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2.12: Math-vector basics and diffrential equations

2.12.1 Solving Differential Equations

A differential equation is an equation which contains derivatives of the function to be determined. They can be very simple. For
example, you may be given the (constant) velocity of a car, which is the derivative of its position, which we’d write mathematically
as:

To determine where the car ends up after one hour, we need to solve this differential equation. We also need a second piece of
information: where the car was at some reference time (usually t = 0), the initial condition. If , you don’t need advanced
maths skills to figure out that . Unfortunately, things aren’t usually this easy.

Before we proceed to a few techniques for solving differential equations, we need some terminology. The order of a differential
equation is the order of the highest derivative found in the equation; Equation  is thus of first order. A differential equation is
called ordinary if it only contains derivatives with respect to one variable, and partial if it contains derivatives to multiple variables.
The equation is linear if it does not contain any products of (derivatives of) the unknown function. Finally, a differential equation is
homogeneous if it only contains terms that contain the unknown function, and inhomogeneous if it also contains other terms.
Equation  is ordinary and inhomogeneous, as the  term on the right does not contain the unknown function . In the
sections below,we discuss the various cases you’ll encounter in this book; there are many others (many of which can’t be solved
explicitly) to which a whole subfield of mathematics is dedicated.

2.12.1.1 FIRST-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS

Suppose we have a general equation of the form

where  and  are known functions of , and  is our unknown function. Equation  is a first-order, ordinary,
linear, inhomogeneous differential equation. In order to solve it we will use two techniques that are tremendously useful: separation
of variables and separation into homogeneous and particular solutions.

Suppose we had . Then, if we had two solutions  and  of Equation , we could construct a third as 
 (or any linear combination of  and  ), since the equation is linear. Now since  is not zero, we can’t do

this, but we can do something else. First, we find the most general solution to the equation where , which we call the
homogeneous solution . Second, we find a solution (any at all) of the full Equation , which we call the particular
solution . The full solution is then the sum of these two solutions, . You may worry that there may be
multiple particular solutions: how would we pick the ‘right’ one? Fortunately, we don’t need to worry: the homogeneous solution
will contain an unknown variable, which will be set by the initial condition. Changing the particular solution will change the value
of the variable, such that the final solution will be the same and satisfy both the differential equation and the initial condition.

To find the solution to the homogeneous equation

we’re going to use a technique called separation of variables. There are two variables in this system: the independent parameter t
and the dependent parameter x. The trick is to get everything depending on t on one side of the equals sign, and everything
depending on x on the other. To do so, we’re going to treat dx/dt as if it were an actual fraction . In that case, it’s not hard to see
that we can re-arrange Equation  to

By itself, Equation  means little, but if we integrate both sides, we get something that makes sense:
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or

where  is an integration constant (the unknown constant that will be set by our initial condition). Of course, in
principle it may not be possible to evaluate the integral in Equation , but even then the solution is valid. In practice, you’ll
often encounter situations in which  and  are simple functions or even constants, and the evaluation of the integral is
straightforward. Now that we have our homogeneous solution, we still need a particular one. Sometimes you’re lucky, and you can
easily guess one - for instance one in which  doesn’t depend on  at all. In case you’re not lucky, there’s are two other
techniques you may try, either using variation of constants or finding an integrating factor. To demonstrate variation of constants,
we’ll pick a specific example, to not get lost in a bunch of abstract functions. Let  be a constant and  be linear.
The homogeneous solution then becomes . The constant we’re going to vary is our integration constant ,
so our guess for the particular solution will be

We substitute  back into the full differential Equation , which gives:

A big part of the left-hand side thus cancels, and that’s not a coincidence - that’s because it is based on the homogeneous equation.
What remains is a differential equation in  that can be trivially solved by direct integration:

Again, it may not be possible to evaluate the integral in Equation , but in principle the solution could be inserted in Equation 
 to give us our particular solution, and the whole differential equation will be solved.

Alternatively, we may try to find an integration factor for Equation . This means that we try to rewrite the left hand side of
the equation as a total derivative, after which we can simply integrate to get the solution. To do so, we first divide the whole
equation by , then look for a function  that satisfies the condition that

from which we can read off that we need to solve the homogeneous equation

We can solve  by separation of constants, which gives us

where we set the integration constant to one, as it drops out of the equation for  anyway. With this function , we can
rewrite Equation  as

which we can integrate to find :
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2.12.1.2 SECOND-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Second order ordinary differential equations are essential for the study of mechanics, as its central equation, Newton’s second law
of motion (Equation 2.1.4) is of this type. In the case that the equation is also linear, we have some hopes of solving it analytically.
There are several examples of this type of equation in the main text, especially in Section 2.6, where we solve the equation of
motion resulting from Newton’s second law for three special cases, and Section 8.1, where we study a number of variants of the
harmonic oscillator. For the case that the equation is homogeneous and has constant coefficients, we can write down the general
solution . The equation to be solved is of the form

For the case that , we retrieve a first-order differential equation, whose solution is an exponential (as can be found by
separation of variables and integration): . In many cases an exponential is also a solution of Equation .
To figure out which exponential, let’s start with the trial function (or ‘Ansatz’) , where  is an unknown parameter.
Substituting this Ansatz into Equation  yields the characteristic polynomial for this ode:

which almost always has two solutions:

Note that the solutions can be real or complex. If there are two of them, we can write the general solution  of Equation  as a
linear combination of the Ansatz with the two cases:

where A and B are set by either initial or boundary conditions. Since the  may be complex, so may A and B; it’s their
combination that should give a real number (as  is real), see problem A.3.1a.

In the case that Equation  gives only one solution, the corresponding exponential function is still a solution of Equation 
, but it is not the most general one, as we only can put a single undetermined constant in front of it. We therefore need a

second, independent solution. To guess one, here’s a third useful trick : take the derivative of our known solution, , with respect
to the parameter . This gives a second Ansatz: , where . Substituting this Ansatz into Equation  for the
case that , we find:

so our Ansatz is again a solution. For this special case, the general solution is therefore given by

In Section 8.2, where we discuss the damped harmonic oscillator, the special case corresponds to the critically damped oscillator.
We get an underdamped oscillator when the roots of the characteristic polynomial are complex, and an overdamped one when they
are real.

2.12.1.3 SECOND-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF EULER TYPE

There’s a second class of linear ordinary differential equations that we can solve explicitly: those of Euler (or Cauchy-Euler) type,
where the coefficient in front of a derivative contains the variable to the power of the derivative, i.e., for a second-order differential
equation, we have as the most general form:

Note that we are now solving for ; we do so because this type of equation typically occurs in the context of position- rather
than time-dependent functions. An example is the Laplace equation  in polar coordinates. Like for the second order ode
with constant coefficients, the ode of Euler type can be generalized to higher-order equations.
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There are (at least) two ways to solve Equation : through an Ansatz, and through a change of variables. For the Ansatz, note
that for any polynomial, the derivative of each term reduces the power by one, and here we’re multiplying each such term with the
variable to the power the number of derivatives . This suggests we simply try a polynomial, so our Ansatz here will be .
Substituting in Equation  gives:

so we get another second order polynomial to solve, this time in :

If the roots in Equation  are both real (the most common case in physics problems), we have two independent solutions, and
we are done. If the roots are complex, we also have two independent solutions, though they involve complex powers of ; like for
the equation with constant coefficients, we can rewrite these as real functions with Euler’s formula (see problem A.3.1b). For the
case that we have only one root, we again apply our trick to get a second: we try , which turns out to be indeed a
solution (problem A.3.1c), and the general solution is again a linear combination of the two solutions found.

Alternatively, we could have solved Equation  by a change of variables. Although this method is occasionally useful (and
so it’s good to be aware of its existence), there is no systematic way of deriving which change of variables will do the trick, so
you’ll have to go by trial-and-error (without a priori guarantee of success). In this case, this process leads to the following
substitution:

where we introduce  for convenience. Taking derivatives of  with the chain rule gives

which is a second order differential equation with constant coefficients, and thus of the form given in Equation . We
therefore know how to find its solutions, and can use Equation  to transform those solutions back to functions .

2.12.1.4 Reduction of Order

If you find yourself with a non-homogeneous second order differential equation where the homogeneous equation either has
constant coefficients or is of Euler type, you can again use the technique of variation of constants to find a particular solution. A
similar technique, known as reduction of order, may help you find solutions to a second (or higher) order equation where the
coefficients are not constant. In order to be able to use this technique, you need to know a solution to the homogeneous equation, so
it is not as universally applicable as the techniques in the previous two sections, but still frequently very helpful.

Let us write the general non-homogeneous second-order linear differential equation as

Note that this is the most general form: if there is a coefficient (constant or otherwise) in front of the second derivative, we simply
divide the whole equation by that coefficient and redefine the coefficients to match Equation . Now suppose we have a
solution  of the homogeneous equation (so for the case that  ). As the equation is homogeneous, for any constant 
the function  will also be a solution. As an Ansatz for the second solution, we’ll try a variant of variation of constants, and
take

where  is an arbitrary function. Substituting  back into , we find

We recognize the prefactor of  as exactly the homogeneous equation, which  satisfies, so this term vanishes. Now
defining , we are left with a first-order equation for :
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Equation  is a first-order linear differential equation, and can be solved by the techniques from Section A.3.1. Integrating
the equation  then gives us , and hence the second solution  of the (inhomogeneous) second order
differential equation.

2.12.1.5 POWER SERIES Solutions

If none of the techniques in the sections above apply to your differential equation, there’s one last Ansatz you can try: a power
series expansion of your solution. To illustrate, we’ll again pick a concrete example: Legendre’s differential equation, given by

where  is an integer. As an Ansatz for the solution, we’ll try a power series expansion of :

Our task is now to find numbers  (many of which may be zero) such that  is a solution of . Fortunately, we can
simply substitute our trial solution and re-arrange to get

where in the last line, we ‘shifted’ the index of the last term . We do so in order to get at an expression for the coefficient of  for
any value of . As the functions  are linearly independent  (i.e., you can’t write  as a linear combination of other functions 
where ), the coefficient of each of the powers in the sum in Equation  has to vanish for the sum to be identically
zero. This gives us a recurrence relation between the coefficients :

Given the values of  and  (the two degrees of freedom that our second-order differential equation allows us), we can
repeatedly apply Equation  to get all coefficients. Note that for  the coefficient equals zero. Therefore, if for an even
value of , we set , and for an odd value of , we set , we get a finite number of nonzero coefficients. The resulting
solutions are polynomials, characterized by the number ; in this case, they’re known as the Legendre polynomials, typically
denoted , and normalized (by setting the value of the remaining free coefficient) such that . Table A.1 lists the first
five, which are also plotted in Figure 16.A.4a.

Legendre polynomials have many other interesting properties (many of which can be found in either math textbooks or on their
Wikipedia page). They occur frequently in physics, for example in solving problems involving Newtonian gravity or Laplace’s
equation from electrostatics.

If we replace the  factor in the Legendre differential equation with an arbitrary number , the series solution remains a
solution, but it no longer terminates . There are many other differential equations that lead to both infinite series and polynomial
solutions. A well-known example is the Bessel differential equation:
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The solutions to this equation are known as the Bessel functions of the first and second kind (see Problem A.3.3, where you’ll
prove that for these functions the series never terminates). These functions generalize the sine and cosine function and occur in the
vibrations of two-dimensional surfaces. Other examples include the Hermite and Laguerre polynomials, which feature in quantum
mechanics, and Airy functions, which you can encounter when studying optics.

Table A.1: : The first five (and zeroth, for good measure) Legendre polynomials, the solutions of Equation  for the given value of n and
the appropriate choice of  and .

0 1

1 x

2

3

4

5

Figure : Solutions to the Legendre and Bessel differential equations. (a) The first five Legendre polynomials (Table A.1).
Note that the polynomials with even n are all even, and those with odd n are all odd. (b-c) The first five Bessel functions of the first
(b) and second (c) kind.
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