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9.3: Virtual Work
We have seen that a mechanical system subject to conservative forces is in equilibrium when the derivatives of the potential energy
with respect to the coordinates are zero. A method of solving such problems, therefore, is to write down an expression for the
potential energy and put the derivatives equal to zero.

A very similar method is to use the principle of virtual work. In this method, we imagine that we act upon the system in such a
manner as to increase one of the coordinates. We imagine, for example, what would happen if we were to stretch one of the springs,
or to increase the angle between two jointed rods, or the angle that the ladder makes as it leans against the wall. We ask ourselves
how much work we have to do on the system in order to increase this coordinate by a small amount. If the system starts from
equilibrium, this work will be very small, and, in the limit of an infinitesimally small displacement, this “virtual work” will be zero.
This method is very little different from setting the derivative of the potential energy to zero. I mention it here, however, because
the concept might be useful in Chapter 13 in describing Hamilton’s variational principle.

Let’s start by doing a simple ladder problem by the method of virtual work. The usual uniform ladder of high school physics, of
length  and weight , is leaning in limiting static equilibrium against the usual smooth vertical wall and the rough horizontal
floor whose coefficient of limiting static friction is . What is the angle  that the ladder makes with the vertical wall?

I have drawn the four forces on the ladder, namely: its weight ; the normal reaction of the floor on the ladder, which must also
be ; the frictional force, which is ; and the normal (and only) reaction of the wall on the ladder, which must also be .

There are several ways of doing this, which will be familiar to many readers. The only small reminder that I will give is to point out
that, if you wish to combine the two forces at the foot of the ladder into a single force acting upwards and somewhat to the left, so
that there are then just three forces acting on the ladder, the three forces must act through a single point, which will be above the
middle of the ladder and to the right of the point of contact with the wall. But we are interested now in solving this problem by the
principle of virtual work.

Before starting, I should warn that it is important in using the principle of virtual work to be meticulously careful about signs, and
in that respect I remind readers that in the differential calculus the symbols  and  in front of a scalar quantity  do not mean “a
small change in” or “an infinitesimal change” in . Such language is vague. The symbols stand for “a small increase in” and “an
infinitesimal increase in”.

Let us take note of the following distances:
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and

If we were to increase  by , keeping the ladder in contact with wall and floor, the increases in these distances would be

and

Further, if were to increase  by , the work done by the force at C would be  times the decrease of the distance CD, and the
work done by the frictional force at E would be minus  times the increase of the distance BE. The other two forces do no
work. Thus the “virtual work” done by the external forces on the ladder is

On putting the expression for the virtual work to zero, we obtain

You should verify that this is the same answer as you get from other methods – the easiest of which is probably to take moments
about E.

There is something about virtual work which reminds me of thermodynamics. The first law of thermodynamics, for example is 
, where  is the increase of the internal energy of the system,  is the heat added to the system, and  is

the work done on the system. Prepositions play an important part in thermodynamics. It is always mandatory to state clearly and
without ambiguity whether work is done by the piston on the gas, or by the gas on the system; or whether heat is gained by the
system or lost from it. Without these prepositions, all discussion is meaningless. Likewise in solving a problem by the principle of
virtual work, it is always essential to say whether you are describing the work done by a force on what part of the system (on the
ladder or on the floor?) and whether you are describing an increase or a decrease of some length or angle.

Let us move now to a slightly more difficult problem, which we’ll try by three different methods – including that of virtual work.

In Figure IX.5, a uniform rod AB of weight  and length  is freely hinged at A. The end B carries a smooth ring of negligible
mass. A light inextensible string of length  has one end attached to a fixed point C at the same level as A and distant  from it. It
passes through the ring and carries at its other end a weight  hanging freely. (The “smooth” ring means that the tension in the
string is the same on both sides of the ring.) Find the angle CAB when the system is in equilibrium.

I have marked in various angles and lengths, which can easily be determined from the geometry of the system, and I have also
marked the four forces on the rod.
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Let us first try a very conventional method. We know rather little about the force R of the hinge on the rod (though see below), and
therefore this is a good reason for taking moments about the point A. We immediately obtain

Divide by  and set , where . After a little algebra, we obtain  and hence we find
for the equilibrium condition that  = 82  49' or 263 37'. The latter, by the way, is a physically valid solution – you might want to
sketch it.

Now let’s try the same problem using energy conditions. We’ll take the zero of potential energy when the rod is horizontal – at
which time the small mass is at a distance l below the level AC.

When the angle CAB = , the distance of the centre of mass of the rod below AC is  and the distance of the small mass
below AC is  so that the potential energy is

The derivative is

and setting this to zero will produce the same results as before. Further differentiation (do it), or a graph of  :  (do it), will show
that the 82  49' solution is stable and the 263 37' solution is unstable.

Now let’s try it by virtual work. We are going to increase  by  and see how much work is done.
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The distance of the centre of mass of the rod below AC is , and if  increases by , this will increase by , and the
work done by  will be .

The distance of the ring below AC is , and if  increases by , this will increase by , and the work done by the
downward force will be .

The distance BC is , and if  increases by , this will increase by  and the work done by the sloping force
will be MINUS .

Thus the virtual work is

If we put this equal to zero, we obtain the same result as before.

This page titled 9.3: Virtual Work is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source
content that was edited to the style and standards of the LibreTexts platform.
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