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4.8: Force-free Motion of a Rigid Symmetric Top
Notation:

, ,  are the principal moments of inertia.  is the unique moment. If it is the largest of the three, the body is an oblate
symmetric top; if it is the smallest, it is a prolate spherical top.

, ,  are the corresponding body-fixed principal axes.
, ,  are the components of the angular velocity vector  with respect to the principal axes.

In the analysis that follows, we are going to have to think about three vectors. There will be the angular momentum vector ,
which, in the absence of external torques, is fixed in magnitude and in the direction in laboratory space. There will be the direction
of the axis of symmetry, the  axis, which is fixed in the body, but not necessarily in space, unless the body happens to be
rotating about its axis of symmetry; we’ll denote a unit vector in this direction by . And there will be the instantaneous angular
velocity vector  which is neither space- nor body-fixed.

What we are going to find is the following. We shall find that  precesses in the body about the body-fixed symmetry axis in a
cone called the body cone. The angle between  and  is constant (we’ll be calling this angle ), and the magnitude  of  of is
constant. We shall find that the sense of the precession is the same as the sense of the spin if the body is oblate, but opposite if it is
prolate. The direction of the symmetry axis, however, is not fixed in space, but it precesses about the space-fixed angular
momentum vector  in another cone. This cone is narrower than the body cone if the body is oblate, but broader than the body
cone if the body is prolate. The net result of these two precessional motions is that precesses  in space about the space-fixed
angular momentum vector in a cone called the space cone. For a prolate top, the semi vertical angle of the space cone can be
anything from 0° to 90°; for an oblate top, however, the semi vertical angle of the space cone cannot exceed 19° 28' . That’s quite a
lot to take in in one breath!

We can start with Euler’s equations of motion for force-free rotation of a symmetric top:

From the first of these we obtain the result

For brevity, I am going to let

although in a moment  will have a physical meaning.

Equations  and  become:

and

Eliminate  from these to obtain

This is the Equation for simple harmonic motion and its solution is

in which  and , the two constants of integration, whose values depend on the initial conditions in the usual fashion, are the
amplitude and initial phase angle. On combining this with Equation , we obtain
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From these we see that , which is the magnitude of the component of  in the -plane, is constant, equal to ;
and since  is also constant, it follows that , which is the magnitude of , is also constant. The cosine of the
angle  between and  is , and its sine is , so that  is constant. Equations 
and  tell us, then, that the vector  is precessing around the symmetry axis at an angular speed . Making use of Equation 

, we find that

If we take the direction of the  axis to be the direction of the component of  along the symmetry axis, then  is in the same
direction as  if  (that is, if the top is oblate) and it is in the opposite direction if the top is prolate. The situation for oblate
and prolate tops is shown in Figure IV.11.

We have just dealt with how the instantaneous axis of rotation precesses about the body-fixed symmetry axis, describing the body
cone of semi vertical angle .

Now we are going to consider the precession of the body-fixed symmetry axis about the space-fixed angular momentum vector . I
am going to make use of the idea of Eulerian angles for expressing the orientation of one three-dimensional set of axes with respect
to another. If you are not already familiar with Eulerian angles or would like a refresher, you can go to to Chapter 3 of Celestial
Mechanics especially Section 3.7.

Recall that we are using  for body-fixed coordinates, referred to the principal axes. I shall use  for space-fixed
coordinates, and there is no loss of generality if I choose the  axis to coincide with the angular momentum vector . Let me try
to draw the situation in Figure IV.12a. The axes  are the space-fixed axes. The axes  are the body-fixed principal
axes. The angular momentum vector  is directed along the axis . The symmetry axis of the body is directed along the axis .
The Eulerian angles of the body-fixed axes relative to the space fixed axes are ( , , ).

Recall, with the aid of Figure IV.12b, how these Euler angles are formed:

First, a rotation by  about . Second, a rotation by  about the dashed line  to form an intermediate set of axes  .
Third, a rotation by  about  to form the body- fixed principal axes .

Spend a little time trying to visualize these three sets of axes. Please also convince yourself, from the way the Euler angles were
formed through three rotations, that the vector  is in the  plane and has no  component. It is also in the  plane and has
no  component.

You will then agree that

Now if , then  is also zero, which means that , like , is in the  plane.

We have seen that  makes an angle  with the symmetry axis , where  is given by Equation .
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Figure : Paste Caption Here

I’ll now add  to the drawing to make Figure IV.13. Like , it is in the y'z' plane and has no x' component. I haven’t marked in the
angle . I leave it to your imagination. It is the angle between  and . You should easily agree that

From these, together with  and  we obtain

For an oblate symmetric top, , .
For a prolate symmetric top, , .

Now  can be written as the vector sum of the rates of change of the three Euler angles:

The components of  and  along  are each zero, and therefore the component of  along  is equal to the component of 
along Oy' .
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In summary, then:

1. The instantaneous axis of rotation, which makes an angle  with the symmetry axis, precesses around it at angular speed

which is in the same sense as  if the top is oblate and opposite if it is prolate.
2. The symmetry axis makes an angle  with the space-fixed angular momentum vector , where

For an oblate top,  < . For a prolate top,  > .
3. The speed of precession of the symmetry axis about  is

or, by elimination of  between  and ,

The net result of this is that  preceses about  at a rate  in the space cone, which has a semi-vertical angle  −  for an oblate
rotator, and  −  for a prolate rotator. The space cone is fixed in space, while the body cone rolls around it, always in contact, 
being a mutual generator of both cones. If the rotator is oblate, the space cone is smaller than the body cone and is inside it. If the
rotator is prolate, the body cone is outside the space cone and can be larger or smaller than it.

Write

for the ratio of the principal moments of inertia. Note that for a pencil, ; for a sphere, ; for a plane disc or any regular
plane lamina, . (The last of these follows from the perpendicular axes theorem.) The range of , then, is from 0 to 2, 0 to 1
being prolate, 1 to 2 being oblate.

Equations  and  can be written

and

Figures IV.15 and IV.16 show, for an oblate and a prolate rotator respectively, the instantaneouss rotation vector  precessing
around the body-fixed symmetry axis at a rate  in the body cone of semi vertical angle ; the symmetry axis precessing about the
space-fixed angular momentum vector  at a rate  in a cone of semi vertical angle  (which is less than  for an oblate rotator,
and greater than  for a prolate rotator; and consequently the instantaneous rotation vector  precessing around the space-fixed
angular momentum vector  at a rate  in the space cone of semi vertical angle  −  (oblate rotator) or  −  (prolate rotator).
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One can see from figures IV.15 and 16 that the angle between  and  is limited for an oblate rotator, but it can be as large as 90°
for a prolate rotator. The angle between  and  is  −  (which is negative for an oblate rotator). We have

By calculus this reaches a maximum value of  for 

For a rod or pencil (prolate), in which , the angle between  and  can be as large as 90°. Recalling exactly what are meant
by the vectors  and , the reader should try now and imagine in his or her mind’s eye a pencil rotating so that  and  are at
right angles. The spin vector  is along the length of the pencil and the angular momentum vector  is at right angles to the length
of the pencil.

For an oblate rotator, the angle between  and  is limited. The most oblate rotator is a flat disc or any regular flat lamina. The
parallel axis theorem shows that for such a body, . The greatest angle between  and  for a disc occurs when 

= 54° 44'),and then ,  =19° 28'.

In the following figures I illustrate some of these results graphically. The ratio  goes from 0 for a pencil through 1 for a sphere to

2 for a disc.
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Our planet Earth is approximately an oblate spheroid, its dynamical ellipticity  being about 3.285 × 10 . It is not

rotating exactly abut its symmetry axis; the angle  between  and the symmetry axis being about one fifth of an arcsecond, which
is about six metres on the surface. The rotation period is one sidereal day (which is a few minutes shorter than 24 solar hours.)
Equation  tells us that the spin axis precesses about the symmetry axis in a period of about 304 days, all within the area of a
tennis court. The actual motion is a little more complicated than this. The period is closer to 432 days because of the nonrigidity of
Earth, and superimposed on this is an annual component caused by the annual movement of air masses. This precessional motion of
a symmetric body spinning freely about an axis inclined to the symmetry axis gives rise to variations of latitude of amplitude about
a fifth of an arcsecond. It is not to be confused with the 26,000 year period of the precession of the equinoxes, which is caused by
external torques from the Moon and the Sun.
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