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3.5: Examples of Motion with Constant Acceleration

Identify which equations of motion are to be used to solve for unknowns.
Use appropriate equations of motion to solve a two-body pursuit problem.

3.5.1 Solving for Final Velocity from Acceleration and Time
We can derive another useful equation by manipulating the definition of acceleration:

Substituting the simplified notation for v and t gives us

Solving for v yields

An airplane lands with an initial velocity of 70.0 m/s and then decelerates at 1.50 m/s  for 40.0 s. What is its final velocity?

Strategy

First, we identify the knowns: v  = 70 m/s, a = -1.50 m/s , t = 40 s.

Second, we identify the unknown; in this case, it is final velocity v .

Last, we determine which equation to use. To do this we figure out which kinematic equation gives the unknown in terms
of the knowns. We calculate the final velocity using Equation , v = v  + at.

Solution

Substitute the known values and solve:

Figure  is a sketch that shows the acceleration and velocity vectors.

Figure : The airplane lands with an initial velocity of 70.0 m/s and slows to a final velocity of 10.0 m/s before
heading for the terminal. Note the acceleration is negative because its direction is opposite to its velocity, which is
positive.

Significance

The final velocity is much less than the initial velocity, as desired when slowing down, but is still positive (see figure).
With jet engines, reverse thrust can be maintained long enough to stop the plane and start moving it backward, which is
indicated by a negative final velocity, but is not the case here.

In addition to being useful in problem solving, the equation v = v  + at gives us insight into the relationships among velocity,
acceleration, and time. We can see, for example, that

Final velocity depends on how large the acceleration is and how long it lasts
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If the acceleration is zero, then the final velocity equals the initial velocity (v = v ), as expected (in other words, velocity is
constant)
If a is negative, then the final velocity is less than the initial velocity

All these observations fit our intuition. Note that it is always useful to examine basic equations in light of our intuition and
experience to check that they do indeed describe nature accurately.

3.5.2 Solving for Final Position with Constant Acceleration

We can combine the previous equations to find a third equation that allows us to calculate the final position of an object
experiencing constant acceleration. We start with

Adding v to each side of this equation and dividing by 2 gives

Since  for constant acceleration, we have

Now we substitute this expression for  into the equation for displacement, x = x  + t, yielding

Dragsters can achieve an average acceleration of 26.0 m/s . Suppose a dragster accelerates from rest at this rate for 5.56 s
Figure . How far does it travel in this time?

Figure : U.S. Army Top Fuel pilot Tony “The Sarge” Schumacher begins a race with a controlled burnout. (credit: Lt.
Col. William Thurmond. Photo Courtesy of U.S. Army.)

Strategy

First, let’s draw a sketch Figure . We are asked to find displacement, which is x if we take x  to be zero. (Think about
x  as the starting line of a race. It can be anywhere, but we call it zero and measure all other positions relative to it.) We can
use the equation  when we identify v , a, and t from the statement of the problem.

Figure : Sketch of an accelerating dragster.

Solution

0

v= +at.v0 (3.5.5)
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First, we need to identify the knowns. Starting from rest means that v  = 0 , a is given as 26.0 m/s  and t is given as 5.56
s.

Second, we substitute the known values into the equation to solve for the unknown:

Since the initial position and velocity are both zero, this equation simplifies to

Substituting the identified values of a and t gives

Significance

If we convert 402 m to miles, we find that the distance covered is very close to one-quarter of a mile, the standard
distance for drag racing. So, our answer is reasonable. This is an impressive displacement to cover in only 5.56 s, but
top-notch dragsters can do a quarter mile in even less time than this. If the dragster were given an initial velocity, this
would add another term to the distance equation. If the same acceleration and time are used in the equation, the distance
covered would be much greater.

What else can we learn by examining the equation ? We can see the following relationships:

Displacement depends on the square of the elapsed time when acceleration is not zero. In Example 3.8, the dragster covers only
one-fourth of the total distance in the first half of the elapsed time.
If acceleration is zero, then initial velocity equals average velocity (v  = ) , and  becomes x = x  + v t.

3.5.3 Solving for Final Velocity from Distance and Acceleration
A fourth useful equation can be obtained from another algebraic manipulation of previous equations. If we solve v = v  + at for t,
we get

Substituting this and  into , we get

Calculate the final velocity of the dragster in the previous Example without using information about time.

Strategy

The equation  is ideally suited to this task because it relates velocities, acceleration, and
displacement, and no time information is required.

Solution

First, we identify the known values. We know that v  = 0, since the dragster starts from rest. We also know that x - x  =
402 m (this was the answer in Example 3.8). The average acceleration was given by a = 26.0 m/s . Second, we
substitute the knowns into the equation  and solve for v:

Thus,
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Significance

A velocity of 145 m/s is about 522 km/h, or about 324 mi/h, but even this breakneck speed is short of the record for the
quarter mile. Also, note that a square root has two values; we took the positive value to indicate a velocity in the same
direction as the acceleration.

An examination of the equation  can produce additional insights into the general relationships among
physical quantities:

The final velocity depends on how large the acceleration is and the distance over which it acts.
For a fixed acceleration, a car that is going twice as fast doesn’t simply stop in twice the distance. It takes much farther to stop.
(This is why we have reduced speed zones near schools.)

Example 3.10: How Far Does a Car Go?

On dry concrete, a car can decelerate at a rate of 7.00 m/s , whereas on wet concrete it can decelerate at only 5.00 m/s . Find
the distances necessary to stop a car moving at 30.0 m/s (about 110 km/h) on (a) dry concrete and (b) wet concrete. (c) Repeat
both calculations and find the displacement from the point where the driver sees a traffic light turn red, taking into account his
reaction time of 0.500 s to get his foot on the brake.

Strategy

First, we need to draw a sketch Figure . To determine which equations are best to use, we need to list all the known
values and identify exactly what we need to solve for.

Figure : Sample sketch to visualize deceleration and stopping distance of a car.

Solution
a. First, we need to identify the knowns and what we want to solve for. We know that v  = 30.0 m/s, v = 0, and a =

-7.00 m/s  (a is negative because it is in a direction opposite to velocity). We take x0 to be zero. We are looking for
displacement x, or x - x . Second, we identify the equation that will help us solve the problem. The best equation
to use is  This equation is best because it includes only one unknown, x. We know the values
of all the other variables in this equation. (Other equations would allow us to solve for x, but they require us to know
the stopping time, t, which we do not know. We could use them, but it would entail additional calculations.) Third,

we rearrange the equation to solve for x:  and substitute the known values: 

Thus, 
b. This part can be solved in exactly the same manner as (a). The only difference is that the acceleration is -5.00 m/s .

The result is 
c. When the driver reacts, the stopping distance is the same as it is in (a) and (b) for dry and wet concrete. So, to

answer this question, we need to calculate how far the car travels during the reaction time, and then add that to the
stopping time. It is reasonable to assume the velocity remains constant during the driver’s reaction time. To do this,
we, again, identify the knowns and what we want to solve for. We know that  = 30.0 m/s, t  = 0.500 s, and
a  = 0. We take x  to be zero. We are looking for x . Second, as before, we identify the best
equation to use. In this case, x = x  + t works well because the only unknown value is x, which is what we want to
solve for. Third, we substitute the knowns to solve the equation:  This
means the car travels 15.0 m while the driver reacts, making the total displacements in the two cases of dry and wet
concrete 15.0 m greater than if he reacted instantly. Last, we then add the displacement during the reaction time to
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the displacement when braking (Figure ),  and find (a) to be 64.3 m + 15.0 m =
79.3 m when dry and (b) to be 90.0 m + 15.0 m = 105 m when wet.

Figure : The distance necessary to stop a car varies greatly, depending on road conditions and driver reaction time.
Shown here are the braking distances for dry and wet pavement, as calculated in this example, for a car traveling
initially at 30.0 m/s. Also shown are the total distances traveled from the point when the driver first sees a light turn red,
assuming a 0.500-s reaction time.

Significance

The displacements found in this example seem reasonable for stopping a fast-moving car. It should take longer to stop a
car on wet pavement than dry. It is interesting that reaction time adds significantly to the displacements, but more
important is the general approach to solving problems. We identify the knowns and the quantities to be determined, then
find an appropriate equation. If there is more than one unknown, we need as many independent equations as there are
unknowns to solve. There is often more than one way to solve a problem. The various parts of this example can, in fact,
be solved by other methods, but the solutions presented here are the shortest.

Suppose a car merges into freeway traffic on a 200-m-long ramp. If its initial velocity is 10.0 m/s and it accelerates at 2.00
m/s , how long does it take the car to travel the 200 m up the ramp? (Such information might be useful to a traffic engineer.)

Strategy

First, we draw a sketch Figure . We are asked to solve for time t. As before, we identify the known quantities to choose
a convenient physical relationship (that is, an equation with one unknown, t.)

Figure : Sketch of a car accelerating on a freeway ramp.

Solution

Again, we identify the knowns and what we want to solve for. We know that x  = 0, v  = 10 m/s, a = 2.00 m/s , and x =
200 m.

We need to solve for t. The equation x = x + v t + at  works best because the only unknown in the equation is the
variable t, for which we need to solve. From this insight we see that when we input the knowns into the equation, we
end up with a quadratic equation.

We need to rearrange the equation to solve for t, then substituting the knowns into the equation:

We then simplify the equation. The units of meters cancel because they are in each term. We can get the units of seconds
to cancel by taking t = t s, where t is the magnitude of time and s is the unit. Doing so leaves

3.5.2 + = ,xbraking xreaction xtotal
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We then use the quadratic formula to solve for t,

which yields two solutions: t = 10.0 and t = -20.0. A negative value for time is unreasonable, since it would mean the
event happened 20 s before the motion began. We can discard that solution. Thus,

Significance

Whenever an equation contains an unknown squared, there are two solutions. In some problems both solutions are
meaningful; in others, only one solution is reasonable. The 10.0-s answer seems reasonable for a typical freeway on-
ramp.

A spaceship has left Earth’s orbit and is on its way to the Moon. It accelerates at 20 m/s  for 2 min and covers a distance of
1000 km. What are the initial and final velocities of the spaceship?

Strategy

We are asked to find the initial and final velocities of the spaceship. Looking at the kinematic equations, we see that one
equation will not give the answer. We must use one kinematic equation to solve for one of the velocities and substitute it
into another kinematic equation to get the second velocity. Thus, we solve two of the kinematic equations simultaneously.

Solution

First we solve for v  using :

Then we substitute v  into v = v  + at to solve for the final velocity:

Significance

There are six variables in displacement, time, velocity, and acceleration that describe motion in one dimension. The
initial conditions of a given problem can be many combinations of these variables. Because of this diversity, solutions
may not be easy as simple substitutions into one of the equations. This example illustrates that solutions to kinematics
may require solving two simultaneous kinematic equations.

With the basics of kinematics established, we can go on to many other interesting examples and applications. In the process of
developing kinematics, we have also glimpsed a general approach to problem solving that produces both correct answers and
insights into physical relationships. The next level of complexity in our kinematics problems involves the motion of two
interrelated bodies, called two-body pursuit problems.

3.5.4 Two-Body Pursuit Problems
Up until this point we have looked at examples of motion involving a single body. Even for the problem with two cars and the
stopping distances on wet and dry roads, we divided this problem into two separate problems to find the answers. In a two-body
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pursuit problem, the motions of the objects are coupled—meaning, the unknown we seek depends on the motion of both objects.
To solve these problems we write the equations of motion for each object and then solve them simultaneously to find the unknown.
This is illustrated in Figure .

Figure : A two-body pursuit scenario where car 2 has a constant velocity and car 1 is behind with a constant acceleration. Car
1 catches up with car 2 at a later time.

The time and distance required for car 1 to catch car 2 depends on the initial distance car 1 is from car 2 as well as the velocities of
both cars and the acceleration of car 1. The kinematic equations describing the motion of both cars must be solved to find these
unknowns.

Consider the following example.

A cheetah waits in hiding behind a bush. The cheetah spots a gazelle running past at 10 m/s. At the instant the gazelle passes
the cheetah, the cheetah accelerates from rest at 4 m/s  to catch the gazelle. (a) How long does it take the cheetah to catch the
gazelle? (b) What is the displacement of the gazelle and cheetah?

Strategy

We use the set of equations for constant acceleration to solve this problem. Since there are two objects in motion, we have
separate equations of motion describing each animal. But what links the equations is a common parameter that has the same
value for each animal. If we look at the problem closely, it is clear the common parameter to each animal is their position x
at a later time t. Since they both start at x = 0, their displacements are the same at a later time t, when the cheetah catches
up with the gazelle. If we pick the equation of motion that solves for the displacement for each animal, we can then set the
equations equal to each other and solve for the unknown, which is time.

Solution

a. Equation for the gazelle: The gazelle has a constant velocity, which is its average velocity, since it is not
accelerating. Therefore, we use Equation 3.5.7 with x  = 0:  Equation for the cheetah: The
cheetah is accelerating from rest, so we use Equation 3.5.17 with x  = 0 and v  = 0: 
Now we have an equation of motion for each animal with a common parameter, which can be eliminated to find the
solution. In this case, we solve for t:   The gazelle has a constant velocity of 10 m/s, which is
its average velocity. The acceleration of the cheetah is 4 m/s . Evaluating t, the time for the cheetah to reach the

gazelle, we have 
b. To get the displacement, we use either the equation of motion for the cheetah or the gazelle, since they should both

give the same answer. Displacement of the cheetah:  Displacement of the gazelle: 
 We see that both displacements are equal, as expected.

Significance

It is important to analyze the motion of each object and to use the appropriate kinematic equations to describe the
individual motion. It is also important to have a good visual perspective of the two-body pursuit problem to see the
common parameter that links the motion of both objects.
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