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2.9.6: Derivatives and the Shape of a Graph

&b Learning Objectives

o Explain how the sign of the first derivative affects the shape of a function’s graph.

o State the first derivative test for critical points.

e Use concavity and inflection points to explain how the sign of the second derivative affects the shape of a function’s graph.
o Explain the concavity test for a function over an open interval.

o Explain the relationship between a function and its first and second derivatives.

o State the second derivative test for local extrema.

Earlier in this chapter we stated that if a function f has a local extremum at a point ¢, then ¢ must be a critical point of f. However,
a function is not guaranteed to have a local extremum at a critical point. For example, f(z) = 3 has a critical point at z = 0 since
fl(z)= 32 is zero at = 0, but f does not have a local extremum at = 0. Using the results from the previous section, we are
now able to determine whether a critical point of a function actually corresponds to a local extreme value. In this section, we also
see how the second derivative provides information about the shape of a graph by describing whether the graph of a function
curves upward or curves downward.

The First Derivative Test

Corollary 3 of the Mean Value Theorem showed that if the derivative of a function is positive over an interval I then the function is
increasing over I. On the other hand, if the derivative of the function is negative over an interval I, then the function is decreasing
over I as shown in the following figure.
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Figure 2.9.6.1: Both functions are increasing over the interval (a,b). At each point z, the derivative f’(z) > 0. Both functions are

decreasing over the interval (a, b). At each point z, the derivative f'(z) < 0.
A continuous function f has a local maximum at point ¢ if and only if f switches from increasing to decreasing at point c.
Similarly, f has a local minimum at ¢ if and only if f switches from decreasing to increasing at c. If f is a continuous function
over an interval I containing ¢ and differentiable over I, except possibly at ¢, the only way f can switch from increasing to
decreasing (or vice versa) at point c is if f' changes sign as z increases through c. If f is differentiable at c, the only way that f’
can change sign as z increases through c is if f'(c) = 0. Therefore, for a function f that is continuous over an interval I containing
c and differentiable over I, except possibly at ¢, the only way f can switch from increasing to decreasing (or vice versa) is if
f'(c) =0 or f'(c) is undefined. Consequently, to locate local extrema for a function f, we look for points ¢ in the domain of f
such that f'(c) =0 or f(c) is undefined. Recall that such points are called critical points of f.
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Note that f need not have a local extrema at a critical point. The critical points are candidates for local extrema only. In Figure
2.9.6.2 we show that if a continuous function f has a local extremum, it must occur at a critical point, but a function may not have
a local extremum at a critical point. We show that if f has a local extremum at a critical point, then the sign of f’ switches as z
increases through that point.
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Figure 2.9.6.2: The function f has four critical points: a,b,c,and d. The function f has local maxima at a and d, and a local
minimum at b. The function f does not have a local extremum at c. The sign of f’ changes at all local extrema.

Using Figure 2.9.6.2 we summarize the main results regarding local extrema.

o If a continuous function f has a local extremum, it must occur at a critical point c.

o The function has a local extremum at the critical point ¢ if and only if the derivative f’ switches sign as x increases through c.

o Therefore, to test whether a function has a local extremum at a critical point ¢, we must determine the sign of f/(z) to the left
and right of c.

This result is known as the first derivative test.

X First Derivative Test

Suppose that f is a continuous function over an interval I containing a critical point ¢. If f is differentiable over I, except
possibly at point ¢, then f(c) satisfies one of the following descriptions:

i. If ' changes sign from positive when z < ¢ to negative when = > c, then f(c) is a local maximum of f.
ii. If f' changes sign from negative when z < c to positive when = > c, then f(c) is a local minimum of f.
iii. If f' has the same sign for z < ¢ and = > c, then f(c) is neither a local maximum nor a local minimum of f

Now let’s look at how to use this strategy to locate all local extrema for particular functions.

v Example 2.9.6.1: Using the First Derivative Test to Find Local Extrema

Use the first derivative test to find the location of all local extrema for f(z) =23 —3z2 — 9z — 1. Use a graphing utility to
confirm your results.

Solution

Step 1. The derivative is f'(z) = 3z —6z —9. To find the critical points, we need to find where f’(z) = 0. Factoring the
polynomial, we conclude that the critical points must satisfy

3(z* -2z —3)=3(z —3)(x+1)=0.

Therefore, the critical points are z = 3, —1. Now divide the interval (—oo, 00) into the smaller intervals (—oo, —1), (-1, 3)
and (3, 00).
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Step 2. Since f’ is a continuous function, to determine the sign of f'(z) over each subinterval, it suffices to choose a point
over each of the intervals (—oo, —1), (—1, 3) and (3, 0o0) and determine the sign of f’ at each of these points. For example,
let’s choose x = —2, x =0, and x = 4 as test points.

Table: 2.9.6.1: First Derivative Test for f(z) = z° —3z% — 9z — 1.

Sign of
Interval Test Point f'(x) =3(x—3)(xz+1) Conclusion
at Test Point
(=00, -1) z=-2 HE)()=+ f is increasing.
(-1,3) z=0 HE)H)=- f is decreasing.
(3,00) z=4 HH(H)=+ f is increasing.
Step 3. Since f’ switches sign from positive to negative as x increases through —1, f has a local maximum at z = —1. Since

f' switches sign from negative to positive as z increases through 3, f has a local minimum at z = 3. These analytical results
agree with the following graph.
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Figure 2.9.6.3: The function f has a maximum at z = —1 and a minimum at x = 3

? Exercise 2.9.6.1
Use the first derivative test to locate all local extrema for f(z) = —z3 + %x2 +18z.

Hint

Find all critical points of f and determine the signs of f'(z) over particular intervals determined by the critical points.
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Answer

f has a local minimum at —2 and a local maximum at 3.

v/ Example 2.9.6.2: Using the First Derivative Test

Use the first derivative test to find the location of all local extrema for f(x) = 52'/% — /3. Use a graphing utility to confirm
your results.

Solution

Step 1. The derivative is

5 _2/3_ém2/3_ 5 5112/3 N 5—5.'134/3 5(1_134/3)

! = — — — =
flz)=3= 3 3223 3 342/3 322/3
The derivative f'(z) =0 when 1 —z*/3 = 0. Therefore, f'(z) =0 at & = +1. The derivative f'(x) is undefined at z = 0.
Therefore, we have three critical points: £ =0, z =1, and & = —1. Consequently, divide the interval (—oo, 00) into the

smaller intervals (—oo, —1), (—1,0), (0,1), and (1, co).
Step 2: Since f' is continuous over each subinterval, it suffices to choose a test point z in each of the intervals from step 1 and
determine the sign of f' at each of these points. The points £ = —2, = —%, T = % , and x =2 are test points for these
intervals.

Table: 2.9.6.2: First Derivative Test for f(z) = 52'/3 —25/3.

5(1—xz/3)

Interval Test Point SN = Taon Conclusion
Test Point
(=00, -1) z=-2 % E— f is decreasing.
(-1,0) = 7% (Hf) =t f is increasing.
(0,1) T = % mf) =+ f is increasing.
(1,00) z=2 (+)J£_) =— f is decreasing.

Step 3: Since f is decreasing over the interval (—oo, —1) and increasing over the interval (—1,0), f has a local minimum at
x = —1. Since f is increasing over the interval (—1,0) and the interval (0, 1), f does not have a local extremum at z = 0.
Since f is increasing over the interval (0,1) and decreasing over the interval (1, c0), f has a local maximum at z = 1. The
analytical results agree with the following graph.

o=

f(X) : 5X113 — XEB
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Hint
The only critical point of fis x = 1.
Answer

f has no local extrema because f’ does not change signatz = 1.

Concavity and Points of Inflection

We now know how to determine where a function is increasing or decreasing. However, there is another issue to consider regarding
the shape of the graph of a function. If the graph curves, does it curve upward or curve downward? This notion is called the
concavity of the function.

Figure 2.9.6.5ashows a function f with a graph that curves upward. As x increases, the slope of the tangent line increases. Thus,
since the derivative increases as x increases, f' is an increasing function. We say this function f is concave up. Figure 2.9.6.5b
shows a function f that curves downward. As x increases, the slope of the tangent line decreases. Since the derivative decreases as

z increases, f’ is a decreasing function. We say this function f is concave down.

# Definition: concavity test

Let f be a function that is differentiable over an open interval I. If f' is increasing over I, we say f is concave up over I. If
f is decreasing over I, we say f is concave down over I.
y ¥y
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Figure 2.9.6.5: (a), (c) Since f’ is increasing over the interval (a,b), we say f is concave up over (a,b). (b), (d) Since f’ is

decreasing over the interval (a, b), we say f is concave down over (a, b).
In general, without having the graph of a function f, how can we determine its concavity? By definition, a function f is
concave up if f’ is increasing. From Corollary 3, we know that if f’ is a differentiable function, then f’ is increasing if its
derivative f"(z) > 0. Therefore, a function f that is twice differentiable is concave up when f”(x) > 0. Similarly, a function
f is concave down if f’ is decreasing. We know that a differentiable function f’ is decreasing if its derivative f”(z) < 0.
Therefore, a twice-differentiable function f is concave down when f”(z) < 0. Applying this logic is known as the concavity
test.
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X Test for Concavity

Let f be a function that is twice differentiable over an interval I.

i. If f(z) > 0 forall z € I, then f is concave up over I
ii. If f(z) < 0 for all z € I, then f is concave down over I.

We conclude that we can determine the concavity of a function f by looking at the second derivative of f. In addition, we observe
that a function f can switch concavity (Figure 2.9.6.6). However, a continuous function can switch concavity only at a point x if
f"(z) =0 or f"(x) is undefined. Consequently, to determine the intervals where a function f is concave up and concave down,
we look for those values of  where f”(z) =0 or f”(z) is undefined. When we have determined these points, we divide the
domain of f into smaller intervals and determine the sign of f' over each of these smaller intervals. If f” changes sign as we pass
through a point x, then f changes concavity. It is important to remember that a function f may not change concavity at a point x
even if f"(z) =0 or f”(z) is undefined. If, however, f does change concavity at a point @ and f is continuous at a, we say the
point (a, f(a)) is an inflection point of f.

# Definition: inflection point

If f is continuous at @ and f changes concavity at a, the point (a, f(a)) is an inflection point of f.

yi

inflection point
(a, fla))

a =0
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f'<0

f"=0 f"=0 <0

1
1
F<0 1 >0

Slope increasing Slope decreasing

Figure 2.9.6.6: Since f”(z) > 0 for z < a, the function f is concave up over the interval (—oco,a). Since f”(z) < 0 for z > a,
the function f is concave down over the interval (a, c0). The point (a, f(a)) is an inflection point of f.

v/ Example 2.9.6.3: Testing for Concavity

For the function f(z)=z®—62? +9x +30, determine all intervals where f is concave up and all intervals where f is
concave down. List all inflection points for f. Use a graphing utility to confirm your results.

Solution

To determine concavity, we need to find the second derivative f”(z). The first derivative is f'(z) = 32® — 12z +9, so the
second derivative is f”(z) =6z —12. If the function changes concavity, it occurs either when f”(z)=0 or f"(z) is
undefined. Since £ is defined for all real numbers x, we need only find where f'(z) = 0. Solving the equation 6z —12 =0,

we see that z = 2 is the only place where f could change concavity. We now test points over the intervals (—oo, 2) and (2, 00)
to determine the concavity of f. The points £ = 0 and = = 3 are test points for these intervals.

Table: 2.9.6.3: Test for Concavity for f(z) = z® — 622 + 9z + 30.
Sign of f"(xz) = 6z —12 at

Interval Test Point i Conclusion
Test Point
(—00,2) z=0 - f is concave down
(2, 0) z=3 + f is concave up
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We conclude that f is concave down over the interval (—oo,2) and concave up over the interval (2, co). Since f changes
concavity at = 2, the point (2, f(2)) = (2, 32) is an inflection point. Figure 2.9.6.7confirms the analytical results.
y
401

357 (2. 32)

30
f(x) = x> — 6x° + 9x + 30

15

10+

Figure 2.9.6.7: The given function has a point of inflection at (2, 32) where the graph changes concavity.

? Exercise 2.9.6.3

For f(z) = —2° + %mz + 18z , find all intervals where f is concave up and all intervals where f is concave down.
Hint
Find where f"(z) =0

Answer

f is concave up over the interval (—oo, %) and concave down over the interval (%, o0)

We now summarize, in Table 2.9.6.4 the information that the first and second derivatives of a function f provide about the graph
of £, and illustrate this information in Figure 2.9.6.8

Table: 2.9.6.4: What Derivatives Tell Us about Graphs

Sign of f’ Sign of f” Is f increasing or decreasing? Concavity
Positive Positive Increasing Concave up
Positive Negative Increasing Concave down
Negative Positive Decreasing Concave up
Negative Negative Decreasing Concave down
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Figure 2.9.6.8:Consider a twice-differentiable function f over an open interval I. If f'(z) > 0 for all = € I, the function is
increasing over I. If f’(z) < 0 for all z € I, the function is decreasing over I. If f”(x) > 0 for all z € I, the function is concave
up. If f”(z) < 0forall z € I, the function is concave down on I.

The Second Derivative Test

The first derivative test provides an analytical tool for finding local extrema, but the second derivative can also be used to locate
extreme values. Using the second derivative can sometimes be a simpler method than using the first derivative.

We know that if a continuous function has a local extremum, it must occur at a critical point. However, a function need not have a
local extremum at a critical point. Here we examine how the second derivative test can be used to determine whether a function
has a local extremum at a critical point. Let f be a twice-differentiable function such that f'(a) =0 and f” is continuous over an
open interval I containing a. Suppose f”(a) < 0. Since f” is continuous over I, f"(z) < 0 for all z € I (Figure 2.9.6.9. Then,
by Corollary 3, f’ is a decreasing function over I. Since f’(a) =0, we conclude that for all z € I, f/'(z) >0 if z <a and
f'(z) <0 if z > a. Therefore, by the first derivative test, f has a local maximum at z = a.

On the other hand, suppose there exists a point b such that f’(b) = 0 but f”'(b) > 0. Since f” is continuous over an open interval
I containing b, then f"(z) > 0 for all z € I (Figure 2.9.6.9). Then, by Corollary 3, f’ is an increasing function over I. Since
f'(b) =0, we conclude that forall z € I, f'(z) <0 if z <b and f'(z) > 0 if x > b. Therefore, by the first derivative test, f has
a local minimum at = b.

fa) =0

=Y

Figure 2.9.6.9: Consider a twice-differentiable function f such that f” is continuous. Since f'(a) =0 and f”(a) < 0, there is an
interval I containing a such that for all  in I, f is increasing if £ < a and f is decreasing if z > a. As a result, f has a local
maximum at z = a. Since f'(b) = 0 and f”(b) > 0, there is an interval I containing b such that for all z in I, f is decreasing if
x < b and f is increasing if > b. As a result, f has a local minimum at = b.
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X Second Derivative Test

Suppose f’(c) =0 and f” is continuous over an interval containing c.

i. If f”(¢) >0, then f has a local minimum at c.
ii. If f”(¢) <0, then f has a local maximum at c.
iii. If f”(¢) = 0, then the test is inconclusive.

Note that for case iii. when f”(¢) =0, then f may have a local maximum, local minimum, or neither at c¢. For example, the
functions f(z) =3, f(z) =1, and f(z) = —z* all have critical points at z = 0. In each case, the second derivative is zero at
z = 0. However, the function f(z) = 2* has a local minimum at = 0 whereas the function f(z) = —z* has a local maximum at
x =0, and the function f(z) = z* does not have a local extremum at z = 0.

Let’s now look at how to use the second derivative test to determine whether f has a local maximum or local minimum at a critical
point ¢ where f'(c) =0.

v Example 2.9.6.4: Using the Second Derivative Test

Use the second derivative to find the location of all local extrema for f(z) = z° — 5a>.

Solution

To apply the second derivative test, we first need to find critical points ¢ where f’(c)=0. The derivative is
f'(z) =5x* — 1522 Therefore, f'(z) = 5z* — 152> =5z%(z2 —3) =0 whenz =0, ++/3.

To determine whether f has a local extremum at any of these points, we need to evaluate the sign of f’ at these points. The
second derivative is

f"(z) =20z —30z = 10z (222 — 3).
In the following table, we evaluate the second derivative at each of the critical points and use the second derivative test to
determine whether f has a local maximum or local minimum at any of these points.

Table: 2.9.6.5: Second Derivative Test for f(z) = z° — 5z°.

z ' (x) Conclusion
-3 —30v3 Local maximum
0 0 Second derivative test is inconclusive
V3 30v/3 Local minimum
By the second derivative test, we conclude that f has a local maximum at # = —/3 and f has a local minimum at z = v/3.

The second derivative test is inconclusive at = 0. To determine whether f has a local extrema at z = 0, we apply the first
derivative test. To evaluate the sign of f'(z) = 522 (2> —3) forz € (—/3,0) and z € (0,+/3), let z = —1 and = 1 be the
two test points. Since f'(—1) <0 and f'(1) < 0, we conclude that f is decreasing on both intervals and, therefore, f does not
have a local extrema at x = 0 as shown in the following graph.
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fx) = x° — 55

Figure 2.9.6.10:The function f has a local maximum at z = —+/3 and a local minimum at z = +/3

? Exercise 2.9.6.4

Consider the function f(z) =z — (%)m2 — 18z . The points ¢ = 3, —2 satisfy f'(c) =0. Use the second derivative test to
determine whether f has a local maximum or local minimum at those points.

Hint
f'(z) =6z —3
Answer

f has a local maximum at —2 and a local minimum at 3.

We have now developed the tools we need to determine where a function is increasing and decreasing, as well as acquired an

understanding of the basic shape of the graph. In the next section we discuss what happens to a function as * — *oco. At that point,
we have enough tools to provide accurate graphs of a large variety of functions.

Key Concepts

o If cis a critical point of f and f'(z) > 0 for z < c and f'(z) < 0 for z > c, then f has a local maximum at c.

o If cis a critical point of f and f'(z) < 0 for z < c and f'(z) > 0 for > ¢, then f has a local minimum at c.
o If f”(x) > 0 over an interval I, then f is concave up over I.

o If f”(x) < 0 over an interval I, then f is concave down over I.

o If f'(¢) =0 and f"(c) > 0, then f has a local minimum at c.

o If f'(¢) =0 and f"(c) <0, then f has a local maximum at c.
(e

e If f/(c) =0 and f"(c) =0, then evaluate f'(z) at a test point z to the left of ¢ and a test point z to the right of ¢, to determine
whether f has a local extremum at c.

Glossary

concave down

if f is differentiable over an interval I and f' is decreasing over I, then f is concave down over I

concave up

if f is differentiable over an interval I and f' is increasing over I, then f is concave up over I
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concavity
the upward or downward curve of the graph of a function

concavity test

suppose f is twice differentiable over an interval I; if " > 0 over I, then f is concave up over I; if f"' < over I, then f is
concave down over I

first derivative test
let f be a continuous function over an interval I containing a critical point ¢ such that f is differentiable over I except possibly
at c; if f' changes sign from positive to negative as x increases through c, then f has a local maximum at c; if f' changes sign
from negative to positive as z increases through c, then f has a local minimum at c; if f' does not change sign as z increases
through ¢, then f does not have a local extremum at ¢

inflection point
if f is continuous at ¢ and f changes concavity at ¢, the point (¢, f(c)) is an inflection point of f

second derivative test
suppose f'(c) =0 and f''is continuous over an interval containing c; if f”/(c) > 0, then f has a local minimum at c; if
f"(¢) <0, then f has a local maximum at ¢; if f"’(c) =0, then the test is inconclusive
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