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CHAPTER OVERVIEW

1: Reflection and Refraction via Fermat's Principle and Huygens' Construction

Thumbnail: Diffraction of a plane wave when the slit width equals the wavelength. (CC BY-SA 3.0; Lookangmany).
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1.1.1 https://phys.libretexts.org/@go/page/7348

1.1: Reflection and Refraction
Reflection of light from a smooth, shiny surface is called specular reflection. (Latin speculum a mirror.) At the other extreme we
have the sort of diffuse scattering that occurs when you shine light on blotting paper. And there are lots of situations in between
these extremes. In this chapter I am going to deal solely with specular reflection, the law of specular reflection being that the angle
of reflection is equal to the angle of incidence.

When light passes from one medium to another, the angles of incidence and refraction, and the two refractive indices are related by
the familiar Snell’s Law,

In this chapter we are going to look at the laws of reflection and refraction from the point of view of Fermat’s Principle of Least
Action, and Snell’s law of refraction from the point of view of Huygens’ construction. We’ll start with the law of reflection (angle
of reflection equals angle of incidence).

Light goes from A to B via reflection from a point P on a mirror.

The distance  travelled is given by

Here is a graph of  versus  (i.e.  as a function of the position of the point P from which the light is reflected). The drawing
above is drawn for , and, in the graph below,  and  are in units of b.

From the graph, or by differentiation of  with respect to  (do it!), it is seen that the path length is least when , i.e. when

the angle of reflection is equal to the angle of incidence.

Of all possible paths the light might conceivably take, the path that it actually takes is the one with the shortest path.

Now let us look at refraction at an interface.

sin = sin .n1 θ1 n2 θ2 (1.1.1)
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In the drawing, light is travelling from A to B, first in a medium of refractive index  (speed = ) and then in a medium of
refractive index  (speed = ), via the point P.

The time taken to get from A to B is

Given that  and , this can be written

If we vary the position of P, the time taken varies as

The route actually taken is such that for any small deviation  from the route actually taken, the corresponding variation  in the
time taken is zero. That is to say, the derivative is zero, or .

In both cases, reflection and refraction, the route taken is such that the time taken is least. This is an example of Fermat’s Principle
of Least Action. I am not sure that this is an explanation of why reflection and refraction happen the way they do as much as an
interesting description of what happens in nature. A further example of the principle, from Classical Mechanics, is Hamilton’s
Variational Principle. The action that a mechanical system takes in going from one state to another is , where  is the
Lagrangian at time . The route that any mechanical system takes in going from one state to another is such that any small
deviation from this route results in no change in the action (which usually means that the action is a minimum). Again, I am not
sure that this explains why mechanical systems behave as they do. It is more a useful description of how mechanical events unfold.

Now let us looks at Huygens’ Construction. Imagine that you are following the progress of a wavefront, and you can see the
wavefront at some instant of time, and that you want to know what happens next. Huygens’ construction supposes that any point in
the wavefront can be regarded as point source for a new disturbance.

For example, in the drawing below, we have wavefront moving from top to bottom.

Now we suppose that every point on the wavefront is a point source for a new disturbance:
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The tangent to these little wavelets is the new wavefront:

Now let us look at refraction at an interface between two media.

The vertical dashed lines at A, B, C represent wavefronts, separated by the wavelength . The angle of incidence is . At some
instant of time, the lower ray reaches the point P, and it starts to generate a new wavelet. At a time  later, where  is the period of
the electromagnetic oscillations, the upper ray has reached the point Q, where CQ = , while the wavelet generated at P has
attained a radius . Here .

The new wavelet generated at Q hasn’t started yet, or at least is just about to start. The new wavefront is constructed by drawing the
tangent from Q to the wavelet generated at P. From the geometry of the drawing we see that

and so Snell’s Law is derived from the Huygens Construction. I leave it to the reader to decide whether this explains what happens,
or merely describes what happens. Perhaps in science we never “explain” nature - we just “describe” it.

This page titled 1.1: Reflection and Refraction is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

2: Reflection and Transmission at Boundaries and the Fresnel Equations
When a ray of light encounters an interface between two media of different refractive indices, some of it is reflected and some is
transmitted. This chapter will concern itself with how much is reflected and how much is transmitted. (Unless the media are
completely transparent, some of the light will also be absorbed - and presumably degraded as heat - but this chapter will concern
itself only with what happens at the interface, and not in its passage through either medium.) We shall do this at three levels:
Normal incidence; incidence at the Brewster angle (we’ll explain what is meant by this); incidence at an arbitrary angle.

Thumbnail: Reflection at a surface. (Public Domain; Benbuchler).

This page titled 2: Reflection and Transmission at Boundaries and the Fresnel Equations is shared under a CC BY-NC 4.0 license and was
authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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2.1: Waves in a Stretched String
Before discussing the reflection of light, it will be useful to discuss the following problem. Consider two ropes, one thin and one
thick, connected together, and a sinusoidal wave moving from left to right along the ropes:

The speed  of waves in a rope under tension is , where  is the tension, and  is the mass per unit length, so the speed
and the wavelength are less in the thicker rope. We’ll call the speed in the left hand rope  and the speed in the right hand rope .
At the boundary , some of the wave is transmitted, and some is reflected. ( I haven’t drawn the reflected part in the
drawing). We wish to find how much is transmitted and how much is reflected. I’ll call the amplitudes of the incident, transmitted
and reflected waves 1,  and  respectively, and I’ll suppose that the wave is a sinusoidal wave of angular frequency . The
equations to the incident, transmitted and reflected waves are as follows:

To the right of the boundary, the displacement as a function of  and  is

and to the left of the boundary the displacement is

At the boundary , unless the rope breaks these two displacements must be equal, and therefore

The -derivatives (i.e. the slopes) of the ropes are:

To the right of the boundary

and to the left of the boundary

Unless there is a kink in the rope at the boundary, these are equal at , and therefore

Combining these with Equation , we obtain
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We see that if ,  is negative; that is, there is a phase change at reflection. If  (i.e. if there is only one sort of rope)
there is no reflection (because there is no boundary!).

In the above analysis, we considered a simple sine wave. However, any function, even a nonperiodic function, can be
represented by a sum (perhaps an infinite sum) of sinusoidal waves, so the same result will be obtained for any function.

One hopes that energy is conserved, so let’s see. The energy in a wave is proportional to the square of its amplitude and, in the case
of a vibrating rope, to the mass per unit length. And the rate of transmission of energy is equal to this times the speed. Thus the rate
of transmission of energy is proportional to . However, , so that the power is proportional to . Thus the
incident, transmitted and reflected powers are in the ratio

We see that the sum of the transmitted and reflected powers is equal to the incident power, and all’s well with the world.

This page titled 2.1: Waves in a Stretched String is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy
Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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2.2: Light Incident Normally at a Boundary
The result described by Equation (3) for the transmitted and reflected amplitudes is an inevitable consequence of the continuity of
displacement and gradient of a wave at a boundary, and is not particularly restricted to waves in a rope. It should be equally
applicable to electromagnetic waves moving from one medium to another at normal incidence, and indeed it is verified by
measurement. Thus, as with the ropes, the amplitudes of the incident, transmitted and reflected waves are in the ratio

One hopes that energy is conserved, so let’s see. The energy stored per unit volume in an electric field in an isotropic medium is 

. The rate of transmission of energy per unit area (i.e. the flux density) is this times the speed of propagation. But .

(We suppose in the present context that both media are nonmagnetic, so both have permeability .) Thus we see that the rate of
propagation of energy per unit area is proportional to the square of the amplitude and inversely proportional to the speed.

Thus the incident, transmitted and reflected powers are in the ratio

As with the two ropes, the sum of the transmitted and reflected flux densities is equal to the incident flux density, and, once again,
all’s well with the world.

It may at first glance be surprising that the rate of transmission of energy is inversely proportional to the speed. In the case of the
ropes, the “slow” rope has a larger mass per unit length. In the case of the electromagnetic field, the “slow” medium has a larger
permittivity, so the electric field is having to work the harder.

The speed of light in a medium is inversely proportional to the refractive index, so the amplitude ratios can be expressed as

We see that there is a phase change on reflection from an optically denser medium.

The flux density ratios can be written as

If light is going from air  to glass , the transmitted amplitude will be 80 percent of the incident amplitude, and
the reflected amplitude will be 20 percent of the incident amplitude. The transmitted flux density will be 96 percent of the incident
flux density, and the reflected flux density will be 4 percent of the incident flux density.

If  there will be no reflection at the boundary; in effect there is no boundary. The larva of the midge Chaoborus, known as
the Phantom Midge, is an aquatic creature whose body has a refractive index equal to the refractive index of water. The picture
below shows a photograph of one of them in the water:

Larva of the Phantom Midge, Chaoborus sp. (If you don’t believe me, look it up on the Web.)

This page titled 2.2: Light Incident Normally at a Boundary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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2.3: Light Incident at the Brewster Angle
If a ray of light is incident at an interface between two media in such a manner that the reflected and transmitted rays are at right
angles to each other, the angle of incidence, , is called the Brewster angle.

A moment’s thought will show that, if the refractive indices are  and . . For example, at an air  to
glass  interface the Brewster angle is 56 degrees.

If a ray of unpolarized light is incident at the Brewster angle, the reflected ray is totally plane-polarized. The is no component of
the oscillating electric field that is in the plane

of the paper and at right angles to the direction of propagation of the reflected ray. The transmitted ray, having lost some of the
component of the electric field at right angles to the plane of the paper (i.e. the dots) is partially plane polarized.

This page titled 2.3: Light Incident at the Brewster Angle is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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2.4: Electric and Magnetic Fields at a Boundary
We next want to discuss the reflection and transmission for an arbitrary angle of incidence. Before we can do this it is well to
remind ourselves (and this is just a reminder - we don’t go into the theory and definitions here) from electromagnetic theory how
electric and magnetic fields behave at a boundary between two media.

If an electric field is incident normally at the boundary between two media,  is larger in the medium with the smaller permittivity,
whereas  is continuous. Likewise, if a magnetic field is incident normally at the boundary between two media,  is smaller in the
medium with the higher permeability, whereas  is continuous.

That is:

 and  are continuous across a boundary.

 is inversely proportional to .

 is inversely proportional to .

See the drawing below.

For fields parallel to a boundary, however, the situation is:

and  are continuous across a boundary.

 is proportional to .

 is proportional to .

These things are assumed known from courses in electromagnetism. It may be asked what happens if a field is neither
perpendicular to nor tangential to a boundary. We do not especially need to know that in discussing reflection of light at a
boundary, because we shall be resolving any fields into their perpendicular and tangential components, but it is a reasonable
question to ask, so for completeness the answers are given in the drawings below.
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This page titled 2.4: Electric and Magnetic Fields at a Boundary is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
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2.5: Impedance
We need to remind ourselves of one other thing from electromagnetic theory before we can proceed, namely the meaning of
impedance in the context of electromagnetic wave propagation. The impedance  is merely the ratio  of the electric to the
magnetic field. The SI units of  and  are V/m and A/m respectively, so the SI units of  are V/A, or ohms, . We are now
going to see if we can express the impedance in terms of the permittivity and permeability of the medium in which an
electromagnetic wave is travelling.

Maxwell’s equations are

In an isotropic, homogeneous, nonconducting, uncharged medium (such as glass, for example), the equations become:

If you eliminate  from these equations, you get

which describes an electric wave of speed

In free space, this becomes

which is .

The ratio of the speeds in two media is

and if, as is often the case, the two permeabilities are equal (to ), then

In particular, if you compare one medium with a vacuum, you get: .

Light is a high-frequency electromagnetic wave. When a dielectric medium is subject to a high frequency field, the polarization
(and hence ) cannot keep up with the electric field .  lags behind . This can be described mathematically by ascribing a
complex value to the permittivity. The amount of lag depends, unsurprisingly, on the frequency - i.e. on the color - and so the
permittivity and hence the refractive index depends on the wavelength of the light. This is dispersion.

If instead you eliminate E from Maxwell’s equations, you get

This is a magnetic wave of the same speed.

Z E/H

E H Z Ω

∇ ⋅ D

∇ ⋅ B

∇ ×H

∇ ×E

= ρ

= 0.

= +J.Ḋ

= − .Ḃ

(2.5.1)

(2.5.2)

(2.5.3)

(2.5.4)

∇ ⋅ E

∇ ⋅ H

∇ ×H

∇ ×H

= 0

= 0

= ϵ .Ė

= −μ .Ḣ

(2.5.5)

(2.5.6)

(2.5.7)
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If you eliminate the time between  and , you find that , which, in free space, has the value ,

which is the impedance of free space. In an appropriate context I may use the symbol  to denote the impedance of free space,
and the symbol  to denote the impedance of some other medium.

The ratio of the impedances in two media is

and if, as is often the case, the two permeabilities are equal (to ), then

We shall be using this result in what follows.

This page titled 2.5: Impedance is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source
content that was edited to the style and standards of the LibreTexts platform.
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2.6: Incidence at an Arbitrary Angle.
In Section 4 (Incidence at the Brewster Angle) it became clear that the reflection of light polarized in the plane of incidence was
different from the reflection of plane polarized light polarized at right angles to the plane incidence. Therefore it makes sense, in
this section, to consider the two planes of polarization separately. I shall suppose that both media are isotropic (i.e. not
birefringent).

In the following discussion, we’ll suppose that light is travelling from a medium of permittivity  to a medium of greater
permittivity . Both permeabilities are equal, and close to . The electric and magnetic fields of the incident wave will be
denoted by  and . The electric and magnetic fields of the reflected wave will be denoted by  and . The electric and
magnetic fields of the transmitted wave will be denoted by  and . (And in case you are wondering, by  I mean , and by 
I mean .)

We’ll start by supposing that the incident light is plane polarized with the electric field perpendicular (senkrecht) to the plane
of incidence. That is, the electric field has only a -component. The oscillating electric field  is indicated by blue dots, and the
magnetic field  by red dashes in the drawing below.

The boundary conditions are: For the tangential  component of 

For the tangential (y) component of 

That is,

or

Eliminate  between Equations  and :

Reflected amplitude:

ϵ1

ϵ2 μ0

E H E1 H1

E2 H2 H H B

B

z E

H

(z) E

E + =E1 E2 (9)

H

(H − ) cos = cos .H1 θ1 H2 θ2 (10)

cos = cos ,
(E − )E1

Z1
θ1

E2

Z2
θ2 (11)

(E − ) cos = cos .n1 E1 θ1 n2E2 θ2 (12)

E2 9 12
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Use Equation :

Transmitted amplitude

Now we’ll supposing that the incident light is plane polarized with the electric field parallel to the plane of incidence. This, it
is the magnetic field that has only a -component. The oscillating electric field  is indicated by blue dashes, and the magnetic
field  by red dots in the drawing below.

The boundary conditions are:

For the tangential  component of 

That is:

For the tangential  component of 

Eliminate  between Equations  and :

Reflected amplitude:

Use Equation :

Transmitted amplitude:

These are the Fresnel Equations, gathered together below:

Perpendicular (Senkrecht)

Reflected amplitude:

Transmitted amplitude:

= .
E1

E

cos − cosn1 θ1 n2 θ2

cos + cosn1 θ1 n2 θ2
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9

= .
E2

E
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z E

H

(z) H

H + =H1 H2

= or (E + ) = .
E +E1

Z1

E2

Z2
n1 E1 n2E2 (15)

(y) E

(E − ) cos = cos .E1 θ1 E2 θ2 (16)

E2 15 16
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Parallel

Reflected amplitude:

.

Transmitted amplitude:

.

They evidently depend only on the ratio of the refractive indices (i.e. the refractive index of one medium relative to that of the
other). If we write , the equations become

Perpendicular (Senkrecht)

Reflected amplitude:

.

Transmitted amplitude:

.

Parallel

Reflected amplitude:

.

Transmitted amplitude:

.

For normal incidence, the ratios for the senkrecht component become  and  as expected. The ratios for the parallel

component, however, become  and , apparently predicting no phase change at external reflection for the parallel

component. This is only apparent, however, and the explanation for the apparent anomaly is given on pp. 20-24.

It will be noted that  are also related by Snell’s law: , so that we can eliminate  from Fresnel’s
equations in order to express them in terms of the angles of incidence and refraction only. If this is done we obtain:

Perpendicular (Senkrecht):

Reflected amplitude:

.

Transmitted amplitude:

.

Parallel

Reflected amplitude:

.

Transmitted amplitude:

.

  =  
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In perhaps the most useful form of all, we could eliminate  from the Fresnel equations and hence obtain them as functions of 
and  only. This will enable us easily to calculate the reflected and transmitted amplitudes in terms of the angle of incidence. Thus:

Perpendicular (Senkrecht)

Reflected amplitude:

Transmitted amplitude:

.

Parallel

Reflected amplitude:

.

Transmitted amplitude:

.

Black curves are the amplitudes of the reflected waves.

Blue curves are the amplitudes of the transmitted waves.

Continuous curves are for senkrecht (perpendicular) waves.

Dashed curves are for parallel waves.

Negative values show where there is a 180º phase shift on reflection. Notice that, at the Brewster angle (about 56º), none of the
parallel component is reflected.

At 90º (grazing incidence) no light is transmitted; it is all reflected, but with a phase change (negative amplitude).

Energy considerations

Recall that for the parallel component, the incident, reflected and transmitted amplitudes are in the ratio

and for the senkrecht component they are in the ratio

θ2 θ1
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(Here .)

Suppose that the incident light strikes the interface in an area . That means that the incident and reflected light are each in beams
of cross-sectional area , and the transmitted light is in a beam of cross-sectional area . We are going to calculate the
ratio  of the rate of transmission of energy (power) in each beam; and if we do our algebra correctly, we
should find that .

Recall that the energy per unit volume in an electric field is proportional to , where , the permittivity, is proportional to the
square of the refractive index. The power transmitted by each beam is proportional to the energy per unit volume, times the speed
of transmission (which is inversely proportional to the refractive index), and to the crosssection area of the beam.

Therefore, for the parallel component and for the senkrecht component,

Normalizing this expression so that , we obtain

.

These are shown below for  = 1.5, and indeed  for each component, and energy is conserved.
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Notice that at grazing incidence we have total external reflection.  
 
Black curves are the reflection coefficients of the reflected waves.

Blue curves are the transmission coefficients of the transmitted waves.  
 
Continuous curves are for senkrecht (perpendicular) waves.

Dashed curves are for parallel waves.  
 
At the Brewster angle no parallel waves are reflected.

For light going from  to :

Black curves are the reflection coefficients of the reflected waves.

Blue curves are the transmission coefficients of the transmitted waves.

Continuous curves are for senkrecht (perpendicular) waves.

Dashed curves are for parallel waves.

For angles of incidence greater than 42 degrees (the critical angle for total internal reflection) all light is reflected. The phase of this
totally reflected light is something that we have not yet discussed.

I return now to external reflection and to the graphs, repeated below, which show the reflected and transmitted amplitudes of the
parallel and senkrecht components. The blue curves show the transmitted amplitudes, and there is no problem with them. The
amplitudes are all positive, meaning that the transmitted waves have no phase change at the boundary. My students pointed out an
apparent paradox with the dashed black curve, which is the reflected amplitude of the parallel component. It is positive, indicating

  =  1.5n1   =  1n2
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(apparently) no phase change, even at normal incidence - and yet we know that there must be a phase change for reflected light at
normal incidence. My students demanded (and rightly so) an explanation. The apparent anomaly was also noted on p.15. Following
the diagram is the solution that I offer.

When we describe the state of polarization of light, whether, linear, circular or elliptical, we refer for convenience and of necessity
to a coordinate system in which the -axis is in the direction of the ray, and the -plane is perpendicular to it. The observer is
supposed to be on the positive -axis looking towards the source of light:

Consider a ray coming down at a steep angle to a water surface. Suppose at some instant of time the electric vector just above the
surface is as shown by the little blue arrow below.

What does our observer (who is underneath the water) see, and how does he describe the state of polarization? This is what he sees:

z xy

z
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Now the light is reflected, the observer changes his position, and he looks down on the water from above.

And this is what he sees:

And so there has been no phase change.

Or has there?

One might say that there has been a phase change, but it looks as though there hasn’t been. In effect, before and after, we are
referring the situation to two reference frames, one of which is the mirror image of the other.

You will see that this apparent paradox does not arise with the senkrecht component.

We have hitherto considered the reflection and transmission of light that was initially plane polarized either parallel to the plane of
incidence, or perpendicular (senkrecht) to it. Suppose that the incident light is plane polarized in a direction 45º to the parallel and

senkrecht planes. We can resolve it into parallel and senkrecht components, each of amplitude . We suppose that the angle of

incidence is , and the angle of refraction, which is easily calculated from Snell’s Law, is . And so there has been no phase
change.

E
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–

√
θ1 θ2
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After reflection, the amplitudes of the parallel component will be .

and the amplitude of the senkrecht component will be .

From these we can calculate the resultant amplitude of the reflected wave as well as its polarization direction (which is quite
different from the plane of polarization of the incident wave.)

The transmitted light will have a parallel component of amplitude

and a senkrecht component of amplitude

.

From these we can calculate the resultant amplitude of the transmitted wave as well as its polarization direction (which, as for the
reflected wave, is in a different plane from the plane of polarization of the incident wave.)

We show here the magnitudes (without regard to sign) of the amplitude reflection and transmission coefficients, and the
polarization directions for the reflected and transmitted wave, as a function of angle of incidence , assuming .

At grazing incidence  = 90º, all the light is reflected. Although it has no particular significance, we note that, for  = 1.5, the
reflection and transmission amplitude coefficients are equal (to 0.4544) for an angle of incidence equal to 72º.464. Except for
normal and grazing incidence, the reflection and transmission amplitude coefficients do not add exactly to one. While there is a
requirement for energy to be conserved, there is no similar requirement for the amplitudes.

As the angle of incidence goes from zero (normal incidence) to 90º (grazing incidence), the plane of polarization of the reflected
wave goes from

Note that, for normal incidence, the reflected wave has a phase change for the senkrecht component, but (apparently) not for the
parallel component, as explained above.
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The plane of polarization of the transmitted moves slightly from the initial 45º to 56º.6 (the Brewster angle) at grazing incidence,
although this has little significance since no light is transmitted at grazing incidence.

As described on - , if the incident, reflected and transmitted amplitudes are in the ratio , and the corresponding powers are in
the ratio , then

These are shown below for  = 1.5.

Recall that in these calculations, it has been assumed that the incident light is plane polarized at 45º to the parallel and senkrecht
planes, so that the parallel and senkrecht amplitude components of the incident light are equal. Completely unpolarized incident
light also has equal parallel and senkrecht amplitude components, so that the above graph also shows the reflection and
transmission coefficients for unpolarized incident light. For  = 1.5, the reflection and transmission coefficients are equal for an
angle of incidence of 82º.82. For any angle of incidence less than 60º, very much more light is transmitted than reflected., but, in
the limit as , all the light is reflected.

We show below the reflection and transmission coefficients of internal reflection for angles of incidence from zero to the critical
angle, which, for  = 1.5, is 41º.8. This is achieved merely by replacing 1.5 with  in the calculations.

This page titled 2.6: Incidence at an Arbitrary Angle. is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by
Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

3: The Cornu Spiral
3.1: Cornu's Spiral

Thumbnail: A double-end Euler spiral. The curve continues to converge to the points marked, as t tends to positive or negative
infinity. (CC BY-SA 3.0; AdiJapan).
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3.1: Cornu's Spiral
If a parallel beam of light from a distant source encounters an obstacle, the shadow of the obstacle is not a simple geometric shadow but is, rather, a diffraction pattern.
For example, it is well known that the diffraction pattern formed by a slit looks like the function shown in Figure 1.

Such diffraction is called Fraunhofer diffraction.

If, however, the source of light is not distant, but is close to the diffracting obstacle so that the incident waves are not plane waves, the diffraction pattern will look
somewhat different. Such diffraction is called Fresnel diffraction, and its theory is, unsurprisingly, a little more difficult than the theory for Fraunhofer diffraction.

If the source of light is a point source, so that the incident wavefronts are spherical, the detailed quantitative theory is not at all easy. If the incident wavefronts,
however, are cylindrical (say from a linear source) the analysis, which is two dimensional, is a little more tractable. Cornu’s spiral is a graphical device that enables us
to compute and predict the Fresnel diffraction pattern from various simple obstacles.

“Cornu”, by the way, is French for “horned”, and can also mean “spiral” - i.e. like the horns of a bighorn sheep or of an ibex. Because of this I wondered, when I
first heard about Cornu’s spiral, whether it should really be called a “cornu spiral”, rather than Cornu’s spiral. However, it is correctly named Cornu’s spiral after a
real nineteenth century French scientist, Marie Alfred Cornu. The mathematical properties of the spiral had been examined by various mathematicians (for
example, Euler) before Cornu, but it has acquired the name of Cornu because of its application by Cornu to the theory of Fresnel diffraction.

Let us look, in Figure III.2, at the geometry of a cylindrical wavefront from a linear source at O.

Introduce a dimensionless variable  by

where  is the wavelength of the light.

Theory shows that the intensity (square of the amplitude) of the radiation received at the point  from the portion AB of arc-length  of the wavefront is proportional
to

Here

are the Fresnel integrals.

The derivation of Equation ( ) may be somewhat heavy-going, and we shall relegate it to Appendix A at the end of this chapter. For the time being, we shall accept
Equation ( ) as being correct, and we shall see how to use it to construct the Cornu spiral and how the spiral can be used to compute the forms of the shadows produced
by various obstacles. In Equations ( ),  is just a dummy variable.  and  are functions of , which is proportional to . They must be integrated numerically, and I
have provided a brief table of them in Appendix B.

The Cornu spiral is a graph of  versus . Figure III.3 shows such a graph. Better ones exist in the literature, but this one will suffice to show how it is used. However,
I shall shortly suggest that, while it is fun to use the spiral, for precise work it is preferable to compute the forms of the shadows numerically rather than graphically.
The spiral was useful in the days before high-speed computers, but today one can compute the Fresnel integrals instantaneously, and hence we can compute the forms
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of the shadow, using the spiral perhaps to guide us. A word of warning, though. The rapid and accurate computation of the Fresnel integrals requires some care in
programming, for the integrand changes rapidly with the variable u. In preparing the graphs and tables in this note, I found that Simpson’s Rule was inadequate - it
worked provided I used a large number of intervals, but this slowed down the computation. I was able to get better and faster results with Gaussian quadrature.

The dimensionless variable  (which is proportional to  - see Equation ) is measured along the spiral. I have drawn dots on the spiral for every 0.1 increment in . I

haven’t labelled the numerical values of  beside the dots, but feel free to do so if you wish. Note that, as ,  and . The intensity at  is proportional

to the square of the distance between these two limiting points ( , ) and ( , ). The distance between these points is , and the square of the distance is 2. Thus,
with no obstacle between the source and the point , the amplitude of the radiation at  is  (arbitrary units), and the intensity at  is 2 (arbitrary units).

In what follows, we are going to put three obstacles in front of the light source and we are going to compute the Fresnel diffraction pattern (i.e. the structure of the
shadow.) The three obstacles will be a single straight edge, a slit between two straight edges, and an opaque strip:

All the time recall that the distance s along the wavefront is linearly related to the distance  along the Cornu spiral.

We’ll start with the single straight edge.

At the point  we see all of the upper part of the wavefront. That is, we see along the Cornu spiral from  to where the spiral converges at , . The
amplitude of the radiation at  is proportional to the distance between these two points, which is , and the intensity at  is proportional to the square of this, which

is , which is one quarter of the intensity when the light was unobstructed by any obstacle.

Now let us see what the intensity is at a point  some way above the axis (Figure 5).
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The distance  is must now be measured not from the edge of the obstacle, but from the point Q. At P we see more of the wavefront than we did at . We see all of 
above Q, as well as some negative values of  below Q. The amplitude at P, then, corresponds to the length of the chord in Figure III.6, in which the negative  is
related to the negative  by Equation ( ). We see that, as we move P upwards in Figure 5, We take in more and more negative , and more and more negative  in the
Cornu spiral.

Thus, as P moves upwards in Figure 5, we keep the upper end of the chord in Figure 6 fixed and we move the lower end around the spiral. The length of the chord is
proportional to the amplitude of the light received at P, and its square is proportional to its intensity.

We can use a ruler and the spiral to determine the intensity as a function of  and hence of , and this would have been an appropriate procedure before the advent of
high-speed computers. To delineate the intensity as a function of  by computer, as we move along the spiral, for each value of  we calculate  and  and then
calculate the intensity from the square of the length of the chord, which is

This is what I did for Figure 7 except that I divided this expression by two, so that an intensity of one represents the intensity at  in the absence of any obstacle. A
reader who tries to duplicate this will soon appreciate the value of programming a fast and accurate method of evaluating the Fresnel integrals.

The portion to the right of  is within the geometric shadow.
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Now we’ll look at what happens when the obstacle is a slit between two straight edges. We’ll suppose that the width of the slit is , corresponding to a distance

along the spiral . In the calculations that I have done below, I have taken  to be 4.0. The point P (see Figure 8) is receiving energy from the part
of the wavefront between  and , corresponding to a chord on the spiral spanning a distance  along the spiral. As the point P moves upward along the
screen, so the chord slides along the spiral (see Figure 9), keeping  constant

For each position of the chord, we need to calculate the Fresnel integrals ,  of the upper end of the chord and the Fresnel integrals ,  of the lower end of the
chord and then calculate the square of the length of the chord (and then divide by two, so that an intensity of 1 is the intensity when the light is unobstructed). That is,
we calculate

I got the result shown in Figure 10, using a slit width corresponding to .

The positions  correspond to the edge of he geometric shadow. The intensity has not fallen to zero there - some light spills over into the geometric shadow.
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The details of the diffraction pattern are very sensitive to the value of . That is to say to . That is to say to the slit width. Figure 11, for example, shows the same
calculation but for  rather than 0.4.

As the slit width is changed, sometimes there will be a dip at , and sometimes a maximum. Generally, a large  results in a more complicated pattern, and a
smaller  results in a simpler pattern. As  becomes smaller, the pattern approaches the familiar Fraunhofer diffraction pattern for a slit, as in Figure 1.

Now let us choose as the obstacle a single opaque strip. I’ll make the width of the strip equal to the width of the slit in the example of Figure 10, which corresponds to a
distance along the spiral of . Instead of sliding the chord of Figure III.10 along the spiral, we have to slide the two complementary chords shown in Figure 12.
We have to calculate the same Fresnel integrals  as before, but this time the resultant of the two, added as vectors, and normalized so that the

unobstructed intensity is 1, is . I obtain the result shown in Figure 13.

The key to doing these calculations successfully is to have an efficient, fast and accurate routine for calculating the Fresnel integrals. In each of these graphs each of the
Fresnel integrals (sine and cosine) was calculated by numerical integration about 400 times. I found Simpson’s Rule was inadequate, so I used Gaussian Quadrature.

APPENDIX A
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In the above notes, I have described what the Fresnel integrals and the Cornu spiral are, and how to use them in some simple cases. I have not shown why it is that the
diffraction patterns can be generated by the Fresnel integrals, or how to derive Equation ( ). I hope sometime to derive this and explain the rationale behind the theory
in this Appendix at some later date. I’m afraid I can’t say when I expect to get round to doing this. Could be this year, next year, sometime, never...

APPENDIX B

The Fresnel Integrals

v C S

0.10 0.1000 0.0005

0.20 0.1999 0.0042

0.30 0.2994 0.0141

0.40 0.3975 0.0334

0.50 0.4923 0.0647

0.60 0.5811 0.1105

0.70 0.6597 0.1721

0.80 0.7228 0.2493

0.90 0.7648 0.3398

1.00 0.7799 0.4383

1.10 0.7638 0.5365

1.20 0.7154 0.6234

1.30 0.6385 0.6863

1.40 0.5431 0.7135

1.50 0.4453 0.6975

1.60 0.3655 0.6389

1.70 0.3238 0.5492

1.80 0.3336 0.4509

1.90 0.3945 0.3733

2.00 0.4883 0.3434

2.10 0.5816 0.3743

2.20 0.6363 0.4557

2.30 0.6266 0.5532

2.40 0.5550 0.6197

2.50 0.4574 0.6192

2.60 0.3889 0.5500

2.70 0.3925 0.4529

2.80 0.4675 0.3915

2.90 0.5624 0.4101

3.00 0.6057 0.4963

3.10 0.5616 0.5818

3.20 0.4663 0.5933

3.30 0.4057 0.5193

3.40 0.4385 0.4296

3.50 0.5326 0.4152

3.60 0.5879 0.4923

3.70 0.5419 0.5750

3.80 0.4481 0.5656

3.90 0.4223 0.4752
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4.00 0.4984 0.4205

4.10 0.5737 0.4758

4.20 0.5417 0.5632

4.30 0.4494 0.5540

4.40 0.4383 0.4623

4.50 0.5260 0.4343

4.60 0.5672 0.5162

4.70 0.4914 0.5671

4.80 0.4338 0.4967

4.90 0.5002 0.4351

5.00 0.5636 0.4992

5.10 0.4998 0.5624
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CHAPTER OVERVIEW

4: Stokes Parameters for Describing Polarized Light
4.1: Polarized Light and the Stokes Parameters
Index

Thumbnail: The Poincaré sphere is the parametrisation of the last three Stokes' parameters in spherical coordinates. (Public
Domain; Inductiveload).
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4.1: Polarized Light and the Stokes Parameters
Suppose that we wish to characterize a beam of parallel monochromatic light. A description of it should include the following.

* Its wavelength or frequency. Its wavelength depends upon the refractive index of the material in which it is travelling, whereas
its frequency does not. Therefore, if the wavelength is given, the medium must be specified. It may not always be realized, but
most tables of wavelengths of spectrum lines in the visible region of the spectrum are given for air and not for a vacuum.
[Actually for something called “Standard Air” - details of which may be found in
http://orca.phys.uvic.ca/~tatum/stellatm/atm7.pdf ] Specifying the frequency rather than the wavelength removes possible
ambiguity. Spectroscopists often quote the wavenumber in vacuo, which is the reciprocal of the vacuum wavelength.

* Its flux density in W m . This is related to the electric field strength of the electromagnetic wave, in a manner that will be
discussed later in the chapter.

* Its state of polarization. In this chapter, polarized light will in general be taken to mean elliptically polarized light, which
includes circularly and linearly (plane) polarized light as special cases. The state of polarization can be described by specifying

* the eccentricity of the polarization ellipse

* the orientation of the polarization ellipse

* the chirality (handedness) of the polarization ellipse

* whether the polarization is total or partial, and, if partial, the degree of polarization.

Up to and including Equation ( ) (page 8) we shall assume that the polarization is total. We shall look at partial polarization
after that.

Polarized light is generally described by supposing that, at some point in space, the tip of the vector that represents the strength of
the electric field describes a Lissajous ellipse (Figure IV.1).

In the drawing the semi major axis a represents the greatest value of the electric field strength, in volts per metre, during a cycle,
and the semi minor axis  represent the least value of the electric field strength during the cycle. If you prefer, you could use
symbols such as  and  instead of  and .

In order to describe the ellipse, we need to describe its size, its shape, its orientation and its chirality or handedness (i.e., whether
the vector is rotating clockwise or counterclockwise).

The natural way of doing this is to give the length  of the semi major axis (in volts per metre), the eccentricity of the (

) , the angle  that the major axis makes with the horizontal, and perhaps one of the words "clockwise" or
"counterclockwise". It will be necessary, however, to make clear whether you, the observer, are looking towards the source of
light, or are looking in the direction of travel of the light. Not everyone uses the same convention in this matter, and the onus is on
the writer to make clear which convention he or she is using. In this chapter I shall assume that we are looking towards the source

of the light. In Figure IV.1, I have drawn the ellipse with  ( ) and .

[Since I wrote the above paragraph, I received in December 2015 a memorandum from the International Astronomical Union stating that there has long
been an IAU convention that position angle is to be reckoned positive in the counterclockwise direction for an observer looking towards the source of
light. This is in fact the convention that I use in these notes. The IAU memorandum, however, pointed out that some scientists who investigate the
polarization of the Cosmic Background Radiation have been using the opposite convention, and consequently the IAU reiterates its recommendation
that all astronomers, including those working on the CBR, use the above convention. This is a good example of what I meant in the previous
paragraph. I would emphasize that, even although there is an IAU convention - one which I strongly support - it is incumbent upon YOU, to make
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certain, if you wish your readers to understand you, to make it unambiguously clear, whenever you write about polarization, as to what convention you
are using. And don’t just say “the IAU convention”. Say that angles are reckoned positive if increasing counterclockwise when you are facing towards
the source of light. I hope that referees and editors will enforce this!]

We noted above that the flux density of the beam is related to the electric field strength of the electromagnetic wave. In this
paragraph and the next we explore this relation. Suppose, for ) example, that the light is plane polarized, and that the maximum

value of the electric field is  volts. Its mean square value during a cycle is . The energy per unit volume is 

, where  is the permittivity of the medium in which the radiation is travelling. If it is moving at speed 
, the flux density of the beam is . The speed of an electromagnetic wave in a medium of permittivity  and

permeability  is given by , so this expression becomes , where  is the impedance (in the

sense used in electromagnetic theory) of the medium. For most transparent media,  is very close to . the permeability of free
space. This is not the case for the permittivity, which usually ranges from 1 up to a few tens of times . For a vacuum, the
impedance has a value of about 377 .

If the light is elliptically polarized, the expression for the flux density will be , where  and  are the electric fields described
in earlier paragraphs. That the  for plane polarized light can be replaced by  for elliptically polarized light should
become apparent later while discussing the director circle property of an ellipse.

While these parameters may be the obvious ones to use in describing the state of polarization, the fact is that none of them is
directly measurable. What we can measure relatively easily is the intensity of the light when viewed through a polarizing filter
oriented at various angles. What we can measure are four parameters known as the Stokes parameters, which we shall describe
shortly. We can measure the Stokes parameters, and it will then be our task to determine from these the eccentricity, orientation and
chirality of the polarization ellipse, and the degree of polarization.

Before describing them, a word about notation.

The traditional symbols used to describe the Stokes parameters are IQUV. These may seem somewhat haphazard, so some modern
authors prefer a more systematic  while some prefer . If you use the modern  notation, I would
(strongly) recommend  over . In these notes, however, I shall be old-fashioned and I shall use
IQUV , which at least has the advantage of avoiding the ambiguity over the two possible  notations, and you will not have to
worry which version I am using.

In the figure the lines represent the component of the electric field passed by the filter. The lengths of the long organic molecules
embedded within the filter are perpendicular to this transmission direction. Light (i.e. an oscillating electromagnetic field) that is
oscillating parallel to the lengths of these molecules is strongly absorbed, because of the highly anisotropic polarizability of these
molecules.

Perhaps we can measure the intensity of the light after passage through the filter at each of these angles, and also without the filter,
and somehow determine from these measurements the shape and orientation of the polarization ellipse.

The Stokes parameters are named after a nineteenth century British physicist, Sir George Stokes, and may be referred to as Stokes's
parameters, Stokes' parameters or the Stokes parameters, but not, of course, as Stoke's parameters.

Let us imagine that we have in our hand a flux meter, and that it can measure the flux density, in W m  of our parallel beam of
monochromatic light. While we would prefer to use the symbol  for flux density, in fact the flux density of the unobstructed light
is the first of the Stokes parameters, for which the traditional symbol is I (and whose modern symbol is  or , depending on
which book you are reading.)
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Now let us suppose that we measure the flux density of the light after passage through a polarizing filter oriented at various angles
as suggested in Figure IV.2. The second and third Stokes parameters, then, are defined by

and

Unless you are fortunate or rich, it is unlikely that your little flux meter will accurately measure the flux densities in absolute SI
units in W m . Therefore those of us of more modest means will just have to be content with dimensionless Stokes parameters -
measured in units so that the unobstructed flux density is 1. We define the dimensionless Stokes parameters (for which I use a
different font) by

Thus, for the dimensioned Stokes parameters in W m  (which we may not easily be able to measure), I use IQUV. For the
dimensionless Stokes parameters, I use . (There is no need for a dimensionless , because it is 1.)

It is possible to determine the eccentricity  and the inclination  of the polarization ellipse from  and . Here I give the relations
without derivation. I shall give a derivation in an Appendix to this chapter. For the time being, then, here are the relations:

Perhaps of more interest are the converses of these:

In solving Equation ( ) for , it is necessary to know the signs of  and  separately, in order to avoid an ambiguity of quadrant.
Provision of the  function in a calculator or computer greatly facilitates this.

The table below shows a sample of polarization ellipses for various combinations of  and . For reasons that will become
apparent during the derivation of the formulas in the Appendix, all of the ellipses are drawn such that  is the same for
each. This ensures that the flux density is the same for each.
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Thus far we have dealt with the Stokes parameters I (related to the flux density of the light), and  and  (related to the shape and
orientation of the polarization ellipse). Now we have to describe the Stokes parameter V, and how it is related to the chirality
(handedness) of the ellipse. In this account, when I use the words “clockwise” and “counterclockwise” I shall assume that we are
looking towards the source of light.

If we really want to know the polarity, we need to have a good research grant and to be in possession of a filter that passes only
circularly polarized light. A linear polarizer in conjunction with a quarter-wave plate will do it. I shall take it that the filter passes
only light that is circularly polarized in the clockwise sense. Suppose the flux density after passage through such a filter is . The
Stokes V parameter is defined as

or, in dimensionless form,

It will be observed that this parameter (like the others) ranges from −1 (if ) to +1 (if ), and hence that negative 
implies counterclockwise polarization, and positive  implies clockwise polarization. We shall also show in the Appendix, that
(subject to an important condition - see below),  is related to the eccentricity by

Q U

FC

V  =  2   −  I,FC (9)

V   =     −1.
2FC

F
(10)

= 0FC = 1FC V

V

V
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This means that  implies , and hence linear polarization (for which there is no chirality). Also,  implies ,
and hence circular polarization. Conversely

Thus one can determine both the chirality and the eccentricity (but not ) from  alone. Figure IV.3 shows the relation between 
and .

This redundancy must mean that ,  and  are not independent, and indeed it will be observed from equations ( ), ( ) and ( )
that

In terms of the dimensioned Stokes parameters:

In one of the  notations, this would conveniently be

Just before Equation ( ) we referred to an important condition. Equations ( ) - ( ), and Figure IV.3, are valid only for the case
of total elliptical polarization. The case of partial polarization is discussed in what follows. The section on partial polarization
should not be thought of as a relatively unimportant afterthought, because most sources of polarized light that one comes across are
more likely to be partially polarized rather than totally polarized.

Partial Polarization

Until this point we have assumed that we have been concerned with a single coherent wave with one well-defined polarization
state. In practice, we rarely see this, and we more often have to deal with partially polarized light. Most of us have a fairly good
idea of what is meant by light that is partially plane polarized horizontally. We mean that the light is mostly like this:

but there’s also a little bit of this:

  =   .V 2 4(1 − )e2

(2 −e2)2
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But if that were so with two coherent waves, this would result, if they were in phase, in this:

or if they were not in phase, in this:

In truth, unless we are looking at a coherent light source, such as a laser, partially polarized light might be more like this:

This is partially plane polarized at about an angle of 30º, but it is clearly not totally plane polarized. Partially polarized light can be
described as the sum of a totally polarized component plus an unpolarized component. Thus we might describe the situation
illustrated above by something like this:

Partially elliptical polarized light might be described by a totally elliptically polarized component, plus an unpolarized component:

If we could somehow separately measure the flux densities of the polarized (p) and unpolarized (u) components, we could define
the degree of polarization by

If we know that the light is partially plane (linearly) polarized, as in Figure IV.5 (rather than elliptically polarized as in Figure IV.6),
we can measure this rather easily. Place the polarizing filter in front of the source, and rotate it until the transmitted flux density

p  =  
Fp

  +  Fp Fu

(16)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/7369?pdf


4.1.7 https://phys.libretexts.org/@go/page/7369

goes through a maximum, . and then through a further 90º until it goes through a minimum, . This will give you the
degree of polarization from.

and of course it also gives you the polarization angle. This applies, of course, only to light that you know to be partially linearly
polarized. It will not do for partially elliptically polarized light.

Recall that

and

If the source is partially plane polarized, each of the measurements  includes a total linear or elliptical
component, and an unpolarized component. However, the unpolarized component is the same for each of these four measurements.
Consequently Q and U describe the “total” component only. Thus all equations up to and including Equation ( ), as well as the
table illustrating the shape of the ellipse as a function of Q and U, are still valid for the “total” component.

The parameter , however, was defined in Equations 9 and 10 by

or, in dimensionless form,

 and  each contain a “total” and an unpolarized component, so that, unlike  and , the “total” component is not separated
out.

Recall from Equations ( ) and ( ) that  and .

These were derived for totally elliptically (which includes linearly) polarized light. For light that is partially polarized, it applies
only to the “total” part, so that, for partially polarized light,

From Equations ( ), ( ) and ( ) we determine that

Thus from the measurements of  and their combinations  we have determined, for partially polarized light,
the degree of polarization, and the eccentricity, orientation and chirality of the polarization ellipse.

Equation ( ) suggests that that the state of polarization of light can be described by a point in  space . This concept is
described by the Poincaré sphere:

Fmax Fmin

p  =   .
  −  Fmax Fmin
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In this context I have often seen the notation  for  and  for 90º − . (The  here, of course, is not the same as the  of Figure
IV.1.

Let us suppose, to begin with, that we have total polarization, so that . The reader is invited to imagine the shape of the
polarization ellipse at any point on the surface of the sphere. Recall in particular that  implies linear polarization, and 

 implies circular polarization. Thus anywhere around the equator of the Poincaré represents linear polarization, and at the
poles we have circular polarization.

Let us look along the meridian of longitude with  = 0 ( = 0). As we go from the “north pole” to the “south pole”,  goes from
+1 (circular) through 0 (linear) to −1 (circular), and  goes from 0 (circular) through 1 (linear) to 0 (circular). It will be useful
(essential) to refer to the table on page 5.

The reader is now invited to think about (while referring to the table on page 5) the situation along the meridian with φ = 90º. And
then to try other meridians, eventually covering the sphere with ellipses. This is a little beyond my artistic ability, but I found a very
good one by Googling for Poincaré sphere. Choose “Images for poincare sphere”. There are some excellent images there. I
particularly like the orange-coloured one from University of Arizona. If you click on it, the sphere rotates, and you can see all
round the sphere.

2ψ ϕ 2χ θ θ θ

p = 1
V = 0

V = ±1

ϕ U V

Q
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APPENDIX
In the article above I described the Stokes parameters, and I related them to the shape, orientation and chirality of the polarization
ellipse, as follows (for total polariazation):

In this Appendix, I derive these relations.

Before starting, let us remind ourselves of an established property of an ellipse of semi major and semi minor axes  and , namely
that the locus of the corners of all circumscribing rectangles to an ellipse is a circle, known as the director circle, which is of radius 

. This is illustrated in Figure A1, in which I have drawn three circumscribing rectangles. The semidiagonals of all the
circumscribing rectangles are of the same length, namely . A proof of this theorem is to be found in
http://orca.phys.uvic.ca/~tatum/celmechs/celm2.pdf , Section 2.3, or in many books on the properties of the conic sections.

Recall now the meanings of  and . They are the semi major and semi minor axes of the ellipse, but they are also the greatest and
least values of the electric field during a cycle. Recall also that the energy per unit volume of an electric field is proportional to the
square of the electric field strength. When the light is observed direct without the intervention of a polarizing filter, the flux density
of the light is proportional, then, to . That is to say, the Stokes parameter  is proportional to the square of the radius of the
director circle.

In what follows, we shall have occasion to refer the polarization ellipse to three rectangular coordinate systems.

i. A coordinate system ( ), in which the axes of coordinates coincide with the axes of the polarization ellipse.

ii. A coordinate system ( ), in which the axes of coordinates are horizontal and vertical - or, to more precise, parallel to the
transmission axes of the first two filters illustrated in Figure IV.1.

iii. A coordinate system ( ), in which the axes of coordinates are parallel to the transmission axes of the last two filters
illustrated in Figure IV.1.

The ellipse referred to these three coordinate systems is shown in Figures A2, A3, A4. In each of these drawings, I have drawn a
circumscribing rectangle and the director circle. The flux density of the radiation is proportional to the square of the rectangle
diagonal, which is the same in all three drawings, and is equal to the diameter of the director circle, namely .
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I have also indicated the lengths  in these drawings. These represent the maximum values of the component of
the electric field during a cycle in the directions of the six axes. Indeed, the reader might even prefer an alternative notation:

The first notation is easier for the analysis of the geometry of the ellipse. The second notation reminds us of the physical meaning
of the symbols. Indeed the readings of our flux meter are proportional, successively, to 

 or, in the  notation . The Stokes parameters 
are proportional successively to , or in the  notation, 

.

a,  b,   ,   ,   ,  a1 b1 a2 b2
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b  =  Êy
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Refer to Figure A2. The equation to the ellipse, referred to this coordinate system, is the familiar

However, I want to express lengths (electric field strengths) in units such that , and, further, I want to write the

equation in terms of the eccentricity . In that case, Equation ( ) becomes

  +     =  1,
x2

a2

y2

b2
(A1)

  +     = 1a2 b2

e  =   1 − b2
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− −−−−
√ A1
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where

Now refer to Figure A3. If the major axis of the ellipse makes an angle  with the horizontal, the coordinate systems are related by

 and 

On making use of equations ( ) and ( ), we find that the equation to the ellipse referred to the  coordinate system is

We now wish to find  and , the maximum horizontal and vertical components of the electric field. The length 
can be found as follows. The vertical line  intersects this ellipse at values of  given by

But the line  is to be a vertical tangent to the ellipse, and therefore the quadratic equation ( ) must have two equal real
roots, which tells us, after a little algebra, that

A similar analysis starting with the horizontal line  reveals that

For a check on the correctness of the algebra, it can now be verified that .

The Stokes Q parameter is , and, after some algebra and trigonometric identities, it is found that

which is one of the relations that we sought.

Now refer to Figure A3. The  and  coordinate systems are related by

where

On making use of Equations ( ) and ( ), we find that the equation to the ellipse referred to the  coordinate system is

To obtain , we now proceed in a similar fashion to the analysis of . We combine this equation with  and put in the
condition that the resulting quadratic equation in  has two equal real roots, to obtain

Likewise, by combination with , we obtain
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The correctness of the algebra can be checked by verifying that . Then , which is , can be calculated with
some algebra and trigonometry, to be

And this is a good time to remind ourselves of equation ( )

In our drawings in this chapter, we have taken  so that .

Now for the chirality or handedness of the radiation. From measurements of  and  we have deduced the eccentricity and
orientation of the Lissajous ellipse, but we don’t yet know whether the tip of the E-vector is moving clockwise or counterclockwise
(as seen when looking towards the source of light). This is what the Stokes  parameter is going to tell us.

It is well known that a Lissajous ellipse can be generated as the resultant of two simple harmonic linear oscillations at right angles
to each other. In order to understand the V parameter it is necessary to understand that a Lissajous ellipse can also be generated by
two circular motions, of different amplitude, and moving in opposite directions. If the semi major and semi minor axes of the

Lissajous ellipse are, respectively,  and , the radii of the circular components are  and  (see Figure 11).

To measure  we place in front of the light source a filter that transmits only circularly polarized light. We’ll suppose that it
transmits light that is left-handed (counterclockwise) as seen when looking towards the light source. I.e. it will obstruct the smaller
circle of Figure A5 and transmit the large circle.

If the fraction of the flux density passed by the filter is , the Stokes  parameter is .

Examples:

If the light is lefthand circularly polarized, the filter will transmit all of the light. That is, .

If the light is righthand circularly polarized, the filter will transmit none of the light. That is, .

If the light is linearly polarized, the filter will transmit half of the light. (Linearly polarized light can be generated by two equal

circles moving in opposite directions.) That is, .

In Figure A5, . The radius of the small circle (which is obstructed) is  and the radius of the large circle (which is

transmitted) is . The flux density of the unfiltered light is proportional to . The flux density of the light that is

passed is proportional to . (The flux density, we recall, is proportional to the square of the director circle. The radius of the

director circle of the large circle is . So we have .

If we were to reverse all of the arrows in Figure A5, it would be the larger circle that would be blocked and the small circle passed.

The flux density of the light that is passed is then proportional to . So we have .
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Thus positive  means that the tip of the E-vector is moving counterclockwise, and negative  means that it is rotating clockwise.

In general, the radius of the large circle is  and the radius of its director circle is . If this is the circle that is

transmitted, the flux density passed is proportional to .

We have, then, . This means, incidentally, that  is proportional to the area of the ellipse. If we

take , then . If it is the small circle that is passed, .

Since the eccentricity of the ellipse is given by , we can express  in terms of the eccentricity, thus

This equation is valid for totally polarized light. For partially polarized light, return to the main text.

This page titled 4.1: Polarized Light and the Stokes Parameters is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or
curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.
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