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2.9.5: Maxima and Minima

Define absolute extrema.
Define local extrema.
Explain how to find the critical points of a function over a closed interval.
Describe how to use critical points to locate absolute extrema over a closed interval.

Given a particular function, we are often interested in determining the largest and smallest values of the function. This information
is important in creating accurate graphs. Finding the maximum and minimum values of a function also has practical significance,
because we can use this method to solve optimization problems, such as maximizing profit, minimizing the amount of material
used in manufacturing an aluminum can, or finding the maximum height a rocket can reach. In this section, we look at how to use
derivatives to find the largest and smallest values for a function.

Absolute Extrema
Consider the function  over the interval . As . Therefore, the function does not have
a largest value. However, since  for all real numbers  and  when , the function has a smallest value, 

, when . We say that  is the absolute minimum of  and it occurs at . We say that  does
not have an absolute maximum (Figure ).

Figure : The given function has an absolute minimum of  at . The function does not have an absolute maximum.

Let  be a function defined over an interval  and let . We say  has an absolute maximum on  at  if  for
all . We say  has an absolute minimum on  at  if  for all . If  has an absolute maximum on  at  or
an absolute minimum on  at , we say  has an absolute extremum on  at .

Before proceeding, let’s note two important issues regarding this definition. First, the term absolute here does not refer to absolute
value. An absolute extremum may be positive, negative, or zero. Second, if a function  has an absolute extremum over an interval 

 at , the absolute extremum is . The real number  is a point in the domain at which the absolute extremum occurs. For
example, consider the function  over the interval . Since

for all real numbers , we say  has an absolute maximum over  at . The absolute maximum is . It occurs
at , as shown in Figure (b).

A function may have both an absolute maximum and an absolute minimum, just one extremum, or neither. Figure  shows
several functions and some of the different possibilities regarding absolute extrema. However, the following theorem, called the
Extreme Value Theorem, guarantees that a continuous function  over a closed, bounded interval  has both an absolute
maximum and an absolute minimum.
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Figure : Graphs (a), (b), and (c) show several possibilities for absolute extrema for functions with a domain of 
Graphs (d), (e), and (f) show several possibilities for absolute extrema for functions with a domain that is a bounded interval.

If  is a continuous function over the closed, bounded interval , then there is a point in  at which  has an absolute
maximum over  and there is a point in  at which  has an absolute minimum over .

The proof of the extreme value theorem is beyond the scope of this text. Typically, it is proved in a course on real analysis. There
are a couple of key points to note about the statement of this theorem. For the extreme value theorem to apply, the function must be
continuous over a closed, bounded interval. If the interval  is open or the function has even one point of discontinuity, the function
may not have an absolute maximum or absolute minimum over . For example, consider the functions shown in Figure  (d),
(e), and (f). All three of these functions are defined over bounded intervals. However, the function in graph (e) is the only one that
has both an absolute maximum and an absolute minimum over its domain. The extreme value theorem cannot be applied to the
functions in graphs (d) and (f) because neither of these functions is continuous over a closed, bounded interval. Although the
function in graph (d) is defined over the closed interval , the function is discontinuous at . The function has an absolute
maximum over  but does not have an absolute minimum. The function in graph (f) is continuous over the half-open interval 

, but is not defined at , and therefore is not continuous over a closed, bounded interval. The function has an absolute
minimum over , but does not have an absolute maximum over . These two graphs illustrate why a function over a
bounded interval may fail to have an absolute maximum and/or absolute minimum.
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Before looking at how to find absolute extrema, let’s examine the related concept of local extrema. This idea is useful in
determining where absolute extrema occur.

Local Extrema and Critical Points
Consider the function  shown in Figure . The graph can be described as two mountains with a valley in the middle. The
absolute maximum value of the function occurs at the higher peak, at . However,  is also a point of interest. Although 

 is not the largest value of , the value  is larger than  for all  near 0. We say  has a local maximum at .
Similarly, the function  does not have an absolute minimum, but it does have a local minimum at  because  is less than 

 for  near 1.

Figure : This function  has two local maxima and one local minimum. The local maximum at  is also the absolute
maximum.

A function  has a local maximum at  if there exists an open interval  containing  such that  is contained in the domain of 
 and  for all . A function  has a local minimum at  if there exists an open interval  containing  such that
 is contained in the domain of  and  for all . A function  has a local extremum at  if  has a local

maximum at  or  has a local minimum at .

Note that if  has an absolute extremum at  and  is defined over an interval containing , then  is also considered a local
extremum. If an absolute extremum for a function  occurs at an endpoint, we do not consider that to be a local extremum, but
instead refer to that as an endpoint extremum.

Given the graph of a function , it is sometimes easy to see where a local maximum or local minimum occurs. However, it is not
always easy to see, since the interesting features on the graph of a function may not be visible because they occur at a very small
scale. Also, we may not have a graph of the function. In these cases, how can we use a formula for a function to determine where
these extrema occur?

To answer this question, let’s look at Figure  again. The local extrema occur at  and  Notice that at 
 and , the derivative . At , the derivative  does not exist, since the function  has a corner there.

In fact, if  has a local extremum at a point , the derivative  must satisfy one of the following conditions: either 
 or  is undefined. Such a value  is known as a critical point and it is important in finding extreme values for

functions.

Let  be an interior point in the domain of . We say that  is a critical point of  if  or  is undefined.

As mentioned earlier, if  has a local extremum at a point , then  must be a critical point of . This fact is known as
Fermat’s theorem.

f 2.9.5.3

x = 2 x = 0

f(0) f f(0) f(x) x f x = 0

f x = 1 f(1)

f(x) x

2.9.5.3 f x = 2

 Definition: Local Extrema

f c I c I

f f(c) ≥ f(x) x ∈ I f c I c

I f f(c) ≤ f(x) x ∈ I f c f

c f c

f c f c f(c)

f

f

2.9.5.3 x = 0, x = 1, x = 2.

x = 0 x = 1 (x) = 0f ′ x = 2 (x)f ′ f

f x = c (c)f ′

(c) = 0f ′ (c)f ′ c

 Definition: Critical Points

c f c f (c) = 0f ′ (c)f ′

f x = c c f

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76305?pdf


2.9.5.4 https://phys.libretexts.org/@go/page/76305

If  has a local extremum at  and  is differentiable at , then 

Suppose  has a local extremum at  and  is differentiable at . We need to show that . To do this, we will show that
 and , and therefore . Since  has a local extremum at ,  has a local maximum or local

minimum at . Suppose  has a local maximum at . The case in which  has a local minimum at  can be handled similarly.
There then exists an open interval I such that  for all . Since  is differentiable at , from the definition of the
derivative, we know that

Since this limit exists, both one-sided limits also exist and equal . Therefore,

and

Since  is a local maximum, we see that  for  near . Therefore, for  near , but , we have 
. From Equation  we conclude that . Similarly, it can be shown that  Therefore, 

□

From Fermat’s theorem, we conclude that if  has a local extremum at , then either  or  is undefined. In other
words, local extrema can only occur at critical points.

Note this theorem does not claim that a function  must have a local extremum at a critical point. Rather, it states that critical
points are candidates for local extrema. For example, consider the function . We have  when .
Therefore,  is a critical point. However,  is increasing over , and thus  does not have a local extremum
at . In Figure , we see several different possibilities for critical points. In some of these cases, the functions have local
extrema at critical points, whereas in other cases the functions do not. Note that these graphs do not show all possibilities for the
behavior of a function at a critical point.

 Theorem : Fermat’s Theorem2.9.5.2

f c f c (c) = 0.f ′

 Proof

f c f c (c) = 0f ′

(c) ≥ 0f ′ (c) ≤ 0f ′ (c) = 0f ′ f c f

c f c f c

f(c) ≥ f(x) x ∈ I f c

(c) = .f ′ lim
x→c

f(x) −f(c)

x −c

(c)f ′

(c) =f ′ lim
x→c+

f(x) −f(c)

x −c,
(2.9.5.1)

(c) = .f ′ lim
x→c−

f(x) −f(c)

x −c

f(c) f(x) −f(c) ≤ 0 x c x c x > c

≤ 0
f(x)−f(c)

x−c
2.9.5.1 (c) ≤ 0f ′ (c) ≥ 0.f ′

(c) = 0.f ′

f c (c) = 0f ′ (c)f ′

f

f(x) = x3 (x) = 3 = 0f ′ x2 x = 0

x = 0 f(x) = x3 (−∞, ∞) f

x = 0 2.9.5.4

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76305?pdf


2.9.5.5 https://phys.libretexts.org/@go/page/76305

Figure : (a–e) A function  has a critical point at  if  or  is undefined. A function may or may not have a
local extremum at a critical point.

Later in this chapter we look at analytical methods for determining whether a function actually has a local extremum at a critical
point. For now, let’s turn our attention to finding critical points. We will use graphical observations to determine whether a critical
point is associated with a local extremum.

For each of the following functions, find all critical points. Use a graphing utility to determine whether the function has a local
extremum at each of the critical points.

a. 
b. 
c. 

Solution

a. The derivative  is defined for all real numbers . Therefore, we only need to find the values for 
where . Since , the critical points are  and  From the graph of 
in Figure , we see that  has a local maximum at  and a local minimum at .

Figure : This function has a local maximum and a local minimum.

b. Using the chain rule, we see the derivative is

Therefore,  has critical points when  and when . We conclude that the critical points are . From
the graph of  in Figure , we see that  has a local (and absolute) minimum at , but does not have a local
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extremum at  or .

Figure : This function has three critical points: , , and . The function has a local (and absolute)
minimum at , but does not have extrema at the other two critical points.

c. By the quotient rule, we see that the derivative is

.

The derivative is defined everywhere. Therefore, we only need to find values for  where . Solving , we
see that  which implies . Therefore, the critical points are . From the graph of  in Figure ,
we see that f has an absolute maximum at  and an absolute minimum at  Hence,  has a local maximum at 

 and a local minimum at . (Note that if  has an absolute extremum over an interval  at a point  that is not an
endpoint of , then  has a local extremum at 

Figure : This function has an absolute maximum and an absolute minimum.

Find all critical points for 

Hint

Calculate 

Answer

Locating Absolute Extrema
The extreme value theorem states that a continuous function over a closed, bounded interval has an absolute maximum and an
absolute minimum. As shown in Figure , one or both of these absolute extrema could occur at an endpoint. If an absolute
extremum does not occur at an endpoint, however, it must occur at an interior point, in which case the absolute extremum is a local
extremum. Therefore, by Fermat's Theorem, the point  at which the local extremum occurs must be a critical point. We summarize
this result in the following theorem.
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Let  be a continuous function over a closed, bounded interval . The absolute maximum of  over  and the absolute
minimum of  over  must occur at endpoints of  or at critical points of  in .

With this idea in mind, let’s examine a procedure for locating absolute extrema.

Consider a continuous function  defined over the closed interval 

1. Evaluate  at the endpoints  and 
2. Find all critical points of  that lie over the interval  and evaluate  at those critical points.
3. Compare all values found in (1) and (2). From "Location of Absolute Extrema," the absolute extrema must occur at

endpoints or critical points. Therefore, the largest of these values is the absolute maximum of . The smallest of these
values is the absolute minimum of .

Now let’s look at how to use this strategy to find the absolute maximum and absolute minimum values for continuous functions.

For each of the following functions, find the absolute maximum and absolute minimum over the specified interval and state
where those values occur.

a.  over 
b.  over .

Solution

a. Step 1. Evaluate  at the endpoints  and .

 and 

Step 2. Since  is defined for all real numbers  Therefore, there are no critical points where the
derivative is undefined. It remains to check where . Since  at  and  is in the interval 

 is a candidate for an absolute extremum of  over . We evaluate  and find

.

Step 3. We set up the following table to compare the values found in steps 1 and 2.

Conclusion

 

Absolute maximum

Absolute minimum

From the table, we find that the absolute maximum of  over the interval [1, 3] is , and it occurs at . The absolute
minimum of  over the interval  is , and it occurs at  as shown in Figure .

 Theorem : Location of Absolute Extrema2.9.5.3
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Figure : This function has both an absolute maximum and an absolute minimum.

b. Step 1. Evaluate  at the endpoints  and .

 and 

Step 2. The derivative of  is given by

for . The derivative is zero when , which implies . The derivative is undefined at .
Therefore, the critical points of  are . The point  is an endpoint, so we already evaluated  in step 1.
The point  is not in the interval of interest, so we need only evaluate . We find that

Step 3. We compare the values found in steps 1 and 2, in the following table.

Conclusion

Absolute maximum

Absolute minimum

 

We conclude that the absolute maximum of  over the interval  is zero, and it occurs at . The absolute minimum is 
 and it occurs at  as shown in Figure .

Figure : This function has an absolute maximum at an endpoint of the interval.
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Find the absolute maximum and absolute minimum of  over the interval .

Hint

Look for critical points. Evaluate  at all critical points and at the endpoints.

Answer

The absolute maximum is  and it occurs at . The absolute minimum is  and it occurs at .

At this point, we know how to locate absolute extrema for continuous functions over closed intervals. We have also defined local
extrema and determined that if a function  has a local extremum at a point , then  must be a critical point of . However, 
being a critical point is not a sufficient condition for  to have a local extremum at . Later in this chapter, we show how to
determine whether a function actually has a local extremum at a critical point. First, however, we need to introduce the Mean Value
Theorem, which will help as we analyze the behavior of the graph of a function.

Key Concepts
A function may have both an absolute maximum and an absolute minimum, have just one absolute extremum, or have no
absolute maximum or absolute minimum.
If a function has a local extremum, the point at which it occurs must be a critical point. However, a function need not have a
local extremum at a critical point.
A continuous function over a closed, bounded interval has an absolute maximum and an absolute minimum. Each extremum
occurs at a critical point or an endpoint.

Glossary

absolute extremum
if  has an absolute maximum or absolute minimum at , we say  has an absolute extremum at 

absolute maximum
if  for all  in the domain of , we say  has an absolute maximum at 

absolute minimum
if  for all  in the domain of , we say  has an absolute minimum at 

critical point
if  or  is undefined, we say that c is a critical point of 

extreme value theorem
if  is a continuous function over a finite, closed interval, then  has an absolute maximum and an absolute minimum

Fermat’s theorem
if  has a local extremum at , then  is a critical point of 

local extremum
if  has a local maximum or local minimum at , we say  has a local extremum at 

local maximum
if there exists an interval  such that  for all , we say  has a local maximum at 

local minimum
if there exists an interval  such that  for all , we say  has a local minimum at 
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