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2.18: Determination of the Principal Axes
We now need to address ourselves to the determination of the principal axes. Unlike the two- dimensional case, we do not have a
nice, simple explicit expression similar to Equation 2.12.12 to calculate the orientations of the principal axes. The determination is
best done through a numerical example.

Consider four masses whose positions and coordinates are as follows:

M x y z

1 3 1 4

2 1 5 9

3 2 6 5

4 3 5 9

Relative to the first particle, the coordinates are

1 0 0 0

2 -2 4 5

3 -1 5 1

4 0 4 5

From this, it is easily found that the coordinates of the centre of mass relative to the first particle are ( −0.7, 3.9, 3.3), and the
moments of inertia with respect to axes through the first particle are

From the parallel axes theorems we can find the moments of inertia with respect to axes passing through the centre of mass:

The inertia tensor is therefore

We understand from what has been written previously that if , the instantaneous angular velocity vector, is along any of the
principal axes, then  will be in the same direction as . In other words, if  are the direction cosines of a principal
axis, then

 Example 2.18.1
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H = −31
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B = 50.2
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G = 0.1

H = −3.7

⎛

⎝
⎜

63.0

3.7

−0.1

3.7

50.2

−6.3

−0.1

−6.3

25.0

⎞

⎠
⎟

ω

lω ω (l, m, n)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/8368?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Tatum)/02%3A_Moments_of_Inertia/2.18%3A_Determination_of_the_Principal_Axes
https://chem.libretexts.org/Under_Construction/Core_Construction/Franzen/Transformation_under_Rotation


2.18.2 https://phys.libretexts.org/@go/page/8368

where  is a scalar quantity. In other words, a vector with components (direction cosines of a principal axis) is an
eigenvector of the inertia tensor, and  is the corresponding principal moment of inertia. There will be three eigenvectors (at
right angles to each other) and three corresponding eigenvalues, which we’ll initially call  though, as soon as we
know which is the largest and which the smallest, we'll call , according to our convention .

The Characteristic Equation is

In this case, this results in the cubic equation

where

The three solutions for , which we shall call  in order of increasing size are

and these are the principal moments of inertia. From the theory of equations, we note that the sum of the roots is exactly equal
to , and we also note that it is equal to , consistent with what we wrote in Section 2.16 (Equation 2.16.2). The
sum of the diagonal elements of a matrix is known as the trace of the matrix. Mathematically we say that "the trace of a
symmetric matrix is invariant under an orthogonal transformation".

Two other relations from the theory of equations may be used as a check on the correctness of the arithmetic. The product of
the solutions equals , which is also equal to the determinant of the inertia tensor, and the sum of the products taken two at a
time equals .

We have now found the magnitudes of the principal moments of inertia; we have yet to find the direction cosines of the three
principal axes. Let's start with the axis of least moment of inertia, for which the moment of inertia is . Let the
direction cosines of this axis be . Since this is an eigenvector with eigenvalue 23.498 256 we must have

These are three linear equations in  with no constant term. Because of the lack of a constant term, the theory of
equations tells us that the third equation, if it is consistent with the other two, must be a linear combination of the first two. We
have, in effect, only two independent equations, and we are going to need a third, independent equation if we are to solve for
the three direction cosines. If we let  and , then the first two equations become

The solutions are
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The correctness of the arithmetic can and should be checked by verifying that these solutions also satisfy the third equation.

The additional equation that we need is provided by Pythagoras's theorem, which gives for the relation between three direction
cosines

or

whence

Thus we have, for the direction cosines of the axis corresponding to the moment of inertia 

(Check that )

It does not matter which sign you choose - after all, the principal axis goes both ways.

Similar calculations for  yield

and for 

For the first two axes, it does not matter whether you choose the upper or the lower sign. For the third axes, however, in order
to ensure that the principal axes form a right-handed set, choose the sign such that the determinant of the matrix of direction
cosines is +1.

We have just seen that, if we know the moments and products of inertia  with respect to some axes (i.e. if we
know the elements of the inertia tensor) we can find the principal moments of inertia by diagonalizing the inertia tensor,
or finding its eigenvalues. If, on the other hand, we know the principal moments of inertia of a system of particles (or of a solid
body, which is a collection of particles), how can we find the moment of inertia I about an axis whose direction cosines with
respect to the principal axes are  ?

First, some geometry.

Let O  be a coordinate system, and let P  be a point whose position vector is

Let L be a straight line passing through the origin, and let the direction cosines of this line be

. A unit vector  directed along L is represented by

The angle  between  and  is found from the scalar product , given by

I.e.
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The perpendicular distance  from P to L is

If we write , we soon obtain

Noting that  we find, after further manipulation:

Now return to our collection of particles, and let O  be the principal axes of the system. The moment of inertia of the system
with respect to the line L is

where I have omitted a subscript  on each symbol. Making use of the expression for  and noting that the product moments of the
system with respect to O  are all zero, we obtain

Also, let  be the moments and products of inertia with respect to a set of nonprincipal orthogonal axes; then the
moment of inertia about some other axis with direction cosines  with respect to these nonprincipal axes is

We saw in Section 2.16 that the moment of inertia of a uniform solid cube of mass  and side  about a body diagonal is 
, and we saw how very easy this was. At that time the problem of finding the moment of inertia of a uniform solid

rectangular parallelepiped of sides  must have seemed intractable, but by now it is not at all hard.

Thus we have:

We obtain:
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 Example : Consider a brick2.18.2
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We note:

i. This is dimensionally correct;
ii. It is symmetric in 

iii. If  it reduces to .

This page titled 2.18: Determination of the Principal Axes is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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