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17.5: Double Pendulum
This is another similar problem, though, instead of assuming Hooke’s law, we shall assume that angles are small ( 

 ). For clarity of drawing, however, I have drawn large angles in Figure XVIII.4.

Because I am going to use the lagrangian equations of motion, I have not marked in the forces and accelerations; rather, I have
marked in the velocities. I hope that the two components of the velocity of  that I have marked are self-explanatory; the speed of

 is given by . The kinetic and potential energies are

If we now make the small angle approximation, these become

and

Apply the lagrangian equation in turn to  and :

and

Seek solutions in the form of  and .

Then

and

Either of these gives the displacement ratio . Equating the two expressions for the ratio , or putting the determinant of
the coefficients to zero, gives the following equation for the frequencies of the normal modes:

As in the previous examples, there is a slow in-phase mode, and fast out-of-phase mode.
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V = constant − g cos − g( cos + cos ).m1 l1 θ1 m2 l1 θ1 l2 θ2 (17.5.2)
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V = contant + g + g( + ) − g − g .
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For example, suppose  = 0.01 kg,  = 0.02 kg,  = 0.3 m,  = 0.6 m,  = 9.8 m s .

Then . The slow solution is  = 3.441 rad s  (  = 1.826 s), and the fast solution is  = 11.626 rad s
(  =0.540 s). If we put the first of these (the slow solution) in either of equations 17.5.7 or 8 (or both, as a check against mistakes)
we obtain the displacement ratio  = 1.319, which is an in-phase mode. If we put the second (the fast solution) in either
equation, we obtain  = −0.5689 , which is an out-of-phase mode. If you were to start with  = 1.319 and let go, the
pendulum would swing in the slow in-phase mode. If you were to start with  = −0.5689 and let go, the pendulum would
swing in the fast out-of-phase mode. Otherwise the motion would be a linear combination of the normal modes, with the fraction of
each determined by the initial conditions, as in the example in Section 17.3.
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