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5.5: Oblique (Glancing) Elastic Collisions, Alternative Treatment
In Figure V.3, unlike Figure V.2, the horizontal line is not intended to represent the line of centers. Rather, it is the direction of the
initial velocity of , and  is initially at rest. The second mass  is slightly off the line of the velocity of . I am assuming
that the collision is elastic, so that . In the "before" part of the Figure, I have indicated, as well as the two masses, the position
and velocity  of the center of mass . The velocity of  remains constant, because there are no external forces on the system. I
have not drawn  in the "after" part of the Figure, because it would get a little in the way. Think about where it is.

Figure V.3 shows the situation in "laboratory space". (Later, we'll look at the situation referred to a reference frame in which  is at
rest – "center of mass space".) The angle  is the angle through which  has been scattered (the "scattering angle"). I have
indicated in the Figure how it is related to the  and  of Section 5.3. Note that  (initially stationary) scoots off along the line
of centers.

The following two equations express the constancy of linear momentum of the system.

I'm going to draw, in Figure V.4, the situation "close-up", so that you can see the geometry more clearly. Note that the distance  is
called the impact parameter. It is the distance by which the two centers would have missed each other had the first particle not been
scattered.

In Figure V.5, I draw the situation in center of mass space, in which the center of mass  is stationary. In this reference frame, I just
have to subtract  from all the velocities. Note that in center of mass space the speeds of the particles are unaltered by the
collision. In center of mass space,  is scattered through an angle , and I am going to find a relation between ,  and the mass

ratio .

I shall start with the profound statement that

Now  is the -component of the final velocity of  in laboratory space. The -component of the final velocity of  in
center of mass space is , and these two are equal, since the -component of the motion is unaffected by the change of
reference frame. Therefore
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The -components of the "before" and "after" velocities of  are related by

Substitute Equations  and  into Equation  to obtain

But

from which

On substituting this into Equation , we obtain the relation we sought:

This relation is illustrated in Figure V.6 for several mass ratios.

Let us try to interpret the Figure. For , any scattering angle, forward or backward, is possible, but for ,
backward scattering is not possible, and forward scattering is possible only up to a maximum. This is only to be expected. Thus for
an impact parameter of zero or of , and , the scattering angle  must be zero, and therefore for intermediate
impact parameters it must go through a maximum. This would be clearer if we could plot the scattering angle versus the impact
parameter, and indeed that is something that we shall try to do. In the meantime it is easy to show, by differentiation of Equation 

 (do it!), that the maximum scattering angle is , where

That is, if the scattered particle is very massive compared with the scattering particle, the maximum scattering angle is small – just
to be expected.

I want to do two things now - one, to calculate the scattering angle  as a function of impact parameter, and two, to calculate  as

a function of scattering angle. I’m going to start with Equations 5.4.1, 5.4.2 and 5.4.4, except for the following. I’ll assume 
(elastic collision), and (  is initially stationary), and  (since  is initially stationary, it must move along the line
of centers after collision). Since I want to try to calculate the scattering angle, I’ll write  for  (see Figure V.4). I’m also
going to write ,  and  for the dimensionless ratios ,  and  respectively. With those small changes, Equations 5.4.1,

5.4.2 and 5.4.4 become
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Eliminate  from Equations  and  to obtain

where

If we now eliminate  from Equations  and , we obtain the relation between  and the scattering angle, which was

the second of our two aims above. The elimination is easily done as follows. Expand \sin and cos of  in the two equations,
divide both sides of each equation by  and eliminate  between the two equations. The result is

We’ll have a look at this equation in a moment, but in the meantime, instead of eliminating  from Equations  and ,
let’s eliminate . This will give us a relation between the scattering angle  and , and, since  is closely relation to the impact
parameter (see Figure V.4) this will achieve the first of our aims, namely to find the scattering angle as a function of the impact
parameter. If you do the algebra, you should find that the relation between  and  is

where

Now let

and from Figure V.5 we see that

On elimination of  from Equations  and , we obtain the required relation between scattering angle  and
(dimensionless) impact parameter :

This relation is shown in Figure V .7. The values of the mass ratio  (  ) are (from the

lowest up)  and (dashed) . This Figure is perhaps slightly easier to interpret than Figure V.6. One can

see that for , any scattering angle is possible, but for , the scattering angle has a maximum possible value, less than 90
°, and the scattering angle is zero for  = 0 or 1.

We saw, by differentiation of Equation , that the maximum scattering angle was . Now show the same thing by
differentiation of Equation . (This is not so easy, is it?)

Show that the scattering angle is greatest for an impact parameter of

Solution
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You will notice that, for /( b' = 0/) (head-on collision) the scattering angle changes abruptly from 0 to 180° as the mass ratio
changes from less than 1 to more than 1. No problem there. But if the mass ratio is exactly 1 (not the tiniest bit less or the
tiniest bit more) the scattering angle is apparently 90°. This may cause some puzzlement until it is realized that for a head-on
collision with  the first sphere comes to a dead halt.

The case of  (second sphere immovable) is of some interest. It is easy in that case to calculate how the scattering
angle varies with impact parameter for an elastic collision, merely by requiring the scattered sphere to obey the law of
reflection, and without any reference to Equation .

Easy Exercise.

Without any reference to Equation , show that, if the second ball is immovable, the scattering angle is related to the
impact parameter by

Not-so-easy exercise. Show that, in the limit as , Equation  approaches Equation .

In any case, the limiting case as the second sphere becomes immovable is shown as a dashed curve in Figure V.7.

Exercise of Intermediate Difficulty. The mass ratio  is 0.9, and the scattering angle is 50 . What was the impact parameter?

Answers

b' = 0.07270 or 0.58540.

We have now dealt with the direction of motion of  after scattering as a function of impact parameter. We should now look at
the speed of  after collision, and this takes us back to Equation , which gives is the speed ( ) as a function of

scattering angle . It is 11 quadratic in , so, for a given scattering angle there are two possible speeds – which is not surprising,
because a given scattering angle can arise from two different impact parameters, as we have just found out. We can conveniently
show the relation between  and  simply by plotting the equation in polar coordinates. I’ll re-write the equation here for easy
reference:

Here, , but I want to write the equation in terms of the mass fractions

If you work at this for a short while, you will find that Equation  becomes

and one is then overcome with an overwhelming desire to draw a triangle:
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For a given mass ratio, the locus of  (the speed) versus  (the scattering angle) is such that  and  are constant – in other
words, it is a circle:

One can imagine that the first particle comes in from the left at speed u and the collision takes place at the asterisk, and, after
collision, it is moving at a speed  times  in a direction , the magnitude of its velocity vector being determined by where the
vector intersects the circle (in two possible places) given by Equation . The maximum scattering angle corresponds to a
velocity vector that is tangent to the circle. If the asterisk is the pole (origin) of the polar coordinates, the centre of the circle is at a
distance  from the pole, and its radius is . Figure V.10 shows the circles corresponding to several mass ratios. The Figure
graphically illustrates the relation between , ,  and . You can see, for example, that if , scattering through any angle is
possible, and the relation between  and  is unique; but if , only forward scattering is possible, up to a maximum , and,
for a given , there are two solutions for .

This deals with what happens to the sphere . We can now turn our attention to . Starting from Equations ,  and 
, we are going to want to eliminate  and  - indeed anything that pertains to the sphere .

If you refer to Figure V.4 you will see that, after collision,  scoots off at an angle  to the original direction of motion of .
Therefore I think it is of interest to find a relation between  (\dfrac{v_{2}}{u})and . If we succeed in doing this, it means that
we can also find a relation, if we want it, between  and the impact parameter, since . It is easy to eliminate  from
Equations  and , and then you can get  from Equation , and hence get the required relation:

I’ll draw this relation as a polar graph,  versus , in Figure V.11. I’ll leave the reader to work out and draw the relation between 

 and  if he or she wishes. Equation V.11 is the polar equation to a circle of radius .

Suppose the mass ratio  and the scattering angle is  20°. Equation  or Figure V.10 will show that  =

0.8696 or 0.3833. Equation  will show that = 58° .4 or 11° .6 . And Equation  or Figure V.11 will show that 
= 0.6983 or 1.306. I’ll leave it to the reader to determine which alternative values of ,  and  go together.
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