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13.9: Hamilton's Variational Principle

Hamilton’s variational principle in dynamics is slightly reminiscent of the principle of virtual work in statics, discussed in Section
9.4 of Chapter 9. When using the principle of virtual work in statics we imagine starting from an equilibrium position, and then
increasing one of the coordinates infinitesimally. We calculate the virtual work done and set it to zero. I am slightly reminded of
this when discussing Hamilton’s principle in dynamics

Imagine some mechanical system — some contraption including in its construction various wheels, jointed rods, springs, elastic
strings, pendulums, inclined planes, hemispherical bowls, and ladders leaning against smooth vertical walls and smooth horizontal
floors. It may require IV generalized coordinates to describe its configuration at any time. Its configuration could be described by
the position of a point in IV-dimensional space. Or perhaps it is subject to k holonomic constraints — in which case the point that
describes its configuration in /V-dimensional space is not free to move anywhere in that space, but is constrained to slither around
on a surface of dimension NV — k.

The system is not static, but it is evolving. It is changing from some initial state at time ¢; to some final state at time ¢5. The
generalized coordinates that describe it are changing with time — and the point in N-space is slithering round on its surface of
dimension IV — k. One can imagine that at any instant of time one can calculate its kinetic energy 7' and its potential energy V,
and hence its lagrangian L =T — V' . You can multiply L at some moment by a small time interval §¢ and then add up all of these
products between ¢; and ¢, to form the integral
t2
/ Ldt.
ty

This quantity — of dimension ML?T-! and ST unit J s — is sometimes called the “action”. There are many different ways in which we
can imagine the system to evolve from its initial state to its final state — and there are many different routes that we can imagine
might be taken by our point in IV-space as its moves from its initial position to its final position, as long as it moves over its surface
of dimension N — k. But, although we can imagine many such routes, the manner in which the system will actually evolve, and
the route that the point will actually take is determined by Hamilton’s principle; and the route, according to this principle, is such

that the integral ftf Ldt is a minimum, or a maximum, or an inflection point, when compared with other imaginable routes. Stated

otherwise, let us suppose that we calculate ft? Ldt over the actual route taken and then calculate the variation in sz Ldt if the
system were to move over a slightly different adjacent path. Then (and here is the analogy with the principle of virtual work in a
statics problem) this variation
ta
) / Ldt
ty

from what ft? Ldt would have been over the actual route is zero. And this is Hamilton’s variational principle.

The next questions will surely be: Can I use this principle for solving problems in mechanics? Can I prove this bald assertion? Let
me try to use the principle to solve two simple and familiar problems, and then move on to a more general problem.

v/ Example 13.9.1

Imagine that we have a particle than can move in one dimension (i.e. one coordinate — for example its height y above a table -
suffices to describe its position), and that when its coordinate is y its potential energy is

V =mgy. (13.9.1)
Its kinetic energy is, of course,
1
T — 5my2' (13.9.2)

We are going to use the variational principle to find the equation of motion — i.e we are going to find an expression for its
acceleration. I imagine at the moment you have no idea what its acceleration could possibly be — but do not worry, for we
know that the lagrangian is

1
L= Emyz—mgy, (13.9.3)

13.9.1 https://phys.libretexts.org/@go/page/8446



https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/8446?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Tatum)/13%3A_Lagrangian_Mechanics/13.09%3A_Hamilton's_Variational_Principle

LibreTextsm

and we’ll make short work of it with Hamilton’s variational principle and soon find the acceleration. According to this
principle, y must vary with ¢ in such a manner that

t2
mé (%gﬁ —gy)dt =0. (13.9.4)

t1
Let us vary g by dy and y by dy see how the integral varies.
The integral is then
t2
m [ (90y —gdy)dt, (13.9.5)
t
whichT’ll call [ — I, .
Now y = % and if y varies by dy, the resulting variation in ¢ will be dy = %6y, or dydt = ddy.

Therefore

iy
L=m yddy. (13.9.6)

t1
(If unconvinced of this, consider [’ costdt = [’ %sintdt = [€'dsint .)
By integration by parts:
ta
I =[mydyl —m [ dydy. (13.9.7)
t
The first term is zero because the variation is zero at the beginning and end points. In the second term, dy = ¢jdt and therefore

t2

L =—m yoydt (13.9.8)
t1
to ta
5/ Ldt=-m (4 + g)dydt, (13.9.9)
t1 t1
and, for this to be zero, we must have
ij=—g. (13.9.10)

This is the equation of motion that we sought. You would never have guessed this, would you?

Now let’s do another one-dimensional problem.

v/ Example 13.9.2

Only one coordinate, , describes the particle’s position, and, when its coordinate is = we’ll suppose that its potential energy is

2

V= %mw x? and its kinetic energy is, of course, T' = %maﬁﬂ . The equation of motion, or the way in which the acceleration

varies with position, must be such as to satisfy

1 P
5md (&* —wPz?)dt = 0. (13.9.11)
t1

If we vary = by §z and x by dz the variation in the integral will be
iy
m | (20% —w’xdz)dt =1, — . (13.9.12)
t1
By precisely the same argument as before, the first integral is found to be —m ftjz Zox dt

Therefore
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to ta ta
5/ Ldt=-m 2oz dt—mw2/ zdz dt, (13.9.13)
t1 t1

t1

and, for this to be zero, we must have

i=—w'z. (13.9.14)

These two examples must have given the impression that we are doing something very difficult in order to derive something that is
immediately obvious — but the examples were just intended to show the direction of a more general argument we are about to
make.

This time, we’ll consider a very general system, in which we write the lagrangian as a function of the (several) generalized
coordinates and their time rates of change - i.e. L = L(g;, ¢;) - without specifying any particular form of the function — and we’ll
carry out the same sort of argument to derive a very general equation of motion.

We have
b2 b2 b2 oL oL
é Ldt = oLdt = —dq; + =——464; | dt =0. 13.9.15
J = a5 (o ) 3019
As before, §g; = %5% so that
2 gL b 9L d & oL oL . 1 [t d oL
—dg;dt = — —dg¢;dt = —ddq; = [—.éq} - 6q;— ——dt 13.9.16
v 0g i Og; dt n 04 1084 1, Jn  dtag ( )
iz &2 OL d 0L
6/ Ldt:/ (————_)6 ;dt = 0. 13.9.17
" 4 Z Og;  dt 0g; e ( )
Thus we arrive at the general equation of motion
OL d (0L
— _— (=) =o0. 13.9.18

Thus we have derived Lagrange’s equation of motion from Hamilton’s variational principle, and this is indeed the way it is often
derived. However, in this chapter, I derived Lagrange’s equation quite independently, and hence I would regard this derivation not
so much as a proof of Lagrange’s equation, but as a vindication of the correctness of Hamilton’s variational principle.

This page titled 13.9: Hamilton's Variational Principle is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
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