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5.11: Forces on Rotating Bodies

Describe how the magnitude of a torque depends on the magnitude of the lever arm and the angle the force vector makes
with the lever arm
Determine the sign (positive or negative) of a torque using the right-hand rule
Calculate individual torques about a common axis and sum them to find the net torque

An important quantity for describing the dynamics of a rotating rigid body is torque. We see the application of torque in many ways
in our world. We all have an intuition about torque, as when we use a large wrench to unscrew a stubborn bolt. Torque is at work in
unseen ways, as when we press on the accelerator in a car, causing the engine to put additional torque on the drive train. Or every
time we move our bodies from a standing position, we apply a torque to our limbs. In this section, we define torque and make an
argument for the equation for calculating torque for a rigid body with fixed-axis rotation.

5.11.1 Defining Torque
So far we have defined many variables that are rotational equivalents to their translational counterparts. Let’s consider what the
counterpart to force must be. Since forces change the translational motion of objects, the rotational counterpart must be related to
changing the rotational motion of an object about an axis. We call this rotational counterpart torque.

In everyday life, we rotate objects about an axis all the time, so intuitively we already know much about torque. Consider, for
example, how we rotate a door to open it. First, we know that a door opens slowly if we push too close to its hinges; it is more
efficient to rotate a door open if we push far from the hinges. Second, we know that we should push perpendicular to the plane of
the door; if we push parallel to the plane of the door, we are not able to rotate it. Third, the larger the force, the more effective it is
in opening the door; the harder you push, the more rapidly the door opens. The first point implies that the farther the force is
applied from the axis of rotation, the greater the angular acceleration; the second implies that the effectiveness depends on the
angle at which the force is applied; the third implies that the magnitude of the force must also be part of the equation. Note that for
rotation in a plane, torque has two possible directions. Torque is either clockwise or counterclockwise relative to the chosen pivot
point. Figure  shows counterclockwise rotations.

Figure : Torque is the turning or twisting effectiveness of a force, illustrated here for door rotation on its hinges (as viewed
from overhead). Torque has both magnitude and direction. (a) A counterclockwise torque is produced by a force  acting at a
distance r from the hinges (the pivot point). (b) A smaller counterclockwise torque is produced when a smaller force  acts at the
same distance r from the hinges. (c) The same force as in (a) produces a smaller counterclockwise torque when applied at a smaller
distance from the hinges. (d) A smaller counterclockwise torque is produced by the same magnitude force as (a) acting at the same
distance as (a) but at an angle  that is less than 90°.

Now let’s consider how to define torques in the general three-dimensional case.

When a force  is applied to a point P whose position is  relative to O (Figure ), the torque  around O is
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Figure : The torque is perpendicular to the plane defined by  and  and its direction is determined by the right-hand rule.

From the definition of the cross product, the torque  is perpendicular to the plane containing  and  and has magnitude

where  is the angle between the vectors  and . The SI unit of torque is newtons times meters, usually written as N • m. The
quantity r  = rsin  is the perpendicular distance from O to the line determined by the vector  and is called the lever arm. Note
that the greater the lever arm, the greater the magnitude of the torque. In terms of the lever arm, the magnitude of the torque is

The cross product  also tells us the sign of the torque. In Figure , the cross product  is along the positive z-axis,
which by convention is a positive torque. If  is along the negative z-axis, this produces a negative torque.

If we consider a disk that is free to rotate about an axis through the center, as shown in Figure , we can see how the angle
between the radius  and the force  affects the magnitude of the torque. If the angle is zero, the torque is zero; if the angle is 90°,
the torque is maximum. The torque in Figure  is positive because the direction of the torque by the right-hand rule is out of
the page along the positive z-axis. The disk rotates counterclockwise due to the torque, in the same direction as a positive angular
acceleration.

Figure : A disk is free to rotate about its axis through the center. The magnitude of the torque on the disk is rFsin .When  =
0°, the torque is zero and the disk does not rotate. When  = 90°, the torque is maximum and the disk rotates with maximum
angular acceleration.

Any number of torques can be calculated about a given axis. The individual torques add to produce a net torque about the axis.
When the appropriate sign (positive or negative) is assigned to the magnitudes of individual torques about a specified axis, the net
torque about the axis is the sum of the individual torques:
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5.11.2 Calculating Net Torque for Rigid Bodies on a Fixed Axis
In the following examples, we calculate the torque both abstractly and as applied to a rigid body. We first introduce a problem-
solving strategy.

1. Choose a coordinate system with the pivot point or axis of rotation as the origin of the selected coordinate system.
2. Determine the angle between the lever arm  and the force vector.
3. Take the cross product of  and  to determine if the torque is positive or negative about the pivot point or axis.
4. Evaluate the magnitude of the torque using r F.
5. Assign the appropriate sign, positive or negative, to the magnitude.
6. Sum the torques to find the net torque.

Four forces are shown in Figure  at particular locations and orientations with respect to a given xy-coordinate system.
Find the torque due to each force about the origin, then use your results to find the net torque about the origin.

Figure : Four forces producing torques.

Strategy

This problem requires calculating torque. All known quantities––forces with directions and lever arms––are given in the
figure. The goal is to find each individual torque and the net torque by summing the individual torques. Be careful to assign
the correct sign to each torque by using the cross product of  and the force vector .

Solution

Use | | = r F = rFsin  to find the magnitude and  to determine the sign of the torque.

The torque from force 40 N in the first quadrant is given by (4)(40)sin 90° = 160 N • m.

The cross product of  and  is out of the page, positive.

The torque from force 20 N in the third quadrant is given by −(3)(20)sin 90° = − 60 N • m.

The cross product of  and  is into the page, so it is negative.

The torque from force 30 N in the third quadrant is given by (5)(30)sin 53° = 120 N • m.

The cross product of  and  is out of the page, positive.

The torque from force 20 N in the second quadrant is given by (1)(20)sin 30° = 10 N • m.

The cross product of  and  is out of the page.

The net torque is therefore  = 160 − 60 + 120 + 10 = 230 N • m.

Significance

Note that each force that acts in the counterclockwise direction has a positive torque, whereas each force that acts in the
clockwise direction has a negative torque. The torque is greater when the distance, force, or perpendicular components
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are greater.

Figure  shows several forces acting at different locations and angles on a flywheel. We have  = 20 N,  = 30 N, 
 = 30 N, and r = 0.5 m. Find the net torque on the flywheel about an axis through the center.

Figure : Three forces acting on a flywheel.

Solution

We calculate each torque individually, using the cross product, and determine the sign of the torque. Then we sum the
torques to find the net torque. Solution We start with . If we look at Figure , we see that  makes an angle of 90°
+ 60° with the radius vector . Taking the cross product, we see that it is out of the page and so is positive. We also see this
from calculating its magnitude:

Next we look at . The angle between  and  is 90° and the cross product is into the page so the torque is negative. Its
value is

When we evaluate the torque due to , we see that the angle it makes with  is zero so  = 0. Therefore,  does
not produce any torque on the flywheel.

We evaluate the sum of the torques:

Significance

The axis of rotation is at the center of mass of the flywheel. Since the flywheel is on a fixed axis, it is not free to translate.
If it were on a frictionless surface and not fixed in place,  would cause the flywheel to translate, as well as . Its
motion would be a combination of translation and rotation.

5.11.3 Rotational dynamics for a single particle

Suppose that a single force, , is acting on a particle of mass . Newton’s Second Law for the particle is then given by:

We can define a point of rotation such that  is the position of the particle relative to that point. We can take the cross-product of 
with both sides of the equation in Newton’s Second Law:

 Example 10.15: Calculating Torque on a rigid body
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The left hand-side of the equation is called “the torque of  relative to the point of rotation”, and is usually denoted by :

The right-hand side of the equation is related to the angular acceleration vector, , about that point of rotation:

Putting this altogether, we get:

If more than one force is exerted on the particle, it is easy to show that the net torque from the net force on the particle is equal to
the sum of the torques on the particle:

We can write “Newton’s Second Law for the rotational dynamics of a particle”:

This equation provides us an alternate formulation to Newton’s Second Law that is useful for describing the motion of a particle
that is rotating. The left-hand side of the equation corresponds to the “causes of motion” (much like the sum of the forces in
Newton’s Second Law), and the right-hand side of the equation to the inertia and the kinematics. A few things to note when
comparing to Newton’s Second Law:

1. The rotational quantities, torque and angular acceleration, are only defined with respect to a point or axis of rotation (as this
determines the vector ). If one chooses a different point of rotation, then the torque and angular acceleration will be different.

2. The angular acceleration of a particle is proportional to the net torque exerted on it, much like the linear acceleration is
proportional to the net force exerted on the particle.

3. Torque about a center of rotation can be thought of as the equivalent of a force that causes things rotate about an axis that goes
through the point of rotation and that is parallel to the torque/angular acceleration vectors.

4. Instead of mass, it is mass times  that plays the role of inertia and determines how large of an angular acceleration a particle
will experience for a given net torque.

Figure : A toy rocket accelerating around a circle of radius , as seen from above.

A toy rocket is attached to a string on a horizontal frictionless table, as shown in Figure . The rocket has a mass  and
produces a constant force of thrust with a magnitude  that accelerates the rocket along a circle of radius  (the length of the
string). If the rocket starts at rest, what distance along the circumference of the circle will the rocket have traveled after a time, 
?

Solution

We can model the rocket as a point particle of mass  with the following forces exerted on it:

1. , the thrust of the rocket, always acting tangent to the circle.
2. , the force of tension in the string, always acting towards the center of the circle.
3. , the rocket’s weight, acting into the page, with magnitude .
4. , a normal force exerted by the table, out of the page, with magnitude .
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Because the normal force and the weight are equal in magnitude and opposite in direction, the net force will be the sum of
the force of thrust and the force of tension, which are always perpendicular to each other. Thinking about this with
Newton’s Second Law, we could model the force of thrust as increasing the speed of the particle, while the force of tension
keeps the rocket moving in a circle (it can do no work to increase the speed, since it is always perpendicular to the motion).

We can also think about this in terms of torques and angular acceleration about the center of the circle. The thrust will result
in a net torque about the center of rotation, which will lead to the rocket having an angular acceleration. By determining the
angular acceleration, we can then model the displacement at some time, , using kinematics. The force of tension will create
no torque about the center of the circle because the force of tension is always co-linear with the position vector,  (the
cross-product of co-linear vectors is always zero).

We introduce a coordinate system whose origin coincides with the center of the circle, as shown in Figure , so that 
corresponds to the position of the rocket relative to the origin. The force of thrust and the tension are also shown in the
diagram. We choose the direction of the  axis such that the rocket was located at the intersection of the  axis and the
circle at time, .

Figure : Coordinate system to describe the motion of the rocket.

The net torque on the rocket about the point of rotation is given by the cross-product between the thrust force, , and the
position vector, :

and will point in the positive  direction (as given by the right hand rule).  and  are perpendicular, so the magnitude of
the net torque is given by:

where  is the magnitude of . The net torque vector is thus:

Applying the rotational version of Newton’s Second Law allows us to determine the angular acceleration:

The angular acceleration vector points in the positive  direction (as does the net torque), and indicates that the rocket is
accelerating in the counter-clockwise direction about the  axis.

After a period of time , the rocket will have covered an angular displacement, , given by:

The linear displacement, , that corresponds to this angular displacement is:
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Discussion:

The formula that we found for the total linear displacement is the same that we would have found if the particle were
moving in a straight line with a net force  applied to it (as the particle would have a constant acceleration given by ).
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