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22.8: Appendix B
Solutions to Miscellaneous Problems

By proportions,  and  and therefore .

Therefore by Pythagoras:

.

Everything but  is known in this equation, which can therefore be solved for . There are several ways of solving it; here’s a
suggestion. If we put in the numbers, the equation becomes

Put , and the equation becomes

This can be written , where  and  are obvious functions of . Differentiation with respect to 
gives  and Newton-Raphson iteration  soon gives , from which it is then found that 

= 6.326 182 m.

In the corotating frame the bob is in equilibrium under the action of three forces – its weight, the tension in the string and the
centrifugal force. (If you do not like rotating reference frames and centrifugal force, it will be easy for you to do it “properly”.)

 Exercise 22.8.1
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Resolve the forces perpendicular to the string:  and the problem is finished.

Raising or lowering the board does not apply any torques to the system, so the angular momentum  is conserved. That is,

We also have that

i. Eliminate w from these equations. This gives:

which is constant.

ii. Eliminate  from equations ( ) and ( ). This gives:

which is constant.

iii. Eliminate  from equations ( ) and ( ). This gives:

(Check the dimensions of all the equations.) Then we can get  from equation ( ) and hence

,

which is constant.

i.

Although we are asked to plot  vertically versus  horizontally, it is easier, when working out numerical values, to calculate 
as a function of . That is,

.

(The number in the numerator is the cube root of 0.023675.)

For  = 40 cm = 0.4 m, the semivertical angle is given by

.

m sinα . cosα  =  mg sinαl0 Ω2

 Exercise 22.8.3a

L

L = m θ.ω is constant.l2 sin2 (1)

g  =  l cosθ.ω. (2)

θ tanθ =l3 sin3 L2

gm2
(3)

l 1 2

θ = ,ω3 cot2 mg2

L
(4)

θ 1 2

(ω − ) = .ω3 l2
L

m
g2 (5)

L
m

1

(ω −Ω α) =ω3 l2 l20 sin2 g2
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The solution to this is

.

(See Section 1.4 of Celestial Mechanics if you need to know how to solve the equation .)

ii.

With the given data, this is .

iii. .

That is,  where, with the given initial data,

 and .

Although we are asked to plot  vertically versus  horizontally, it is easier, when working out numerical values, to calculate l
as a function of . That is,

.

To solve the above equation for  might be slightly easier with the substitution of  for :

.

With  = 0.6 m, this gives = 0.226121 rad  s, and hence  = 4.422 rad s . As in part (b) i, it is necessary to know how to
solve the equation . See Section 1.4 of Celestial Mechanics if you need to know how.

θ =  45∘ 31′

f(x) = 0

θ = αω3 cot2 Ω3 cot2

= 199.385 θω3 tan2

(ω −Ω α) =   (Ω   − Ω α) = αω3 l2 l20 sin2 Ω3 l20 l20 sin2 Ω4l20 cos2

(ω   −a) =  ω3 l2 g2
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There are no horizontal forces, because the table is smooth. Therefore the centre of mass of the rod falls vertically.centre of
mass of the rod falls vertically.

From energy considerations

But  and therefore .

Initially .

Also, since  and , we obtain

and

Of course  and  increase monotonically with ; but  starts and finishes at zero, and must go through a maximum. With 
, Equation ( ) can be written

and by differentiating  with respect to , we see that  is greatest at an angle  given by

the solution of which is .

If the length of the rod is 1 m (  = 0.5 m) and  = 1 m s , Equation  becomes

 Exercise 22.8.4

m   +   ( m )   +  mgy  = constant.
1

2
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and the two solutions are  and .

The reader who has done all the problems so far will be aware of the importance of being able instantly to solve the equation 
. If you have not already done so, you should write a computer or calculator program that enables you to do this

instantly and at a moment’s notice. See Section 1.4 of Celestial Mechanics if you need to know how.

If you want to find the normal reaction  of the table on the lower end of the rod, you could maybe start with the vertical
equation of motion . Differentiate Equation ( ):  whatever, and the use equation

 again for . This looks like rather heavy and uninteresting algebra to me, so I shan’t pursue it. There may be a better way...

In the figure below I have marked in red the forces on the rod, namely its weight  and the horizontal and vertical
components  and  of the reaction of the hinge on the rod. I have also marked, in green, the transverse and radial
components of the acceleration of the centre of mass. The transverse component is  and the radial component is the

centripetal acceleration .centre of mass. The transverse component is  and the radial component is the centripetal

acceleration .

From consideration of the moment of the force  about the lower end of the rod, it is evident that the angular acceleration is

and by writing  as  and integrating (with initial conditions ), or from energy considerations, we obtain the
angular speed:

The horizontal and vertical equations of motion are:

and

(As ever, check the dimensions - and count the dots!)

After substitution for  and  we find

and

θ  =    17∘ 15′
– –––––––––––– –––––––––––

 80∘ 52′
– ––––––– ––––––

f(x) = 0

N

m = N −mgÿ 4 2 =ẏ ÿ

4 ẏ
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The results follow immediately.

Call the length of the rod . Initially the height above the table of its centre of mass is °, and its gravitational potential
energy is . When it hits the table at angular speed w, its kinetic energy is .
Therefore,

.

To find the time taken, you can use Equation 9.2.10:

Here,  and therefore

The magnitude of the quantity before the integral sign is 0.184428 s. To find the value of the integral requires either that you be
an expert in elliptic integrals or (more likely and more useful) that you know how to integrate numerically (see Celestial
Mechanics 1.2.) I make the value of the integral 2.187314, so that the time taken is 0.4034 seconds. When integrating, note that
the value of the integrand is infinite at the lower limit. How to deal with this difficulty is dealt with in Celestial Mechanics 1.2.
It cannot be glossed over.

Here is the diagram. The forces are the weight  of the rod, and the force of the table on the rod. However, I have resolved
the latter into two components – the normal reaction  of the table on the rod, and the frictional force , which may be either
to the left or the right, depending on whether rod is tending to slip towards the right or the left. The magnitude of  is less than

 as long as the rod is not jus about the slip. When the rod is just about to slip,  being the coefficient of limiting
static friction.

Just as in Problem 5, the equations of motion, as long as the rod does not slip, are

and

Y   =   mg(1 −3 cosθ .
1

4
)2 (6)

 Exercise 22.8.6
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The figure below shows  as a function of . One sees that, as the rod falls over,  increases, and, as soon as it attains a
value of , the rod will slip. We see, however, that  reaches a maximum value, and by calculus we can determine that it

reaches a maximum value of  when . If  < 0.3706, the bottom of the rod will slip
before . If, however,  > 0.3706, the rod will not have slipped by the time , and it is safe for a while as 

 starts to decrease. When  reaches , the frictional force changes sign and thereafter acts to the left. (The
frictional force of the table on the rod acts to the left; the frictional force of the rod on the table acts to the right.) We know by
now (since the rod survived slipping before  that the magnitude of  can be at least as large

as 0.3706, and it does not reach this until . Therefore, if the rod hasn’t slipped by  it won’t slip before 
. But after that it is in danger again of slipping.  becomes infinite ( ) when , so it

will certainly slip (to the right) before then.

If , the rod will slip to the left when

.

If , the rod will slip to the right when

.

Again, it is very necessary that you prepare for yourself a program that will instantly solve the equation .
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 Exercise 22.8.8
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Let the length of the ladder be . By geometry, the distance OC remains equal to  throughout the motion; therefore C
describes a circle of radius , centre O. I have marked in, in green, the radial and transverse components of the acceleration of

C, namely  and . The angular speed of the ladder is  and the linear speed of the centre of mass C is . I have also
marked, in red, the three forces acting on the ladder, namely its weight and the reactions of the floor and the wall on the

ladder.centre O. I have marked in, in green, the radial and transverse components of the acceleration of C, namely  and .
The angular speed of the ladder is  and the linear speed of the centre of mass C is . I have also marked, in red, the three
forces acting on the ladder, namely its weight and the reactions of the floor and the wall on the ladder.

The angular speed  can be obtained from energy considerations. That is, the loss of potential energy in going from angle a to
the vertical to angle  is equal to the gain in translational and rotational kinetic energies:

.

The angular acceleration  can be obtained from the following equation:

The derivation of Equation ( ) raises some points of interest, and I discuss it in an Appendix at the end of the problem.

The vertical and horizontal equations of motion are:

and

although we need only the first of these, because we wish to find out when .

On substitution for  and  we find that

and
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We need only the first of these to see that  becomes zero (and hence the upper end loses contact with the wall) when 
.

Appendix: Derivation of equation (2).

In my original posting of this solution I had derived Equation ( ) by considering that the total moment of all forces about  is 
, and the rotational inertia with respect to  is . I then equated  to . I am indebted to correspondent

Amin Rezaee Zadeh for pointing out a flaw in this argument, and for supplying a correct derivation. The flaw is that I am applying
the equation  to a moving point . In Section 3.12 of Chapter 3 of these notes it is pointed out that  can be applied to a
moving point only if the moving point satisfies one or more of three conditions, and it is evident in this problem that  satisfies
none of these conditions. I present Mr Rezaee’s correct derivation of Equation (  ) below.

I shall be making use of Equations  and :

I shall also be making use of the notation used in Section 3.12, and I reproduce here Figure III.7 from that Section, and I also draw
the relevant vectors appropriate to this ladder problem.

In the figure below, I have indicated an elemental portion  of the ladder at a distance  from the upper end of the ladder. Its mass
is evidently . I have drawn the position vectors  and  of  and of . This notation corresponds to the same
notation used in Section 3.12. From the geometry of the figure, we can determine that

  =   mg(1 −6 cosα cosθ+9 θ)N1
1

4
cos2 (6)

N2

cosθ = cosα2
3

2 Q

mgl sinθ Q m4
3

l2 mgl sinθ m4
3

l2 θ̈

τ = L̇ Q τ = L̇

Q

2

3.12.1 3.12.2

  =     +  M   ×   .L̇Q τQ r′
q r̈Q (3.12.1)

  =  Σ( − ) ×[ ( − )].LQ ri rQ mi vi vQ (3.12.2)

ds s

dm = mds

2l
ri rO ds Q

  =  s sinθi  +  (2l−s) cosθjri (A1)
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and

where  and  are the unit vectors in the  and  directions respectively.

On differentiation with respect to time, we find the following expressions for the velocities of the element  and the point , in
which I again retain the notation used in Section 3.12:

and

On making use of Equation , we obtain for the angular momentum of the element  with respect to :

The instantaneous angular momentum of the entire ladder about  is therefore

On substitution of Equations ( ) – ( ) into equation ( ) and a modest amount of algebra, we obtain

where  is the unit vector in the direction. (The direction is out of the plane of the “paper”, and therefore  is into the
plane of the “paper”. It is worth spending a moment or two trying to imagine this. The ladder is rotating counterclockwise about C,
while C and Q are moving in clockwise trajectories. It may not be immediately obvious to decide whether one would expect  to
be directed into or out of the plane of the “paper”. Equation ( ) answers this question.)

We now make use of Equation :

Let us find expressions for the four vector quantities in this equation.

By differentiation of Equation ( ) with respect to time, we obtain

  =  2l sinθi  +  2l cosθj,rQ (A2)

i j x− y−

ds Q

  =  s cosθi  −  (2l−s) sinθjvi θ̇ θ̇ (A3)

  =  2l cosθi  −  2l sinθjvQ θ̇ θ̇ (A4)

3.12.2 ds Q

d   =   ( − ) ×[( − )]ds.LQ

m

2l
ri rQ vi vQ (A5)

Q

  =   ( − ) ×[( − )]ds.LQ

m

2l
∫

2l

0
ri rQ vi vQ (A6)

A1 A4 A6

  =   s(s−2l)ds  =   − m k,LQ

mθk

2l
∫

2l

0

2

3
l2 θ̇ (A7)

k z− z− LQ

LQ

A7

3.12.1

  =     +  m × .L̇Q τQ r′
Q r̈Q (A8)

A7

  =   − m k.L̇Q

2

3
l2 θ̈ (A9)
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The torque about Q is

We can see from the geometry of the figure (see especially the second of our figures, in which we see that  and  are the same in
magnitude and direction) that

Finally, by differentiation of Equation ( ) (in which ), we obtain

Substitution of Equations ( ) to ( ) into Equation ( ) gives, after some algebra,

This is Equation ( ), quod erat demonstrandum.

It will, I think, be agreed that the point O remains fixed in space as long as the semicylinder remains in contact with wall and
floor. Therefore the centre of mass C moves in a circle around O. We’ll call the radius of the circle, which is the distance
between O and C, , which, for a semicylinder, equals centre of mass C moves in a circle around O. We’ll call the radius of the
circle, which is the distance between O and C, , which, for a semicylinder, equals  (see Chapter 1), where  is the radius

of the semicylinder. I have marked, in red, the three forces on the semicylinder, and also, in green, the radial and transverse
components of the acceleration.

The angular speed  can be obtained from energy considerations. The gain in kinetic energy in going from rest to an angular

speed  is  and the gain in potential energy when the centre of mass drops through a vertical distance  is 
. Here  is the radius of gyration about O, which, for a semicylinder, is given by .

[I have left  and  as they are in the equations, so that the analysis could easily be adapted, if needed, for a hollow
semicylinder, or a solid hemisphere, or a hollow hemisphere. From Chapters 1 and 2 we recall:

Solid semicylinder:

Hollow semicylinder:

Solid hemisphere:

  =  mgl sinθkτQ (A10)

r′
Q r̄̄̄

  =  l sinθi  +  l cosθj.r′
Q

(A11)

A4

  =  2l[( cosθ− sinθ)i  −  ( sinθ− cosθ)j].r̈Q θ̈ θ̇
2

θ̈ θ̇
2

(A12)

A9 A12 A8

mgl sinθ  =   m .
4

3
l2 θ̈ (A13)

2

 Exercise 22.8.9
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  =  b2

k2

32

9π2

b = 2a
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Hollow hemisphere:

On equating the gain in kinetic energy to the loss in potential energy, we obtain

The angular acceleration  can be obtained from applying  about O:

,

from which

The horizontal and vertical equations of motion are

and

We do not really need Equation ( ), because we are trying to determine when .

On substitution from Equations ( ) and ( ), Equation ( ) becomes

This is zero when  (which was the initial condition) or when , at which point contact with the wall is lost,
which it was required to show.

At this instant, the rotational velocity is  counterclockwise.

and the linear velocity of C is  horizontally to the right.

The rotational kinetic energy is  where , and  is the rotational inertia about the centre of masscentre of

mass, which is .

.

The translational kinetic energy is  where .

The sum of these is , which is just equal to the loss of the original potential energy, which serves as a check on the
correctness of our algebra.

There are now no horizontal forces, so the horizontal component of the velocity of C remains constant. The semicylinder
continues to rotate, however, until the rotational kinetic energy is converted to potential energy and C rises to its maximum
height. If the base then makes an angle  with the vertical, the gain in potential energy is , and equating this to the
rotational kinetic energy gives

.

This gives the following results:

Solid semicylinder:

Hollow semicylinder:
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1
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3
a2   =  b2
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3
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√
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√
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=Krot
mbg( − )k2 b2

k2

m1
2

v2 v  =  
2bg

k2

−−−
√

  =  Ktr
m gb3

k2

mbg

ϕ mbg sinϕ

sinϕ  =  1  −   b
2

k2

ϕ  =    39∘ 46′

ϕ  =    36∘ 30′
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Solid hemisphere:

Hollow hemisphere:

Add text here. For the automatic number to work, you need to add the "AutoNum" template (preferably at the end) to the page.

It is well known that if  the particle will slide down the plane unless helped by an extra force. I have drawn the
three forces acting on the particle. Its weight . The reaction  of the plane on the particle; if the particle is in limiting static
equilibrium, this reaction will make an angle  (“the angle of friction”) with the plane such that . It therefore
makes an angle  with the vertical. Finally, the additional force  needed; we do not initially know the direction of this
force.

When three (or more) coplanar forces are in equilibrium and are drawn head-to-tail, they form a closed triangle (polygon). I
draw the triangle of forces below.

It will be clear from the triangle that  is least when the angle between  and  is :

ϕ  =    40∘ 25′

ϕ  =    38∘ 41′

 Exercise 22.8.10

α  >   μtan−1

mg R

λ tanλ  =  μ
α−θ P

P P R 90∘
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The least value of  is therefore . But  and therefore  and 

.

and  then makes an angle \( \lambda\) with the plane.

You may, if you wish, go further, and show that when  makes an angle  with the plane, it must have magnitude

.

You can then differentiate this with respect to  (you need only differentiate the denominator) and show that this is a minimum
when . That is just a harder way of finding what we already found by using the triangle of forces.

For  and ,  varies with  like this:

This goes through a minimum of  at .

_________________________

Add text here. For the automatic number to work, you need to add the "AutoNum" template (preferably at the end) to the page.

P mg(sinα cosλ  −   cosα sinλ) tanλ = μ sinλ =
μ

1+μ2√

cosλ = 1
1+μ2√

=Pmin
mg(sinα−μ cos α)

1−μ2√

P

P β

P = mg
sinα−μ cos α

μ sin β +  cos β

β

β  =  λ

α  =  70∘ μ  =  0.8 P β

= 0.520mgPmin β  =   0.8 = .7tan−1 38∘

 Exercise 22.8.11
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As the cylinder rolls down the plane, the wedge, because its base is smooth, will slide towards the left. Since there are no
external horizontal forces on the system, the centre of mass of the system will not move horizontally (or, rather, it won’t
accelerate horizontally.)centre of mass of the system will not move horizontally (or, rather, it won’t accelerate horizontally.)

As usual, we draw a large diagram, using a ruler , and we mark in the forces in red and the accelerations in green, after which
we’ll apply  to the cylinder, or to the wedge, or to the system as a whole, in two directions. It should be easy and
straightforward.

I have drawn the linear acceleration  of the cylinder down the slope, and its angular acceleration . I have drawn the linear
acceleration  of the wedge, which is also shared with the cylinder. I have drawn the gravitational force  on the cylinder.
There is one more force on the cylinder, namely the reaction of the wedge on the cylinder. But I’m not sure in which direction
to draw it. Is it normal to the plane? That would mean there is no frictional force between the cylinder and the plane. Is that
correct (remembering that both the cylinder and the wedge are accelerating)? Of course I could calculate the moment of the
force  about the point of contact of the cylinder with the plane, and then I wouldn’t need to concern myself with any forces
at that point of contact.

But then that point of contact is not fixed. Oh, dear, I’m getting rather muddled and unsure of myself.

This problem, in fact, is ideally suited to a lagrangian rather than a newtonian treatment, and that is what we shall do. Lagrange
proudly asserted that it was not necessary to draw any diagrams in mechanics, because it could all be done analytically. We are
not quite so talented as Lagrange, however, so we still need a large diagram drawn with a ruler. But, instead of marking in the
forces and accelerations in red and green, we mark in the velocities in blue.

No frictional or other nonconservative forces do any work, so we can use Lagrange’s equations of motion for a conservative

holonomic system; .

The speed of the wedge is  and the speed of the centre of mass of the cylinder is centre of mass of the cylinder is 
 and the angular speed of the cylinder is .

The kinetic energy of the system is

,

F   =  ma

s̈ θ̈

ẍ mg

mg

( )−( ) = −( )d

dt

∂T
∂q̇

∂T
∂q

∂V
∂q

ẋ

+ −2 cosαṡ2 ẋ2 ṡẋ
− −−−−−−−−−−−−−−

√ ṡ

a

T   =   m( + −2 cosα)  +   (m )( )   +   M1
2

ṡ2 ẋ2 ṡẋ 1
2

k2 ṡ
a

1
2

ẋ2
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or

,

and the potential energy is

Application of Lagrange’s equation to the coordinate  gives us

.

and application of Lagrange’s equation to the coordinate  gives us

Elimination of  from these two equations gives us

You can also easily find an expression for  is you wish.

T   =   m(1 + )   −  m cosα  +   (m  +  M)1
2

k2

a2
ṡ2 ṡẋ 1

2
ẋ2

V   =  constant  −  mgs sinα

x

(1 + ) = cosα  +  g sinαk2

a2
s̈ ẍ

s

m cosα  =  (m+M)s̈ ẍ

s̈

=ẍ
mg sinα cos α

(m+M)(1+ )−m α
k2

a2
cos2

s̈

 Exercise 22.8.12
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There is no acceleration normal to the plane, and therefore . The frictional force  acts along the tangent to
the path and is equal to , or , where  is the coefficient of moving friction. We are told to ignore the difference
between the coefficients of moving and limiting static friction. Since the particle was originally at rest in limiting static
friction, we must have . Therefore . The tangential equation of motion is

 whatever the component of  is in the tangential direction in the sloping plane.

The component of  down the plane would be (look at the left hand drawing) , and so its tangential component
(look at the right hand drawing) is . So we have, for the tangential equation of motion,

,

or

.

We are seeking a relation between  and , so, in the now familiar fashion, we write  for , so the tangential equation of
motion is

We also need the equation of motion normal to the trajectory. The component of  in that direction is , and so
the normal equation of motion is

.

Here  is the radius of curvature of the path, which is the reciprocal of the curvature . The normal equation of motion is
therefore

Divide Equation ( ) by Equation ( ) to eliminate  and thus get a desired differential equation between  and :

This is easily integrated; a convenient (not the only) way is to multiply top and bottom by . In any case we soon
arrive at

and with the initial condition  when , this becomes

In the limit, as . The particle is then moving at constant velocity and is in equilibrium under the forces
acting upon it just when it was initially at rest.

13.

 = mass of complete sphere of radius .

 = mass of missing inner sphere of radius .

 = mass of given hollow sphere.

We have  and  and therefore

 and .

N   =  mg cosα F

μN μmg cosα μ

μ  =   tanα F   =  mg sinα

m   =   −F  +s̈ mg

mg mg sinα
mg sinα sinψ

m = −mg sinα  +  mg sinα sinψs̈

= −g sinα(1 −sinψ)s̈

V ψ V dV

ds
s̈

V = −g sinα(1 −sinψ).
dV

ds
(1)

mg mg sinα cosψ

  =  mg sinα cosψmV 2

ρ

ρ ds

dψ

  =  g sinα cosψ.V 2 dψ

ds
(2)

1 2 s V ψ

  =   − .
1

V

dV

dψ

(1 −sinψ)

cosψ
(3)

1  +   sinψ

lnV   =   −ln(1 +sinψ)  +  constant, (4)

V   =  V0 ψ  =  0

.V =
V0

1 +sinψ
– –––––––––––––– –––––––––––––

(5)

ψ → ,  V →90∘ 1
2
V0

 Exercise 22.8.13

M1 a

M1 xa

M

M   =   −M2 M1 =
M2

M1
x3

  =  M1
M

1−x3   =  M2
Mx3

1−x3
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Also .

Hence .

If , as expected. If , you may have to use de l’Hôpital’s rule to show that  as expected.

 = mass of mantle.

 = mass of core.

 = mass of entire planet.

We have  and  and therefore

 and 

Also

,

where I have made use of the result from the previous problem. On substitution of the expressions for and , we quickly
obtain

A hollow planet would correspond to . Divide top and bottom by  and it is immediately seen that the expression for a
hollow planet would be identical to the expression obtained for the previous problem.

Note that both  and  correspond to a uniform sphere, so that in either case,  for all other cases, the
moment of inertia is less than .

The core size for minimum moment of inertia is easily found by differentiation of the above expression for , and the required
expression follows after some algebra. For , the equation becomes , of which the only positive
real root is , which corresponds to a moment of inertia of 0.90376 % . Note that. for , the
moment of inertia, expressed in units of  varies very little as the core size goes from 0 to 1, so that measurement of the
moment of inertia places very little restriction on the possible core size.

The inverse of Equation ( ) is

I =   −    =   ( − )2
5
M1a2 2

5
M2x2a2 2

5
a2 M1 M2x2

I = M ×2
5

a2 1−x5

1−x3

x = 0,  I  =   M2
5

a2 x → 1 I → M2
5

a2

 Exercise 22.8.14

M1

M2

M

M = +M1 M2 =
M1

M2

s(1− )x3

x3

  =  M ×M2
x3

 + s(1− )x3 x3   =  M ×M1
s(1− )x3

 + s(1− )x3 x3

I  =     +     =     +   ×Icore Imantle
2
5
M2x

2a2 2
5
M1a

2 1−x5

1−x3

M1  M2

I  =   M ×
2

5
a2 s  +  (1 −s)x5

s  +  (1 −s)x3
(1)

= 01
s s

x  =  0 x  =  1 I  =   M2
5

a2

M2
5

a2

I

s  =  0.6 9 −15 −4   =  0x2 x5

x  =  0.73682 M2
5

a2 s  =  0.6

M2
5

a2

1

(1 −s)   −  I(1 −s)   +  (1 −I)s  =  0,x5 x3 (2)
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where  is expressed in units of . For , there are two positive real roots (look at the graph); they are 
 and . For , the roots are 0.55589 and 0.87863. Thus the core size could be anything between

0.55589 and 0.64753 or between 0.81523 and 0.87863 a rather large range of uncertainty. Even if  were known exactly
(which does not happen in science), there would be two solutions for .

This is just a matter of geometry. If, when you make a small angular displacement, you raise the centre of mass of the brick the
equilibrium is stable. For, while the brick is in its vertical position, it is evidently at a potential minimum, and you have to do
work to raise the centre of mass. If, on the other hand, your action in making a small angular displacement results in a lowering
of the centre of mass, the equilibrium is unstable.centre of mass of the brick the equilibrium is stable. For, while the brick is in
its vertical position, it is evidently at a potential minimum, and you have to do work to raise the centre of mass. If, on the other
hand, your action in making a small angular displacement results in a lowering of the centre of mass, the equilibrium is
unstable.

When the brick is in its vertical position, the height  of its centre of mass above the base of the semicylinder is justcentre of
mass above the base of the semicylinder is just

.

When it is displaced from the vertical by an angle , the point of contact between brick and semicylinder is displaced by a
distance , and, by inspection of the drawing, the new height  is

.

.

If you Maclaurin expand this as far as , you arrive at

.

This is positive, and therefore the equilibrium is stable, if , or , i.e. if the length of the brick is less than the
diameter of the semicylinder.

I M2
5

a2 I  =  0.911

x  =  0.64753 0.81523 I  =  0.929
I

x

 Exercise 22.8.15

h0

  =  R  +  lh0

θ

Rθ h

h  =  R cosθ  +  Rθ sinθ  + l cosθ

h−   =  Rθ sinθ  −  (R+ l)(1 −cosθ)h0

θ2

h− ≈ (R− l)h0
1
2

θ2

l  <  R 2l  <  2R

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/9092?pdf


22.8.20 https://phys.libretexts.org/@go/page/9092

As in the previous question, it is just a matter of geometry. If rolling the Thing results in raising its centre of mass, the
equilibrium is stable. Initially, the height of the centre of mass is .centre of mass, the equilibrium is stable.
Initially, the height of the centre of mass is .

After rolling, the dashed line, which joins the centres and is of length , makes an angle  with the vertical. The short line
joining the centre of mass of the Thing to the centre of curvature of its bottom is of length  and it makes an angle  with

the vertical. The height of the centre of mass is therefore nowcentre of mass of the Thing to the centre of curvature of its
bottom is of length  and it makes an angle  with the vertical. The height of the centre of mass is therefore now

The centre of mass has therefore rise through a heightcentre of mass has therefore rise through a height

.

Also, the two angles are related by , so that

.

For stability this must be positive, and hence .

If , this becomes .

For a hollow semicylinder,  Stable

For a hollow hemisphere,  Borderline stable

For a solid semicylinder,  Unstable

For a solid hemisphere,  Unstable

We need to find the height  of the centre of mass above the level of the pegs as a function of . See drawing on next
page.centre of mass above the level of the pegs as a function of . See drawing on next page.

Angels:

Distances:

 Exercise 22.8.16

  =  b  + lH0

  =  b  + lH0

a+b θ

l−a θ+
phi

l−a θ+
phi

h  =  (a+b) cosθ+(l−a) cos(θ+ϕ)

h  −     = (a+b) cosθ  +  (l−a) cos(θ+ϕ)  −b− lh0

aϕ  =  bθ

h  −     = (a+b) cosθ  +  (l−a) cos[{1 +( )} θ]  −b− lh0
b
a

h  −     = − [a+b  +  (l−a)(1 + ]h0
1
2
θ2 b

a )2

  >     +  1
l

1
a

1
b

a  =  b l  <   a1
2

l  =  (1 − )a = 0.363a2
π □

l = 0.5a □

l  =  [1 − ]a = 0.576a4

(3π) □

l = a = 0.625a5
8 □

 Exercise 22.8.17

h θ

θ

BAC  =   −θ45∘

ABX  =   +θ45∘

AB  =  2ka
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 height of centre of mass above pegs when  centre of mass above pegs when 

AC  =  2ka  cos( −θ)45∘

EF  =  2ka  cos( −θ) cos( +θ) = ak cos 2θ45∘ 45∘

DC  =  a 2
–

√

DF  =  a cosθ2
–

√

h  =  DF  − EF  =  a( cosθ−k cos 2θ)2
–

√

=h0 θ = 0 θ  =     =  a( −k)0∘ 2
–

√

y  =     =h

h0

cos θ−k cos 2θ2√

−k2√
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 Exercise 22.8.18
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There are three forces acting on the hemisphere: Its weight . The reaction  of the wall, which is perpendicular to the wall
since the wall is smooth. The reaction  of the floor, which acts at an angle  to the floor, where . Three forces in
equilibrium must act through a point; therefore all three forces act through the point . It is thus clear that

.

If . If . If  the hemisphere can rest in any position, the equilibrium not being
limiting static equilibrium.

This solution uses the same method that Professor Marsh (Warwick University) showed me for Problem 20. I believe it to be
clearer than an earlier solution that I had posted.

At an instant when the rod is tilted at angle , the coordinates of C with respect to the fixed point O are:

and so its velocity components are

and

The moment of inertia of the rod about the centre of mass is .

The kinetic energy  is the sum of the translational kinetic energy and the rotational kinetic energy about the centre of
mass:centre of mass:

mg N

R λ μ  =   tanλ
P

sin  θ  =     =     =  OP
OC

aμ

a3
8

8μ
3

μ  =   ,  θ  =  1
4

41∘48′ μ  =   ,  θ  =  3
8

90∘ μ  >   3
8

 Exercise 22.8.19

θ

  =  a(sinθ  −  θcosθ),x̄̄̄ (1)

  =  a(cosθ  +  θ sinθ)ȳ̄̄ (2)

  =  aθ sinθẋ̄̄̄ θ̇ (3)

  =  aθcosθ .ȳ̇̄̄ θ̇ (4)

m1
3

l2

T

T   =  (   +   )m ,
1

2
a2θ2 1

6
l2 θ̇

2
(5)
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and the potential energy  is

One can now get the equation of motion either by Lagrangian means or by equating the derivative with respect to  of the total
energy to zero, since there are no nonconservative forces and hence the total energy is independent of . In carrying out the

differentiation, note that . We obtain, for the equation of motion:

For small  (neglecting second and higher powers of ),  and  is negligible compared with , so the equation of
motion becomes, approximately, , and so the period is .

I am much indebted to Professor T. R. Marsh of Warwick University not only for finding a mistake in an earlier posted solution
to this problem, but for providing the following solution.

We are going to refer the motion to a fixed point Q, which is the point of contact between hemisphere and table when the
hemisphere is in its equilibrium position.

At an instant when the hemisphere is tilted at an angle , the distance between A and Q is , and the coordinates of C relative
to Q are

Therefore the velocity components of C are

V

V   =  mga(cos  θ  +  θ sin  θ). (6)

θ

θ

  =  2   =  2d

dθ
θ̇

2
θ̇ dθ̇

dθ
θ̈

θ   +  ( + )   +  gaθcosθ  =  0a2 θ̇
2

a2θ2 2

3
l2 θ̈ (7)

θ θ cosθ → 1 a2θ2 l2

= −θ̈
3ga

l2
P   =   2πl

3ga√
– ––––––––––– ––––––––––

 Exercise 22.8.20

I  =  m (   −   cosθ) .a2 7

5

3

4
(2)

x  =   3aθ
8

θ aθ

  =  aθ  −   a sinθ,x̄̄̄
3

8
(1)

  =  a−  a cosθ.ȳ̄̄
3

8
(2)
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By the parallel axes theorem, the moment of inertia around the centre of mass iscentre of mass is

The kinetic energy  is the sum of the translational kinetic energy and the rotational kinetic energy about the centre of
mass:centre of mass:

The potential energy  is

We can the get the equation of motion either by using the Lagrangian equations, or by calculating the derivative with respect to
 of the total energy . The derivative is zero, because there are no nonconservative forces and total energy is constant.

Note that (as in Problem 19) the derivative of  with respect to  is , which is . Either method results in the equation
of motion:

In the small angle limit, , and  is negligible compared with , so the equation of motion becomes

The (second) moment of inertia with respect to the centre (see centre (see Section 2.19 of Chapter 2) is

.

The moment of inertia with respect to an axis through the centre is 2/3 of this:centre is 2/3 of this:

.

.

  =  a(1 − cosθ) ,ẋ̄̄̄
3

8
θ̇ (3)

  =   a sinθ .ȳ̇̄̄
3

8
θ̇ (4)

I  =   m   −  m   =   m
2

5
a2 ( a)

3

8

2
83

320
a2 (5)

T

T   =   m [   +     +   ]   =  m ( − cosθ)
1

2
a2 (1 − cosθ)

3

8

2

( sinθ)
3

8

2
83

230
θ̇

2
a2 7

10

3

8
θ̇

2
(6)

V

V   =  mga(1 − cosθ).
3

8
(7)

θ T   +  V

θ̇
2

θ 2θ̇ dθ̇

dθ
2θ̈

(   −   cosθ)   + sinθ   + g sinθ  = 0.
7

5

3

4
θ̈

3

8
θ̇

2 3

8
(8)

cosθ → 1 sinθ → θ g

  =   − θθ̈
15g

26a
(9)

.P   =  2π
26a

15g

− −−−

√

– ––––––––––––––– ––––––––––––––

(10)

 Exercise 22.8.21

= 4π ( − /a)dr = π .Icentre ρ0 ∫
a

0 r4 r5 2
15

ρ0a
5

  =   πIaxis
4

45
ρ0a

5

∴   =   MIaxis
4

15
a2

– ––––––––––––––– ––––––––––––––

 Exercise 22.8.22

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/9092?pdf


22.8.26 https://phys.libretexts.org/@go/page/9092

Left-hand particle: .

Right-hand particle: .

,

and, by the “sum and difference” trigonometrical formulae, we obtain

from which

Consider a portion of the rope between  and . There are four forces on this portion. The tension  at . The tension 
 at  (  is negative). The normal reaction  of the cylinder on the rope. The frictional force  of the

cylinder on the rope. Note that the rope is about to slip downwards, so the friction force is upwards as shown.

We have

and

.

To first order, these become

and

and hence by integration

T   =  mg[μ cos(α−θ)  +   sin(α−θ)]

T   =  mg[sin(α+θ)  −  μ cos(α+θ)]

∴ μ[cos(α−θ)  +   cos(α+θ)]  =   sin(α+θ)  −   sin(α−θ)

2μ cosα cosθ  =  2 cosα sinθ,

tan  θ  =  μ.
– –––––––––––– –––––––––––

 Exercise 22.8.23

θ δθ T θ

T   +  δT θ  +  δθ δT δN μδN

δN   =  (2T   +  δT ) sin( θ)1
2

(T   +  δT ) cos( δθ)  +  μδN   =  T cos( δθ)1
2

1
2

δN   =  Tδθ

δT   =   −μδN

δT   =   −μTδθ
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.

Area of square = 

Area of rectangle = 

Area of triangle = 

Area of trapezoid = 

The weight of the cube is , and it acts downward through C, the centre of mass. The hydrostatic upthrust is 
 and it acts upward through the centre of buoyancy H. Here  is the density of the fluid, and  is the density

of the wood. We evidently must find the centre of mass. The hydrostatic upthrust is  and it acts upward
through the centre of buoyancy H. Here  is the density of the fluid, and  is the density of the wood. We evidently must find
the  coordinate of C and of H. Let’s first of all find the  and  coordinates (see the next figure).

The  and coordinates of C are trivial and quite easy respectively:

You are going to have to work quite hard at it to find the  and  coordinates of H, the centre of buoyancy, which is the
centroid of the trapezoid. “After some algebra” you should findcentre of buoyancy, which is the centroid of the trapezoid.
“After some algebra” you should find

F   =  Mge−μα

– –––––––––––––– –––––––––––––

 Exercise 22.8.24

4a2

4 (1 −x)a2

2 (x+y−1)a2

2 (1 −x+y)a2

8 ρsga3

4 (1 −x+y)ρga3 ρ ρs

4 (1 −x+y)ρga3

ρ ρs

−X ′ X− Y −

X− Y −

  =  a   =  a(1 −2x)XC YC

X− Y −

  =     =  XH
2(1−x+2y)a

3(1−x+y)
YH

2(2−4x+2y+2 −2xy− )ax2 y2

3(1−x+y)
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To find the  coordinates of C and of H, we use the usual formulas for rotation of axes, being sure to get it the right way
round:

,

together with

.

Take moments about the axle (origin):

.

After a little more algebra, you should eventually arrive at

Let the radii of the cylinder and sphere be  and  respectively, and the mass of the sphere be . The angles  and  are
related by . I have drawn the three forces on the sphere, namely its weight, the normal reaction of the cylinder on the

−X ′

( )   =  ( )( )
X ′

Y ′

cosθ

sinθ

−sinθ

cosθ

X

Y

tan  θ  =  x  +  y−1

8 ρsg   =  4 ρg(1 −x+y)a3 X ′
C a3

s =
3−7x+2y+6 −3 −2 + +3xx2 y2 x3 y3 y2

3(2−3x−y+2 +2xy)x2

– –––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––

 Exercise 22.8.25

a b M θ ϕ

aθ  =  bϕ
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sphere, and the frictional force on the sphere. The transverse acceleration of the centre of the sphere is  and the

centripetal acceleration is . The equations of motion are:centre of the sphere is  and the centripetal

acceleration is . The equations of motion are:

and

The angular acceleration of the sphere about its centre is , and its rotational inertia is . The torque
that is causing this angular acceleration is , and therefore the rotational equation of motion is

Elimination of  between Equations ( ) and ( ) yields

Write  as  in the usual way and integrate with initial conditions  or from energy considerations:

Substitute for  and  into Equation ( ) to obtain

This is zero, and the sphere leaves the cylinder, when , .

Surface density =  g cm

Original sandwich:

Mass = 54  g

-coordinate of centre of mass = 3 cm centre of mass = 3 cm

-coordinate of centre of mass = 4 cm centre of mass = 4 cm

Bite:

(a+b)θ̈

(a+b)θ̇
2

(a+b)θ̈

(a+b)θ̇
2

Mg sinθ  −  F   =  M(a+b)θ̈ (1)

Mg cosθ  −  N   =  M(a+b)θ̇
2

(2)

  +     =  (1 + )θ̈ ϕ̈ a

b
θ̈ 2Mb2

5

Fb

Fb =   M (1 + )
2

5
b2 a

b
θ̈ (3)

F 1 3

\ddot{\theta} = \frac{5\text{g}}{7(a+b)}\sin\theta. \tag{4}\label{20.4}

θ̈ θ̇ dθ̇

dθ
θ = = 0θ̇

\dot{\theta}^{2} =\frac{10\text{g}}{7(a+b)}(1-\cos\theta) \tag{5}\label{20.5}

θ̈ θ̇
2

2

N =\ M\text{g}(17\cos\theta-10). \tag{6}\label{20.6}

cosθ  =   10
17

θ  =  53∘58′

 Exercise 22.8.26

σ -2

σ

x

y
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Mass =  =14.137 166 94  g

Distance of centre of mass from hypotenuse = centre of mass from hypotenuse=  = 1.273 239 545 cm

x-coordinate of centre of mass = 4.5 -centre of mass =  = 3.481 408 364 cm

y-coordinate of centre of mass = 6- centre of mass =  = 5.236 056 273 cm

Remainder:

Mass = (54 - 14.137 166 94)  = 39.862 833 06  g

-coordinate of centre of mass = centre of mass = 

-coordinate of centre of mass = centre of mass = 

Moments:

39.862 833 06  + 14.137 166 94 × 3.481 408 364 = 54 × 3. 

39.862 833 06  + 14.137 166 94 × 5.236 056 273 = 53 × 4. 

This point is very close to the edge of the bite. The centre of the bite is at (4.5, 6), and its radius is 3. Its equation is
thereforecentre of the bite is at (4.5, 6), and its radius is 3. Its equation is therefore

 or .

The line  = 2.829 270 780 cuts the circle where . The lower of the two points of
intersection is at  = 3.508 280 941 cm. The centre of mass is slightly higher than this and is therefore just inside the
bite.centre of mass is slightly higher than this and is therefore just inside the bite.

Consider a portion of the band within the angle . Its mass is  When the band is spinning at angular speed  and its radius
is , the centrifugal force on that portion is . (I leave it to the philosophers and the schoolteachers to debate as to
whether there “really” is “such thing” as centrifugal force – I want to get this problem done, and I’m referring to a co-rotating
frame.) The -component of this force is . Also, the tension in the band when its radius is  is .

Consider the equilibrium of half of the band. The -component of the centrifugal force on it is .

The opposing force is . Equating these gives .

π σ1
2

32 σ

×3  =  4
3π

4
π

4.5  −   sinθ = 4.5 −4
π

16
5π

6  −  cosθ  =  6 −4
π

12
5π

σ σ

x x̄̄̄ x̄̄̄

y ȳ̄̄ ȳ̄̄

x̄̄̄ = 2.829 270 780 cmx̄̄̄– ––––––––––––––––––––– ––––––––––––––––––––
ȳ̄̄   =  3.561 638 436 cmȳ̄̄

– –––––––––––––––––––––– –––––––––––––––––––––

(x−4.5   +  (y−6   = 9,)2 )2   +     −9x  −12y  +  47.25 = 0x2 y2

x −12y  +  29.791 336 13  =  0y2

y

 Exercise 22.8.27

δθ mδθ
2π

ω

r δF   =  mr δθω2

2π

y mr δθω2

2π
r T = 2πk(r−a)

y cosθdθ =mrω2

2π
∫

+
π

2

− π

2

mrω2

π

2T   =  4πk(r−a)   =  ω2 4 k(r−a)π2

mr– ––––––––––––––– ––––––––––––––
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Let the distance AB be  and the distance AC be . Let the mass of the rod be .

Consider an elemental portion  of the rod at P at a distance  from A. Its weight is . When the rod is about to move, it

will experience a frictional force , which will be in the direction shown if P is to the left of C, and in the opposite
direction if P is to the right of C. When the rod is just about to move (but has not yet done so) it is still in equilibrium. Consider
the moment about A of the frictional forces on the rod. The clockwise moment of the frictional forces on AC must equal the
counterclockwise moment of the frictional forces on CB. Thus

.

.

The net force on the rod is

,

and this is zero, and therefore

The cone slips when .

It tips when C (the centre of mass) is to the left of M. centre of mass) is to the left of M.

The distance OC is . (See Chapter 1, Section 1.7). Therefore it tips when .

Thus it slips if  and it tips if .

 Exercise 22.8.28

l c m

δx x mδx

l

δf   =  
μmgδx

l

x dx = x dx
μmg

l
∫ c

0
μmg

l
∫ l

c

∴ c = l

2√
– ––––––– ––––––

F   −   dx  +   dx
μmg

l
∫ c

0
μmg

l
∫ l

c

F   =   = ( −1)μmg.
μmg(2c−l)

l
2
–

√
– ––––––––––––––––––––––––––––––– ––––––––––––––––––––––––––––––

 Exercise 22.8.29

tanθ  >  μ

h

4
tanθ > 4 a

h

μ < 4 a

h
μ < 4 a

h
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When the block is just about to tip, the reaction of the table on the block acts at A and it is directed towards the point K,
because, when three coplanar forces are in equilibrium they must act through a single point. The angle  is given by 

. However, by the usual laws of friction, the block will slip as soon as . Thus the block will slip if 
, and it will tip if . Expressed otherwise, it will slip if  and it will tip if . The greatest possible value

of  is ; therefore the block will inevitably slip if 

+

When or if the cylinder is just about to tip, it is about to lose contact with the left hand peg. The only forces on the cylinder are
the torque, the weight, and the reaction  of the right hand peg on the cylinder, which must be vertical and equal to . But
the greatest possible angle that the reaction  can make with the surface of the cylinder is the angle of friction  given by 

. From geometry, we see that , or . Thus the cylinder will slip before it tips if 

 and it will tip before it slips if .

If the cylinder tips (which it will do if ), the clockwise torque t at that moment will equal the counterclockwise

torque of the couple (  and ), which is . Thus the torque when the cylinder tips is

TIP:

 Exercise 22.8.30

λ

tanλ  =   a
x

tanλ  =  μ

μ < a
x μ > a

x x < a
μ x > a

μ

x 2a μ < 1
2

 Exercise 22.8.31

R mg
R λ

tan  λ  =  μ sin  θ  =  k tan  θ  =   k

1−k2√

μ  <   k

1−k2√
μ  >   k

1−k2√

μ  >   k

1−k2√

R mg mgka

τ   =  mgak. (1)
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When or if the cylinder is just about to slip, the forces are as shown above, in which I have resolved the reactions of the pegs
on the cylinder into a normal reaction (towards the axis of the cylinder) and a frictional force, which, when slipping is about to
occur, is equal to m times the normal reaction. The equilibrium conditions are

,

and

.

We can find  by eliminating  from the first two equations, and then, writing  for , we find
that, when slipping is about to occur,

SLIP:

I have drawn below the functions

for  and . The horizontal lines are the tip functions, and the curves are the slip functions. As long as

 the cylinder will slip. As soon as  the cylinder will tip.

μ(   +   ) cosθ  +  ( − ) sinθ  =  0N1 N2 N1 N2

μ(   −   ) sinθ  −  ( + ) cosθ  +  mg =  0N1 N2 N1 N2

μ(   +   )a  =  τN1 N2

  +  N1 N2   −  N1 N2 1 −k2
− −−−−

√ cosθ

τ   =  mga  ×     ×   .
μ

1 +μ2

1

1 −k2
− −−−−

√
(2)

  =  k (tip) and    =   ×  (slip)τ

mga
τ

mga
μ

1 + μ2
1

1−k2√

k  =  0.1,  0.3,  0.5,   1

2√
0.9

μ  <   k

1−k2√
μ  <   k

1−k2√

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/9092?pdf


22.8.34 https://phys.libretexts.org/@go/page/9092

We’ll leave to the philosophers the question as to whether centrifugal force “really exists”, and we’ll work in a co-rotating
reference frame, so that the car, when referred to that frame, is in static equilibrium under the six forces shown. Clearly, 
and  and .

The car slips when ; that is, when .

The car tips when  that is, when .

That is, it will slip or tip according as to whether  or .

For example suppose .

In that case, , so it will tip at .

But if it rains, reducing  to 0.7, it will slip at .

 Exercise 22.8.32

N1

  =  mgN2   +     =  F1 F2
mv2

R

  +     =  μ( + )F1 F2 N1 N2 v  =   μgR
− −−−√

  =  mgd;m hv2

R
v  =  

dgR

h

− −−
√

μ  < d

h
> d

h

d  =  60 cm,  h  =  60 cm,  g  =  9.8  ,  R  =  30 m,  μ  =  0.8m s−2

  =  0.75d

h
v  =  14.8    =  53.5 m s−1 km hr−1

μ v  =  14.3    =  51.6 m s−1 km hr−1
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I have drawn in green the radial and transverse components of the acceleration of the centre of mass  and  respectively. I
have drawn in red the weight of the rod and the normal and frictional components of the force of the table on the rod at , 

and  respectively.centre of mass  and  respectively. I have drawn in red the weight of the rod and the normal and
frictional components of the force of the table on the rod at ,  and  respectively.

The following are the equations of motion:

Normal:

Lengthwise:

Rotation:

Here  is the radius of gyration about A, given by

From Equations ( ), ( ) and ( ), we obtain

The space integral (see Chapter 6, Section 6.2) of Equation ( ), with initial condition  when , results in

This can also be obtained by equation the loss of potential energy,  to the gain in kinetic energy, .

Combining this with Equations ( ) and ( ) leads to

At the instant of slipping, , and hence, from Equations ( ) and ( ) we find

.

 Exercise 22.8.33

aθ̇
2

aθ̈

A N

F aθ̇
2

aθ̈

A N F

ma   =  mg cosθ  −  N .θ̈ (1)

ma   =   −mg sinθ  +  F .θ̇
2

(2)

  =  ga cosθk2 θ̈ (3)

k

  =     +   .k2 1

3
l2 a2 (4)

1 3 4

N   =  mg cosθ.( ) .
l2

  +  3l2 a2
(5)

3   =  0θ̇ θ  =  0

  =   sinθ.θ̇
2 2ga

k2
(6)

mga sinθ m1
2

k2 θ̇
2

2 4

F   =  mg sinθ.( ) .
  +  9l2 a2

  +  3l2 a2
(7)

F   =  μN 5 7

tanθ  =  
μ

1 + 9( a

l
)2
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I derive  by two different methods – one from energy considerations, the other from angular momentum
considerations. First, energy.

If the table top is taken to be the zero level for potential energy, the initial potential energy was .

When the length of the dangling portion is  the potential energy is

.

The loss of potential energy is therefore .

This is equal to the gain in kinetic energy , and therefore

.

Another method:

 Exercise 22.8.34

  =  gx  +  v2 g

l
x2

− m. g. l  =   − mgl1
2

1
4

1
8

l  +  x1
2

−( )m. g. ( l  +  x)   =   −   =   − mgl  −   mgl  −  
l + x

1

2

l

1
2

1
2

mg

2l
( l  +  x)1

2

2 1
8

1
2

mgx2

2l

mgx  +  1
2

mgx2

2l

m1
2

v2

  =  gx  +  v2 g

l
x2
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Consider a point A. Anywhere will do, but I have chosen it to be a distance  below the level of the table and  to the left of the
table edge. The moment of momentum (= angular momentum) of the chain about this point is  and its rate of
change is therefore . The torque about A is  and its rate of change is therefore 

. The torque about A is . These are equal, and so . Write 

 in the usual way, and integrate (with  when ) and the result  follows.

To find the relation between  and  we can use the energy Equation 9.2.9 for conservative systems

.

Here  and we have already seen that . Upon integrating this expression, we obtain,
after a little algebra and calculus,

The converse of this is the required expression

Differentiation of this with respect to time produces the third required expression:

You may verify from these last two equations, if you wish, that .

The chain falls completely off the table when . That is (by using Equation ( )), at time 

.

If we express distances in units of , time in units of  and therefore necessarily speeds in units of , Equations ( ) and (

) become

and we can get the acceleration by a further differentiation:

We are pleased to note that, by the time that  [i.e. when the chain completely leaves the table at time 

 ], the acceleration is . The speed is then .

The maximum overhang of book  is .

The centre mass of centre mass of  is at  from the left hand side (LHS) of , so .

The distance of the centre of mass of centre of mass of  is at  from the LHS of , so .

l l

mlv  =  mlẋ

mlv  =  mlẋ \left(\mlv\ =\ ml\dot{x}

mlv  = mlẋ ( )mgl  =  ( l  +  x)mg
l + x1

2

l
1
2

l   =  g ( l  +  x)ẍ 1
2

  =  vẍ dv

dx
v= 0 x = 0   =  gx  +  v2 g

l
x2

x t

t  =   m

2

−−
√ ∫

x

x0

dx

E−V(x)√

  =  0x0 E  −  V (x)  =     +  
mg

2l
x2 mgx

2

(1)

(2)

(3)

  =  gx  +  v2 g

l
x2

x  =   l1
2

1

ln(2  +   )  =  1.317l
g

−−
√ 3

–
√ l

g

−−
√

l l
g

−−
√ gl

−−
√ 2

3

x  =     =   (   +   −2)  =   (cosh t−1)
( −1et )2

4et
1

4
et e−t 1

2
(4)

v  =     =   sinh  t
−1e2t

4et
1

2
(5)

a  =   (   +   )  =   cosh  t.
1

4
et e−t 1

2
(6)

x  =   l1
2

t  =   ln(2  +   )3
–

√ l
g

−−
√ g   =  0.866lg3

4

−−−
√ lg

−−√

 Exercise 22.8.35a

1   =  wd1

1  +  2 1  +  2 3w
2

2 d3  =   w
3

1 + 2 + 3 1 + 2 + 3 5w
2

3 d3  =   w
3
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Thus .

In a similar manner we find that, given  books, the maximum overhang is

.

I do not know if there is a simple expression for the sum to  terms of this harmonic series. Please let me know if you know of
one or can find one. Therefore I used a computer to solve

by brute force. I got , so you would need 12368 books.

The harmonic series is divergent and has no finite limit, so there is no finite limit to the possible overhang.

You might wish to speculate on any practical limitations on constructing such a pile of books. For example, we have been
assuming a uniform gravitational field – but this will no longer be valid once the overhang becomes comparable to the radius
of Earth. This will, however, need quite a large number of books.

In the solution that follows, a prime  will be used to denote differentiation with respect to , and . I shall also
make use of an auxiliary variable . The initial conditions are . The final
conditions are  to be determined.

At time , the coordinate of the Man is . If  are the coordinates of the Dog at that time, the slope of the path taken
by the Dog is

so that

D  =     +     +     =  (1  +    +   )w  = 1.8 wd1 d2 d3
1
2

1
3

3̇

 Exercise 22.8.35b

n  +  1

D  =  (1 + + . . .  . . . + )w1
2

1
3

1
n

n

1 + + . . .  . . . +   =  101
2

1
3

1
n

n = 12367

 Exercise 22.8.35c

 Exercise 22.8.36

x p  =     =  y′ dy

dx

ϕ  =   psinh−1 y = 0,  x = a,  p = 0,  ϕ = 0
x = 0,  p = −∞,ϕ = −∞, y

t y− v t (x,  y)

p  =   − ,
vt−y

x
(1)

v t  =  y−px. (2)
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The speed of the Dog is

[This comes from . The minus sign is necessary because  is negative, and , the speed (not

velocity!) of the Dog is necessarily positive.]

Now  so Equation ( ) can be written

If we can eliminate  between Equations ( ) and ( ), we will obtain a relation between the slope  and , and hence potentially
a relation between  and .

Differentiate Equation (  with respect to  (recalling that ):

It is now simple to eliminate  from Equations ( ) and ( ):

On separating the variables and integrating, we obtain

With initial conditions  when , this gives us

or

where

Equation ( ), with ( ), gives us the relation between  and the slope, . Note that  and hence  are negative, so that equation
says that .

Our next task will be to find a relation between  and  (or between  and ).

From Equation ( ) we have

and from Equation ( ) we have

From these we obtain the differential relation between  and :

or

Integrate this, with initial condition  when , to obtain

Av=   −   =   − .
ds

dt
1 +p2
− −−−−

√
dx

dt
(3)

ds  =   dx1 +( )
dy

dx

2
− −−−−−−−

√ ( )dx

dt
Av

( )   =   −dx

dt

1
t′ ???

Av   =   −t′ 1 +p2
− −−−−

√ (4)

t 2 4 p x

y x

??? x = py′

v   =   − xt′ p′ (5)

t′ 4 5

A x  =  p′ 1 +p2
− −−−−

√ (6)

A∫   =  ∫ .
dp

1 +p2− −−−−
√

dx

x
(7)

p = 0 x = a

A p  =   ln( ),sinh−1 x

a
(8)

x  =  a ,eAϕ (9)

ϕ  =   p.sinh−1 (10)

9 10 x p p f

x < a

y p y ϕ

10

dy  =   sinhϕ dx, (11)

9

dx  =  aA dϕ.eAϕ (12)

y ϕ

dy  =  aA sinhϕdϕ,eAϕ (13)

dy  =   aA(   −   )dϕ.
1

2
e(A+1)ϕ e(A−1)ϕ (14)

ϕ  =  0 y  =  0
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Equation ( ) and ( ) are parametric equations to the path of the Dog, though it is easy to eliminate  and write  explicitly as
a function of :

The figure was drawn for  for which Equation ( ) reduces to

The distance walked by the Man is found by putting  in Equation . Thus

and the time taken is

Let  be the length of the string.

Kinetic energy of the upper mass = .

Kinetic energy of the lower mass = 

Potential energy of the lower mass = .

Total energy of the system =

Initial total energy of the system =

Energy is conserved and therefore, by equating ( ) and ( ), we obtain

Angular momentum is also conserved, and therefore

On elimination of  between Equations ( ) and ( ) we obtain, after some algebra,

y  =   aA − + .
1

2

⎛

⎝

( )x
a

1+1/A

A+1

e(A−1)ϕ

A−1

2

−1A2

⎞

⎠
(15)

9 15 ϕ y

x

y  =   aA( − + ) .
1

2

e(A+1)ϕ

A+1

e(A−1)ϕ

A−1

2

−1A2
(16)

a = 1,  A = 2, 16

y  =   [ (x−3)  + 2].
1

3
x

1

2 (17)

ϕ = −∞ 15

y  =   ,
aA

−1A2
(18)

t  =  
aA

v( −1)A2
(19)

 Exercise 22.8.37

l

 Exercise 22.8.37a

(m )   + m1
2

r2 ω2 1
2

ṙ2

m1
2

ṙ2

mg(l−r)

(m )   +m   −  mg(l−r).
1

2
r2 ω2 ṙ2 (1)

(m )   +m   −  mg(l−a).
1

2
a2 ω2

0 ṙ2 (2)

1 2

  =  g(a−r)  +     −   .ṙ2 1

2
a2ω2

0

1

2
r2ω2 (3)

ω  =  r2 a2ω0 (4)

r 3 4

  =  1  +   (1 − )   − .
ṙ2

ga

aω2
0

2g

ω

ω0

ω0

ω

−−−
√ (5)
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If  it is trivial to show that

Algebra and calculus show that  is negative for all positive  except for , when it reaches a maximum

value of zero.

If  and  it is trivial to show that

Algebra and calculus show that  reaches a maximum value for  at which time 

. That is, when  Equation ( ) (conservation of angular momentum) shows that 

.

Solution of  shows that the speed is zero when  (the initial condition) and when  (the equilibrium

value). Equation ( ) (conservation of angular momentum) shows that .

If  and  it is trivial to show that

Algebra and calculus show that  reaches a maximum value for  at which time 

. That is, when  Equation ( ) (conservation of angular momentum) shows that 

.

Solution of  shows that the speed is zero when  (the initial condition) and when 

 (the equilibrium value). Equation ( ) (conservation of angular momentum) shows that 
.

How much further can we go with this question? By elimination of  between Equations ( ) and ( ) we obtained a relation
between  and . By elimination of  between Equations ( ) and ( ) we can get a relation between  and . It will be of the
form

where  and . If you can integrate this, you then get a relation between  and . I haven’t given
much though as to whether you can get integrate Equation ( ) analytically (if anyone manages it, please let me know), but at
least a numerical integration will certainly be possible.

In another variation of the question, you can start with an equilibrium situation in which  and then add an extra mass 
 (or , if you want to make it more general) and then follow the motion from there. I leave that to you.

 Exercise 22.8.37b

a   =  gω2
0

  =     − Ω  − .
ṙ2

ga

3

2

1

2

1

Ω
−−

√
(6)

 Exercise 22.8.37c

  − Ω  −3
2

1
2

1

Ω√
Ω Ω  =  1

 Exercise 22.8.37d

a   =  2gω2
0 Ω  =   ω

ω0

  =  2  −  Ω  −
ṙ2

ga

1

Ω
−−

√
(7)

2  −  Ω  − 1
Ω√

Ω  =     =     =  0.629 961ω
ω0

1

2
2
3

  =  0.110 118ṙ
2

(ga)
  =  0.331 841ṙ ga−−

√ 4

r  =     =     =  1.259 921aa

Ω√
2a
−−

√3

2  − Ω  −  = 01
Ω√

Ω  =  1

4 r  =     =  1.618 034aa

Ω√

 Exercise 22.8.37e

a   =   gω2
0

1
2

Ω  = ω
ω0

  =     − Ω  −
ṙ2

ga

5

4

1

4

1

Ω
−−

√
(8)

  − Ω  −5
4

1
4

1
Ω√

Ω  =     =     =  1.587 401ω
ω0

2
2

3

= 0.059449ṙ2

(ga)
  =   −0.243 822ṙ ga−−

√ 4

r  =     =     =  0.793 701aa

Ω√
a

2√3

  − Ω  −5
4

1
4

1

Ω√
Ω  =  1

Ω  =     =  2.438 447ω
ω0

4

r  =     =  0.640 388aa

Ω√

r 3 4
ṙ ω ω 3 4 ṙ r

  =   ,ṙ A  −  gr  −  
B

r2

− −−−−−−−−−−−
√ (9)

A  =  ga  +   1
2
a2ω2

0 B  =  a4ω4
0 r t

9

a   =  gω2
0

m M
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Let’s look at the rod from above when it is twisted in the horizontal plane through a small angle .

Each of the points where the threads are attached to the rod is displaced horizontally through a distance  (Since  is small
and  we can neglect the slight vertical rise in the position of the rod.) Each thread is now displaced from the vertical
by an angle  given by

The tension  in each thread is  which, to first order in , is just .

The horizontal component of each of these forces is  which, to first order in , is .

Therefore the rod experiences a restoring torque equal to . But  and therefore the restoring torque is 

.

The equation of motion is therefore

and consequently the period  of small oscillations is

 Exercise 22.8.38

θ

Dθ1
2

θ

D  << L

ϕ

T mg cosϕ1
2

ϕ mg1
2

mg sinϕ1
2

ϕ mgϕ1
2

mgDϕ1
2

ϕ  =  
Dθ1

2

L
mg θD2

4L

I   =   − θθ̈
mgD2

4L

P
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.

If the rod is uniform and of length , its moment of inertia is  and in that case the period of small oscillations is

.

There is no need to remind the reader to check the dimensions of these equations.

When the yo-yo has fallen through a distance , it has lost potential energy , and it has gained translational kinetic energy
 and gained rotational kinetic energy  where . Therefore  from which

.

Thus, from the usual equations for constant linear acceleration, the acceleration is

.

The net downward force is  where  is the tension in the string. This is equal to  times the acceleration, from
which we obtain

I have drawn four forces on the yo-yo. Its weight . The tension  in the string. The normal reaction  of the table on the
yo-yo. And the frictional force  of the table on the yo-yo. As long as the yo-yo is in contact with the table and there is no
vertical acceleration, we must have .

Let us suppose that there is no slipping between the yo-yo and the table, so that the yo-yo rolls to the left. We note that there is
a net force  to the left, and a net counterclockwise torque about C equal to . Thus the yo-yo accelerates to the left at
a rate  it and experiences a counterclockwise angular acceleration . If there is no slipping, these must be related
by . Thus, if there is no slipping,

The linear acceleration to the left must be , or

P   =  2π   =  4LI

mgD2

− −−−
√ 4π

D

LI
mg

−−−
√

2l m1
3

l2

P   =   4πl
D

L

3g

−−
√

 Exercise 22.8.39

x Mgh

m1
2

v2 I1
2

ω2 ω  =   v
a

Mgx  =   M   +    I1
2

v2 1
2

( )v
a

2

  =  2  ⋅     ⋅  xv2 M ga2

M  + Ia2

×gMa2

M  + Ia2

Mg −P P M

P   =   ×Mg.1
M +1a2

 Exercise 22.8.40a

Mg P N

F

P   +  N   =  Mg

F Pa−Fb
F

M
(Pa−Fb) a

I

= b×F

M

Pa−Fb

I

F   =  ( )P .
Mab

I  +  Mb2
(1)

F

M
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_________________________

Alternative derivation:

There is a net counterclockwise torque about A equal to . The moment of inertia with respect to A is . Therefore
there is an angular acceleration about A equal to . Therefore the linear acceleration of C to the left is  and the

frictional force  is  times this, or .

End of Alternative Derivation.

__________________________

However, if the yo-yo is just about to slip, . Upon substitution of this into Equation ( ), we see that
the yo-yo will just slip if

That is, the yo-yo will roll to the left without slipping if

Its linear acceleration is then given by Equation ( ), namely

On the other hand, the yo-yo will rotate counterclockwise with no rolling if

The sum of the counterclockwise moments of the forces about C is then  where . The
counterclockwise angular acceleration about C is

abP

I +Mb2
– ––––––––– ––––––––

(2)

Pa I  +  Mb2

Pa

I + Mb2

abP

I + Mb2

– ––––––– ––––––
F M F   =  ( )PMab

I + Mb2

F   =  μN   =  μ(Mg −P ) 1

P   =   .
μMg(I  +  M )b2

μ(I  +  M )  +  Mabb2
(3)

μ  >  
MabP

(Mg −P )(I +M )b2

– –––––––––––––––––––––––––– –––––––––––––––––––––––––

(4)

2

abP

I +Mb2
– ––––––––– ––––––––

(2)

μ  <  
MabP

(Mg −P )(I +M )b2

– –––––––––––––––––––––––––– –––––––––––––––––––––––––

(5)

Pa−Fb F = μN = μ(Mg −P )

  =   .
Pa−Fb

I

P (a−μb) −μMg

I– –––––––––––––––––– –––––––––––––––––

(6)

 Exercise 22.8.40b
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I have drawn the four forces on the yo-yo. Its weight . The normal reaction of the table on the yo-yo, which is also of
magnitude . The tension  in the string. And the frictional force  of the table on the yo-yo.

At this point it may not be immediately obvious whether  acts to the left or the right. For example, let us suppose that the
coefficient of friction is zero. The force  will result in a translation of the yo-yo to the right together with a clockwise rotation
of the yo-yo. So, in which direction does the point A on the circumference of the yo-yo move - to the left or the right? It is hard
to say, but one might suppose, qualitatively, that, if the moment of inertia is large, the induced rotation will be sluggish, so that
A moves to the right. Whereas if  is small, the induced rotation will be rapid, and A will move to the left in spite of the
translational motion of the centre of mass to the right. From this we might conclude that, if ,  will act to the right if  is
small, and  will act to the left if  is large. The following analysis shows that this qualitative expectation is correct.centre of
mass to the right. From this we might conclude that, if ,  will act to the right if  is small, and  will act to the left if 
is large. The following analysis shows that this qualitative expectation is correct.

(The reader might find some of the Problems in Section 8.2 of Chapter 8 to be helpful at this point, particularly Problem 2.5.)

For the time being, I have drawn  as if acting towards the left.

Let us suppose there is no slipping and that the yo-yo rolls.

The sum of the clockwise moments of the forces about A is  and the moment of inertia about A is . The
yo-yo therefore undergoes an initial clockwise angular acceleration about A equal to  and, therefore (if there is no

slipping), an initial linear acceleration of C to the right equal to

The above linear acceleration must equal  from which we obtain

This shows that the frictional force  acts to the left, as shown, if  but if  the frictional force  acts to the
right. This is in agreement with our qualitative expectations, namely that  will act to the left if  is large, and to the right if 
is small.

Let is consider three cases in turn:  and .

(i) 

In this case,  acts to the left, as drawn. Provided  there will be no slipping at A, and the yo-yo will roll to the right
without slipping. On recalling Equation ( ), we see that the yo-yo will roll to the right without slipping, with a linear
acceleration given by Equation ( ) if

Mg
Mg P F

F

P

I

μ ≠ 0 F I

F I

μ ≠ 0 F I F I

F

P (a  +  b) I  +  Mb2

P(a + b)

I+Mb2

.
Pb(a  +  b)

I  +  Mb2
– –––––––––––– –––––––––––

(1)

(P−F)

M

F   =  ( )P
I −Mab

I +Mb2
(2)

F I  >  Mab I < Mab F

F I I

I > Mab,  I < Mab I = Mab

I > Mab

F F < μMg
2

1
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The linear acceleration to the right is given by Equation ( ), namely

However, if

slipping occurs at A. The frictional force is the no longer given by Equation ( ), but is given by

and it acts to the left.

(We are concerned in this problem with the initial motion. Once motion is underway,  has to be replaced with the smaller
coefficient of kinetic friction.)

The net force to the right is then  so the linear acceleration of C to the right is

Because of condition ( ), this is necessarily positive.

The net clockwise moment of the forces about the centre of mass C is . The yo-yo therefore undergoes a
clockwise angular acceleration about C ofcentre of mass C is . The yo-yo therefore undergoes a clockwise
angular acceleration about C of

The linear acceleration to the right of the point A on the circumference of the yo-yo is , and,
because of condition ( ), some algebra will show that this is necessarily positive, as expected.

(ii) 

In this case,  acts to the right, and the linear acceleration is . Provided that

the yo-yo will roll to the right with a linear acceleration given by Equation ( ), namely

However, if

slipping occurs at A. The frictional force is then given by

and it acts to the right.

The net force to the right is then , so the linear acceleration to the right is

.μ >( )( )
I −Mab

I +Mb2

P

Mg
– ––––––––––––––––––––––––– ––––––––––––––––––––––––

(3)

1

.
Pb(a  +  b)

I  +  Mb2
– –––––––––––– –––––––––––

(1)

.μ <( )( )
I −Mab

I +Mb2

P

Mg
– ––––––––––––––––––––––––– ––––––––––––––––––––––––

(4)

2

F = μMg, (5)

μ

P −μMg

.
P −μMg

M– –––––––––– –––––––––

(6)

4

Pa  +  μMgb
Pa  +  μMgb

.
Pa  +  μMgb

I– –––––––––––––– –––––––––––––

(7)

  −  b  ×  
P − μMg

M

Pa + μMgb
I

4

I < Mab

F
(P + F)

M

,μ  >  ( )( )
Mab−I

M +Ib2

P

Mg
– –––––––––––––––––––––––––– ––––––––––––––––––––––––––

(8)

1

.
Pb(a  +  b)

I  +  Mb2
– –––––––––––– –––––––––––

(1)

,μ  >  ( )( )
Mab−I

M +Ib2

P

Mg
– –––––––––––––––––––––––––– ––––––––––––––––––––––––––

(9)

F   =  μMg, (10)

P   +  μMg
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The net clockwise moment of the forces about the centre of mass C is . The yo-yo therefore undergoes a clockwise angular
acceleration about C ofcentre of mass C is . The yo-yo therefore undergoes a clockwise angular acceleration about C of

The linear acceleration to the left of the point A on the circumference of the yo-yo is , and, because of
condition ( ), some algebra will show that this is necessarily positive, as expected.

In this case,  is zero. Whatever the coefficient of friction, even zero, the yo-yo will undergo a linear acceleration  to the
right (Verify that this is consistent with Equation ( ) ), and a clockwise angular acceleration about C equal to . The linear
acceleration to the right of the point A on the circumference of the yo-yo is

which is zero. The initial linear velocity of the point A is therefore zero.

I have drawn the four forces on the yo-yo. Its weight . The normal reaction of the table on the yo-yo, which is also of
magnitude . The tension  in the string. And the frictional force  of the table on the yo-yo. On this occasion (unlike in
Problem 40 (b)) there is no question about the direction of , which is towards the left.

Let us suppose there is no slipping.

The sum of the clockwise moments of the forces about A is  and the moment of inertia about A is . The yo-

yo therefore undergoes an initial clockwise angular acceleration about A equal to  and therefore (if there is no slipping)

an initial linear acceleration to the right equal to

Additional string therefore becomes wrapped around the axle. (Yes, it really does! I tried it!)

The above linear acceleration must equal  from which we obtain

.
P   +  μMg

M– ––––––––––– –––––––––––

(11)

.
Pa  −  μMgb

I– –––––––––––––– –––––––––––––

(12)

b× −
Pa−μMgb

I

P+μMg

M

8

I = Mab

F P
M

1 Pa

I

  −b×P

M

Pa

I

 Exercise 22.8.40c

Mg
Mg P F

F

P(b−a)

I + Mb2 I  +  Mb2

P(b−a)

I + Mb2

.
Pb(b−a)

I  +  Mb2
– –––––––––– –––––––––

(1)

(P−F)

M

F   =  ( )P .
I  +  Mab

I  +  Mb2
(2)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/9092?pdf


22.8.48 https://phys.libretexts.org/@go/page/9092

Provided ,there will be no slipping at A, and the yo-yo will roll to the right without slipping. Thus the yo-yo will
roll to the right without slipping, with a linear acceleration given by equation (1) if

F < μMg

μ > .
( )I+Mab

I+Mb2

( )P

Mg
– ––––––––––––––

(2)

,μ <
( )I+Mab

I+Mb2

( )P

Mg
– –––––––––––––

(22.8.1)

F = μMg, (2)

.
P −μMg

M– –––––––––
(22.8.2)

Pa−μMgb

I– –––––––––––
(22.8.3)

 Exercise 22.8.40d

Pb(a+b cosθ

I +Mb2
(1)

F =( )P .
I cosθ−Mab

I +Mb2
(2)

 Exercise 22.8.40E

.
P (b cosθ−a)

I +Mb2
(1)

.
P (b−cosθ−a)

I +Mb2
(2)

F =( )P ,
I cosθ+Mab

I +Mb2
(3)
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= 0.

.
P (a−b cosθ

I +Mb2
(4)

Pb(a−b cosθ

I +Mb2
(5)

F = \left(\frac{I\cos \theta + Mab}{I + Mb^2}\right)P, } \label{40e.6}

 Exercise 22.8.41

3m = 2ma+m× ax̄̄̄ 4
3

3m = 2m× a+m×43a.ȳ̄̄ 1
2

= a = a.x̄̄̄ 10
9

ȳ̄̄ 7
9

.1
2

⎡

⎣
⎢

x1

y1

1

x2

y2

1

x3

y3

1

⎤

⎦
⎥

(2m)( a = m .1
3

1
2

)2 1
6

a2

= (2m) = m .1
3

a2 2
3

a2

= m +2m( a = m .Arect
1
6

a2 5
18

)2 28
81

a2

= m +2m( a = mBrect
2
3

a2 1
9

)2 65
81

a2

= 0 +2m( a)( a) = m .Hrect
1
9

5
18

5
81

a2

= m −m( a = m .1
6

a2 1
3

)2 1
18

a2

= (m)(2a −m( ×2a = m .1
6

)2 1
3

)2 2
9

a2

+ m(2a)(a) = + m .1
36

1
18

a2

= m +m( a = m .Atria
1

18
a2 5

8
)2 59

162
a2

= m +m( a = m .Btria
2
9

a2 2
9

)2 22
81

a2

= m +m(− a)(− a) = m .Htria
1

18
a2 2

9
5
9

29
162

a2
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 30º.009 180 and 120º.009 180

 = 0.546142ma  , = 1.102006ma .

The condition for stability, from Chapter 16 Section 16.9, Equation 16.9.5 is that

.

A = m + m = m .26
81

a2 59
162

a2 37
51

a2

B = m + m = m .56
81

a2 22
81

a2 26
27

a2

H = m + m = m .5
81

a2 29
162
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 Exercise 22.8.42
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 Exercise 22.8.43
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 Exercise 22.8.44
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 for a filled circle of radius  is . If the length of the cylinder is , the volume immersed is , so the left hand side of

the inequality is .

The depth of the centre of mass is  and the depth of the centre of buoyancy is , so that . The
condition for stability is, then, .

With , this gives, for the condition for stability,

This function is least for . For any length less than this, the system is stable for any density. With 

, the inequality can be written , so that  must be less than 0.146 or greater than 0.854.

Before doing the problem, let’s just have a look at the “interesting” property of a (4, 5, 6) triangle

Calculate  by the cosine rule: , hence .

Calculate  by the cosine rule: , hence .

But . Therefore .

The external angle at B is .
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 Exercise 22.8.45
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The angles are 

Supplement of 

It is not the case that a triangle with one angle equal to twice another one is necessarily a (4, 5, 6) triangle.

After that diversion, let’s move on to the given problem - except that we’ll generalize it to make the length of the rod , and
the lengths of the strings  and .

The only physics involved is to recall that, if three coplanar forces are in equilibrium, they must be concurrent at a point - in
this case the point C. This means that C must be vertically above the mid-point of the rod.

After that, there is no more physics; the rest is “just” geometry. All we have to do is to find  in terms of  and .

If C is to be directly above the mid-point, then AN = MB. That is:

.

This quickly results in

.

In our particular example, , and .

Thus
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If the weight of the rod is , I’ll leave it to you to work out the tensions in the strings.

The only physics involved is to recall that, if three coplanar forces are in equilibrium, they must be concurrent at a point - in
this case the point C. This means that C must be vertically above the mid-point. Also, since the planes are smooth, the forces at
A and B are perpendicular to the planes.

The rest is geometry - almost the same as in Problem 45, except that in this problem we are given the angles  and  rather
than the lengths  and . Start by convincing yourself that the two angles at C are indeed  and , as marked. Now all that is
required is to express  in terms of  and .

Since the mid-point of the rod must be vertically below C, we must have AN = MB. That is:

.

By the Sine Rule, , so that 

But °  and ° , so

,

which quickly yields . In our particular example, this is 20.1°. If you wish,

you could work out the forces at A and B in terms of the weight of the rod.
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 Exercise 22.8.46
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 Exercise 22.8.47
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I have drawn above the three forces on the rod. The forces at the ends of the rod each make an angle  to the normal to the
surface, where , and the three coplanar forces, being in static equilibrium, are concurrent at a point. I have also
introduced the angle , given by . All we have to do is to find  in terms of  and  - that is to say, in terms of 
and 

Fortunately I found the following formula for a triangle in an old geometry book:

I’ll leave you to see if you can derive it. The book actually gave a formula for a more general case in which the base of the
triangle isn’t divided equally. For the case

the formula is .

You can use this in various problems in geometric optics, where you are trying to find relations between object distance, image
distance and radius of curvature or focal length. However, for this problem, we need only the simpler formula, where the base
of the triangle is equally divided.

On applying the simpler formula to our present problem we obtain

and the problem is solved.

Below, I illustrate some examples. Going from left to right we have short , medium , long  rod.
Going from top to bottom we have a slippery , a medium , and a sticky  surface.

Inside each drawing, I tabulate

λ

tanλ = μ

ϕ cosϕ = l/a θ λ ϕ μ

l/a

cotγ = (cosα−cotβ)1
2

(1 +x) cotγ = cotα−x cotβ

,tanθ = [cot(ϕ−λ) −cot(ϕ+λ)]1
2– –––––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––

l/a = 0.2 l/a = 0.4 l/a = 0.6
μ = 0.5 /mu = 1.0 /mu = 1.5
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°

The long  rod will rest vertically for any . But, while it will not slip, the equilibrium is no longer
stable, and the rod will tip after an infinitesimal counterclockwise displacement.

This page titled 22.8: Appendix B is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via
source content that was edited to the style and standards of the LibreTexts platform.
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