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2.7.20: Applications- Rates of Change, Linear Approximation, Calculating
Uncertainty, Maxima and Minima, Optimization

Determine a new value of a quantity from the old value and the amount of change.
Calculate the average rate of change and explain how it differs from the instantaneous rate of change.
Apply rates of change to displacement, velocity, and acceleration of an object moving along a straight line.
Predict the future population from the present value and the population growth rate.
Use derivatives to calculate marginal cost and revenue in a business situation.
Describe the linear approximation to a function at a point.
Write the linearization of a given function.
Draw a graph that illustrates the use of differentials to approximate the change in a quantity.
Calculate the relative uncertainty and percentage uncertainty in using a differential approximation.
Define absolute extrema.
Define local extrema.
Explain how to find the critical points of a function over a closed interval.
Describe how to use critical points to locate absolute extrema over a closed interval.
Set up and solve optimization problems in several applied fields.

In this section we look at some applications of the derivative in Physics.

2.7.20.1 Motion along a Line
Another use for the derivative is to analyze motion along a line. We have described velocity as the rate of change of position. If we
take the derivative of the velocity, we can find the acceleration, or the rate of change of velocity. It is also important to introduce
the idea of speed, which is the magnitude of velocity. Thus, we can state the following mathematical definitions.

Let  be a function giving the position of an object at time t.

The velocity of the object at time  is given by .
The speed of the object at time  is given by .
The acceleration of the object at  is given by .

A ball is dropped from a height of 64 feet. Its height above ground (in feet)  seconds later is given by .

a. What is the instantaneous velocity of the ball when it hits the ground?
b. What is the average velocity during its fall?

Solution

 Learning Objectives

 Definition

s(t)

t v(t) = s'(t)
t |v(t)|
t a(t) = v'(t) = (t)s′′

 Example : Comparing Instantaneous Velocity and Average Velocity2.7.20.2

t s(t) = −16 +64t2
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The first thing to do is determine how long it takes the ball to reach the ground. To do this, set . Solving 
, we get , so it takes 2 seconds for the ball to reach the ground.

a. The instantaneous velocity of the ball as it strikes the ground is . Since , we obtain 
ft/s.

b. The average velocity of the ball during its fall is

 ft/s.

A particle moves along a coordinate axis in the positive direction to the right. Its position at time  is given by 
. Find  and  and use these values to answer the following questions.

a. Is the particle moving from left to right or from right to left at time ?
b. Is the particle speeding up or slowing down at time ?

Solution

Begin by finding  and .

 and .

Evaluating these functions at , we obtain  and .

a. Because , the particle is moving from right to left.
b. Because  and , velocity and acceleration are acting in opposite directions. In other words, the particle is

being accelerated in the direction opposite the direction in which it is traveling, causing  to decrease. The particle is
slowing down.

The position of a particle moving along a coordinate axis is given by 

a. Find .
b. At what time(s) is the particle at rest?
c. On what time intervals is the particle moving from left to right? From right to left?
d. Use the information obtained to sketch the path of the particle along a coordinate axis.

Solution

a. The velocity is the derivative of the position function:

b. The particle is at rest when , so set . Factoring the left-hand side of the equation produces 
. Solving, we find that the particle is at rest at  and .

c. The particle is moving from left to right when  and from right to left when . Figure  gives the
analysis of the sign of  for , but it does not represent the axis along which the particle is moving.

Figure :The sign of  determines the direction of the particle.

Since  on , the particle is moving from left to right on these intervals.
Since  on , the particle is moving from right to left on this interval.

d. Before we can sketch the graph of the particle, we need to know its position at the time it starts moving  and at the
times that it changes direction . We have , , and . This means that the particle begins on
the coordinate axis at  and changes direction at  and  on the coordinate axis. The path of the particle is shown on a
coordinate axis in Figure .

s(t) = 0
−16 +64 = 0t2 t = 2

v(2) v(t) = s'(t) = −32t v(t) = −64

= = = −32vave
s(2)−s(0)

2−0
0−64

2

 Example : Interpreting the Relationship between  and 2.7.20.3 v(t) a(t)

t

s(t) = −4t+2t3 v(1) a(1)

t = 1
t = 1

v(t) a(t)

v(t) = (t) = 3 −4s′ t2 a(t) = v'(t) = (t) = 6ts′′

t = 1 v(1) = −1 a(1) = 6

v(1) < 0
v(1) < 0 a(1) > 0

|v(t)|

 Example : Position and Velocity2.7.20.4

s(t) = −9 +24t+4, t ≥ 0.t3 t2

v(t)

v(t) = s'(t) = 3 −18t+24.t2

v(t) = 0 3 −18t+24 = 0t2

3(t−2)(t−4) = 0 t = 2 t = 4

v(t) > 0 v(t) < 0 2.7.20.2
v(t) t ≥ 0

2.7.20.2 v(t)

3 −18t+24 > 0t2 [0, 2) ∪ (4, +∞)
3 −18t+24 < 0t2 (2, 4)

(t = 0)
(t = 2, 4) s(0) = 4 s(2) = 24 s(4) = 20

4 24 20
2.7.20.3
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Figure : The path of the particle can be determined by analyzing .

A particle moves along a coordinate axis. Its position at time  is given by . Is the particle moving from
right to left or from left to right at time ?

Hint

Find  and look at the sign.

Answer

left to right

2.7.20.2 Linear Approximation of a Function at a Point

Consider a function  that is differentiable at a point . Recall that the tangent line to the graph of  at  is given by the
equation

For example, consider the function  at . Since  is differentiable at  and , we see that 
. Therefore, the tangent line to the graph of  at  is given by the equation

Figure  shows a graph of  along with the tangent line to  at . Note that for  near , the graph of the
tangent line is close to the graph of . As a result, we can use the equation of the tangent line to approximate  for  near . For
example, if , the  value of the corresponding point on the tangent line is

The actual value of  is given by

Therefore, the tangent line gives us a fairly good approximation of  (Figure ). However, note that for values of 
far from , the equation of the tangent line does not give us a good approximation. For example, if , the -value of the
corresponding point on the tangent line is

whereas the value of the function at  is 

2.7.20.3 v(t)

 Exercise 2.7.20.2

t s(t) = −5t+1t2

t = 3

v(3)

f x = a f a

y = f(a) + (a)(x−a).f ′

f(x) = 1
x a = 2 f x = 2 (x) = −f ′ 1

x2

(2) = −f ′ 1
4

f a = 2

y = − (x−2).
1

2

1

4

2.7.20.1a f(x) = 1
x

f x = 2 x 2
f f(x) x 2

x = 2.1 y

y = − (2.1 −2) = 0.475.
1

2

1

4

f(2.1)

f(2.1) = ≈ 0.47619.
1

2.1

f(2.1) 2.7.20.1b x

2 x = 10 y

y = − (10 −2) = −2 = −1.5,
1

2

1

4

1

2

x = 10 f(10) = 0.1.
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Figure : (a) The tangent line to  at  provides a good approximation to  for  near . (b) At , the
value of  on the tangent line to  is . The actual value of  is , which is approximately .

In general, for a differentiable function , the equation of the tangent line to  at  can be used to approximate  for  near
. Therefore, we can write

 for  near .

We call the linear function

the linear approximation, or tangent line approximation, of  at . This function  is also known as the linearization of 
at 

To show how useful the linear approximation can be, we look at how to find the linear approximation for  at 

Find the linear approximation of  at  and use the approximation to estimate .

Solution

Since we are looking for the linear approximation at  using Equation  we know the linear approximation is
given by

We need to find  and 

Therefore, the linear approximation is given by Figure .

Using the linear approximation, we can estimate  by writing

2.7.20.1 f(x) = 1/x x = 2 f x 2 x = 2.1
y f(x) = 1/x 0.475 f(2.1) 1/2.1 0.47619

f f x = a f(x) x

a

f(x) ≈ f(a) + (a)(x−a)f ′ x a

L(x) = f(a) + (a)(x−a)f ′ (2.7.20.1)

f x = a L f

x = a.

f(x) = x
−−

√ x = 9.

 Example : Linear Approximation of 2.7.20.1 x−−√

f(x) = x−−√ x = 9 9.1
−−−

√

x = 9, 2.7.20.1

L(x) = f(9) + (9)(x−9).f ′

f(9) (9).f ′

f(x) = ⇒ f(9) = = 3x−−√ 9
–

√

(x) = ⇒ (9) = =f ′ 1
2 x√

f ′ 1
2 9√

1
6

2.7.20.2

L(x) = 3 + (x−9)
1

6

9.1
−−−

√

= f(9.1) ≈ L(9.1) = 3 + (9.1 −9) ≈ 3.0167.9.1
−−−

√
1

6
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Figure : The local linear approximation to  at  provides an approximation to  for  near .

Analysis

Using a calculator, the value of  to four decimal places is . The value given by the linear approximation, , is
very close to the value obtained with a calculator, so it appears that using this linear approximation is a good way to estimate 

, at least for x near . At the same time, it may seem odd to use a linear approximation when we can just push a few buttons
on a calculator to evaluate . However, how does the calculator evaluate ? The calculator uses an approximation! In
fact, calculators and computers use approximations all the time to evaluate mathematical expressions; they just use higher-
degree approximations.

Find the local linear approximation to  at . Use it to approximate  to five decimal places.

Hint

Answer

 

Find the linear approximation of  at  and use it to approximate 

Solution

First we note that since  rad is equivalent to , using the linear approximation at  seems reasonable. The linear
approximation is given by

We see that

Therefore, the linear approximation of  at  is given by Figure .

To estimate  using , we must first convert  to radians. We have  radians, so the estimate for 
is given by

2.7.20.2 f(x) = x−−√ x = 9 f x 9

9.1
−−−

√ 3.0166 3.0167

x−−√ 9
9.1
−−−

√ 9.1
−−−

√

 Exercise 2.7.20.1

f(x) = x−−√3 x = 8 8.1
−−−

√3

L(x) = f(a) + (a)(x−a)f ′

L(x) = 2 + (x−8);1
12

2.00833

 Example : Linear Approximation of 2.7.20.2 sin x

f(x) = sinx x = π

3
sin(62°).

π
3

60° x = π/3

L(x) = f( ) + ( )(x− ).π

3
f ′ π

3
π

3

f(x) = sinx ⇒ f( ) = sin( ) =π
3

π
3

3√
2

(x) = cosx ⇒ ( ) = cos( ) =f ′ f ′ π
3

π
3

1
2

f x = π/3 2.7.20.3

L(x) = + (x− )
3√

2
1
2

π

3

sin(62°) L 62° 62° = 62π
180

sin(62°)

sin(62°) = f( ) ≈ L( ) = + ( − ) = + ( ) = + ≈ 0.88348.62π
180

62π
180

3√

2
1
2

62π
180

π

3
3√

2
1
2

2π
180

3√

2
π

180

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/68618?pdf


2.7.20.6 https://phys.libretexts.org/@go/page/68618

Figure : The linear approximation to  at  provides an approximation to  for  near 

Find the linear approximation for  at 

Hint

Answer

Linear approximations may be used in estimating roots and powers. In the next example, we find the linear approximation for 
 at , which can be used to estimate roots and powers for real numbers near . The same idea can be

extended to a function of the form  to estimate roots and powers near a different number .

Find the linear approximation of  at . Use this approximation to estimate 

Solution

The linear approximation at  is given by

Because

the linear approximation is given by Figure .

We can approximate  by evaluating  when . We conclude that

2.7.20.3 f(x) = sin x x = π/3 sin x x π/3.

 Exercise 2.7.20.2

f(x) = cosx x = .π

2

L(x) = f(a) + (a)(x−a)f ′

L(x) = −x+ π

2

f(x) = (1 +x)n x = 0 1
f(x) = (m+x)n m

 Example : Approximating Roots and Powers2.7.20.3

f(x) = (1 +x)n x = 0 (1.01 .)3

x = 0

L(x) = f(0) + (0)(x−0).f ′

f(x) = (1 +x ⇒ f(0) = 1)n

(x) = n(1 +x ⇒ (0) = n,f ′ )n−1 f ′

2.7.20.4a

L(x) = 1 +n(x−0) = 1 +nx

(1.01)3 L(0.01) n = 3

(1.01 = f(1.01) ≈ L(1.01) = 1 +3(0.01) = 1.03.)3
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Figure : (a) The linear approximation of  at  is . (b) The actual value of  is . The linear
approximation of  at  estimates  to be .

Find the linear approximation of  at  without using the result from the preceding example.

Hint

Answer

2.7.20.3 Differentials
We have seen that linear approximations can be used to estimate function values. They can also be used to estimate the amount a
function value changes as a result of a small change in the input. To discuss this more formally, we define a related concept:
differentials. Differentials provide us with a way of estimating the amount a function changes as a result of a small change in input
values.

When we first looked at derivatives, we used the Leibniz notation  to represent the derivative of  with respect to .
Although we used the expressions  and  in this notation, they did not have meaning on their own. Here we see a meaning to
the expressions  and . Suppose  is a differentiable function. Let  be an independent variable that can be assigned
any nonzero real number, and define the dependent variable  by

It is important to notice that  is a function of both  and . The expressions  and  are called differentials. We can divide
both sides of Equation  by  which yields

This is the familiar expression we have used to denote a derivative. Equation  is known as the differential form of
Equation .

For each of the following functions, find  and evaluate when  and 

a. 
b. 

Solution

2.7.20.4 f(x) x = 0 L(x) 1.013 1.030301
f(x) x = 0 1.013 1.03

 Exercise 2.7.20.3

f(x) = (1 +x)4 x = 0

(x) = 4(1 +xf ′ )3

L(x) = 1 +4x

dy/dx y x

dy dx

dy dx y = f(x) dx

dy

dy = (x)dx.f ′ (2.7.20.2)

dy x dx dy dx

2.7.20.2 dx,

= (x).
dy

dx
f ′ (2.7.20.3)

2.7.20.3
2.7.20.2

 Example : Computing Differentials2.7.20.4

dy x = 3 dx = 0.1.

y = +2xx2

y = cosx
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The key step is calculating the derivative. When we have that, we can obtain  directly.

a. Since  we know , and therefore

When  and 

b. Since  This gives us

When  and 

For , find .

Hint

Answer

We now connect differentials to linear approximations. Differentials can be used to estimate the change in the value of a function
resulting from a small change in input values. Consider a function  that is differentiable at point . Suppose the input  changes
by a small amount. We are interested in how much the output  changes. If  changes from  to , then the change in  is 
(also denoted ), and the change in  is given by

Instead of calculating the exact change in , however, it is often easier to approximate the change in  by using a linear
approximation. For  near  can be approximated by the linear approximation (Equation )

Therefore, if  is small,

That is,

In other words, the actual change in the function  if  increases from  to  is approximately the difference between 
 and , where  is the linear approximation of  at . By definition of , this difference is equal to .

In summary,

Therefore, we can use the differential  to approximate the change in  if  increases from  to . We
can see this in the following graph.

dy

f(x) = +2x,x2 (x) = 2x+2f ′

dy = (2x+2)dx.

x = 3 dx = 0.1,

dy = (2 ⋅ 3 +2)(0.1) = 0.8.

f(x) = cosx, (x) = −sin(x).f ′

dy = −sinx dx.

x = 3 dx = 0.1,

dy = −sin(3)(0.1) = −0.1 sin(3).

 Exercise 2.7.20.4

y = ex
2

dy

dy = (x)dxf ′

dy = 2x dxex
2

f a x

y x a a+dx x dx

Δx y

Δy = f(a+dx) −f(a).

y y

x a, f(x) 2.7.20.1

L(x) = f(a) + (a)(x−a).f ′

dx

f(a+dx) ≈ L(a+dx) = f(a) + (a)(a+dx−a).f ′

f(a+dx) −f(a) ≈ L(a+dx) −f(a) = (a)dx.f ′

f x a a+dx

L(a+dx) f(a) L(x) f a L(x) (a)dxf ′

Δy = f(a+dx) −f(a) ≈ L(a+dx) −f(a) = (a)dx = dy.f ′

dy = (a)dxf ′ y x x = a x = a+dx
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Figure : The differential  is used to approximate the actual change in  if  increases from  to .

We now take a look at how to use differentials to approximate the change in the value of the function that results from a small
change in the value of the input. Note the calculation with differentials is much simpler than calculating actual values of functions
and the result is very close to what we would obtain with the more exact calculation.

Let  Compute  and  at  if 

Solution

The actual change in  if  changes from  to  is given by

The approximate change in  is given by . Since  we have

For  find  and  at  if 

Hint

Answer

2.7.20.4 Calculating the Amount of Uncertainty

Any type of measurement is prone to a certain amount of uncertainty. In many applications, certain quantities are calculated based
on measurements. For example, the area of a circle is calculated by measuring the radius of the circle. An uncertainty in the
measurement of the radius leads to an uncertainty in the computed value of the area. Here we examine this type of uncertainty and
study how differentials can be used to estimate the uncertainty.

Consider a function  with an input that is a measured quantity. Suppose the exact value of the measured quantity is , but the
measured value is . We say the measurement uncertainty is  (or ). As a result, an uncertainty occurs in the calculated
quantity . This type of uncertainty is known as a propagated uncertainty and is given by

Since all measurements are prone to some degree of uncertainty, we do not know the exact value of a measured quantity, so we
cannot calculate the propagated uncertainty exactly. However, given an estimate of the accuracy of a measurement, we can use
differentials to approximate the propagated uncertainty  Specifically, if  is a differentiable function at ,the propagated
uncertainty is

2.7.20.5 dy = (a) dxf ′ y x a a+dx

 Example : Approximating Change with Differentials2.7.20.5

y = +2x.x2 Δy dy x = 3 dx = 0.1.

y x x = 3 x = 3.1

Δy = f(3.1) −f(3) = [(3.1 +2(3.1)] −[ +2(3)] = 0.81.)2 32

y dy = (3)dxf ′ (x) = 2x+2,f ′

dy = (3)dx = (2(3) +2)(0.1) = 0.8.f ′

 Exercise 2.7.20.5

y = +2x,x2 Δy dy x = 3 dx = 0.2.

dy = (3)dx, Δy = f(3.2) −f(3)f ′

dy = 1.6, Δy = 1.64

f a

a+dx dx Δx

f(x)

Δy = f(a+dx) −f(a).

Δy. f a
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Unfortunately, we do not know the exact value  However, we can use the measured value  and estimate

In the next example, we look at how differentials can be used to estimate the uncertainty in calculating the volume of a box if we
assume the measurement of the side length is made with a certain amount of accuracy.

Suppose the side length of a cube is measured to be  cm with an accuracy of  cm.

a. Use differentials to estimate the uncertainty in the computed volume of the cube.
b. Compute the volume of the cube if the side length is (i)  cm and (ii)  cm to compare the estimated uncertainty with

the actual potential uncertainty.

Solution

a. The measurement of the side length is accurate to within  cm. Therefore,

The volume of a cube is given by , which leads to

Using the measured side length of  cm, we can estimate that

Therefore,

b. If the side length is actually  cm, then the volume of the cube is

If the side length is actually  cm, then the volume of the cube is

Therefore, the actual volume of the cube is between  and . Since the side length is measured to be 5 cm,
the computed volume is  Therefore, the uncertainty in the computed volume is

That is,

We see the estimated uncertainty  is relatively close to the actual potential uncertainty in the computed volume.

Estimate the uncertainty in the computed volume of a cube if the side length is measured to be  cm with an accuracy of 
cm.

Hint

Answer

The volume measurement is accurate to within .

Δy ≈ dy = (a)dx.f ′

a. a+dx,

Δy ≈ dy ≈ (a+dx)dx.f ′

 Example : Volume of a Cube2.7.20.6

5 0.1

4.9 5.1

±0.1

−0.1 ≤ dx ≤ 0.1.

V = x3

dV = 3 dx.x2

5

−3(5 (0.1) ≤ dV ≤ 3(5 (0.1).)2 )2

−7.5 ≤ dV ≤ 7.5.

4.9

V (4.9) = (4.9 = 117.649 .)3 cm3

5.1

V (5.1) = (5.1 = 132.651 .)3 cm3

117.649 132.651
V (5) = = 125.53

117.649 −125 ≤ ΔV ≤ 132.651 −125.

−7.351 ≤ ΔV ≤ 7.651.

dV

 Exercise 2.7.20.6

6 0.2

dV = 3 dxx2

21.6 cm3
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The measurement uncertainty  and the propagated uncertainty  are absolute uncertaintys. We are typically interested
in the size of an uncertainty relative to the size of the quantity being measured or calculated. Given an absolute uncertainty  for
a particular quantity, we define the relative uncertainty as , where  is the actual value of the quantity. The percentage
uncertainty is the relative uncertainty expressed as a percentage. For example, if we measure the height of a ladder to be  in.
when the actual height is  in., the absolute uncertainty is 1 in. but the relative uncertainty is , or . By
comparison, if we measure the width of a piece of cardboard to be  in. when the actual width is  in., our absolute uncertainty
is  in., whereas the relative uncertainty is , or  Therefore, the percentage uncertainty in the measurement of the
cardboard is larger, even though  in. is less than  in.

An astronaut using a camera measures the radius of Earth as  mi with an uncertainty of  mi. Let’s use differentials to
estimate the relative and percentage uncertainty of using this radius measurement to calculate the volume of Earth, assuming
the planet is a perfect sphere.

Solution: If the measurement of the radius is accurate to within  we have

Since the volume of a sphere is given by  we have

Using the measured radius of  mi, we can estimate

To estimate the relative uncertainty, consider . Since we do not know the exact value of the volume , use the measured

radius  mi to estimate . We obtain . Therefore the relative uncertainty satisfies

which simplifies to

The relative uncertainty is  and the percentage uncertainty is .

Determine the percentage uncertainty if the radius of Earth is measured to be  mi with an uncertainty of  mi.

Hint

Use the fact that  to find .

Answer

2.7.20.5 Absolute Extrema
Consider the function  over the interval . As . Therefore, the function does not have
a largest value. However, since  for all real numbers  and  when , the function has a smallest value, 

, when . We say that  is the absolute minimum of  and it occurs at . We say that  does
not have an absolute maximum (Figure ).

dx (= Δx) Δy

Δq
Δq

q q

63
62 = 0.0161

62
1.6%

8.25 8
1
4

=0.25
8

1
32

3.1%.

0.25 1

 Example : Relative and Percentage uncertainty2.7.20.7

4000 ±80

±80,

−80 ≤ dr ≤ 80.

V = ( )π ,4
3

r3

dV = 4π dr.r2

4000

−4π(4000 (80) ≤ dV ≤ 4π(4000 (80).)2 )2

dV

V
V

r = 4000 V V ≈ ( )π(40004
3

)3

≤ ≤ ,
−4π(4000 (80))

2

4π(4000 /3)3

dV

V

4π(4000 (80))
2

4π(4000 /3)3

−0.06 ≤ ≤ 0.06.
dV

V

0.06 6%

 Exercise 2.7.20.7

3950 ±100

dV = 4π drr2 dV /V

7.6%

f(x) = +1x2 (−∞, ∞) x → ±∞, f(x) → ∞
+1 ≥ 1x2 x +1 = 1x2 x = 0

1 x = 0 1 f(x) = +1x2 x = 0 f(x) = +1x2

2.7.20.1
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Figure : The given function has an absolute minimum of  at . The function does not have an absolute maximum.

Let  be a function defined over an interval  and let . We say  has an absolute maximum on  at  if  for
all . We say  has an absolute minimum on  at  if  for all . If  has an absolute maximum on  at  or
an absolute minimum on  at , we say  has an absolute extremum on  at .

Before proceeding, let’s note two important issues regarding this definition. First, the term absolute here does not refer to absolute
value. An absolute extremum may be positive, negative, or zero. Second, if a function  has an absolute extremum over an interval 

 at , the absolute extremum is . The real number  is a point in the domain at which the absolute extremum occurs. For
example, consider the function  over the interval . Since

for all real numbers , we say  has an absolute maximum over  at . The absolute maximum is . It occurs
at , as shown in Figure (b).

A function may have both an absolute maximum and an absolute minimum, just one extremum, or neither. Figure  shows
several functions and some of the different possibilities regarding absolute extrema. However, the following theorem, called the
Extreme Value Theorem, guarantees that a continuous function  over a closed, bounded interval  has both an absolute
maximum and an absolute minimum.

2.7.20.1 1 x = 0

 Definition: Absolute Extrema

f I c ∈ I f I c f(c) ≥ f(x)
x ∈ I f I c f(c) ≤ f(x) x ∈ I f I c

I c f I c

f

I c f(c) c

f(x) = 1/( +1)x2 (−∞, ∞)

f(0) = 1 ≥ = f(x)
1

+1x2

x f (−∞, ∞) x = 0 f(0) = 1
x = 0 2.7.20.2

2.7.20.2

f [a, b]
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Figure : Graphs (a), (b), and (c) show several possibilities for absolute extrema for functions with a domain of 
Graphs (d), (e), and (f) show several possibilities for absolute extrema for functions with a domain that is a bounded interval.

If  is a continuous function over the closed, bounded interval , then there is a point in  at which  has an absolute
maximum over  and there is a point in  at which  has an absolute minimum over .

The proof of the extreme value theorem is beyond the scope of this text. Typically, it is proved in a course on real analysis. There
are a couple of key points to note about the statement of this theorem. For the extreme value theorem to apply, the function must be
continuous over a closed, bounded interval. If the interval  is open or the function has even one point of discontinuity, the function
may not have an absolute maximum or absolute minimum over . For example, consider the functions shown in Figure 
(d), (e), and (f). All three of these functions are defined over bounded intervals. However, the function in graph (e) is the only one
that has both an absolute maximum and an absolute minimum over its domain. The extreme value theorem cannot be applied to the
functions in graphs (d) and (f) because neither of these functions is continuous over a closed, bounded interval. Although the
function in graph (d) is defined over the closed interval , the function is discontinuous at . The function has an absolute
maximum over  but does not have an absolute minimum. The function in graph (f) is continuous over the half-open interval 

, but is not defined at , and therefore is not continuous over a closed, bounded interval. The function has an absolute
minimum over , but does not have an absolute maximum over . These two graphs illustrate why a function over a
bounded interval may fail to have an absolute maximum and/or absolute minimum.

2.7.20.2 (−∞, ∞).

 Theorem : Extreme Value Theorem2.7.20.1

f [a, b] [a, b] f

[a, b] [a, b] f [a, b]

I

I 2.7.20.2

[0, 4] x = 2
[0, 4]

[0, 2) x = 2
[0, 2) [0, 2)
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Before looking at how to find absolute extrema, let’s examine the related concept of local extrema. This idea is useful in
determining where absolute extrema occur.

2.7.20.6 Local Extrema and Critical Points
Consider the function  shown in Figure . The graph can be described as two mountains with a valley in the middle. The
absolute maximum value of the function occurs at the higher peak, at . However,  is also a point of interest. Although 

 is not the largest value of , the value  is larger than  for all  near 0. We say  has a local maximum at .
Similarly, the function  does not have an absolute minimum, but it does have a local minimum at  because  is less than 

 for  near 1.

Figure : This function  has two local maxima and one local minimum. The local maximum at  is also the absolute
maximum.

A function  has a local maximum at  if there exists an open interval  containing  such that  is contained in the domain of 
 and  for all . A function  has a local minimum at  if there exists an open interval  containing  such that
 is contained in the domain of  and  for all . A function  has a local extremum at  if  has a local

maximum at  or  has a local minimum at .

Note that if  has an absolute extremum at  and  is defined over an interval containing , then  is also considered a local
extremum. If an absolute extremum for a function  occurs at an endpoint, we do not consider that to be a local extremum, but
instead refer to that as an endpoint extremum.

Given the graph of a function , it is sometimes easy to see where a local maximum or local minimum occurs. However, it is not
always easy to see, since the interesting features on the graph of a function may not be visible because they occur at a very small
scale. Also, we may not have a graph of the function. In these cases, how can we use a formula for a function to determine where
these extrema occur?

To answer this question, let’s look at Figure  again. The local extrema occur at  and  Notice that at 
 and , the derivative . At , the derivative  does not exist, since the function  has a corner there.

In fact, if  has a local extremum at a point , the derivative  must satisfy one of the following conditions: either 
 or  is undefined. Such a value  is known as a critical point and it is important in finding extreme values for

functions.

Let  be an interior point in the domain of . We say that  is a critical point of  if  or  is undefined.

As mentioned earlier, if  has a local extremum at a point , then  must be a critical point of . This fact is known as
Fermat’s theorem.

f 2.7.20.3
x = 2 x = 0

f(0) f f(0) f(x) x f x = 0
f x = 1 f(1)

f(x) x

2.7.20.3 f x = 2

 Definition: Local Extrema

f c I c I

f f(c) ≥ f(x) x ∈ I f c I c

I f f(c) ≤ f(x) x ∈ I f c f

c f c

f c f c f(c)
f

f

2.7.20.3 x = 0, x = 1, x = 2.
x = 0 x = 1 (x) = 0f ′ x = 2 (x)f ′ f

f x = c (c)f ′

(c) = 0f ′ (c)f ′ c

 Definition: Critical Points

c f c f (c) = 0f ′ (c)f ′

f x = c c f
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If  has a local extremum at  and  is differentiable at , then 

Suppose  has a local extremum at  and  is differentiable at . We need to show that . To do this, we will show that
 and , and therefore . Since  has a local extremum at ,  has a local maximum or local

minimum at . Suppose  has a local maximum at . The case in which  has a local minimum at  can be handled similarly.
There then exists an open interval I such that  for all . Since  is differentiable at , from the definition of the
derivative, we know that

Since this limit exists, both one-sided limits also exist and equal . Therefore,

and

Since  is a local maximum, we see that  for  near . Therefore, for  near , but , we have 
. From Equation  we conclude that . Similarly, it can be shown that  Therefore, 

□

From Fermat’s theorem, we conclude that if  has a local extremum at , then either  or  is undefined. In other
words, local extrema can only occur at critical points.

Note this theorem does not claim that a function  must have a local extremum at a critical point. Rather, it states that critical
points are candidates for local extrema. For example, consider the function . We have  when .
Therefore,  is a critical point. However,  is increasing over , and thus  does not have a local extremum
at . In Figure , we see several different possibilities for critical points. In some of these cases, the functions have
local extrema at critical points, whereas in other cases the functions do not. Note that these graphs do not show all possibilities for
the behavior of a function at a critical point.

 Theorem : Fermat’s Theorem2.7.20.2

f c f c (c) = 0.f ′

 Proof

f c f c (c) = 0f ′

(c) ≥ 0f ′ (c) ≤ 0f ′ (c) = 0f ′ f c f

c f c f c

f(c) ≥ f(x) x ∈ I f c

(c) = .f ′ lim
x→c

f(x) −f(c)

x−c

(c)f ′

(c) =f ′ lim
x→c+

f(x) −f(c)

x−c,
(2.7.20.4)

(c) = .f ′ lim
x→c−

f(x) −f(c)

x−c

f(c) f(x) −f(c) ≤ 0 x c x c x > c

≤ 0
f(x)−f(c)

x−c
2.7.20.4 (c) ≤ 0f ′ (c) ≥ 0.f ′

(c) = 0.f ′

f c (c) = 0f ′ (c)f ′

f

f(x) = x3 (x) = 3 = 0f ′ x2 x = 0
x = 0 f(x) = x3 (−∞, ∞) f

x = 0 2.7.20.4
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Figure : (a–e) A function  has a critical point at  if  or  is undefined. A function may or may not have a
local extremum at a critical point.

Later in this chapter we look at analytical methods for determining whether a function actually has a local extremum at a critical
point. For now, let’s turn our attention to finding critical points. We will use graphical observations to determine whether a critical
point is associated with a local extremum.

For each of the following functions, find all critical points. Use a graphing utility to determine whether the function has a local
extremum at each of the critical points.

a. 
b. 
c. 

Solution

a. The derivative  is defined for all real numbers . Therefore, we only need to find the values for 
where . Since , the critical points are  and  From the graph of 
in Figure , we see that  has a local maximum at  and a local minimum at .

Figure : This function has a local maximum and a local minimum.

b. Using the chain rule, we see the derivative is

Therefore,  has critical points when  and when . We conclude that the critical points are . From
the graph of  in Figure , we see that  has a local (and absolute) minimum at , but does not have a local

2.7.20.4 f c (c) = 0f ′ (c)f ′

 Example : Locating Critical Points2.7.20.1

f(x) = − +4x1
3
x3 5

2
x2

f(x) = ( −1x2 )3

f(x) = 4x
1+x2

(x) = −5x+4f ′ x2 x x

(x) = 0f ′ (x) = −5x+4 = (x−4)(x−1)f ′ x2 x = 1 x = 4. f

2.7.20.5 f x = 1 x = 4

2.7.20.5

(x) = 3( −1 (2x) = 6x( −1 .f ′ x2 )2 x2 )2

f x = 0 −1 = 0x2 x = 0, ±1
f 2.7.20.6 f x = 0
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extremum at  or .

Figure : This function has three critical points: , , and . The function has a local (and absolute)
minimum at , but does not have extrema at the other two critical points.

c. By the quotient rule, we see that the derivative is

.

The derivative is defined everywhere. Therefore, we only need to find values for  where . Solving , we
see that  which implies . Therefore, the critical points are . From the graph of  in Figure 

, we see that f has an absolute maximum at  and an absolute minimum at  Hence,  has a local
maximum at  and a local minimum at . (Note that if  has an absolute extremum over an interval  at a point 
that is not an endpoint of , then  has a local extremum at 

Figure : This function has an absolute maximum and an absolute minimum.

Find all critical points for 

Hint

Calculate 

Answer

2.7.20.7 Locating Absolute Extrema
The extreme value theorem states that a continuous function over a closed, bounded interval has an absolute maximum and an
absolute minimum. As shown in Figure , one or both of these absolute extrema could occur at an endpoint. If an absolute
extremum does not occur at an endpoint, however, it must occur at an interior point, in which case the absolute extremum is a local
extremum. Therefore, by Fermat's Theorem, the point  at which the local extremum occurs must be a critical point. We summarize
this result in the following theorem.

x = 1 x = −1

2.7.20.6 x = 0 x = 1 x = −1
x = 0

(x) = =f ′ 4(1+ )−4x(2x)x2

(1+x2)
2

4−4x2

(1+x2)
2

x (x) = 0f ′ (x) = 0f ′

4 −4 = 0,x2 x = ±1 x = ±1 f

2.7.20.7 x = 1 x = −1. f

x = 1 x = −1 f I c

I f c. )

2.7.20.7

 Exercise 2.7.20.1

f(x) = − −2x+1.x3 1
2
x2

(x).f ′

x = , x = 1−2
3

2.7.20.2

c
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Let  be a continuous function over a closed, bounded interval . The absolute maximum of  over  and the absolute
minimum of  over  must occur at endpoints of  or at critical points of  in .

With this idea in mind, let’s examine a procedure for locating absolute extrema.

Consider a continuous function  defined over the closed interval 

1. Evaluate  at the endpoints  and 
2. Find all critical points of  that lie over the interval  and evaluate  at those critical points.
3. Compare all values found in (1) and (2). From "Location of Absolute Extrema," the absolute extrema must occur at

endpoints or critical points. Therefore, the largest of these values is the absolute maximum of . The smallest of these
values is the absolute minimum of .

Now let’s look at how to use this strategy to find the absolute maximum and absolute minimum values for continuous functions.

For each of the following functions, find the absolute maximum and absolute minimum over the specified interval and state
where those values occur.

a.  over 
b.  over .

Solution

a. Step 1. Evaluate  at the endpoints  and .

 and 

Step 2. Since  is defined for all real numbers  Therefore, there are no critical points where the
derivative is undefined. It remains to check where . Since  at  and  is in the interval 

 is a candidate for an absolute extremum of  over . We evaluate  and find

.

Step 3. We set up the following table to compare the values found in steps 1 and 2.

Conclusion

 

Absolute maximum

Absolute minimum

From the table, we find that the absolute maximum of  over the interval [1, 3] is , and it occurs at . The absolute
minimum of  over the interval  is , and it occurs at  as shown in Figure .

 Theorem : Location of Absolute Extrema2.7.20.3

f I f I

f I I f I

 Problem-Solving Strategy: Locating Absolute Extrema over a Closed Interval

f [a, b].

f x = a x = b.
f (a, b) f

f

f

 Example : Locating Absolute Extrema2.7.20.2

f(x) = − +3x−2x2 [1, 3].

f(x) = −3x2 x2/3 [0, 2]

f x = 1 x = 3

f(1) = 0 f(3) = −2

(x) = −2x+3,f ′ f ′ x.

(x) = 0f ′ (x) = −2x+3 = 0f ′ x = 3
2

3
2

[1, 3], f( )3
2

f [1, 3] f( )3
2

f ( ) =3
2

1
4

x f(x)

1 0

3
2

1
4

3 −2

f 1
4

x = 3
2

f [1, 3] −2 x = 3 2.7.20.8
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Figure : This function has both an absolute maximum and an absolute minimum.

b. Step 1. Evaluate  at the endpoints  and .

 and 

Step 2. The derivative of  is given by

for . The derivative is zero when , which implies . The derivative is undefined at .
Therefore, the critical points of  are . The point  is an endpoint, so we already evaluated  in step 1.
The point  is not in the interval of interest, so we need only evaluate . We find that

Step 3. We compare the values found in steps 1 and 2, in the following table.

Conclusion

Absolute maximum

Absolute minimum

 

We conclude that the absolute maximum of  over the interval  is zero, and it occurs at . The absolute minimum is 
 and it occurs at  as shown in Figure .

Figure : This function has an absolute maximum at an endpoint of the interval.

2.7.20.8

f x = 0 x = 2

f(0) = 0 f(2) = 4 −3 ≈ −0.762(2)
2/3

f

(x) = 2x− =f ′ 2

x1/3

2 −2x4/3

x1/3

x ≠ 0 2 −2 = 0x4/3 x = ±1 x = 0
f x = 0, 1, −1 x = 0 f(0)

x = −1 f(1)

f(1) = −2.

x f(x)

0 0

1 −2

2 −0.762

f [0, 2] x = 0
−2, x = 1 2.7.20.9

2.7.20.9
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Find the absolute maximum and absolute minimum of  over the interval .

Hint

Look for critical points. Evaluate  at all critical points and at the endpoints.

Answer

The absolute maximum is  and it occurs at . The absolute minimum is  and it occurs at .

At this point, we know how to locate absolute extrema for continuous functions over closed intervals. We have also defined local
extrema and determined that if a function  has a local extremum at a point , then  must be a critical point of . However, 
being a critical point is not a sufficient condition for  to have a local extremum at . Later in this chapter, we show how to
determine whether a function actually has a local extremum at a critical point. First, however, we need to introduce the Mean Value
Theorem, which will help as we analyze the behavior of the graph of a function.

2.7.20.8 Solving Optimization Problems over a Closed, Bounded Interval
The basic idea of the optimization problems that follow is the same. We have a particular quantity that we are interested in
maximizing or minimizing. However, we also have some auxiliary condition that needs to be satisfied. For example, in Example 

, we are interested in maximizing the area of a rectangular garden. Certainly, if we keep making the side lengths of the
garden larger, the area will continue to become larger. However, what if we have some restriction on how much fencing we can use
for the perimeter? In this case, we cannot make the garden as large as we like. Let’s look at how we can maximize the area of a
rectangle subject to some constraint on the perimeter.

A rectangular garden is to be constructed using a rock wall as one side of the garden and wire fencing for the other three sides
(Figure ). Given  of wire fencing, determine the dimensions that would create a garden of maximum area. What
is the maximum area?

Figure : We want to determine the measurements  and  that will create a garden with a maximum area using 
of fencing.

Solution

Let  denote the length of the side of the garden perpendicular to the rock wall and  denote the length of the side parallel to
the rock wall. Then the area of the garden is

We want to find the maximum possible area subject to the constraint that the total fencing is . From Figure , the
total amount of fencing used will be  Therefore, the constraint equation is

 Exercise 2.7.20.2

f(x) = −4x+3x2 [1, 4]

f

3 x = 4 −1 x = 2

f c c f c

f c

2.7.20.1

 Example : Maximizing the Area of a Garden2.7.20.1

2.7.20.1 100 ft

2.7.20.1 x y 100 ft

x y

A = x ⋅ y.

100 ft 2.7.20.1
2x+y.
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Solving this equation for , we have  Thus, we can write the area as

Before trying to maximize the area function  we need to determine the domain under consideration. To
construct a rectangular garden, we certainly need the lengths of both sides to be positive. Therefore, we need  and .
Since , if , then . Therefore, we are trying to determine the maximum value of  for  over the
open interval . We do not know that a function necessarily has a maximum value over an open interval. However, we do
know that a continuous function has an absolute maximum (and absolute minimum) over a closed interval. Therefore, let’s
consider the function  over the closed interval . If the maximum value occurs at an interior point,
then we have found the value  in the open interval  that maximizes the area of the garden.

Therefore, we consider the following problem:

Maximize  over the interval 

As mentioned earlier, since  is a continuous function on a closed, bounded interval, by the extreme value theorem, it has a
maximum and a minimum. These extreme values occur either at endpoints or critical points. At the endpoints, . Since
the area is positive for all  in the open interval , the maximum must occur at a critical point. Differentiating the
function , we obtain

Therefore, the only critical point is  (Figure ). We conclude that the maximum area must occur when .

Figure : To maximize the area of the garden, we need to find the maximum value of the function .

Then we have  To maximize the area of the garden, let  and . The area
of this garden is .

Determine the maximum area if we want to make the same rectangular garden as in Figure , but we have  of
fencing.

Hint

We need to maximize the function  over the interval 

Answer

The maximum area is .

Now let’s look at a general strategy for solving optimization problems similar to Example .

2x+y = 100.

y y = 100 −2x.

A(x) = x ⋅ (100 −2x) = 100x−2 .x2

A(x) = 100x−2 ,x2

x > 0 y > 0
y = 100 −2x y > 0 x < 50 A(x) x

(0, 50)

A(x) = 100x−2x2 [0, 50]
x (0, 50)

A(x) = 100x−2x2 [0, 50].

A

A(x) = 0
x (0, 50)

A(x)

A'(x) = 100 −4x.

x = 25 2.7.20.2 x = 25

2.7.20.2 A(x) = 100x− 2x2

y = 100 −2x = 100 −2(25) = 50. x = 25 ft y = 50 ft

1250 ft2

 Exercise 2.7.20.1

2.7.20.2 200 ft

A(x) = 200x−2x2 [0, 100].

5000 ft2

2.7.20.1
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1. Introduce all variables. If applicable, draw a figure and label all variables.
2. Determine which quantity is to be maximized or minimized, and for what range of values of the other variables (if this can

be determined at this time).
3. Write a formula for the quantity to be maximized or minimized in terms of the variables. This formula may involve more

than one variable.
4. Write any equations relating the independent variables in the formula from step . Use these equations to write the quantity

to be maximized or minimized as a function of one variable.
5. Identify the domain of consideration for the function in step  based on the physical problem to be solved.
6. Locate the maximum or minimum value of the function from step  This step typically involves looking for critical points

and evaluating a function at endpoints.

Now let’s apply this strategy to maximize the volume of an open-top box given a constraint on the amount of material to be used.

An open-top box is to be made from a  by  piece of cardboard by removing a square from each corner of the box
and folding up the flaps on each side. What size square should be cut out of each corner to get a box with the maximum
volume?

Solution

Step 1: Let  be the side length of the square to be removed from each corner (Figure ). Then, the remaining four flaps
can be folded up to form an open-top box. Let  be the volume of the resulting box.

Figure : A square with side length  inches is removed from each corner of the piece of cardboard. The remaining
flaps are folded to form an open-top box.

Step 2: We are trying to maximize the volume of a box. Therefore, the problem is to maximize .

Step 3: As mentioned in step 2, are trying to maximize the volume of a box. The volume of a box is

where and  are the length, width, and height, respectively.

Step 4: From Figure , we see that the height of the box is  inches, the length is  inches, and the width is 
 inches. Therefore, the volume of the box is

Step 5: To determine the domain of consideration, let’s examine Figure . Certainly, we need  Furthermore, the
side length of the square cannot be greater than or equal to half the length of the shorter side, ; otherwise, one of the flaps
would be completely cut off. Therefore, we are trying to determine whether there is a maximum volume of the box for  over
the open interval  Since  is a continuous function over the closed interval , we know  will have an absolute
maximum over the closed interval. Therefore, we consider  over the closed interval  and check whether the absolute
maximum occurs at an interior point.

 Problem-Solving Strategy: Solving Optimization Problems

3

4
4.

 Example : Maximizing the Volume of a Box2.7.20.2

24 in. 36 in.

x 2.7.20.3
V

2.7.20.3 x

V

V = L ⋅W ⋅H,

L, W , H

2.7.20.3 x 36 −2x
24 −2x

.
V (x) = (36 −2x)(24 −2x)x

= 4 −120 +864xx3 x2

2.7.20.3 x > 0.
24 in.

x

(0, 12). V [0, 12] V

V [0, 12]
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Step 6: Since  is a continuous function over the closed, bounded interval ,  must have an absolute maximum (and
an absolute minimum). Since  at the endpoints and  for  the maximum must occur at a critical
point. The derivative is

To find the critical points, we need to solve the equation

Dividing both sides of this equation by , the problem simplifies to solving the equation

Using the quadratic formula, we find that the critical points are

Since  is not in the domain of consideration, the only critical point we need to consider is . Therefore, the
volume is maximized if we let  The maximum volume is

as shown in the following graph.

Figure : Maximizing the volume of the box leads to finding the maximum value of a cubic polynomial.

Suppose the dimensions of the cardboard in Example  are  by  Let  be the side length of each square and
write the volume of the open-top box as a function of . Determine the domain of consideration for .

Hint

The volume of the box is 

Answer

 The domain is .

V (x) [0, 12] V
V (x) = 0 V (x) > 0 0 < x < 12,

V '(x) = 12 −240x+864.x2

12 −240x+864 = 0.x2

12

−20x+72 = 0.x2

.

x =
20 ± (−20 −4(1)(72))2− −−−−−−−−−−−−−√

2

=
20 ± 112

−−−
√

2

=
20 ±4 7

–
√

2

= 10 ±2 7
–

√

10 +2 7
–

√ 10 −2 7
–

√

x = 10 −2 in.7
–

√

V (10 −2 ) = 640 +448 ≈ 1825 .7
–

√ 7
–

√ in3

2.7.20.4

 Exercise 2.7.20.2

2.7.20.2 20 in. 30 in. x

x x

L ⋅W ⋅H.

V (x) = x(20 −2x)(30 −2x). [0, 10]

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/68618?pdf


2.7.20.24 https://phys.libretexts.org/@go/page/68618

An island is  mi due north of its closest point along a straight shoreline. A visitor is staying at a cabin on the shore that is  mi
west of that point. The visitor is planning to go from the cabin to the island. Suppose the visitor runs at a rate of  mph and
swims at a rate of  mph. How far should the visitor run before swimming to minimize the time it takes to reach the island?

Solution

Step 1: Let  be the distance running and let  be the distance swimming (Figure ). Let  be the time it takes to get
from the cabin to the island.

Figure : How can we choose  and  to minimize the travel time from the cabin to the island?

Step 2: The problem is to minimize .

Step 3: To find the time spent traveling from the cabin to the island, add the time spent running and the time spent swimming.
Since Distance = Rate × Time  the time spent running is

,

and the time spent swimming is

.

Therefore, the total time spent traveling is

.

Step 4: From Figure , the line segment of  miles forms the hypotenuse of a right triangle with legs of length  mi and 
 mi. Therefore, by the Pythagorean theorem, , and we obtain . Thus, the total

time spent traveling is given by the function

.

Step 5: From Figure , we see that . Therefore,  is the domain of consideration.

Step 6: Since  is a continuous function over a closed, bounded interval, it has a maximum and a minimum. Let’s begin by
looking for any critical points of  over the interval  The derivative is

If , then

 Example : Minimizing Travel Time2.7.20.3

2 6
8

3

x y 2.7.20.5 T

2.7.20.5 x y

T

(D = R×T ),

= =Trunning
Drunning

Rrunning

x

8

= =Tswimming

Dswimming

Rswimming

y

3

T = +
x

8

y

3

2.7.20.5 y 2
6 −x +(6 −x =22 )2 y2 y = (6 −x +4)2

− −−−−−−−−−
√

T (x) = +
x

8

(6 −x +4)2
− −−−−−−−−−

√

3

2.7.20.5 0 ≤ x ≤ 6 [0, 6]

T (x)
T [0, 6].

T '(x) = − ⋅ 2(6 −x)
1

8

1

2

[(6 −x +4)2 ]−1/2

3

= −
1

8

(6 −x)

3 (6 −x +4)2− −−−−−−−−−
√

T '(x) = 0,
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Therefore,

Squaring both sides of this equation, we see that if  satisfies this equation, then  must satisfy

which implies

We conclude that if  is a critical point, then  satisfies

[Note that since we are squaring, ]

Therefore, the possibilities for critical points are

Since  is not in the domain, it is not a possibility for a critical point. On the other hand,  is in
the domain. Since we squared both sides of Equation  to arrive at the possible critical points, it remains to verify that 

 satisfies Equation . Since  does satisfy that equation, we conclude that 
 is a critical point, and it is the only one. To justify that the time is minimized for this value of , we just need

to check the values of  at the endpoints  and , and compare them with the value of  at the critical point 
. We find that  and , whereas

Therefore, we conclude that  has a local minimum at  mi.

Suppose the island is  mi from shore, and the distance from the cabin to the point on the shore closest to the island is  mi.
Suppose a visitor swims at the rate of  mph and runs at a rate of  mph. Let  denote the distance the visitor will run before
swimming, and find a function for the time it takes the visitor to get from the cabin to the island.

Hint

The time 

Answer

In business, companies are interested in maximizing revenue. In the following example, we consider a scenario in which a
company has collected data on how many cars it is able to lease, depending on the price it charges its customers to rent a car. Let’s
use these data to determine the price the company should charge to maximize the amount of money it brings in.

=
1

8

6 −x

3 (6 −x +4)2− −−−−−−−−−
√

(2.7.20.5)

3 = 8(6 −x).(6 −x +4)2
− −−−−−−−−−

√ (2.7.20.6)

x x

9[(6 −x +4] = 64(6 −x ,)2 )2

55(6 −x = 36.)2

x x

(x−6 = .)2 36

55

(x−6 = (6 −x .)2 )2

x = 6 ± .
6

55
−−

√

x = 6 +6/ 55
−−

√ x = 6 −6/ 55
−−

√
2.7.20.6

x = 6 −6/ 55
−−

√ 2.7.20.5 x = 6 −6/ 55
−−

√
x = 6 −6/ 55

−−
√ x

T (x) x = 0 x = 6 T (x)
x = 6 −6/ 55

−−
√ T (0) ≈ 2.108 h T (6) ≈ 1.417 h

T (6 −6/ ) ≈ 1.368 h.55
−−

√

T x ≈ 5.19

 Exercise 2.7.20.3

1 15
2.5 6 x

T = + .Trunning Tswimming

T (x) = +
x

6

(15 −x +1)2− −−−−−−−−−−
√
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Owners of a car rental company have determined that if they charge customers  dollars per day to rent a car, where 
, the number of cars  they rent per day can be modeled by the linear function . If they charge

 per day or less, they will rent all their cars. If they charge  per day or more, they will not rent any cars. Assuming the
owners plan to charge customers between  per day and  per day to rent a car, how much should they charge to
maximize their revenue?

Solution

Step 1: Let  be the price charged per car per day and let  be the number of cars rented per day. Let  be the revenue per day.

Step 2: The problem is to maximize 

Step 3: The revenue (per day) is equal to the number of cars rented per day times the price charged per car per day—that is, 

Step 4: Since the number of cars rented per day is modeled by the linear function  the revenue  can be
represented by the function

Step 5: Since the owners plan to charge between  per car per day and  per car per day, the problem is to find the
maximum revenue  for  in the closed interval .

Step 6: Since  is a continuous function over the closed, bounded interval , it has an absolute maximum (and an
absolute minimum) in that interval. To find the maximum value, look for critical points. The derivative is 

 Therefore, the critical point is . When  When 
. When .

Therefore, the absolute maximum occurs at . The car rental company should charge  per day per car to
maximize revenue as shown in the following figure.

Figure : To maximize revenue, a car rental company has to balance the price of a rental against the number of cars
people will rent at that price.

A car rental company charges its customers  dollars per day, where . It has found that the number of cars rented
per day can be modeled by the linear function  How much should the company charge each customer to
maximize revenue?

Hint

 where  is the number of cars rented and  is the price charged per car.

Answer

The company should charge  per car per day.

 Example : Maximizing Revenue2.7.20.4

p

50 ≤ p ≤ 200 n n(p) = 1000 −5p
$50 $200

$50 $200

p n R

R.

R = n×p.

n(p) = 1000 −5p, R

R(p) = n×p

= (1000 −5p)p

= −5 +1000p.p2

$50 $200
R(p) p [50, 200]

R [50, 200]

R'(p) = −10p+1000. p = 100 p = 100,R(100) = $50, 000.
p = 50,R(p) = $37, 500 p = 200,R(p) = $0

p = $100 $100

2.7.20.6

 Exercise 2.7.20.4

p 60 ≤ p ≤ 150
n(p) = 750 −5p.

R(p) = n×p, n p

$75
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A rectangle is to be inscribed in the ellipse

What should the dimensions of the rectangle be to maximize its area? What is the maximum area?

Solution

Step 1: For a rectangle to be inscribed in the ellipse, the sides of the rectangle must be parallel to the axes. Let  be the length
of the rectangle and  be its width. Let  be the area of the rectangle.

Figure : We want to maximize the area of a rectangle inscribed in an ellipse.

Step 2: The problem is to maximize .

Step 3: The area of the rectangle is 

Step 4: Let  be the corner of the rectangle that lies in the first quadrant, as shown in Figure . We can write length 

 and width . Since  and , we have . Therefore, the area is

Step 5: From Figure , we see that to inscribe a rectangle in the ellipse, the -coordinate of the corner in the first
quadrant must satisfy . Therefore, the problem reduces to looking for the maximum value of  over the open
interval . Since  will have an absolute maximum (and absolute minimum) over the closed interval , we
consider  over the interval . If the absolute maximum occurs at an interior point, then we have found
an absolute maximum in the open interval.

Step 6: As mentioned earlier,  is a continuous function over the closed, bounded interval . Therefore, it has an
absolute maximum (and absolute minimum). At the endpoints  and ,  For , .

Therefore, the maximum must occur at a critical point. Taking the derivative of , we obtain

To find critical points, we need to find where  We can see that if  is a solution of

then  must satisfy

 Example : Maximizing the Area of an Inscribed Rectangle2.7.20.5

+ = 1.
x2

4
y2

L

W A

2.7.20.7

A

A = LW .

(x, y) 2.7.20.7

L = 2x W = 2y + = 1
x2

4
y2 y > 0 y = 1 −

x2

4

− −−−−−
√

A = LW = (2x)(2y) = 4x = 2x1 −
x2

4

− −−−−−
√ 4 −x2

− −−−−
√

2.7.20.7 x

0 < x < 2 A(x)
(0, 2) A(x) [0, 2]

A(x) = 2x 4 −x2
− −−−−

√ [0, 2]

A(x) [0, 2]
x = 0 x = 2 A(x) = 0. 0 < x < 2 A(x) > 0

A(x)

(x)A′ = 2 +2x ⋅ (−2x)4 −x2− −−−−
√ 1

2 4 −x2
− −−−−

√

= 2 −4 −x2− −−−−
√

2x2

4 −x2
− −−−−

√

= .
8 −4x2

4 −x2
− −−−−

√

(x) = 0.A′ x

= 0,
8 −4x2

4 −x2
− −−−−

√
(2.7.20.7)
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Therefore,  Thus,  are the possible solutions of Equation . Since we are considering  over the
interval ,  is a possibility for a critical point, but  is not. Therefore, we check whether  is a solution
of Equation . Since  is a solution of Equation , we conclude that  is the only critical point of 
in the interval .

Therefore,  must have an absolute maximum at the critical point . To determine the dimensions of the rectangle,
we need to find the length  and the width . If  then

Therefore, the dimensions of the rectangle are  and . The area of this rectangle is 

Modify the area function  if the rectangle is to be inscribed in the unit circle . What is the domain of
consideration?

Hint

If  is the vertex of the square that lies in the first quadrant, then the area of the square is 

Answer

 The domain of consideration is .

2.7.20.9 Solving Optimization Problems when the Interval Is Not Closed or Is Unbounded
In the previous examples, we considered functions on closed, bounded domains. Consequently, by the extreme value theorem, we
were guaranteed that the functions had absolute extrema. Let’s now consider functions for which the domain is neither closed nor
bounded.

Many functions still have at least one absolute extrema, even if the domain is not closed or the domain is unbounded. For example,
the function  over  has an absolute minimum of  at . Therefore, we can still consider functions
over unbounded domains or open intervals and determine whether they have any absolute extrema. In the next example, we try to
minimize a function over an unbounded domain. We will see that, although the domain of consideration is  the function has
an absolute minimum.

In the following example, we look at constructing a box of least surface area with a prescribed volume. It is not difficult to show
that for a closed-top box, by symmetry, among all boxes with a specified volume, a cube will have the smallest surface area.
Consequently, we consider the modified problem of determining which open-topped box with a specified volume has the smallest
surface area.

A rectangular box with a square base, an open top, and a volume of  is to be constructed. What should the dimensions
of the box be to minimize the surface area of the box? What is the minimum surface area?

Solution

Step 1: Draw a rectangular box and introduce the variable  to represent the length of each side of the square base; let 
represent the height of the box. Let  denote the surface area of the open-top box.

8 −4 = 0.x2

= 2.x2 x = ± 2
–

√ 2.7.20.7 x

[0, 2] x = 2
–

√ x = − 2
–

√ 2
–

√

2.7.20.7 x = 2
–

√ 2.7.20.7 2
–

√ A(x)
[0, 2]

A(x) x = 2
–

√

L W x = 2
–

√

y = = = .1 −
( 2

–
√ )2

4

− −−−−−−−−

√ 1 −
1

2

− −−−−
√

1

2
–

√

L = 2x = 2 2
–

√ W = 2y = =
2

2
–

√
2
–

√

A = LW = (2 )( ) = 4.2
–

√ 2
–

√

 Exercise 2.7.20.5

A + = 1x2 y2

(x, y) A = (2x)(2y) = 4xy.

A(x) = 4x .1 −x2
− −−−−

√ [0, 1]

f(x) = +4x2 (−∞, ∞) 4 x = 0

(0, ∞),

 Example : Minimizing Surface Area2.7.20.6
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Figure : We want to minimize the surface area of a square-based box with a given volume.

Step 2: We need to minimize the surface area. Therefore, we need to minimize .

Step 3: Since the box has an open top, we need only determine the area of the four vertical sides and the base. The area of each
of the four vertical sides is  The area of the base is . Therefore, the surface area of the box is

.

Step 4: Since the volume of this box is  and the volume is given as , the constraint equation is

.

Solving the constraint equation for , we have . Therefore, we can write the surface area as a function of  only:

Therefore, .

Step 5: Since we are requiring that , we cannot have . Therefore, we need . On the other hand,  is
allowed to have any positive value. Note that as  becomes large, the height of the box  becomes correspondingly small so
that . Similarly, as  becomes small, the height of the box becomes correspondingly large. We conclude that the
domain is the open, unbounded interval . Note that, unlike the previous examples, we cannot reduce our problem to
looking for an absolute maximum or absolute minimum over a closed, bounded interval. However, in the next step, we
discover why this function must have an absolute minimum over the interval 

Step 6: Note that as  Also, as . Since  is a continuous function that approaches
infinity at the ends, it must have an absolute minimum at some . This minimum must occur at a critical point of .
The derivative is

Therefore,  when . Solving this equation for , we obtain , so  Since this is

the only critical point of , the absolute minimum must occur at  (see Figure ).

When ,  Therefore, the dimensions of the box should be  and  With

these dimensions, the surface area is

Figure : We can use a graph to determine the dimensions of a box of given the volume and the minimum surface area.

2.7.20.8
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Consider the same open-top box, which is to have volume . Suppose the cost of the material for the base is  and
the cost of the material for the sides is  and we are trying to minimize the cost of this box. Write the cost as a function
of the side lengths of the base. (Let  be the side length of the base and  be the height of the box.)

Hint

If the cost of one of the sides is  the cost of that side is  dollars.

Answer

 dollars

2.7.20.10 Key Concepts
To solve an optimization problem, begin by drawing a picture and introducing variables.
Find an equation relating the variables.
Find a function of one variable to describe the quantity that is to be minimized or maximized.
Look for critical points to locate local extrema.

2.7.20.11 Glossary

optimization problems
problems that are solved by finding the maximum or minimum value of a function

2.7.20.12 Key Concepts
A function may have both an absolute maximum and an absolute minimum, have just one absolute extremum, or have no
absolute maximum or absolute minimum.
If a function has a local extremum, the point at which it occurs must be a critical point. However, a function need not have a
local extremum at a critical point.
A continuous function over a closed, bounded interval has an absolute maximum and an absolute minimum. Each extremum
occurs at a critical point or an endpoint.

2.7.20.13 Glossary

absolute extremum
if  has an absolute maximum or absolute minimum at , we say  has an absolute extremum at 

absolute maximum
if  for all  in the domain of , we say  has an absolute maximum at 

absolute minimum
if  for all  in the domain of , we say  has an absolute minimum at 

critical point
if  or  is undefined, we say that c is a critical point of 

extreme value theorem
if  is a continuous function over a finite, closed interval, then  has an absolute maximum and an absolute minimum

Fermat’s theorem
if  has a local extremum at , then  is a critical point of 

local extremum

 Exercise 2.7.20.6

216 in3 20¢/in2
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f(c) ≥ f(x) x f f c

f(c) ≤ f(x) x f f c
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if  has a local maximum or local minimum at , we say  has a local extremum at 

local maximum
if there exists an interval  such that  for all , we say  has a local maximum at 

local minimum
if there exists an interval  such that  for all , we say  has a local minimum at 

differential
the differential  is an independent variable that can be assigned any nonzero real number; the differential  is defined to be 

differential form
given a differentiable function  the equation  is the differential form of the derivative of  with
respect to 

linear approximation
the linear function  is the linear approximation of  at 

percentage uncertainty
the relative uncertainty expressed as a percentage

propagated uncertainty
the uncertainty that results in a calculated quantity  resulting from a measurement uncertainty 

relative uncertainty

given an absolute uncertainty  for a particular quantity,  is the relative uncertainty.

tangent line approximation (linearization)
since the linear approximation of  at  is defined using the equation of the tangent line, the linear approximation of  at 

 is also known as the tangent line approximation to  at 

acceleration
is the rate of change of the velocity, that is, the derivative of velocity

amount of change
the amount of a function  over an interval 

average rate of change

is a function  over an interval  is 

marginal cost
is the derivative of the cost function, or the approximate cost of producing one more item

marginal revenue
is the derivative of the revenue function, or the approximate revenue obtained by selling one more item

marginal profit
is the derivative of the profit function, or the approximate profit obtained by producing and selling one more item

population growth rate
is the derivative of the population with respect to time

speed
is the absolute value of velocity, that is,  is the speed of an object at time  whose velocity is given by 

f c f c

I f(c) ≥ f(x) x ∈ I f c

I f(c) ≤ f(x) x ∈ I f c

dx dy

dy = (x)dxf ′

y = (x),f ′ dy = (x)dxf ′ y

x

L(x) = f(a) + (a)(x−a)f ′ f x = a

f(x) dx

Δq
Δq

q

f x = a f

x = a f x = a

f(x) [x, x+h]isf(x+h) −f(x)

f(x) [x, x+h]
f(x+h)−f(a)

b−a

|v(t)| t v(t)
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