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4.1: Electric Potential Energy

By the end of this section, you will be able to:

Define the work done by an electric force
Define electric potential energy
Apply work and potential energy in systems with electric charges

Two terms commonly used to describe electricity are its energy and voltage, which we show in this chapter is directly related to the
potential energy in a system. We know, for example, that great amounts of electrical energy can be stored in batteries, are
transmitted cross-country via currents through power lines, and may jump from clouds to explode the sap of trees. In a similar
manner, at the molecular level, ions cross cell membranes and transfer information.

Figure : The energy released in a lightning strike is an excellent illustration of the vast quantities of energy that may be stored
and released by an electric potential difference. In this chapter, we calculate just how much energy can be released in a lightning
strike and how this varies with the height of the clouds from the ground. (credit: Anthony Quintano)

We also know about voltages associated with electricity. Batteries are typically a few volts, the outlets in your home frequently
produce 120 volts, and power lines can be as high as hundreds of thousands of volts. But energy and voltage are not the same thing.
A motorcycle battery, for example, is small and would not be very successful in replacing a much larger car battery, yet each has
the same voltage. In this chapter, we examine the relationship between voltage and electrical energy, and begin to explore some of
the many applications of electricity.

When a free positive charge q is accelerated by an electric field, it is given kinetic energy (Figure ). The process is analogous
to an object being accelerated by a gravitational field, as if the charge were going down an electrical hill where its electric potential
energy is converted into kinetic energy, although of course the sources of the forces are very different. Let us explore the work done
on a charge q by the electric field in this process, so that we may develop a definition of electric potential energy.

Figure : A charge accelerated by an electric field is analogous to a mass going down a hill. In both cases, potential energy
decreases as kinetic energy increases, . Work is done by a force, but since this force is conservative, we can write 

.
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The electrostatic or Coulomb force is conservative, which means that the work done on q is independent of the path taken, as we
will demonstrate later. This is exactly analogous to the gravitational force. When a force is conservative, it is possible to define a
potential energy associated with the force. It is usually easier to work with the potential energy (because it depends only on
position) than to calculate the work directly.

To show this explicitly, consider an electric charge  fixed at the origin and move another charge  toward q in such a manner
that, at each instant, the applied force  exactly balances the electric force  on Q (Figure ). The work done by the applied
force  on the charge Q changes the potential energy of Q. We call this potential energy the electrical potential energy of Q.

Figure : Displacement of “test” charge Q in the presence of fixed “source” charge q.

The work  done by the applied force  when the particle moves from  to  may be calculated by

Since the applied force  balances the electric force  on Q, the two forces have equal magnitude and opposite directions.
Therefore, the applied force is

where we have defined positive to be pointing away from the origin and r is the distance from the origin. The directions of both the
displacement and the applied force in the system in Figure  are parallel, and thus the work done on the system is positive.

We use the letter U to denote electric potential energy, which has units of joules (J). When a conservative force does negative work,
the system gains potential energy. When a conservative force does positive work, the system loses potential energy, . In
the system in Figure , the Coulomb force acts in the opposite direction to the displacement; therefore, the work is negative.
However, we have increased the potential energy in the two-charge system.

A  charge Q is initially at rest a distance of 10 cm ( ) from a  charge q fixed at the origin (Figure 
). Naturally, the Coulomb force accelerates Q away from q, eventually reaching 15 cm ( ).

Figure : The charge Q is repelled by q, thus having work done on it and gaining kinetic energy.
a. What is the work done by the electric field between  and ?
b. How much kinetic energy does Q have at ?
c. If Q has a mass of , what is the speed of Q at ?

Strategy

Calculate the work with the usual definition. Since Q started from rest, this is the same as the kinetic energy.

Solution

a) Integrating force over distance, we obtain
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b) Since there are no other forces affecting the charge, the net Work on the charge is the same as the work done by the
electric field. Thus, using the work energy theorem, we can conclude that it is also the value of the kinetic energy at .

c) , 

Significance

Charge Q was initially at rest; the electric field of q did work on Q, so now Q has kinetic energy equal to the work done
by the electric field.

In this example, the work W done to accelerate a positive charge from rest is positive and results from a loss in U, or a negative 
. A value for U can be found at any point by taking one point as a reference and calculating the work needed to move a charge

to the other point.

Work W done to accelerate a positive charge from rest is positive and results from a loss in U, or a negative .
Mathematically,

Gravitational potential energy and electric potential energy are quite analogous. Potential energy accounts for work done by a
conservative force and gives added insight regarding energy and energy transformation without the necessity of dealing with the
force directly. It is much more common, for example, to use the concept of electric potential energy than to deal with the Coulomb
force directly in real-world applications.

In polar coordinates with q at the origin and Q located at r, the displacement element vector is  and thus the work
becomes

Notice that this result only depends on the endpoints and is otherwise independent of the path taken. To explore this further,
compare path  to  with path  in Figure .
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Figure :Two paths for displacement  to . The work on segments  and  are zero due to the electrical force
being perpendicular to the displacement along these paths. Therefore, work on paths  and  are equal.

The segments  and  are arcs of circles centered at q. Since the force on Q points either toward or away from q, no work
is done by a force balancing the electric force, because it is perpendicular to the displacement along these arcs. Therefore, the only
work done is along segment  which is identical to .

One implication of this work calculation is that if we were to go around the path , the net work would be zero (Figure 
). Recall that this is how we determine whether a force is conservative or not. Hence, because the electric force is related to

the electric field by , the electric field is itself conservative. That is,

Note that Q is a constant.

Figure : A closed path in an electric field. The net work around this path is zero.

Another implication is that we may define an electric potential energy. Recall that the work done by a conservative force is also
expressed as the difference in the potential energy corresponding to that force. Therefore, the work  to bring a charge from a
reference point to a point of interest may be written as

and, by Equation , the difference in potential energy ( ) of the test charge Q between the two points is

Therefore, we can write a general expression for the potential energy of two point charges (in spherical coordinates):

We may take the second term to be an arbitrary constant reference level, which serves as the zero reference:

A convenient choice of reference that relies on our common sense is that when the two charges are infinitely far apart, there is no
interaction between them. (Recall the discussion of reference potential energy in Potential Energy and Conservation of Energy.)
Taking the potential energy of this state to be zero removes the term  from the equation (just like when we say the ground is
zero potential energy in a gravitational potential energy problem), and the potential energy of Q when it is separated from q by a
distance r assumes the form
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This formula is symmetrical with respect to  and , so it is best described as the potential energy of the two-charge system.

The Electrical Potential Energy of two charges  and  separated by  is given by,

A  charge Q is initially at rest a distance of 10 cm  from a  charge q fixed at the origin (Figure 
). Naturally, the Coulomb force accelerates Q away from q, eventually reaching 15 cm .

Figure : The charge  is repelled by , thus having work done on it and losing potential energy.

What is the change in the potential energy of the two-charge system from  to ?

Strategy

Calculate the potential energy with the definition given above:

. Since Q started from rest, this is the same as the kinetic energy.

Solution

We have

Significance

The change in the potential energy is negative, as expected, and equal in magnitude to the change in kinetic energy in
this system. Recall from Example  that the change in kinetic energy was positive.
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q Q r

.U(r) = k
qQ

r  
zero reference at r=∞

(4.1.10)

 Example : Potential Energy of a Charged Particle4.1.2
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What is the potential energy of Q relative to the zero reference at infinity at  in the above example?

Solution

It has kinetic energy of  at point  and potential energy of , which means that as Q approaches
infinity, its kinetic energy totals three times the kinetic energy at , since all of the potential energy gets converted to
kinetic.

Due to Coulomb’s law, the forces due to multiple charges on a test charge  superimpose; they may be calculated individually and
then added. This implies that the work integrals and hence the resulting potential energies exhibit the same behavior. To
demonstrate this, we consider an example of assembling a system of four charges.

Find the amount of work an external agent must do in assembling four charges , ,  and 
 at the vertices of a square of side 1.0 cm, starting each charge from infinity (Figure ).

Figure : How much work is needed to assemble this charge configuration?

Strategy

We bring in the charges one at a time, giving them starting locations at infinity and calculating the work to bring them in
from infinity to their final location. We do this in order of increasing charge.

Solution

Step 1. First bring the  charge to the origin. Since there are no other charges at a finite distance from this
charge yet, no work is done in bringing it from infinity,

Step 2. While keeping the  charge fixed at the origin, bring the  charge to 
 (Figure ). Now, the applied force must do work against the force exerted by the 

 charge fixed at the origin. The work done equals the change in the potential energy of the 
charge:

Figure : Step 2. Work  to bring the  charge from infinity.

 Exercise 4.1.2

r2

4.5 × J10−7 r2 9.0 × J10−7

r2

Q

 Example : Assembling Four Positive Charges4.1.3

+2.0 −μC +3.0 −μC +4.0 −μC

+5.0 −μC 4.1.7

4.1.7

+2.0 −μC

= 0.W1 (4.1.12)

+2.0 −μC +3.0 −μC

(x, y, z) = (1.0 cm, 0, 0) 4.1.8
+2.0 −μC +3.0 −μC

W2 = k
q1q2
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C 2
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Step 3. While keeping the charges of  and  fixed in their places, bring in the  charge
to  (Figure) . The work done in this step is

Figure : Step 3. The work  to bring the  charge from infinity.

Step 4. Finally, while keeping the first three charges in their places, bring the  charge to 
 (Figure ). The work done here is

Figure : Step 4. The work  to bring the  charge from infinity.

Hence, the total work done by the applied force in assembling the four charges is equal to the sum of the work in
bringing each charge from infinity to its final position:

Significance

The work on each charge depends only on its pairwise interactions with the other charges. No more complicated
interactions need to be considered; the work on the third charge only depends on its interaction with the first and second
charges, the interaction between the first and second charge does not affect the third.

Is the electrical potential energy of two point charges positive or negative if the charges are of the same sign? Opposite signs?
How does this relate to the work necessary to bring the charges into proximity from infinity?

+2.0 −μC +3.0 −μC +4.0 −μC

(x, y, z) = (1.0 cm, 1.0 cm, 0) 4.1.9
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Solution
positive, negative, and these quantities are the same as the work you would need to do to bring the charges in from infinity

Note that the electrical potential energy is positive if the two charges are of the same type, either positive or negative, and negative
if the two charges are of opposite types. This makes sense if you think of the change in the potential energy  as you bring the
two charges closer or move them farther apart. Depending on the relative types of charges, you may have to work on the system or
the system would do work on you, that is, your work is either positive or negative. If you have to do positive work on the system
(actually push the charges closer), then the energy of the system should increase. If you bring two positive charges or two negative
charges closer, you have to do positive work on the system, which raises their potential energy. Since potential energy is
proportional to 1/r, the potential energy goes up when r goes down between two positive or two negative charges.

On the other hand, if you bring a positive and a negative charge nearer, you have to do negative work on the system (the charges
are pulling you), which means that you take energy away from the system. This reduces the potential energy. Since potential energy
is negative in the case of a positive and a negative charge pair, the increase in 1/r makes the potential energy more negative, which
is the same as a reduction in potential energy.

The result from Example  may be extended to systems with any arbitrary number of charges. 
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