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4.5: Euler's Equations of Motion
In our first introduction to classical mechanics, we learn that when an external torque acts on a body its angular momentum
changes (and if no external torques act on a body its angular momentum does not change.) We learn that the rate of change of
angular momentum is equal to the applied torque. In the first simple examples that we typically meet, a symmetrical body is
rotating about an axis of symmetry, and the torque is also applied about this same axis. The angular momentum is just , and so
the statement that torque equals rate of change of angular momentum is merely  and that’s all there is to it.

Later, we learn that  = , where  is a tensor, and  and  are not parallel. There are three principal moments of inertia, and , 
 and the applied torque  each have three components, and the statement “torque equals rate of change of angular momentum”

somehow becomes much less easy.

Euler’s Equations sort this out, and give us a relation between the components of the ,  and .

For Figure IV.5, I have just reproduced, with some small modifications, Figure III.19 from my notes on this Web site on Celestial
Mechanics, where I defined Eulerian angles. Again it is suggested that those who are unfamiliar with Eulerian angles consult
Chapter III of Celestial Mechanics.

In Figure IV.5,  are space-fixed axes, and  are the body-fixed principal axes. The axis  is behind the plane of
your screen; you will have to look inside your monitor to find it.

I suppose an external torque  acts on the body, and I have drawn the components  and . Now let’s suppose that the body
rotates in such a manner that the Eulerian angle  were to increase by  . I think it will be readily agreed that the work done on
the body is . This means, following our definition of generalized force in Section 4.4, that  is the generalized force
associated with the generalized coordinate . Having established that, we can now apply the Lagrangian Equation 4.4.1:

Here the kinetic energy is the expression that we have already established in Equation 4.3.6. In spite of the somewhat fearsome
aspect of Equation 4.3.6, it is quite easy to apply Equation  to it. Thus

where I have made use of Equation 4.2.3.

Therefore

And, if we make use of Equations 4.2.1,2,3, it is easy to obtain

Thus Equation  becomes:
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This is one of the Eulerian Equations of motion.

Now, although we saw that  is the generalized force associated with the coordinate y, it will we equally clear that  is not the
generalized force associated with q, nor is  the generalized force associated with . However, we do not have to think about what
the generalized forces associated with these two coordinates are; it is much easier than that. To obtain the remaining two Eulerian
Equations, all that is necessary is to carry out a cyclic permutation of the subscripts in Equation . Thus the three Eulerian
Equation are:

These take the place of  which we are more familiar with in elementary problems in which a body is rotating about a
principal axis and a torque is applied around that principal axis.

If there are no external torques acting on the body, then we have Euler’s Equations of free rotation of a rigid body:

In the above drawing, a rectangular lamina is spinning with constant angular velocity  between two frictionless bearings. We
are going to apply Euler’s Equations of motion to it. We shall find that the bearings are exerting a torque on the rectangle, and
the rectangle is exerting a torque on the bearings. The angular momentum of the rectangle is not constant – at least it is not
constant in direction. We shall calculate the torque (its magnitude and its direction) and see what is happening to the angular
momentum.

We note that the principal (second) moments of inertia are

and that the components of angular velocity are
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Also,  and all of its components are zero. We immediately obtain, from Euler’s Equations, that  and  are zero, and that
the torque exerted on the rectangle by the bearings is

And since

we obtain

Thus , the torque exerted on the rectangle by the bearings is directed normal to the plane of the rectangle (out of the plane of
the paper in the instantaneous snapshot above).

The angular momentum is given by . That is to say:

This tells us that  is in the plane of the rectangle, and makes an angle 90° -  with the -axis, or q with the -axis, and it
rotates around the vector .  is perpendicular to the plane of the rectangle, and of course the change in  takes place in that
direction. The torque does no work, and  and  are constant. The reader might find an analogy in the situation of a planet in
orbit around the Sun in a circular orbit.. The planet experiences a force that is always perpendicular to its velocity. The force
does no work, and the speed and kinetic energy remain constant.
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The torque on the plate can be represented as a couple of forces exerted by the bearings on the plate, each of magnitude 

 or  Forces exerted by the plate on the bearings are, of course, in the opposite direction.

Figure IV.6 shows a disc of mass , radius , spinning at a constant angular speed  about at axle that is inclined at an angle 
to the normal to the disc. I have drawn three body-fixed principal axes. The - and - axes are in the plane of the
disc\boldsymbol; the direction of the -axis is chosen so that the axle (and hence the vector  ) is in the -plane. The disc is
evidently unbalanced and there must be a torque on it to maintain the motion.

Since  is constant, all components of  are zero, so that Euler’s Equations are

Now 

Therefore 

(Check, as always, that this expression is dimensionally correct.) Thus the torque acting on the disc is in the negative -
direction.

Can you reconcile the fact that there is a torque acting on the disc with the fact that is it moving with constant angular velocity?
Yes, most decidedly! What is not constant is the angular momentum , which is moving around the axle in a cone such that 

, where  is the unit vector along the -axis.

This page titled 4.5: Euler's Equations of Motion is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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