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17.3: Two Masses, Two Springs and a Brick Wall
The system is illustrated in Figure XVII.2, first in its equilibrium (unstretched) position, and then at some instant when it is not in
equilibrium and the springs are stretched. You can imagine that the masses are resting upon and can slide upon a smooth, horizontal
table. I could also have them hanging under gravity, but this would introduce a distracting complication without illustrating any
further principles. I also want to assume that all the motion is linear, so we could have them sliding on a smooth horizontal rail, or
have them confined in the inside of a smooth, fixed drinking-straw. For the present, I do not want the system to bend.

The displacements from the equilibrium positions are  and , so that the two springs are stretched by  and 
respectively. The velocities of the two masses are  and . We now start the lagrangian calculation in the usual manner:

Apply Lagrange’s equation to each coordinate in turn, to obtain the following equations of motion:

and

Now we seek solutions in which the system is vibrating in simple harmonic motion at angular frequency ; that is, we seek
solutions of the form  and .

When we substitute these in Equations  and , we obtain

an\

Either of these gives us the displacement ratio  (and hence amplitude ratio). The first gives us

and the second gives us

These are equal, and, by equating the right hand sides, we obtain the following equation for the angular frequencies of the normal
modes:

This equation can also be derived by noting, from the theory of equations, that Equations  and  are consistent only if
the determinant of the coefficients is zero.

The meaning of these equations and of the expression “normal modes” can perhaps be best illustrated with a numerical example.
Let us suppose, for example, that  and  and . In that case Equation  is 
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. This is a quartic equation in , but it is also a quadratic equation in , and there are just two positive
solutions for . These are  (slow, low frequency) and 1 (fast, high frequency). If you put the low frequency  into

either of Equations  or  (or in both, to check for arithmetic or algebraic mistakes) you find a displacement ratio of
+1.5; but if you put the high frequency  into either equation, you find a displacement ratio of -1.0. The first of these normal
modes is a low-frequency slow oscillation in which the two masses oscillate in phase, with  having an amplitude 50% larger
than . The second normal mode is a high-frequency fast oscillation in which the two masses oscillate out of phase but with
equal amplitudes.

So, how does the system actually oscillate? This depends on the initial conditions. For example, if you displace the first mass by
one inch to the right and the second mass by 1.5 inches to the right (this implies stretching the first spring by 1 inch and the second
by 0.5 inches), and then let go, the system will oscillate in the slow, in-phase mode. But if you start by displacing the first mass by
one inch to the right and the second mass by one inch to the left (this implies stretching the first spring by 1 inch and compressing
the second by 2 inches), the system will oscillate in the fast, out-of-phase mode. For other initial conditions, the system will
oscillate in a linear combination of the normal modes.

Thus, m  might oscillate with an amplitude  in the slow mode, and an amplitude  in the fast mode:

in which case the oscillation of  is given by

In our example,  and  are  and 1 respectively.

Let’s suppose that the initial conditions are that, at ,  and  are both zero. This means that  and  are both zero or 
(I’ll take them to be zero), so that

and

Suppose further that at ,  and  are both +1, which means that we start by stretching both springs equally. Equations 
 and  then become  and . That is,  and . I’ll leave you to draw

graphs of  and  versus time.

Here’s an exercise that might be useful if, perhaps, you wanted to construct a real system with two equal masses  and two equal
springs, each of constant , to demonstrate the vibrations. Show that in that case, the angular frequency (which is, of course, 
times the actual frequency) of the slow, in phase, mode is

with a displacement ratio ;

and the angular frequency of the fast, out of phase, mode is

with a displacement ratio, .

Knowing these displacements ratios will enable you to start with the appropriate initial conditions for each normal mode.

If you were to start at  = 0 with a displacements  = 1 and  = 2 which isn’t right for either normal mode, you can show that the
subsequent displacements would be

.
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Although at first it looks like fast in-phase mode for both of them, you can see the influence of the slow mode, which has about 2.6
times the period of the last mode, in the slow amplitude modulation. If you look carefully at the modulation amplitudes of both
displacements, you will see that the amplitude of the  displacement is out of phase with the amplitude of the  displacement.
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