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13.5: Acceleration Components
In Section 3.4 of the Celestial Mechanics “book”, I derived the radial and transverse components of velocity and acceleration in
two-dimensional coordinates. The radial and transverse velocity components are fairly obvious and scarcely need derivation; they
are just  and . For the acceleration components I reproduce here an extract from that chapter:

“The radial and transverse components of acceleration are therefore  and  respectively.”

I also derived the radial, meridional and azimuthal components of velocity and acceleration in three-dimensional spherical
coordinates. Again the velocity components are rather obvious; they are  and  while for the acceleration components I
reproduce here the relevant extract from that chapter.

“On gathering together the coefficients of  we find that the components of acceleration are:

Radial: 

Meridional: 
Azimuthal:  "

You might like to look back at these derivations now. However, I am now going to derive them by a different method, using
Lagrange’s equation of motion. You can decide for yourself which you prefer.

We’ll start in two dimensions. Let  and  be the radial and transverse components of a force acting on a particle. (“Radial” means
in the direction of increasing ; “transverse” means in the direction of increasing .) If the radial coordinate were to increase by ,
the work done by the force would be just . Thus the generalized force associated with the coordinate  is just . If the
azimuthal angle were to increase by , the work done by the force would be . Thus the generalized force associated with the
coordinate  is . Now we do not have to think about how to start; in Lagrangian mechanics, the first line is always “ =
...”, and I hope you’ll agree that

If you now apply Equation 13.4.12 in turn to the coordinates  and , you obtain

and so

Therefore the radial and transverse components of the acceleration are  and  respectively.

We can do exactly the same thing to find the acceleration components in three-dimensional spherical coordinates. Let ,  and 
be the radial, meridional and azimuthal (i.e. in direction of increasing ,  and ) components of a force on a particle.
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If  increases by , the work on the particle done is .
If  increases by , the work done on the particle is .
If  increases by , the work done on the particle is .

Therefore  and .

Start:

If you now apply Equation 13.4.12 in turn to the coordinates  and , you obtain

and

Therefore

and

Thus the acceleration components are

Radial: 

Meridional: 
Azimuthal: .

Be sure to check the dimensions. Since dot has dimension T , and these expressions must have the dimensions of acceleration,
there must be an  and two dots in each term.

This page titled 13.5: Acceleration Components is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
Tatum via source content that was edited to the style and standards of the LibreTexts platform.

r δr Rδr

θ δθ Srδθ

ϕ δϕ Fr sinθδϕ

= R, = SrPr Pθ = Fr sinθPϕ

T = m( + + θ )
1

2
ṙ2 r2 θ̇

2
r2 sin2 ϕ̇

2
(13.5.4)

r, θ ϕ

= m( −r −r θ ),Pr r̈ θ̇
2

sin2 ϕ̇
2

(13.5.5)

= m( +2r − sinθcosθ )Pθ r2 θ̈ ṙ θ̇ r2 ϕ̇
2

(13.5.6)

= m( θ +2 sinθcosθ+2r θ).Pϕ r2 sin2 ϕ̈ r2 θ̇ ϕ̇ ṙϕ̇ sin2 (13.5.7)
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