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2.10.3: Physical Applications of Integration-

Determine the mass of a one-dimensional object from its linear density function.
Determine the mass of a two-dimensional circular object from its radial density function.
Calculate the work done by a variable force acting along a line.
Calculate the work done in pumping a liquid from one height to another.
Find the hydrostatic force against a submerged vertical plate.

In this section, we examine some physical applications of integration. Let’s begin with a look at calculating mass from a density
function. We then turn our attention to work, and close the section with a study of hydrostatic force.

Mass and Density
We can use integration to develop a formula for calculating mass based on a density function. First we consider a thin rod or wire.
Orient the rod so it aligns with the -axis, with the left end of the rod at  and the right end of the rod at  (Figure 

). Note that although we depict the rod with some thickness in the figures, for mathematical purposes we assume the rod is
thin enough to be treated as a one-dimensional object.

Figure : We can calculate the mass of a thin rod oriented along the -axis by integrating its density function.

If the rod has constant density , given in terms of mass per unit length, then the mass of the rod is just the product of the density
and the length of the rod: . If the density of the rod is not constant, however, the problem becomes a little more
challenging. When the density of the rod varies from point to point, we use a linear density function, , to denote the density of
the rod at any point, . Let  be an integrable linear density function. Now, for  let  be a regular
partition of the interval , and for  choose an arbitrary point . Figure  shows a
representative segment of the rod.

Figure : A representative segment of the rod.

The mass  of the segment of the rod from  to  is approximated by

Adding the masses of all the segments gives us an approximation for the mass of the entire rod:
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This is a Riemann sum. Taking the limit as , we get an expression for the exact mass of the rod:

We state this result in the following theorem.

Given a thin rod oriented along the -axis over the interval , let  denote a linear density function giving the density of
the rod at a point  in the interval. Then the mass of the rod is given by

We apply this theorem in the next example.

Consider a thin rod oriented on the -axis over the interval . If the density of the rod is given by , what is
the mass of the rod?

Solution

Applying Equation  directly, we have

Consider a thin rod oriented on the -axis over the interval . If the density of the rod is given by  what is
the mass of the rod?

Hint

Use the process from the previous example.

Solution

We now extend this concept to find the mass of a two-dimensional disk of radius . As with the rod we looked at in the one-
dimensional case, here we assume the disk is thin enough that, for mathematical purposes, we can treat it as a two-dimensional
object. We assume the density is given in terms of mass per unit area (called area density), and further assume the density varies
only along the disk’s radius (called radial density). We orient the disk in the , with the center at the origin. Then, the
density of the disk can be treated as a function of , denoted . We assume  is integrable. Because density is a function of 

, we partition the interval from  along the -axis. For , let  be a regular partition of the interval 
, and for , choose an arbitrary point . Now, use the partition to break up the disk into thin (two-

dimensional) washers. A disk and a representative washer are depicted in the following figure.

n → ∞

m = ρ( )Δxlim
n→∞

∑
i=1

n

x∗
i

= ρ(x)dx.∫
b

a

 Mass–Density Formula of a One-Dimensional Object

x [a, b] ρ(x)
x

m = ρ(x)dx.∫
b

a

(2.10.3.1)

 Example : Calculating Mass from Linear Density2.10.3.1
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Figure : (a) A thin disk in the xy-plane. (b) A representative washer.

We now approximate the density and area of the washer to calculate an approximate mass, . Note that the area of the washer is
given by

You may recall that we had an expression similar to this when we were computing volumes by shells. As we did there, we use 
 to approximate the average radius of the washer. We obtain

Using  to approximate the density of the washer, we approximate the mass of the washer by

Adding up the masses of the washers, we see the mass  of the entire disk is approximated by

We again recognize this as a Riemann sum, and take the limit as  This gives us

We summarize these findings in the following theorem.

Let  be an integrable function representing the radial density of a disk of radius . Then the mass of the disk is given by

Let  represent the radial density of a disk. Calculate the mass of a disk of radius 4.

Solution

Applying Equation , we find
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 Example : Calculating Mass from Radial Density2.10.3.2
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Let  represent the radial density of a disk. Calculate the mass of a disk of radius 2.

Hint

Use the process from the previous example.

Solution

Work Done by a Force

We now consider work. In physics, work is related to force, which is often intuitively defined as a push or pull on an object. When
a force moves an object, we say the force does work on the object. In other words, work can be thought of as the amount of energy
it takes to move an object. According to physics, when we have a constant force, work can be expressed as the product of force and
distance.

In the English system, the unit of force is the pound and the unit of distance is the foot, so work is given in foot-pounds. In the
metric system, kilograms and meters are used. One newton is the force needed to accelerate  kilogram of mass at the rate of 
m/sec . Thus, the most common unit of work is the newton-meter. This same unit is also called the joule. Both are defined as
kilograms times meters squared over seconds squared 

When we have a constant force, things are pretty easy. It is rare, however, for a force to be constant. The work done to compress (or
elongate) a spring, for example, varies depending on how far the spring has already been compressed (or stretched). We look at
springs in more detail later in this section.

Suppose we have a variable force  that moves an object in a positive direction along the -axis from point  to point . To
calculate the work done, we partition the interval  and estimate the work done over each subinterval. So, for ,
let  be a regular partition of the interval , and for , choose an arbitrary point . To
calculate the work done to move an object from point  to point , we assume the force is roughly constant over the interval,
and use  to approximate the force. The work done over the interval , then, is given by

Therefore, the work done over the interval  is approximately

Taking the limit of this expression as  gives us the exact value for work:

Thus, we can define work as follows.
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If a variable force  moves an object in a positive direction along the -axis from point  to point , then the work done on
the object is

Note that if  is constant, the integral evaluates to  which is the formula we stated at the beginning of this
section.

Now let’s look at the specific example of the work done to compress or elongate a spring. Consider a block attached to a horizontal
spring. The block moves back and forth as the spring stretches and compresses. Although in the real world we would have to
account for the force of friction between the block and the surface on which it is resting, we ignore friction here and assume the
block is resting on a frictionless surface. When the spring is at its natural length (at rest), the system is said to be at equilibrium. In
this state, the spring is neither elongated nor compressed, and in this equilibrium position the block does not move until some force
is introduced. We orient the system such that  corresponds to the equilibrium position (Figure ).

Figure : A block attached to a horizontal spring at equilibrium, compressed, and elongated.

According to Hooke’s law, the force required to compress or stretch a spring from an equilibrium position is given by ,
for some constant . The value of k depends on the physical characteristics of the spring. The constant  is called the spring
constant and is always positive. We can use this information to calculate the work done to compress or elongate a spring, as shown
in the following example.

Suppose it takes a force of  N (in the negative direction) to compress a spring  m from the equilibrium position. How
much work is done to stretch the spring  m from the equilibrium position?

Solution

First find the spring constant, . When , we know  so

and  Then, to calculate work, we integrate the force function, obtaining

 Definition: Work
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 Example : The Work Required to Stretch or Compress a Spring2.10.3.3
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The work done to stretch the spring is  J.

Suppose it takes a force of  lb to stretch a spring  in. from the equilibrium position. How much work is done to stretch the
spring  ft from the equilibrium position?

Hint

Use the process from the previous example. Be careful with units.

Solution

 ft-lb

Work Done in Pumping
Consider the work done to pump water (or some other liquid) out of a tank. Pumping problems are a little more complicated than
spring problems because many of the calculations depend on the shape and size of the tank. In addition, instead of being concerned
about the work done to move a single mass, we are looking at the work done to move a volume of water, and it takes more work to
move the water from the bottom of the tank than it does to move the water from the top of the tank.

We examine the process in the context of a cylindrical tank, then look at a couple of examples using tanks of different shapes.
Assume a cylindrical tank of radius  m and height  m is filled to a depth of 8 m. How much work does it take to pump all the
water over the top edge of the tank?

The first thing we need to do is define a frame of reference. We let  represent the vertical distance below the top of the tank. That
is, we orient the -axis vertically, with the origin at the top of the tank and the downward direction being positive (Figure 

).

Figure : How much work is needed to empty a tank partially filled with water?

Using this coordinate system, the water extends from  to . Therefore, we partition the interval  and look at the
work required to lift each individual “layer” of water. So, for , let  be a regular partition of the interval 

, and for , choose an arbitrary point . Figure  shows a representative layer.
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Figure : A representative layer of water.

In pumping problems, the force required to lift the water to the top of the tank is the force required to overcome gravity, so it is
equal to the weight of the water. Given that the weight-density of water is , or , calculating the volume of
each layer gives us the weight. In this case, we have

Then, the force needed to lift each layer is

Note that this step becomes a little more difficult if we have a noncylindrical tank. We look at a noncylindrical tank in the next
example.

We also need to know the distance the water must be lifted. Based on our choice of coordinate systems, we can use  as an
approximation of the distance the layer must be lifted. Then the work to lift the  layer of water  is approximately

Adding the work for each layer, we see the approximate work to empty the tank is given by

This is a Riemann sum, so taking the limit as  we get

The work required to empty the tank is approximately 23,650,000 J.

For pumping problems, the calculations vary depending on the shape of the tank or container. The following problem-solving
strategy lays out a step-by-step process for solving pumping problems.

1. Sketch a picture of the tank and select an appropriate frame of reference.
2. Calculate the volume of a representative layer of water.
3. Multiply the volume by the weight-density of water to get the force.
4. Calculate the distance the layer of water must be lifted.
5. Multiply the force and distance to get an estimate of the work needed to lift the layer of water.

2.10.3.6
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6. Sum the work required to lift all the layers. This expression is an estimate of the work required to pump out the desired
amount of water, and it is in the form of a Riemann sum.

7. Take the limit as  and evaluate the resulting integral to get the exact work required to pump out the desired amount
of water.

We now apply this problem-solving strategy in an example with a noncylindrical tank.

Assume a tank in the shape of an inverted cone, with height  ft and base radius  ft. The tank is full to start with, and water
is pumped over the upper edge of the tank until the height of the water remaining in the tank is  ft. How much work is
required to pump out that amount of water?

Solution

The tank is depicted in Figure . As we did in the example with the cylindrical tank, we orient the -axis vertically,
with the origin at the top of the tank and the downward direction being positive (step 1).

Figure : A water tank in the shape of an inverted cone.

The tank starts out full and ends with  ft of water left, so, based on our chosen frame of reference, we need to partition the
interval . Then, for , let  be a regular partition of the interval , and for ,
choose an arbitrary point . We can approximate the volume of a layer by using a disk, then use similar triangles
to find the radius of the disk (Figure ).

n → ∞

 Example : A Pumping Problem with a Noncylindrical Tank2.10.3.4
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Figure : Using similar triangles to express the radius of a disk of water.

From properties of similar triangles, we have

Then the volume of the disk is

The weight-density of water is lb/ft , so the force needed to lift each layer is approximately

Based on the diagram, the distance the water must be lifted is approximately  feet (step 4), so the approximate work needed
to lift the layer is

Summing the work required to lift all the layers, we get an approximate value of the total work:

Taking the limit as  we obtain
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It takes approximately  ft-lb of work to empty the tank to the desired level.

A tank is in the shape of an inverted cone, with height  ft and base radius 6 ft. The tank is filled to a depth of 8 ft to start
with, and water is pumped over the upper edge of the tank until 3 ft of water remain in the tank. How much work is required to
pump out that amount of water?

Hint

Use the process from the previous example.

Solution

Approximately  ft-lb

Hydrostatic Force and Pressure

In this last section, we look at the force and pressure exerted on an object submerged in a liquid. In the English system, force is
measured in pounds. In the metric system, it is measured in newtons. Pressure is force per unit area, so in the English system we
have pounds per square foot (or, perhaps more commonly, pounds per square inch, denoted psi). In the metric system we have
newtons per square meter, also called pascals.

Let’s begin with the simple case of a plate of area  submerged horizontally in water at a depth s (Figure ). Then, the force
exerted on the plate is simply the weight of the water above it, which is given by , where  is the weight density of water
(weight per unit volume). To find the hydrostatic pressure—that is, the pressure exerted by water on a submerged object—we
divide the force by the area. So the pressure is .

Figure : A plate submerged horizontally in water.

By Pascal’s principle, the pressure at a given depth is the same in all directions, so it does not matter if the plate is submerged
horizontally or vertically. So, as long as we know the depth, we know the pressure. We can apply Pascal’s principle to find the force
exerted on surfaces, such as dams, that are oriented vertically. We cannot apply the formula  directly, because the depth
varies from point to point on a vertically oriented surface. So, as we have done many times before, we form a partition, a Riemann
sum, and, ultimately, a definite integral to calculate the force.
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Suppose a thin plate is submerged in water. We choose our frame of reference such that the -axis is oriented vertically, with the
downward direction being positive, and point  corresponding to a logical reference point. Let  denote the depth at point
x. Note we often let  correspond to the surface of the water. In this case, depth at any point is simply given by .
However, in some cases we may want to select a different reference point for , so we proceed with the development in the
more general case. Last, let  denote the width of the plate at the point .

Assume the top edge of the plate is at point  and the bottom edge of the plate is at point . Then, for ,
let  be a regular partition of the interval , and for , choose an arbitrary point . The
partition divides the plate into several thin, rectangular strips (Figure ).

Figure : A thin plate submerged vertically in water.

Let’s now estimate the force on a representative strip. If the strip is thin enough, we can treat it as if it is at a constant depth, .
We then have

Adding the forces, we get an estimate for the force on the plate:

This is a Riemann sum, so taking the limit gives us the exact force. We obtain

Evaluating this integral gives us the force on the plate. We summarize this in the following problem-solving strategy.

1. Sketch a picture and select an appropriate frame of reference. (Note that if we select a frame of reference other than the one
used earlier, we may have to adjust Equation  accordingly.)

2. Determine the depth and width functions,  and 
3. Determine the weight-density of whatever liquid with which you are working. The weight-density of water is ,

or .
4. Use the equation to calculate the total force.

A water trough 15 ft long has ends shaped like inverted isosceles triangles, with base 8 ft and height 3 ft. Find the force on one
end of the trough if the trough is full of water.

Solution

Figure  shows the trough and a more detailed view of one end.
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 Problem-Solving Strategy: Finding Hydrostatic Force
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 Example : Finding Hydrostatic Force2.10.3.5
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Figure : (a) A water trough with a triangular cross-section. (b) Dimensions of one end of the water trough.

Select a frame of reference with the -axis oriented vertically and the downward direction being positive. Select the top of the
trough as the point corresponding to  (step 1). The depth function, then, is . Using similar triangles, we see that 

 (step 2). Now, the weight density of water is  (step 3), so applying Equation , we
obtain

The water exerts a force of 748.8 lb on the end of the trough (step 4).

A water trough 12 m long has ends shaped like inverted isosceles triangles, with base 6 m and height 4 m. Find the force on
one end of the trough if the trough is full of water.

Hint

Follow the problem-solving strategy and the process from the previous example.

Solution

 N

2.10.3.11

x

x = 0 s(x) = x

w(x) = 8 −(8/3)x 62.4 lb/ft3 2.10.3.4

F = ρw(x)s(x)dx∫
b

a

= 62.4(8 − x)x dx = 62.4 (8x− ) dx∫
3

0

8

3
∫

3

0

8

3
x2

= = 748.8.62.4 [4 − ]x2 8

9
x3 ∣

∣
∣
3

0

 Exercise 2.10.3.5
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We now return our attention to the Hoover Dam, mentioned at the beginning of this chapter. The actual dam is arched, rather
than flat, but we are going to make some simplifying assumptions to help us with the calculations. Assume the face of the
Hoover Dam is shaped like an isosceles trapezoid with lower base 750 ft, upper base 1250 ft, and height 750 ft (see the
following figure).

When the reservoir is full, Lake Mead’s maximum depth is about 530 ft, and the surface of the lake is about 10 ft below the top
of the dam (see the following figure).

Figure : A simplified model of the Hoover Dam with assumed dimensions.
a. Find the force on the face of the dam when the reservoir is full.
b. The southwest United States has been experiencing a drought, and the surface of Lake Mead is about 125 ft below where it

would be if the reservoir were full. What is the force on the face of the dam under these circumstances?

Solution:

a.

We begin by establishing a frame of reference. As usual, we choose to orient the -axis vertically, with the downward direction
being positive. This time, however, we are going to let  represent the top of the dam, rather than the surface of the water.
When the reservoir is full, the surface of the water is  ft below the top of the dam, so  (see the following
figure).

Figure : We first choose a frame of reference.

To find the width function, we again turn to similar triangles as shown in the figure below.

 Example : Finding Hydrostatic Force2.10.3.6

2.10.3.12

x

x = 0
10 s(x) = x−10
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https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76312?pdf


2.10.3.14 https://phys.libretexts.org/@go/page/76312

Figure : We use similar triangles to determine a function for the width of the dam. (a) Assumed dimensions of the
dam; (b) highlighting the similar triangles.

From the figure, we see that . Using properties of similar triangles, we get . Thus,

Using a weight-density of lb/ft  (step 3) and applying Equation , we get

Note the change from pounds to tons ( lb =  ton) (step 4). This changes our depth function, , and our limits of
integration. We have . The lower limit of integration is 135. The upper limit remains . Evaluating the
integral, we get

When the reservoir is at its average level, the surface of the water is about 50 ft below where it would be if the reservoir were
full. What is the force on the face of the dam under these circumstances?

Hint

Change the depth function,  and the limits of integration.

Solution

Approximately 7,164,520,000 lb or 3,582,260 t

2.10.3.14

w(x) = 750 +2r r = 250 −(1/3)x

w(x) = 1250 − x
2

3
(step 2)

62.4 3 2.10.3.4

F = ρw(x)s(x)dx∫
b

a

= 62.4(1250 − x) (x−10)dx∫
540

10

2

3

= 62.4 − [ −1885x+18750] dx∫
540

10

2

3
x2

= −62.4( )[ − +18750x] ≈ 8, 832, 245, 000 lb = 4, 416, 122.5 t.
2

3

x3

3

1885x2

2
∣
∣
∣
540

10

2000 1 s(x)
s(x) = x−135 540

F = ρw(x)s(x)dx∫
b

a

= 62.4(1250 − x) (x−135)dx∫
540

135

2

3

= −62.4( ) (x−1875)(x−135)dx = −62.4( ) ( −2010x+253125)dx
2

3
∫

540

135

2

3
∫

540

135
x2

= −62.4( )[ −1005 +253125x] ≈ 5, 015, 230, 000 lb = 2, 507, 615 t.
2

3

x3

3
x2 ∣

∣
∣
540

135

 Exercise 2.10.3.6
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Key Concepts
Several physical applications of the definite integral are common in engineering and physics.
Definite integrals can be used to determine the mass of an object if its density function is known.
Work can also be calculated from integrating a force function, or when counteracting the force of gravity, as in a pumping
problem.
Definite integrals can also be used to calculate the force exerted on an object submerged in a liquid.

Key Equations
Mass of a one-dimensional object

Mass of a circular object

Work done on an object

Hydrostatic force on a plate

Glossary

density function
a density function describes how mass is distributed throughout an object; it can be a linear density, expressed in terms of mass
per unit length; an area density, expressed in terms of mass per unit area; or a volume density, expressed in terms of mass per
unit volume; weight-density is also used to describe weight (rather than mass) per unit volume

Hooke’s law
this law states that the force required to compress (or elongate) a spring is proportional to the distance the spring has been
compressed (or stretched) from equilibrium; in other words, , where  is a constant

hydrostatic pressure
the pressure exerted by water on a submerged object

work
the amount of energy it takes to move an object; in physics, when a force is constant, work is expressed as the product of force
and distance
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m = ρ(x)dx∫
b

a

m = 2πxρ(x)dx∫
r

0

W = F (x)dx∫
b

a

F = ρw(x)s(x)dx∫
b

a

F = kx k
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