = .ϕ0
tan cos −tan cosθ1 ϕ1 θ2 ϕ2

tan sin −tan sinθ2 ϕ2 θ1 ϕ1
(3.5.19)

tan = = −2.412 091 0ϕ0
tan cos −tan cos70∘ 25∘ 18∘ 44∘

tan sin −tan sin18∘ 44∘ 70∘ 25∘ (3.5.30)

= .1 or .1ϕ0 112∘31′ 292∘31′ (3.5.31)

ϕ0 180∘

tanθ0 θ0

0∘ 180∘

= .1ϕ0 112∘31′ = .1θ0 96∘47′ .1 S6∘47′

= .1ϕ0 292∘31′ = .9θ0 83∘12′ .1 N6∘47′

A B
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We arrived at Equation  and  by solving two spherical triangles by the methods of spherical trigonometry. The
second method, suggested, as mentioned above, by Achintya Pal, uses the methods of algebraic coordinate geometry in three
dimensions to arrive at the same Equations. We refer coordinates to axes .  is the centre of the Earth, taken to be of unit
radius.  is the -axis. The  and  axes are not drawn in figure , but the -axis may be taken to be directed
somewhere to the rear of the drawing (away from the reader), and the -axis somewhere in the front of the drawing, both
being, of course, in the plane of the equator.

Let us write the Equation to the plane containing  and  in the form

Here  are the direction cosines of the normal to the plane , and are given by

The  coordinates of the point  are

On substitution of Equations  and  into Equation  we obtain:

After some very modest algebraic manipulation (e.g., start by dividing by ) we very soon arrive again at Equation 
, and in a similar manner at Equation .

As a bonus we note that any point having spherical coordinates  lying on the great circle whole pole is at 
satisfies the Equation

This Equation may be regarded as the  Equation to the great circle , and it answers the problem converse to the one
originally posed: What is the Equation to the great circle whose pole is at ) ?

Here is a challenging exercise and an important one in meteor astronomy. Two shower meteors are seen, diverging from a
common radiant. One starts at right ascension 6 hours, declination +65 degrees, and finishes at right ascension 1 hour,
declination +75 degrees. The second starts at right ascension 5 h, declination +35 degrees, and finishes at right ascension 3
hours, declination +15 degrees. Where is the radiant?

The assiduous student will make a good drawing of the celestial sphere, illustrating the situation as accurately as possible. The
calculation will require some imaginative manipulation of spherical triangles. After arriving at what you believe to be the
correct answer, look at your drawing to see whether it is reasonable. The next step might be to develop a general
trigonometrical expression for the answer in terms of the original data, or to program the calculation for a computer, so that it
is henceforth available for any similar calculation. Or one can go yet further, and write a computer program that will give a
least-squares solution for the radiant for many more than two meteors in the shower. I find for the answer to the above problem
that the radiant is at right ascension 7.26 hours and declination +43.8 degrees.

Uniqueness of Solutions

The reader who has by now worked through a variety of problems in the solution of a triangle will have noticed that, given three
elements of a triangle, sometimes there is a unique solution, whereas sometimes there are two possible triangles that satisfy the
original data. Yet again, it may sometimes be found that there is no possible solution, meaning that there is no possible triangle that
satisfies the given data, which must therefore be presumed incorrect. I am very much indebted to Alan Johnstone for lengthy
discussions on this problem, and indeed for pointing out that some of the “solutions” given in an earlier version of these notes were
in fact invalid (and have now been corrected). I believe the following criteria determine how many valid solutions there are for a
given triplet of data, for plane triangles and for spherical triangles.

We may be given three elements of a triangle,

3.5.17 3.5.18

Oxyz O
OP z Ox Oy III.17 x

y

A B

lx+my+nz = 0 (3.5.20)

(l,m,n) AB

l = sin cos m = sin sin n = cosθ0 ϕ0 θ0 ϕ0 θ0 (3.5.21a,b,c)

(x, y, z) A

x = sin cos y = sin sin x = cosθ1 ϕ1 θ1 ϕ1 θ1 (3.5.22a,b,c)

3.5.21a,b,c 3.5.22a,b,c 3.5.20

sin cos sin cos +sin sin sin sin +cos cos = 0θ0 ϕ0 θ1 ϕ1 θ0 ϕ0 θ1 ϕ1 θ0 θ1 (3.5.23)

sin cosθ1 θ0

3.5.17 3.5.18

(θ,ϕ) ( , )θ0 ϕ0

cotθ = −tan cos(ϕ−ϕ)θ0 (3.5.24)

(θ,ϕ) AB
( ,θ0 ϕ0

 Example 3
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Thus

i. Three sides: 
ii. Two sides and the included angle: 

iii. Two sides and a nonincluded angle: 
iv. Two angles and a common side: 
v. Two angles and another side: 

vi. Three angles: 

Question:

Which of these give a unique solution, and which admit of two solutions? And which are impossible triangles? I believe the
answers are as follows:

i. Let 

For a valid triangle,  and  must all be positive. If so, there is a unique solution.

ii. There is a unique solution.

iii. If  there is a unique solution.

If , there is a unique solution if . Otherwise there is no valid triangle.

If  there are zero, one or two solutions, according as to whether

.

iv. There is a unique solution.

v. There is a unique solution.

vi. There is a unique solution except that only the relative lengths of the sides are determined.

i. Let 

For a valid triangle,  and  must all be positive. If so, there is a unique solution.)

ii. There is a unique solution.

iii. If , there is no real solution.

If , then , and  and  are equal but indeterminate.

Otherwise:

If  there is a unique solution.

If , there is a unique solution if . Otherwise there is no real solution.

If  there are one or two solutions, according as to whether

iv. There is a unique solution.

v. If , there is no real solution.

If , then , and  and  are equal but indeterminate.

Otherwise:

If  there is a unique solution.

If , there is a unique solution if . Otherwise there is no real solution.

If  there are one or two solutions, according as to whether

a, b, c,
b, c,A.
a, b,A.

a,B,C.
A,B, a.

A,B,C.

Plane Triangles

d = a+b−c, e = b+c−a, f = c+a−b

d,  e f

a > b

a = b A < 90∘

a < b

sinA > , sinA =  or  sinA <a

b

a

b

a

b

Spherical Triangles

d = a+b−c, e = b+c−a, f = c+a−b

d,  e f

sinA > sin a

sin b

A = a = b = 90∘ B = 90∘ c C

a > b

a = b a < 90∘

a < b

sinA =  or  sinA < .
sina

sinb

sina

sinb
(3.5.32)

sinA = sinA

sinB

A = B = a = 90∘ b = 90∘ c C

A > B

A = B a < 90∘

A < B
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This page titled 3.5: Spherical Triangles is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.

sina =  or  sina < .
sinA

sinB

sinA

sinB
(3.5.33)
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