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20.2.1: Excess Pressure Inside Drops and Bubbles
The pressure inside a spherical drop is greater than the pressure outside. The way in which the excess pressure  depends on the
radius  of the drop, and the surface tension  and density  of the liquid is amenable to dimensional analysis. One can suppose
that  after which I leave it to the reader to show that , and therefore .

However, it is also quite easy to calculate the excess pressure (other than as a mere proportionality) in terms of the surface tension
and the radius of the drop. In Figure XX.2 I have divided a spherical drop of radius  into two hemispheres, and we are going to
consider the equilibrium of the upper hemisphere.

The upper hemisphere is being pulled down by surface tension all round the base of the hemisphere, and this downward force is
equal to the circumference of the base times the surface tension, or . If the excess pressure inside the drop is , the upward
component of the force due to this pressure is equal to  times the area of the base, . In case this is not obvious, consider an
elemental area  as shown, at a spherical angle  from the top of the drop. The force on this element is equal to . The
upward component of this force is , and this is equal to  times the horizontal projection of . Now you are welcome
to do a nice double integration over the hemisphere, but since this (i.e " this is equal to  times the horizontal projection of  ")
is true for every elemental area over the surface of the hemisphere, the total upward force must be equal to  times the area of the
base. Thus , and so the excess pressure inside the drop is

The smaller the drop, the greater the excess pressure. You may regard this as an explanation as to why droplets cannot form from a
vapor unless there is a dust nucleus of finite size for them to condense upon. Of course, two molecules colliding with each other
cannot in any case coalesce unless there is something to remove or absorb the kinetic energy.

The case of a nonspherical drop might be mentioned in passing. It is a well known result in geometry (or at least it is well known to
those who already know it) that if  is a nonspherical surface, and you take two vertical planes at right angles to each
other, and if  and  are the radii of curvature of the intersections of the two planes with the surface, then  is
independent of the orientations of the two planes, as long as they remain perpendicular to each other. In other words,  and  do
not have to be the maximum and minimum radii of curvature. The excess pressure inside a nonspherical drop is

What about the pressure inside a spherical bubble of air (or other gas) under water (or other liquid)? If we are hasty, we might
suggest that, since this is the opposite situation to a liquid drop in air, maybe the pressure is less inside an underwater bubble. This
would be a very hasty conclusion, and quite wrong. If you go through exactly the same argument as we did for a drop, considering
the equilibrium of one hemisphere, you will see immediately that there is (as for the drop) an excess pressure inside the bubble
given again by Equation . And exactly the same would apply to a spherical drop of one liquid under the surface of a second
liquid, if the two liquid are immiscible. But, rather than just repeat the identical derivation, let's try a different approach.

P

a γ ρ

P ∝ ,aαγβρδ α = −1, β = 1, δ = 0 P ∝ γ/a

a

2πγa P

P πa2

dA θ PdA

P cosθdA P dA

P dA

P

2πγa = πa2P

P =
2γ

a
(20.2.2)

z = z(x, y)

a1 a2 +1
a1

1
a2

a1 a2

P = γ( + )
1

a1

1

a2
(20.2.3)

20.2.2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/8527?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Tatum)/20%3A_Miscellaneous/20.02%3A_Surface_Tension/20.2.01%3A_Excess_Pressure_Inside_Drops_and_Bubbles


20.2.1.2 https://phys.libretexts.org/@go/page/8527

Let us imagine that we have a bubble of radius  in a liquid of surface tension , and suppose that we are able, by means of a fine
syringe, to inject some more air inside so as to increase the radius of the bubble by  at constant pressure and temperature. The
surface area of a sphere of radius  is , so, if we increase the radius by  we increase the surface area by , and
we increase the volume by . The work done against the surface tension is , and this must also be equal to 

, where  is the excess pressure inside the bubble. Equating these two expressions leads again to Equation .

What about a hollow spherical soap bubble in air? Here the soap has two surfaces – inside and out. If you repeat either of the above
derivations to this case, you will see that the excess pressure inside a hollow spherical soap bubble is
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