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2.7.15: Exponential and Logarithmic Functions

Identify the form of an exponential function.
Explain the difference between the graphs of  and .
Recognize the significance of the number .
Identify the form of a logarithmic function.
Explain the relationship between exponential and logarithmic functions.
Describe how to calculate a logarithm to a different base.

In this section we examine exponential and logarithmic functions. We use the properties of these functions to solve equations
involving exponential or logarithmic terms, and we study the meaning and importance of the number .

Exponential Functions

Recall the properties of exponents: If  is a positive integer, then we define  (with  factors of ). If  is a negative
integer, then  for some positive integer , and we define . Also,  is defined to be . If  is a rational
number, then , where  and  are integers and . For example, .

Given the exponential function , evaluate  and .

Answer

.

For any base , , the exponential function  is defined for all real numbers  and . Therefore, the domain
of  is  and the range is . To graph , we note that for ,  is increasing on  and 

 as , whereas  as . On the other hand, if ,  is decreasing on  and 
 as  whereas  as  (Figure ).

Figure : If , then  is increasing on . If , then  is decreasing on .

Note that exponential functions satisfy the general laws of exponents. To remind you of these laws, we state them as rules.

For any constants , , and for all  and 

1. 

2. 

3. 

4. 
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 Exercise 2.7.15.1

f(x) = 100 ⋅ 3x/2 f(4) f(10)

f(4) = 900

f(10) = 24, 300

b > 0 b ≠ 1 f(x) = bx x > 0bx

f(x) = bx (−∞, ∞) (0, ∞) bx b > 1 bx (−∞, ∞)
→ ∞bx x → ∞ → 0bx x → −∞ 0 < b < 1 f(x) = bx (−∞, ∞)
→ 0bx x → ∞ → ∞bx x → −∞ 2.7.15.2

2.7.15.2 b > 1 bx (−∞, ∞) 0 < b < 1 bx (−∞, ∞)

 Laws of Exponents

a > 0 b > 0 x y,

⋅ =bx by bx+y
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5. 

Use the laws of exponents to simplify each of the following expressions.

a. 

b. 

Soution

a. We can simplify as follows:

b. We can simplify as follows:

Use the laws of exponents to simplify .

Hint

Answer

The Number e

A special type of exponential function appears frequently in real-world applications involves the Euler number :

The letter  was first used to represent this number by the Swiss mathematician Leonhard Euler during the 1720s. Although
Euler did not discover the number, he showed many important connections between  and logarithmic functions. We still use
the notation  today to honor Euler’s work because it appears in many areas of mathematics and because we can use it in many
practical applications.

Functions involving base  arise often in applications, we call the function  the natural exponential function. Since 
, we know  is increasing on . In Figure , we show a graph of  along with a tangent

line to the graph of  at . The function  is the only exponential function  with tangent line at  that has a
slope of  As we see later in the text, having this property makes the natural exponential function the most simple exponential
function to use in many instances.

=
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x

 Example : Using the Laws of Exponents2.7.15.2
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= = = = .
(2x2/3)3

(4x−1/3)2

(23 x2/3)3

(42 x−1/3)2

8x2

16x−2/3

x2x2/3

2

x8/3
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= = = = .
(x3y−1)2

(xy2)−2

( (x3)2 y−1)2

(x−2 y2)−2

x6y−2

x−2y−4
x6x2y−2y4 x8y2

 Exercise 2.7.15.2

6x−3y2

12x−4y5

/ =xa xb xa−b

x/(2 )y3

e

e ≈ 2.718282.

 Leonhard Euler

e

e

e

e f(x) = ex

e > 1 f(x) = ex (−∞, ∞) 2.7.15.3 f(x) = ex

f x = 0 f(x) = ex bx x = 0
1.
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Figure : The graph of  has a tangent line with slope  at .

Logarithmic Functions

Using our understanding of exponential functions, we can discuss their inverses, which are the logarithmic functions. These come
in handy when we need to consider any phenomenon that varies over a wide range of values, such as the pH scale in chemistry or
decibels in sound levels.

The exponential function  is one-to-one, with domain  and range . Therefore, it has an inverse function,
called the logarithmic function with base . For any , the logarithmic function with base , denoted , has domain 

 and range ,and satisfies

if and only if .

For example,

since ,

since ,

since  for any base .

Furthermore, since  and  are inverse functions,

and

The most commonly used logarithmic function is the function . Since this function uses natural  as its base, it is called the
natural logarithm. Here we use the notation  or  to mean . For example,

Since the functions  and  are inverses of each other,

 and ,

and their graphs are symmetric about the line  (Figure ).

2.7.15.3 f(x) = ex 1 x = 0

f(x) = bx (−∞, ∞) (0, ∞)
b b > 0, b ≠ 1 b logb

(0, ∞) (−∞, ∞)

(x) = ylogb

= xby

(8) = 3log2

= 823

( ) = −2log10
1

100

= =10−2 1

102

1

100

(1) = 0logb

= 1b0 b > 0

y = (x)logb y = bx

( ) = xlogb bx

= x.b (x)logb

loge e

ln(x) lnx (x)loge

ln(e)

ln( )e3

ln(1)

= (e) = 1loge

= ( ) = 3loge e3

= (1) = 0.loge

f(x) = ex g(x) = ln(x)

ln( ) = xex = xeln x

y = x 2.7.15.4
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Figure : The functions  and  are inverses of each other, so their graphs are symmetric about the line 
.

In general, for any base , , the function  is symmetric about the line  with the function .
Using this fact and the graphs of the exponential functions, we graph functions  for several values of  ( Figure ).

Figure : Graphs of  are depicted for .

Before solving some equations involving exponential and logarithmic functions, let’s review the basic properties of logarithms.

If , and  is any real number, then

Product property

Quotient property

Power property

Solve each of the following equations for .

a. 
b. 

Solution

a. Applying the natural logarithm function to both sides of the equation, we have

.

2.7.15.4 y = ex y = ln(x)
y = x

b > 0 b ≠ 1 g(x) = (x)logb y = x f(x) = bx

logb b > 1 2.7.15.5

2.7.15.5 y = (x)logb b = 2, e, 10

 Properties of Logarithms

a, b, c > 0, b ≠ 1 r

(ac) = (a) + (c)logb logb logb (2.7.15.1)

( ) = (a) − (c)logb
a

c
logb logb (2.7.15.2)

( ) = r (a)logb ar logb (2.7.15.3)

 Example : Solving Equations Involving Exponential Functions2.7.15.4

x

= 25x

+6 = 5ex e−x

ln = ln25x
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Using the power property of logarithms,

Therefore,

b. Multiplying both sides of the equation by ,we arrive at the equation

.

Rewriting this equation as

,

we can then rewrite it as a quadratic equation in :

Now we can solve the quadratic equation. Factoring this equation, we obtain

Therefore, the solutions satisfy  and . Taking the natural logarithm of both sides gives us the solutions 
.

Solve

Hint

First solve the equation for 

Answer

.

Solve each of the following equations for .

a. 

b. 
c. 

Solution

a. By the definition of the natural logarithm function,

if and only if .

Therefore, the solution is .

b. Using the product (Equation ) and power (Equation ) properties of logarithmic functions, rewrite the left-
hand side of the equation as

x ln5 = ln2.

x = .
ln2

ln5

ex

+6 = 5e2x ex

−5 +6 = 0e2x ex

ex

( −5( ) +6 = 0.ex)2 ex

( −3)( −2) = 0.ex ex

= 3ex = 2ex

x = ln3, ln2

 Exercise 2.7.15.4

/(3 + ) = 1/2.e2x e2x

e2x

x =
ln3

2

 Example : Solving Equations Involving Logarithmic Functions2.7.15.5

x

ln( ) = 4
1

x

+ x = 2log10 x−−√ log10

ln(2x) −3 ln( ) = 0x2

ln( ) = 4
1

x

=e4 1

x

x = 1/e4

2.7.15.1 2.7.15.3
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Therefore, the equation can be rewritten as

or

.

The solution is .

c. Using the power property (Equation ) of logarithmic functions, we can rewrite the equation as .

Using the quotient property (Equation ), this becomes

Therefore, , which implies . We should then check for any extraneous solutions.

Solve .

Hint

First use the power property, then use the product property of logarithms.

Answer

When evaluating a logarithmic function with a calculator, you may have noticed that the only options are  or , called the
common logarithm, or , which is the natural logarithm. However, exponential functions and logarithm functions can be
expressed in terms of any desired base . If you need to use a calculator to evaluate an expression with a different base, you can
apply the change-of-base formulas first. Using this change of base, we typically write a given exponential or logarithmic function
in terms of the natural exponential and natural logarithmic functions.

Let , and .

1.  for any real number .

If , this equation reduces to .

2.  for any real number .

If , this equation reduces to .

+ xlog10 x−−√ log10 = xlog10 x−−√

= log10 x
3/2

= x.
3

2
log10

x = 2
3

2
log10

x =log10
4

3

x = = 10104/3 10
−−

√3

2.7.15.3 ln(2x) −ln( ) = 0x6

2.7.15.2

ln( ) = 0
2

x5

2/ = 1x5 x = 2
–

√5

 Exercise 2.7.15.5

ln( ) −4 ln(x) = 1x3

x =
1

e

log10 log
ln

b

 Rule: Change-of-Base Formulas

a > 0, b > 0 a ≠ 1, b ≠ 1

=ax bx alogb x

b = e = =ax ex aloge ex ln a

x =loga
xlogb
alogb

x > 0

b = e x =loga
lnx

lna
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Use a calculating utility to evaluate  with the change-of-base formula presented earlier.

Solution

Use the second equation with  and : .

Use the change-of-base formula and a calculating utility to evaluate .

Hint

Use the change of base to rewrite this expression in terms of expressions involving the natural logarithm function.

Answer

In 1935, Charles Richter developed a scale (now known as the Richter scale) to measure the magnitude of an earthquake. The
scale is a base-10 logarithmic scale, and it can be described as follows: Consider one earthquake with magnitude  on the
Richter scale and a second earthquake with magnitude  on the Richter scale. Suppose , which means the
earthquake of magnitude  is stronger, but how much stronger is it than the other earthquake?

Figure : (credit: modification of work by Robb Hannawacker, NPS)

A way of measuring the intensity of an earthquake is by using a seismograph to measure the amplitude of the earthquake
waves. If  is the amplitude measured for the first earthquake and  is the amplitude measured for the second earthquake,
then the amplitudes and magnitudes of the two earthquakes satisfy the following equation:

.

Consider an earthquake that measures 8 on the Richter scale and an earthquake that measures 7 on the Richter scale. Then,

.

Therefore,

,

which implies  or . Since  is 10 times the size of , we say that the first earthquake is 10 times as
intense as the second earthquake. On the other hand, if one earthquake measures 8 on the Richter scale and another measures 6,
then the relative intensity of the two earthquakes satisfies the equation

.

Therefore, .That is, the first earthquake is 100 times more intense than the second earthquake.

How can we use logarithmic functions to compare the relative severity of the magnitude 9 earthquake in Japan in 2011 with the
magnitude 7.3 earthquake in Haiti in 2010?

 Example : Changing Bases2.7.15.6

7log3

a = 3 b = e 7 = ≈ 1.77124log3
ln7

ln3

 Exercise 2.7.15.6

6log4

6 = ≈ 1.29248log4
ln6

ln4

 Example : The Richter Scale for Earthquakes2.7.15.7

R1

R2 >R1 R2

R1

2.7.15.6

A1 A2

− = ( )R1 R2 log10
A1

A2

8 −7 = ( )log10
A1

A2

( ) = 1log10
A1

A2

/ = 10A1 A2 = 10A1 A2 A1 A2

( ) = 8 −6 = 2log10
A1

A2

= 100A1 A2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/75447?pdf
https://geo.libretexts.org/Textmaps/Map%3A_Fundamentals_of_Geology_(Schulte)/Earthquakes/08_Reading%3A_Earthquake_Intensity


2.7.15.8 https://phys.libretexts.org/@go/page/75447

Solution

To compare the Japan and Haiti earthquakes, we can use an equation presented earlier:

.

Therefore, , and we conclude that the earthquake in Japan was approximately 50 times more intense than the
earthquake in Haiti.

Compare the relative severity of a magnitude  earthquake with a magnitude  earthquake.

Hint

.

Answer

The magnitude  earthquake is roughly  times as severe as the magnitude  earthquake.

Use the Properties of Logarithms
Now that we have learned about exponential and logarithmic functions, we can introduce some of the properties of logarithms.
These will be very helpful as we continue to solve both exponential and logarithmic equations.

The first two properties derive from the definition of logarithms. Since , we can convert this to logarithmic form and get 
. Also, since , we get .

Properties of Logarithms

In the next example we could evaluate the logarithm by converting to exponential form, as we have done previously, but
recognizing and then applying the properties saves time.

Evaluate using the properties of logarithms:

a. 
b. 

Solution:

a.

Use the property, .

b.

Use the property, .

9 −7.3 = ( )log10
A1

A2

/ =A1 A2 101.7

 Exercise 2.7.15.7

8.4 7.4

− = (A1/A2)R1 R2 log10

8.4 10 7.4

= 1a0

1 = 0loga = aa1 a = 1loga

 Definition 2.7.15.1

1 = 0 a = 1loga loga

 Example 2.7.15.1

1log8

6log6

1log8

1 = 0loga

0 1 = 0log8

6log6

a = 1loga

1 6 = 1log6
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Evaluate using the properties of logarithms:

a. 
b. 

Answer
a. 
b. 

Evaluate using the properties of logarithms:

a. 
b. 

Answer
a. 
b. 

The next two properties can also be verified by converting them from exponential form to logarithmic form, or the reverse.

The exponential equation  converts to the logarithmic equation , which is a true statement for positive
values for  only.

The logarithmic equation  converts to the exponential equation , which is also a true statement.

These two properties are called inverse properties because, when we have the same base, raising to a power “undoes” the log and
taking the log “undoes” raising to a power. These two properties show the composition of functions. Both ended up with the
identity function which shows again that the exponential and logarithmic functions are inverse functions.

Inverse Properties of Logarithms

For  and ,

In the next example, apply the inverse properties of logarithms.

Evaluate using the properties of logarithms:

a. 
b. 

Solution:

a.

Use the property, .

b.

 Exercise 2.7.15.1

1log13

9log9

0
1

 Exercise 2.7.15.2

1log5

7log7

0
1

= xa xloga x = xloga loga
x

= xloga a
x =ax ax

 Definition 2.7.15.2

a > 0, x > 0 a ≠ 1

= x = xa xloga loga a
x

 Example 2.7.15.2

4 9log4

log3 35

4 9log4

= xa xloga

9 = 94 9log4
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Use the property, .

Evaluate using the properties of logarithms:

a. 
b. 

Answer
a. 
b. 

Evaluate using the properties of logarithms:

a. 
b. 

Answer
a. 
b. 

There are three more properties of logarithms that will be useful in our work. We know exponential functions and logarithmic
function are very interrelated. Our definition of logarithm shows us that a logarithm is the exponent of the equivalent exponential.
The properties of exponents have related properties for exponents.

In the Product Property of Exponents, , we see that to multiply the same base, we add the exponents. The Product
Property of Logarithms,  tells us to take the log of a product, we add the log of the factors.

Product Property of Logarithms

If  and  then

The logarithm of a product is the sum of the logarithms.

We use this property to write the log of a product as a sum of the logs of each factor.

Use the Product Property of Logarithms to write each logarithm as a sum of logarithms. Simplify, if possible:

a. 
b. 

Solution:

a.

Use the Product Property, .

log3 35

= xa xloga

5 = 5log3 35

 Exercise 2.7.15.3

5 15log5

log7 74

15
4

 Exercise 2.7.15.4

2 8log2

log2 215

8
15

⋅ =am an am+n

M ⋅N = M + Nloga loga loga

 Definition 2.7.15.3

M > 0,N > 0, a > 0 a ≠ 1,

(M ⋅N) = M + Nloga loga loga

 Example 2.7.15.3

7xlog3

64xylog4

7xlog3

(M ⋅N) = M + Nloga loga loga
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b.

Use the Product Property, .

Simplify be evaluating, .

 

Use the Product Property of Logarithms to write each logarithm as a sum of logarithms. Simplify, if possible:

a. 
b. 

Answer
a. 
b. 

Use the Product Property of Logarithms to write each logarithm as a sum of logarithms. Simplify, if possible:

a. 
b. 

Answer
a. 
b. 

Similarly, in the Quotient Property of Exponents, , we see that to divide the same base, we subtract the exponents. The
Quotient Property of Logarithms,  tells us to take the log of a quotient, we subtract the log of the
numerator and denominator.

Quotient Property of Logarithms

If  and  then

The logarithm of a quotient is the difference of the logarithms.

Note that .

We use this property to write the log of a quotient as a difference of the logs of each factor.

7 + xlog3 log3

7x = 7 + xlog3 log3 log3

64xylog4

(M ⋅N) = M + Nloga loga loga

64 + x+ ylog4 log4 log4

64log4

3 + x+ ylog4 log4

64xy = 3 + x+ ylog4 log4 log4

 Exercise 2.7.15.5

3xlog3

8xylog2

1 + xlog3

3 + x+ ylog2 log2

 Exercise 2.7.15.6

9xlog9

27xylog3

1 + xlog9

3 + x+ ylog3 log3

=am

an am−n

= M − Nloga
M

N
loga loga

 Definition 2.7.15.4

M > 0,N > 0, a > 0 a ≠ 1,

= M − Nloga
M
N

loga loga

M = N ≠ (M −N)loga loga loga
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Use the Quotient Property of Logarithms to write each logarithm as a difference of logarithms. Simplify, if possible.

a. 
b. 

Solution:

a.

Use the Quotient Property, .

Simplify.

b.

Use the Quotient Property, .

Simplify.

Use the Quotient Property of Logarithms to write each logarithm as a difference of logarithms. Simplify, if possible.

a. 
b. 

Answer
a. 
b. 

Use the Quotient Property of Logarithms to write each logarithm as a difference of logarithms. Simplify, if possible.

a. 
b. 

Answer
a. 
b. 

The third property of logarithms is related to the Power Property of Exponents, , we see that to raise a power to a
power, we multiply the exponents. The Power Property of Logarithms,  tells us to take the log of a number
raised to a power, we multiply the power times the log of the number.

 Example 2.7.15.4

log5
5
7

log x

100

log5
5
7

= M − Nloga
M

N
loga loga

5 − 7log5 log5

1 − 7log5

= 1 − 7log5
5
7

log5

log x

100

= M − Nloga
M

N
loga loga

log x−log 100

log x−2

log = log x−2x

100

 Exercise 2.7.15.7

log4
3
4

log x

1000

3 −1log4

log x−3

 Exercise 2.7.15.8

log2
5
4

log 10
y

5 −2log2

1 −log y

=( )am n am⋅n

= p Mloga M
p loga
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Power Property of Logarithms

If  and  is any real number then,

The log of a number raised to a power as the product product of the power times the log of the number.

We use this property to write the log of a number raised to a power as the product of the power times the log of the number. We
essentially take the exponent and throw it in front of the logarithm.

Use the Power Property of Logarithms to write each logarithm as a product of logarithms. Simplify, if possible.

a. 
b. 

Solution:

a.

Use the Power Property, .

3 

b.

Use the Power Property, .

Use the Power Property of Logarithms to write each logarithm as a product of logarithms. Simplify, if possible.

a. 
b. 

Answer
a. 
b. 100

Use the Power Property of Logarithms to write each logarithm as a product of logarithms. Simplify, if possible.

a. 
b. 

Answer
a. 
b. 

 Definition 2.7.15.5

M > 0, a > 0, a ≠ 1 p

= p Mloga M
p loga

 Example 2.7.15.5

log5 43

log x10

log5 43

= p Mloga M
p loga

4log5

= 3 4log5 43 log5

log x10

= p Mloga M
p loga

10 log x

log = 10 log xx10

 Exercise 2.7.15.9

log7 54

log x100

4 5log7

⋅ log x

 Exercise 2.7.15.10

log2 37

log x20

7 3log2

20 ⋅ log x

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/75447?pdf


2.7.15.14 https://phys.libretexts.org/@go/page/75447

We summarize the Properties of Logarithms here for easy reference. While the natural logarithms are a special case of these
properties, it is often helpful to also show the natural logarithm version of each property.

Properties of Logarithms

If  and  is any real number then,

Property Base Base 

Inverse Properties   

Product Property of Logarithms

Quotient Property of Logarithms

Power Property of Logarithms

Table 10.4.1

Now that we have the properties we can use them to “expand” a logarithmic expression. This means to write the logarithm as a sum
or difference and without any powers.

We generally apply the Product and Quotient Properties before we apply the Power Property.

Use the Properties of Logarithms to expand the logarithm . Simplify, if possible.

Solution:

Use the Product Property, .

Use the Power Property, , on the last two terms. Simplify.

Use the Properties of Logarithms to expand the logarithm . Simplify, if possible.

Answer

Use the Properties of Logarithms to expand the logarithm . Simplify, if possible.

Answer

When we have a radical in the logarithmic expression, it is helpful to first write its radicand as a rational exponent.

Use the Properties of Logarithms to expand the logarithm . Simplify, if possible.

Solution

M > 0, a > 0, a ≠ 1 p

a e

1 = 0loga ln1 = 0

a = 1loga lne = 1

= xa xloga

= xloga a
x

= xelnx

ln = xex

(M ⋅N) = M + Nloga loga loga ln(M ⋅N) = lnM + lnN

= M − Nloga
M
N

loga loga ln = lnM − lnNM
N

= p MlogaM
p loga ln = p lnMM p

 Example 2.7.15.6

(2 )log4 x3y2

M ⋅N = M + Nloga loga loga

= p Mloga M
p loga

 Exercise 2.7.15.11

(5 )log2 x4y2

5 +4 x+2 ylog2 log2 log2

 Exercise 2.7.15.12

(7 )log3 x5y3

7 +5 x+3 ylog3 log3 log3

 Example 2.7.15.7

log2
x3

3 zy2

− −−−
√4

log2
x3

3 zy2

− −−−
√4
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Rewrite the radical with a rational exponent.

Use the Power Property, .

Use the Quotient Property, .

Use the Product Property, , in the second term.

Use the Power Property, , inside the parentheses.

Simplify by distributing.

Use the Properties of Logarithms to expand the logarithm . Simplify, if possible.

Answer

Use the Properties of Logarithms to expand the logarithm . Simplify, if possible.

Answer

The opposite of expanding a logarithm is to condense a sum or difference of logarithms that have the same base into a single
logarithm. We again use the properties of logarithms to help us, but in reverse.

To condense logarithmic expressions with the same base into one logarithm, we start by using the Power Property to get the
coefficients of the log terms to be one and then the Product and Quotient Properties as needed.

Use the Properties of Logarithms to condense the logarithm . Simplify, if possible.

Solution:

The log expressions all have the same base, .

The first two terms are added, so we use the Product Property, .

Since the logs are subtracted, we use the Quotient Property, .

log2 ( )x3

3 zy2

1
4

= p Mloga M
p loga

( )1
4

log2
x3

3 zy2

M ⋅N = M − Nloga loga loga

( ( )− (3 z))1
4

log2 x3 log2 y2

M ⋅N = M + Nloga loga loga

( ( )−( 3 + + z))1
4

log2 x3 log2 log2 y
2 log2

= p Mloga M
p loga

(3 x−( 3 +2 y+ z))1
4

log2 log2 log2 log2

(3 x− 3 −2 y− z)1
4

log2 log2 log2 log2

= (3 x− 3 −2 y− z)log2
x3

3 zy2

− −−−
√4 1

4
log2 log2 log2 log2

 Exercise 2.7.15.13

log4
x4

2y3z2

− −−−
√5

(4 x− −3 y−2 z)1
5

log4
1
2

log4 log4

 Exercise 2.7.15.14

log3
x2

5yz

−−−
√3

(2 x− 5 − y− z)1
3

log3 log3 log3 log3

 Example 2.7.15.8

3 + x− ylog4 log4 log4

4

M + N = M : Nloga loga loga

M − N =loga loga loga
M

N
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Use the Properties of Logarithms to condense the logarithm . Simplify, if possible.

Answer

Use the Properties of Logarithms to condense the logarithm . Simplify, if possible.

Answer

Use the Properties of Logarithms to condense the logarithm . Simplify, if possible.

Solution:

The log expressions have the same base, .

Use the Power Property, .

The terms are added, so we use the Product Property, .

 

Use the Properties of Logarithms to condense the logarithm . Simplify, if possible.

Answer

Use the Properties of Logarithms to condense the logarithm . Simplify, if possible.

Answer

Use the Change-of-Base Formula
To evaluate a logarithm with any other base, we can use the Change-of-Base Formula. We will show how this is derived.

 Exercise 2.7.15.15

5 + x− ylog2 log2 log2

log2
5x
y

 Exercise 2.7.15.16

6 − x− ylog3 log3 log3

log3
6
xy

 Example 2.7.15.9

2 x+4 (x+1)log3 log3

3

2 x+4 (x+1)log3 log3

M + N = M ⋅Nloga loga loga

+ (x+1log3 x
2 log3 )4

M + N = M ⋅Nloga loga loga

(x+1log3 x
2 )4

2 x+4 (x+1) = (x+1log3 log3 log3 x
2 )4

 Exercise 2.7.15.17

3 x+2 (x−1)log2 log2

(x−1log2 x
3 )2

 Exercise 2.7.15.18

2 log x+2 log(x+1)

log (x+1x2 )2
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The Change-of-Base Formula introduces a new base . This can be any base  we want where . Because our
calculators have keys for logarithms base  and base , we will rewrite the Change-of-Base Formula with the new base as  or .

Change-of-Base Formula

For any logarithmic bases  and ,

When we use a calculator to find the logarithm value, we usually round to three decimal places. This gives us an approximate value
and so we use the approximately equal symbol .

Rounding to three decimal places, approximate .

Solution:

 

Use the Change-of-Base Formula.

Identify  and . Choose  for .

Enter the expression  in the calculator using the log button for

base . Round to three decimal places.

Table 10.4.2

Rounding to three decimal places, approximate .

Answer

Rounding to three decimal places, approximate .

Answer

Suppose we want to evaluate Mloga
Let y = M .loga
Rewrite the epression in exponential form. 

Take the  of each side.logb
Use the Power Property.

Solve for y.

Substiture y = M .loga

Mloga
y = Mloga

= May

= Mlogb a
y logb

y a = Mlogb logb

y =
Mlogb
alogb

M =loga
Mlogb
alogb

b b b > 0, b ≠ 1
10 e 10 e

 Definition 2.7.15.6

a, b M > 0

M =loga
Mlogb
alogb

 new base b

M =loga
log M

log a

 new base 10

M =loga
lnM

ln a

 new base e

(≈)

 Example 2.7.15.10

35log4

a M 10 b

log35

log4

10

 Exercise 2.7.15.19

42log3

3.402

 Exercise 2.7.15.20

46log5

2.379
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In the previous section, we derived two important properties of logarithms, which allowed us to solve some basic exponential and
logarithmic equations.

Inverse Properties:

Exponential Property:

Change of Base:

While these properties allow us to solve a large number of problems, they are not sufficient to solve all problems involving
exponential and logarithmic equations.

Sum of Logs Property:

Difference of Logs Property:

It’s just as important to know what properties logarithms do not satisfy as to memorize the valid properties listed above. In
particular, the logarithm is not a linear function, which means that it does not distribute:

To help in this process we offer a proof of Equation  to help solidify our new rules and show how they follow from
properties you’ve already seen.

Let  and .

By definition of the logarithm,  and .

Using these expressions,

Using exponent rules on the right,

Taking the log of both sides, and utilizing the inverse property of logs,

Replacing  and  with their definition establishes the result

 properties of logs

( ) = xlogb bx (2.7.15.4)

= xb xlogb (2.7.15.5)

( ) = r (A)logb Ar logb (2.7.15.6)

(A) =logb
(A)logc
(b)logc

(2.7.15.7)

 properties of logs

(A) + (C) = (AC)logb logb logb (2.7.15.8)

(A) − (C) = ( )logb logb logb
A

C
(2.7.15.9)

logA+B ≠ logA+logB. (2.7.15.10)

2.7.15.10

 Proof

a = (A)logb c = (C)logb

= Aba = Cbc

AC = babc

AC = ba+c

(AC) = ( ) = a+clogb logb ba+c

a c

(AC) = A+ Clogb logb logb
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The proof for the difference property is very similar.

With these properties, we can rewrite expressions involving multiple logs as a single log, or break an expression involving a single
log into expressions involving multiple logs.

Write  as a single logarithm.

Solution

Using the sum of logs property on the first two terms,

This reduces our original expression to

Then using the difference of logs property,

Evaluate  without a calculator by first rewriting as a single logarithm.

Solution

On the first term, we can use the exponent property of logs to write

With the expression reduced to a sum of two logs, , we can utilize the sum of logs property

Since , we can evaluate this log without a calculator:

Without a calculator evaluate by first rewriting as a single logarithm:

Answer

Rewrite  as a sum or difference of logs

Solution

First, noticing we have a quotient of two expressions, we can utilize the difference property of logs to write

 Example 2.7.15.1

(5) + (8) − (2)log3 log3 log3

(5) + (8) = (5 ⋅ 8) = (40)log3 log3 log3 log3

(40) − (2)log3 log3

(40) − (2) = ( ) = (20)log3 log3 log3
40

2
log3

 Example 2.7.15.2

2 log(5) +log(4)

2 log(5) = log( ) = log(25)52

log(25) +log(4)

log(25) +log(4) = log(4 ⋅ 25) = log(100)

100 = 102

log(100) = log( ) = 2102

 Exercise 2.7.15.1

(8) + (4)log2 log2

(8 ⋅ 4) = (32) = ( ) = 5log2 log2 log2 25

 Example 2.7.15.3

ln( )
yx4

7

ln( ) = ln( y)−ln(7)
yx4

7
x4
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Then seeing the product in the first term, we use the sum property

Finally, we could use the exponent property on the first term

Log properties in Solving Equations
The logarithm properties often arise when solving problems involving logarithms. First, we’ll look at a simpler log equation.

Solve .

Solution

To solve for , we need to get it out from inside the log function. There are two ways we can approach this.

Method 1: Rewrite as an exponential.

Recall that since the common log is base 10,  can be rewritten as the exponential . Likewise, 
 can be rewritten in exponential form as

Method 2: Exponentiate both sides.

If , then . Using this idea, since , then . Use the inverse property of logs
to rewrite the left side and get .

Using either method, we now need to solve . Evaluate  to get

Add 6 to both sides 

Divide both sides by 2 

Occasionally the solving process will result in extraneous solutions – answers that are outside the domain of the original
equation. In this case, our answer looks fine.

Solve .

Solution

In order to rewrite in exponential form, we need a single logarithmic expression on the left side of the equation. Using the
difference property of logs, we can rewrite the left side:

Rewriting in exponential form reduces this to an algebraic equation:

Multiply both sides by  

ln( y)−ln(7) = ln( )+ln(y) −ln(7)x4 x4

ln( )+ln(y) −ln(7) = 4 ln(x) +ln(y) −ln(7)x4

 Example 2.7.15.5

log(2x−6) = 3

x

log(A) = B = A10B

log(2x−6) = 3

= 2x−6103

A = B =10A 10B log(2x−6) = 3 =10log(2x−6) 103

2x−6 = 103

2x−6 = 103 103

2x−6 = 1000

2x = 1006

x = 503

 Example 2.7.15.6

log(50x+25) −log(x) = 2

log( ) = 2
50x+25

x

= = 100
50x+25

x
102

x

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/75447?pdf


2.7.15.21 https://phys.libretexts.org/@go/page/75447

Combine like terms 

Divide by 50 

Checking this answer in the original equation, we can verify there are no domain issues, and this answer is correct.

Solve .

Answer

Move both logs to one side

Use the difference property of logs

Factor

Simplify

Rewrite as an exponential

Add 2 to both sides

Solve .

Solution

Use the sum of logs property on the right 

Expand 

We have a log on both side of the equation this time. Rewriting in exponential form would be tricky, so instead we can
exponentiate both sides.

50x+25 = 100x

25 = 50x

x = =
25

50

1

2

 Exercise 2.7.15.2

log( −4) = 1 +log(x+2)x2

log( −4) = 1 +log(x+2)x2

log( −4)−log(x+2) = 1x2

log( ) = 1
−4x2

x+2

log( ) = 1
(x+2)(x−2)

x+2

log(x−2) = 1

= x−2101

x = 12

 Example 2.7.15.7

ln(x+2) +ln(x+1) = ln(4x+14)

ln(x+2) +ln(x+1) = ln(4x+14)

ln((x+2)(x+1)) = ln(4x+14)

ln( +3x+2) = ln(4x+14)x2
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Use the inverse property of logs 

Move terms to one side 

Factor 

 

Checking our answers, notice that evaluating the original equation at  would result in us evaluating , which is
undefined. That answer is outside the domain of the original equation, so it is an extraneous solution and we discard it. There is
one solution: .

More complex exponential equations can often be solved in more than one way. In the following example, we will solve the same
problem in two ways – one using logarithm properties, and the other using exponential properties.

In 2008, the population of Kenya was approximately 38.8 million, and was growing by 2.64% each year, while the population
of Sudan was approximately 41.3 million and growing by 2.24% each year(World Bank, World Development Indicators, as
reported on http://www.google.com/publicdata, retrieved August 24, 2010). If these trends continue, when will the population
of Kenya match that of Sudan?

Solution

We start by writing an equation for each population in terms of , the number of years after 2008.

To find when the populations will be equal, we can set the equations equal

For our first approach, we take the log of both sides of the equation.

Utilizing the sum property of logs, we can rewrite each side,

Then utilizing the exponent property, we can pull the variables out of the exponent

Moving all the terms involving  to one side of the equation and the rest of the terms to the other side,

Factoring out the  on the left,

Dividing to solve for 

=eln( +3x+2)x2

eln(4x+13)

+3x+2 = 4x+14x2

−x−12 = 0x2

(x+4)(x−3) = 0

x = −4 or x = 3

x = −4 ln(−2)

x = 3

 Example 2.7.15.8a

t

Kenya(t) = 38.8(1 +0.0264)t

Sudan(t) = 41.3(1 +0.0224)t

38.8(1.0264 = 41.3(1.0224)t )t

log(38.8(1.0264 ) = log(41.3(1.0224 ))t )t

log(38.8) +log( ) = log(41.3) +log( )1.0264t 1.0224t

log(38.8) + t log(1.0264) = log(41.3) + t log(1.0224)

t

t log(1.0264) − t log(1.0224) = log(41.3) −log(38.8)

t

t (log(1.0264) −log(1.0224)) = log(41.3) −log(38.8)

t
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It will be 15.991 years until the populations will be equal.

Solve the problem above by rewriting before taking the log.

Solution

Starting at the equation

Divide to move the exponential terms to one side of the equation and the constants to the other side

Using exponent rules to group on the left,

Taking the log of both sides

Utilizing the exponent property on the left,

Dividing gives

While the answer does not immediately appear identical to that produced using the previous method, note that by using the
difference property of logs, the answer could be rewritten:

While both methods work equally well, it often requires fewer steps to utilize algebra before taking logs, rather than relying solely
on log properties.

Tank A contains 10 liters of water, and 35% of the water evaporates each week. Tank B contains 30 liters of water, and 50% of
the water evaporates each week. In how many weeks will the tanks contain the same amount of water?

Answer

Tank A: . Tank B: 

t = ≈ 15.991
log(41.3) −log(38.8)

log(1.0264) −log(1.0224)

 Example 2.7.15.8b

38.8(1.0264 = 41.3(1.0224)t )t

=
1.0264t

1.0224t
41.3

38.8

=( )
1.0264

1.0224

t
41.3

38.8

log( ) = log( )( )
1.0264

1.0224

t 41.3

38.8

t log( ) = log( )
1.0264

1.0224

41.3

38.8

t = ≈ 15.991 years

log( )
41.3

38.8

log( )
1.0264

1.0224

t = =

log( )
41.3

38.8

log( )
1.0264

1.0224

log(41.3) −log(38.8)

log(1.0264) −log(1.0224)

 Exercise 2.7.15.3

A(t) = 10(1 −0.35)t B(t) = 30(1 −0.50)t
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Solving A(t) = B(t),

Using the method from Example 8b

Regroup

Simplify

Take the log of both sides

Use the exponent property of logs

Divide and evaluate

Applications

While we have explored some basic applications of exponential and logarithmic functions, in this section we explore some
important applications in more depth.

Radioactive Decay

In Nuclear Physics we discuss radioactive decay – the idea that radioactive isotopes change over time. One of the common terms
associated with radioactive decay is half-life.

The half-life of a radioactive isotope is the time it takes for half the substance to decay.

Given the basic exponential growth/decay equation , half-life can be found by solving for when half the original amount

remains; by solving , or more simply . Notice how the initial amount is irrelevant when solving for half-life.

Bismuth-210 is an isotope that decays by about 13% each day. What is the half-life of Bismuth-210?

Solution

We were not given a starting quantity, so we could either make up a value or use an unknown constant to represent the starting
amount. To show that starting quantity does not affect the result, let us denote the initial quantity by the constant a. Then the
decay of Bismuth-210 can be described by the equation .

To find the half-life, we want to determine when the remaining quantity is half the original: . Solving,

10(0.65 = 30(0.5)t )t

=
(0.65)t

(0.5)t
30

10

= 3( )
0.65

0.5

t

= 3(1.3)t

log( ) = log(3)(1.3)t

t log(1.3) = log(3)

t = ≈ 4.1874 weeks
log(3)

log(1.3)

 Definition: Half Life

h(t) = abt

a = a(b
1

2
)t =

1

2
bt

 Example 2.7.15.1

Q(d) = a(0.87)d

a
1

2

a = a(0.87
1

2
)d
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Divide by ,

Take the log of both sides

Use the exponent property of logs

Divide to solve for 

This tells us that the half-life of Bismuth-210 is approximately 5 days.

Cesium-137 has a half-life of about 30 years. If you begin with 200 mg of cesium-137, how much will remain after 30 years?
60 years? 90 years?

Solution

Since the half-life is 30 years, after 30 years, half the original amount, 100 mg, will remain.

After 60 years, another 30 years have passed, so during that second 30 years, another half of the substance will decay, leaving
50 mg.

After 90 years, another 30 years have passed, so another half of the substance will decay, leaving 25 mg.

Cesium-137 has a half-life of about 30 years. Find the annual decay rate.

Solution

Since we are looking for an annual decay rate, we will use an equation of the form . We know that after 30
years, half the original amount will remain. Using this information

Dividing by 

Taking the 30  root of both sides

Subtracting one from both sides,

This tells us cesium-137 is decaying at an annual rate of 2.284% per year.

a

=
1

2
0.87d

log( ) = log( )
1

2
0.87d

log( ) = d log(0.87)
1

2

d

d = ≈ 4.977 days

log( )
1

2

log(0.87)

 Example 2.7.15.2

 Example 2.7.15.3

Q(t) = a(1 +r)t

a = a(1 +r
1

2
)30

a

= (1 +r
1

2
)30

th

= 1 +r
1

2

−−
√30

r = −1 ≈ −0.02284
1

2

−−
√30
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Chlorine-36 is eliminated from the body with a biological half-life of 10 days (www.ead.anl.gov/pub/doc/chlorine.pdf). Find
the daily decay rate.

Answer

 or 6.7% is the daily rate of decay.

Carbon-14 is a radioactive isotope that is present in organic materials, and is commonly used for dating historical artifacts.
Carbon-14 has a half-life of 5730 years. If a bone fragment is found that contains 20% of its original carbon-14, how old is the
bone?

Solution

To find how old the bone is, we first will need to find an equation for the decay of the carbon-14. We could either use a
continuous or annual decay formula, but opt to use the continuous decay formula since it is more common in scientific texts.
The half life tells us that after 5730 years, half the original substance remains. Solving for the rate,

Dividing by 

Taking the natural log of both sides

Use the inverse property of logs on the right side

Divide by 5730

Now we know the decay will follow the equation . To find how old the bone fragment is that contains 20%
of the original amount, we solve for  so that .

 Exercise 2.7.15.1

r = −1 ≈ −0.067
1

2

−−
√10

 Example 2.7.15.4

a = a
1

2
er5730

a

=
1

2
er5730

ln( ) = ln( )
1

2
er5730

ln( ) = 5730r
1

2

r = ≈ −0.000121

ln( )
1

2

5730

Q(t) = ae−0.000121t

t Q(t) = 0.20a

0.20a = ae−0.000121t

0.20 = e−0.000121t

ln(0.20) = ln( )e−0.000121t

ln(0.20) = −0.000121t
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The bone fragment is about 13,300 years old.

In Example 2, we learned that Cesium-137 has a half-life of about 30 years. If you begin with 200 mg of cesium-137, will it
take more or less than 230 years until only 1 milligram remains?

Answer

Less than 230 years, 229.3157 to be exact.

Doubling Time

For decaying quantities, we asked how long it takes for half the substance to decay. For growing quantities we might ask how long
it takes for the quantity to double.

The doubling time of a growing quantity is the time it takes for the quantity to double.

Given the basic exponential growth equation , doubling time can be found by solving for when the original quantity has
doubled; by solving , or more simply . Like with decay, the initial amount is irrelevant when solving for
doubling time.

Cancer cells sometimes increase exponentially. If a cancerous growth contained 300 cells last month and 360 cells this month,
how long will it take for the number of cancer cells to double?

Solution

Defining  to be time in months, with  corresponding to this month, we are given two pieces of data: this month, (0, 360),
and last month, (-1, 300).

From this data, we can find an equation for the growth. Using the form , we know immediately a = 360, giving 
. Substituting in (-1, 300),

This gives us the equation 

To find the doubling time, we look for the time when we will have twice the original amount, so when .

 

 

t = ≈ 13301 years
ln(0.20)

−0.000121

 Exercise 2.7.15.2

 Definition: Doubling Time

h(t) = abt

2a = a(b)x 2 = bx

 Example 2.7.15.5

t t = 0

C(t) = abt

C(t) = 360bt

300 = 360b−1

300 =
360

b

b = = 1.2
360

300

C(t) = 360(1.2)t

C(t) = 2a

2a = a(1.2)t

2 = (1.2)t

log(2) = log( )1.2t
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months for the number of cancer cells to double.

Use of a new social networking website has been growing exponentially, with the number of new members doubling every 5
months. If the site currently has 120,000 users and this trend continues, how many users will the site have in 1 year?

Solution

We can use the doubling time to find a function that models the number of site users, and then use that equation to answer the
question. While we could use an arbitrary a as we have before for the initial amount, in this case, we know the initial amount
was 120,000.

If we use a continuous growth equation, it would look like , measured in thousands of users after t months.
Based on the doubling time, there would be 240 thousand users after 5 months. This allows us to solve for the continuous
growth rate:

 

 

 

Now that we have an equation, , we can predict the number of users after 12 months:

.

So after 1 year, we would expect the site to have around 633,140 users.

If tuition at a college is increasing by 6.6% each year, how many years will it take for tuition to double?

Answer

Solving , it will take  years, or approximately 11 years, for tuition to double.

Newton’s Law of Cooling

When a hot object is left in surrounding air that is at a lower temperature, the object’s temperature will decrease exponentially,
leveling off towards the surrounding air temperature. This "leveling off" will correspond to a horizontal asymptote in the graph of

log(2) = t log(1.2)

t = ≈ 3.802
log(2)

log(1.2)

 Example 2.7.15.6

N(t) = 120ert

240 = 120er5

2 = er5

ln2 = 5r

r = ≈ 0.1386
ln2

5

N(t) = 120e0.1386t

N(12) = 120 = 633.140 thousand userse0.1386(12)

 Exercise 2.7.15.3

a(1 +0.066 = 2a)t t = ≈ 10.845
log(2)

log(1.066)
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the temperature function. Unless the room temperature is zero, this will correspond to a vertical shift of the generic exponential
decay function.

The temperature of an object, , in surrounding air with temperature  will behave according to the formula

Where

 is time
 is a constant determined by the initial temperature of the object
 is a constant, the continuous rate of cooling of the object

While an equation of the form  could be used, the continuous growth form is more common.

A cheesecake is taken out of the oven with an ideal internal temperature of 165 degrees Fahrenheit, and is placed into a 35
degree refrigerator. After 10 minutes, the cheesecake has cooled to 150 degrees. If you must wait until the cheesecake has
cooled to 70 degrees before you eat it, how long will you have to wait?

Solution

Since the surrounding air temperature in the refrigerator is 35 degrees, the cheesecake’s temperature will decay exponentially
towards 35, following the equation

We know the initial temperature was 165, so . Substituting in these values,

We were given another pair of data, , which we can use to solve for 

 

Together this gives us the equation for cooling:

Now we can solve for the time it will take for the temperature to cool to 70 degrees.

 

 Definition: Newton’s Law of Cooling

T Ts

T (t) = a +ekt Ts (2.7.15.11)

t

a

k

T (t) = a +bt Ts

 Example 2.7.15.7

T (t) = a +35ekt

T (0) = 165

165 = a +35ek0

165 = a+35

a = 130

T (10) = 150 k

150 = 130 +35ek10

115 = 130ek10

=
115

130
e10k

ln( ) = 10k
115

130

k = = −0.0123

ln( )
115

130

10

T (t) = 130 +35e−0.0123t

70 = 130 +35e−0.0123t

35 = 130e−0.0123t
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It will take about 107 minutes, or one hour and 47 minutes, for the cheesecake to cool. Of course, if you like your cheesecake
served chilled, you’d have to wait a bit longer.

A pitcher of water at 40 degrees Fahrenheit is placed into a 70 degree room. One hour later the temperature has risen to 45
degrees. How long will it take for the temperature to rise to 60 degrees?

Answer

. Substituting (0, 40), we find . Substituting (1, 45), we solve

to get

Solving  gives

Logarithmic Scales

For quantities that vary greatly in magnitude, a standard scale of measurement is not always effective, and utilizing logarithms can
make the values more manageable. For example, if the average distances from the sun to the major bodies in our solar system are
listed, you see they vary greatly.

Planet Distance (millions of km)

Mercury 58

Venus 108

Earth 150

Mars 228

Jupiter 779

Saturn 1430

Uranus 2880

Neptune 4500

Placed on a linear scale – one with equally spaced values – these values get bunched up.

=
35

130
e−0.0123t

ln( ) = −0.0123t
35

130

t = ≈ 106.68

ln( )
35

130

−0.0123

 Exercise 2.7.15.4

T (t) = a +70ekt a = −30

45 = −30 +70ek(1)

k = ln( ) = −0.1823
25

30

60 = −30 +70e−0.1823t

t = = 6.026 hours
ln(1/3)

−0.1823
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0 500 1000 1500 2000 2500 3000 3500 4000 4500

However, computing the logarithm of each value and plotting these new values on a number line results in a more manageable
graph, and makes the relative distances more apparent.(It is interesting to note the large gap between Mars and Jupiter on the log
number line. The asteroid belt is located there, which scientists believe is a planet that never formed because of the effects of the
gravity of Jupiter.)

Planet Distance (millions of km) log(distance)

Mercury 58 1.76

Venus 108 2.03

Earth 150 2.18

Mars 228 2.36

Jupiter 779 2.89

Saturn 1430 3.16

Uranus 2880 3.46

Neptune 4500 3.65

Sometimes, as shown above, the scale on a logarithmic number line will show the log values, but more commonly the original
values are listed as powers of 10, as shown below.

Estimate the value of point  on the log scale above

The point  appears to be half way between -2 and -1 in log value, so if  is the value of this point,

Rewriting in exponential form, 

 Example 2.7.15.8

P

P V

log(V ) ≈ −1.5

V ≈ = 0.031610−1.5

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/75447?pdf


2.7.15.32 https://phys.libretexts.org/@go/page/75447

Place the number 6000 on a logarithmic scale.

Solution

Since , this point would belong on the log scale about here:

Plot the data in the table below on a logarithmic scale (From http://www.epd.gov.hk/epd/noise_educ...1/intro_5.html, retrieved
Oct 2, 2010).

Source of Sound/Noise Approximate Sound Pressure in  Pa (micro Pascals)

Launching of the Space Shuttle 2000,000,000

Full Symphony Orchestra 2000,000

Diesel Freight Train at High Speed at 25 m 200,000

Normal Conversation 20,000

Soft Whispering at 2 m in Library 2,000

Unoccupied Broadcast Studio 200

Softest Sound a human can hear 20

Answer

Notice that on the log scale above Example 8, the visual distance on the scale between points  and  and between  and  is the
same. When looking at the values these points correspond to, notice  is ten times the value of , and  is ten times the value of 

. A visual  difference between points corresponds to a relative (ratio) change between the corresponding values.

Logarithms are useful for showing these relative changes. For example, comparing $1,000,000 to $10,000, the first is 100 times
larger than the second.

Likewise, comparing $1000 to $10, the first is 100 times larger than the second.

 Example 2.7.15.9

log(6000) ≈ 3.8

 Exercise 2.7.15.5

μ

A B C D

B A D

C linear

= 100 =
1, 000, 000

10, 000
102

= 100 =
1, 000

10
102
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When one quantity is roughly ten times larger than another, we say it is one order of magnitude larger. In both cases described
above, the first number was two orders of magnitude larger than the second.

Notice that the order of magnitude can be found as the common logarithm of the ratio of the quantities. On the log scale above, B is
one order of magnitude larger than , and  is one order of magnitude larger than .

Given two values  and , to determine how many orders of magnitude  is greater than ,

Difference in orders of magnitude = log(

On the log scale above Example 8, how many orders of magnitude larger is  than ?

Solution

The value  corresponds to 

The value  corresponds to 

The relative change is . The log of this value is 3.

 is three orders of magnitude greater than , which can be seen on the log scale by the visual difference between the points
on the scale.

Using the table from Try it Now #5, what is the difference of order of magnitude between the softest sound a human can hear
and the launching of the space shuttle?

Answer

. The sound pressure in Pa created by launching the space shuttle is 8 orders of magnitude greater than

the sound pressure in Pa created by the softest sound a human ear can hear.

Earthquakes

An example of a logarithmic scale is the Moment Magnitude Scale (MMS) used for earthquakes. This scale is commonly and
mistakenly called the Richter Scale, which was a very similar scale succeeded by the MMS.

For an earthquake with seismic moment , a measurement of earth movement, the MMS value, or magnitude of the
earthquake, is

Where  is a baseline measure for the seismic moment.

If one earthquake has a MMS magnitude of 6.0, and another has a magnitude of 8.0, how much more powerful (in terms of
earth movement) is the second earthquake?

Solution

A D C

 Definition: Orders of magnitude

A B A B

)
A

B

 Example 2.7.15.10

C B

B = 100102

C = 100, 000105

= 1000 = =
100, 000

100

105

102
103

C B

 Exercise 2.7.15.6

=
2 ×109

2 ×101
108 μ

μ

 Moment Magnitude Scale

S

M = log( )
2

3

S

S0
(2.7.15.12)

=S0 1016

 Example 2.7.15.11
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Since the first earthquake has magnitude 6.0, we can find the amount of earth movement for that quake, which we'll denote .
The value of  is not particularity relevant, so we will not replace it with its value.

 

 

 

 

This tells us the first earthquake has about  times more earth movement than the baseline measure.

Doing the same with the second earthquake, , with a magnitude of 8.0,

 

Comparing the earth movement of the second earthquake to the first,

The second value's earth movement is 1000 times as large as the first earthquake.

One earthquake has magnitude of 3.0. If a second earthquake has twice as much earth movement as the first earthquake, find
the magnitude of the second quake.

Solution

Since the first quake has magnitude 3.0,

Solving for ,

 

 

S1

S0

6.0 = log( )
2

3

S1

S0

6.0( = log( )
3

2

S1

S0

9 = log( )
S1

S0

=
S1

S0
109

=S1 109S0

109

S2

8.0 = log( )
2

3

S2

S0

=S2 1012S0

= = = 1000
S2

S1

1012S0

109S0

103

 Example 2.7.15.12

3.0 = log( )
2

3

S

S0

S

3.0 = log( )
3

2

S

S0

4.5 = log( )
S

S0
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Since the second earthquake has twice as much earth movement, for the second quake,

Finding the magnitude,

 

The second earthquake with twice as much earth movement will have a magnitude of about 3.2.

In fact, using log properties, we could show that whenever the earth movement doubles, the magnitude will increase by about
0.201:

 

 

 

This illustrates the most important feature of a log scale: that  the quantity being considered will  to the scale
value, and vice versa.

Key Concepts

Inverse Properties of Logarithms
For  and 

Product Property of Logarithms
If  and , then,

The logarithm of a product is the sum of the logarithms.
Quotient Property of Logarithms

If  and , then,

=104.5 S

S0

S = 104.5S0

S = 2 ⋅ 104.5S0

M = log( )
2

3

2 ⋅ 104.5S0

S0

M = log(2 ⋅ ) ≈ 3.201
2

3
104.5

M = log( ) = log(2 ⋅ )
2

3

2S

S0

2

3

S

S0

M = (log(2) + log( ))
2

3

S

S0

M = log(2) + log( )
2

3

2

3

S

S0

M = 0.201 + log( )
2

3

S

S0

multiplying add

1 = 0 a = 1loga loga

a > 0, x > 0 a ≠ 1

= x = xa xloga loga a
x

M > 0,N > 0, a > 0 a ≠ 1

M ⋅N = M + Nloga loga loga

M > 0,N > 0, a > 0 a ≠ 1

= M − Nloga
M

N
loga loga
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The logarithm of a quotient is the difference of the logarithms.
Power Property of Logarithms

If  and  is any real number then,

The log of a number raised to a power is the product of the power times the log of the number.
Properties of Logarithms Summary 
If  and  is any real number then,

Property Base Base 

Inverse Properties   

Product Property of Logarithms

Quotient Property of Logarithms

Power Property of Logarithms

Table 10.4.1

Change-of-Base Formula 
For any logarithmic bases  and , and ,

Key Concepts
The exponential function  is increasing if  and decreasing if . Its domain is  and its range is 

.
The logarithmic function  is the inverse of . Its domain is  and its range is 
The natural exponential function is  and the natural logarithmic function is 
Given an exponential function or logarithmic function in base , we can make a change of base to convert this function to any
base ,  We typically convert to base .
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M > 0, a > 0, a ≠ 1 p

= p Mloga M
p loga

M > 0, a > 0, a ≠ 1 p

a e

1 = 0loga ln1 = 0

a = 1loga lne = 1

= xa xloga

= xloga a
x

= xelnx

ln = xex

(M ⋅N) = M + Nloga loga loga ln(M ⋅N) = lnM + lnN

= M − Nloga
M

N
loga loga ln = lnM − lnNM

N

= p MlogaM
p loga ln = p lnMM p

a b M > 0

M =loga
Mlogb
alogb

 new base b

M =loga
log M

log a

 new base 10

M =loga
lnM

ln a

 new base e

y = bx b > 1 0 < b < 1 (−∞, ∞)
(0, ∞)

y = (x)logb y = bx (0, ∞) (−∞, ∞).
y = ex y = lnx = x.loge

a

b > 0 b ≠ 1. e
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