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2.7.16: Derivatives

Recognize the meaning of the tangent to a curve at a point.
Calculate the slope of a tangent line.
Identify the derivative as the limit of a difference quotient.
Calculate the derivative of a given function at a point.
Describe the velocity as a rate of change.
Explain the difference between average velocity and instantaneous velocity.
Estimate the derivative from a table of values.

Tangent Lines
We define the tangent line to the graph of a function as follows.

Let  be a function defined in an open interval containing . The tangent line to  at  is the line passing through the
point  having slope

provided this limit exists.

Equivalently, we may define the tangent line to  at  to be the line passing through the point  having slope

provided this limit exists.

Find the equation of the line tangent to the graph of  at 

Solution

First find the slope of the tangent line. In this example, use Equation .

Next, find a point on the tangent line. Since the line is tangent to the graph of  at , it passes through the point 
. We have , so the tangent line passes through the point .

Using the point-slope equation of the line with the slope  and the point , we obtain the line .
Simplifying, we have . The graph of  and its tangent line at  are shown in Figure .

 Learning Objectives

 Definition: Tangent Line

f(x) a f(x) a

(a, f(a))

=mtan lim
x→a

f(x) −f(a)

x−a
(2.7.16.1)

f(x) a (a, f(a))

=mtan lim
h→0

f(a+h) −f(a)

h
(2.7.16.2)

 Example : Finding a Tangent Line2.7.16.1

f(x) = x2 x = 3.

2.7.16.1

mtan = lim
x→3

f(x) −f(3)

x−3

= lim
x→3

−9x2

x−3

= = (x+3) = 6lim
x→3

(x−3)(x+3)

x−3
lim
x→3

Apply the definition.

Substitute f(x) =  and f(3) = 9x2

Factor the numerator to evaluate the limit.

f(x) x = 3

(3, f(3)) f(3) = 9 (3, 9)

m = 6 (3, 9) y−9 = 6(x−3)

y = 6x−9 f(x) = x2 3 2.7.16.5
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Figure : The tangent line to  at .

Use Equation  to find the slope of the line tangent to the graph of  at .

Solution

The steps are very similar to Example . See Equation  for the definition.

We obtained the same value for the slope of the tangent line by using the other definition, demonstrating that the formulas
can be interchanged.

Find the equation of the line tangent to the graph of  at .

Solution

We can use Equation , but as we have seen, the results are the same if we use Equation .

2.7.16.5 f(x) x = 3

 Example : The Slope of a Tangent Line Revisited2.7.16.2

2.7.16.2 f(x) = x2 x = 3

2.7.16.1 2.7.16.2

mtan = lim
h→0

f(3 +h) −f(3)

h

= lim
h→0

(3 +h −9)2

h

= lim
h→0

9 +6h+ −9h2

h

= = (6 +h) = 6lim
h→0

h(6 +h)

h
lim
h→0

Apply the definition.

Substitute f(3 +h) = (3 +h  and f(3) = 9)2

Expand and simplify to evaluate the limit.

 Example : Finding the Equation of a Tangent Line2.7.16.3

f(x) = 1/x x = 2

2.7.16.1 2.7.16.2
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We now know that the slope of the tangent line is . To find the equation of the tangent line, we also need a point on the
line. We know that . Since the tangent line passes through the point  we can use the point-slope equation of
a line to find the equation of the tangent line. Thus the tangent line has the equation . The graphs of 

 and  are shown in Figure .

Figure :The line is tangent to  at .

The Derivative of a Function at a Point
The type of limit we compute in order to find the slope of the line tangent to a function at a point occurs in many applications
across many disciplines. These applications include velocity and acceleration in physics, marginal profit functions in business, and
growth rates in biology. This limit occurs so frequently that we give this value a special name: the derivative. The process of
finding a derivative is called differentiation.

Let  be a function defined in an open interval containing . The derivative of the function  at , denoted by , is
defined by

provided this limit exists.

Alternatively, we may also define the derivative of  at  as

mtan = lim
x→2

f(x) −f(2)

x−2

= lim
x→2

−1
x

1
2

x−2

= ⋅lim
x→2

−1
x

1
2

x−2

2x

2x

= lim
x→2

(2 −x)

(x−2)(2x)

= lim
x→2

−1

2x

= −
1

4

Apply the definition.

Substitute f(x) =  and f(2) =
1

x

1

2

Multiply numerator and denominator by 2x to simplify fractions.

Simplify.

Simplify using  = −1,  for x ≠ 2.
2 −x

x−2

Evaluate the limit.

− 1
4

f(2) = 1
2

(2, )1
2

y = − x+11

4

f(x) = 1
x

y = − x+11
4

2.7.16.6

2.7.16.6 f(x) x = 2

 Definition: Derivative

f(x) a f(x) a f '(a)

f '(a) = lim
x→a

f(x) −f(a)

x−a
(2.7.16.3)

f(x) a

f '(a) = .lim
h→0

f(a+h) −f(a)

h
(2.7.16.4)
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For , use a table to estimate  using Equation .

Solution

Create a table using values of  just below  and just above .

2.9 5.9

2.99 5.99

2.999 5.999

3.001 6.001

3.01 6.01

3.1 6.1

After examining the table, we see that a good estimate is .

For , find  by using Equation .

Solution

Substitute the given function and value directly into the equation.

For , find  by using Equation .

Solution

Using this equation, we can substitute two values of the function into the equation, and we should get the same value as in
Example .

 Example : Estimating a Derivative2.7.16.4

f(x) = x2 f '(3) 2.7.16.3

x 3 3

x
− 9x2

x− 3

f '(3) = 6

 Example : Finding a Derivative2.7.16.6

f(x) = 3 −4x+1x2 f '(2) 2.7.16.3

f '(x) = lim
x→2

f(x) −f(2)

x−2

= lim
x→2

(3 −4x+1) −5x2

x−2

= lim
x→2

(x−2)(3x+2)

x−2

= (3x+2)lim
x→2

= 8

Apply the definition.

Substitute f(x) = 3 −4x+1 and f(2) = 5.x2

Simplify and factor the numerator.

Cancel the common factor.

Evaluate the limit.

 Example : Revisiting the Derivative2.7.16.7

f(x) = 3 −4x+1x2 f '(2) 2.7.16.4

2.7.16.6
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The results are the same whether we use Equation  or Equation .

Velocities and Rates of Change
Now that we can evaluate a derivative, we can use it in velocity applications. Recall that if  is the position of an object moving
along a coordinate axis, the average velocity of the object over a time interval  if  or  if  is given by

As the values of  approach , the values of  approach the value we call the instantaneous velocity at . That is, instantaneous
velocity at , denoted , is given by

To better understand the relationship between average velocity and instantaneous velocity, see Figure . In this figure, the
slope of the tangent line (shown in red) is the instantaneous velocity of the object at time  whose position at time  is given by
the function . The slope of the secant line (shown in green) is the average velocity of the object over the time interval .

Figure : The slope of the secant line is the average velocity over the interval . The slope of the tangent line is the
instantaneous velocity.

We can use Equation  to calculate the instantaneous velocity, or we can estimate the velocity of a moving object by using a
table of values. We can then confirm the estimate by using Equation .

f '(2) = lim
h→0

f(2 +h) −f(2)

h

= lim
h→0

(3(2 +h −4(2 +h) +1) −5)2

h

= lim
h→0

3(4 +4h+ ) −8 −4h+1 −5h2

h

= lim
h→0

12 +12h+3 −12 −4hh2

h

= lim
h→0

3 +8hh2

h

= lim
h→0

h(3h+8)

h

= (3h+8)lim
h→0

= 8

Apply the definition.

Substitute f(2) = 5 and f(2 +h) = 3(2 +h −4(2 +h) +1.)2

Expand the numerator.

Distribute and begin simplifying the numerator.

Finish simplifying the numerator.

Factor the numerator.

Cancel the common factor.

Evaluate the limit.

2.7.16.3 2.7.16.4

s(t)

[a, t] t > a [t, a] t < a

= .vave
s(t) −s(a)

t−a
(2.7.16.5)

t a vave a

a v(a)

v(a) = s'(a) = .lim
t→a

s(t) −s(a)

t−a
(2.7.16.6)

2.7.16.7

t = a t

s(t) [a, t]

2.7.16.7 [a, t]

2.7.16.6

2.7.16.5

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/74889?pdf


2.7.16.6 https://phys.libretexts.org/@go/page/74889

A lead weight on a spring is oscillating up and down. Its position at time  with respect to a fixed horizontal line is given by 
 (Figure ). Use a table of values to estimate . Check the estimate by using Equation .

Figure : A lead weight suspended from a spring in vertical oscillatory motion.

Solution

We can estimate the instantaneous velocity at  by computing a table of average velocities using values of 
approaching , as shown in Table .

Table : Average velocities using values of  approaching 0

−0.1 0.998334166

−0.01 0.9999833333

−0.001 0.999999833

0.001 0.999999833

0.01 0.9999833333

0.1 0.998334166

From the table we see that the average velocity over the time interval  is , the average velocity over
the time interval  is , and so forth. Using this table of values, it appears that a good estimate is 

.

By using Equation , we can see that

Thus, in fact, .

As we have seen throughout this section, the slope of a tangent line to a function and instantaneous velocity are related concepts.
Each is calculated by computing a derivative and each measures the instantaneous rate of change of a function, or the rate of
change of a function at any point along the function.

The instantaneous rate of change of a function  at a value  is its derivative .

Reaching a top speed of  mph, the Hennessey Venom GT is one of the fastest cars in the world. In tests it went from  to
 mph in  seconds, from  to  mph in  seconds, from  to  mph in  seconds, and from  to  mph in

 seconds. Use this data to draw a conclusion about the rate of change of velocity (that is, its acceleration) as it
approaches  mph. Does the rate at which the car is accelerating appear to be increasing, decreasing, or constant?

 Example : Estimating Velocity2.7.16.8

t

s(t) = sin t 2.7.16.8 v(0) 2.7.16.6

2.7.16.8

t = 0 t

0 2.7.16.2

2.7.16.2 t

t =sin t−sin 0
t−0

sin t
t

[−0.1, 0] 0.998334166

[−0.01, 0] 0.9999833333

v(0) = 1

2.7.16.6

v(0) = s'(0) = = = 1.lim
t→0

sin t−sin0

t−0
lim
t→0

sin t

t

v(0) = 1

 Definition: Instantaneous Rate of Change

f(x) a f '(a)

 Example : Chapter Opener: Estimating Rate of Change of Velocity2.7.16.9

270.49 0

60 3.05 0 100 5.88 0 200 14.51 0 229.9

19.96

229.9
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Figure : (credit: modification of work by Codex41, Flickr)

Solution
First observe that  mph =  ft/s,  mph ≈  ft/s,  mph ≈  ft/s, and  mph ≈  ft/s. We can
summarize the information in a table.

Table :  at different values of 

0 0

3.05 88

5.88 147.67

14.51 293.33

19.96 337.19

Now compute the average acceleration of the car in feet per second on intervals of the form  as  approaches ,
as shown in the following table.

Average acceleration

0.0 16.89

3.05 14.74

5.88 13.46

14.51 8.05

The rate at which the car is accelerating is decreasing as its velocity approaches  mph (  ft/s).

A homeowner sets the thermostat so that the temperature in the house begins to drop from  at  p.m., reaches a low of 
 during the night, and rises back to  by  a.m. the next morning. Suppose that the temperature in the house is given by 

 for , where  is the number of hours past  p.m. Find the instantaneous rate of change of
the temperature at midnight.

Solution

Since midnight is  hours past  p.m., we want to compute . Refer to Equation .

2.7.16.9

60 88 100 146.67 200 293.33 229.9 337.19

2.7.16.3 v(t) t

t v(t)

[t, 19.96] t 19.96

t =
v(t) − v(19.96)

t − 19.96

v(t) − 337.19

t − 19.96

229.9 337.19

 Example : Rate of Change of Temperature2.7.16.10

70°F 9

60° 70° 7

T (t) = 0.4 −4t+70t2 0 ≤ t ≤ 10 t 9

3 9 T '(3) 2.7.16.3
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The instantaneous rate of change of the temperature at midnight is  per hour.

A toy company can sell  electronic gaming systems at a price of  dollars per gaming system. The cost of
manufacturing  systems is given by  dollars. Find the rate of change of profit when  games
are produced. Should the toy company increase or decrease production?

Solution

The profit  earned by producing  gaming systems is , where  is the revenue obtained from the
sale of  games. Since the company can sell  games at  per game,

.

Consequently,

.

Therefore, evaluating the rate of change of profit gives

.

Since the rate of change of profit  and , the company should increase production.

Derivative

Consider the function  that is plotted in Figure A2.1.1. For any value of , we can define the slope of the function as the
“steepness of the curve”. For values of  the function increases as  increases, so we say that the slope is positive. For values
of , the function decreases as  increases, so we say that the slope is negative. A synonym for the word slope is “derivative”,
which is the word that we prefer to use in calculus. The derivative of a function  is given the symbol  to indicate that we are
referring to the slope of  when plotted as a function of .

We need to specify which variable we are taking the derivative with respect to when the function has more than one variable but
only one of them should be considered independent. For example, the function  will have different values if  and 
 are changed, so we have to be precise in specifying that we are taking the derivative with respect to . The following notations

are equivalent ways to say that we are taking the derivative of  with respect to :

T '(3) = lim
t→3

T (t) −T (3)

t−3

= lim
t→3

0.4 −4t+70 −61.6t2

t−3

= lim
t→3

0.4 −4t+8.4t2

t−3

= lim
t→3

0.4(t−3)(t−7)

t−3

= 0.4(t−7)lim
t→3

= −1.6

Apply the definition.

Substitute T (t) = 0.4 −4t+70 and T (3) = 61.6.t2

Simplify.

Cancel.

Evaluate the limit.

−1.6°F

 Example : Rate of Change of Profit2.7.16.11

x p = −0.01x+400

x C(x) = 100x+10, 000 10, 000

P (x) x R(x) −C(x) R(x)

x x p = −0.01x+400

R(x) = xp = x(−0.01x+400) = −0.01 +400xx2

P (x) = −0.01 +300x−10, 000x2

P '(10000) = lim
x→10000

P (x) −P (10000)

x−10000

= lim
x→10000

−0.01 +300x−10000 −1990000x2

x−10000

= lim
x→10000

−0.01 +300x−2000000x2

x−10000

= 100

P '(10, 000) > 0 P (10, 000) > 0

f(x) = x2 x

x > 0 x

x < 0 x

f(x)
df

dx

f(x) x

f(x) = a +bx2 a

b x

f(x) x
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The notation with the prime ( ) can be useful to indicate that the derivative itself is also a function of .

The slope (derivative) of a function tells us how rapidly the value of the function is changing when the independent variable is
changing. For , as  gets more and more positive, the function gets steeper and steeper; the derivative is thus increasing
with . The sign of the derivative tells us if the function is increasing or decreasing, whereas its absolute value tells how quickly
the function is changing (how steep it is).

We can approximate the derivative by evaluating how much  changes when  changes by a small amount, say, . In the limit
of , we get the derivative. In fact, this is the formal definition of the derivative:

where  is the small change in  that corresponds to the small change, , in . This makes the notation for the derivative
more clear,  is  in the limit where , and  is , in the same limit of .

As an example, let us determine the function  that is the derivative of . We start by calculating :

We now calculate :

and take the limit :

We have thus found that the function, , is the derivative of the function . This is illustrated in Figure A2.2.1.
Note that:

For ,  is positive and increasing with increasing , just as we described earlier (the function  is increasing and
getting steeper).
For ,  is negative and decreasing in magnitude as  increases. Thus  decreases and gets less steep as 
increases.
At ,  indicating that, at the origin, the function  is (momentarily) flat.

= f(x) = (x) =
df

dx

d

dx
f ′ f ′

(x),f ′ f ′ x

f(x) = x2 x

x

f(x) x Δx

Δx → 0

= =
df

dx
lim

Δx→0

Δf

Δx
lim

Δx→0

f(x+Δx) −f(x)

Δx
(2.7.16.7)

Δf f(x) Δx x

dx Δx Δx → 0 df Δf Δx → 0

(x)f ′ f(x) = x2 Δf

Δf = f(x+Δx) −f(x)

= (x+Δx −)2 x2

= +2xΔx+Δ −x2 x2 x2

= 2xΔx+Δx2

Δf

Δx

Δf

Δx
=

2xΔx+Δx2

Δx
= 2x+Δx

Δx → 0

df

dx
= lim

Δx→0

Δf

Δx

= (2x+Δx)lim
Δx→0

= 2x

(x) = 2xf ′ f(x) = x2

x > 0 (x)f ′ x f(x)

x < 0 (x)f ′ x f(x) x

x = 0 (x) = 0f ′ f(x)
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Figure :  and its derivative,  plotted for  between  and .

Common derivatives and properties

It is beyond the scope of this document to derive the functional form of the derivative for any function using Equation A2.2.1.
Table A2.2.1 below gives the derivatives for common functions. In all cases,  is the independent variable, and all other variables
should be thought of as constants:

Function, Derivative, 

Table : Common derivatives of functions.

If two functions of 1 variable,  and , are combined into a third function, , then there are simple rules for finding the
derivative, , based on the derivatives  and . These are summarized in Table A2.2.2 below.

Function, Derivative, 

 (The product rule)

 (The quotient rule)

 (The Chain Rule)

Table : Derivatives of combined functions.

Use the properties from Table A2.2.2 to show that the derivative of  is .

Solution

2.7.16.10 f(x) = x2 (x) = 2xd′ x −5 +5

x

f(x) (x)f ′

f(x) = a (x) = 0f ′

f(x) = xn (x) = nf ′ xn−1

f(x) = sin(x) (x) = cos(x)f ′

f(x) = cos(x) (x) = − sin(x)f ′

f(x) = tan(x) (x) =f ′ 1

(x)cos2

f(x) = ex (x) =f ′ ex

f(x) = ln(x) (x) =f ′ 1
x

2.7.16.3

f(x) g(x) h(x)

(x)h′ (x)f ′ (x)g′

h(x) (x)h′

h(x) = f(x) + g(x) (x) = (x) + (x)h′ f ′ g′

h(x) = f(x) − g(x) (x) = (x) − (x)h′ f ′ g′

h(x) = f(x)g(x) (x) = (x)g(x) + f(x) (x)h′ f ′ g′

h(x) =
f(x)

g(x)
(x) =h′ (x)g(x)−f(x) (x)f ′ g ′

(x)g2

h(x) = f(g(x)) (x) = (g(x)) (x)h′ f ′ g′

2.7.16.4

 Example 2.7.16.1

tan(x) 1
(x)cos2
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Since , we can write:

Using the fourth row in Table A2.2.2, and the common derivatives from Table A2.2.1, we have:

as required.

Use the properties from Table A2.2.2 to calculate the derivative of .

Solution

To calculate the derivative of , we need to use the Chain Rule.  is found by first taking  and then taking
that result squared. We can thus identify:

Using the common derivatives from Table A2.2.1, we have:

Applying the Chain Rule, we have:

where  means apply the derivative of  to the function . Since the derivative of  is , when
we apply it to  instead of , we get .

Partial derivatives and gradients

So far, we have only looked at the derivative of a function of a single independent variable and used it to quantify how much the
function changes when the independent variable changes. We can proceed analogously for a function of multiple variables, ,
by quantifying how much the function changes along the direction associated with a particular variable. This is illustrated in Figure
A2.2.2 for the function , which looks somewhat like a saddle.

tan(x) =
sin(x)

cos(x)

h(x)

f(x)

g(x)

=
f(x)

g(x)

= sin(x)

= cos(x)

(x)f ′

(x)g′

(x)g2

(x)h′

= cos(x)

= −sin(x)

= (x)cos2

=
(x)g(x) −f(x) (x)f ′ g′

(x)g2

=
cos(x) cos(x) −sin(x)(−sin(x))

cos2

=
(x) + (x)cos2 sin2

cos2

=
1

(x)cos2

 Example 2.7.16.2

h(x) = (x)sin2

h(x) h(x) sin(x)

h(x)

f(x)

g(x)

= (x) = f(g(x))sin2

= x2

= sin(x)

(x)f ′

(x)g′

= 2x

= cos(x)

(x)h′ = (g(x)) (x)f ′ g′

= 2 sin(x) (x)g′

= 2 sin(x) cos(x)

(g(x))f ′ f(x) g(x) f(x) (x) = 2xf ′

g(x) 2x 2g(x) = 2 cos(x)

f(x, y)

f(x, y) = −2x2 y2
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Figure :  plotted for  between  and  and for  between  and . The point  labeled on
the figure shows the value of the function at . The two lines show the function evaluated when one of  or  is held
constant.

Suppose that we wish to determine the derivative of the function  at  and . In this case, it does not make sense
to simply determine the “derivative”, but rather, we must specify in which direction we want the derivative. That is, we need to
specify in which direction we are interested in quantifying the rate of change of the function.

One possibility is to quantify the rate of change in the  direction. The solid line in Figure A2.2.2 shows the part of the function
surface where  is fixed at -2, that is, the function evaluated as . The point  on the figure shows the value of the
function when  and . By looking at the solid line at point , we can see that as  increases, the value of the
function is gently decreasing. The derivative of  with respect to  when  is held constant and evaluated at  and 

 is thus negative. Rather than saying “The derivative of  with respect to  when  is held constant” we say “The
partial derivative of  with respect to ”.

Since the partial derivative is different than the ordinary derivative (as it implies that we are holding independent variables fixed),
we give it a different symbol, namely, we use  instead of :

Calculating the partial derivative is very easy, as we just treat all variables as constants except for the variable with respect to which
we are differentiating . For the function , we have:

At , the partial derivative of  is indeed negative, consistent with our observation that, along the solid line, at point 
, the function is decreasing.

A function will have as many partial derivatives as it has independent variables. Also note that, just like a normal derivative, a
partial derivative is still a function. The partial derivative with respect to a variable tells us how steep the function is in the direction
in which that variable increases and whether it is increasing or decreasing.

2.7.16.11 f(x,y) = − 2x2 y2 x −5 +5 y −5 +5 P

f(−2, −2) x y

f(x) x = −2 y = −2

x

y f(x, y = −2) P

x = −2 y = −2 P x

f(x, y) x y x = −2

y = −2 f(x, y) x y

f(x, y) x

∂ d

= f(x, y) (Partial derivative of f with respect to x)
∂f

∂x

∂

∂x

1 f(x, y) = −2x2 y2

∂f

∂x
∂f

∂y

= ( −2 ) = 2x
∂

∂x
x2 y2

= ( −2 ) = −4y
∂

∂y
x2 y2

x = −2 f(x, y)

P
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Determine the partial derivatives of .

Solution

In this case, we have three partial derivatives to evaluate. Note that  are  constants and can be thought of as numbers that
we do not know.

Since the partial derivatives tell us how the function changes in a particular direction, we can use them to find the direction in
which the function changes the most rapidly. For example, suppose that the surface from Figure A2.2.2 corresponds to a real
physical surface and that we place a ball at point . We wish to know in which direction the ball will roll. The direction that it will
roll in is the opposite of the direction where  increases the most rapidly (i.e. it will roll in the direction where 
decreases the most rapidly). The direction in which the function increases the most rapidly is called the “gradient” and denoted by 

.

Since the gradient is a direction, it cannot be represented by a single number. Rather, we use a “vector” to indicate this direction.
Since  has two independent variables, the gradient will be a vector with two components. The components of the gradient
are given by the partial derivatives:

where  and  are the unit vectors in the  and  directions, respectively (sometimes, the unit vectors are denoted  and ). The
direction of the gradient tells us in which direction the function increases the fastest, and the magnitude of the gradient tells us how
much the function increases in that direction.

Determine the gradient of the function  at the point  and .

Solution

We have already found the partial derivatives that we need to evaluate at  and :

Evaluating the gradient at  and :

The gradient vector points in the direction . That is, the function increases the most in the direction where you
would take 1 pace in the negative  direction and 2 paces in the positive  direction. You can confirm this by looking at

 Example 2.7.16.3

f(x, y, z) = a +byz−sin(z)x2

a b

∂f

∂x
∂f

∂y
∂f

∂z

= (a +byz−sin(z)) = 2ax
∂

∂x
x2

= (a +byz−sin(z)) = bz
∂

∂y
x2

= (a +byz−sin(z)) = by−cos(z)
∂

∂z
x2

P

f(x, y) f(x, y)

∇f(x, y)

f(x, y)

∇f(x, y) = +
∂f

∂x
x̂

∂f

∂y
ŷ

x̂ ŷ x y î ĵ

 Example 2.7.16.4

f(x, y) = −2x2 y2 x = −2 y = −2

x = −2 y = −2

∂f

∂x
∂f

∂y

∴ ∇f(x, y)

= 2x

= −4y

= +
∂f

∂x
x̂

∂f

∂y
ŷ

= 2x −4yx̂ ŷ

x = −2 y = −2

∇f(x, y) = 2x −4yx̂ ŷ

= −4 +8x̂ ŷ

= 4(− +2 )x̂ ŷ

(−1, 2)

x y
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point  in Figure A2.2.2 and imagining in which direction you would have to go to climb the surface to get the steepest
climb.

The gradient is itself a function, but it is not a real function (in the sense of a real number), since it evaluates to a vector. It is a
mapping from real numbers  to a vector. As you take more advanced calculus courses, you will eventually encounter “vector
calculus”, which is just the calculus for functions of multiple variables to which you were just introduced. The key point to
remember here is that the gradient can be used to find the vector that points in the direction of maximal increase of the
corresponding multi-variate function. This is precisely the quantity that we need in physics to determine in which direction a ball
will roll when placed on a surface (it will roll in the direction opposite to the gradient vector).

Common uses of derivatives in physics
The simplest case of using a derivative is to describe the speed of an object. If an object covers a distance  in a period of time 

, it’s “average speed”, , is defined as the distance covered by the object divided by the amount of time it took to cover that
distance:

If the object changes speed (for example it is slowing down) over the distance , we can still define its “instantaneous speed”, ,
by measuring the amount of time, , that it takes the object to cover a very small distance, . The instantaneous speed is
defined in the limit where :

which is precisely the derivative of  with respect to .  is a function that gives the position, , of the object along some 
axis as a function of time. The speed of the object is thus the rate of change of its position.

Similarly, if the speed is changing with time, then we can define the “acceleration”, , of an object as the rate of change of its
speed:

Footnotes

1. To take the derivative is to “differentiate”!

Key Takeaways
The derivative of a function, , with respect to  can be written as:

and measures the rate of change of the function with respect to . The derivative of a function is generally itself a function. The
derivative is defined as:

Graphically, the derivative of a function represents the slope of the function, and it is positive if the function is increasing, negative
if the function is decreasing and zero if the function is flat. Derivatives can always be determined analytically for any continuous
function.

A partial derivative measures the rate of change of a multi-variate function, , with respect to one of its independent
variables. The partial derivative with respect to one of the variables is evaluated by taking the derivative of the function with
respect to that variable while treating all other independent variables as if they were constant. The partial derivative of a function
(with respect to ) is written as:

P

x, y

Δx

Δt vavg

=vavg
Δx

Δt

Δx v

Δt Δx

Δx → 0

v= =lim
Δx→0

Δx

Δt

dx

dt

x(t) t x(t) x x

a

a =
dv

dt

f(x) x

f(x) = = (x)
d

dx

df

dx
f ′

x

(x) =f ′ lim
Δx→0

f(x+Δx) −f(x)

Δx

f(x, y)

x
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The gradient of a function, , is a vector in the direction in which that function is increasing most rapidly. It is given by:

Given a function, , its anti-derivative with respect to , , is written:

 is such that its derivative with respect to  is :

The anti-derivative of a function is only ever defined up to a constant, . We usually write this as:

since the derivative of  will also be equal to . The anti-derivative is also called the “indefinite integral” of .

The definite integral of a function , between  and , is written:

and is equal to the difference in the anti-derivative evaluated at  and :

where the constant  no longer matters, since it cancels out. Physical quantities only ever depend on definite integrals, since they
must be determined without an arbitrary constant.

Definite integrals are very useful in physics because they are related to a sum. Given a function , one can relate the sum of
terms of the form  over a range of values from  to  to the integral of  over that range:

Key Concepts
The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the
limit of the difference quotient or the difference quotient with increment .
The derivative of a function  at a value  is found using either of the definitions for the slope of the tangent line.
Velocity is the rate of change of position. As such, the velocity  at time  is the derivative of the position  at time . 
Average velocity is given by

Instantaneous velocity is given by

We may estimate a derivative by using a table of values.

∂f

∂x

∇f(x, y)

∇f(x, y) = +
∂f

∂x
x̂

∂f

∂y
ŷ

f(x) x F (x)

F (x) = ∫ f(x)dx

F (x) x f(x)

= f(x)
dF

dx

C

∫ f(x)dx = F (x) +C

F (x) +C f(x) f(x)

f(x) x = a x = b

f(x)dx∫
b

a

x = a x = b

f(x)dx = F (b) −F (a)∫
b

a

C

f(x)

f( )Δxxi x = a x = b f(x)

f( )Δx = f(x)dx = F ( ) −F ( ) =lim
Δx→0

∑
i=1

i=N

xi−1 ∫
xN

x0

xN x0

h

f(x) a

v(t) t s(t) t

= .vave
s(t) −s(a)

t−a

v(a) = s'(a) = .lim
t→a

s(t) −s(a)

t−a
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Key Equations
Difference quotient

Difference quotient with increment h

Slope of tangent line

Derivative of f(x) at a

Average velocity

Instantaneous velocity
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