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13.1: The Hydrogen Atom

&b Learning Objectives

By the end of this section, you will be able to:

e Describe the hydrogen atom in terms of wave function, probability density, total energy, and orbital angular momentum
o Identify the physical significance of each of the quantum numbers (n, I, m) of the hydrogen atom

e Distinguish between the Bohr and Schrodinger models of the atom

o Use quantum numbers to calculate important information about the hydrogen atom

In this chapter, we use quantum mechanics to study the structure and properties of atoms. This study introduces ideas and concepts
that are necessary to understand more complex systems, such as molecules, crystals, and metals. As we deepen our understanding
of atoms, we build on things we already know, such as Rutherford’s nuclear model of the atom, Bohr’s model of the hydrogen
atom, and de Broglie’s wave hypothesis.
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Figure 13.1.1: NGC1763 is an emission nebula in the Large Magellanic Cloud, which is a satellite galaxy to our Milky Way

Galaxy. The colors we see can be explained by applying the ideas of quantum mechanics to atomic structure. (credit: NASA, ESA,

and Josh Lake)
Figure 13.1.1is NGC1763, an emission nebula in the small galaxy known as the Large Magellanic Cloud, which is a satellite of the
Milky Way Galaxy. Ultraviolet light from hot stars ionizes the hydrogen atoms in the nebula. As protons and electrons recombine,
radiation of different frequencies is emitted. The details of this process can be correctly predicted by quantum mechanics and are
examined in this chapter.

The Hydrogen Atom

The hydrogen atom is the simplest atom in nature and, therefore, a good starting point to study atoms and atomic structure. The
hydrogen atom consists of a single negatively charged electron that moves about a positively charged proton (Figure 13.1.1). In
Bohr’s model, the electron is pulled around the proton in a perfectly circular orbit by an attractive Coulomb force. The proton is
approximately 1800 times more massive than the electron, so the proton moves very little in response to the force on the proton by
the electron. (This is analogous to the Earth-Sun system, where the Sun moves very little in response to the force exerted on it by
Earth.) An explanation of this effect using Newton’s laws is given in Photons and Matter Waves.

@ 0 13.1.1 https://phys.libretexts.org/@go/page/76696


https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76696?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/13%3A_Atomic_Structure/13.01%3A_The_Hydrogen_Atom
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/06%3A_Photons_and_Matter_Waves

LibreTextsw

\
\
]
Q O electron, g = —e
proton, g = +e H

Figure 13.1.1: A representation of the Bohr model of the hydrogen atom.
With the assumption of a fixed proton, we focus on the motion of the electron.

In the electric field of the proton, the potential energy of the electron is

2
e
U(’I‘) = —kT,

where k = 1/4meg and 7 is the distance between the electron and the proton. As we saw earlier, the force on an object is equal to
the negative of the gradient (or slope) of the potential energy function. For the special case of a hydrogen atom, the force between
the electron and proton is an attractive Coulomb force.

Notice that the potential energy function U(r) does not vary in time. As a result, Schrédinger’s equation of the hydrogen atom
reduces to two simpler equations: one that depends only on space (x, y, z) and another that depends only on time (t). (The
separation of a wave function into space- and time-dependent parts for time-independent potential energy functions is discussed in
Quantum Mechanics.) We are most interested in the space-dependent equation:
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where ¢ = psi(z, y, 2) is the three-dimensional wave function of the electron, meme is the mass of the electron, and F is the total
energy of the electron. Recall that the total wave function ¥(z,y, 2,t), is the product of the space-dependent wave function
¥ =1(z,y, 2) and the time-dependent wave function ¢ = p(t).

In addition to being time-independent, U(r) is also spherically symmetrical. This suggests that we may solve Schrédinger’s
equation more easily if we express it in terms of the spherical coordinates (r, 8, ¢) instead of rectangular coordinates (z, y, 2). A
spherical coordinate system is shown in Figure 13.1.2 In spherical coordinates, the variable r is the radial coordinate, 6 is the polar
angle (relative to the vertical z-axis), and ¢ is the azimuthal angle (relative to the x-axis). The relationship between spherical and
rectangular coordinates is = sin 6 cos ¢,y =7 sinf sin ¢, z=1r cos 6.

Zy

Figure 13.1.2: The relationship between the spherical and rectangular coordinate systems.

The factor r sin 0 is the magnitude of a vector formed by the projection of the polar vector onto the xy-plane. Also, the coordinates
of x and y are obtained by projecting this vector onto the x- and y-axes, respectively. The inverse transformation gives
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Schrodinger’s wave equation for the hydrogen atom in spherical coordinates is discussed in more advanced courses in modern
physics, so we do not consider it in detail here. However, due to the spherical symmetry of U(r), this equation reduces to three

simpler equations: one for each of the three coordinates (r, #, and ¢). Solutions to the time-independent wave function are written
as a product of three functions:

P(r,0,4) = R(r)0(0)®(¢),

where R is the radial function dependent on the radial coordinate r only; © is the polar function dependent on the polar coordinate
0 only; and @ is the phi function of ¢ only. Valid solutions to Schrédinger’s equation ¥(r, 8, ¢) are labeled by the quantum
numbers n, I, and m.

e n: principal quantum number

e [: angular momentum quantum number

e m: angular momentum projection quantum number

(The reasons for these names will be explained in the next section.) The radial function R depends only on n and [; the polar
function © depends only on [ and m; and the phi function ® depends only on m. The dependence of each function on quantum
numbers is indicated with subscripts:

¢nlm("'a 0, ¢) = Rnl(r)elm (o)q)m (¢)
Not all sets of quantum numbers (n, [, m) are possible. For example, the orbital angular quantum number [ can never be greater or
equal to the principal quantum number n(I < n). Specifically, we have
e n=1,23,...
e 1=0,1,2,...,(n—-1)
e m=—1,(-l+1),...,0,...,(+—1),+
Notice that for the ground state, n =1, 1 =0, and m = 0. In other words, there is only one quantum state with the wave function
forn =1, and it is ¥199. However, for n = 2, we have

l=0,m=0

and

=1, m=-1,0,1.

Therefore, the allowed states for the n = 2 state are 200, ¥21-1, ¥210, and ¥211. Example wave functions for the hydrogen atom
are given in Table 13.1.1 Note that some of these expressions contain the letter ¢, which represents y/—1. When probabilities are
calculated, these complex numbers do not appear in the final answer.
13.1.1: Wave Functions of the Hydrogen Atom
1 1

n=1,1=0m =0 Y100 :ﬁa?e—wao
n=2,1=0,m=0 ¢2m:$a3%(2_§0) —r/2a0
n=21=1m=-1 Yo = ﬁﬁ%;—oer/ho sin fe ™
n=21=1m=0 P10 = 4\/1% (ﬁ%a%e_’”/m cos 6
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Physical Significance of the Quantum Numbers

Each of the three quantum numbers of the hydrogen atom (n, I, m) is associated with a different physical quantity.

Principal Quantum Number

The principal quantum number 7 is associated with the total energy of the electron, E,,. According to Schrodinger’s equation:

mek?et 1 1
E,=— ( S5 ) (ﬁ) =—_E, (ﬁ) , (13.1.1)

where Ey = —13.6 eV. Notice that this expression is identical to that of Bohr’s model. As in the Bohr model, the electron in a
particular state of energy does not radiate.

v/ Example 13.1.1: How Many Possible States?

For the hydrogen atom, how many possible quantum states correspond to the principal number n = 3? What are the energies
of these states?

Strategy

For a hydrogen atom of a given energy, the number of allowed states depends on its orbital angular momentum. We can count
these states for each value of the principal quantum number, n =1, 2, 3. However, the total energy depends on the principal
quantum number only, which means that we can use Equation 13.1.1and the number of states counted.

Solution

If n =3, the allowed values of [ are 0, 1, and 2. If [ =0, m =0 (1 state). If [=1, m = —1,0, 1 (3 states); and if [ =2,
m=—2,—1,0,1,2 (5 states). In total, there are 1 + 3 + 5 = 9 allowed states. Because the total energy depends only on the
principal quantum number, n = 3, the energy of each of these states is

1 ) _ —13.6eV

E.3=—E (ﬁ =09 =—1.51€V.

Significance

An electron in a hydrogen atom can occupy many different angular momentum states with the very same energy. As the orbital
angular momentum increases, the number of the allowed states with the same energy increases.

Angular Momentum Orbital Quantum Number

The angular momentum orbital quantum number [ is associated with the orbital angular momentum of the electron in a
hydrogen atom. Quantum theory tells us that when the hydrogen atom is in the state ¥y, the magnitude of its orbital angular
momentum is

L=./ll+1)h,

wherel=10,1,2,...,(n—1).

This result is slightly different from that found with Bohr’s theory, which quantizes angular momentum according to the rule
L=n,wheren=1,2,3,...

X Spectroscopic Notation

Quantum states with different values of orbital angular momentum are distinguished using spectroscopic notation (Table
13.1.2). The designations s, p, d, and f result from early historical attempts to classify atomic spectral lines. (The letters stand
for sharp, principal, diffuse, and fundamental, respectively.) After f, the letters continue alphabetically.
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The ground state of hydrogen is designated as the 1s state, where “1” indicates the energy level (n = 1) and “s” indicates the
orbital angular momentum state (! =0). When n = 2, [ can be either 0 or 1. The n =2, [ =0 state is designated “2s.” The
n =2, =1 state is designated “2p.” When n = 3, [ can be 0, 1, or 2, and the states are 3s, 3p, and 3d, respectively. Notation
for other quantum states is given in Table 13.1.3

Table 13.1.2: Spectroscopic Notation and Orbital Angular Momentum

Orbital Quantum Number [ Angular Momentum State Spectroscopic Name
0 0 s Sharp
1 V2h p Principal
2 V/6h d Diffuse
3 V12h f Fundamental
4 V20h g
5 V30h h

Angular Momentum Projection Quantum Number

The angular momentum projection quantum number m is associated with the azimuthal angle ¢ (see Figure 13.1.2) and is
related to the z-component of orbital angular momentum of an electron in a hydrogen atom. This component is given by

L, =mh,
where m = -1, -l+1,...,0,...,+l—1,1.
The z-component of angular momentum is related to the magnitude of angular momentum by
L,=L cosb,

where 0 is the angle between the angular momentum vector and the z-axis. Note that the direction of the z-axis is determined by
experiment - that is, along any direction, the experimenter decides to measure the angular momentum. For example, the z-direction
might correspond to the direction of an external magnetic field. The relationship between L, and L is given in Figure 13.1.3

F4

X

Figure 13.1.3: The z-component of angular momentum is quantized with its own quantum number m.
Table 13.1.3: Spectroscopic Description of Quantum States

[=0 =1 =2 =3 l=4 =5
n=1 1s
n =2 2s 2p
n=3 3s 3p 3d
n=4 4s 4p 4d 4f
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n=2>5 5s 5p 5d 5f 5g
n==6 6s 6p 6d 6f 6g 6h

The quantization of L, is equivalent to the quantization of 6. Substituting /(I +1) k for L and m for L, into this equation, we
find

mh=,/l(l+1)hk cos 6.

Thus, the angle 8 is quantized with the particular values

=cos ! S LC— .
"~ (\/l(—m))

Notice that both the polar angle (#) and the projection of the angular momentum vector onto an arbitrary z-axis (L) are quantized.

The quantization of the polar angle for the [ =3 state is shown in Figure 13.1.4 The orbital angular momentum vector lies
somewhere on the surface of a cone with an opening angle 6 relative to the z-axis (unless m = 0, in which case # = 90° and the
vector points are perpendicular to the z-axis).

3h

2h

—2h

—3h

Figure 13.1.4: The quantization of orbital angular momentum. Each vector lies on the surface of a cone with axis along the z-axis.

A detailed study of angular momentum reveals that we cannot know all three components simultaneously. In the previous section,
the z-component of orbital angular momentum has definite values that depend on the quantum number m. This implies that we
cannot know both x- and y-components of angular momentum, L, and L,, with certainty. As a result, the precise direction of the
orbital angular momentum vector is unknown.

v/ Example 13.1.2: What Are the Allowed Directions?

Calculate the angles that the angular momentum vector L can make with the z-axis for | = 1, as shown in Figure 13.1.5
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Figure 13.1.5: The component of a given angular momentum along the z-axis (defined by the direction of a magnetic field) can

have only certain values. These are shown here for [ = 1, for which m = —1,0 and +1. The direction of L is quantized in the
sense that it can have only certain angles relative to the z-axis.

Strategy

T - —
The vectors L and L, (in the z-direction) form a right triangle, where L is the hypotenuse and L, is the adjacent side. The ratio

of L, to |f/| is the cosine of the angle of interest. The magnitudes L = |I}| and L, are given by
L=,/ll+1)R
and
L, =mh.

Solution
We are given [ = 1, so m can be +1, 0, or +1. Thus, L has the value given by

L=/11+1)h=2h

The quantity L, can have three values, given by L, = m;h.

h, ifml =+1
Lz = 0, ifml = 0
h, ifml =-1

As you can see in Figure 13.1.5 cos§ = Lz/ L, so for m = +1, we have

L, h 1
COSGl—T—E—E—O'?O'?

Thus,
01 =cos 1 0.707 =45.0°.
Similarly, for m = 0, we find cos 8 = 0; this gives

6, =cos 10=90.0".
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Then for m; = —1:

cos 05 = % = \;_—27; = —% =-0.707,
so that
63 = cos1(—0.707) =135.0".
Significance

The angles are consistent with the figure. Only the angle relative to the z-axis is quantized. L can point in any direction as long
as it makes the proper angle with the z-axis. Thus, the angular momentum vectors lie on cones, as illustrated. To see how the
correspondence principle holds here, consider that the smallest angle (6, in the example) is for the maximum value of m;,
namely m; = [. For that smallest angle,
cos 0= & = ;,
L I(1+1)

which approaches 1 as I becomes very large. If cos§ =1, then § = 0°. Furthermore, for large [, there are many values of m;,
so that all angles become possible as [ gets very large.

? Exercise 13.1.1

Can the magnitude L, ever be equal to L?

Answer

No. The quantum number m = —I, =l +1,...,0,...,l—1,1. Thus, the magnitude of L, is always less than L because
<A /U(1+1)

Using the Wave Function to Make Predictions

As we saw earlier, we can use quantum mechanics to make predictions about physical events by the use of probability statements.
It is therefore proper to state, “An electron is located within this volume with this probability at this time,” but not, “An electron is
located at the position (X, y, z) at this time.” To determine the probability of finding an electron in a hydrogen atom in a particular
region of space, it is necessary to integrate the probability density \(Jy_{nlm}|A2)_ over that region:

Probability = / Yonim|*dV,
volume

where dV is an infinitesimal volume element. If this integral is computed for all space, the result is 1, because the probability of the
particle to be located somewhere is 100% (the normalization condition). In a more advanced course on modern physics, you will

find that |¢nlm\2 =, Ynim, where ¢* is the complex conjugate. This eliminates the occurrences ¢ =+/—1 in the above
calculation.

Consider an electron in a state of zero angular momentum (! = 0). In this case, the electron’s wave function depends only on the
radial coordinate r. (Refer to the states 199 and 199 in Table 13.1.1) The infinitesimal volume element corresponds to a
spherical shell of radius  and infinitesimal thickness dr, written as

dV = 4nridr.
The probability of finding the electron in the region r to r +dr (“at approximately r”) is
P(r)dr = [¢noo|*4nr2dr.

Here P(r) is called the radial probability density function (a probability per unit length). For an electron in the ground state of
hydrogen, the probability of finding an electron in the region r to 7 +dr is

|¢noo|*4mr?dr = (4/‘130’)T2€93P(—2T/a0)d7‘,
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where ag = 0.5 angstroms. The radial probability density function P(r) is plotted in Figure 13.1.6. The area under the curve
between any two radial positions, say 1 and 73, gives the probability of finding the electron in that radial range. To find the most
probable radial position, we set the first derivative of this function to zero (dP/dr = 0) and solve for 7. The most probable radial
position is not equal to the average or expectation value of the radial position because |¢n00|2 is not symmetrical about its peak
value.

P(r)
Most probable radial position

1 I -
a4 n p!

Figure 13.1.6: The radial probability density function for the ground state of hydrogen.

If the electron has orbital angular momentum (I # 0), then the wave functions representing the electron depend on the angles § and
@; that is, Ynim = Ynim(r, 6, $) . Atomic orbitals for three states with n =2 and [ =1 are shown in Figure 13.1.7. An atomic
orbital is a region in space that encloses a certain percentage (usually 90%) of the electron probability. (Sometimes atomic orbitals
are referred to as “clouds” of probability.) Notice that these distributions are pronounced in certain directions. This directionality is
important to chemists when they analyze how atoms are bound together to form molecules.

. O
- 4 I\'J/ .
y - \ y
'Xx X X H

(a) (b) (©
Figure 13.1.7: The probability density distributions for three states with n =2 and [ = 1. The distributions are directed along the
(a) x-axis, (b) y-axis, and (c) z-axis.
A slightly different representation of the wave function is given in Figure 13.1.8 In this case, light and dark regions indicate
locations of relatively high and low probability, respectively. In contrast to the Bohr model of the hydrogen atom, the electron does
not move around the proton nucleus in a well-defined path. Indeed, the uncertainty principle makes it impossible to know how the
electron gets from one place to another.
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Figure 13.1.8: Probability clouds for the electron in the ground state and several excited states of hydrogen. The probability of
finding the electron is indicated by the shade of color; the lighter the coloring, the greater the chance of finding the electron.
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