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2.10.4: Moments_and_Centers_of_Mass

Find the center of mass of objects distributed along a line.
Locate the center of mass of a thin plate.
Use symmetry to help locate the centroid of a thin plate.
Apply the theorem of Pappus for volume.

In this section, we consider centers of mass (also called centroids, under certain conditions) and moments. The basic idea of the
center of mass is the notion of a balancing point. Many of us have seen performers who spin plates on the ends of sticks. The
performers try to keep several of them spinning without allowing any of them to drop. If we look at a single plate (without spinning
it), there is a sweet spot on the plate where it balances perfectly on the stick. If we put the stick anywhere other than that sweet
spot, the plate does not balance and it falls to the ground. (That is why performers spin the plates; the spin helps keep the plates
from falling even if the stick is not exactly in the right place.) Mathematically, that sweet spot is called the center of mass of the
plate.

In this section, we first examine these concepts in a one-dimensional context, then expand our development to consider centers of
mass of two-dimensional regions and symmetry. Last, we use centroids to find the volume of certain solids by applying the theorem
of Pappus.

Center of Mass and Moments

Let’s begin by looking at the center of mass in a one-dimensional context. Consider a long, thin wire or rod of negligible mass
resting on a fulcrum, as shown in Figure . Now suppose we place objects having masses  and  at distances  and 

 from the fulcrum, respectively, as shown in Figure .

Figure : (a) A thin rod rests on a fulcrum. (b) Masses are placed on the rod.

The most common real-life example of a system like this is a playground seesaw, or teeter-totter, with children of different weights
sitting at different distances from the center. On a seesaw, if one child sits at each end, the heavier child sinks down and the lighter
child is lifted into the air. If the heavier child slides in toward the center, though, the seesaw balances. Applying this concept to the
masses on the rod, we note that the masses balance each other if and only if

Figure : The center of mass  is the balance point of the system.

In the seesaw example, we balanced the system by moving the masses (children) with respect to the fulcrum. However, we are
really interested in systems in which the masses are not allowed to move, and instead we balance the system by moving the
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fulcrum. Suppose we have two point masses,  and , located on a number line at points  and , respectively (Figure 
). The center of mass, , is the point where the fulcrum should be placed to make the system balance.

Thus, we have

or

The expression in the numerator of Equation , , is called the first moment of the system with respect to the
origin. If the context is clear, we often drop the word first and just refer to this expression as the moment of the system. The
expression in the denominator, , is the total mass of the system. Thus, the center of mass of the system is the point at
which the total mass of the system could be concentrated without changing the moment.

This idea is not limited just to two point masses. In general, if  masses,  are placed on a number line at points 
 respectively, then the center of mass of the system is given by

Let  be point masses placed on a number line at points , respectively, and let 

denote the total mass of the system. Then, the moment of the system with respect to the origin is given by

and the center of mass of the system is given by

We apply this theorem in the following example.

Suppose four point masses are placed on a number line as follows:

 placed at 
 placed at 
 placed at 
 placed at 

Solution

Find the moment of the system with respect to the origin and find the center of mass of the system.

First, we need to calculate the moment of the system (Equation ):

m1 m2 x1 x2

2.10.4.2 x̄

| − |m1 x1 x̄

( − )m1 x̄ x1

−m1x̄ m1x1

( + )x̄ m1 m2

= | − |m2 x2 x̄

= ( − )m2 x2 x̄

= −m2x2 m2x̄

= +m1x1 m2x2

=x̄
+m1x1 m2x2

+m1 m2
(2.10.4.1)

2.10.4.1 +m1x1 m2x2

+m1 m2

n , , … , ,m1 m2 mn

, , … , ,x1 x2 xn

=x̄

∑
i=1

n

mixi

∑
i=1

n

mi

 Center of Mass of Objects on a Line
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 Example : Finding the Center of Mass of Objects along a Line2.10.4.1

= 30 kg,m1 = −2mx1

= 5 kg,m2 = 3mx2

= 10 kg,m3 = 6mx3

= 15 kg,m4 = −3m.x4
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Now, to find the center of mass, we need the total mass of the system:

Then we have (from Equation )

.

The center of mass is located 1/2 m to the left of the origin.

Suppose four point masses are placed on a number line as follows:

 placed at 
 placed at 
 placed at 
 placed at 

Find the moment of the system with respect to the origin and find the center of mass of the system.

Hint

Use the process from the previous example.

Answer

We can generalize this concept to find the center of mass of a system of point masses in a plane. Let  be a point mass located at
point  in the plane. Then the moment  of the mass with respect to the -axis is given by . Similarly, the
moment  with respect to the -axis is given by

Notice that the -coordinate of the point is used to calculate the moment with respect to the -axis, and vice versa. The reason is
that the -coordinate gives the distance from the point mass to the -axis, and the -coordinate gives the distance to the -axis (see
the following figure).

Figure : Point mass  is located at point  in the plane.

If we have several point masses in the -plane, we can use the moments with respect to the - and -axes to calculate the - and 
-coordinates of the center of mass of the system.
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 Exercise 2.10.4.1

= 12 kgm1 = −4mx1
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Let , , …,  be point masses located in the -plane at points  respectively, and let 

 denote the total mass of the system. Then the moments  and  of the system with respect to the - and -

axes, respectively, are given by

and

Also, the coordinates of the center of mass  of the system are

and

The next example demonstrates how to the center of mass formulas (Equations  - ) may be applied.

Suppose three point masses are placed in the -plane as follows (assume coordinates are given in meters):

 placed at 
 placed at 
 placed at 

Find the center of mass of the system.

Solution

First we calculate the total mass of the system:

Next we find the moments with respect to the - and -axes:

Then we have

and

 Center of Mass of Objects in a Plane
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 Example : Finding the Center of Mass of Objects in a Plane2.10.4.2
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= 6 kgm2 (1, 1),
= 4 kgm3 (2, −2).

m = = 2 +6 +4 = 12 kg.∑
i=1

3

mi

x y

My

Mx

= = −2 +6 +8 = 12,∑
i=1

3

mixi

= = 6 +6 −8 = 4.∑
i=1

3

miyi

= = = 1x̄
My

m

12

12

= = = .ȳ
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The center of mass of the system is  in meters.

Suppose three point masses are placed on a number line as follows (assume coordinates are given in meters):

 placed at 
 placed at 
 placed at 

Find the center of mass of the system.

Hint

Use the process from the previous example.

Answer

 m

Center of Mass of Thin Plates

So far we have looked at systems of point masses on a line and in a plane. Now, instead of having the mass of a system
concentrated at discrete points, we want to look at systems in which the mass of the system is distributed continuously across a thin
sheet of material. For our purposes, we assume the sheet is thin enough that it can be treated as if it is two-dimensional. Such a
sheet is called a lamina. Next we develop techniques to find the center of mass of a lamina. In this section, we also assume the
density of the lamina is constant.

Laminas are often represented by a two-dimensional region in a plane. The geometric center of such a region is called its centroid.
Since we have assumed the density of the lamina is constant, the center of mass of the lamina depends only on the shape of the
corresponding region in the plane; it does not depend on the density. In this case, the center of mass of the lamina corresponds to
the centroid of the delineated region in the plane. As with systems of point masses, we need to find the total mass of the lamina, as
well as the moments of the lamina with respect to the - and -axes.

We first consider a lamina in the shape of a rectangle. Recall that the center of mass of a lamina is the point where the lamina
balances. For a rectangle, that point is both the horizontal and vertical center of the rectangle. Based on this understanding, it is
clear that the center of mass of a rectangular lamina is the point where the diagonals intersect, which is a result of the symmetry
principle, and it is stated here without proof.

If a region  is symmetric about a line , then the centroid of  lies on .

Let’s turn to more general laminas. Suppose we have a lamina bounded above by the graph of a continuous function , below
by the -axis, and on the left and right by the lines  and , respectively, as shown in the following figure.

Figure : A region in the plane representing a lamina.

As with systems of point masses, to find the center of mass of the lamina, we need to find the total mass of the lamina, as well as
the moments of the lamina with respect to the - and -axes. As we have done many times before, we approximate these quantities

(1, 1/3),

 Exercise 2.10.4.2

= 5 kg,m1 (−2, −3),
= 3 kg,m2 (2, 3),
= 2 kg,m3 (−3, −2).

(−1, −1)

x y

 The Symmetry Principle

R l R l

f(x)
x x = a x = b
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by partitioning the interval  and constructing rectangles.

For  let  be a regular partition of . Recall that we can choose any point within the interval 
as our . In this case, we want  to be the x-coordinate of the centroid of our rectangles. Thus, for , we select 

 such that  is the midpoint of the interval. That is, . Now, for  construct a
rectangle of height  on  The center of mass of this rectangle is  as shown in the following figure.

Figure : A representative rectangle of the lamina.

Next, we need to find the total mass of the rectangle. Let  represent the density of the lamina (note that  is a constant). In this
case,  is expressed in terms of mass per unit area. Thus, to find the total mass of the rectangle, we multiply the area of the
rectangle by . Then, the mass of the rectangle is given by .

To get the approximate mass of the lamina, we add the masses of all the rectangles to get

Equation  is a Riemann sum. Taking the limit as  gives the exact mass of the lamina:

Next, we calculate the moment of the lamina with respect to the x-axis. Returning to the representative rectangle, recall its center of
mass is . Recall also that treating the rectangle as if it is a point mass located at the center of mass does not change
the moment. Thus, the moment of the rectangle with respect to the x-axis is given by the mass of the rectangle, ,
multiplied by the distance from the center of mass to the x-axis: . Therefore, the moment with respect to the x-axis of the
rectangle is  Adding the moments of the rectangles and taking the limit of the resulting Riemann sum, we see
that the moment of the lamina with respect to the x-axis is

We derive the moment with respect to the y-axis similarly, noting that the distance from the center of mass of the rectangle to the y-
axis is . Then the moment of the lamina with respect to the y-axis is given by

We find the coordinates of the center of mass by dividing the moments by the total mass to give  and . If
we look closely at the expressions for , and , we notice that the constant  cancels out when  and  are calculated.

We summarize these findings in the following theorem.
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Let R denote a region bounded above by the graph of a continuous function , below by the x-axis, and on the left and right
by the lines  and , respectively. Let  denote the density of the associated lamina. Then we can make the following
statements:

i. The mass of the lamina is

ii. The moments  and  of the lamina with respect to the x- and y-axes, respectively, are

and

iii. The coordinates of the center of mass  are

and

In the next example, we use this theorem to find the center of mass of a lamina.

Let R be the region bounded above by the graph of the function  and below by the x-axis over the interval .
Find the centroid of the region.

Solution

The region is depicted in the following figure.

Figure : Finding the center of mass of a lamina.

Since we are only asked for the centroid of the region, rather than the mass or moments of the associated lamina, we know the
density constant  cancels out of the calculations eventually. Therefore, for the sake of convenience, let’s assume .

First, we need to calculate the total mass (Equation ):

 Center of Mass of a Thin Plate in the xy-Plane

f(x)
x = a x = b ρ

m = ρ f(x)dx.∫
b

a

(2.10.4.9)

Mx My

= ρ dxMx ∫
b

a

[f(x)]2

2
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= ρ xf(x)dx.My ∫
b

a

(2.10.4.11)
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= .ȳ
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 Example : Finding the Center of Mass of a Lamina2.10.4.3

f(x) = x−−√ [0, 4]

2.10.4.6

ρ ρ = 1
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Next, we compute the moments (Equation ):

and (Equation ):

Thus, we have (Equation ):

and (Equation ):

m = ρ f(x)dx∫
b

a

= dx∫
4

0
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∣
∣
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0

= [8 −0]
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= .
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∣
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2.10.4.11

My = ρ xf(x)dx∫
b

a

= x dx∫
4

0
x−−√

= dx∫
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The centroid of the region is 

Let  be the region bounded above by the graph of the function  and below by the x-axis over the interval 
Find the centroid of the region.

Hint

Use the process from the previous example.

Answer

The centroid of the region is 

We can adapt this approach to find centroids of more complex regions as well. Suppose our region is bounded above by the graph
of a continuous function , as before, but now, instead of having the lower bound for the region be the x-axis, suppose the
region is bounded below by the graph of a second continuous function, , as shown in Figure .

Figure : A region between two functions.

Again, we partition the interval  and construct rectangles. A representative rectangle is shown in Figure .

Figure : A representative rectangle of the region between two functions.

Note that the centroid of this rectangle is . We won’t go through all the details of the Riemann sum
development, but let’s look at some of the key steps. In the development of the formulas for the mass of the lamina and the moment
with respect to the y-axis, the height of each rectangle is given by , which leads to the expression  in the
integrands.

In the development of the formula for the moment with respect to the x-axis, the moment of each rectangle is found by multiplying
the area of the rectangle,  by the distance of the centroid from the -axis, , which gives 

. Summarizing these findings, we arrive at the following theorem.

ȳ =
Mx

y

=
4

16/3

= 4 ⋅
3

16

= .
3

4

(12/5, 3/4).

 Exercise 2.10.4.3

R f(x) = x2 [0, 2].

(3/2, 6/5).

f(x)
g(x) 2.10.4.7

2.10.4.7

[a, b] 2.10.4.8

2.10.4.8
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Let  denote a region bounded above by the graph of a continuous function  below by the graph of the continuous
function , and on the left and right by the lines  and , respectively. Let  denote the density of the associated
lamina. Then we can make the following statements:

i. The mass of the lamina is

ii. The moments  and  of the lamina with respect to the x- and y-axes, respectively, are

and

iii. The coordinates of the center of mass  are

and

We illustrate this theorem in the following example.

Let R be the region bounded above by the graph of the function  and below by the graph of the function 
 Find the centroid of the region.

Solution

The region is depicted in the following figure.

Figure : Finding the centroid of a region between two curves.

The graphs of the functions intersect at  and , so we integrate from −2 to 1. Once again, for the sake of
convenience, assume .

First, we need to calculate the total mass:

 Center of Mass of a Lamina Bounded by Two Functions

R f(x),
g(x) x = a x = b ρ

m = ρ [f(x) −g(x)]dx.∫
b

a

Mx My

= ρ 12([f(x) −[g(x) )dxMx ∫
b

a

]2 ]2

= ρ x[f(x) −g(x)]dx.My ∫
b

a

, )x̄ ȳ

=x̄
My

m

=ȳ
Mx

m

 Example : Finding the Centroid of a Region Bounded by Two Functions2.10.4.4

f(x) = 1 −x2

g(x) = x−1.

2.10.4.9

(−2, −3) (1, 0)
ρ = 1
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Next, we compute the moments:

and

Therefore, we have

m = ρ [f(x) −g(x)]dx∫
b

a

= [1 − −(x−1)]dx∫
1

−2
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= (2 − −x)dx∫
1

−2
x2

= [2x− − ]
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∣
∣
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8
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= .
9

2
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b

a

1

2
]2 ]2
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1

2
∫
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1

2
∫
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2

x5
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∣

∣
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b
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1
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1
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= [ − − ]x2 x5
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∣

∣
∣
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and

The centroid of the region is 

Let  be the region bounded above by the graph of the function  and below by the graph of the function 
 Find the centroid of the region.

Hint

Use the process from the previous example.

Answer

The centroid of the region is 

The Symmetry Principle
We stated the symmetry principle earlier, when we were looking at the centroid of a rectangle. The symmetry principle can be a
great help when finding centroids of regions that are symmetric. Consider the following example.

Let R be the region bounded above by the graph of the function  and below by the x-axis. Find the centroid of
the region.

Solution

The region is depicted in the following figure

Figure : We can use the symmetry principle to help find the centroid of a symmetric region.

The region is symmetric with respect to the y-axis. Therefore, the x-coordinate of the centroid is zero. We need only calculate 
. Once again, for the sake of convenience, assume .

x̄ =
My

m

= − ⋅
9

4

2

9

= −
1

2

ȳ =
Mx

y

= − ⋅
27

10

2

9

= − .
3

5

(−(1/2), −(3/5)).

 Exercise 2.10.4.4

R f(x) = 6 −x2

g(x) = 3 −2x.

(1, 13/5).

 Example : Finding the Centroid of a Symmetric Region2.10.4.5

f(x) = 4 −x2

2.10.4.10

ȳ ρ = 1
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First, we calculate the total mass:

Next, we calculate the moments. We only need :

Then we have

The centroid of the region is 

Let  be the region bounded above by the graph of the function  and below by -axis. Find the centroid of the
region.

Hint

Use the process from the previous example.

Answer

The centroid of the region is 

The Grand Canyon Skywalk opened to the public on March 28, 2007. This engineering marvel is a horseshoe-shaped
observation platform suspended 4000 ft above the Colorado River on the West Rim of the Grand Canyon. Its crystal-clear glass
floor allows stunning views of the canyon below (see the following figure).

m = ρ f(x)dx∫
b

a

= (4 − )dx∫
2

−2
x2

= [4x− ]
x3

3

∣

∣
∣
2

−2

= .
32

3

Mx

Mx = ρ dx∫
b

a

[f(x)]2

2

= dx = (16 −8 + )dx
1

2
∫

2

−2
[4 − ]x2 2 1

2
∫

2

−2
x2 x4

= [ − +16x] =
1

2

x5

5

8x3

3
∣2
−2

256

15

= = ⋅ = .ȳ
Mx

y

256

15

3

32

8

5

(0, 8/5).

 Exercise 2.10.4.5

R f(x) = 1 −x2 x

(0, 2/5).

 The Grand Canyon Skywalk
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Figure : The Grand Canyon Skywalk offers magnificent views of the canyon. (credit: 10da_ralta, Wikimedia
Commons)

The Skywalk is a cantilever design, meaning that the observation platform extends over the rim of the canyon, with no visible
means of support below it. Despite the lack of visible support posts or struts, cantilever structures are engineered to be very
stable and the Skywalk is no exception. The observation platform is attached firmly to support posts that extend 46 ft down
into bedrock. The structure was built to withstand 100-mph winds and an 8.0-magnitude earthquake within 50 mi, and is
capable of supporting more than 70,000,000 lb.

One factor affecting the stability of the Skywalk is the center of gravity of the structure. We are going to calculate the center of
gravity of the Skywalk, and examine how the center of gravity changes when tourists walk out onto the observation platform.

The observation platform is U-shaped. The legs of the U are 10 ft wide and begin on land, under the visitors’ center, 48 ft from
the edge of the canyon. The platform extends 70 ft over the edge of the canyon.

To calculate the center of mass of the structure, we treat it as a lamina and use a two-dimensional region in the xy-plane to
represent the platform. We begin by dividing the region into three subregions so we can consider each subregion separately.
The first region, denoted , consists of the curved part of the U. We model  as a semicircular annulus, with inner radius 25
ft and outer radius 35 ft, centered at the origin (Figure ).

Figure : We model the Skywalk with three sub-regions.

The legs of the platform, extending 35 ft between  and the canyon wall, comprise the second sub-region, . Last, the ends
of the legs, which extend 48 ft under the visitor center, comprise the third sub-region, . Assume the density of the lamina is
constant and assume the total weight of the platform is 1,200,000 lb (not including the weight of the visitor center; we will
consider that later). Use .

2.10.4.11

R1 R1

2.10.4.12

2.10.4.12

R1 R2

R3

g = 32 ft/sec2
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1. Compute the area of each of the three sub-regions. Note that the areas of regions  and  should include the areas of the
legs only, not the open space between them. Round answers to the nearest square foot.

2. Determine the mass associated with each of the three sub-regions.
3. Calculate the center of mass of each of the three sub-regions.
4. Now, treat each of the three sub-regions as a point mass located at the center of mass of the corresponding sub-region.

Using this representation, calculate the center of mass of the entire platform.
5. Assume the visitor center weighs 2,200,000 lb, with a center of mass corresponding to the center of mass of .Treating

the visitor center as a point mass, recalculate the center of mass of the system. How does the center of mass change?
6. Although the Skywalk was built to limit the number of people on the observation platform to 120, the platform is capable

of supporting up to 800 people weighing 200 lb each. If all 800 people were allowed on the platform, and all of them went
to the farthest end of the platform, how would the center of gravity of the system be affected? (Include the visitor center in
the calculations and represent the people by a point mass located at the farthest edge of the platform, 70 ft from the canyon
wall.)

Theorem of Pappus

This section ends with a discussion of the theorem of Pappus for volume, which allows us to find the volume of particular kinds of
solids by using the centroid. (There is also a theorem of Pappus for surface area, but it is much less useful than the theorem for
volume.)

Let  be a region in the plane and let l be a line in the plane that does not intersect . Then the volume of the solid of
revolution formed by revolving  around l is equal to the area of  multiplied by the distance d traveled by the centroid of .

We can prove the case when the region is bounded above by the graph of a function  and below by the graph of a function 
 over an interval , and for which the axis of revolution is the -axis. In this case, the area of the region is 

. Since the axis of rotation is the -axis, the distance traveled by the centroid of the region depends

only on the -coordinate of the centroid, , which is

where

and

Then,

and thus

R2 R3

R3

 Theorem of Pappus for Volume

R R

R R R

 Proof

f(x)
g(x) [a, b] y

A = [f(x) −g(x)] dx∫
b

a

y

x x̄

x = ,
My

m

m = ρ [f(x) −g(x)]dx∫
b

a

= ρ x[f(x) −g(x)]dx.My ∫
b

a

d = 2π

ρ x[f(x) −g(x)]dx∫
b

a

ρ [f(x) −g(x)]dx∫
b

a

d ⋅A = 2π x[f(x) −g(x)]dx.∫
b

a
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However, using the method of cylindrical shells, we have

So,

and the proof is complete.

□

Let  be a circle of radius 2 centered at  Use the theorem of Pappus for volume to find the volume of the torus generated
by revolving  around the -axis.

Solution

The region and torus are depicted in the following figure.

Figure : Determining the volume of a torus by using the theorem of Pappus. (a) A circular region  in the plane; (b)
the torus generated by revolving  about the -axis.

The region  is a circle of radius 2, so the area of R is . By the symmetry principle, the centroid of R is the
center of the circle. The centroid travels around the -axis in a circular path of radius 4, so the centroid travels  units.
Then, the volume of the torus is  units .

Let R be a circle of radius 1 centered at  Use the theorem of Pappus for volume to find the volume of the torus generated
by revolving R around the -axis.

Hint

Use the process from the previous example.

Answer

 units

Key Concepts
Mathematically, the center of mass of a system is the point at which the total mass of the system could be concentrated without
changing the moment. Loosely speaking, the center of mass can be thought of as the balancing point of the system.

V = 2π x[f(x) −g(x)]dx.∫
b

a

V = d ⋅A

 Example : Using the Theorem of Pappus for Volume2.10.4.6

R (4, 0).
R y

2.10.4.13 R
R y

R A = 4π units2

y d = 8π
A ⋅ d = 32π2 3

 Exercise 2.10.4.6

(3, 0).
y

6π2 3

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76313?pdf


2.10.4.17 https://phys.libretexts.org/@go/page/76313

For point masses distributed along a number line, the moment of the system with respect to the origin is  For

point masses distributed in a plane, the moments of the system with respect to the - and -axes, respectively, are 

 and , respectively.

For a lamina bounded above by a function , the moments of the system with respect to the - and -axes, respectively, are 

 and 

The - and -coordinates of the center of mass can be found by dividing the moments around the -axis and around the -axis,
respectively, by the total mass. The symmetry principle says that if a region is symmetric with respect to a line, then the
centroid of the region lies on the line.
The theorem of Pappus for volume says that if a region is revolved around an external axis, the volume of the resulting solid is
equal to the area of the region multiplied by the distance traveled by the centroid of the region.

Key Equations
Mass of a lamina

Moments of a lamina

Center of mass of a lamina

Glossary

center of mass
the point at which the total mass of the system could be concentrated without changing the moment

centroid
the centroid of a region is the geometric center of the region; laminas are often represented by regions in the plane; if the lamina
has a constant density, the center of mass of the lamina depends only on the shape of the corresponding planar region; in this
case, the center of mass of the lamina corresponds to the centroid of the representative region

lamina
a thin sheet of material; laminas are thin enough that, for mathematical purposes, they can be treated as if they are two-
dimensional

moment

if n masses are arranged on a number line, the moment of the system with respect to the origin is given by ; if,

instead, we consider a region in the plane, bounded above by a function  over an interval , then the moments of the

region with respect to the - and -axes are given by  and , respectively

symmetry principle
the symmetry principle states that if a region  is symmetric about a line , then the centroid of  lies on 

theorem of Pappus for volume

M = .∑
i=1

n

mixi

x y

=Mx ∑
i=1

n

miyi =My ∑
i=

n

mixi

f(x) x y

= ρ dxMx ∫
b

a

[f(x)]2

2
= ρ xf(x)dx.My ∫

b

a

x y y x

m = ρ f(x)dx∫
b

a

= ρ dx and  = ρ xf(x)dxMx ∫
b

a

[f(x)]2

2
My ∫

b

a

=  and  =x̄
My

m
ȳ

Mx

m

M =∑
i=1

n

mixi

f(x) [a, b]

x y = ρ dxMx ∫
b

a

[f(x)]2

2
= ρ xf(x)dxMy ∫

b

a

R I R I
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this theorem states that the volume of a solid of revolution formed by revolving a region around an external axis is equal to the
area of the region multiplied by the distance traveled by the centroid of the region

This page titled 2.10.4: Moments_and_Centers_of_Mass is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Edwin “Jed” Herman & Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

6.6: Moments and Centers of Mass by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/76313?pdf
https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.10%3A_Anti_derivatives_and_integrals/2.10.04%3A_Moments_and_Centers_of_Mass
https://creativecommons.org/licenses/by-nc-sa/4.0
https://openstax.org/
https://openstax.org/
https://openstax.org/details/books/calculus-volume-1
https://math.libretexts.org/@go/page/2524
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/details/books/calculus-volume-1

