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17.6: Linear Triatomic Molecule
In Chapter 2, Section 2.9, we discussed a rigid triatomic molecule. Now we are going to discuss three masses held together by
springs, of force constants  and . We are going to allow it to vibrate, but not to rotate. Also, for the time being, I do not want
the molecule to bend, so we’ll put it inside a drinking straw to that all the vibrations are linear. By the way, for real triatomic
molecules, the force constants and rotational inertias are such that molecules vibrate much faster than they rotate. To see their
vibrations you look in the near infra-red spectrum; to see their rotation, you have to go to the far infrared or the microwave
spectrum.

Suppose that the equilibrium separations of the atoms are  and . Suppose that at some instant of time, the x-coordinates
(distances from the left hand edge of the page) of the three atoms are . The extensions from the equilibrium distances are
then . We are now ready to start:

We need to express the kinetic energy in terms of the internal coordinate, and, just as for the diatomic molecule (Section 17.2), the
relevant equations are

and

These can conveniently be written

By one dexterous flick of the fingers (!) we invert the matrix to obtain

where . On putting these into Equation , we now have
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a = ( + )/M ,m1 m2 m3 (17.6.10)
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and for future reference,

On application of Lagrange’s equation in turn to the two internal coordinates we obtain

and

Seek solutions of the form  and  and we obtain the following two expressions for the extension ratios:

Equating them gives the equation for the normal mode frequencies:

For example, if  and , we obtain, for the slow symmetric (“breathing”) mode,  and 
. For the fast asymmetric mode,  and .

Example.

Consider the linear OCS molecule whose atoms have masses 16, 12 and 32. Suppose that the angular frequencies of the normal
modes, as determined from infrared spectroscopy, are 0.905 and 0.413. (I just made these numbers up, in unstated units, just for the
purpose of illustrating the calculation. Without searching the literature, I can’t say what they are in the real OCS molecule.)
Determine the force constants.

In Chapter 2 we considered a rigid triatomic molecule. We were given the moment of inertia, and we were asked to find the two
internuclear distances. We couldn’t do this with just one moment of inertia, so we made an isotopic substitution ( O instead of

O) to get a second equation, and so we could then solve for the two internuclear distances. This time, we are dealing with
vibration, and we are going to use Equation  to find the two force constants. This time, however, we are given two
frequencies (of the normal modes), and so we have no need to make an isotopic substitution − we already have two equations.

Here are the necessary data.

OCS

Fast  0.905

Slow  0.413

 16 12 32

 60

 11.73

 8.53

 14.93

 102.4

Use equation 17.6.16 for each of the frequencies, and you’ll get two equations, in  and . As in the rotational case, they are
quadratic equations, but they are a bit easier to solve than in the rotational case. You’ll get two equations, each of the form of 

, where the coefficients are functions of . You’ll have to work out the values of these
coefficients, but, before you substitute the numbers in, you might want to give a bit of thought to how you would go about solving
two simultaneous equations of the form .

You will find that there are two possible solutions:

h = /M ,m3m1 (17.6.11)
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and

Both of these will result in the same frequencies. You would need some additional information to determine which obtains for the
actual molecule, perhaps with measurements on an isotopomer, such as OCS.

Note that in this section we considered a linear triatomic molecule that was not allowed either to rotate or to bend, whereas in
Chapter 2 we considered a rigid triatomic molecule that was not allowed either to vibrate or to bend. If all of these restrictions are
removed, the situation becomes rather more complicated. If a rotating molecule vibrates, the moving atoms, in a co-rotating
reference frame, are subject to the Coriolis force, and hence they do not move in a straight line. Further, as it vibrates, the rotational
inertia changes periodically, so the rotation is not uniform. If we allow the molecule to bend, the middle atom can oscillate up and
down in the plane of the paper (so to speak) or back and forth at right angles to the plane of the paper. These two motions will not
necessarily have either the same amplitude or the same phase. Consequently the middle atom will whirl around in a Lissajous
ellipse, giving rise to what has been called “vibrational angular momentum”. In a real triatomic molecule, the vibrations are usually
much faster than the relatively slow, ponderous rotation, so that vibration-rotation interaction is small – but is by no means
negligible and is readily observed in the spectrum of the molecule.

This page titled 17.6: Linear Triatomic Molecule is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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