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4.2: Electric Potential and Potential Difference

By the end of this section, you will be able to:

Define electric potential, voltage, and potential difference
Define the electron-volt
Calculate electric potential and potential difference from potential energy and electric field
Describe systems in which the electron-volt is a useful unit
Apply conservation of energy to electric systems

Recall that earlier we defined electric field to be a quantity independent of the test charge in a given system, which would
nonetheless allow us to calculate the force that would result on an arbitrary test charge. (The default assumption in the absence of
other information is that the test charge is positive.) We briefly defined a field for gravity, but gravity is always attractive, whereas
the electric force can be either attractive or repulsive. Therefore, although potential energy is perfectly adequate in a gravitational
system, it is convenient to define a quantity that allows us to calculate the work on a charge independent of the magnitude of the
charge. Calculating the work directly may be difficult, since  and the direction and magnitude of  can be complex for
multiple charges, for odd-shaped objects, and along arbitrary paths. But we do know that because , the work, and hence  is
proportional to the test charge . To have a physical quantity that is independent of test charge, we define electric potential  (or
simply potential, since electric is understood) to be the potential energy per unit charge:

The electric potential energy per unit charge is

Since U is proportional to q, the dependence on q cancels. Thus, V does not depend on q. The change in potential energy  is
crucial, so we are concerned with the difference in potential or potential difference  between two points, where

The electric potential difference between points A and B,  is defined to be the change in potential energy of a charge
q moved from A to B, divided by the charge. Units of potential difference are joules per coulomb, given the name volt (V)
after Alessandro Volta.

The familiar term voltage is the common name for electric potential difference. Keep in mind that whenever a voltage is quoted, it
is understood to be the potential difference between two points. For example, every battery has two terminals, and its voltage is the
potential difference between them. More fundamentally, the point you choose to be zero volts is arbitrary. This is analogous to the
fact that gravitational potential energy has an arbitrary zero, such as sea level or perhaps a lecture hall floor. It is worthwhile to
emphasize the distinction between potential difference and electrical potential energy.

The relationship between potential difference (or voltage) and electrical potential energy is given by

or

 Learning Objectives

W = ⋅F ⃗  d ⃗  F ⃗ 

F ⃗  ΔU

q V

 Electric Potential

V = .
U

q
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 Electric Potential Difference

−VB VA

1 V = 1 J/C (4.2.2)

 Potential Difference and Electrical Potential Energy

ΔV =
ΔU

q
(4.2.3)

ΔU = qΔV . (4.2.4)
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Voltage is not the same as energy. Voltage is the energy per unit charge. Thus, a motorcycle battery and a car battery can both have
the same voltage (more precisely, the same potential difference between battery terminals), yet one stores much more energy than
the other because . The car battery can move more charge than the motorcycle battery, although both are 12-V
batteries.

You have a 12.0-V motorcycle battery that can move 5000 C of charge, and a 12.0-V car battery that can move 60,000 C of
charge. How much energy does each deliver? (Assume that the numerical value of each charge is accurate to three significant
figures.)

Strategy

To say we have a 12.0-V battery means that its terminals have a 12.0-V potential difference. When such a battery moves
charge, it puts the charge through a potential difference of 12.0 V, and the charge is given a change in potential energy equal
to . To find the energy output, we multiply the charge moved by the potential difference.

Solution

For the motorcycle battery,  and . The total energy delivered by the motorcycle battery is

Similarly, for the car battery,  and

Significance

Voltage and energy are related, but they are not the same thing. The voltages of the batteries are identical, but the energy
supplied by each is quite different. A car battery has a much larger engine to start than a motorcycle. Note also that as a
battery is discharged, some of its energy is used internally and its terminal voltage drops, such as when headlights dim
because of a depleted car battery. The energy supplied by the battery is still calculated as in this example, but not all of
the energy is available for external use.

How much energy does a 1.5-V AAA battery have that can move 100 C?

Answer

Note that the energies calculated in the previous example are absolute values. The change in potential energy for the battery is
negative, since it loses energy. These batteries, like many electrical systems, actually move negative charge—electrons in
particular. The batteries repel electrons from their negative terminals (A) through whatever circuitry is involved and attract them to
their positive terminals (B), as shown in Figure . The change in potential is  and the charge q is
negative, so that  is negative, meaning the potential energy of the battery has decreased when q has moved from A to
B.

ΔU = qΔV

 Example : Calculating Energy4.2.1

ΔU = qΔV

q = 5000 C ΔV = 12.0 V

Δ = (5000 C)(12.0 V ) = (5000 C)(12.0 J/C) = 6.00 × J.Ucycle 104

q = 60, 000 C

Δ = (60, 000 C)(12.0 V ) = 7.20 × J.Ucar 105

 Exercise 4.2.1

ΔU = qΔV = (100 C)(1.5 V ) = 150 J

4.2.1 ΔV = − = +12 VVB VA
ΔU = qΔV

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76546?pdf


4.2.3 https://phys.libretexts.org/@go/page/76546

Figure : A battery moves negative charge from its negative terminal through a headlight to its positive terminal. Appropriate
combinations of chemicals in the battery separate charges so that the negative terminal has an excess of negative charge, which is
repelled by it and attracted to the excess positive charge on the other terminal. In terms of potential, the positive terminal is at a
higher voltage than the negative terminal. Inside the battery, both positive and negative charges move.

When a 12.0-V car battery powers a single 30.0-W headlight, how many electrons pass through it each second?

Strategy

To find the number of electrons, we must first find the charge that moves in 1.00 s. The charge moved is related to voltage
and energy through the equations . A 30.0-W lamp uses 30.0 joules per second. Since the battery loses energy,
we have  and, since the electrons are going from the negative terminal to the positive, we see that 

.

Solution

To find the charge q moved, we solve the equation :

Entering the values for  and , we get

The number of electrons  is the total charge divided by the charge per electron. That is,

Significance

This is a very large number. It is no wonder that we do not ordinarily observe individual electrons with so many being
present in ordinary systems. In fact, electricity had been in use for many decades before it was determined that the
moving charges in many circumstances were negative. Positive charge moving in the opposite direction of negative
charge often produces identical effects; this makes it difficult to determine which is moving or whether both are moving.

How many electrons would go through a 24.0-W lamp?

Answer

The Electron-Volt

The energy per electron is very small in macroscopic situations like that in the previous example—a tiny fraction of a joule. But on
a submicroscopic scale, such energy per particle (electron, proton, or ion) can be of great importance. For example, even a tiny
fraction of a joule can be great enough for these particles to destroy organic molecules and harm living tissue. The particle may do

4.2.1

 Example : How Many Electrons Move through a Headlight Each Second?4.2.2

ΔU = qΔV

ΔU = −30 J

ΔV = +12.0 V

ΔU = qΔV

q = .
ΔU

ΔV
(4.2.5)

ΔU ΔV

q = = = −2.50 C.
−30.0 J

+12.0 V

−30.0 J

+12.0 J/C
(4.2.6)

ne

= = 1.56 × electrons.ne

−2.50 C

−1.60 × C/10−19 e−
1019 (4.2.7)

 Exercise 4.2.2

−2.00 C, = 1.25 × electronsne 1019
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its damage by direct collision, or it may create harmful X-rays, which can also inflict damage. It is useful to have an energy unit
related to submicroscopic effects.

Figure  shows a situation related to the definition of such an energy unit. An electron is accelerated between two charged
metal plates, as it might be in an old-model television tube or oscilloscope. The electron gains kinetic energy that is later converted
into another form—light in the television tube, for example. (Note that in terms of energy, “downhill” for the electron is “uphill”
for a positive charge.) Since energy is related to voltage by , we can think of the joule as a coulomb-volt.

Figure : A typical electron gun accelerates electrons using a potential difference between two separated metal plates. By
conservation of energy, the kinetic energy has to equal the change in potential energy, so . The energy of the electron in
electron-volts is numerically the same as the voltage between the plates. For example, a 5000-V potential difference produces
5000-eV electrons. The conceptual construct, namely two parallel plates with a hole in one, is shown in (a), while a real electron
gun is shown in (b).

On the submicroscopic scale, it is more convenient to define an energy unit called the electron-volt (eV), which is the energy
given to a fundamental charge accelerated through a potential difference of 1 V. In equation form,

An electron accelerated through a potential difference of 1 V is given an energy of 1 eV. It follows that an electron accelerated
through 50 V gains 50 eV. A potential difference of 100,000 V (100 kV) gives an electron an energy of 100,000 eV (100 keV), and
so on. Similarly, an ion with a double positive charge accelerated through 100 V gains 200 eV of energy. These simple relationships
between accelerating voltage and particle charges make the electron-volt a simple and convenient energy unit in such
circumstances.

The electron-volt is commonly employed in submicroscopic processes—chemical valence energies and molecular and nuclear
binding energies are among the quantities often expressed in electron-volts. For example, about 5 eV of energy is required to break
up certain organic molecules. If a proton is accelerated from rest through a potential difference of 30 kV, it acquires an energy of 30
keV (30,000 eV) and can break up as many as 6000 of these molecules .
Nuclear decay energies are on the order of 1 MeV (1,000,000 eV) per event and can thus produce significant biological damage.

Conservation of Energy
The total energy of a system is conserved if there is no net addition (or subtraction) due to work or heat transfer. For conservative
forces, such as the electrostatic force, conservation of energy states that mechanical energy is a constant.

Mechanical energy is the sum of the kinetic energy and potential energy of a system; that is, . A loss of U for a
charged particle becomes an increase in its K. Conservation of energy is stated in equation form as

4.2.2

ΔU = qΔV

4.2.2
KE = qV

 The Electron-Volt Unit

1 eV = (1.60 × C)(1 V ) = (1.60 × C)(1 J/C) = 1.60 × J.10−19 10−19 10−19 (4.2.8)

(30, 000 eV : 5 eV permolecule = 6000 molecules)

K+U = constant
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or

where i and f stand for initial and final conditions. As we have found many times before, considering energy can give us insights
and facilitate problem solving.

a) Calculate the final speed of a free electron accelerated from rest through a potential difference of 100 V. (Assume that this
numerical value is accurate to three significant figures.)

b) How would this example change with a positron? A positron is identical to an electron except the charge is positive.

Strategy

We have a system with only conservative forces. Assuming the electron is accelerated in a vacuum, and neglecting the
gravitational force (we will check on this assumption later), all of the electrical potential energy is converted into kinetic
energy. We can identify the initial and final forms of energy to be

, , , .

Solution

a) Conservation of energy states that

Entering the forms identified above, we obtain

We solve this for v:

Entering values for q, V, and m gives

b) It would be going in the opposite direction, with no effect on the calculations as presented.

Significance

Note that both the charge and the initial voltage are negative, as in Figure . From the discussion of electric charge
and electric field, we know that electrostatic forces on small particles are generally very large compared with the
gravitational force. The large final speed confirms that the gravitational force is indeed negligible here. The large speed
also indicates how easy it is to accelerate electrons with small voltages because of their very small mass. Voltages much
higher than the 100 V in this problem are typically used in electron guns. These higher voltages produce electron speeds
so great that effects from special relativity must be taken into account and will be discussed elsewhere. That is why we
consider a low voltage (accurately) in this example.

Voltage and Electric Field
So far, we have explored the relationship between voltage and energy. Now we want to explore the relationship between voltage
and electric field. We will start with the general case for a non-uniform  field. Recall that our general formula for the potential
energy of a test charge q at point P relative to reference point R is

K+U = constant (4.2.9)

+ = +Ki Ui Kf Uf (4.2.10)

 Example : Electrical Potential Energy Converted into Kinetic Energy4.2.3

= 0Ki = mKf
1

2
v2 = qVUi = 0Uf

+ = + .Ki Ui Kf Uf (4.2.11)

qV = .
mv2

2
(4.2.12)

v= .
2qV

m

− −−−
√ (4.2.13)

v= = 5.93 × m/s.
2(−1.60 × C)(−100 J/C)10−19

9.11 × kg10−31

− −−−−−−−−−−−−−−−−−−−−−−−−

√ 106 (4.2.14)

4.2.2

E ⃗ 
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When we substitute in the definition of electric field , this becomes

Applying our definition of potential  to this potential energy, we find that, in general,

From our previous discussion of the potential energy of a charge in an electric field, the result is independent of the path chosen,
and hence we can pick the integral path that is most convenient.

Consider the special case of a positive point charge q at the origin. To calculate the potential caused by q at a distance r from the
origin relative to a reference of 0 at infinity (recall that we did the same for potential energy), let  and , with 

 and use . When we evaluate the integral

for this system, we have

This result,

is the standard form of the potential of a point charge. This will be explored further in the next section.

To examine another interesting special case, suppose a uniform electric field  is produced by placing a potential difference (or
voltage)  across two parallel metal plates, labeled A and B (Figure ). Examining this situation will tell us what voltage is
needed to produce a certain electric field strength. It will also reveal a more fundamental relationship between electric potential and
electric field.

= − ⋅ d .Up ∫
p

R

F ⃗  l ⃗  (4.2.15)

( = /q)E ⃗  F ⃗ 

= −q ⋅ d .Up ∫
p

R

E ⃗  l ⃗  (4.2.16)

(V = U/q)

= − ⋅ d .Vp ∫
p

R

E ⃗  l ⃗ 

 Relationship Between Voltage and Electric Field

= − ⋅ d .Vp ∫
p

R

E ⃗  l ⃗  (4.2.17)

P = r R = ∞

d = d = drl ⃗  r ⃗  r̂ =E ⃗  kq

r2 r̂

= − ⋅ dVp ∫
p

R

E ⃗  l ⃗  (4.2.18)

= − dr = − = .Vr ∫
r

∞

kq

r2

kq

r

kq

∞

kq

r
(4.2.19)

=Vr
kq

r
(4.2.20)

E ⃗ 

ΔV 4.2.3
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Figure : The relationship between V and E for parallel conducting plates is . (Note that  in magnitude.
For a charge that is moved from plate A at higher potential to plate B at lower potential, a minus sign needs to be included as
follows: .)

From a physicist’s point of view, either  or  can be used to describe any interaction between charges. However,  is a scalar
quantity and has no direction, whereas  is a vector quantity, having both magnitude and direction. (Note that the magnitude of the
electric field, a scalar quantity, is represented by E.) The relationship between  and  is revealed by calculating the work done
by the electric force in moving a charge from point A to point B. But, as noted earlier, arbitrary charge distributions require
calculus. We therefore look at a uniform electric field as an interesting special case.

The work done by the electric field in Figure  to move a positive charge q from A, the positive plate, higher potential, to B,
the negative plate, lower potential, is

The potential difference between points A and B is

Entering this into the expression for work yields

Work is : here , since the path is parallel to the field. Thus, . Since  we see that 
.

Substituting this expression for work into the previous equation gives

The charge cancels, so we obtain for the voltage between points A and B.

where d is the distance from A to B, or the distance between the plates in Figure .

Note that this equation implies that the units for electric field are volts per meter. We already know the units for electric field are
newtons per coulomb; thus, the following relation among units is valid:

4.2.3 E = V /d ΔV = VAB

−ΔV = − =VA VB VAB

ΔV E ⃗  ΔV

E ⃗ 

ΔV E ⃗ 

4.2.3

W = −ΔU = −qΔV . (4.2.21)

−ΔV = −( − ) = − = .VB VA VA VB VAB (4.2.22)

W = q .VAB (4.2.23)

W = ⋅ = Fd cos θF ⃗  d ⃗  cos θ = 1 W = Fd F = qE

W = qEd

qEd = q .VAB (4.2.24)

 In uniform E-field only:

= EdVAB (4.2.25)

E =
VAB

d
(4.2.26)

4.2.3

1 N/C = 1 V /m. (4.2.27)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76546?pdf


4.2.8 https://phys.libretexts.org/@go/page/76546

Furthermore, we may extend this to the integral form. Substituting Equation  into our definition for the potential difference
between points A and B, we obtain

which simplifies to

As a demonstration, from this we may calculate the potential difference between two points (A and B) equidistant from a point
charge q at the origin, as shown in Figure .

Figure : The arc for calculating the potential difference between two points that are equidistant from a point charge at the
origin.

To do this, we integrate around an arc of the circle of constant radius r between A and B, which means we let , while
using . Thus,

for this system becomes

However,  and therefore

This result, that there is no difference in potential along a constant radius from a point charge, will come in handy when we map
potentials.

Dry air can support a maximum electric field strength of about . Above that value, the field creates enough
ionization in the air to make the air a conductor. This allows a discharge or spark that reduces the field. What, then, is the
maximum voltage between two parallel conducting plates separated by 2.5 cm of dry air?

Strategy

We are given the maximum electric field E between the plates and the distance d between them. We can use the equation 
 to calculate the maximum voltage.

Solution

The potential difference or voltage between the plates is

Entering the given values for E and d gives

or

4.2.3

= − = − ⋅ d + ⋅ dVAB VB VA ∫
B

R

E ⃗  l ⃗  ∫
A

R

E ⃗  l ⃗  (4.2.28)

− = − ⋅ d .VB VA ∫
B

A

E ⃗  l ⃗  (4.2.29)

4.2.4

4.2.4

d = r dφl ⃗  φ̂

=E ⃗  kq

r2 r̂

ΔV = − = − ⋅ d .VB VA ∫
B

A

E ⃗  l ⃗  (4.2.30)

− = − ⋅ r dφ.VB VA ∫
B

A

kq

r2
φ̂ (4.2.31)

⋅r̂ φ̂

− = 0.VB VA (4.2.32)

 Example : What Is the Highest Voltage Possible between Two Plates?4.2.4A

3.0 × V /m106

= EdVAB

= Ed.VAB (4.2.33)

= (3.0 × V /m)(0.025 m) = 7.5 × VVAB 106 104 (4.2.34)
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(The answer is quoted to only two digits, since the maximum field strength is approximate.)

Significance

One of the implications of this result is that it takes about 75 kV to make a spark jump across a 2.5-cm (1-in.) gap, or
150 kV for a 5-cm spark. This limits the voltages that can exist between conductors, perhaps on a power transmission
line. A smaller voltage can cause a spark if there are spines on the surface, since sharp points have larger field strengths
than smooth surfaces. Humid air breaks down at a lower field strength, meaning that a smaller voltage will make a spark
jump through humid air. The largest voltages can be built up with static electricity on dry days (Figure ).

Figure : A spark chamber is used to trace the paths of high-energy particles. Ionization created by the particles as
they pass through the gas between the plates allows a spark to jump. The sparks are perpendicular to the plates,
following electric field lines between them. The potential difference between adjacent plates is not high enough to cause
sparks without the ionization produced by particles from accelerator experiments (or cosmic rays). This form of detector
is now archaic and no longer in use except for demonstration purposes. (credit b: modification of work by Jack Collins)

An electron gun (Figure ) has parallel plates separated by 4.00 cm and gives electrons 25.0 keV of energy. (a) What is the
electric field strength between the plates? (b) What force would this field exert on a piece of plastic with a  charge
that gets between the plates?

Strategy

Strategy

Since the voltage and plate separation are given, the electric field strength can be calculated directly from the expression
. Once we know the electric field strength, we can find the force on a charge by using . Since the

electric field is in only one direction, we can write this equation in terms of the magnitudes, .

Solution
a. The expression for the magnitude of the electric field between two uniform metal plates is

Since the electron is a single charge and is given 25.0 keV of energy, the potential difference must be 25.0 kV. Entering
this value for  and the plate separation of 0.0400 m, we obtain

b. The magnitude of the force on a charge in an electric field is obtained from the equation

Substituting known values gives

= 75 kV .VAB (4.2.35)

4.2.5

4.2.5

 Example : Field and Force inside an Electron Gun4.2.4B

4.2.2

0.500 −μC

E =
VAB

d
= qF ⃗  E ⃗ 

F = qE

E = .
VAB

d
(4.2.36)

VAB

E = = 6.25 × V /m.
25.0 kV

0.0400 m
105 (4.2.37)

F = qE. (4.2.38)
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Significance Note that the units are newtons, since . Because the electric field is uniform between the
plates, the force on the charge is the same no matter where the charge is located between the plates.

Given a point charge  at the origin, calculate the potential difference between point  a distance 
from q, and  a distance  from q, where the two points have an angle of  between them (Figure ).

Figure : Find the difference in potential between  and .

Strategy

Do this in two steps. The first step is to use  and let  (point ) and 

 (point , not marked, in the direction of  but a distance  away) , with  and 
Then perform the integral. 
The second step is to integrate  around an arc of constant radius r, which means we let 

 with limits , still using .

Then add the two results together.

Solution

For the first part,  for this system becomes  which computes to

.

For the second step,  becomes , but  and therefore 
. Adding the two parts together, we get 300 V.

Significance/Important

We have demonstrated the use of the integral form of the potential difference to obtain a numerical result. Notice that, in
this particular system, we could have also used the formula for the potential due to a point charge at the two points and
simply taken the difference.

1. Examine the situation to determine if static electricity is involved; this may concern separated stationary charges, the forces
among them, and the electric fields they create.

2. Identify the system of interest. This includes noting the number, locations, and types of charges involved.
3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful. Determine

whether the Coulomb force is to be considered directly—if so, it may be useful to draw a free-body diagram, using electric
field lines.

F = (0.500 × C)(6.25 × V /m) = 0.313 N .10−6 105 (4.2.39)

1 V /m = 1 N/C

 Example : Calculating Potential of a Point Charge4.2.4C

q = +2.0 −nC P1 a = 4.0 cm

P2 b = 12.0 cm φ = 24o 4.2.6

4.2.6 P1 P2

− = − ⋅ dVB VA ∫ B

A
E ⃗  l ⃗  A = a = 4.0 cm P1

B = b = 12.0 cm P0 â b d = d = drl ⃗  r ⃗  r̂ = .E ⃗  kq

r2
r̂

− = − ⋅ dVB VA ∫ B

A
E ⃗  l ⃗ 

d = r dφl ⃗  φ ⃗  0 ≤ φ ≤ 24o =E ⃗  kq

r2
r̂

− = − ⋅ dVB VA ∫ B

A
E ⃗  l ⃗  − = − ⋅ drVb Va ∫ b

a

kq

r2
r̂ r̂

ΔV = − dr = kq [ − ]∫ b

a

kq

r2

1

b

1
a

= (8.99 × N / )(2.0 × C)[ − ]= −300 V109 m2 C 2 10−9 1

0.12 m

1

0.040 m

− = − ⋅ dVB VA ∫ B

A
E ⃗  l ⃗  ΔV = − ⋅ r dφ∫ 24o

0o
kq

r2
r̂ φ̂ ⋅ = 0r̂ φ̂

ΔV = 0

ΔV = − = k −k = (8.99 × N / )(2.0 × C)[ − ]= −300 VVP2 VP1
q

b

q

a
109 m2 C 2 10−9 1

0.12 m

1

0.040 m

 Problem-Solving Strategy: Electrostatics
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4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). It is important to
distinguish the Coulomb force F from the electric field E, for example.

5. Solve the appropriate equation for the quantity to be determined (the unknown) or draw the field lines as requested.
6. Examine the answer to see if it is reasonable: Does it make sense? Are units correct and the numbers involved reasonable?

Calculations of Electric Potential

The electric potential due to a point charge is can be deduced from .

The electric potential  of a point charge is given by

The potential in Equation  at infinity is chosen to be zero. Thus,  for a point charge decreases with distance, whereas  for
a point charge decreases with distance squared:

Recall that the electric potential V is a scalar and has no direction, whereas the electric field  is a vector. To find the voltage due
to a combination of point charges, you add the individual voltages as numbers. To find the total electric field, you must add the
individual fields as vectors, taking magnitude and direction into account. This is consistent with the fact that V is closely associated
with energy, a scalar, whereas  is closely associated with force, a vector.

Charges in static electricity are typically in the nanocoulomb (nC) to microcoulomb  range. What is the voltage 5.00 cm
away from the center of a 1-cm-diameter solid metal sphere that has a –3.00-nC static charge?

Strategy

As we discussed in Electric Charges and Fields, charge on a metal sphere spreads out uniformly and produces a field like

that of a point charge located at its center. Thus, we can find the voltage using the equation .

Solution

Entering known values into the expression for the potential of a point charge (Equation ), we obtain

Significance

The negative value for voltage means a positive charge would be attracted from a larger distance, since the potential is
lower (more negative) than at larger distances. Conversely, a negative charge would be repelled, as expected.

4.2.1

 Electric Potential  of a Point ChargeV

V

V =
kq

r  
point charge

(4.2.40)

4.2.40 V E ⃗ 

E = =
F

qt

kq

r2
(4.2.41)

E ⃗ 

E ⃗ 

 Example : What Voltage Is Produced by a Small Charge on a Metal Sphere?4.2.5

(μC)

V =
kq

r

4.2.40

V = k
q

r

= (9.00 × N ⋅ / )( )109 m2 C 2 −3.00 × C10−9

5.00 × m10−2

= −539 V .
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A demonstration Van de Graaff generator has a 25.0-cm-diameter metal sphere that produces a voltage of 100 kV near its
surface (Figure).

a) What excess charge resides on the sphere? (Assume that each numerical value here is shown with three significant figures.) 
b) What is the potential inside the metal sphere?

Figure : The voltage of this demonstration Van de Graaff generator is measured between the charged sphere and ground.
Earth’s potential is taken to be zero as a reference. The potential of the charged conducting sphere is the same as that of an
equal point charge at its center.

Strategy

The potential on the surface is the same as that of a point charge at the center of the sphere, 12.5 cm away. (The radius of
the sphere is 12.5 cm.) We can thus determine the excess charge using Equation 

Solution

a) Solving for  and entering known values gives

b) 

Recall that the electric field inside a conductor is zero. Hence, any path from a point on the surface to any point in the
interior will have an integrand of zero when calculating the change in potential, and thus the potential in the interior of
the sphere is identical to that on the surface.

Significance

 Example : What Is the Excess Charge on a Van de Graaff Generator?4.2.6

4.2.1

4.2.40

V = .
kq

r
(4.2.42)

q

q =
rV

k

=
(0.125 m)(100 × V )103

8.99 × N ⋅ /109 m2 C 2

= 1.39 × C10−6

= 1.39 μC.

V = k
q

r

= (8.99 × N ⋅ / )( )109 m2 C 2 −3.00 × C10−9

5.00 × m10−3

= −5390 V
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This is a relatively small charge, but it produces a rather large voltage. We have another indication here that it is difficult
to store isolated charges.

The voltages in both of these examples could be measured with a meter that compares the measured potential with ground
potential. Ground potential is often taken to be zero (instead of taking the potential at infinity to be zero). It is the potential
difference between two points that is of importance, and very often there is a tacit assumption that some reference point, such as
Earth or a very distant point, is at zero potential. As noted earlier, this is analogous to taking sea level as  when considering
gravitational potential energy .

Systems of Multiple Point Charges
Just as the electric field obeys a superposition principle, so does the electric potential. Consider a system consisting of N charges 

. What is the net electric potential V at a space point P from these charges? Each of these charges is a source charge
that produces its own electric potential at point P, independent of whatever other changes may be doing. Let  be the
electric potentials at P produced by the charges , respectively. Then, the net electric potential  at that point is equal
to the sum of these individual electric potentials. You can easily show this by calculating the potential energy of a test charge when
you bring the test charge from the reference point at infinity to point P:

Note that electric potential follows the same principle of superposition as electric field and electric potential energy. To show this
more explicitly, note that a test charge  at the point P in space has distances of  from the N charges fixed in space
above, as shown in Figure . Using our formula for the potential of a point charge for each of these (assumed to be point)
charges, we find that

Therefore, the electric potential energy of the test charge is

which is the same as the work to bring the test charge into the system, as found in the first section of the chapter.

Figure : Notation for direct distances from charges to a space point P.

An electric dipole is a system of two equal but opposite charges a fixed distance apart. This system is used to model many
real-world systems, including atomic and molecular interactions. One of these systems is the water molecule, under certain
circumstances. These circumstances are met inside a microwave oven, where electric fields with alternating directions make
the water molecules change orientation. This vibration is the same as heat at the molecular level.

Consider the dipole in Figure  with the charge magnitude of  and separation distance  
a) What is the potential at the following locations in space? (a) (0, 0, 1.0 cm); (b) (0, 0, –5.0 cm); (c) (3.0 cm, 0, 2.0 cm). 

h = 0

= mghUg

, , . . . ,q1 q2 qN
, , . . . ,V1 V2 VN

, , . . . ,q1 q2 qN Vp

= + +. . . + = .Vp V1 V2 VN ∑
1

N

Vi (4.2.43)

qi , , . . . ,r1 r2 rN
4.2.2

 Electric Potential Due to Multiple Point Charges

= k = k .Vp ∑
1

N qi

ri
∑

1

N qi

ri
(4.2.44)

= = k ,Up qtVp qt ∑
1

N
qi

ri
(4.2.45)

4.2.2

 Example : Electric Potential of a Dipole4.2.7

4.2.3 q = 3.0 μC d = 4.0 cm.
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d) What is the potential on the x-axis? 

Figure : A general diagram of an electric dipole, and the notation for the distances from the individual charges to a point
P in space.

Strategy

Apply  to each of these three points.

Solution

a. 

b. 

c. 

d. The x-axis the potential is zero, due to the equal and opposite charges the same distance from it. 

Significance

Note that evaluating potential is significantly simpler than electric field, due to potential being a scalar instead of a
vector.

 

Potential of Continuous Charge Distributions
We have been working with point charges a great deal, but what about continuous charge distributions? Recall from Equation 

 that

We may treat a continuous charge distribution as a collection of infinitesimally separated individual points. This yields the integral

4.2.3

= kVp ∑N
1

qi

ri

= k = (9.0 × N ⋅ / )( − ) = 1.8 × VVp ∑N
1

qi

ri
109 m2 C 2 3.0 nC

0.010 m

3.0 nC

0.030 m
103

= k = (9.0 × N ⋅ / )( − ) = −5.1 × VVp ∑N
1

qi

ri
109 m2 C 2 3.0 nC

0.070 m

3.0 nC

0.030 m
102

= k = (9.0 × N ⋅ / )( − ) = 3.6 × VVp ∑N
1

qi

ri
109 m2 C 2 3.0 nC

0.030 m

3.0 nC

0.050 m
102

4.2.44

= k∑ .Vp
qi

ri
(4.2.46)

= ∫Vp
dq

r

 Electric Potential Due to a Continuous Charge Distribution

= ∫Vp
dq

r
(4.2.47)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76546?pdf


4.2.15 https://phys.libretexts.org/@go/page/76546

for the potential at a point P. Note that  is the distance from each individual point in the charge distribution to the point P. As we
saw in Electric Charges and Fields, the infinitesimal charges are given by

where  is linear charge density,  is the charge per unit area, and  is the charge per unit volume.

Find the electric potential of a uniformly charged, nonconducting wire with linear density  (coulomb/meter) and length L at a
point that lies on a line that divides the wire into two equal parts.

Strategy

To set up the problem, we choose Cartesian coordinates in such a way as to exploit the symmetry in the problem as much as
possible. We place the origin at the center of the wire and orient the y-axis along the wire so that the ends of the wire are at 

. The field point P is in the xy-plane and since the choice of axes is up to us, we choose the x-axis to pass
through the field point P, as shown in Figure .

Figure : We want to calculate the electric potential due to a line of charge.

Solution

Consider a small element of the charge distribution between y and . The charge in this cell is  and the
distance from the cell to the field point P is . Therefore, the potential becomes

r

dq = λ dl
  
one dimension

(4.2.48)

dq = σ dA
  
two dimensions

(4.2.49)

dq = ρ dV  
  

three dimensions

(4.2.50)

λ σ ρ

 Example : Potential of a Line of Charge4.2.8

λ

y = ±L/2

4.2.6

4.2.6

y+dy dq = λ dy

+x2 y2
− −−−−−

√

Vp = k∫
dq

r

= k∫
L/2

−L/2

λ dy

+x2 y2− −−−−−
√

= kλ[ln(y+ )]+y2 x2
− −−−−−

√
L/2

−L/2

= kλ[ln(( )+ ) − ln((− )+ )]
L

2
+( )

L

2

2

x2

− −−−−−−−−−

√
L

2
+(− )

L

2

2

x2

− −−−−−−−−−−

√

= kλln[ ] .
L+ +4L2 x2

− −−−−−−
√

−L+ +4L2 x2
− −−−−−−

√
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Significance

Note that this was simpler than the equivalent problem for electric field, due to the use of scalar quantities. Recall that
we expect the zero level of the potential to be at infinity, when we have a finite charge. To examine this, we take the
limit of the above potential as x approaches infinity; in this case, the terms inside the natural log approach one, and
hence the potential approaches zero in this limit. Note that we could have done this problem equivalently in cylindrical
coordinates; the only effect would be to substitute r for x and z for y.

A ring has a uniform charge density , with units of coulomb per unit meter of arc. Find the electric potential at a point on the
axis passing through the center of the ring.

Strategy

We use the same procedure as for the charged wire. The difference here is that the charge is distributed on a circle. We
divide the circle into infinitesimal elements shaped as arcs on the circle and use cylindrical coordinates shown in Figure 

.

Figure : We want to calculate the electric potential due to a ring of charge.

Solution

A general element of the arc between  and  is of length  and therefore contains a charge equal to .
The element is at a distance of  from P, and therefore the potential is

Significance

This result is expected because every element of the ring is at the same distance from point P. The net potential at P is
that of the total charge placed at the common distance, .

 Example : Potential Due to a Ring of Charge4.2.9

λ

4.2.7

4.2.7

θ θ+dθ Rdθ λRdθ

+z2 R2
− −−−−−

√

Vp = k∫
dq

r

= k∫
2π

0

λRdθ

+z2 R2
− −−−−−

√

= dθ
kλR

+z2 R2
− −−−−−

√
∫

2π

0

=
2πkλR

+z2 R2
− −−−−−

√

= k .
qtot

+z2 R2
− −−−−−√

+z2 R2
− −−−−−

√
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A disk of radius R has a uniform charge density  with units of coulomb meter squared. Find the electric potential at any point
on the axis passing through the center of the disk.

Strategy

We divide the disk into ring-shaped cells, and make use of the result for a ring worked out in the previous example, then
integrate over r in addition to . This is shown in Figure .

Figure : We want to calculate the electric potential due to a disk of charge.

Solution

An infinitesimal width cell between cylindrical coordinates r and  shown in Figure  will be a ring of charges
whose electric potential  at the field point has the following expression

where

The superposition of potential of all the infinitesimal rings that make up the disk gives the net potential at point P. This
is accomplished by integrating from  to :

Significance

The basic procedure for a disk is to first integrate around  and then over r. This has been demonstrated for uniform
(constant) charge density. Often, the charge density will vary with r, and then the last integral will give different results.

Find the electric potential due to an infinitely long uniformly charged wire.

Strategy

Since we have already worked out the potential of a finite wire of length L in Example , we might wonder if taking 
 in our previous result will work:

 Example : Potential Due to a Uniform Disk of Charge4.2.10

σ

θ 4.2.8

4.2.8

r+dr 4.2.8

dVp

d = kVp
dq

+z2 r2
− −−−−−

√
(4.2.51)

dq = σ2πrdr. (4.2.52)

r = 0 r = R

Vp = ∫ d = k2πσ ,Vp ∫
R

0

r dr

+z2 r2
− −−−−−

√

= k2πσ( − ).+z2 R2− −−−−−
√ z2−−

√

 Example : Potential Due to an Infinite Charged Wire4.2.11

4.2.4

L → ∞
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However, this limit does not exist because the argument of the logarithm becomes [2/0] as , so this way of finding
V of an infinite wire does not work. The reason for this problem may be traced to the fact that the charges are not localized
in some space but continue to infinity in the direction of the wire. Hence, our (unspoken) assumption that zero potential
must be an infinite distance from the wire is no longer valid.

To avoid this difficulty in calculating limits, let us use the definition of potential by integrating over the electric field from
the previous section, and the value of the electric field from this charge configuration from the previous chapter.

Solution

We use the integral

where R is a finite distance from the line of charge, as shown in Figure .

Figure : Points of interest for calculating the potential of an infinite line of charge.

With this setup, we use  and  to obtain

Now, if we define the reference potential  at , this simplifies to

Note that this form of the potential is quite usable; it is 0 at 1 m and is undefined at infinity, which is why we could not
use the latter as a reference.

Significance

Although calculating potential directly can be quite convenient, we just found a system for which this strategy does not
work well. In such cases, going back to the definition of potential in terms of the electric field may offer a way forward.

What is the potential on the axis of a nonuniform ring of charge, where the charge density is ?

Solution

It will be zero, as at all points on the axis, there are equal and opposite charges equidistant from the point of interest. Note
that this distribution will, in fact, have a dipole moment.

= kλ ln( ).Vp lim
L→∞

L+ +4L2 x2
− −−−−−−

√

−L+ +4L2 x2
− −−−−−−

√
(4.2.53)

L → ∞

= − ⋅ dVp ∫
p

R

E ⃗  l ⃗  (4.2.54)

4.2.9

4.2.9

= 2kλE ⃗ 
p

1

s
ŝ d = dl ⃗  s ⃗ 

−Vp VR = − 2kλ ds∫
p

R

1

s

= −2kλ ln .
sp

sR

= 0VR = 1 msR

= −2kλ ln .Vp sp (4.2.55)

 Exercise 4.2.3

λ(θ) = λ cos θ
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