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9.2: Electromagnetic Waves

By the end of this section, you will be able to:

Describe how Maxwell’s equations predict the relative directions of the electric fields and magnetic fields, and the direction
of propagation of plane electromagnetic waves
Explain how Maxwell’s equations predict that the speed of propagation of electromagnetic waves in free space is exactly
the speed of light
Calculate the relative magnitude of the electric and magnetic fields in an electromagnetic plane wave
Describe how electromagnetic waves are produced and detected

Mechanical waves travel through a medium such as a string, water, or air. Perhaps the most significant prediction of Maxwell’s
equations is the existence of combined electric and magnetic (or electromagnetic) fields that propagate through space as
electromagnetic waves. Because Maxwell’s equations hold in free space, the predicted electromagnetic waves, unlike mechanical
waves, do not require a medium for their propagation.

The Wave Equation
When Maxwell realized that his new addition to the theory meant that not only can changing magnetic fields induce electric fields
(Faraday), but changing electric fields can also induce magnetic fields, it occurred to him that it might be possible for propagation
to occur: A changing magnetic field creates a changing electric field, which creates a changing magnetic field, and so on.

It was not hard for a mathematician such as Maxwell to express this propagation mathematically. To see how it comes about, let's
simplify our physical situation by considering a region free of charges. This results in a simplified set of Maxwell's equations:

Let's start by taking a derivative of the equation of the Maxwell equation with respect to time:

Now plug the equation of Faraday into the derivative of the magnetic field:

Now we have an equation exclusively in terms of the electric field (electric field induces magnetic field which induces electric field
again). The double curl looks quite daunting to simplify, but it turns out that there is a useful identity from vector calculus to save
the day:

Plugging the electric Gauss equation into this and then plugging this equation in for the double curl gives:

Perhaps you recognize this differential equation from Physics 9B? It is the wave equation – not surprising, really, given that a
changing electric field seems to propagate another electric field (using the changing magnetic field as an intermediate step).
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Naturally Maxwell recognized the wave equation as well, and asked the most obvious question, "How fast is this wave?" Given
that the velocity of a wave can be taken directly from the wave equation, this is not hard to calculate. The coefficient of the second
time derivative term is the inverse of the square of the wave speed, so the speed of this wave is:

Well of course Maxwell recognized this number immediately (as should you!) – it is the speed of light, . Maxwell has shown that
light is an electromagnetic phenomenon that exists because electric and magnetic fields can propagate by inducing each other.

If one begins the derivation above by taking a derivative of the Faraday equation with respect to time and follows the same steps,
one finds that the very same wave equation applies to the magnetic field – both fields propagate together as a single light
("electromagnetic") wave.

Figure 5.6.1 – Electromagnetic Wave

EM Wave Properties
Let’s see what we can find out about these waves by looking at a specific example. Suppose we have a harmonic plane wave of
electric field polarized in the -  plane. Recall from 9B that this is expressed mathematically by:

This represents a wave that propagates along the  direction, the "displacement" direction (polarization direction of the electric
field vectors) along the  direction, has an amplitude of , a wavelength of , and period of . We have chosen the starting time
such that the phase constant is zero.

Let's plug this field into Faraday's equation by taking its curl:

Performing the derivative, we get:
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Now that we know the curl of the electric field, we can plug the result into Faraday's law:

We can now integrate to find the wave function for the magnetic field of this wave (for simplicity, we will assume that the electric
and magnetic fields are in phase with each other, which will mean the arbitrary constant from the integral is just zero):

We see that the magnetic field wave function has the same frequency and wavelength as the electric field wave function, and since

the ratio  is just the inverse of the speed of the wave , which means that the amplitudes of the electric and magnetic parts of the

wave are related by:

We can also see a how the various directions are related. The velocity is in the  direction, the electric field in the  direction, and
the magnetic field in the  direction – all three of these vectors are mutually orthogonal. In fact, the direction of the wave's velocity

vector is the same direction as the vector .

Example 

We know that electric and magnetic fields store energy in the space in which they exist. As a light wave passes through a region
of space, the fluctuating fields cause the energy density in that space to fluctuate. Is more of the wave's energy a result of the
electric field or the magnetic field? More specifically, compute the ratio of the maximum energy densities of the two fields within
a single EM wave traveling through a vacuum.

Solution

The energy densities for electric and magnetic fields in a vacuum are given by:

The maximum energy densities come about when the fields equal their amplitudes, so taking the ratio of these energies gives:

Now plugging in Equation 5.6.6 and Equation 5.6.12, we get the simple result:

Both fields contribute equally to the energy density in the space through which the wave passes.

 

Electromagnetic Waves in One Direction

An electromagnetic wave consists of an electric field, defined as usual in terms of the force per charge on a stationary charge, and a
magnetic field, defined in terms of the force per charge on a moving charge. The electromagnetic field is assumed to be a function
of only the x-coordinate and time. The y-component of the electric field is then written as , the z-component of the
magnetic field as , etc. Because we are assuming free space, there are no free charges or currents, so we can set 
and  in Maxwell’s equations.
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The transverse nature of electromagnetic waves

We examine first what Gauss’s law for electric fields implies about the relative directions of the electric field and the propagation
direction in an electromagnetic wave. Assume the Gaussian surface to be the surface of a rectangular box whose cross-section is a
square of side l and whose third side has length , as shown in Figure . Because the electric field is a function only of x and
t, the y-component of the electric field is the same on both the top (labeled Side 2) and bottom (labeled Side 1) of the box, so that
these two contributions to the flux cancel. The corresponding argument also holds for the net flux from the z-component of the
electric field through Sides 3 and 4. Any net flux through the surface therefore comes entirely from the x-component of the electric
field. Because the electric field has no y- or z-dependence,  is constant over the face of the box with area A and has a
possibly different value  that is constant over the opposite face of the box.

Applying Gauss’s law gives

where  is the area of the front and back faces of the rectangular surface. But the charge enclosed is , so this
component’s net flux is also zero, and Equation  implies  for any . Therefore, if there is an x-
component of the electric field, it cannot vary with x. A uniform field of that kind would merely be superposed artificially on the
traveling wave, for example, by having a pair of parallel-charged plates. Such a component  would not be part of an
electromagnetic wave propagating along the x-axis; so  for this wave. Therefore, the only nonzero components of the
electric field are  and  perpendicular to the direction of propagation of the wave.

Figure : The surface of a rectangular box of dimensions  is our Gaussian surface. The electric field shown is from
an electromagnetic wave propagating along the x-axis.

A similar argument holds by substituting E for B and using Gauss’s law for magnetism instead of Gauss’s law for electric fields.
This shows that the B field is also perpendicular to the direction of propagation of the wave. The electromagnetic wave is therefore
a transverse wave, with its oscillating electric and magnetic fields perpendicular to its direction of propagation.

The speed of propagation of electromagnetic waves

We can next apply Maxwell’s equations to the description given in connection with Figure 16.2.3 in the previous section to obtain
an equation for the E field from the changing B field, and for the B field from a changing E field. We then combine the two
equations to show how the changing E and B fields propagate through space at a speed precisely equal to the speed of light.

First, we apply Faraday’s law over Side 3 of the Gaussian surface, using the path shown in Figure . Because , we
have

Δx 9.2.1

(x, t)Ex

(x+Δx, t)Ex

Net flux = − (x, t)A+ (x+Δx, t)A =Ex Ex

Qin

ϵ0
(9.2.13)

A = l× l = 0Qin

9.2.13 (x, t) = (x+Δx, t)Ex Ex Δx

(x, t)Ex

(x, t) = 0Ex

(x, t)Ey (x, t)Ez

9.2.1 l × l × Δx

9.2.2 (x, t) = 0Ex

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/76627?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/06%3A_Gauss's_Law
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/16%3A_Electromagnetic_Waves/16.02%3A_Maxwells_Equations_and_Electromagnetic_Waves#Fig.+16.6


9.2.5 https://phys.libretexts.org/@go/page/76627

Assuming  is small and approximating  by

we obtain

Figure : We apply Faraday’s law to the front of the rectangle by evaluating  along the rectangular edge of Side 3 in
the direction indicated, taking the B field crossing the face to be approximately its value in the middle of the area traversed.

Because  is small, the magnetic flux through the face can be approximated by its value in the center of the area traversed,

namely . The flux of the B field through Face 3 is then the B field times the area,

From Faraday’s law,

Therefore, from Equations  and ,

Canceling  and taking the limit as , we are left with

We could have applied Faraday’s law instead to the top surface (numbered 2) in Figure , to obtain the resulting equation
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This is the equation describing the spatially dependent E field produced by the time-dependent B field.

Next we apply the Ampère-Maxwell law (with ) over the same two faces (Surface 3 and then Surface 2) of the rectangular
box of Figure . Applying Equation 16.2.16,

to Surface 3, and then to Surface 2, yields the two equations

and

These equations describe the spatially dependent B field produced by the time-dependent E field.

We next combine the equations showing the changing B field producing an E field with the equation showing the changing E field
producing a B field. Taking the derivative of Equation  with respect to x and using Equation  gives

or

This is the form taken by the general wave equation for our plane wave. Because the equations describe a wave traveling at some
as-yet-unspecified speed c, we can assume the field components are each functions of x – ct for the wave traveling in the +x-
direction, that is,

It is left as a mathematical exercise to show, using the chain rule for differentiation, that Equations  and  imply

The speed of the electromagnetic wave in free space is therefore given in terms of the permeability and the permittivity of free
space by

We could just as easily have assumed an electromagnetic wave with field components  and . The same type of
analysis with Equation  and  would also show that the speed of an electromagnetic wave is .

The physics of traveling electromagnetic fields was worked out by Maxwell in 1873. He showed in a more general way than our
derivation that electromagnetic waves always travel in free space with a speed given by Equation . If we evaluate the speed 

, we find that
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which is the speed of light. Imagine the excitement that Maxwell must have felt when he discovered this equation! He had found a
fundamental connection between two seemingly unrelated phenomena: electromagnetic fields and light.

The wave equation was obtained by (1) finding the E field produced by the changing B field, (2) finding the B field produced
by the changing E field, and combining the two results. Which of Maxwell’s equations was the basis of step (1) and which of
step (2)?

Answer (step 1)

Faraday’s law

Answer (step 2)

the Ampère-Maxwell law

How the E and B Fields Are Related
So far, we have seen that the rates of change of different components of the E and B fields are related, that the electromagnetic
wave is transverse, and that the wave propagates at speed c. We next show what Maxwell’s equations imply about the ratio of the E
and B field magnitudes and the relative directions of the E and B fields.

We now consider solutions to Equation  in the form of plane waves for the electric field:

We have arbitrarily taken the wave to be traveling in the +x-direction and chosen its phase so that the maximum field strength
occurs at the origin at time . We are justified in considering only sines and cosines in this way, and generalizing the results,
because Fourier’s theorem implies we can express any wave, including even square step functions, as a superposition of sines and
cosines.

At any one specific point in space, the E field oscillates sinusoidally at angular frequency  between  and  and similarly,
the B field oscillates between  and . The amplitude of the wave is the maximum value of . The period of
oscillation T is the time required for a complete oscillation. The frequency f is the number of complete oscillations per unit of time,
and is related to the angular frequency  by . The wavelength  is the distance covered by one complete cycle of the
wave, and the wavenumber k is the number of wavelengths that fit into a distance of  in the units being used. These quantities
are related in the same way as for a mechanical wave:

Given that the solution of  has the form shown in Equation , we need to determine the  field that accompanies it. From
Equation , the magnetic field component  must obey

Because the solution for the B-field pattern of the wave propagates in the +x-direction at the same speed c as the E-field pattern, it
must be a function of . Thus, we conclude from Equation  that  is

These results may be written as
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Therefore, the peaks of the E and B fields coincide, as do the troughs of the wave, and at each point, the E and B fields are in the
same ratio equal to the speed of light c. The plane wave has the form shown in Figure .

Figure : The plane wave solution of Maxwell’s equations has the B field directly proportional to the E field at each point, with
the relative directions shown.

What is the maximum strength of the B field in an electromagnetic wave that has a maximum E-field strength of 1000 V/m?

Strategy

To find the B-field strength, we rearrange Equation  to solve for , yielding

Solution We are given E, and c is the speed of light. Entering these into the expression for B yields

Significance

The B-field strength is less than a tenth of Earth’s admittedly weak magnetic field. This means that a relatively strong electric
field of 1000 V/m is accompanied by a relatively weak magnetic field.

Changing electric fields create relatively weak magnetic fields. The combined electric and magnetic fields can be detected in
electromagnetic waves, however, by taking advantage of the phenomenon of resonance, as Hertz did. A system with the same
natural frequency as the electromagnetic wave can be made to oscillate. All radio and TV receivers use this principle to pick up and
then amplify weak electromagnetic waves, while rejecting all others not at their resonant frequency.

What conclusions did our analysis of Maxwell’s equations lead to about these properties of a plane electromagnetic wave:

a. the relative directions of wave propagation, of the E field, and of B field,
b. the speed of travel of the wave and how the speed depends on frequency, and
c. the relative magnitudes of the E and B fields.

Answer a

The directions of wave propagation, of the E field, and of B field are all mutually perpendicular.

Answer b

The speed of the electromagnetic wave is the speed of light  independent of frequency.

= = c.
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Answer c

The ratio of electric and magnetic field amplitudes is .

Production and Detection of Electromagnetic Waves

A steady electric current produces a magnetic field that is constant in time and which does not propagate as a wave. Accelerating
charges, however, produce electromagnetic waves. An electric charge oscillating up and down, or an alternating current or flow of
charge in a conductor, emit radiation at the frequencies of their oscillations. The electromagnetic field of a dipole antenna is
shown in Figure . The positive and negative charges on the two conductors are made to reverse at the desired frequency by the
output of a transmitter as the power source. The continually changing current accelerates charge in the antenna, and this results in
an oscillating electric field a distance away from the antenna. The changing electric fields produce changing magnetic fields that in
turn produce changing electric fields, which thereby propagate as electromagnetic waves. The frequency of this radiation is the
same as the frequency of the ac source that is accelerating the electrons in the antenna. The two conducting elements of the dipole
antenna are commonly straight wires. The total length of the two wires is typically about one-half of the desired wavelength (hence,
the alternative name half-wave antenna), because this allows standing waves to be set up and enhances the effectiveness of the
radiation.

Figure : The oscillatory motion of the charges in a dipole antenna produces electromagnetic radiation.

The electric field lines in one plane are shown. The magnetic field is perpendicular to this plane. This radiation field has cylindrical
symmetry around the axis of the dipole. Field lines near the dipole are not shown. The pattern is not at all uniform in all directions.
The strongest signal is in directions perpendicular to the axis of the antenna, which would be horizontal if the antenna is mounted
vertically. There is zero intensity along the axis of the antenna. The fields detected far from the antenna are from the changing
electric and magnetic fields inducing each other and traveling as electromagnetic waves. Far from the antenna, the wave fronts, or
surfaces of equal phase for the electromagnetic wave, are almost spherical. Even farther from the antenna, the radiation propagates
like electromagnetic plane waves.

The electromagnetic waves carry energy away from their source, similar to a sound wave carrying energy away from a standing
wave on a guitar string. An antenna for receiving electromagnetic signals works in reverse. Incoming electromagnetic waves
induce oscillating currents in the antenna, each at its own frequency. The radio receiver includes a tuner circuit, whose resonant
frequency can be adjusted. The tuner responds strongly to tshe desired frequency but not others, allowing the user to tune to the
desired broadcast. Electrical components amplify the signal formed by the moving electrons. The signal is then converted into an
audio and/or video format.

Use this simulation to broadcast radio waves. Wiggle the transmitter electron manually or have it oscillate automatically.
Display the field as a curve or vectors. The strip chart shows the electron positions at the transmitter and at the receiver.

 

E/B = c
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 Note
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