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2.9.4: Linear Approximations and Differentials

Describe the linear approximation to a function at a point.
Write the linearization of a given function.
Draw a graph that illustrates the use of differentials to approximate the change in a quantity.
Calculate the relative error and percentage error in using a differential approximation.

We have just seen how derivatives allow us to compare related quantities that are changing over time. In this section, we examine
another application of derivatives: the ability to approximate functions locally by linear functions. Linear functions are the easiest
functions with which to work, so they provide a useful tool for approximating function values. In addition, the ideas presented in
this section are generalized later in the text when we study how to approximate functions by higher-degree polynomials
Introduction to Power Series and Functions.

Linear Approximation of a Function at a Point
Consider a function  that is differentiable at a point . Recall that the tangent line to the graph of  at  is given by the
equation

For example, consider the function  at . Since  is differentiable at  and , we see that 
. Therefore, the tangent line to the graph of  at  is given by the equation

Figure  shows a graph of  along with the tangent line to  at . Note that for  near , the graph of the
tangent line is close to the graph of . As a result, we can use the equation of the tangent line to approximate  for  near . For
example, if , the  value of the corresponding point on the tangent line is

The actual value of  is given by

Therefore, the tangent line gives us a fairly good approximation of  (Figure ). However, note that for values of  far
from , the equation of the tangent line does not give us a good approximation. For example, if , the -value of the
corresponding point on the tangent line is

whereas the value of the function at  is 
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Figure : (a) The tangent line to  at  provides a good approximation to  for  near . (b) At , the
value of  on the tangent line to  is . The actual value of  is , which is approximately .

In general, for a differentiable function , the equation of the tangent line to  at  can be used to approximate  for  near
. Therefore, we can write

 for  near .

We call the linear function

the linear approximation, or tangent line approximation, of  at . This function  is also known as the linearization of 
at 

To show how useful the linear approximation can be, we look at how to find the linear approximation for  at 

Find the linear approximation of  at  and use the approximation to estimate .

Solution

Since we are looking for the linear approximation at  using Equation  we know the linear approximation is given
by

We need to find  and 

Therefore, the linear approximation is given by Figure .

Using the linear approximation, we can estimate  by writing

2.9.4.1 f(x) = 1/x x = 2 f x 2 x = 2.1
y f(x) = 1/x 0.475 f(2.1) 1/2.1 0.47619
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Figure : The local linear approximation to  at  provides an approximation to  for  near .

Analysis

Using a calculator, the value of  to four decimal places is . The value given by the linear approximation, , is
very close to the value obtained with a calculator, so it appears that using this linear approximation is a good way to estimate 

, at least for x near . At the same time, it may seem odd to use a linear approximation when we can just push a few buttons
on a calculator to evaluate . However, how does the calculator evaluate ? The calculator uses an approximation! In
fact, calculators and computers use approximations all the time to evaluate mathematical expressions; they just use higher-
degree approximations.

Find the local linear approximation to  at . Use it to approximate  to five decimal places.

Hint

Answer

 

Find the linear approximation of  at  and use it to approximate 

Solution

First we note that since  rad is equivalent to , using the linear approximation at  seems reasonable. The linear
approximation is given by

We see that

Therefore, the linear approximation of  at  is given by Figure .

To estimate  using , we must first convert  to radians. We have  radians, so the estimate for 
is given by

2.9.4.2 f(x) = x−−√ x = 9 f x 9
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 Exercise 2.9.4.1
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Figure : The linear approximation to  at  provides an approximation to  for  near 

Find the linear approximation for  at 

Hint

Answer

Linear approximations may be used in estimating roots and powers. In the next example, we find the linear approximation for 
 at , which can be used to estimate roots and powers for real numbers near . The same idea can be

extended to a function of the form  to estimate roots and powers near a different number .

Find the linear approximation of  at . Use this approximation to estimate 

Solution

The linear approximation at  is given by

Because

the linear approximation is given by Figure .

We can approximate  by evaluating  when . We conclude that

2.9.4.3 f(x) = sin x x = π/3 sin x x π/3.

 Exercise 2.9.4.2

f(x) = cosx x = .π

2

L(x) = f(a) + (a)(x−a)f ′

L(x) = −x+ π

2

f(x) = (1 +x)n x = 0 1
f(x) = (m+x)n m

 Example : Approximating Roots and Powers2.9.4.3

f(x) = (1 +x)n x = 0 (1.01 .)3

x = 0

L(x) = f(0) + (0)(x−0).f ′

f(x) = (1 +x ⇒ f(0) = 1)n

(x) = n(1 +x ⇒ (0) = n,f ′ )n−1 f ′

2.9.4.4a

L(x) = 1 +n(x−0) = 1 +nx

(1.01)3 L(0.01) n = 3

(1.01 = f(1.01) ≈ L(1.01) = 1 +3(0.01) = 1.03.)3
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Figure : (a) The linear approximation of  at  is . (b) The actual value of  is . The linear
approximation of  at  estimates  to be .

Find the linear approximation of  at  without using the result from the preceding example.

Hint

Answer

Differentials
We have seen that linear approximations can be used to estimate function values. They can also be used to estimate the amount a
function value changes as a result of a small change in the input. To discuss this more formally, we define a related concept:
differentials. Differentials provide us with a way of estimating the amount a function changes as a result of a small change in input
values.

When we first looked at derivatives, we used the Leibniz notation  to represent the derivative of  with respect to .
Although we used the expressions  and  in this notation, they did not have meaning on their own. Here we see a meaning to
the expressions  and . Suppose  is a differentiable function. Let  be an independent variable that can be assigned
any nonzero real number, and define the dependent variable  by

It is important to notice that  is a function of both  and . The expressions  and  are called differentials. We can divide
both sides of Equation  by  which yields

This is the familiar expression we have used to denote a derivative. Equation  is known as the differential form of Equation
.

For each of the following functions, find  and evaluate when  and 

a. 
b. 

Solution

2.9.4.4 f(x) x = 0 L(x) 1.013 1.030301
f(x) x = 0 1.013 1.03

 Exercise 2.9.4.3

f(x) = (1 +x)4 x = 0

(x) = 4(1 +xf ′ )3

L(x) = 1 +4x

dy/dx y x

dy dx

dy dx y = f(x) dx

dy

dy = (x)dx.f ′ (2.9.4.2)

dy x dx dy dx

2.9.4.2 dx,

= (x).
dy

dx
f ′ (2.9.4.3)

2.9.4.3
2.9.4.2

 Example : Computing Differentials2.9.4.4

dy x = 3 dx = 0.1.

y = +2xx2

y = cosx
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The key step is calculating the derivative. When we have that, we can obtain  directly.

a. Since  we know , and therefore

When  and 

b. Since  This gives us

When  and 

For , find .

Hint

Answer

We now connect differentials to linear approximations. Differentials can be used to estimate the change in the value of a function
resulting from a small change in input values. Consider a function  that is differentiable at point . Suppose the input  changes
by a small amount. We are interested in how much the output  changes. If  changes from  to , then the change in  is 
(also denoted ), and the change in  is given by

Instead of calculating the exact change in , however, it is often easier to approximate the change in  by using a linear
approximation. For  near  can be approximated by the linear approximation (Equation )

Therefore, if  is small,

That is,

In other words, the actual change in the function  if  increases from  to  is approximately the difference between 
 and , where  is the linear approximation of  at . By definition of , this difference is equal to .

In summary,

Therefore, we can use the differential  to approximate the change in  if  increases from  to . We
can see this in the following graph.

dy

f(x) = +2x,x2 (x) = 2x+2f ′

dy = (2x+2)dx.

x = 3 dx = 0.1,

dy = (2 ⋅ 3 +2)(0.1) = 0.8.

f(x) = cosx, (x) = −sin(x).f ′

dy = −sinx dx.

x = 3 dx = 0.1,

dy = −sin(3)(0.1) = −0.1 sin(3).

 Exercise 2.9.4.4

y = ex
2

dy

dy = (x)dxf ′

dy = 2x dxex
2

f a x

y x a a+dx x dx

Δx y

Δy = f(a+dx) −f(a).

y y

x a, f(x) 2.9.4.1

L(x) = f(a) + (a)(x−a).f ′

dx

f(a+dx) ≈ L(a+dx) = f(a) + (a)(a+dx−a).f ′

f(a+dx) −f(a) ≈ L(a+dx) −f(a) = (a)dx.f ′

f x a a+dx

L(a+dx) f(a) L(x) f a L(x) (a)dxf ′

Δy = f(a+dx) −f(a) ≈ L(a+dx) −f(a) = (a)dx = dy.f ′

dy = (a)dxf ′ y x x = a x = a+dx
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Figure : The differential  is used to approximate the actual change in  if  increases from  to .

We now take a look at how to use differentials to approximate the change in the value of the function that results from a small
change in the value of the input. Note the calculation with differentials is much simpler than calculating actual values of functions
and the result is very close to what we would obtain with the more exact calculation.

Let  Compute  and  at  if 

Solution

The actual change in  if  changes from  to  is given by

The approximate change in  is given by . Since  we have

For  find  and  at  if 

Hint

Answer

Calculating the Amount of Error

Any type of measurement is prone to a certain amount of error. In many applications, certain quantities are calculated based on
measurements. For example, the area of a circle is calculated by measuring the radius of the circle. An error in the measurement of
the radius leads to an error in the computed value of the area. Here we examine this type of error and study how differentials can be
used to estimate the error.

Consider a function  with an input that is a measured quantity. Suppose the exact value of the measured quantity is , but the
measured value is . We say the measurement error is  (or ). As a result, an error occurs in the calculated quantity 

. This type of error is known as a propagated error and is given by

Since all measurements are prone to some degree of error, we do not know the exact value of a measured quantity, so we cannot
calculate the propagated error exactly. However, given an estimate of the accuracy of a measurement, we can use differentials to
approximate the propagated error  Specifically, if  is a differentiable function at ,the propagated error is

2.9.4.5 dy = (a) dxf ′ y x a a+dx

 Example : Approximating Change with Differentials2.9.4.5

y = +2x.x2 Δy dy x = 3 dx = 0.1.

y x x = 3 x = 3.1

Δy = f(3.1) −f(3) = [(3.1 +2(3.1)] −[ +2(3)] = 0.81.)2 32

y dy = (3)dxf ′ (x) = 2x+2,f ′

dy = (3)dx = (2(3) +2)(0.1) = 0.8.f ′

 Exercise 2.9.4.5

y = +2x,x2 Δy dy x = 3 dx = 0.2.

dy = (3)dx, Δy = f(3.2) −f(3)f ′

dy = 1.6, Δy = 1.64

f a

a+dx dx Δx

f(x)

Δy = f(a+dx) −f(a).

Δy. f a

Δy ≈ dy = (a)dx.f ′
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Unfortunately, we do not know the exact value  However, we can use the measured value  and estimate

In the next example, we look at how differentials can be used to estimate the error in calculating the volume of a box if we assume
the measurement of the side length is made with a certain amount of accuracy.

Suppose the side length of a cube is measured to be  cm with an accuracy of  cm.

a. Use differentials to estimate the error in the computed volume of the cube.
b. Compute the volume of the cube if the side length is (i)  cm and (ii)  cm to compare the estimated error with the

actual potential error.

Solution

a. The measurement of the side length is accurate to within  cm. Therefore,

The volume of a cube is given by , which leads to

Using the measured side length of  cm, we can estimate that

Therefore,

b. If the side length is actually  cm, then the volume of the cube is

If the side length is actually  cm, then the volume of the cube is

Therefore, the actual volume of the cube is between  and . Since the side length is measured to be 5 cm,
the computed volume is  Therefore, the error in the computed volume is

That is,

We see the estimated error  is relatively close to the actual potential error in the computed volume.

Estimate the error in the computed volume of a cube if the side length is measured to be  cm with an accuracy of  cm.

Hint

Answer

The volume measurement is accurate to within .

The measurement error  and the propagated error  are absolute errors. We are typically interested in the size of an
error relative to the size of the quantity being measured or calculated. Given an absolute error  for a particular quantity, we
define the relative error as , where  is the actual value of the quantity. The percentage error is the relative error expressed as

a. a+dx,

Δy ≈ dy ≈ (a+dx)dx.f ′

 Example : Volume of a Cube2.9.4.6

5 0.1

4.9 5.1

±0.1

−0.1 ≤ dx ≤ 0.1.

V = x3

dV = 3 dx.x2

5

−3(5 (0.1) ≤ dV ≤ 3(5 (0.1).)2 )2

−7.5 ≤ dV ≤ 7.5.

4.9

V (4.9) = (4.9 = 117.649 .)3 cm3

5.1

V (5.1) = (5.1 = 132.651 .)3 cm3

117.649 132.651
V (5) = = 125.53

117.649 −125 ≤ ΔV ≤ 132.651 −125.

−7.351 ≤ ΔV ≤ 7.651.

dV

 Exercise 2.9.4.6

6 0.2

dV = 3 dxx2

21.6 cm3

dx (= Δx) Δy

Δq
Δq

q q
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a percentage. For example, if we measure the height of a ladder to be  in. when the actual height is  in., the absolute error is 1
in. but the relative error is , or . By comparison, if we measure the width of a piece of cardboard to be  in.
when the actual width is  in., our absolute error is  in., whereas the relative error is , or  Therefore, the
percentage error in the measurement of the cardboard is larger, even though  in. is less than  in.

An astronaut using a camera measures the radius of Earth as  mi with an error of  mi. Let’s use differentials to
estimate the relative and percentage error of using this radius measurement to calculate the volume of Earth, assuming the
planet is a perfect sphere.

Solution: If the measurement of the radius is accurate to within  we have

Since the volume of a sphere is given by  we have

Using the measured radius of  mi, we can estimate

To estimate the relative error, consider . Since we do not know the exact value of the volume , use the measured radius 

 mi to estimate . We obtain . Therefore the relative error satisfies

which simplifies to

The relative error is  and the percentage error is .

Determine the percentage error if the radius of Earth is measured to be  mi with an error of  mi.

Hint

Use the fact that  to find .

Answer

Key Concepts
A differentiable function  can be approximated at  by the linear function

For a function , if  changes from  to , then

is an approximation for the change in . The actual change in  is

A measurement error  can lead to an error in a calculated quantity . The error in the calculated quantity is known as the
propagated error. The propagated error can be estimated by

63 62
= 0.0161

62
1.6% 8.25

8 1
4

=0.25
8

1
32

3.1%.

0.25 1

 Example : Relative and Percentage Error2.9.4.7

4000 ±80

±80,

−80 ≤ dr ≤ 80.

V = ( )π ,4
3

r3

dV = 4π dr.r2

4000

−4π(4000 (80) ≤ dV ≤ 4π(4000 (80).)2 )2

dV

V
V

r = 4000 V V ≈ ( )π(40004
3

)3

≤ ≤ ,
−4π(4000 (80))

2

4π(4000 /3)3

dV

V

4π(4000 (80))
2

4π(4000 /3)3

−0.06 ≤ ≤ 0.06.
dV

V

0.06 6%

 Exercise 2.9.4.7

3950 ±100

dV = 4π drr2 dV /V

7.6%

y = f(x) a

L(x) = f(a) + (a)(x−a).f ′

y = f(x) x a a+dx

dy = (x)dxf ′

y y

Δy = f(a+dx) −f(a).

dx f(x)

dy ≈ (x)dx.f ′
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To estimate the relative error of a particular quantity , we estimate .

Key Equations
Linear approximation

A differential

Glossary

differential
the differential  is an independent variable that can be assigned any nonzero real number; the differential  is defined to be 

differential form
given a differentiable function  the equation  is the differential form of the derivative of  with
respect to 

linear approximation
the linear function  is the linear approximation of  at 

percentage error
the relative error expressed as a percentage

propagated error
the error that results in a calculated quantity  resulting from a measurement error 

relative error

given an absolute error  for a particular quantity,  is the relative error.

tangent line approximation (linearization)
since the linear approximation of  at  is defined using the equation of the tangent line, the linear approximation of  at 

 is also known as the tangent line approximation to  at 
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Δq

q

L(x) = f(a) + (a)(x−a)f ′

dy = (x)dxf ′

dx dy

dy = (x)dxf ′

y = (x),f ′ dy = (x)dxf ′ y

x

L(x) = f(a) + (a)(x−a)f ′ f x = a

f(x) dx

Δq
Δq

q

f x = a f

x = a f x = a
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