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2.10.1: Integrals
Integration is the inverse operation to differentiation:

It is not always easy to evaluate a given integral. In fact some integrals are not even doable! However, there are some methods that
could yield an answer. While you might be happier using a computer algebra system, such as Maple or WolframAlpha.com, or a
fancy calculator, you should know a few basic integrals and know how to use tables for some of the more complicated ones.

First of all, there are some integrals you are expected to know without doing any work. These integrals appear often and are just an
application of the Fundamental Theorem of Calculus to the previous Table 8.4.1. The basic integrals that students should know off
the top of their heads are given in Table .

These are not the only integrals you should be able to do. We can expand the list by recalling a few of the techniques that you
learned in calculus, the Method of Substitution, Integration by Parts, integration using partial fraction decomposition, and
trigonometric integrals, and trigonometric substitution. There are also a few other techniques that you had not seen before. We will
look at several examples.

Evaluate .

Solution
When confronted with an integral, you should first ask if a simple substitution would reduce the integral to one you know how
to do.

The ugly part of this integral is the  under the square root. So, we let .

Noting that when , we have  For our example, .

Looking at the integral, part of the integrand can be written as . Then, the integral becomes

The substitution has converted our integral into an integral over . Also, this integral is doable! It is one of the integrals we
should know. Namely, we can write it as

This is now easily finished after integrating and using the substitution variable to give

Note that we have added the required integration constant and that the derivative of the result easily gives the original
integrand (after employing the Chain Rule).

Often we are faced with definite integrals, in which we integrate between two limits. There are several ways to use these limits.
However, students often forget that a change of variables generally means that the limits have to change.

Table : Table of Common Integrals.

Function Indefinite Integral

∫ dx = f(x) +C
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dx
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Function Indefinite Integral

Evaluate .

Solution
This is the last example but with integration limits added. We proceed as before. We let . As  goes from o to 
takes values from i to  So, this substitution gives

When you becomes proficient at integration, you can bypass some of these steps. In the next example we try to demonstrate the
thought process involved in using substitution without explicitly using the substitution variable.

Evaluate .

Solution

xn
xn+1

n+ 1

eax
1

a
eax

1

x
lnx

sinax − cos ax
1

a

cos ax sinax
1

a

axsec2 tanax
1

a

sinhax coshax
1

a

coshax sinhax
1

a

axsech2 tanhax
1

a

sec x ln | sec x+ tanx|

1

a+ bx
ln(a+ bx)

1

b

1

+a2 x2

1

a
tan−1 x

a

1

−a2 x2
− −−−−−

√
sin−1 x

a

1

x −x2 a2
− −−−−−

√
1

a
sec−1 x

a

1

−x2 a2
− −−−−−

√
= ln +xcosh−1 x

a
∣∣ −x2 a2

− −−−−−
√ ∣∣

 Example 2.10.1.2

dx∫ 2
0

x

+1x2
− −−−−

√

u = +1x2 x 2, u
5.

dx = = = −1∫
2

0

x

+1x2
− −−−−

√

1

2
∫

5

1

du

u
−−

√
|u−−√
5
1

5
–

√

 Example 2.10.1.3

dx∫ 2
0

x

9 +4x2
− −−−−−

√
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As with the previous example, one sees that the derivative of  is proportional to , which is in the numerator of the
integrand. Thus a substitution would give an integrand of the form  So, we expect the answer to be proportional to 

. The starting point is therefore,

where  is a constant to be determined.

We can determine  through differentiation since the derivative of the answer should be the integrand. Thus,

Comparing this result with the integrand, we see that the integrand is obtained when . Therefore,

We now complete the integral,

The function  is called the Gudermannian and connects trigonometric and hyperbolic

functions. This function was named after Christoph Gudermann (1798-1852), but introduced by Johann Heinrich Lambert ( 
 ), who was one of the first to introduce hyperbolic functions.

Evaluate .

Solution
This integral can be performed by first using the definition of  followed by a simple substitution.

Now, we let  and . Then,

Integration by Parts

When the Method of Substitution fails, there are other methods you can try. One of the most used is the Method of Integration by
Parts. Recall the Integration by Parts Formula:

9 +4x2 x

.u−1/2

=u−−√ 9 +4x2
− −−−−−

√

∫ dx = A
x

9 +4x2
− −−−−−

√
9 +4x2− −−−−−

√

A

A

A
d

dx
(9 +4 )x2

1

2 = A ( ) (8x)(9 +4 )x2
−

1

2
1

2

= 4xA(9 +4 )x2
−

1

2

A =
1

4

∫ dx =
x

9 +4x2
− −−−−−

√

1

4
9 +4x2− −−−−−

√

dx = [5 −3] =∫
2

0

x

9 +4x2
− −−−−−

√

1

4

1

2

gd(x) = = 2 −∫ x

0

dx

coshx
tan−1 ex

π

2

1728 −1777

 Example 2.10.1.4

∫
dx

coshx

coshx

∫
dx

coshx
= ∫ dx

2

+ex e−x

= ∫ dx
2ex

+1e2x

u = ex du = dxex

∫
dx

coshx
= ∫ du

2

1 +u2

= 2 u+Ctan−1

= 2 +Ctan−1 ex
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The idea behind Integrating by Parts is that you are given the integral on the left and you can relate it to an integral on the right.
Hopefully, the new integral is one you can do, or at least it is an easier integral than the one you are trying to evaluate.

However, you are not usually given the functions  and . You have to determine them. The integral form that you really have is a
function of another variable, say . Another form of the Integration by Parts Formula can be written as

Note: Often in physics one needs to move a derivative between functions inside an integrand. The key - use integration by parts to
move the derivative from one function to the other under an integral.

This form is a bit more complicated in appearance, though it is clearer than the  form as to what is happening. The derivative
has been moved from one function to the other. Recall that this formula was derived by integrating the product rule for
differentiation. These two formulae can be related by using the differential relations

This also gives a method for applying the Integration by Parts Formula.

Consider the integral 

Solution
We choose  and  This gives the correct left side of the Integration by Parts Formula. We next determine 
and  :

We note that one usually does not need the integration constant. Inserting these expressions into the Integration by Parts
Formula, we have

We see that the new integral is easier to do than the original integral. Had we picked  and , then the
formula still works, but the resulting integral is not easier.

For completeness, we finish the integration. The result is

As always, you can check your answer by differentiating the result, a step students often forget to do. Namely,

So, we do get back the integrand in the original integral.

 Integration by Parts Formula

∫ udv= uv−∫ vdu

u v

x

∫ f(x) (x)dx = f(x)g(x) −∫ g(x) (x)dxg′ f ′

u−v

u = f(x) → du = (x)dxf ′

v= g(x) → dv= (x)dxg′

 Example 2.10.1.5

∫ x sin2xdx.

u = x dv= sin2xdx. v

du

du = dx = dx
du

dx

v= ∫ dv= ∫ sin2xdx = − cos 2x
1

2

∫ x sin2xdx = − x cos 2x+ ∫ cos 2xdx
1

2

1

2

u = sin2x dv= xdx

∫ x sin2xdx = − x cos 2x+ sin2x+C.
1

2

1

4

(− x cos 2x+ sin2x+C)
d

dx

1

2

1

4
= − cos 2x+x sin2x+ (2 cos 2x)

1

2

1

4

= x sin2x. 

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://phys.libretexts.org/@go/page/76310?pdf


2.10.1.5 https://phys.libretexts.org/@go/page/76310

(Integration by Parts for Definite Integrals). We can also perform integration by parts on definite integrals. The general formula is
written as

Consider the integral

This will require two integrations by parts. First, we let  and  Then,

Inserting into the Integration by Parts Formula, we have

We note that the resulting integral is easier that the given integral, but we still cannot do the integral off the top of our head
(unless we look at Example  ). So, we need to integrate by parts again. (Note: In your calculus class you may recall that there
is a tabular method for carrying out multiple applications of the formula. We will show this method in the next example.)

We apply integration by parts by letting  and . This gives  and . Therefore, we
have

The final result is

There are other ways to compute integrals of this type. First of all, there is the Tabular Method to perform integration by parts. A
second method is to use differentiation of parameters under the integral. We will demonstrate this using examples.

Compute the integral  using the Tabular Method.

(Using the Tabular Method). First we identify the two functions under the integral,  and . We then write the two
functions and list the derivatives and integrals of each, respectively. This is shown in Table A.4. Note that we stopped

First when we reached zero in the left column.

Next, one draws diagonal arrows, as indicated, with alternating signs attached, starting with . The indefinite integral is then
obtained by summing the products of the functions at the ends of the arrows along with the signs on each arrow:

To find the definite integral, one evaluates the antiderivative at the given limits.

f(x) (x)dx = − g(x) (x)dx∫
b

a

g′ f(x)g(x)|
b

a ∫
b

a

f ′

 Example 2.10.1.6

cosxdx∫
π

0
x2

u = x2 dv= cosx.

du = 2xdx. v= sinx

cosxdx∫
π

0
x2 = −2 x sinxdxsinxx2 ∣∣

π

0
∫

π

0

= −2 x sinxdx∫
π

0

3!

U = x dV = sinxdx dU = dx V = −cosx

x sinxdx∫
π

0
= − + cosxdxx cosx|π0 ∫

π

0

= π+ sinx|π0
= π

cosxdx = −2π∫
π

0
x2

 Example 2.10.1.7

cosxdx∫ π

0
x2

x2 cosx

+

∫ cosxdx = sinx+2x cosx−2 sinx+Cx2 x2
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Actually, the Tabular Method works even if a zero does not appear in the left column. One can go as far as possible, and if a zero
does not appear, then one needs only integrate, if possible, the product of the functions in the last row, adding the next sign in the
alternating sign progression. The next example shows how this works.

Figure : Tabular Method

Figure : Tabular Method, showing a nonterminating example.

Use the Tabular Method to compute .

As before, we first set up the table as shown in Figure .

Putting together the pieces, noting that the derivatives in the left column will never vanish, we have

The integral on the right is a multiple of the one on the left, so we can combine them,

or

cosxdx∫
π

0
x2 = [ sinx+2x cosx−2 sinx]x2 π

0

= ( sinπ+2π cosπ−2 sinπ)−0π2

= −2π.

2.10.1.1

2.10.1.2

 Example 2.10.1.8

∫ sin3xdxe2x

2.10.1.2

∫ sin3xdx =( sin3x− cos 3x) +∫ (−9 sin3x)( ) dxe2x 1

2

3

4
e2x 1

4
e2x

∫ sin3xdx =( sin3x− cos 3x)
13

4
e2x 1

2

3

4
e2x

∫ sin3xdx =( sin3x− cos 3x)e2x 2

13

3

13
e2x
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Differentiation Under the Integral
Differentiation Under the Integral Sign and Feynman’s trick.

Another method that one can use to evaluate this integral is to differentiate under the integral sign. This is mentioned in the Richard
Feynman’s memoir Surely You’re Joking, Mr. Feynman!. In the book Feynman recounts using this "trick" to be able to do integrals
that his MIT classmates could not do. This is based on a theorem found in Advanced Calculus texts. Reader’s unfamiliar with
partial derivatives should be able to grasp their use in the following example.

Let the functions  and  be continuous in both , and , in the region of the  plane which includes 

, where the functions  and  are continuous and have continuous derivatives for 
. Defining

then

for . This is a generalized version of the Fundamental Theorem of Calculus.

In the next examples we show how we can use this theorem to bypass integration by parts.

Use differentiation under the integral sign to evaluate . First, consider the integral

Then,

Evaluating this result at , we have

The reader can verify this result by employing the previous methods or by just differentiating the result.

 Theorem 2.10.1.1

f(x, t)
∂f(x, t)

∂x
t x (t, x)

a(x) ≤ t ≤ b(x), ≤ x ≤x0 x1 a(x) b(x)
≤ x ≤x0 x1

F (x) ≡ f(x, t)dt,∫
b(x)

a(x)

dF (x)

dx
=( ) +( ) + f(x, t)dt

∂F

∂b

db

dx

∂F

∂a

da

dx
∫

b(x)

a(x)

∂

∂x

= f(x, b(x)) (x) −f(x, a(x)) (x) + f(x, t)dtb′ a′ ∫
b(x)

a(x)

∂

∂x

≤ x ≤x0 x1

 Example 2.10.1.9

∫ x dxex

I(x, a) = ∫ dx =eax
eax

a

= ∫ x dx
∂I(x, a)

∂a
eax

SO

∫ x dxeax =
∂I(x, a)

∂a

= (∫ dx)
∂

∂a
eax

= ( )
∂

∂a

eax

a

=( − )
x

a

1

a2
eax

a = 1

∫ x dx = (x−1)ex ex
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We will do the integral  once more. First, consider the integral

Differentiating the integral  with respect to  twice gives

Evaluation of this result at  leads to the desired result. Namely,

Trigonometric Integrals
Other types of integrals that you will see often are trigonometric integrals. In particular, integrals involving powers of sines and
cosines. For odd powers, a simple substitution will turn the integrals into simple powers.

For example, consider

Solution
This can be rewritten as

Integration of odd powers of sine and cosine. Let . Then, . Since , we have

A quick check confirms the answer:

 Example 2.10.1.10

cosxdx∫ π

0
x2

I(a) ≡ cosaxdx∫
π

0

=
sinax

a

∣
∣
∣
π

0

=
sinaπ

a

I(a) a

= − cosaxdx
I(a)d2

da2
∫

π

0
x2

a = 1

cosxdx∫
π

0
x2 = −

I(a)d2

da2

∣

∣
∣
a=1

= − ( )
d2

da2

sinaπ

a

∣

∣
∣
a=1

∣

∣
∣
a=1

= − )( )
d

da

aπ cosaπ−sinaπ

a2

∣

∣
∣
a3

|a=1

= −(
sinaπ+2aπ cosaπ−2 sinaπa2π2

−2π.

 Example 2.10.1.11

∫ xdxcos3

∫ xdx = ∫ x cosxdxcos3 cos2

u = sinx du = cosxdx x = 1 − xcos2 sin2

∫ xdxcos3 = ∫ x cosxdxcos2

= ∫ (1 − )duu2

= u− +C
1

3
u3

= sinx− x+C.
1

3
sin3
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Even powers of sines and cosines are a little more complicated, but doable. In these cases we need the half angle formulae
(A.24)-(A.25).

(Integration of even powers of sine and cosine).

As an example, we will compute

.

Solution
Substituting the half angle formula for , we have

We note that this result appears often in physics. When looking at root mean square averages of sinusoidal waves, one needs the
average of the square of sines and cosines. Recall that the average of a function on interval  is given as

So, the average of  over one period is

The root mean square is then found by taking the square root, .

Recall that RMS averages refer to the root mean square average. This is computed by first computing the average, or mean, of the
square of some quantity. Then one takes the square root. Typical examples are RMS voltage, RMS current, and the average energy
in an electromagnetic wave. AC currents oscillate so fast that the measured value is the RMS voltage.

Trigonometric Function Substitution

Another class of integrals typically studied in calculus are those involving the forms , , or \(\sqrt{x^2 − 1\).
These can be simplified through the use of trigonometric substitutions. The idea is to combine the two terms under the radical into
one term using trigonometric identities. We will consider some typical examples.

Evaluate .

Solution
Since , we perform the sine substitution

(sinx− x+C)
d

dx

1

3
sin3 = cosx− x cosxsin2

= cosx (1 − x)sin2

= xcos3

 Example 2.10.1.12

xdx∫
2π

0
cos2

xcos2

xdx∫
2π

0
cos2 = (1 +cos 2x)dx

1

2
∫

2π

0

=
1

2
(x− sin2x)

1

2

2π

0

= π

[a, b]

= f(x)dxfave 
1

b−a
∫

b

a

xcos2

xdx = .
1

2π
∫

2π

0
cos2 1

2

1

2
–

√

1 −x2
− −−−−

√ 1 +x2
− −−−−

√

 Example 2.10.1.13

∫ dx1 −x2
− −−−−

√

1 − θ = θsin2 cos2
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In any of these computations careful attention has to be paid to simplifying the radical. This is because

For example, . For  one typically specifies the domain  In this domain we
have .

Then,

Using the last example, we have

However, we need to write the answer in terms of . We do this by first using the double angle formula for  and 
 to obtain

Similar trigonometric substitutions result for integrands involving  and . The substitutions are summarized in
Table A.6. The simplification of the given form is then obtained using trigonometric identities. This can also be accomplished by
referring to the right triangles shown in Figure .

Table : Standard trigonometric substitutions.

Form Substitution Differential

Figure : Geometric relations used in trigonometric substitution.

Evaluate .

Solution
Let . Then,  and

x = sinθ, dx = cosθdθ

= |x|.x2
−−

√

= = 5(−5)2− −−−−√ 25
−−

√ x = sinθ, −π/2 ≤ θ ≤ π/2.
| cosθ| = cosθ

∫ dx1 −x2− −−−−
√ = ∫ cosθdθ1 − θsin2− −−−−−−−

√

= ∫ θdθ.cos2

∫ dx = (θ− sin2θ)+C.1 −x2− −−−−
√ 1

2

1

2

x sin2θ

cosθ = 1 −x2
− −−−−

√

∫ dx = ( x−x )+C.1 −x2− −−−−
√ 1

2
sin−1 1 −x2− −−−−

√

1 +x2
− −−−−

√ −1x2
− −−−−

√

2.10.1.3

2.10.1.2

−a2 x2
− −−−−−

√ x = a sin θ dx = a cos θdθ

+a2 x2
− −−−−−

√ x = a tan θ dx = a θdθsec2

−x2 a2
− −−−−−

√ x = a sec θ dx = a sec θ tan θdθ

2.10.1.3

 Example 2.10.1.14

dx∫ 2
0 +4x2

− −−−−
√

x = 2 tanθ dx = 2 θdθsec2
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So, the integral becomes

One has to recall, or look up,

This gives

Evaluate .

Solution
In this case one needs the secant substitution. This yields

Evaluate .

Again we can use a secant substitution. This yields

Hyperbolic Function Substitution
Even though trigonometric substitution plays a role in the calculus program, students often see hyperbolic function substitution
used in physics courses. The reason might be because hyperbolic function substitution is sometimes simpler. The idea is the same
as for trigonometric substitution. We use an identity to simplify the radical.

= = 2 sec θ+4x2− −−−−
√ 4 θ+4tan2− −−−−−−−−

√

dx = 4 θdθ∫
2

0
+4x2− −−−−√ ∫

π/4

0
sec3

∫ θdθ = (tanθ sec θ+ln| sec θ+tanθ|) +C.sec3 1

2

dx∫
2

0
+4x2− −−−−

√ = 2[tanθ sec θ+ln| sec θ+tanθ|]
π/4
0

= 2( +ln | +1| −(0 +ln(1)))2
–

√ 2
–

√

= 2( +ln( +1))2
–

√ 2
–

√

 Example 2.10.1.15

∫ , x ≥ 1
dx

−1x2− −−−−
√

∫
dx

−1x2
− −−−−

√
= ∫

sec θ tanθdθ

θ−1sec2
− −−−−−−−

√

= ∫
sec θ tanθdθ

tanθ

= ∫ sec θdθ

= ln(sec θ+tanθ) +C

= ln(x+ )+C.−1x2− −−−−
√

 Example 2.10.1.16

∫ , x ≥ 1
dx

x −1x2
− −−−−

√

∫
dx

x −1x2
− −−−−

√
= ∫

sec θ tanθdθ

sec θ θ−1sec2
− −−−−−−−

√

= ∫ dθ
sec θ tanθ

sec θ tanθ

= ∫ dθ = θ+C = x+C.sec−1
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Evaluate  using the substitution .

Solution
Since , we have  Also, we can use the identity  to rewrite

The integral can be now be evaluated using these substitutions and some hyperbolic function identities,

In Example A.17 we used a trigonometric substitution and found

This is the same result since .

Evaluate  for  using hyperbolic function substitution.

Solution
This integral was evaluated in Example  using the trigonometric substitution  and the resulting integral of 

 had to be recalled. Here we will use the substitution

Then,

This is the same result as we had obtained previously, but this derivation was a little cleaner.

Also, we can extend this result to values  by letting  - cosh . This gives

Combining these results, we have shown

 Example 2.10.1.17

dx∫ 2
0

+4x2
− −−−−

√ x = 2 sinhu

x = 2 sinhu dx = 2 coshudu. u− u = 1cosh2 sinh2

= = 2 coshu+4x2− −−−−√ 4 u+4sinh2
− −−−−−−−−−√

dx∫
2

0
+4x2− −−−−

√ = 4 udu∫
1sinh−1

0
cosh2

= 2 (1 +cosh2u)du∫
1sinh−1

0

= 2[u+ sinh2u]
1

2

1sinh−1

0

= 2[u+sinhu coshu] 1sinh−1

0

= 2 ( 1 + )sinh−1 2
–

√

= 2( +ln( +1))∫
2

0
+4x2− −−−−√ 2

–
√ 2

–
√

1 = ln(1 + )sinh−1 2
–

√

 Example 2.10.1.18

∫
dx

−1x2
− −−−−

√
x ≥ 1

2.10.1.16 x = sec θ
sec θ

x = coshu, dx = sinhudu, = = sinhu−1x2
− −−−−

√ u−1cosh2− −−−−−−−−
√

∫
dx

−1x2
− −−−−

√
= ∫

sinhudu

sinhu

= ∫ du = u+C

= x+Ccosh−1

= ln(x+ )+C, x ≥ 1
1

2
−1x2− −−−−

√

x ≤ −1 x = u

∫ = ln(x+ )+C, x ≤ −1
dx

−1x2
− −−−−

√

1

2
−1x2− −−−−

√

∫ = ln(|x| + )+C, ≥ 1
dx

−1x2
− −−−−

√

1

2
−1x2− −−−−

√ x2
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We have seen in the last example that the use of hyperbolic function substitution allows us to bypass integrating the secant function
in Example  when using trigonometric substitutions. In fact, we can use hyperbolic substitutions to evaluate integrals of
powers of secants. Comparing Example  and Example , we consider the transformation . The
relation between differentials is found by differentiation, giving

Since

we have , therefore

In the next example we show how useful this transformation is.

(Evaluation of ).

Evaluate  using hyperbolic function substitution.

Solution
From the discussion in the last paragraph, we have

We can express this result in the usual form by using the logarithmic form of the inverse hyperbolic cosine,

The result is

This example was fairly simple using the transformation . Another common integral that arises often is integrations
of . In a typical calculus class this integral is evaluated using integration by parts. However. that leads to a tricky
manipulation that is a bit scary the first time it is encountered (and probably upon several more encounters.) In the next example,
we will show how hyperbolic function substitution is simpler.

(Evaluation of ).

Evaluate  using hyperbolic function substitution.

Solution

First, we consider the transformation  with  . Then,

This integral was done in Example A.7, leading to

2.10.1.16
2.10.1.16 2.10.1.18 sec θ = coshu

sec θ tanθdθ = sinhudu

θ = θ−1tanh2 sec2

tanθ = sinhu

dθ =
du

coshu

∫ sec θdθ

 Example 2.10.1.19

∫ sec θdθ

∫ sec θdθ = ∫ du

= u+C

= (sec θ) +Ccosh−1

x = ln(x+ )cosh−1 −1x2− −−−−
√

∫ sec θdθ = ln(sec θ+tanθ)

sec θ = coshu
θsec3

∫ θdθsec3

 Example 2.10.1.20

∫ θdθsec3

sec θ = coshu dθ =
du

coshu

∫ θdθ = ∫sec3 du

coshu
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While correct, this is not the form usually encountered. Instead, we make the slightly different transformation .
Since , we find  As before, we find

Using this transformation and several identities, the integral becomes

There are many other integration methods, some of which we will visit in other parts of the book, such as partial fraction
decomposition and numerical integration. Another topic which we will revisit is power series.

Integrations Table

Basic Integrals

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

∫ θdθ = 2 +Csec3 tan−1 eu

tanθ = sinhu
θ = 1 + θsec2 tan2 sec θ = coshu.

dθ =
du

coshu

∫ θdθsec3 = ∫ uducosh2

= ∫ (1 +cosh2u)du
1

2

= (u+ sinh2u)
1

2

1

2

= (u+sinhu coshu)
1

2

= ( (sec θ) +tanθ sec θ)
1

2
cosh−1

= (sec θ tanθ+ln(sec θ+tanθ))
1

2

∫ du = +C, n ≠ −1un
un+1

n+1

∫ = ln|u| +C
du

u

∫ du = +Ceu eu

∫ du = +Cau
au

lna

∫ sinu du = −cosu+C

∫ cosu du = sinu+C

∫ u du = tanu+Csec2

∫ u du = −cotu+Ccsc2

∫ secu tanu du = secu+C

∫ cscu cotu du = −cscu+C

∫ tanu du = ln| secu| +C
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12. 

13. 

14. 

15. 

16. 

17. 

Trigonometric Integrals

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

∫ cotu du = ln| sinu| +C

∫ secu du = ln| secu+tanu| +C

∫ cscu du = ln| cscu−cotu| +C

∫ = ( )+C
du

−a2 u2
− −−−−−

√
sin−1 u

a

∫ = ( )+C
du

+a2 u2

1

a
tan−1 u

a

∫ = +C
du

u −u2 a2
− −−−−−

√

1

a
sec−1 |u|

a

∫ u du = u− sin2u+Csin2 1

2

1

4

∫ u du = u+ sin2u+Ccos2 1

2

1

4

∫ u du = tanu−u+Ctan2

∫ u du = −cotu−u+Ccot2

∫ u du = − (2 + u) cosu+Csin3 1

3
sin2

∫ u du = (2 + u) sinu+Ccos3 1

3
cos2

∫ u du = u+ln| cosu| +Ctan3 1

2
tan2

∫ u du = − u−ln| sinu| +Ccot3 1

2
cot2

∫ u du = secu tanu+ ln| secu+tanu| +Csec3 1

2

1

2

∫ u du = − cscu cotu+ ln| cscu−cotu| +Ccsc3 1

2

1

2

∫ u du = u cosu+ ∫ u dusinn −1

n
sinn−1 n−1

n
sinn−2

∫ u du = u sinu+ ∫ u ducosn
1

n
cosn−1 n−1

n
cosn−2

∫ u du = u−∫ u dutann 1

n−1
tann−1 tann−2

∫ u du = u−∫ u ducotn
−1

n−1
cotn−1 cotn−2

∫ u du = tanu u+ ∫ u dusecn
1

n−1
secn−2 n−2

n−1
secn−2

∫ u du = cotu u+ ∫ u ducscn
−1

n−1
cscn−2 n−2

n−1
cscn−2

∫ sinau sinbu du = − +C
sin(a−b)u

2(a−b)

sin(a+b)u

2(a+b)
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35. 

36. 

37. 

38. 

39. 

40. 

41. 

Exponential and Logarithmic Integrals

42. 

43. 

44. 

45. 

46. 

47. 

48. 

Hyperbolic Integrals

49. 

50. 

51. 

52. 

53. 

54. 

55. 

∫ cosau cos bu du = + +C
sin(a−b)u

2(a−b)

sin(a+b)u

2(a+b)

∫ sinau cos bu du = − − +C
cos(a−b)u

2(a−b)

cos(a+b)u

2(a+b)

∫ u sinu du = sinu−u cosu+C

∫ u cosu du = cosu+u sinu+C

∫ sinu du = − cosu+n∫ cosu duun un un−1

∫ cosu du = sinu−n∫ sinu duun un un−1

∫ u u du = − + ∫ u u dusinn cosm
u usinn−1 cosm+1

n+m

n−1

n+m
sinn−2 cosm

= + ∫ u u du
u usinn+1 cosm−1

n+m

m−1

n+m
sinn cosm−2

∫ u du = (au−1) +Ceau
1

a2
eau

∫ du = − ∫ duuneau
1

a
uneau

n

a
un−1eau

∫ sinbu du = (a sinbu−b cos bu) +Ceau
eau

+a2 b2

∫ cos bu du = (a cos bu+b sinbu) +Ceau
eau

+a2 b2

∫ lnu du = u lnu−u+C

∫ lnu du = [(n+1) lnu−1] +Cun
un+1

(n+1)2

∫ du = ln| lnu| +C
1

u lnu

∫ sinhu du = coshu+C

∫ coshu du = sinhu+C

∫ tanhu du = lncoshu+C

∫ cothu du = ln| sinhu| +C

∫ sechu du = | sinhu| +Ctan−1

∫ cschu du = ln ∣ tanh u ∣ +C
1

2

∫ u du = tanh u+Csech2
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56. 

57. 

58. 

Inverse Trigonometric Integrals

59. 

60. 

61. 

62. 

63. 

64. 

65. 

66. 

67. 

Integrals Involving a  + u , a > 0

68. 

69. 

70. 

71. 

72. 

73. 

74. 

75. 

76. 

∫ u du = −coth u+Ccsch2

∫ sechu tanhu du = −sechu+C

∫ cschu cothu du = −cschu+C

∫ u du = u u+ +Csin−1 sin−1 1 −u2− −−−−√

∫ u du = u u− +Ccos−1 cos−1 1 −u2− −−−−
√

∫ u du = u u− ln(1 + ) +Ctan−1 tan−1 1

2
u2

∫ u u du = u+ +Csin−1 2 −1u2

4
sin−1 u 1 −u2

− −−−−
√

4

∫ u u du = u− +Ccos−1 2 −1u2

4
cos−1 u 1 −u2

− −−−−
√

4

∫ u u du = u− +Ctan−1 +1u2

2
tan−1 u

2

∫ u du = [ u−∫ ] , n ≠ −1un sin−1 1

n+1
un+1 sin−1 duun+1

1 −u2− −−−−
√

∫ u du = [ u+∫ ] , n ≠ −1un cos−1 1

n+1
un+1 cos−1 duun+1

1 −u2
− −−−−

√

∫ u du = [ u−∫ ] , n ≠ −1un tan−1 1

n+1
un+1 tan−1 duun+1

1 +u2

2 2

∫ du = + ln(u+ )+C+a2 u2− −−−−−√ u

2
+a2 u2− −−−−−√ a2

2
+a2 u2− −−−−−√

∫ du = ( +2 ) − ln(u+ )+Cu2 +a2 u2− −−−−−
√ u

8
a2 u2 +a2 u2− −−−−−

√ a4

8
+a2 u2− −−−−−

√

∫ du = −a ln +C
+a2 u2− −−−−−

√

u
+a2 u2− −−−−−

√
∣

∣
∣
a+ +a2 u2− −−−−−

√

u

∣

∣
∣

∫ du = − +ln(u+ )+C
+a2 u2− −−−−−

√

u2

+a2 u2− −−−−−
√

u
+a2 u2− −−−−−

√

∫ = ln(u+ )+C
du

+a2 u2
− −−−−−

√
+a2 u2− −−−−−

√

∫ du = ( )− ln(u+ )+C
u2

+a2 u2
− −−−−−

√

u

2
+a2 u2− −−−−−√ a2

2
+a2 u2− −−−−−√

∫ = ln +C
du

u +a2 u2
− −−−−−

√

−1

a

∣

∣
∣

+a+a2 u2
− −−−−−

√

u

∣

∣
∣

∫ = − +C
du

u2 +a2 u2
− −−−−−

√

+a2 u2
− −−−−−

√

ua2

∫ = +C
du

( + )a2 u2 3/2

u

a2 +a2 u2
− −−−−−

√
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Integrals Involving u  − a , a > 0

77. 

78. 

79. 

80. 

81. 

82. 

83. 

84. 

Integrals Involving a  − u , a > 0

85. 

86. 

87. 

88. 

89. 

90. 

91. 

92. 

93. 

Integrals Involving 2au − u , a > 0

94. 

95. 

96. 

2 2

∫ du = − ln u+ +C−u2 a2− −−−−−
√

u

2
−u2 a2− −−−−−

√
a2

2
∣∣ −u2 a2− −−−−−

√ ∣∣

∫ du = (2 − ) − ln u+ +Cu2 −u2 a2− −−−−−
√ u

8
u2 a2 −u2 a2− −−−−−

√ a4

8
∣∣ −u2 a2− −−−−−

√ ∣∣

∫ du = −a +C
−u2 a2

− −−−−−
√

u
−u2 a2− −−−−−

√ cos−1 a

|u|

∫ du = − +ln u+ +C
−u2 a2

− −−−−−
√

u2

−u2 a2
− −−−−−

√

u
∣∣ −u2 a2− −−−−−

√ ∣∣

∫ = ln u+ +C
du

−u2 a2
− −−−−−

√
∣∣ −u2 a2− −−−−−

√ ∣∣

∫ du = + ln u+ +C
u2

−u2 a2
− −−−−−

√

u

2
−u2 a2− −−−−−

√
a2

2
∣
∣ −u2 a2− −−−−−

√ ∣
∣

∫ = +C
du

u2 −u2 a2
− −−−−−

√

−u2 a2
− −−−−−

√

ua2

∫ = − +C
du

( −u2 a2)3/2

u

a2 −u2 a2
− −−−−−

√

2 2

∫ du = + +C−a2 u2− −−−−−√ u

2
−a2 u2− −−−−−√ a2

2
sin−1 u

a

∫ du = (2 − ) + +Cu2 −a2 u2− −−−−−
√ u

8
u2 a2 −a2 u2− −−−−−

√ a4

8
sin−1 u

a

∫ du = −a ln +C
−a2 u2

− −−−−−
√

u
−a2 u2− −−−−−

√
∣

∣
∣
a+ −a2 u2

− −−−−−
√

u

∣

∣
∣

∫ du = − +C
−a2 u2

− −−−−−
√

u2

−1

u
−a2 u2− −−−−−

√ sin−1 u

a

∫ du = (−u + )+C
u2

−a2 u2
− −−−−−

√

1

2
−a2 u2− −−−−−

√ a2 sin−1 u

a

∫ = − ln +C
du

u −a2 u2
− −−−−−

√

1

a

∣

∣
∣
a+ −a2 u2

− −−−−−
√

u

∣

∣
∣

∫ = − +C
du

u2 −a2 u2
− −−−−−

√

1

ua2
−a2 u2− −−−−−

√

∫ du = − (2 −5 ) + +C( − )a2 u2 3/2 u

8
u2 a2 −a2 u2− −−−−−

√
3a4

8
sin−1 u

a

∫ = − +C
du

( −a2 u2)3/2

u

a2 −a2 u2
− −−−−−

√

2

∫ du = + ( )+C2au−u2− −−−−−−
√ u−a

2
2au−u2− −−−−−−

√ a2

2
cos−1 a−u

a

∫ = ( )+C
du

2au−u2
− −−−−−−

√
cos−1 a−u

a

∫ u du = + ( )+C2au−u2− −−−−−−
√ 2 −au−3u2 a2

6
2au−u2− −−−−−−

√ a3

2
cos−1 a−u

a
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97. 

Integrals Involving a + bu, a ≠ 0

98. 

99. 

100. 

101. 

102. 

103. 

104. 

105. 

106. 

107. 

108. 

109. 

110. 

111. 

112. 

113. 
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∫ = − +C
du

u 2au−u2
− −−−−−−

√

2au−u2
− −−−−−−

√

au

∫ du = (a+bu−a ln |a+bu|) +C
u

a+bu

1

b2

∫ du = [(a+bu −4a(a+bu) +2 ln |a+bu|]+C
u2

a+bu

1

2b3
)2 a2

∫ = ln +C
du

u(a+bu)

1

a

∣
∣
∣

u

a+bu

∣
∣
∣

∫ = − + ln +C
du

(a+bu)u2

1

au

b

a2

∣
∣
∣
a+bu

u

∣
∣
∣

∫ du = + ln|a+bu| +C
u

(a+bu)2

a

(a+bu)b2

1

b2

∫ du = − ln +C
u

u(a+bu)2

1

a(a+bu)

1

a2

∣
∣
∣
a+bu

u

∣
∣
∣

∫ du = (a+bu− −2a ln |a+bu|)+C
u2

(a+bu)2

1

b3

a2

a+bu

∫ u du = (3bu−2a)(a+bu +Ca+bu
− −−−−

√
2

15b2
)3/2

∫ du = (bu−2a) +C
u

a+bu
− −−−−

√

2

3b2
a+bu
− −−−−

√

∫ du = (8 +3 −4abu) +C
u2

a+bu
− −−−−

√

2

15b3
a2 b2u2 a+bu

− −−−−
√

∫ =
du

u a+bu
− −−−−

√

⎧

⎩
⎨
⎪⎪

⎪⎪

ln +C, if a > 01
a√

∣
∣

−a+bu√ a√

+a+bu√ a√

∣
∣

+C, if a < 0
2√

−a√
tan−1 a+bu

−a

− −−−
√

∫ du = 2 +a∫
a+bu
− −−−−

√

u
a+bu
− −−−−

√
du

u a+bu
− −−−−

√

∫ du = − + ∫
a+bu
− −−−−

√

u2

a+bu
− −−−−

√

u

b

2

du

u a+bu
− −−−−

√

∫ du = [ (a+bu −na∫ du]un a+bu
− −−−−

√
2

b(2n+3)
un )3/2 un−1 a+bu

− −−−−
√

∫ du = − ∫ du
un

a+bu
− −−−−

√

2un a+bu
− −−−−

√

b(2n+1)

2na

b(2n+1)

un−1

a+bu
− −−−−

√

∫ = − − ∫
du

un a+bu
− −−−−

√

a+bu
− −−−−

√

a(n−1)un−1

b(2n−3)

2a(n−1)

du

un−1 a+bu
− −−−−

√
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