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9.11: Gravitational Potential Energy and Total Energy

Determine changes in gravitational potential energy over great distances
Apply conservation of energy to determine escape velocity
Determine whether astronomical bodies are gravitationally bound

We studied gravitational potential energy in Potential Energy and Conservation of Energy, where the value of  remained constant. We now
develop an expression that works over distances such that g is not constant. This is necessary to correctly calculate the energy needed to place
satellites in orbit or to send them on missions in space.

9.11.1 Gravitational Potential Energy beyond Earth
We defined work and potential energy, previously. The usefulness of those definitions is the ease with which we can solve many problems
using conservation of energy. Potential energy is particularly useful for forces that change with position, as the gravitational force does over
large distances. In Potential Energy and Conservation of Energy, we showed that the change in gravitational potential energy near Earth’s
surface is

This works very well if  does not change significantly between y  and y . We return to the definition of work and potential energy to derive
an expression that is correct over larger distances. Recall that work (W) is the integral of the dot product between force and distance.
Essentially, it is the product of the component of a force along a displacement times that displacement. We define  as the negative of the
work done by the force we associate with the potential energy. For clarity, we derive an expression for moving a mass m from distance r
from the center of Earth to distance r . However, the result can easily be generalized to any two objects changing their separation from one
value to another.

Figure : The work integral, which determines the change in potential energy, can be evaluated along the path shown in red.

Consider Figure , in which we take m from a distance r  from Earth’s center to a distance that is r  from the center. Gravity is a
conservative force (its magnitude and direction are functions of location only), so we can take any path we wish, and the result for the
calculation of work is the same. We take the path shown, as it greatly simplifies the integration. We first move radially outward from distance
r  to distance r , and then move along the arc of a circle until we reach the final position. During the radial portion,  is opposite to the
direction we travel along d , so

Along the arc,  is perpendicular to d , so  = 0. No work is done as we move along the arc. Using the expression for the gravitational
force and noting the values for  along the two segments of our path, we have

Since  we can adopt a simple expression for :
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Note two important items with this definition. First,  as . The potential energy is zero when the two masses are infinitely far
apart. Only the difference in  is important, so the choice of  for  is merely one of convenience. (Recall that in earlier gravity
problems, you were free to take  at the top or bottom of a building, or anywhere.) Second, note that  becomes increasingly more
negative as the masses get closer. That is consistent with what you learned about potential energy in Potential Energy and Conservation of
Energy. As the two masses are separated, positive work must be done against the force of gravity, and hence,  increases (becomes less
negative). All masses naturally fall together under the influence of gravity, falling from a higher to a lower potential energy.

How much energy is required to lift the 9000-kg Soyuz vehicle from Earth’s surface to the height of the ISS, 400 km above the surface?

Strategy

Use Equation  to find the change in potential energy of the payload. That amount of work or energy must be supplied to lift the
payload.

Solution
Paying attention to the fact that we start at Earth’s surface and end at 400 km above the surface, the change in  is

We insert the values

and convert 400 km into 4.00 x 10  m. We find . It is positive, indicating an increase in potential energy, as we
would expect.

Significance

For perspective, consider that the average US household energy use in 2013 was 909 kWh per month. That is energy of

So our result is an energy expenditure equivalent to 10 months. However, this is just the energy needed to raise the payload 400 km. If
we want the Soyuz to be in orbit so it can rendezvous with the ISS and not just fall back to Earth, it needs a lot of kinetic energy. As we
see in the next section, that kinetic energy is about five times that of U. In addition, far more energy is expended lifting the propulsion
system itself. Space travel is not cheap.

Why not use the simpler expression in Equation  instead? How significant would the error be? (The value  at 400 km above the
Earth is 8.67 m/s .)

9.11.2 Conservation of Energy

In Potential Energy and Conservation of Energy, we described how to apply conservation of energy for systems with conservative forces.
We were able to solve many problems, particularly those involving gravity, more simply using conservation of energy. Those principles and
problem-solving strategies apply equally well here. The only change is to place the new expression for potential energy into the conservation
of energy equation,

Note that we use M, rather than M , as a reminder that we are not restricted to problems involving Earth. However, we still assume that m <<
M. (For problems in which this is not true, we need to include the kinetic energy of both masses and use conservation of momentum to relate
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the velocities to each other. But the principle remains the same.)

9.11.2.1 Escape velocity

Escape velocity is often defined to be the minimum initial velocity of an object that is required to escape the surface of a planet (or any large
body like a moon) and never return. As usual, we assume no energy lost to an atmosphere, should there be any.

Consider the case where an object is launched from the surface of a planet with an initial velocity directed away from the planet. With the
minimum velocity needed to escape, the object would just come to rest infinitely far away, that is, the object gives up the last of its kinetic
energy just as it reaches infinity, where the force of gravity becomes zero. Since U → 0 as r → , this means the total energy is zero. Thus,
we find the escape velocity from the surface of an astronomical body of mass M and radius R by setting the total energy equal to zero. At the
surface of the body, the object is located at  and it has escape velocity . It reaches  with velocity .
Substituting into Equation , we have

Solving for the escape velocity,

Notice that  has canceled out of the equation. The escape velocity is the same for all objects, regardless of mass. Also, we are not
restricted to the surface of the planet; R can be any starting point beyond the surface of the planet.

What is the escape speed from the surface of Earth? Assume there is no energy loss from air resistance. Compare this to the escape speed
from the Sun, starting from Earth’s orbit.

Strategy

We use Equation 13.6, clearly defining the values of R and M. To escape Earth, we need the mass and radius of Earth. For escaping the
Sun, we need the mass of the Sun, and the orbital distance between Earth and the Sun.

Solution
Substituting the values for Earth’s mass and radius directly into Equation 13.6, we obtain

That is about 11 km/s or 25,000 mph. To escape the Sun, starting from Earth’s orbit, we use R = R  = 1.50 x 10  m and M  = 1.99 x
10  kg. The result is v  = 4.21 x 10  m/s or about 42 km/s.

Significance

The speed needed to escape the Sun (leave the solar system) is nearly four times the escape speed from Earth’s surface. But there is help
in both cases. Earth is rotating, at a speed of nearly 1.7 km/s at the equator, and we can use that velocity to help escape, or to achieve
orbit. For this reason, many commercial space companies maintain launch facilities near the equator. To escape the Sun, there is even
more help. Earth revolves about the Sun at a speed of approximately 30 km/s. By launching in the direction that Earth is moving, we
need only an additional 12 km/s. The use of gravitational assist from other planets, essentially a gravity slingshot technique, allows space
probes to reach even greater speeds. In this slingshot technique, the vehicle approaches the planet and is accelerated by the planet’s
gravitational attraction. It has its greatest speed at the closest point of approach, although it decelerates in equal measure as it moves
away. But relative to the planet, the vehicle’s speed far before the approach, and long after, are the same. If the directions are chosen
correctly, that can result in a significant increase (or decrease if needed) in the vehicle’s speed relative to the rest of the solar system.

9.11.3 Energy and gravitationally bound objects
As stated previously, escape velocity can be defined as the initial velocity of an object that can escape the surface of a moon or planet. More
generally, it is the speed at any position such that the total energy is zero. If the total energy is zero or greater, the object escapes. If the total
energy is negative, the object cannot escape. Let’s see why that is the case.
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As noted earlier, we see that  as . If the total energy is zero, then as m reaches a value of r that approaches infinity, U becomes
zero and so must the kinetic energy. Hence, m comes to rest infinitely far away from M. It has “just escaped” M. If the total energy is
positive, then kinetic energy remains at  and certainly m does not return. When the total energy is zero or greater, then we say that m is
not gravitationally bound to M.

On the other hand, if the total energy is negative, then the kinetic energy must reach zero at some finite value of r, where U is negative and
equal to the total energy. The object can never exceed this finite distance from M, since to do so would require the kinetic energy to become
negative, which is not possible. We say m is gravitationally bound to M.

We have simplified this discussion by assuming that the object was headed directly away from the planet. What is remarkable is that the
result applies for any velocity. Energy is a scalar quantity and hence Equation  is a scalar equation—the direction of the velocity plays
no role in conservation of energy. It is possible to have a gravitationally bound system where the masses do not “fall together,” but maintain
an orbital motion about each other.

We have one important final observation. Earlier we stated that if the total energy is zero or greater, the object escapes. Strictly speaking,
Equation  and Equation  apply for point objects. They apply to finite-sized, spherically symmetric objects as well, provided that
the value for  in Equation  is always greater than the sum of the radii of the two objects. If r becomes less than this sum, then the
objects collide. (Even for greater values of r, but near the sum of the radii, gravitational tidal forces could create significant effects if both
objects are planet sized. We examine tidal effects in Tidal Forces.) Neither positive nor negative total energy precludes finite-sized masses
from colliding. For real objects, direction is important.

Let’s consider the preceding example again, where we calculated the escape speed from Earth and the Sun, starting from Earth’s orbit.
We noted that Earth already has an orbital speed of 30 km/s. As we see in the next section, that is the tangential speed needed to stay in
circular orbit. If an object had this speed at the distance of Earth’s orbit, but was headed directly away from the Sun, how far would it
travel before coming to rest? Ignore the gravitational effects of any other bodies.

Strategy

The object has initial kinetic and potential energies that we can calculate. When its speed reaches zero, it is at its maximum distance from
the Sun. We use Equation 13.5, conservation of energy, to find the distance at which kinetic energy is zero.

Solution
The initial position of the object is Earth’s radius of orbit and the initial speed is given as 30 km/s. The final velocity is zero, so we can
solve for the distance at that point from the conservation of energy equation. Using R  = 1.50 x 10  m and M  = 1.99 x 10  kg, we
have

where the mass m cancels. Solving for r  we get r  = 3.0 x 10  m. Note that this is twice the initial distance from the Sun and takes us
past Mars’s orbit, but not quite to the asteroid belt.

Significance

The object in this case reached a distance exactly twice the initial orbital distance. We will see the reason for this in the next section when
we calculate the speed for circular orbits.

Assume you are in a spacecraft in orbit about the Sun at Earth’s orbit, but far away from Earth (so that it can be ignored). How could you
redirect your tangential velocity to the radial direction such that you could then pass by Mars’s orbit? What would be required to change
just the direction of the velocity?

9.11.4 More about Circular Orbits
As noted at the beginning of this chapter, Nicolaus Copernicus first suggested that Earth and all other planets orbit the Sun in circles. He
further noted that orbital periods increased with distance from the Sun. Later analysis by Kepler showed that these orbits are actually ellipses,
but the orbits of most planets in the solar system are nearly circular. Earth’s orbital distance from the Sun varies a mere 2%. The exception is
the eccentric orbit of Mercury, whose orbital distance varies nearly 40%.
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Determining the orbital speed and orbital period of a satellite is much easier for circular orbits, so we make that assumption in the
derivation that follows. As we described in the previous section, an object with negative total energy is gravitationally bound and therefore is
in orbit. Our computation for the special case of circular orbits will confirm this. We focus on objects orbiting Earth, but our results can be
generalized for other cases.

Figure : A satellite of mass  orbiting at radius  from the center of Earth. The gravitational force supplies the centripetal
acceleration.

Consider a satellite of mass m in a circular orbit about Earth at distance  from the center of Earth (Figure ). It has centripetal
acceleration directed toward the center of Earth. Earth’s gravity is the only force acting, so Newton’s second law gives

We solve for the speed of the orbit, noting that  cancels, to get the orbital speed

Consistent with what we saw in  and , m does not appear in Equation . The value of g, the escape velocity,

and orbital velocity depend only upon the distance from the center of the planet, and not upon the mass of the object being acted upon. Notice
the similarity in the equations for v  and v . The escape velocity is exactly  times greater, about 40%, than the orbital velocity. This
comparison was noted in Example 13.4.2, and it is true for a satellite at any radius.

To find the period of a circular orbit, we note that the satellite travels the circumference of the orbit  in one period . Using the definition
of speed, we have

We substitute this into Equation  and rearrange to get

We see in the next section that this represents Kepler’s third law for the case of circular orbits. It also confirms Copernicus’s observation that
the period of a planet increases with increasing distance from the Sun. We need only replace  with  in Equation .

We conclude this section by returning to our earlier discussion about astronauts in orbit appearing to be weightless, as if they were free-
falling towards Earth. In fact, they are in free fall. Consider the trajectories shown in Figure . (This figure is based on a drawing by
Newton in his Principia and also appeared earlier in Motion in Two and Three Dimensions.) All the trajectories shown that hit the surface of
Earth have less than orbital velocity. The astronauts would accelerate toward Earth along the noncircular paths shown and feel weightless.
(Astronauts actually train for life in orbit by riding in airplanes that free fall for 30 seconds at a time.) But with the correct orbital velocity,
Earth’s surface curves away from them at exactly the same rate as they fall toward Earth. Of course, staying the same distance from the
surface is the point of a circular orbit.
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Figure : A circular orbit is the result of choosing a tangential velocity such that Earth’s surface curves away at the same rate as the
object falls toward Earth.

We can summarize our discussion of orbiting satellites in the following Problem-Solving Strategy.

1. Determine whether the equations for speed, energy, or period are valid for the problem at hand. If not, start with the first principles we
used to derive those equations.

2. To start from first principles, draw a free-body diagram and apply Newton’s law of gravitation and Newton’s second law.
3. Along with the definitions for speed and energy, apply Newton’s second law of motion to the bodies of interest.

Determine the orbital speed and period for the International Space Station (ISS).

Strategy

Since the ISS orbits 4.00 x 10  km above Earth’s surface, the radius at which it orbits is R  + 4.00 x 10  km. We use Equations 
and  to find the orbital speed and period, respectively.

Solution
Using Equation , the orbital velocity is

which is about 17,000 mph. Using Equation , the period is

which is just over 90 minutes.

Significance

The ISS is considered to be in low Earth orbit (LEO). Nearly all satellites are in LEO, including most weather satellites. GPS satellites, at
about 20,000 km, are considered medium Earth orbit. The higher the orbit, the more energy is required to put it there and the more
energy is needed to reach it for repairs. Of particular interest are the satellites in geosynchronous orbit. All fixed satellite dishes on the
ground pointing toward the sky, such as TV reception dishes, are pointed toward geosynchronous satellites. These satellites are placed at
the exact distance, and just above the equator, such that their period of orbit is 1 day. They remain in a fixed position relative to Earth’s
surface.

By what factor must the radius change to reduce the orbital velocity of a satellite by one-half? By what factor would this change the
period?

9.11.2

 Problem-Solving Strategy: Orbits and Conservation of Energy

 Example : The International Space Station9.11.1
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Determine the mass of Earth from the orbit of the Moon.

Strategy

We use Equation , solve for M , and substitute for the period and radius of the orbit. The radius and period of the Moon’s orbit
was measured with reasonable accuracy thousands of years ago. From the astronomical data in Appendix D, the period of the Moon is
27.3 days = 2.36 x 10  s, and the average distance between the centers of Earth and the Moon is 384,000 km.

Solution
Solving for ,

Significance

Compare this to the value of 5.96 x 10  kg that we obtained in Example 13.3.3, using the value of  at the surface of Earth. Although
these values are very close (~0.8%), both calculations use average values. The value of g varies from the equator to the poles by
approximately 0.5%. But the Moon has an elliptical orbit in which the value of r varies just over 10%. (The apparent size of the full
Moon actually varies by about this amount, but it is difficult to notice through casual observation as the time from one extreme to the
other is many months.)

There is another consideration to this last calculation of M . We derived Equation  assuming that the satellite orbits around the
center of the astronomical body at the same radius used in the expression for the gravitational force between them. What assumption is
made to justify this? Earth is about 81 times more massive than the Moon. Does the Moon orbit about the exact center of Earth?

Let’s revisit Example 13.2.2. Assume that the Milky Way and Andromeda galaxies are in a circular orbit about each other. What would
be the velocity of each and how long would their orbital period be? Assume the mass of each is 800 billion solar masses and their centers
are separated by 2.5 million light years.

Strategy

We cannot use Equations  and  directly because they were derived assuming that the object of mass m orbited about the
center of a much larger planet of mass M. We determined the gravitational force in Example 13.2.2 using Newton’s law of universal
gravitation. We can use Newton’s second law, applied to the centripetal acceleration of either galaxy, to determine their tangential speed.
From that result we can determine the period of the orbit.

Solution
In Example 13.2.2, we found the force between the galaxies to be

and that the acceleration of each galaxy is

Since the galaxies are in a circular orbit, they have centripetal acceleration. If we ignore the effect of other galaxies, then, as we learned
in Linear Momentum and Collisions and Fixed-Axis Rotation, the centers of mass of the two galaxies remain fixed. Hence, the galaxies
must orbit about this common center of mass. For equal masses, the center of mass is exactly half way between them. So the radius of the
orbit, r , is not the same as the distance between the galaxies, but one-half that value, or 1.25 million light-years. These two different
values are shown in Figure .

 Example : Determining the Mass of Earth9.11.2
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Figure : The distance between two galaxies, which determines the gravitational force between them, is r, and is different from
r , which is the radius of orbit for each. For equal masses, r  = r. (credit: modification of work by Marc Van Norden)

Using the expression for centripetal acceleration, we have

Solving for the orbit velocity, we have . Finally, we can determine the period of the orbit directly from

to find that the period is T = 1.6 x 10  s, about 50 billion years.

Significance

The orbital speed of 47 km/s might seem high at first. But this speed is comparable to the escape speed from the Sun, which we
calculated in an earlier example. To give even more perspective, this period is nearly four times longer than the time that the Universe
has been in existence.

In fact, the present relative motion of these two galaxies is such that they are expected to collide in about 4 billion years. Although the
density of stars in each galaxy makes a direct collision of any two stars unlikely, such a collision will have a dramatic effect on the shape
of the galaxies. Examples of such collisions are well known in astronomy

Galaxies are not single objects. How does the gravitational force of one galaxy exerted on the “closer” stars of the other galaxy compare
to those farther away? What effect would this have on the shape of the galaxies themselves?

See the Sloan Digital Sky Survey page for more information on colliding galaxies.

Use this interactive simulation to move the Sun, Earth, Moon, and space station to see the effects on their gravitational forces and orbital
paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it.

9.11.5 Energy in Circular Orbits

In Gravitational Potential Energy and Total Energy, we argued that objects are gravitationally bound if their total energy is negative. The
argument was based on the simple case where the velocity was directly away or toward the planet. We now examine the total energy for a
circular orbit and show that indeed, the total energy is negative. As we did earlier, we start with Newton’s second law applied to a circular
orbit,

In the last step, we multiplied by  on each side. The right side is just twice the kinetic energy, so we have

9.11.3

orbit orbit
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The total energy is the sum of the kinetic and potential energies, so our final result is

We can see that the total energy is negative, with the same magnitude as the kinetic energy. For circular orbits, the magnitude of the kinetic
energy is exactly one-half the magnitude of the potential energy. Remarkably, this result applies to any two masses in circular orbits about
their common center of mass, at a distance r from each other. The proof of this is left as an exercise. We will see in the next section that a
very similar expression applies in the case of elliptical orbits.

In Example 13.4.1, we calculated the energy required to simply lift the 9000-kg Soyuz vehicle from Earth’s surface to the height of the
ISS, 400 km above the surface. In other words, we found its change in potential energy. We now ask, what total energy change in the
Soyuz vehicle is required to take it from Earth’s surface and put it in orbit with the ISS for a rendezvous (Figure )? How much of
that total energy is kinetic energy?

Figure : The Soyuz in a rendezvous with the ISS. Note that this diagram is not to scale; the Soyuz is very small compared to the
ISS and its orbit is much closer to Earth. (credit: modification of works by NASA)

Strategy

The energy required is the difference in the Soyuz’s total energy in orbit and that at Earth’s surface. We can use Equation  to find
the total energy of the Soyuz at the ISS orbit. But the total energy at the surface is simply the potential energy, since it starts from rest.
[Note that we do not use Equation  at the surface, since we are not in orbit at the surface.] The kinetic energy can then be found
from the difference in the total energy change and the change in potential energy found in Example 13.4.1. Alternatively, we can use
Equation  to find v  and calculate the kinetic energy directly from that. The total energy required is then the kinetic energy plus
the change in potential energy found in Example 13.4.1.

Solution
From Equation , the total energy of the Soyuz in the same orbit as the ISS is

The total energy at Earth's surface is

The change in energy is

K = m = .
1

2
v2 GmME

2r
(9.11.20)

E = K+U = − = − .
GmME

2r

GmME

r

GmME

2r
(9.11.21)
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To get the kinetic energy, we subtract the change in potential energy from Example 13.4.1, U = 3.32 x 10  J. That gives us K  =
(2.98 x 10 ) − (3.32 x 10 ) = 2.65 x 10  J. As stated earlier, the kinetic energy of a circular orbit is always one-half the magnitude of
the potential energy, and the same as the magnitude of the total energy. Our result confirms this.

The second approach is to use Equation  to find the orbital speed of the Soyuz, which we did for the ISS in Example .

So the kinetic energy of the Soyuz in orbit is

the same as in the previous method. The total energy is just

Significance

The kinetic energy of the Soyuz is nearly eight times the change in its potential energy, or 90% of the total energy needed for the
rendezvous with the ISS. And it is important to remember that this energy represents only the energy that must be given to the Soyuz.
With our present rocket technology, the mass of the propulsion system (the rocket fuel, its container and combustion system) far exceeds
that of the payload, and a tremendous amount of kinetic energy must be given to that mass. So the actual cost in energy is many times
that of the change in energy of the payload itself.
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