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2.10.1: Integrals

Integration is the inverse operation to differentiation:

d
/d—idx:f(a:)—i-c

It is not always easy to evaluate a given integral. In fact some integrals are not even doable! However, there are some methods that
could yield an answer. While you might be happier using a computer algebra system, such as Maple or WolframAlpha.com, or a
fancy calculator, you should know a few basic integrals and know how to use tables for some of the more complicated ones.

First of all, there are some integrals you are expected to know without doing any work. These integrals appear often and are just an
application of the Fundamental Theorem of Calculus to the previous Table 8.4.1. The basic integrals that students should know off
the top of their heads are given in Table 2.10.1.1

These are not the only integrals you should be able to do. We can expand the list by recalling a few of the techniques that you
learned in calculus, the Method of Substitution, Integration by Parts, integration using partial fraction decomposition, and
trigonometric integrals, and trigonometric substitution. There are also a few other techniques that you had not seen before. We will
look at several examples.

v/ Example 2.10.1.1
€T
——dx.
v

Evaluate [
z?+1

Solution

When confronted with an integral, you should first ask if a simple substitution would reduce the integral to one you know how
to do.

The ugly part of this integral is the £2 + 1 under the square root. So, we let u = 2 +1 .

Noting that when u = f(z), we have du = f'(x)dz. For our example, du = 2zdz.

1
Looking at the integral, part of the integrand can be written as xdz = Eudu. Then, the integral becomes

/ T4 1 [ du
— 2 dre== =
vVax2+1 2 \/1_1,
The substitution has converted our integral into an integral over u. Also, this integral is doable! It is one of the integrals we
should know. Namely, we can write it as
1 d 1
v _Z / u Y2y

3] a2
This is now easily finished after integrating and using the substitution variable to give
z 1 ul/2
———dz==-—+C=+/2?+1+C.
/ Va4l 2 1
2

Note that we have added the required integration constant and that the derivative of the result easily gives the original
integrand (after employing the Chain Rule).

Often we are faced with definite integrals, in which we integrate between two limits. There are several ways to use these limits.
However, students often forget that a change of variables generally means that the limits have to change.

Table 2.10.1.1: Table of Common Integrals.

Function Indefinite Integral

a ax
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Function Indefinite Integral
o0 :I}"H
n+1
P leaz
a
1
= Inz
T
. 1
sinax ——cosazx
a
cosazr —sinax
a
9 1
sec” ax —tanazx
a
. 1
sinh ax —coshaz
a
1,
coshazx —sinhaz
a
2 1
sech” ax —tanh azx
a
secx In|secz+ tanz|
1 1
—In(a + bz
a+bx b ( )
1 T
—-— —tan~! =
a? + z? a a
1 T
sin 1 =
a2 _ .’1:2 a
1
—sec! £
x4/ 22 — a? a a
1 1T
— cosh™ ! — :1n|\/av2—a2 +w|
z2 _ a2 a
v/ Example 2.10.1.2
T
Evaluate [, ————dz.

V241
Solution

This is the last example but with integration limits added. We proceed as before. We let u = 2% +1 . As 2 goes from o to 2, u
takes values from i to 5. So, this substitution gives

2 x 1 (5 du 5
———dz == — = Jul>=+6-1
/0 V2 +1 21 Ju vy

When you becomes proficient at integration, you can bypass some of these steps. In the next example we try to demonstrate the
thought process involved in using substitution without explicitly using the substitution variable.

v/ Example 2.10.1.3

Evaluate f02 o

V9 +4x2

Solution
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As with the previous example, one sees that the derivative of 9 + 4z is proportional to 2, which is in the numerator of the

~1/2

integrand. Thus a substitution would give an integrand of the form u~"/“. So, we expect the answer to be proportional to

Vvu =+Vv9+4z? . The starting point is therefore,
T
——dz = A/ 9 +4z?
/ V9 +4z?
where A is a constant to be determined.

We can determine A through differentiation since the derivative of the answer should be the integrand. Thus,

%A(9+4m2) 2 =A(9+42) 2 (%) (8z)

1
— 4z A(9+4a?) 2

1
Comparing this result with the integrand, we see that the integrand is obtained when A = — . Therefore,

4
V9 +4z?

/ T d 1
S A
V9 + 422 4

‘We now complete the integral,

2
T 1 1
—————dz=-[5-3] ==
/0 V9 +4z? 4[ ] 2

d
The function gd(z) = [; cosilvll'

functions. This function was named after Christoph Gudermann (1798-1852), but introduced by Johann Heinrich Lambert (
1728 —1777), who was one of the first to introduce hyperbolic functions.

v/ Example 2.10.1.4

Evaluate [

ﬂ- . . . .
=2tan"le® — E) is called the Gudermannian and connects trigonometric and hyperbolic

coshz ’

Solution
This integral can be performed by first using the definition of cosh « followed by a simple substitution.

/ dz / 2
= [ ———dzx
coshz et +e®
2 xZ
=/ € dx
e +1

/ dz / 2
= [ ——du
coshz 1+u?
=2tan tu+C
=2tan le® +C

Now, we let u = e* and du = e*dx . Then,

Integration by Parts

When the Method of Substitution fails, there are other methods you can try. One of the most used is the Method of Integration by
Parts. Recall the Integration by Parts Formula:

https://phys.libretexts.org/@go/page/76310
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¢ Integration by Parts Formula

/udvzuv—/vdu

The idea behind Integrating by Parts is that you are given the integral on the left and you can relate it to an integral on the right.
Hopefully, the new integral is one you can do, or at least it is an easier integral than the one you are trying to evaluate.

However, you are not usually given the functions « and v. You have to determine them. The integral form that you really have is a
function of another variable, say . Another form of the Integration by Parts Formula can be written as

/f(w)g’(w)dx =f(w)g($)—/g(w)f'(w)dw

Note: Often in physics one needs to move a derivative between functions inside an integrand. The key - use integration by parts to
move the derivative from one function to the other under an integral.

This form is a bit more complicated in appearance, though it is clearer than the « — v form as to what is happening. The derivative
has been moved from one function to the other. Recall that this formula was derived by integrating the
. These two formulae can be related by using the differential relations

u=f(z) — du=f'(z)dz
v=g(z) — dv=g'(z)dx

This also gives a method for applying the Integration by Parts Formula.

v/ Example 2.10.1.5

Consider the integral f zsin2zdx.

Solution
We choose u = z and dv = sin 2zdx. This gives the correct left side of the Integration by Parts Formula. We next determine v
and du :
du
= —dw =dx

v—/dv—/sm2mdm ———cos2m

We note that one usually does not need the integration constant. Inserting these expressions into the Integration by Parts
Formula, we have

1 1
/a: sin2zdr = —Em cos2w+§ /cos2mdm

We see that the new integral is easier to do than the original integral. Had we picked u = sin2z and dv = zdz, then the
formula still works, but the resulting integral is not easier.

For completeness, we finish the integration. The result is

1 1
/ac sin2zdzr = —Ew cos 2z +Zsin2x—|—0’.

As always, you can check your answer by differentiating the result, a step students often forget to do. Namely,

d 1 1., 1 . I
1z (—2mcos2w+4sm2w+0) ——2c052z+zsm2aj+4(2cos2z)
=z sin2z.

So, we do get back the integrand in the original integral.
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(Integration by Parts for Definite Integrals). We can also perform integration by parts on definite integrals. The general formula is
written as

b " b
| 1@ @z = @)l - [ gfo)f (@)da

v/ Example 2.10.1.6

Consider the integral

s
/ 22 coszdz
0

This will require two integrations by parts. First, we let u = 2? and dv = cos . Then,
du =2zdzr. wv=sinz

Inserting into the Integration by Parts Formula, we have

s s
. ™ .
/ z? coszdr = z? sma:|0 —2/ zsinzdx
0 0

:—2/ Tsinzdz
0

We note that the resulting integral is easier that the given integral, but we still cannot do the integral off the top of our head
(unless we look at Example 3! ). So, we need to integrate by parts again. (Note: In your calculus class you may recall that there
is a tabular method for carrying out multiple applications of the formula. We will show this method in the next example.)

We apply integration by parts by letting U =« and dV =sinzdx. This gives dU =dx and V = —cosz. Therefore, we
have

™ ™
/ zsinzdz = —z cos:c|g+/ coszdz
0 0

=7 +sinz|;

=T

The final result is

v
/ z? coszdr = —27
0

There are other ways to compute integrals of this type. First of all, there is the Tabular Method to perform integration by parts. A
second method is to use differentiation of parameters under the integral. We will demonstrate this using examples.

v/ Example 2.10.1.7

Compute the integral foﬂ x? cos zdx using the Tabular Method.

(Using the Tabular Method). First we identify the two functions under the integral, 2> and cosz. We then write the two
functions and list the derivatives and integrals of each, respectively. This is shown in Table A.4. Note that we stopped

First when we reached zero in the left column.

Next, one draws diagonal arrows, as indicated, with alternating signs attached, starting with +. The indefinite integral is then
obtained by summing the products of the functions at the ends of the arrows along with the signs on each arrow:

/:c2 coszdzr = z* sinz +2zcosz —2sinz +C

To find the definite integral, one evaluates the antiderivative at the given limits.
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™

™
/ 22 coszdr = [zzsinw+2wcosa:—2sina:]0
0

= (7r2 sin7r+27rcos7r—2sin7r) -0

= 2.

Actually, the Tabular Method works even if a zero does not appear in the left column. One can go as far as possible, and if a zero
does not appear, then one needs only integrate, if possible, the product of the functions in the last row, adding the next sign in the
alternating sign progression. The next example shows how this works.

D I

COs X

/

2x sin x

— COs X

)/

0 —sinx

Figure 2.10.1.1: Tabular Method

D I
sin 3x e2x
+
3 cos3x %ezx
—9sin3x 1o

Figure 2.10.1.2: Tabular Method, showing a nonterminating example.

v/ Example 2.10.1.8

Use the Tabular Method to compute [ € sin 3z dz.
As before, we first set up the table as shown in Figure 2.10.1.2

Putting together the pieces, noting that the derivatives in the left column will never vanish, we have

1 3 1
/ezz sin3zdz = <§sin3ac —cos 3;1:) e —I—/(—Q sin3z) (Ze%) dzx

The integral on the right is a multiple of the one on the left, so we can combine them,
13 o - (1. 3 o
1 /e sin3zdx = (2sm3a: 4cos 3x> e
or

2 3
2z . _ . _ 2x
/e sin3zdz = (—13s1n3w —13cos 3:1c) e
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Differentiation Under the Integral
Differentiation Under the Integral Sign and Feynman’s trick.

Another method that one can use to evaluate this integral is to differentiate under the integral sign. This is mentioned in the Richard
Feynman’s memoir Surely You’re Joking, Mr. Feynman!. In the book Feynman recounts using this "trick" to be able to do integrals
that his MIT classmates could not do. This is based on a theorem found in Advanced Calculus texts. Reader’s unfamiliar with

partial derivatives should be able to grasp their use in the following example.

of(z,t)

Let the functions f(z,t) and 3
i
a(z) <t <b(z),zo <z <z, where the functions a(z) and b(x) are continuous and have continuous derivatives for

z9 <z < z; . Defining

be continuous in both ¢, and z, in the region of the (¢,z) plane which includes

then

OF\ db oF b@) g
% ) (8(1) +L(z) awf(a:,t)dt

b(z) b

o b)Y @)~ e+ | s

for g < < x; . This is a generalized version of the Fundamental Theorem of Calculus.

In the next examples we show how we can use this theorem to bypass integration by parts.

v/ Example 2.10.1.9

Use differentiation under the integral sign to evaluate f xe®dx. First, consider the integral

ar

azx _ €
I(m,a):/e dz = .
Then,
0I(z,a) w
e —/ace dz
SO

Oa

z(%(/e‘”dw)
_ 8 ellZ
-5 (5)
z 1 .
:<E_§>e

/:ce’dw =(z—1)e”

74
/‘me‘wdm = —8 (z,0)

Evaluating this result at @ = 1, we have

The reader can verify this result by employing the previous methods or by just differentiating the result.
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We will do the integral fOTr x2 cos xzdz once more. First, consider the integral

I(a) E/ cosazdz
0

sinaz |"

a
sinam

0

a
Differentiating the integral I (a) with respect to a twice gives
d?*I(a)
da?

s
= —/ 2% cosazdz
0

Evaluation of this result at @ = 1 leads to the desired result. Namely,

@ d2I
/ z? coszdr = — (a)
0 da2 a=1

d? ( sinam )
Y
da’ @ a=1lg=1

d (awcosmr—sinmr) ) |
g a=1
da 2 o

a7 sinam + 2aw cosam — 2 sinarm
—27.

a

Trigonometric Integrals

Other types of integrals that you will see often are trigonometric integrals. In particular, integrals involving powers of sines and
cosines. For odd powers, a simple substitution will turn the integrals into simple powers.

v/ Example 2.10.1.11

For example, consider

/ cos’ zdz

Solution
This can be rewritten as

/cos3 zdr = /cos2 T coszdx

Integration of odd powers of sine and cosine. Let v = sinz. Then, du = cos xdx. Since cos

2
/0053 rdr = /cos T cosxdx

:/(1—u2) du

1
:u—§u3+0’

1
=sinz — gsin?’ z+C.

2 2

r =1 —sin” x, we have

A quick check confirms the answer:

https://phys.libretexts.org/@go/page/76310
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d g 1, 3 )
— [ sine —=sin®z+C ) =cosz —sin’zcosz
dzx 3
=cosz (1 —sin’ z)
=cos’x

Even powers of sines and cosines are a little more complicated, but doable. In these cases we need the half angle formulae
(A.24)-(A.25).

(Integration of even powers of sine and cosine).

v/ Example 2.10.1.12

As an example, we will compute

2w 2
/ cos” zdx
0

Solution

Substituting the half angle formula for cos?

x, we have

2 2T
/ cos’ zdx = / (1+cos2zx)dz
0 0

2
1 1
== (m — —sin2:c)
2 0

We note that this result appears often in physics. When looking at root mean square averages of sinusoidal waves, one needs the
average of the square of sines and cosines. Recall that the average of a function on interval [a, b] is given as

N =

[\V]

Il
3

b
fave = bia/,; f(:B)d:E

So, the average of cos® 2 over one period is

1 2 1
— cos® zdz = —.
27 0 2

1
The root mean square is then found by taking the square root, % .
Recall that RMS averages refer to the root mean square average. This is computed by first computing the average, or mean, of the
square of some quantity. Then one takes the square root. Typical examples are RMS voltage, RMS current, and the average energy
in an electromagnetic wave. AC currents oscillate so fast that the measured value is the RMS voltage.

Trigonometric Function Substitution

Another class of integrals typically studied in calculus are those involving the forms V1 —z2, v1+z2, or \(\sqrt{xA2 — 1\).
These can be simplified through the use of trigonometric substitutions. The idea is to combine the two terms under the radical into
one term using trigonometric identities. We will consider some typical examples.

v/ Example 2.10.1.13

Evaluate [v1—z?dz.

Solution
Since 1 —sin® @ = cos? 6 , we perform the sine substitution

https://phys.libretexts.org/@go/page/76310
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In any of these computations careful attention has to be paid to simplifying the radical. This is because

\/w‘2:|a:|

For example, 1/(—5)2 =+/25=5. For £ =sin6, one typically specifies the domain —7/2 <6 < 7 /2. In this domain we
have | cosf| = cos@.

Then,

r =sinf, dzr = cosfdf

/ 1—z2d:c:/\/1—sin200050d6'

= / cos’ 6d6.

1 1
/\/ 1—2°dzx :5<0— 5511120) +C.

However, we need to write the answer in terms of . We do this by first using the double angle formula for sin26 and

cos@=+1—z2 to obtain

Using the last example, we have

/\/ 1—z2dx :l(sin_lx—w\/ 1—902) +C.

2

Similar trigonometric substitutions result for integrands involving v/1 +z2 and v/z2 — 1. The substitutions are summarized in
Table A.6. The simplification of the given form is then obtained using trigonometric identities. This can also be accomplished by
referring to the right triangles shown in Figure 2.10.1.3

Table 2.10.1.2: Standard trigonometric substitutions.

Form Substitution Differential
a? — 22 z=asinf dx = acos0df
va? 4 x2 r=atané dz = asec® 6d6
Va2 —a? z=asecl dz = asec ftan 6d0
x =sinf x = tanf x = secf
1 X
V1+x2
x X 2 —1
0 0 0

V1—x2 1 1

Figure 2.10.1.3: Geometric relations used in trigonometric substitution.

v/ Example 2.10.1.14

Evaluate [ vz +4dz.

Solution
Let z = 2tan#. Then, dz = 2 sec® 6df and

2.10.1.10 https://phys.libretexts.org/@go/page/76310
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So, the integral becomes

\/w2+4 = \/4tan20+4 =2secl

2 /4
/ vVt +4de = 4/ sec® 0d6
0 0

One has to recall, or look up,

/‘sec3 0do = %(tanOsec9+ln| secf+tanf|)+C.

This gives

2
/ v x?+4dz =2[tanfsecd+In| secc9—i—ta,nt9|]g/4
0

=2(v2+1n|v/2+1| - (0+In(1)))
=2(v2+In(v2+1))

v/ Example 2.10.1.15

Evaluate [ _dr z>1
Nz
Solution
In this case one needs the secant substitution. This yields
/ dz. [ secOtan6do
vaz—1 Vsec?6—1
B /‘ sec O tan 0d6
N tand
= / sec 6d0
=In(sec6+tanb)+C

:1n(a:—|— :1:2—1) +C.

v/ Example 2.10.1.16

Evaluate [ _dz T >
V-1

Again we can use a secant substitution. This yields

1.

/ dz _ / sec Otando
zvz? -1 secf+v/sec20—1
B / sec Otan 6 40

sec Otan6

=/d0=9+0=sec_1m—|—0.

Hyperbolic Function Substitution
Even though trigonometric substitution plays a role in the calculus program, students often see hyperbolic function substitution
used in physics courses. The reason might be because hyperbolic function substitution is sometimes simpler. The idea is the same

as for trigonometric substitution. We use an identity to simplify the radical.

2.10.1.11 https://phys.libretexts.org/@go/page/76310
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Evaluate f02 v/ @2 + 4 dx using the substitution = 2 sinhu.

Solution

Since z = 2 sinhu, we have dx = 2 coshudu. Also, we can use the identity cosh?u —sinh?u =1 to rewrite

Vz2+4 =V 4sinh® u+4 =2 coshu

The integral can be now be evaluated using these substitutions and some hyperbolic function identities,

2 sinh ™! 1
/ 2V 22 +4dx = 4/ cosh? udu
0 0

sinh ™" 1
=% / (1 +cosh2u)du
0

1 sinh ™" 1
=p [u + —sinh2u]

2 0
= 2[u +sinhu coshu]§i™ !
=2 (sinh ' 1++/2)

In Example A.17 we used a trigonometric substitution and found

[ vari=awama )

This is the same result since sinh ! 1 = In(1 ++/2) .

v/ Example 2.10.1.18

Evaluate for > 1 using hyperbolic function substitution.

f dx
V-1
Solution

This integral was evaluated in Example 2.10.1.16using the trigonometric substitution z = sec @ and the resulting integral of
sec 0 had to be recalled. Here we will use the substitution

¢ =coshu, dz=sinhudu, Vz2-1-= \/cosh2 u—1 =sinhu

Then,
/ dr [ sinhudu
Vzz—1 sinhu
= / du=u+C
=cosh ' z+C

1
= Eln(z—i— w2—1) +C, z>1
This is the same result as we had obtained previously, but this derivation was a little cleaner.

Also, we can extend this result to values * < —1 by letting = - cosh u. This gives

dx 1 D)
< _
/—\/2_1 ———2ln(:c—|— T —1)+C, T 1

Combining these results, we have shown

_de 1 /=T >
/ m2_1_21n(\w|+ & 1)+C, z¢>1

2.10.1.12 https://phys.libretexts.org/@go/page/76310
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We have seen in the last example that the use of hyperbolic function substitution allows us to bypass integrating the secant function
in Example 2.10.1.16when using trigonometric substitutions. In fact, we can use hyperbolic substitutions to evaluate integrals of
powers of secants. Comparing Example 2.10.1.16and Example 2.10.1.1§ we consider the transformation sec # = coshw. The
relation between differentials is found by differentiation, giving

sec ftan 0df = sinhudu
Since
tanh® 0 =sec?6—1
we have tan 6 = sinh u , therefore

du
coshu

In the next example we show how useful this transformation is.

(Evaluation of [sec6df).

v/ Example 2.10.1.19

Evaluate ['sec8d6 using hyperbolic function substitution.

Solution
From the discussion in the last paragraph, we have

/sec@d@ :/du

=u+C
= cosh™!(secf) +C

We can express this result in the usual form by using the logarithmic form of the inverse hyperbolic cosine,
cosh ! z zln(w—i— 2—1)
The result is

/sec 0df = In(sec 6+ tanf)

This example was fairly simple using the transformation sec § = coshw. Another common integral that arises often is integrations
of sec®f. In a typical calculus class this integral is evaluated using integration by parts. However. that leads to a tricky
manipulation that is a bit scary the first time it is encountered (and probably upon several more encounters.) In the next example,
we will show how hyperbolic function substitution is simpler.

(Evaluation of [sec® 6d6).

v/ Example 2.10.1.20

Evaluate f sec? 8d# using hyperbolic function substitution.

Solution
du

First, we consider the transformation sec § = coshu with df = . Then,
U

os
/ sec® 0do = / du
coshu

This integral was done in Example A.7, leading to

2.10.1.13 https://phys.libretexts.org/@go/page/76310
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/sec3 0d0 =2tan le* +C

While correct, this is not the form usually encountered. Instead, we make the slightly different transformation tan = sinh v .
Since sec? # = 1 +tan? 6 , we find sec = coshu. As before, we find

du
coshu

Using this transformation and several identities, the integral becomes

/ sec® 0do = / cosh? udu

1
=3 /(1 + cosh2u)du

1 1

(u+sinhu coshu)

(cosh™ (sec 6) + tan fsec 6)

(sec@tand+ In(sec 6+ tandh))

CIE=Y AR SR

There are many other integration methods, some of which we will visit in other parts of the book, such as partial fraction
decomposition and numerical integration. Another topic which we will revisit is power series.

Integrations Table

Basic Integrals

un+1
1. /u”du: +C, n#-1

n—+1
d
2. /—u:1n|u|—|—0’
u
3. /e"du:e“—i—C
4. /a“duz a +C
Ina

5. /sinudu:—cosu+0

6. /cosudu:sinu+C

N

/sec2udu:tanu+C’

8. /csczudu:—cotu—&-C

9. /secutanudu:secu+0
10. /cscucotuduz—cscu—i—C’

11. /tanudu:ln|secu|+0
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12. /cotudu:1n|sinu|—|—C'
13. /secudu:1n|secu+tanu|+0

14. /cscudu:1n|cscu—cotu|—|—C

15 /d—“—sinfl(ﬂ)jtc
’ Ny a
du 1. _/u
o[22 L (%)
/a2+u2 o\ +
du 1 |ul
17. — = —sec ! —+4C
/U\/u2—a2 a a

Trigonometric Integrals

1 1
18. /sinzuduz Eu—zsin2u+C

1 1
19. /cos2udu:§u+zsin2u+0
20. /tanzuduztanu—u—i—C
21. /cot2udu=—cotu—u+C
.3 1 s 9
22. sin udu:—§(2—|—sm u)cosu+C

23. /cos3 uwdu ==(2+cos’u)sinu +C

1
3
3 LI
24. tan udu:itan u+In|cosu|+C
3 L .
25. /cot udu:—Ecot u—In|sinu| +C
s 1 1
26. sec’ udu = Esecutanu+§1n|secu—|—tanu| +C
, 1 1
27. csc udu=—Ecscucotu—{—51n|cscu—cotu|+C
-1 -1
28. /sin"udu = —sin" ucosu + —— /sin"fzudu
n n

1 n—1
29. /cos” wdu =—cos” usinu + —— /cos”_2 udu
n n

1
30. /tan" udu= 1 tan™ tu— /‘uann_2 udu

-1
31. /cot”udu = T cot"’lu—/cot"’zudu
n—

1 -2
32. /sec" udu = 1 tanusec” 2 u+ L /sec"_2 udu

n— n—1

-1 —2
33. /csc"udu = T cotucse” 2 u+ i T /cscn_2udu

sin(la—b)u  sin(a+b)u

2acb) 2atn

34. /sin ausinbu du =
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in(a—b i b
35. /cosau cosbudu = sina—bju , sina+bu +C
2(a—b) 2(a+D)
cos(a—b)u  cos(a+bd)u
36. /sinau cosbudu =— ( ) - ( ) +C
2(a—0b) 2(a+b)
37. /usinudu =sinu —ucosu—+C
38. /ucosudu =cosu+usinu+C
39. /un sinudu = —u" cosu —i—n/u"_1 cosu du
40. /u” cosudu =u" sinu—n/u"’1 sinu du
n m sin" tucos™lu  n—1  ne2 m
sin" u cos” udu = — + sin” “wucos™ udu
n+m n+m
41.
sin"lucos™luy m-—1 o o
= + sin” u cos udu
n+m n+m

Exponential and Logarithmic Integrals

1
42. /ue‘w du=—(au—1)e* +C
a

1 n
43. /une“" du==u"e®™ —— [ u" Te™ du
a a

o . B e )
44. /e sinbu du = Y (asinbu —bcosbu) +C

au

45. /e‘“‘ cosbudu = a;w(a cosbu +bsinbu) +C

46. Inudu=ulnu—u+C

(n+1)2

48.

un+1
47. /u Inudu=———[(n+1)lnu—1]+C
/ du—ln|lnu\+C’

ul

Hyperbolic Integrals

49. /sinhu du =coshu +C

50. /coshu du =sinhu+C

51. /tanhu du =Incoshu+C

52. /cothu du =In|sinhu| +C

53. /sechu du =tan™! |sinhu|+C
1

54. /cschu du =In| tanh 3 | +C

55. /sech2u du =tanh u+C
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56. /csch2u du=—cothu+C
57. /sechu tanhu du = —sechu +C
58. /cschu cothudu = —cschu +C

Inverse Trigonometric Integrals

59. /sin_luduzusin_lu—i—\/l—u2 +C

60. /cos_ludu=ucos_1u—\/1—u2 +C
-1 -1 1 2
61. /tan udu =utan u—Eln(l—l-u )+C
2u?—1 V1—u?
62. /usinfludu: v sinflu—i-%—l-C
2u? — 1 T—u?
63. /ucos’luduz d cos’lu—u—i-C
4 4
2
1
64. /utanfludu: wt tanflu—%—i-C
1 ™t du
65. u"sin" ! udu = WwHsintu— | ———|, n#-1
/ n+1 [ V1—u? #
1 n+1d
66. /u”cosludu:—[u”“coslu—i— u], n#—1
n+1 V1—u2
n+1d
67. /untan‘ludu: u™tl tan_lu—/u “ , n#-—1
n+1 1+u?

Integrals Involving a2 + u?, a > 0
2
68. /\/a2+u2 duz% a2+u2+%ln(u+ a2+u2)+C’

4
69. /u2\/a2—i—u2 du = %(a2+2u2)\/a2+u2 —a—ln(u—i— a2+u2) +C

8
2 2 /a2 2
70. /—”a;ruduz @+l —aln% W,
2 2 2 2
71. /‘a:" du:—'a:" —|—ln(u—|— a2+u2)—|—C
u
72 v _ ( +/d+ 2)+C
. \/m =In{u a u
73 / W d u(\/ 2y 2) a21n(u+ 2+u2)+C
. —_— adU = — a u _— a
1/‘12_’_11'2 2 2
1 | va2 +u2
74, /d_u:_lnm ‘C
uva? +u? a u
7e du __\/a2+u2 ‘C
’ Ny o au
du u
76. / = +C
(a2 +u?)%?  a*Va? +u?
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Integrals Involving u?> - a%, a > 0
2
77. /\/u2—a2 du:g\/u2—a2 —%ln‘u+\/u2—a2‘+0
1
78. /u2 u’ —a® du= %(2u2 —a®)Vu? —a? —%ln’u+\/u2—a2 ‘—i—C’
V2 —a2
79. /uduzvzﬁ—(ﬁ —acos? |i+C
u

ul

2 _ 2 2 _ 2
80. / Y 2a du = — w—a —|—ln‘u—|—\/u2—a2’—|—C
n u

du
81. — =1 2 _qg? C
/ = n‘u—l—\/u a ‘—i—
82 Y =2+ St | O
. m ’U,—E u- —a —i—?n’u—i— u—a’—i—
3 du _ Vu?—a? Lo
’ Ve —a2 adu
du u
84. / =——+C
(u2 _ a2)3/2 azx/u2 — a2

Integrals Involving a - u?,a >0

2
u a u

85. /\/a2—u2 du = > a®>—u? + —sin' —+C
a

2
4
a

8
2 _ 2 2 _ 2
g7 /Va_udu: o O L R Gl
u

+C

2 __ a2 -1
88. /\/a—zudu:— @ -2 —sin' L 4C
u u a

89 / v, 1( 2 2+2'*1u)+0
. ———du=—|—-uva " —u" +a’sin" —
Va2 —u2 2 a
d 1 Va? —u?
uva? —u? a u

du 1 D) D)
91. ——=——+Va" —u" +C
w2vVa? —u2 a’u

4
92. /(a2 —u2) 3/2 du = —%(ZUZ —5a2) Va2 —u? + 3%sin_1 % +C

93 / du v W,
S T N

Integrals Involving 2au — u?,a >0

_ 2 _
94. / 2au—u2du:% 2au—u2+%cosl<a u)—i—C

du 4fa—u
95. ———— =cos +C
V2au —u? a
2 g2 3 _
2u” —au—3a” 2au—u2+%cos—1<“ “>+c

2
96. /u 2au —u’ du = v 6
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_ .2
97, / du :_\/2au u L

uv2au — u? au

Integrals Involving a + bu, a # 0

1
98. /a+bu du = 2 —(a+bu—alnla+bu|)+C

u? 1 ,
99. /a+bu du = o7l [(a—l—bu) —4a(a+bu)+2a 1n|a+bu|] +C

du 1 U
100. —_— = —ln’ ‘ +C
ula+bu) a latbu

T 1 el 2
u?(a+bu) au  a? u
u a 1
102. du = + —lInla+bul+C
/(a+bu)2 U Platbe) | w ety
U 1 1. |a+bu
103. du = ——1
/u(a—l—bu)2 b ala+bu) a? " +C

104 / v du—l(a+bu— @ —2aln|a—|—bu|)—|—C
' (a+bu)2 b3 a+bu

105. /u\/a—l—bu du = — 5b —— (3bu—2a)(a+bu)**+C

106. bu —2a \/a—i—bu—l—C’
/\/a—kbu 3b ( )
U
107. du 8a? + 3b%u? — 4abu)va+bu +C
/\/a—i—bu 15b3( )
\/a+bu —/a .
108 / _duw 7 e T Ha>0
uva+bu j—;tan_l o L 0, ifa<0
109. /—Vaer“ du = 2va + bu +a/d—”
U u\/m
110 /\/a—i—bu du — \/a—i—bu /
' u? u\/a—I—bu
2
111. /un\/a+bu du=———"7—+ un(a+bu)3/2—na/un_1\/a+bu du
b(2n+3)
2u"v/a+bu
112. du = — du
Va+bu b(2n+1) b(2n+1) J Va+bu
13 du __Yatbu  b(2n-3) / du
' u"+/a+bu aln—u*t  2a(n—-1) J v 1y/a+bu

This page titled 2.10.1: Integrals is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform.

o 8.5: Integrals by Russell Herman is licensed CC BY-NC-SA 3.0. Original source:
http://people.uncw.edu/hermanr/mat361/ODEBook/index.htm.

o Appendix B: Table of Integrals by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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