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5.11: Forces on Rotating Bodies

Learning Objectives

e Describe how the magnitude of a torque depends on the magnitude of the lever arm and the angle the force vector makes
with the lever arm

o Determine the sign (positive or negative) of a torque using the right-hand rule

e Calculate individual torques about a common axis and sum them to find the net torque

An important quantity for describing the dynamics of a rotating rigid body is torque. We see the application of torque in many ways
in our world. We all have an intuition about torque, as when we use a large wrench to unscrew a stubborn bolt. Torque is at work in
unseen ways, as when we press on the accelerator in a car, causing the engine to put additional torque on the drive train. Or every
time we move our bodies from a standing position, we apply a torque to our limbs. In this section, we define torque and make an
argument for the equation for calculating torque for a rigid body with fixed-axis rotation.

5.11.1 Defining Torque

So far we have defined many variables that are rotational equivalents to their translational counterparts. Let’s consider what the
counterpart to force must be. Since forces change the translational motion of objects, the rotational counterpart must be related to
changing the rotational motion of an object about an axis. We call this rotational counterpart torque.

In everyday life, we rotate objects about an axis all the time, so intuitively we already know much about torque. Consider, for
example, how we rotate a door to open it. First, we know that a door opens slowly if we push too close to its hinges; it is more
efficient to rotate a door open if we push far from the hinges. Second, we know that we should push perpendicular to the plane of
the door; if we push parallel to the plane of the door, we are not able to rotate it. Third, the larger the force, the more effective it is
in opening the door; the harder you push, the more rapidly the door opens. The first point implies that the farther the force is
applied from the axis of rotation, the greater the angular acceleration; the second implies that the effectiveness depends on the
angle at which the force is applied; the third implies that the magnitude of the force must also be part of the equation. Note that for
rotation in a plane, torque has two possible directions. Torque is either clockwise or counterclockwise relative to the chosen pivot
point. Figure 5.11.1shows counterclockwise rotations.
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Figure 5.11.1: Torque is the turning or twisting effectiveness of a force, illustrated here for door rotation on its hinges (as viewed
from overhead). Torque has both magnitude and direction. (a) A counterclockwise torque is produced by a force F' acting at a

distance r from the hinges (the pivot point). (b) A smaller counterclockwise torque is produced when a smaller force F'’ acts at the
same distance r from the hinges. (c) The same force as in (a) produces a smaller counterclockwise torque when applied at a smaller
distance from the hinges. (d) A smaller counterclockwise torque is produced by the same magnitude force as (a) acting at the same
distance as (a) but at an angle @ that is less than 90°.

Now let’s consider how to define torques in the general three-dimensional case.

& Torque

When a force F is applied to a point P whose position is 7 relative to O (Figure 5.11.2), the torque 7 around O is

F=7xF. (5.11.1)
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Figure 5.11.2 The torque is perpendicular to the plane defined by 7 and F and its direction is determined by the right-hand rule.

From the definition of the cross product, the torque 7 is perpendicular to the plane containing 7 and F and has magnitude
|7| = |F x F| =rFsin, (5.11.2)

where 6 is the angle between the vectors 7 and F'. The SI unit of torque is newtons times meters, usually written as N » m. The
quantity r; = rsin @ is the perpendicular distance from O to the line determined by the vector F' and is called the lever arm. Note

that the greater the lever arm, the greater the magnitude of the torque. In terms of the lever arm, the magnitude of the torque is
|7| =7, F. (5.11.3)

The cross product 7 x F' also tells us the sign of the torque. In Figure 5.11.2 the cross product 7 X F' is along the positive z-axis,
which by convention is a positive torque. If 7 X F' is along the negative z-axis, this produces a negative torque.

If we consider a disk that is free to rotate about an axis through the center, as shown in Figure 5.11.3 we can see how the angle

between the radius 7 and the force F affects the magnitude of the torque. If the angle is zero, the torque is zero; if the angle is 90°,
the torque is maximum. The torque in Figure 5.11.3is positive because the direction of the torque by the right-hand rule is out of
the page along the positive z-axis. The disk rotates counterclockwise due to the torque, in the same direction as a positive angular
acceleration.

2 out of page

Axis of rotation

4 ‘F X l5| = (F sinfl

Figure 5.11.3: A disk is free to rotate about its axis through the center. The magnitude of the torque on the disk is rFsin .When 6 =

0°, the torque is zero and the disk does not rotate. When 6 = 90°, the torque is maximum and the disk rotates with maximum

angular acceleration.
Any number of torques can be calculated about a given axis. The individual torques add to produce a net torque about the axis.
When the appropriate sign (positive or negative) is assigned to the magnitudes of individual torques about a specified axis, the net
torque about the axis is the sum of the individual torques:

Tret| =D I7il- (5.11.4)
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5.11.2 Calculating Net Torgque for Rigid Bodies on a Fixed Axis

In the following examples, we calculate the torque both abstractly and as applied to a rigid body. We first introduce a problem-
solving strategy.

? Problem-Solving Strategy: Finding Net Torque

1. Choose a coordinate system with the pivot point or axis of rotation as the origin of the selected coordinate system.
2. Determine the angle between the lever arm 7 and the force vector.

3. Take the cross product of 7 and F to determine if the torque is positive or negative about the pivot point or axis.
4. Evaluate the magnitude of the torque using r | F.

5. Assign the appropriate sign, positive or negative, to the magnitude.

6. Sum the torques to find the net torque.

v/ Example 10.14: Calculating Torque

Four forces are shown in Figure 5.11.4 at particular locations and orientations with respect to a given xy-coordinate system.
Find the torque due to each force about the origin, then use your results to find the net torque about the origin.

¥ (m),

Figure 5.11.4: Four forces producing torques.

Strategy

This problem requires calculating torque. All known quantities—forces with directions and lever arms—are given in the
figure. The goal is to find each individual torque and the net torque by summing the individual torques. Be careful to assign

the correct sign to each torque by using the cross product of 7 and the force vector F'.

Solution
Use || =1, F = rFsin 0 to find the magnitude and # =7 x F to determine the sign of the torque.
The torque from force 40 N in the first quadrant is given by (4)(40)sin 90° = 160 N * m.
The cross product of 7 and F is out of the page, positive.
The torque from force 20 N in the third quadrant is given by —(3)(20)sin 90° = — 60 N » m.
The cross product of 7 and F is into the page, so it is negative.
The torque from force 30 N in the third quadrant is given by (5)(30)sin 53° = 120 N * m.
The cross product of 7 and I; is out of the page, positive.
The torque from force 20 N in the second quadrant is given by (1)(20)sin 30° = 10 N * m.
The cross product of 7 and F is out of the page.
The net torque is therefore 7, = >, |7;| =160 — 60 + 120 + 10 = 230 N * m.
Significance

Note that each force that acts in the counterclockwise direction has a positive torque, whereas each force that acts in the
clockwise direction has a negative torque. The torque is greater when the distance, force, or perpendicular components
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| are greater.

v/ Example 10.15: Calculating Torque on a rigid body

Figure 5.11.5shows several forces acting at different locations and angles on a flywheel. We have |14:”1| =20 N, |15"2| =30 N,
|F3| =30 N, and r = 0.5 m. Find the net torque on the flywheel about an axis through the center.

Axis of rotation

Figure 5.11.5: Three forces acting on a flywheel.

Solution

We calculate each torque individually, using the cross product, and determine the sign of the torque Then we sum the

torques to find the net torque Solution We start with F1 If we look at Figure 5.11.5 we see that F1 makes an angle of 90°
+ 60° with the radius vector 7. Taking the cross product, we see that it is out of the page and so is positive. We also see this
from calculating its magnitude:

|71| =7F;sin150° = (0.5 m)(20 N)(0.5) =5.0 N - m. (5.11.5)
Next we look at 14:"2. The angle between 14:"2 and 7 is 90° and the cross product is into the page so the torque is negative. Its
value is

|To| = —rFy5in90° = (—0.5 m)(30 N) = —15.0 N - m. (5.11.6)
When we evaluate the torque due to _ﬁ3, we see that the angle it makes with 7 is zero so 7 x _ﬁ3 = 0. Therefore, 14:"3 does
not produce any torque on the flywheel.

We evaluate the sum of the torques:

Tt = Y _|7i| =5-15=-10 N -m. (5.11.7)
Significance
The axis of rotation is at the center of mass of the flywheel. Smce the flywheel is on a fixed axis, it is not free to translate

If it were on a frictionless surface and not fixed in place, F3 would cause the flywheel to translate, as well as F1 Its
motion would be a combination of translation and rotation.

5.11.3 Rotational dynamics for a single particle

Suppose that a single force, ﬁ, is acting on a particle of mass m. Newton’s Second Law for the particle is then given by:

—

F=ma

We can define a point of rotation such that 7 is the position of the particle relative to that point. We can take the cross-product of 7
with both sides of the equation in Newton’s Second Law:

Ql

x F =mF x
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The left hand-side of the equation is called “the torque of F relative to the point of rotation”, and is usually denoted by 7':

—

T=7xF (5.11.8)
The right-hand side of the equation is related to the angular acceleration vector, &, about that point of rotation:
mr xa=mr’a
Putting this altogether, we get:

— 2=
T =mr-a

If more than one force is exerted on the particle, it is easy to show that the net torque from the net force on the particle is equal to
the sum of the torques on the particle:

?X(ﬁ1+ﬁ2+ﬁ3+...) :(Fxﬁ1+?xﬁ2+Fxf3+...)

,',FXZF: 7=
We can write “Newton’s Second Law for the rotational dynamics of a particle”:
Y F=7"" =mr’a (5.11.9)

This equation provides us an alternate formulation to Newton’s Second Law that is useful for describing the motion of a particle
that is rotating. The left-hand side of the equation corresponds to the “causes of motion” (much like the sum of the forces in
Newton’s Second Law), and the right-hand side of the equation to the inertia and the kinematics. A few things to note when
comparing to Newton’s Second Law:

1. The rotational quantities, torque and angular acceleration, are only defined with respect to a point or axis of rotation (as this
determines the vector 7). If one chooses a different point of rotation, then the torque and angular acceleration will be different.

2. The angular acceleration of a particle is proportional to the net torque exerted on it, much like the linear acceleration is
proportional to the net force exerted on the particle.

3. Torque about a center of rotation can be thought of as the equivalent of a force that causes things rotate about an axis that goes
through the point of rotation and that is parallel to the torque/angular acceleration vectors.

4. Instead of mass, it is mass times 2 that plays the role of inertia and determines how large of an angular acceleration a particle
will experience for a given net torque.

v/ Example 5.11.1
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Figure 5.11.1: A toy rocket accelerating around a circle of radius R, as seen from above.

A toy rocket is attached to a string on a horizontal frictionless table, as shown in Figure 5.11.1 The rocket has a mass m and
produces a constant force of thrust with a magnitude F' that accelerates the rocket along a circle of radius R (the length of the
string). If the rocket starts at rest, what distance along the circumference of the circle will the rocket have traveled after a time,
t?

Solution
We can model the rocket as a point particle of mass m with the following forces exerted on it:
1. F', the thrust of the rocket, always acting tangent to the circle.

2. T', the force of tension in the string, always acting towards the center of the circle.
3. F4, the rocket’s weight, acting into the page, with magnitude mg.

—

4. N, anormal force exerted by the table, out of the page, with magnitude mg.
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Because the normal force and the weight are equal in magnitude and opposite in direction, the net force will be the sum of
the force of thrust and the force of tension, which are always perpendicular to each other. Thinking about this with
Newton’s Second Law, we could model the force of thrust as increasing the speed of the particle, while the force of tension
keeps the rocket moving in a circle (it can do no work to increase the speed, since it is always perpendicular to the motion).

We can also think about this in terms of torques and angular acceleration about the center of the circle. The thrust will result
in a net torque about the center of rotation, which will lead to the rocket having an angular acceleration. By determining the
angular acceleration, we can then model the displacement at some time, ¢, using kinematics. The force of tension will create
no torque about the center of the circle because the force of tension is always co-linear with the position vector, 7 (the
cross-product of co-linear vectors is always zero).

We introduce a coordinate system whose origin coincides with the center of the circle, as shown in Figure 5.11.2 so that 7
corresponds to the position of the rocket relative to the origin. The force of thrust and the tension are also shown in the
diagram. We choose the direction of the = axis such that the rocket was located at the intersection of the x axis and the
circle at time, t = 0.

Figure 5.11.2: Coordinate system to describe the motion of the rocket.

The net torque on the rocket about the point of rotation is given by the cross-product between the thrust force, F', and the
position vector, 7:

—net —
T =rxF

and will point in the positive z direction (as given by the right hand rule). ¥ and F are perpendicular, so the magnitude of
the net torque is given by:

7" =rFsin(90°) = RF
where R is the magnitude of 7. The net torque vector is thus:
7" = RF3

Applying the rotational version of Newton’s Second Law allows us to determine the angular acceleration:

—net 2 -

=mr-oa

RF: =mR%a

- F .

o =—2z
mR

The angular acceleration vector points in the positive z direction (as does the net torque), and indicates that the rocket is
accelerating in the counter-clockwise direction about the z axis.

After a period of time ¢, the rocket will have covered an angular displacement, A6, given by:

1
AG =0(t) — 8y = wot + Eat2
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Discussion:

The formula that we found for the total linear displacement is the same that we would have found if the particle were
moving in a straight line with a net force F' applied to it (as the particle would have a constant acceleration given by F'/m).

This page titled 5.11: Forces on Rotating Bodies is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

e 10.7: Torque by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-1.
e 11.2: Rotational dynamics for a single particle by Ryan D. Martin, Emma Neary, Joshua Rinaldo, and Olivia Woodman is licensed CC BY-
SA 4.0. Original source: https://github.com/OSTP/PhysicsArtofModelling/blob/master/README.md.
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