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11.5ii: Heavy damping- γ>2 ω 0 γ>2ω0
The motion is given by Equations 11.5.4 and 11.5.6 where, this time,  and  are each real and negative. For convenience, I am
going to write  and .  are  both real and positive, with  >  given by

The general solution for the displacement as a function of time is

The speed is given by

The constants  and  depend on the initial conditions. Thus:

and

From these, we obtain

Figure XI.4 shows  for  = 1 m,  = 1 s ,  = 2 s .

The displacement will fall to half of its initial value at a time given by putting  in Equation . This will in
general require a numerical solution. In our example, however, the equation reduces to  and if we let 

, this becomes . The two solutions of this are  or . The first of these gives a
negative t, so we want the second solution, which corresponds to  seconds.

The velocity as a function of time is given by

This is always negative. In figure XI.5, is shown the speed, which is  as a function of time, for our numerical example.
Those who enjoy differentiating can show that the maximum speed is reached in a time  and that the maximum speed is 

. (Are these dimensionally correct?) In our example, the maximum speed, reached at 
 seconds, is 0.5 m s .
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 Example 11.5ii. 1
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In this case it is easy to show that

It is left as an exercise to show that  reaches a maximum value of  when . Figure XI.6 illustrates
Equation  for  = 1 s ,  = 2 s ,  = 5 m s . The maximum displacement of 1.25 m is reached when 

 s. It is also left as an exercise to show that equation  can be written

 Example 11.5ii. 2
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This is the really exciting example, because the suspense-filled question is whether the particle will shoot past the origin at
some finite time and then fall back to the origin; or whether it will merely tamely fall down asymptotically to the origin
without ever crossing it. The tension will be almost unbearable as we find out. In fact, I cannot wait; I am going to plot 
versus  in figure XI.7 for  = 1 s ,  = 2 s ,  = 1 m, and three different values of , namely 1, 2 and 3 m s .

We see that if  = 3 m s the particle overshoots the origin after about 0.7 seconds. If  = 1 m s , it does not look as though it
will ever reach the origin. And if  = 2 m s , I'm not sure. Let's see what we can do. We can find out when it crosses the origin
by putting = 0 in Equation , where  and  are found from Equations  with . This gives, for the
time when it crosses the origin,
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Since , this implies that the particle will overshoot the origin if , and this in turn implies that, for a given ,
it will overshoot only if

For our example, = 2 m s , so that it just fails to overshoot the origin if = 2 m s . For  = 3 m s , it crosses the origin
at  s. In order to find out how far past the origin it goes, and when, we can do this just as in

I make it that it reaches its maximum negative displacement of -0.125 m at  s.

This page titled 11.5ii: Heavy damping-  is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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