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2.10: Anti derivatives and integrals

In the previous section, we were concerned with determining the derivative of a function f(z). The derivative is useful because it
tells us how the function f(x) varies as a function of z. In physics, we often know how a function varies, but we do not know the
actual function. In other words, we often have the opposite problem: we are given the derivative of a function, and wish to
determine the actual function. For this case, we will limit our discussion to functions of a single independent variable.

Suppose that we are given a function f(z) and we know that this is the derivative of some other function, F'(z), which we do not
know. We call F'(z) the anti-derivative of f(z). The anti-derivative of a function f(z), written F'(x), thus satisfies the property:

dF
— = @)

Since we have a symbol for indicating that we take the derivative with respect to « (d%), we also have a symbol, f dx, for
indicating that we take the anti-derivative with respect to z:

[ 1@z =F(a)

([ 1taae) =5 =00

Earlier, we justified the symbol for the derivative by pointing out that it is like % but for the case when Az — 0. Similarly, we
will justify the anti-derivative sign, [ f(z)dz, by showing that it is related to a sum of f(z)Au, in the limit Az — 0. The [ sign
looks like an “S” for sum.

While it is possible to exactly determine the derivative of a function f(z), the anti-derivative can only be determined up to a
constant. Consider for example a different function, F(z) = F(z)+ C, where C is a constant. The derivative of F(z) with
respect to x is given by:
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Hence, the function F(z) = F(z)+ C is also an anti-derivative of f(z). The constant C' can often be determined using additional
information (sometimes called “initial conditions”). Recall the function, f(x) = z2, shown in Figure A2.2.1 (left panel). If you
imagine shifting the whole function up or down, the derivative would not change. In other words, if the origin of the axes were not
drawn on the left panel, you would still be able to determine the derivative of the function (how steep it is). Adding a constant, C,
to a function is exactly the same as shifting the function up or down, which does not change its derivative. Thus, when you know
the derivative, you cannot know the value of C, unless you are also told that the function must go through a specific point (a so-
called initial condition).

In order to determine the derivative of a function, we used Equation A2.2.1. We now need to derive an equivalent prescription for
determining the anti-derivative. Suppose that we have the two pieces of information required to determine F'(z) completely,
namely:

1. the function f(z) = ‘;—f (its derivative).
2. the condition that F'(z) must pass through a specific point, F'(zo) = Fj .
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Figure A2.3.1: Determining the anti-derivative, F(z), given the function f(x) = 2z and the initial condition that F'(z) passes
through the point (z¢, Fy) = (1, 3).
The procedure for determining the anti-derivative F'(z) is illustrated above in Figure A2.3.1. We start by drawing the point that we
know the function F'(z) must go through, (z¢, Fp). We then choose a value of Az and use the derivative, f(z), to calculate AFp,
the amount by which F'(x) changes when x changes by Az. Using the derivative f(x) evaluated at z, we have:

AF,
=2 x~ f(z) (inthelimitAz — 0)
Az

We can then estimate the value of the function F; = F(z;) at the next point, ; = zo + Az , as illustrated by the black arrow in
Figure A2.3.1

F1 = F(.’El)
= F(z+ Az)
%F() +AF0
~ Fy+ f(zo) Az

Now that we have determined the value of the function F'(z) at £ = 1, we can repeat the procedure to determine the value of the
function F'(x) at the next point, 3 = z1 + Az . Again, we use the derivative evaluated at z;, f(z;), to determine AFy, and add
that to F to get F» = F(x3), as illustrated by the grey arrow in Figure A2.3.1:

Fy, =F(x; +Al‘)
~F +AF
~F + f(z1)Ax
~ Fy+ f(zo)Az + f(z1)Az

Using the summation notation, we can generalize the result and write the function F'(z) evaluated at any point, zy = zg + NAz :

=N
F(:L‘N) ~ Fy —1—2 f(.’El_l)A.’L‘

i=1

The result above will become exactly correct in the limit Az — 0:

Az—

=N
F(zy)=F(zo)+ limO Z f(zio1)Az (2.10.1)
=1

Let us take a closer look at the sum. Each term in the sum is of the form f(z;_1)Az, and is illustrated in Figure A2.3.2 for the
same case as in Figure A2.3.1 (that is, Figure A2.3.2 shows f(x) that we know, and Figure A2.3.1 shows F'(z) that we are trying
to find).

https://phys.libretexts.org/@go/page/76315



https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/76315?pdf

LibreTextsw

fix)=2x, xo=1, Ax=1

fix)

0 1 2 3 ! .

Figure A2.3.2: The function f(x) = 2z and illustration of the terms f(x¢) Az and f(z1) A z as the area between the curve f(x)
and the x axis when Az — 0.

As you can see, each term in the sum corresponds to the area of a rectangle between the function f(z) and the z axis (with a piece
missing). In the limit where Az — 0, the missing pieces (shown by the hashed areas in Figure A2.3.2) will vanish and f(z;)Az
will become exactly the area between f(z) and the z axis over a length Az. The sum of the rectangular areas will thus approach
the area between f(z) and the z axis between xy and z y:

i=N

lim Z f(zi—1)Az = Area between f(x) and x axis from z to zx
Az—0 P

Re-arranging Equation A2.3.1 gives us a prescription for determining the anti-derivative:

=N
F(zy) = F(zo) = lim > f(zia)Az
=1

We see that if we determine the area between f(z) and the z axis from z to z, we can obtain the difference between the anti-
derivative at two points, F(zy) — F ()

The difference between the anti-derivative, F'(z), evaluated at two different values of z is called the integral of f(x) and has the
following notation:

/ " f(2)dz = F(ay) — F(zo) = lim > flai A (2.10.2)

As you can see, the integral has labels that specify the range over which we calculate the area between f(z) and the z axis. A
common notation to express the difference F(zy) — F(zo) is to use brackets:

/ " f@)de = F(ew) - F(zo) = [F(2))™

Recall that we wrote the anti-derivative with the same f symbol earlier:

The symbol [ f(z)dz without the limits is called the indefinite integral. You can also see that when you take the (definite)
integral (i.e. the difference between F'(z) evaluated at two points), any constant that is added to F'(z) will cancel. Physical
quantities are always based on definite integrals, so when we write the constant C' it is primarily for completeness and to emphasize
that we have an indefinite integral.

As an example, let us determine the integral of f(z) =2z between z =1 and & =4, as well as the indefinite integral of f(z),
which is the case that we illustrated in Figures A2.3.1 and A2.3.2. Using Equation A2.3.2, we have:
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de =l i—1)A
[ e = im 3 fG)aa
i=N
= lim 2z, 1 Az
Az—0 =
where we have:
o = 1
N — 4
Ap — ZN " T0
N

Note that IV is the number of times we have Az in the interval between xg and . Thus, taking the limit of Az — 0 is the same
as taking the limit NV — oco. Let us illustrate the sum for the case where N =3, and thus when Az =1, corresponding to the
illustration in Figure A2.3.2:

2z; 1 Ar =2x0Az + 221 Az + 22 Ax

= 2Am(m0 + +w2)
T3 — X

=2 N (zo + 1 +2)
SCELPIR
=12

where in the second line, we noticed that we could factor out the 2Ax because it appears in each term. Since we only used 4 points,
this is a pretty coarse approximation of the integral, and we expect it to be an underestimate (as the missing area represented by the
hashed lines in Figure A2.3.2 is quite large).

If we repeat this for a larger value of N, N =6 (Az = 0.5), we should obtain a more accurate answer:
i=6
Z 2J:i_1 Az =2
i=1
4-1
= 2T(1 +1.5+2+2.5+3+3.5)
=13.5

Lo — Lo

(J,‘() +x1+ T2+ 23 +:I?4+£E5)

Writing this out again for the general case so that we can take the limit N — oo, and factoring out the 2Azx:
i=N =N
Z 2z, 1Ax =2Ax Z Ti1
i=1 i=1
i=N
IN — Zo
=2 —N Z: Ti—1
i=1
Now, consider the combination:
1 =N
e
i=1
that appears above. This corresponds to the arithmetic average of the values from x( to z_; (sum the values and divide by the

number of values). In the limit where N — oo, then the value 1 &~ z . The average value of z in the interval between xy and
zy is simply given by the value of z at the midpoint of the interval:

1 X 1
lim — Y & =2
Jim 7 2 oo = glevta)
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Putting everything together:

=N

. 1 &
1&513012:;2%_1Aw =2(zn +x0)]\lfl—r>roloﬁiz:1:xi_l
1
:2(mN—m0)§(xN+wg)
~a} -2}

=4)?-(1)*=15

where in the last line, we substituted in the values of y = 1 and =y = 4. Writing this as the integral:
TN
/ 2zdz = F(zy) — F(z) = 2% — z2
xo
we can immediately identify the anti-derivative and the indefinite integral:

F(z) =2*+C
/2mdm =z4+C

This is of course the result that we expected, and we can check our answer by taking the derivative of F(z):

aF  d
dr dz (@ +C) =22
We have thus confirmed that F'(z) = 2> + C'is the anti-derivative of f(z) = 2z

? Exercise 2.10.1

The quantity fab f(t)dt is equal to

A. the area between the function f(¢) and the f axis betweent =a and¢t =b
B. the sum of f(¢)At in the limit A¢ — 0 betweent =a andt =b
C. the difference f(b) — f(a).

Answer

Common anti-derivative and properties

Table A2.3.1 below gives the anti-derivatives (indefinite integrals) for common functions. In all cases, x, is the independent
variable, and all other variables should be thought of as constants:

Function, f(x)

Anti-derivative, F'(x)
fx)=a F(z) =az+C
f(z) =" F(z) = —5a" 4+ C
fl@) =3 F(z) =In(|z|) +C
f(z) = sin(z) F(z) = —cos(z) + C
f(z) = cos(z) F(z) = sin(z) 4+ C
f(z) = tan(z) F(z) = —1In(| cos(z)|) + C
f(z)=e2 F(z)=e"+C
f(z) =In(z)

F(z) =zln(z) —z+C

Table A2.3.1: Common indefinite integrals of functions.
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Note that, in general, it is much more difficult to obtain the anti-derivative of a function than it is to take its derivative. A few
common properties to help evaluate indefinite integrals are shown in Table A2.3.2 below.

Anti-derivative Equivalent anti-derivative
J(f(@) +g(z))dz [ f(z)dz+ [ g(z)dz (sum)
J(f(z) - g(z))dz [ f(z)dz — [ g(z)da (subtraction)
Jaf(z)dz a [ f(z)dz (multiplication by constant)
[ f'(z)g(z)dz f(z)g(z) — [ f(z)g'(z)dz (integration by parts)

Table A2.3.2: Some properties of indefinite integrals.

Common uses of integrals in Physics - from a sum to an integral

Integrals are extremely useful in physics because they are related to sums. If we assume that our mathematician friends (or
computers) can determine anti-derivatives for us, using integrals is not that complicated.

The key idea in physics is that integrals are a tool to easily performing sums. As we saw above, integrals correspond to the area
underneath a curve, which is found by summing the (different) areas of an infinite number of infinitely small rectangles. In physics,
it is often the case that we need to take the sum of an infinite number of small things that keep varying, just as the areas of the
rectangles.

Consider, for example, a rod of length, L, and total mass M, as shown in Figure A2.3.3. If the rod is uniform in density, then if we
cut it into, say, two equal pieces, those two pieces will weigh the same. We can define a “linear mass density”, u, for the rod, as the
mass per unit length of the rod:

/127

The linear mass density has dimensions of mass over length and can be used to find the mass of any length of rod. For example, if
the rod has a mass of M = 5kg and a length of L = 2m, then the mass density is:
M (5kg)
=TT em) g/
Knowing the mass density, we can now easily find the mass, m, of a piece of rod that has a length of, say, [ = 10cm. Using the
mass density, the mass of the 10cm rod is given by:

m = pl = (2.5kg/m)(0.1m) = 0.25kg

Now suppose that we have a rod of length L that is not uniform, as in Figure A2.3.3, and that does not have a constant linear mass
density. Perhaps the rod gets wider and wider, or it has a holes in it that make it not uniform. Imagine that the mass density of the
rod is instead given by a function, p(z), that depends on the position along the rod, where z is the distance measured from one side
of the rod.

Ax

-~

Bam; = u(x)ax
i

L
—

t
0 X L

Figure A2.3.3: A rod with a varying linear density. To calculate the mass of the rod, we consider a small mass element Am; of
length Az at position x;. The total mass of the rod is found by summing the mass of the small mass elements.

Now, we cannot simply determine the mass of the rod by multiplying p(z) and L, since we do not know which value of z to use.
In fact, we have to use all of the values of x, between =0 and = L.

The strategy is to divide the rod up into N pieces of length Az. If we label our pieces of rod with an index ¢, we can say that the
piece that is at position z; has a tiny mass, Am;. We assume that Az is small enough so that (x) can be taken as constant over
the length of that tiny piece of rod. Then, the tiny piece of rod at = x;, has a mass, Am;, given by:
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Am; = p(z;) Az

where u(z;) is evaluated at the position, z;, of our tiny piece of rod. The total mass, M, of the rod is then the sum of the masses of
the tiny rods, in the limit where Az — 0:

M= fim ZAmz

b = i, 3 bt
L

= / wu(z)dz

= C?(L) - G(0)
where G(z) is the anti-derivative of u(z).
Suppose that the mass density is given by the function:

u(z) =ax

with anti-derivative (Table A2.3.1):

G(z) = aix‘1 +C

Let a = 5kg/ m" and let’s say that the length of the rod is L = 0.5m. The total mass of the rod is then:

L
M:/
0
L
:/ azidz
0

=G(L) - G(0)
= [a%L‘l] - [a%O‘l]
— 5kg/m" (0 5m)*

=T78g

With a little practice, you can solve this type of problem without writing out the sum explicitly. Picture an infinitesimal piece of the
rod of length dx at position z. It will have an infinitesimal mass, dm, given by:

dm = p(x)dx

The total mass of the rod is the then the sum (i.e. the integral) of the mass elements

M:/dm

and we really can think of the [ sign as a sum, when the things being summed are infinitesimally small. In the above equation, we
still have not specified the range in & over which we want to take the sum; that is, we need some sort of index for the mass
elements to make this a meaningful definite integral. Since we already know how to express dm in terms of dx, we can substitute

our expression for dm using one with dz:
L
M= /dm :/ w(z)dz
0
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where we have made the integral definite by specifying the range over which to sum, since we can use z to “label” the mass
elements.

One should note that coming up with the above integral is physics. Solving it is math. We will worry much more about writing out
the integral than evaluating its value. Evaluating the integral can always be done by a mathematician friend or a computer, but
determining which integral to write down is the physicist’s job!

Key Takeaways

The derivative of a function, f(z), with respect to & can be written as:

d f
@)= = 1)

and measures the rate of change of the function with respect to z. The derivative of a function is generally itself a function. The
derivative is defined as:

fe)— 1 JETAD) @)

Az—0 Az

Graphically, the derivative of a function represents the slope of the function, and it is positive if the function is increasing, negative
if the function is decreasing and zero if the function is flat. Derivatives can always be determined analytically for any continuous
function.

A partial derivative measures the rate of change of a multi-variate function, f(z,y), with respect to one of its independent
variables. The partial derivative with respect to one of the variables is evaluated by taking the derivative of the function with
respect to that variable while treating all other independent variables as if they were constant. The partial derivative of a function
(with respect to ) is written as:

of
ozr

The gradient of a function, V f(z, y), is a vector in the direction in which that function is increasing most rapidly. It is given by:

o5, o,
Vi) - ax“ o’

Given a function, f(z), its anti-derivative with respect to z, F'(z), is written:
/ i
d

& i)

The anti-derivative of a function is only ever defined up to a constant, C'. We usually write this as:

F(x) is such that its derivative with respect to z is f(z):

/f(x)da: =F(z)+C

since the derivative of F(z)+ C will also be equal to f(z). The anti-derivative is also called the “indefinite integral” of f(z).

The definite integral of a function f(z), between z = a and x = b, is written:

/ab f(z)dz

and is equal to the difference in the anti-derivative evaluated at * = @ and z = b:

b
/ f(@)dz = F(b) - F(a)

https://phys.libretexts.org/@go/page/76315



https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/76315?pdf

LibreTextsw

where the constant C' no longer matters, since it cancels out. Physical quantities only ever depend on definite integrals, since they
must be determined without an arbitrary constant.

Definite integrals are very useful in physics because they are related to a sum. Given a function f(z), one can relate the sum of
terms of the form f(z;)Az over a range of values from z = a to z = b to the integral of f(z) over that range:

=N TN
Alaicgl(];f(wi—l)&v: 5 f(z)dz = F(zn) — F(z0) =
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